WorldWideScience

Sample records for heteroligand bipyridyl-pyridylbenzimidazole ruii

  1. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A High Molar Extinction Coefficient Mono-Anthracenyl Bipyridyl Heteroleptic Ruthenium(II Complex: Synthesis, Photophysical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-06-01

    Full Text Available In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs, cis-dithiocyanato-4-(2,3-dimethylacrylic acid-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic-2,2'-bipyridyl ruthenium(II complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT band absorption with higher molar extinction coefficient (λmax = 518 nm, e = 44900 M−1cm−1, and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  3. Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and aryldiazo-beta-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties.

    Science.gov (United States)

    Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K

    2005-05-01

    The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.

  4. Synthesis and properties of mixed-ligand ruthenium(II) complexes containing 2-(2-pyridyl)-benzimidazole and related ligands

    International Nuclear Information System (INIS)

    Haga, Masaaki; Tanaka, Toshio.

    1979-01-01

    Mixed-ligand ruthenium(II) complexes of the [Ru(bpy) 2 L]sup(n+) (ClO 4 )sub(n) type, where bpy= 2,2'-bipyridine; L= 2-(2-pyridyl)-benzimidazole (PBImH) when n= 2, and L= 2-(2-pyridyl)-benzimidazolate (PBIm) and 2-(o-hydroxyphenyl)-benzimidazole (OBImH) when n= 1, were prepared. Anodic peak potentials and ruthenium-to-bipyridine charge transfer bands of these complexes are rationalized in terms of the donor ability of L. (author)

  5. Synthesis and properties of mixed-ligand ruthenium(II) complexes containing 2-(2-pyridyl)-benzimidazole and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Haga, M [Mie Univ., Tsu (Japan); Tanaka, T

    1979-07-01

    Mixed-ligand ruthenium(II) complexes of the (Ru(bpy)/sub 2/L)sup(n+) (ClO/sub 4/)sub(n) type, where bpy= 2,2'-bipyridine; L= 2-(2-pyridyl)-benzimidazole (PBImH) when n= 2, and L= 2-(2-pyridyl)-benzimidazolate (PBIm) and 2-(o-hydroxyphenyl)-benzimidazole (OBImH) when n= 1, were prepared. Anodic peak potentials and ruthenium-to-bipyridine charge transfer bands of these complexes are rationalized in terms of the donor ability of L.

  6. Concurrent coordination of ligand in metal chloride complexes with 1-vinyl-2-(2-pyridyl)benzimidazole

    International Nuclear Information System (INIS)

    Bajkalov, L.V.; Domnina, E.S.

    1996-01-01

    The properties and structure of bivalent cadmium and 1-vinyl-2-(2-pyridyl)benzimidazole chloride complexes, which have been prepared for the first time, have been studied by the methods of potentiometric titration and PMR, 35 Cl NQR, UV and IR spectroscopy. For the complexes above di- and polymeric structures in crystal phase are suggested, where ligand plays the role of a bridge. N,N-bidentate ligand. In solution the complexes dissociate with formation of monomeric coordination compounds, their metal being bound by different ways, stemming from participation of N benzimidazole or pyridine fragment of the ligand. Adducts of ionic type with second sphere 1-vinyl-2-(2-pyridyl)benzimidazole cation have been obtained in the course of hydrochlorination of the complexes prepared

  7. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H{sub 2} evolution over TiO{sub 2} nanoparticles with mesostructures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Tianyou [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074 (China); Ke, Dingning; Cai, Ping; Dai, Ke; Ma, Liang; Zan, Ling [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

    2008-05-15

    H{sub 2} production over dye-sensitized Pt/TiO{sub 2} nanoparticles with mesostructures (m-TiO{sub 2}) under visible light ({lambda} > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/m-TiO{sub 2} with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO{sub 2} has better durability but the lowest H{sub 2} evolution efficiency, whereas the loosely attached dyes possess higher H{sub 2} evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO{sub 2} and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H{sub 2} evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and ''antenna effect'', which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO{sub 2}. (author)

  8. Structures of nitrato-(2-hydroxybenzaldehydo) (2,2 Prime -bipyridyl)copper and nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Paladi, L. G. [Moldova State University (Moldova, Republic of); Antosyak, B. Ya.; Simonov, Yu. A. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I., E-mail: vtsapkov@gmail.com [Moldova State University (Moldova, Republic of); Bocelli, G. [Institute of Materials for Electronics and Magnetism (Italy); Gulea, A. P. [Moldova State University (Moldova, Republic of); Ginju, D. [Alexandru Ioan Cuza University of Iasi (Romania); Palomares-Sanchez, S. A. [Autonomous University of San Luis Potosi (Mexico)

    2011-03-15

    Nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper (I) and nitrato-(2-hydroxybenzaldehydo)(2,2 Prime -bipyridyl)copper (II) were synthesized and characterized by X-ray diffraction. The coordination polyhedron of the central copper atom in complex I can be described as a distorted tetragonal pyramid whose base is formed by the phenol and carbonyl oxygen atoms of the monodeprotonated 2-hydroxy-5nitrobenzaldehyde molecule and the nitrogen atoms of the 2,2 Prime -bipyridyl ligand and whose apex is occupied by the oxygen atom of the nitrato group. In the crystal structure, complexes I are linked by the acido ligands and the NO{sub 2} groups of the aldehyde molecule into infinite chains. In complex II, the central copper atom is coordinated by 2-hydroxybenzaldehyde, 2,2 Prime -bipyridyl, and the nitrato group, resulting in the formation of centrosymmetric dimers. The coordination polyhedron of the central copper atom can be described as a bipyramid (4 + 1 + 1) with the same base as in complex I. The axial vertices of the bipyramid are occupied by the oxygen atom of the nitrato group and the bridging phenol oxygen atom of the adjacent complex related to the initial complex by a center of symmetry. In the crystal structure, complexes II are hydrogen bonded into infinite chains.

  9. Effect of Particle Association on 2,2'-Bipyridyl Adsorption onto Kaolinite.

    Science.gov (United States)

    Helmy, A. K.; Ferreiro, E. A.; de Bussetti, S. G.

    2000-05-15

    The effect of particle concentration, in kaolin suspensions, on the adsorption of 2,2'-bipyridyl was studied. Adsorption expressed in units of micromoles per gram decreased as a result of the increase in particle concentration and also as a result of the presence of coagulant (0.25 M NaCl). Dispersion treatment with sodium hexametaphosphate increased the adsorption of bipyridyl. The decrease in adsorption with the increase in particle concentration suggests a possible relation between adsorption and flocculation phenomena. On the basis of classic flocculation theory a straight-line relation was obtained between the square root of the adsorption maximum (mmol/L) and particle concentration (g/L). It is concluded that particle association, which is a function of particle concentration, reduces the surface/aqueous interface and consequently the adsorption of bipyridyl. Copyright 2000 Academic Press.

  10. Actinide-lanthanide separation by bipyridyl-based ligands. DFT calculations and experimental results

    International Nuclear Information System (INIS)

    Borisova, Nataliya E.; Eroshkina, Elizaveta A.; Korotkov, Leonid A.; Ustynyuk, Yuri A.; Alyapyshev, Mikhail Yu.; Eliseev, Ivan I.; Babain, Vasily A.

    2011-01-01

    In order to gain insights into effect of substituents on selectivity of Am/Eu separation, the synthesis and extractions tests were undertaken on the series of bipyridyl-based ligands (amides of 2,2'-bipyridyl-6,6'-dicarboxylic acid: L Ph - N,N'-diethyl-N,N'-diphenyl amide; L Bu2 - tetrabutyl amide; L Oct2 - tetraoctyl amide; L 3FPh - N,N'-diethyl-N,N'-bis-(3-fluorophenyl) amide; as well as N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dibrom-2,2'-bipyridyl-6,6'-dicarboxylic acid and N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dinitro-2,2'-bipyridyl-6,6'-dicarboxylic acid) as well as structure and stability of their complexes with lanthanides and actinides were studied. The extraction tests were performed for Am, lanthanide series and transition metals in polar diluents in presence of chlorinated cobalt dicarbolide and have shown high distribution coefficients for Am. Also was found that the type of substituents on amidic nitrogen exerts great influence on the extraction of light lanthanides. For understanding of the nature of this effect we made QC-calculations at DFT level, binding constants determination and X-Ray structure determination of the complexes. The UV/VIS titration performed show that the composition of all complexes of the amides with lanthanides in solution is 1:1. In spite of the binding constants are high (lgβ about 6-7 in acetonitrile solution), lanthanide ions have binding constants with the same order of magnitude for dialkyl substituted extractants. The X-Ray structures of the complexes of bipyridyl-based amides show the composition of 1:1 and the coordination number of the ions being 10. The DFT optimized structures of the compounds are in good agreement with that obtained by X-Ray. The gas phase affinity of the amides to lanthanides shows strong correlation with the distribution ratios. We can infer that the bipyridyl-based amides form complexes with metal nitrates which have similar structure in solid and gas phases and in solution, and the DFT

  11. Synthesis, Photophysical and Electrochemical Properties of a Mixed Bipyridyl-Phenanthrolyl Ligand Ru(II Heteroleptic Complex Having trans-2-Methyl-2-butenoic Acid Functionalities

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2011-09-01

    Full Text Available In this work, two ligands: 4-(trans-2-Methyl-2-butenoic acid-2,2'-bipyridine (L1 and 5-(trans-2-methyl-2-butenoic acid-1,10-phenanthroline (L2, with the corresponding mixed-ligand heteroleptic Ru(II complex were synthesized and characterized by FT-IR, 1H-, 13C-NMR spectroscopy and elemental analysis. The influence of the mixed functionalized polypyridyl ruthenium(II complex on the photophysical and electrochemical properties were investigated and compared to individual single-ligand homoleptic complexes. Interestingly, the mixed-ligand complex formulated as [RuL1L2(NCS2] exhibits broad and intense metal-to-ligand charge transfer (MLCT absorption with a high molar extinction coefficient (λmax = 514 nm, ε = 69,700 M−1 cm−1, better than those of individual single-ligand complexes, [Ru(L12(NCS2] and [Ru(L22(NCS2], and a strong photoluminescence intensity ratio in the red region at λem = 686 nm. The electrochemical properties of the complex indicated that the redox processes are ligand-based.

  12. Ruthenium(II)- bipyridyl with extended π-system: Improved thermo ...

    Indian Academy of Sciences (India)

    aInorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, ... A new extended thermo-stable high molar extinction coefficient bipyridyl ruthenium(II) complex ... cyanines and metal free organic sensitizers have been ..... Iodide-based ionic liquids are more viscous than.

  13. A novel dinuclear Ru(II) complex having a bridging ligand of a rigid and extended structure. Incorporation of an anthraquinone unit and efficient emission quenching

    International Nuclear Information System (INIS)

    Mishra, L.; Choi, Chang-Shik; Araki, Koji

    1997-01-01

    Dinuclear Ru(II) complex having extended conjugation within the bridging ligand was prepared by coupling of the Ru(II) polypyridyl complex having a benzoyl-substituted phenazine unit with diaminoanthraquinone in one step, in which emission from the excited Ru(II) center was efficiently quenched through the anthraquinone unit. (author)

  14. Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al(3+)sensor.

    Science.gov (United States)

    Maity, Debabrata; Govindaraju, T

    2010-07-07

    A pyrrolidine constrained bipyridyl-dansyl (ionophore-fluorophore) conjugate with triazole linker was synthesised through click chemistry. The fluoroionophore serves as a selective ratiometric and colorimetric chemosensor for Al(3+) based on internal charge transfer (ICT).

  15. Tris(2,2'-bipyridyl) ruthenium(II)-bisoprolol-based electrochemiluminescence coupled with capillary zone electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingwu [Department of Chemistry, Nanchang University, Nanchang 330031 (China)], E-mail: wangjingwu@ncu.edu.cn; Zhang Xiaojun; Pi Fangfang [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wang Xiaoxia [Graduate School of Engineering, University of Fukui, Fukui 910-8507 (Japan); Yang Nianjun [Diamond Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 2-13, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)], E-mail: nianjun.yang@iaf.fraunhofer.de

    2009-03-01

    Capillary zone electrophoresis (CZE) coupled with tris(2,2'-bipyridyl) ruthenium(II)-based end-column electrogenerated chemiluminescence (ECL) has been utilized to detect bisoprolol in drugs and tablets after its separation from metoprolol. Tetrahydrofuran was used as an additive in the running buffer to obtain the absolute ECL peak of bisoprolol. Bisoprolol reacts as a co-reactant in tris(2,2'-bipyridyl) ruthenium(II) ECL system. Under the optimized experimental conditions, bisoprolol was separated successfully and efficiently from metoprolol and other co-existed materials in tablets and urine samples. The ECL intensity of tris(2,2'-bipyridyl) ruthenium(II)-bisoprolol-based system is linear with the concentration of bisoprolol from 1.5 {mu}M to 0.3 mM with a detection limit of 0.3 {mu}M. Relative standard derivations of the ECL intensity are 2.58% for the detection of 15 {mu}M bisoprolol. This method is a simple, rapid, selective, and sensitive. It was applied successfully for the monitoring of bisoprolol in market available tablets and human urine samples.

  16. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence

    International Nuclear Information System (INIS)

    Gorman, Bree A.; Barnett, Neil W.; Bos, Richard

    2005-01-01

    For the first time, analytically useful chemiluminescence was elicited from the reactions of the pyrrolizidine alkaloids. Heliotrine, retronecine, supinine, monocrotaline and echinatine N-oxide yielded chemiluminescence upon reaction with tris(2,2'-bipyridyl)ruthenium(II) whilst lasiocarpine, its N-oxide and supinine elicited light upon reaction with acidic potassium permanganate. Detection limits for heliotrine were 1.25 x 10 -7 M and 9 x 10 -9 M for tris(2,2'-bipyridyl)ruthenium(III) perchlorate with flow injection analysis (FIA) and the silica-immobilised reagent (4-[4-(dichloromethylsilanyl)-butyl]-4'-methyl-2,2'-bipyridine)bis (2,2'-bipyridyl)ruthenium(II) with sequential injection analysis (SIA), respectively. Lasiocarpine was detectable at 1.4 x 10 -7 M using acidic potassium permanganate with FIA. Additionally, the silica-immobilised reagent was optimised with respect to the oxidant (ammonium ceric nitrate) concentration and the aspiration times which afforded a detection limit for codeine of 5 x 10 -10 M using SIA

  17. Synthesis and characterization of 5,7-dimethyl-8-hydroxyquinoline and 2-(2-pyridyl)benzimidazole complexes of zinc(II) for optoelectronic application

    Science.gov (United States)

    Singh, Kapoor; Kumar, Amit; Srivastava, Ritu; Kadyan, Partap S.; Kamalasanan, Modeeparampil N.; Singh, Ishwar

    2011-11-01

    Bis(5,7-dimethyl-8-hydroxyquinolinato)zinc(II) (Me 2q) 2Zn and 5,7-dimethyl-8-hydroxyquinolinato(2-(2-pyridyl)benzimidazole) zinc(II) Me 2q(pbi)Zn have been synthesized and characterized by various techniques. These metal complexes have high thermal stability (>300 °C) and high glass transition temperatures (>150 °C). The vacuum deposited films of these materials show good film forming property and are suitable for opto-electronic applications. Multilayered organic electroluminescent (EL) devices have been fabricated having structure ITO/α-NPD/zinc complex/BCP/Alq 3/LiF/Al, which produce emission with chromaticity having Commission Internationale d'Eclairage (CIE) coordinates x = 0.506 and y = 0.484 for (Me 2q) 2Zn; x = 0.47 and y = 0.52 for (Me 2q)(pbi)Zn complex. The electroluminescence spectra show peak emission centered at 572 and 561 nm respectively for these materials.

  18. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Bree A. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia); Barnett, Neil W. [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)]. E-mail: barnie@deakin.edu.au; Bos, Richard [School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217 (Australia)

    2005-06-13

    For the first time, analytically useful chemiluminescence was elicited from the reactions of the pyrrolizidine alkaloids. Heliotrine, retronecine, supinine, monocrotaline and echinatine N-oxide yielded chemiluminescence upon reaction with tris(2,2'-bipyridyl)ruthenium(II) whilst lasiocarpine, its N-oxide and supinine elicited light upon reaction with acidic potassium permanganate. Detection limits for heliotrine were 1.25 x 10{sup -7} M and 9 x 10{sup -9} M for tris(2,2'-bipyridyl)ruthenium(III) perchlorate with flow injection analysis (FIA) and the silica-immobilised reagent (4-[4-(dichloromethylsilanyl)-butyl]-4'-methyl-2,2'-bipyridine)bis (2,2'-bipyridyl)ruthenium(II) with sequential injection analysis (SIA), respectively. Lasiocarpine was detectable at 1.4 x 10{sup -7} M using acidic potassium permanganate with FIA. Additionally, the silica-immobilised reagent was optimised with respect to the oxidant (ammonium ceric nitrate) concentration and the aspiration times which afforded a detection limit for codeine of 5 x 10{sup -10} M using SIA.

  19. DNA-binding, catalytic oxidation, C—C coupling reactions and antibacterial activities of binuclear Ru(II thiosemicarbazone complexes: Synthesis and spectral characterization

    Directory of Open Access Journals (Sweden)

    Arumugam Manimaran

    2012-07-01

    Full Text Available New hexa-coordinated binuclear Ru(II thiosemicarbazone complexes of the type {[(B(EPh3(COClRu]2L} (where, E = P or As; B = PPh3 or AsPh3 or pyridine; L = mononucleating NS donor of N-substituted thiosemicarbazones have been synthesized and characterized by elemental analysis, FT-IR, UV–vis and 31P{1H} NMR cyclic voltammetric studies. The DNA-binding studies of Ru(II complexes with calf thymus DNA (CT-DNA were investigated by UV–vis, viscosity measurements, gel-electrophoresis and fluorescence spectroscopy. The new complexes have been used as catalysts in C—C coupling reaction and in the oxidation of alcohols to their corresponding carbonyl compounds by using NMO as co-oxidant and molecular oxygen (O2 atmosphere at ambient temperature. Further, the new binucleating thiosemicarbazone ligands and their Ru(II complexes were also screened for their antibacterial activity against Klebsiella pneumoniae, Shigella sp., Micrococcus luteus, Escherichia coli and Salmonella typhi. From this study, it was found out that the activity of the complexes almost reaches the effectiveness of the conventional bacteriocide.

  20. Synthesis of 4‧-substituted-2,2‧;6‧,2″-terpyridine Ru(II) complexes electrochemical, fluorescence quenching and antibacterial studies

    Science.gov (United States)

    Ezhilarasu, Tamilarasu; Sathiyaseelan, Anbazhagan; Kalaichelvan, Pudupalayam Thangavelu; Balasubramanian, Sengottuvelan

    2017-04-01

    Three new Ru(II) terpyridine complexes viz. [Ru(BBtpy)2](PF6)2 [Ru(L1)] (BBtpy = 4‧-(4-benzyloxybenzaldehyde)-2,2‧:6‧,2″-terpyridine), [Ru(BMBtpy)2](PF6)2 [Ru(L2)] (BMBtpy = 4‧-(4-benzyloxy-3-methoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) and [Ru(BEBtpy)2](PF6)2 [Ru(L3)] (BEBtpy = 4‧-(4-benzyloxy-3-ethoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) have been synthesized and characterized. The MALDI-TOF/MS fragmentation pattern of [Ru(BMBtpy)2](PF6)2 complex exhibits a molecular ion peak at m/z = 987.09 [M-2PF6]2+ fragment. These Ru(II) complexes are redox active, show both metal centered oxidation and ligand centered reduction processes. The peak potential and peak current Ipa and Ipc also undergo definite shift and increase with increase in the scan rate (20-120 mV/s). The fluorescence of Ru(II) complexes [Ru(L1)], [Ru(L2)] and [Ru(L3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in acetonitrile. The antibacterial activity of ruthenium(II) complexes were screened against four human pathogens both gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Escherichia coli, Klebsiella pneumonia) by the well diffusion method. The antibacterial activity of Ru(II) complexes is comparable to that of standard antibiotics like tetracycline.

  1. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II Complexes

    Directory of Open Access Journals (Sweden)

    Nelia Bustamante

    2018-02-01

    Full Text Available Temperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II complex turned out to be bis(1,10-phenanthroline(4-chloro-1,10-phenanthrolineruthenium(II, due to the combination of two strong-field chelating ligands (phen and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen. In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate, due to its low permeability to O2, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip. With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0–40 °C.

  2. Synthesis and characterization of Ru(II) complexes with polyfunctional quinazoline-(3H)-4-ones

    International Nuclear Information System (INIS)

    Prabhakar, B.; Lingaiah, P.; Laxma Reddy, K.

    1991-01-01

    Few Ru(II) complexes of the type Ru(O-N-O) 2 with tridentate O-N-O donors and of the type RuCl 2 (O-N) 2 with bidentate O-O and O-N donors have been synthesized and characterized on the basis of analytical, conductivity, thermal, magnetic, IR, electronic and PMR spectral data. The IR and PMR spectral data of the metal complexes indicate that the lignads like 2-methyl/phenyl-3-(2'-hydroxybenzalamino) quinazoline-(3H)-4-one(MHBQ/PHBQ) act as uninegative tridentate, 2-methyl/phenyl-3-(carboxymethyl) quinazoline(3H)-4-one (MCMQ/PCMQ) as uninegative bidentate and 2-methyl/phenyl-3-(furfuralamino) quinazoline-(3H)-4-one (MFQ/PFQ), 2-methyl/phenyl-3-(acetamino) quinazoline-(3H)-4-one (MAQ/PAQ), 2-methyl/phenyl3-(uramino)quinazoline-(3H)-4-one (MUQ/PUQ) and 2-methyl/phenyl-3-thiouramino)quinazoline-(3H)-4-one-(MTUQ/PTUQ) as neutral bidentate ligands. The electronic spectral data of the complexes indicate that the arrangement around Ru(II) is octahedral. (author). 25 refs., 2 tabs

  3. Flow injection chemiluminescent determination of N-nitrosodimethylamine using photogenerated tris(2,2'-bipyridyl) ruthenium (III)

    International Nuclear Information System (INIS)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2005-01-01

    A flow injection configuration was developed and evaluated for the chemiluminescent determination of N-nitrosodimethylamine. The method is based on the on-line cleavage of the N-NO bond of the nitrosamine by irradiation with ultraviolet light. The dimethylamine generated was subsequently reacted with tris(2,2'-bipyridyl) ruthenium (III), which was generated through the on-line photo-oxidation of tris(2,2'-bipyridyl) ruthenium (II) with peroxydisulfate. After selecting the best operating parameters, the emitted light showed a linear relationship with the concentration of N-nitrosodimethylamine between 1.5 and 148 ng ml -1 , with a detection limit of 0.29 ng ml -1 . The repeatability was 1.6% expressed as relative standard deviation (n = 10) and the reproducibility, studied on five consecutive days, was 3.2%. The sample throughput was 50 injections per hour. The method was applied to studying the recoveries of N-nitrosodimethylamine in water and different cured meat products

  4. pH-induced photocurrent switching based on a highly stable drop-casting film of imidazole moiety-containing dinuclear Ru(II) Complex

    International Nuclear Information System (INIS)

    Xue, Long-Xin; Duan, Zhi-Ming; Jia, Jia; Wang, Ke-Zhi; Haga, Masa-aki

    2014-01-01

    Graphical abstract: > Solvent-casting Ru(II) complex modified electrode. > Positive shifting of half-wave potentials of Ru(III)/Ru(II) by pH decreases. > Greatly enhanced cathodic photocurrents by pH decreases. - Highlights: • Solvent-casting Ru(II) complex modified electrode. • Positive shifting of half-wave potentials of Ru(III)/Ru(II) by pH decreases. • Greatly enhanced cathodic photocurrents by pH decreases. - Abstract: A new dinuclear Ru(II) complex of [(H 2 L 1 )Ru(H 2 L 2 )Ru(H 2 L 1 )](ClO 4 ) 4 {H 2 L 1 = 2,6-bis(2-benzimidazolyl)pyridine; H 2 L 2 = 2,6-bis(4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)-1,5- dihydrobenzo[1,2-d:4,5-d’]diimidazole} is synthesized and characterized. The Ru(II) complex modified indium-tin oxide electrode prepared using a drop-casting method, exhibited a couple of stable surface-confined Ru(III)/Ru(II)-based redox waves centered at +0.65 V vs saturated calomel electrode that were almost unchanged after 50 consecutive cyclic voltammetry scanning. The modified electrode showed pH-dependent redox behaviors with the formal potential being decreased by 430 mV due to the occurrance of the proton-coupled redox reactions. The cathodic photocurrent generation of the modified electrode was also found to be highly pH-dependent, switching from an “off” state at pH ∼11.0 to an “on” state at pH = 2.20 with an enhancement factor of 18. The modified electrode was shown to have promising applications as photoelectrochemical pH sensing and switching devices

  5. Spectral characteristics of 2-(4'-amino-3-pyridyl)benzimidazole: Effects of solvent and acid or base concentration

    International Nuclear Information System (INIS)

    Dogra, Sneh K.

    2006-01-01

    Spectral characteristics of 2-(4'-amino-3-pyridyl)benzimidazole (4-A3PyBI) have been studied in different solvents, as well as at different acid or base concentrations using absorption, fluorescence excitation and fluorescence spectroscopy. Excited singlet state (S 1 ) lifetimes for each species were measured using nanosecond time-dependent spectrofluorimeter. AM1 semi-empirical and density functional theoretical (DFT) calculations were performed on each species for the spectral assignment. From the above results it is concluded that 4-A3PyBI exists only in the amine form. First protonation occurs at pyridine=N- atom and second protonation at the benzimidazole (BI)=N- atom. When dication (DC) species is excited, two emission bands are observed, having the same fluorescence excitation spectra, suggesting the same ground state (S ) precursor. Short wavelength (SW) emission band is assigned to the π-π* transition and long wavelength (LW) emission to the charge transfer transition. First deprotonation in S state occurs from >N-H moiety, whereas in S 1 state it is from -NH 2 group. Monoanion (MA) so formed in S 1 state is non-fluorescent. Dianion (DA) is formed by further deprotonating >N-H moiety in S 1 state and it is fluorescent. pK a values were determined and discussed

  6. Crystal structure of (4,4′-bipyridyl-κNbis[N-(2-hydroxyethyl-N-isopropyldithiocarbamato-κ2S,S′]zinc(II–4,4′-bipyridyl (2/1 and its isostructural cadmium(II analogue

    Directory of Open Access Journals (Sweden)

    Yee Seng Tan

    2017-11-01

    Full Text Available The title structures, [M(C6H12NOS22(C10H8N2]·0.5C10H8N2, for M = Zn, (I, and Cd, (II, feature terminally bound 4,4′-bipyridyl ligands and non-coordinating 4,4′-bipyridyl molecules, with the latter disposed about a centre of inversion. The coordination geometry about the metal atom is defined by two non-symmetrically chelating dithiocarbamate ligands and a pyridyl N atom. The NS4 donor sets are distorted but, approximate to trigonal bipyramidal in each case. In the crystal, hydroxy-O—H...O(hydroxy and hydroxy-O—H...N(pyridyl hydrogen bonds between the zinc-containing molecules lead to a supramolecular layer parallel to (100. The three-dimensional architecture arises as the layers are linked via methine-C—H...S, pyridyl-C—H...O(hydroxy and π–π [inter-centroid distance between coordinated pyridyl rings = 3.6246 (18 Å] interactions. Channels along the c-axis direction are occupied by the non-coordinating 4,4′-bipyridine molecules, which are held in place by C—H...π(chelate ring contacts.

  7. The chemistry of polypyridine complexes of ruthenium. Communication 5. Electronic structure of mixed-ligand bipyridyl-diphosphine complexes of ruthenium(2)

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ivanova, N.V.; Ershov, A.Yu.

    2001-01-01

    Comparative analysis of donor-acceptor abilities of diphosphine ligands for two series of complex compounds: cis-[Ru(bpy) 2 (LL) q+ [LL=2,2'-bipyridyl(bpy), o-benzoquinonediimine (bqdi), cis-1,2-bis(diphenylphosphino)ethane, cis-1,2-bis(diphenylphosphino)ethylene (dppen), (NH 3 ) 2 and (CO) 2 ] and [Ru(NH 3 ) 4 (LL)] 2+ (LL = bpy, dppen and bqdi) was carried out on the basis of results of quantum chemical calculations. It is shown that diphosphines are the strongest σ-donors; their π-acceptor abilities stemming from d-orbitals of phosphorus are comparable in value with π-acceptor abilities of 2,2'-bipyridyl, being essentially lower than those of o-benzoquinonediimine and carbonyl [ru

  8. Synthesis of 3-(4,5-dihydroimidazol-1-YL)propyltriethoxysilane bound Ru(II) complex bearing viologen segment

    International Nuclear Information System (INIS)

    Gurbuz, N.; Seckin, T.; Ozdemir, I.; Cetinkaya, B.

    2005-01-01

    The nanostructured metallopolymers consisting of the partially quaternized 3-(4,5-dihydroimidazol-1-yl)propyl having the viologen group linked covalently through the alkyl spacer its Ru(II) complex have been prepared by sol-gel method. Structural elucidation was done with Fourier transform infrared spectroscopy, ultraviolet spectroscopy, and differential thermal analysis (DTA) [ru

  9. Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja

    2016-08-01

    Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance.

  10. Femtosecond double proton transfer dynamics in [2,2'-bipyridyl]-3,3'-diol in sol-gel glasses

    NARCIS (Netherlands)

    Prosposito, P.; Marks, D.R.A.; Zhang, H.; Glasbeek, M.

    1998-01-01

    Abstract: Intramolecular excited state double proton-transfer dynamics has been studied for [2,2'-bipyridyl]-3,3'-diol (BP(OH)2) in sol-gel glass. By means of the femtosecond fluorescence up-conversion technique, the spectral dependence of the fluorescence transients obtained for BP(OH)2 in a few

  11. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    International Nuclear Information System (INIS)

    Jain, A.K.; Kumari, V.; Chaturvedi, G.K.

    1978-01-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35 + -1 0 and 45 + -1 0 and also the thermodynamic functions viz. ΔF, ΔH and ΔS (μ=0.1M KNO 3 ) (auth.)

  12. Synthesis, Structural Characterization, and Antitumor Activity of a Ca(II Coordination Polymer Based on 1,6-Naphthalenedisulfonate and 4,4′-Bipyridyl

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2013-08-01

    Full Text Available A novel Ca(II coordination polymer, [CaL(4,4′-bipyridyl(H2O4]n (L = 1,6-naphthalenedisulfonate, was synthesized by reaction of calcium perchlorate with 1,6-naphthalenedisulfonic acid disodium salt and 4,4′-bipyridyl in CH3CH2OH/H2O. It was characterized by elemental analysis, IR, molar conductivity and thermogravimetric analysis. X-ray crystallography reveals that the Ca(II coordination polymer belongs to the orthorhombic system, with space group P212121. The geometry of the Ca(II ion is a distorted CaNO6 pengonal bipyramid, arising from its coordination by four water molecules, one nitrogen atom of 4,4′-bipyridyl molecule, and two oxygen atoms from two L ligands. The complex molecules form a helical chain by self-assembly. The antitumor activity of 1,6-naphthalenedisulfonic acid disodium salt and the Ca(II coordination polymer against human hepatoma smmc-7721 cell line and human lung adenocarcinoma A549 cell line reveals that the Ca(II coordination polymer inhibits cell growth of human lung adenocarcinoma A549 cell line with IC50 value of 27 μg/mL, and is more resistive to human lung adenocarcinoma A549 cell line as compared to 1,6-naphthalenedisulfonic acid disodium salt.

  13. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  14. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A K; Kumari, V; Chaturvedi, G K [Agra Coll. (India)

    1978-12-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35/sup +/-1/sup 0/ and 45/sup +/-1/sup 0/ and also the thermodynamic functions viz. ..delta..F, ..delta..H and ..delta..S (..mu..=0.1M KNO/sub 3/) (auth.).

  15. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    Science.gov (United States)

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  16. Experimental and density functional theory (DFT) studies on the interactions of Ru(II) polypyridyl complexes with the RAN triplex poly(U)˙poly(A)*poly(U).

    Science.gov (United States)

    Zhang, Hong; Liu, Xuewen; He, Xiaojun; Liu, Ying; Tan, Lifeng

    2014-11-01

    There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.

  17. Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2′-bipyridyl methods

    International Nuclear Information System (INIS)

    Kato, Shinya; Matsuoka, Daigo; Miwa, Nobuhiko

    2015-01-01

    We prepared nano-bubble hydrogen-dissolved water (nano-H water) which contained hydrogen nano-bubbles of < 717-nm diameter for 54% of total bubbles. In the DMPO-spin trap electron spin resonance (ESR) method, the DMPO-OH:MnO ratio, being attributed to amounts of hydroxyl radicals (·OH), was 2.78 for pure water (dissolved hydrogen [DH] ≤ 0.01 ppm, oxidation-reduction potential [ORP] = + 324 mV), 2.73 for tap water (0.01 ppm, + 286 mV), 2.93 for commercially available hydrogen water (0.075 ppm, + 49 mV), and 2.66 for manufactured hydrogen water (0.788 ppm, − 614 mV), whereas the nano-H water (0.678 ppm, − 644 mV) exhibited 2.05, showing the superiority of nano-H water to other types of hydrogen water in terms of ·OH-scavenging activity. Then, the reduction activity of nano-H water was assessed spectrophotometrically by the 2,2′-bipyridyl method. Differential absorbance at 530 nm was in the order: 0.018 for pure water, 0.055 for tap water, 0.079 for nano-H water, 0.085 for commercially available hydrogen water, and 0.090 for manufactured hydrogen water, indicating a prominent reduction activity of hydrogen water and nano-H water against oxidation in ascorbate-coupled ferric ion–bipyridyl reaction. Thus, nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level, indicating the more marked importance of nano-bubbles rather than the concentration of hydrogen in terms of ·OH-scavenging. - Highlights: • We assessed the antioxidant activity of nano-bubble hydrogen-dissolved water (nano-H water). • Nano-H water exhibited superior ·OH-scavenging activity in DMPO-spin trap ESR. • A reduction ability of nano-H water was shown in 2,2′-bipyridyl reaction. • Nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level. • Results indicated the importance of nano-bubbles rather than the concentration of hydrogen

  18. Reversible and pH dependent photophysical properties of mixed-ligand Ru(II) complexes containing 2,20-bipyridine and nitrosobarbiturate: Experimental and theoretical approach

    Czech Academy of Sciences Publication Activity Database

    Dixit, N.; Záliš, Stanislav; Maiti, B.; Mishra, L.

    2013-01-01

    Roč. 404, AUG 2013 (2013), s. 123-130 ISSN 0020-1693 Institutional support: RVO:61388955 Keywords : Mixed-ligand Ru(II) complex * spectroscopy * X-ray diffraction Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 2.041, year: 2013

  19. Unprecedented Self-Organized Monolayer of a Ru(II) Complex by Diazonium Electroreduction.

    Science.gov (United States)

    Nguyen, Van Quynh; Sun, Xiaonan; Lafolet, Frédéric; Audibert, Jean-Frédéric; Miomandre, Fabien; Lemercier, Gilles; Loiseau, Frédérique; Lacroix, Jean-Christophe

    2016-08-03

    A new heteroleptic polypyridyle Ru(II) complex was synthesized and deposited on surface by the diazonium electroreduction process. It yields to the covalent grafting of a monolayer. The functionalized surface was characterized by XPS, electrochemistry, AFM, and STM. A precise organization of the molecules within the monolayer is observed with parallel linear stripes separated by a distance of 3.8 nm corresponding to the lateral size of the molecule. Such organization suggests a strong cooperative process in the deposition process. This strategy is an original way to obtain well-controlled and stable functionalized surfaces for potential applications related to the photophysical properties of the grafted chromophore. As an exciting result, it is the first example of a self-organized monolayer (SOM) obtained using diazonium electroreduction.

  20. Uptake of some lanthanides on γ-zirconium phosphate-phosphite and its 1,10-phenanthroline and 2,2-bipyridyl intercalated products

    International Nuclear Information System (INIS)

    Shakshooki, S.K.; El Hanash, H.B.; El-Mehdawi, R.M.; El-Mellah, M.A.; Arafa, E.A.; Bejey, A.M.

    1999-01-01

    γ-zirconium phosphate-phosphite, γ-Zr x PO 4 x H 2 PO 3 x 2H 2 O, (γ-ZrPP), was prepared and characterized. Direct treatment of γ-zirconium phosphate-phosphite with an ethanol solution of 0.1M 1,10-phenanthrolin and 2,2'-bipyridyl gave the well defined composites, γ-Zr x PO 4 x H 2 PO 3 (phen) 0.15 x H 2 O and γ-Zr x PO 4 x H 2 PO 3 (bipy) 0.18 x 0.6H 2 O respectively. K d values of a mixture of lanthanide ions: La 3+ , Sm 3+ , Eu 3+ and Yb 3+ for the intercalated products and for γ-ZrPP in HNO 3 solution at room temperature and at pH 2 and 4 were determined by a radiotracer technique. 140 La, 152m Eu, 153 Sm and 175 Yb radioisotopes were used for the equilibration experiment using 500 μl (4.0 x 10 -5 mmole) each of the solutions of the tracers as a mixture in 7.5 M HNO 3 solution at the desired pH with 0.1 g of γ-ZrPP and of the intercalated products. The selectivity order was found to be dependent on the nature of the ligand and on the pH. The 2,2'-bipyridyl product possesses, at pH 2 in general, a high K d value, specially for Sm 3+ (9815.9) compared to that of the 1,10-phenanthrolin product (3375.5) and to γ-ZrPP (419.8). This could be attributed to partial deintercalation of the 2,2' -bipyridyl at pH 2 and increasing of ionogenic groups. (author)

  1. A sensitive method for assay of beryllium with chromazurol S and 2,2'-bipyridyl

    International Nuclear Information System (INIS)

    Buhl, F.; Kwapulinska, G.

    1980-01-01

    A spectrophotometric method of assay for microgram amounts of beryllium by means of chromazurol S in presence of 2,2'-bipyridyl was described. The latter appreciably enhances the sensitivity of the method; epsilonsub(lambda=610nm) is 5.4X10 4 . The complex compound obeys the Lambert-Beer law in the concentration range 0.002 to 0.2 ppm Be. The maximum colour intensity is immediately attained at pH 5. The molar ratio Be: CHAS: bip is 1 : 2 : 1. The suggested method is sensitive and has satisfactory selectivity when EDTA is applied as masking agent. (author)

  2. Poly[[diaqua-μ2-4,4′-bipyridyl-μ2-o-phthalato-nickel(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Bing Li

    2008-02-01

    Full Text Available In the title layer complex, {[Ni(C8H4O4(C10H8N2(H2O2]·2H2O}n, the Ni atom has a distorted octahedral environment, defined by the phthalate and 4,4′-bipyridyl ligands which link the Ni atoms, forming a square lattice in the bc plane. This extends into a three-dimensional supramolecular network through O—H...O hydrogen-bonding interactions. The Ni atom lies on, and both ligands are bisected by, a crystallographic twofold axis.

  3. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    Science.gov (United States)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  4. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(II) complexes

    Science.gov (United States)

    Song, Hongwei; Wang, Xian; Yang, WenWen; He, Guiying; Kuang, Zhuoran; Li, Yang; Xia, Andong; Zhong, Yu-Wu; Kong, Fan'ao

    2017-09-01

    The excited state properties of a series of ruthenium(II) amine-substituted bipyridyl complexes, [Ru(bpy)n(NNbpy)3-n]2+, were investigated by steady-state and transient absorption spectroscopy, as well as quantum chemical calculations. The steady-state absorption spectra of these complexes in CH3CN show a distinct red-shift of the 1MLCT absorption with increasing numbers of amine substituent, whereas the emission spectra indicate an energy gap order of [Ru(bpy)3]2+ > [Ru(bpy)2(NNbpy)]2+ > [Ru(NNbpy)3]2+ > [Ru(bpy)(NNbpy)2]2+. Nanosecond, femtosecond transient absorption and electrochemical measurements suggest that NNbpy ligand has a strong influence on the electronic and emission properties of these complexes, due to electron-rich amine substituent. We illustrate how the numbers of amine substituent modulate the spectroscopic properties of transition metal complexes, which is related to the design of new electro-active systems with novel photoelectrochemical properties.

  5. Nafion/2,2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Torma, Ferenc; Kadar, Mihaly; Toth, Klara; Tatar, Eniko

    2008-01-01

    This paper describes the fabrication, characterisation and the application of a Nafion/2,2'-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn 2+ , Cd 2+ and Pb 2+ ). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm 3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2'-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at -1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2'-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm -3 ) for Zn 2+ , 1.1 nM (0.12 μg dm -3 ) for Cd 2+ and 0.37 nM (0.077 μg dm -3 ) for Pb 2+ . For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique

  6. Chiral analysis of alpha-diimine Ru(II) and Fe(II) complexes by capillary electrophoresis using sulfated cyclodextrins as stereoselectors

    Czech Academy of Sciences Publication Activity Database

    Sázelová, Petra; Koval, Dušan; Severa, Lukáš; Teplý, Filip; Kašička, Václav

    2017-01-01

    Roč. 38, č. 15 (2017), s. 1913-1921 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA15-01948S; GA ČR GA13-32974S; GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : binding constant * capillary electrophoresis * chiral separation * polypyridyl Fe(II) complex * polypyridyl Ru(II) complex Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  7. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    Science.gov (United States)

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  8. An irresolute linker: separation, and structural and spectroscopic characterization of the two linkage isomers of a Ru(ii)-(2-(2'-pyridyl)pyrimidine-4-carboxylic acid) complex.

    Science.gov (United States)

    Iengo, E; Demitri, N; Balducci, G; Alessio, E

    2014-08-28

    For the first time the two linkage isomers of a Ru(ii) complex with 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) - that form in comparable amounts - have been fully characterized individually. The X-ray structure of each isomer is related to its NMR spectrum in solution.

  9. Symmetric bi-pyridyl banana-shaped molecule and its intermolecular hydrogen bonding liquid-crystalline complexes

    Science.gov (United States)

    Sui, Dan; Hou, Qiufei; Chai, Jia; Ye, Ling; Zhao, Liyan; Li, Min; Jiang, Shimei

    2008-11-01

    A new symmetric bi-pyridyl banana-shaped molecule 1,3-phenylene diisonicotinate (PDI) was designed and synthesized. Its molecular structure was confirmed by FTIR, Elemental analysis and 1H NMR. X-ray crystallographic study reveals that there is an angle of approximate 118° among the centroids of the three rings (pyridyl-phenyl-pyridyl) in each PDI molecule indicating a desired banana shape. In addition, a series of liquid crystal complexes nBA:PDI:nBA induced by intermolecular hydrogen bonding between PDI (proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donor) were synthesized and characterized. The mesomorphism properties and optical textures of the complex of nBA:PDI:nBA were investigated by differential scanning calorimetry, polarizing optical microscope and X-ray diffraction.

  10. Synthesis and Characterization of a Ru(II Complex with Functionalized Phenanthroline Ligands Having Single-Double Linked Anthracenyl and 1-Methoxy-1-buten-3-yne Moieties

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2010-10-01

    Full Text Available Two series of bidentate polypyridine ligands, made of phenanthroline chelating subunits having substituted mono-and di-anthracenyl groups, and 1-methoxy-1-buten-3-yne at the 4 and 7-positions with the corresponding heteroleptic Ru(II complex have been synthesized and characterized. The complex is formulated as [(Ru(L1(L2(NCS2], (where L1 = 4-(9-dianthracenyl-10-(2,3-dimethylacrylic acid-7-(9-anthracenyl-10-(2,3-dimethylacrylic acid-1,10-phenanthroline and L2 = 4,7-bis(1-methoxy-1-buten-3-yne-1,10-phenanthroline. The Ru(II complex shows characteristic broad and intense metal-to-ligand charge transfer (MLCT bands absorption and appreciable photoluminescence spanning the visible region. The ligands and complex were characterized by FT-IR, 1H, 13C NMR spectroscopy, UV-Vis, photoluminescence and elemental analysis (see in supplementary materials. The anchoring groups in both ligands have allowed an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT excited state.

  11. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2'-bipyridyl

    Science.gov (United States)

    Surati, Kiran R.

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change Δ S*, enthalpy change Δ H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  12. Microwave-Assisted Synthesis of Arene Ru(II Complexes Induce Tumor Cell Apoptosis Through Selectively Binding and Stabilizing bcl-2 G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Yanhua Chen

    2016-05-01

    Full Text Available A series of arene Ru(II complexes coordinated with phenanthroimidazole derivatives, [(η6-C6H6Ru(lCl]Cl(1b L = p-ClPIP = 2-(4-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 2b L = m-ClPIP = 2-(3-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 3b L = p-NPIP = 2-(4-Nitrophenylimidazole[4,5f] 1,10-phenanthroline; 4b L = m-NPIP = 2-(3-Nitrophenyl imidazole [4,5f] 1,10-phenanthroline were synthesized in yields of 89.9%–92.7% under conditions of microwave irradiation heating for 30 min to liberate four arene Ru(II complexes (1b, 2b, 3b, 4b. The anti-tumor activity of 1b against various tumor cells was evaluated by MTT assay. The results indicated that this complex blocked the growth of human lung adenocarcinoma A549 cells with an IC50 of 16.59 μM. Flow cytometric analysis showed that apoptosis of A549 cells was observed following treatment with 1b. Furthermore, the in vitro DNA-binding behaviors that were confirmed by spectroscopy indicated that 1b could selectively bind and stabilize bcl-2 G-quadruplex DNA to induce apoptosis of A549 cells. Therefore, the synthesized 1b has impressive bcl-2 G-quadruplex DNA-binding and stabilizing activities with potential applications in cancer chemotherapy.

  13. Luminescent pH sensor of a novel imidazole-containing hexanuclear Ru(II) polypyridyl complex

    Science.gov (United States)

    Cheng, Feixiang; Tang, Ning; Chen, Jishu; Chen, Guang

    2013-10-01

    Hexapodal ligand H6L containing imidazole rings has been prepared by the reaction of 1,10-phenanthroline-5,6-dione with 1,2,3,4,5,6-hexakis[(3-formylphenoxy)methyl]benzene. The Ru(II) polypyridyl complex [{Ru(bpy)2}6(μ6-H6L)](PF6)12 (bpy = 2,2'-bipyridine) has been synthesized by the reaction of Ru(bpy)2Cl2·2H2O with ligand H6L. The pH effects on the UV-vis absorption and emission spectra of the complex have been studied. The ground- and excited-state ionization constants of the acid-base equilibria have been calculated according to the absorbance and emission data. The complex acts as an off-on-off luminescent pH sensor through two successive deprotonation processes of imidazole rings, with a maximum on-off ratio of 5 in buffer solution.

  14. Sulfur Bridged Multidentate Ligands Based on (Bipyridyl-(Bi-1,3,4-Thiadiazolyl Conjugates

    Directory of Open Access Journals (Sweden)

    M. Teresa Clasadonte

    2003-03-01

    Full Text Available The synthesis of a series of mixed (bipyridyl/(bi1,3,4-thiadiazolyl ligands, derived from the condensation of 2-mercapto-5-methylthio-1,3,4-thiadiazole or 5-mercapto-5'-methylthio-2,2'-bi-1,3,4-thiadiazole with 2,6-bis(chloromethylpyridine or 6,6’-bis(chloromethyl-2,2’-bipyridine (compounds L1–L4, and of 2,5-dimercapto-1,3,4-thiadiazole or 5,5'-dimercapto-2,2'-di-1,3,4-thiadiazole with picolyl chloride hydrochloride or 6-chloromethyl-6'-methyl-2,2'-bipyridine (compounds L5–L8 in the presence of triethylamine is described. All new compounds have been characterized by FAB (+ spectrometry and NMR spectroscopy. 13C-NMR spectra are crucial to firmly establish the thiol structure of the title ligands.

  15. Synthesis and strong photooxidation power of a supramolecular hybrid comprising a polyoxometalate and Ru(II) polypyridyl complex with zinc(II).

    Science.gov (United States)

    Ohashi, Kenji; Takeda, Hiroyuki; Koike, Kazuhide; Ishitani, Osamu

    2015-01-01

    A novel method for constructing supramolecular hybrids composed of polyoxometalates and photofunctional metal complexes was developed. A Ru(II) complex with phosphonate groups (RuP) strongly interacted with Zn(II) to afford a 2 : 1 trinuclear metal complex ([(RuP)2Zn](3+)). In dimethylsulfoxide, [(RuP)2Zn](3+) strongly interacted with a Keggin-type heteropolyoxometalate (Si-WPOM) to form a 1 : 1 hybrid ([(RuP)2Zn]-POM). Irradiation of [(RuP)2Zn]-POM in the presence of diethanolamine caused rapid accumulation of the one-electron reduced hybrid with a quantum yield of 0.99.

  16. Synthesis, photophysical and electrochemical characterization of terpyridine-functionalized dendritic oligothiophenes and their Ru(II complexes

    Directory of Open Access Journals (Sweden)

    Amaresh Mishra

    2013-05-01

    Full Text Available Pd-catalyzed Sonogashira cross-coupling reactions were used to synthesize novel π-conjugated oligothienylene-ethynylene dendrons and their corresponding terpyridine-based ligands. Their complexation with Ru(II led to interesting novel metallodendrimers with rich spectroscopic properties. All new compounds were fully characterized by 1H and 13C NMR, as well as MALDI–TOF mass spectra. Density functional theory (DFT calculations performed on these complexes gave more insight into the molecular orbital distributions. Photophysical and electrochemical studies were carried out in order to elucidate structure–property relationships and the effect of the dendritic structure on the metal complexes. Photophysical studies of the complexes revealed broad absorption spectra covering from 250 to 600 nm and high molar extinction coefficients. The MLCT emission of these complexes were significantly red-shifted (up to 115 nm compared to the parent [Ru(tpy2]2+ complex.

  17. Novel cocrystal of N-phthaloyl-β-alanine with 2,2-bipyridyl: Synthesis, computational and free radical scavenging activity studies

    Science.gov (United States)

    Chahkandi, Mohammad; Bhatti, Moazzam H.; Yunus, Uzma; Rehman, Naima; Nadeem, Muhammad; Tahir, Muhammad Nawaz; Zakria, Muhammad

    2018-01-01

    In the present work a novel cocrystal adduct of N-phthaloyl-β-alanine and 2,2-bipyridyl as compound 1 with molecular formula C16H13N3O4 was synthesized by slow evaporation process of the ethanoic solution containing these two moieties. In followings, the crystal structure and photophysical properties of 1 was characterized by single X-ray crystal analysis, FTIR, and UV-Vis spectra. The thermal behavior was analyzed by the Thermogravimetric/Differential Thermal Analyzer (TG-DTA). The cocrystal belong to monoclinic crystallographic system with space group P21/n, Z = 4. DPPH radical scavenging activity of the title cocrystal is slightly higher than coformer with lower IC50 value. Finally, using DFT calculations executed at hybrid B3LYP/6-311+G (d, p) level of theory the geometric and electronic structures of the crystalline network of C16H13N3O4 (1), studied. Inter-molecular conventional Osbnd H⋯N as well as the non-conventional Csbnd H⋯O hydrogen bonds (HBs) and Csbnd H···π and Csbnd O···π stacking interactions gathered the monomeric structures of 1 (1-mon) to create the 3D architecture of the network (1-net). The dispersion corrected density functional theory (DFT-D) calculations indicate that Osbnd H⋯N and Csbnd H⋯O HBs, govern the 1-net formation. The calculated UV-Vis spectrum in vacuo has agreement with the experimental one that shows five major bands in the range of 170-271 nm that could assigned to transitions between 2,2-bipyridyl and N-phthaloyl-β-alanine parts of 1 with n → π∗ and π → π* ligand-ligand-charge transfer (LLCT) character. The calculated electronic spectra in solvents (water, acetonitrile, methanol, and n-heptane) comparing with the vacuo one show broad bands with blue shifts.

  18. Thin-layer chromatography of ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone and 2,2'-bipyridyl on cellulose layer

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Saitoh, K; Suzuki, N [Tohoku Univ., Sendai (Japan). Faculty of Science

    1980-11-11

    Normal phase thin-layer chromatographic behaviour of several ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone (TTA) and 2,2'bipyridyl (bpy) has been investigated on cellulose layer. The ternary complexes of lanthanide metals show higher mutual separability than the complexes with TTA alone. Mutual separation of TTA complexes with La(III), Ce(III), Eu(III) or Y(III), Sc(III), Th(IV), and U(VI) has been successfully achieved by two-dimensional TLC, primarily with carbon tetrachloride-benzene (75:25) containing 0.02M TTA, and secondary with carbon tetrachloride-hexane (35:65) containing both 0.02M TTA and 0.02M bpy.

  19. Electrochemical ion transfer mediated by a lipophilic Os(ii)/Os(iii) dinonyl bipyridyl probe incorporated in thin film membranes.

    Science.gov (United States)

    Jansod, Sutida; Wang, Lu; Cuartero, Maria; Bakker, Eric

    2017-09-28

    A new lipophilic dinonyl bipyridyl Os(ii)/Os(iii) complex successfully mediates ion transfer processes across voltammetric thin membranes. An added lipophilic cation-exchanger may impose voltammetric anion or cation transfer waves of Gaussian shape that are reversible and repeatable. The peak potential is found to shift with the ion concentration in agreement with the Nernst equation. The addition of tridodecylmethylammonium nitrate to the polymeric film dramatically reduces the peak separation from 240 mV to 65 mV, and the peak width to a near-theoretical value of 85 mV, which agrees with a surface confined process. It is suggested that the cationic additive serves as a phase transfer catalyst.

  20. Triple Quenching of a Novel Self-Enhanced Ru(II) Complex by Hemin/G-Quadruplex DNAzymes and Its Potential Application to Quantitative Protein Detection.

    Science.gov (United States)

    Zhao, Min; Liao, Ni; Zhuo, Ying; Chai, Ya-Qin; Wang, Ji-Peng; Yuan, Ruo

    2015-08-04

    Herein, a novel "on-off" electrochemiluminescence (ECL) aptasensor for highly sensitive determination of thrombin has been constructed based on the triple quenching of the effect of hemin/G-quadruplex DNAzymes upon the Ru(II) complex-based ECL system. First, a strong initial ECL signal was achieved by the dual amplification strategies of (i) intramolecular coreaction of a self-enhanced Ru(II)-based molecule (PTCA-PEI-Ru(II)) and (ii) intermolecular coreaction between PTCA-PEI-Ru(II) and nicotinamide adenine dinucleotide (NADH), which was named the signal-on state. Then, a novel triple quenching of the effect of multifunctional hemin/G-quadruplex DNAzymes upon the Ru(II) complex-based ECL system was designed to realize the desirable signal-off state, which was outlined as follows: (i) the hemin/G-quadruplex DNAzymes mimicked NADH oxidase to oxidize NADH and in situ generate the H2O2, consuming the coreactant of NADH; (ii) its active center of hemin could oxidize the excited state PTCA-PEI-Ru(II)* to PTCA-PEI-Ru(III), making the energy and electron transfer quench; (iii) it also acted as horseradish peroxidase (HRP) to catalyze the H2O2 for in situ producing the quencher of O2. Based on triple quenching of the effect of hemin/G-quadruplex DNAzymes, the highly sensitive "on-off" thrombin aptasensor was developed with a wide linear detection range of 1.0 × 10(-14) M to 1.0 × 10(-10) M and a detection limit down to the femtomolar level.

  1. Efficiency of a new strategy involving a new class of natural hetero-ligand iron(III) chelates (Fe(III)-NHL) to improve fruit tree growth in alkaline/calcareous soils.

    Science.gov (United States)

    Fuentes, Marta; Ortuño, María F; Pérez-Sarmiento, Francisco; Bacaicoa, Eva; Baigorri, Roberto; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M

    2012-12-01

    Iron (Fe) chlorosis is a serious problem affecting the yield and quality of numerous crops and fruit trees cultivated in alkaline/calcareous soils. This paper describes the efficiency of a new class of natural hetero-ligand Fe(III) chelates (Fe-NHL) to provide available Fe for chlorotic lemon trees grown in alkaline/calcareous soils. These chelates involve the participation in the reaction system of a partially humified lignin-based natural polymer and citric acid. First results showed that Fe-NHL was adsorbed on the soil matrix while maintaining available Fe for plants in alkaline/calcareous solution. The effects of using three different sources as Fe fertilisers were also compared: two Fe-NHL formulations (NHL1, containing 100% of Fe as Fe-NHL, and NHL2, containing 80% of Fe as Fe-NHL and 20% of Fe as Fe-ethylenediamine-N,N'-bis-(o-hydroxyphenylacetic) acid (Fe-EDDHA)) and Fe-EDDHA. Both Fe-NHL formulations increased fruit yield without negative effects on fruit quality in comparison with Fe-EDDHA. In the absence of the Fe-starter fraction (NHL1), trees seemed to optimise Fe assimilation and translocation from Fe-NHL, directing it to those parts of the plant more involved in development. The field assays confirmed that Fe-NHL-based fertilisers are able to provide Fe to chlorotic trees, with results comparable to Fe-EDDHA. Besides, this would imply a more sustainable and less expensive remediation than synthetic chelates. Copyright © 2012 Society of Chemical Industry.

  2. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4,4‧-bipyridyl

    Science.gov (United States)

    Liu, Wei; Liu, Mei; Du, Shangchao; Li, Yafeng; Liao, Wuping

    2014-02-01

    Two novel calixarene-based compounds, {[Co4Cl(TC4A)(HCOO)3]2(4,4‧-bpy)2} (CIAC-206) and {[Co3(H2O)(SC4A-SO2)(HCOO)2]2(4,4‧-bpy)}n (CIAC-207) (H4TC4A = p-tert-butylthiacalix[4]arene, SC4A-SO2 = p-tert-butylsulfonylcalix[4]arene, 4,4‧-bpy = 4,4‧-bipyridyl) were synthesized under solvothermal conditions, and characterized by single crystal X-ray diffraction analysis, TG-DSC analysis, elemental analysis and IR spectroscopy. These two structures are featured with isolated Z-shaped Co8 entities containing two Co4-TC4A subunits bridged by two parallel 4,4‧-bpy (CIAC-206) and some zigzag chains with [Co3-SC4A-SO2]2 dimers bridged by single 4,4‧-bpy (CIAC-207), respectively. In order to evaluate their properties, the N2 sorption behavior and magnetic property were examined.

  3. Towards the Development of Functionalized PolypyridineLigands for Ru(II Complexes as Photosensitizers inDye-Sensitized Solar Cells (DSSCs

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2014-08-01

    Full Text Available A number of novel ruthenium(II polypyridine complexes have been designedand synthesized for use as photosensitizers in dye-sensitized solar cells (DSSCs due totheir rich photophysical properties such as intense absorption, long-lived lifetimes, highemission quantum yields and unique redox characteristics. Many of these complexesexhibit photophysical behavior that can be readily controlled through a careful choice ofligands and/or substituents. With this perspective, we review the design and general syntheticmethods of some polypyridine ligands based on bipyridine, phenanthroline, terpyridine andquaterpyridine with/without anchoring groups with a view to correlate functionality ofligand structures with the observed photophysical, electroredox and power conversionefficiency of some examples of Ru(II polypyridyl complexes that have been reported andparticularly used in the DSSCs applications. The main interest, however, is focused onshowing the development of new polypyridine ligand materials containing long-rangeelectron transfer motifs such as the alkenyl, alkynyl and polyaromatic donor functionalities.

  4. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    Science.gov (United States)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  5. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  6. A bioinspired copper 2,2-bipyridyl complex immobilized MWCNT modified electrode prepared by a new strategy for elegant electrocatalytic reduction and sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    Mayuri, Pinapeddavari; Saravanan, Natarajan; Senthil Kumar, Annamalai

    2017-01-01

    Owing to facile electron-transfer reaction, metal complex based molecular architecture has attracted much interest in electrochemistry, especially for bioinspired electrocatalytic and electrochemical sensor applications. Indeed, preparation of stable surface-confined molecular system is a challenging task. In general, derivatization methodology, in which, a specific functional groups such as thiol, carboxylic acid, pyrene and amino bearing inorganic complexes synthesized discreetly by chemical approach have been attached suitably on electrode surface via any one of the following techniques; self-assembly, covalent immobilization, electrostatic interaction, ionic exchange and encapsulation. Herein, we report a copper-bipyridyl complex immobilized multiwalled carbon nanotube (MWCNT)-Nafion (Nf) modified glassy carbon electrode (GCE/Nf-MWCNT@bpy-Cu"2"+) prepared by a new strategy in which sequential modification of bipyridyl (bpy) ligand on MWCNT via π-π interaction followed by in-situ complexation with copper ion for efficient electrochemical reduction of H_2O_2. The copper species chemically modified electrode showed highly stable and well-defined surface-confined Cu"2"+"/"1"+ redox peak response, without any Cu"1"+"/"0 redox transition, at an equilibrium potential, E_1_/_2 = −135 mV vs Ag/AgCl in a pH 7 phosphate buffer solution. Detailed physico-chemical characterization by SEM, FT-IR, Raman and ESI-MS and electrochemical characterization reveals that [Cu(bpy)_2(H_2O)_2]"+ (molecular weight 413.4) like species was immobilized as a major species on the modified electrode. A bioinspired electro-catalytic reduction of H_2O_2 was studied using cyclic voltammetric and rotating disc electrode techniques. In further, electrochemical sensing of H_2O_2 by amperometric i-t and flow injection analysis methods with a detection limit values 4.5 and 0.49 μM respectively were demonstrated.

  7. Sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Choi, Han Nim; Cho, Sung-Hee; Park, Yu-Jin; Lee, Dai Woon; Lee, Won-Yong

    2005-01-01

    The sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy) 3 2+ ] electrogenerated chemiluminescence (ECL) sensor was applied to the reversed-phase high-performance liquid chromatography (HPLC) determination of phenothiazine derivatives (promazine, chlorpromazine, triflupromazine, thioridazine, and trifluoperazine) and erythromycin in human urine samples. In this method, Ru(bpy) 3 2+ was immobilized in sol-gel-derived titania (TiO 2 )-Nafion nanocomposite films coated on a dual platinum electrode. This method eliminates an extra pump needed for the delivery of Ru(bpy) 3 2+ reagent into a reaction/observation zone in front of photomultiplier tube because the immobilized-Ru(bpy) 3 2+ is recycled on the electrode surface by an applied potential at +1.3 V versus Ag/AgCl (3 M NaCl) reference electrode. The resulting analytical performances such as detection limit, working range, sensitivity, and measurement precision were slightly worse than those obtained with the conventional post-column Ru(bpy) 3 2+ addition approach. The lack of significant interferences and the low detection limits for phenothiazine derivatives and erythromycin indicate that the proposed HPLC-Ru(bpy) 3 2+ ECL detection method is suitable for the determination of those compounds in biological fluids

  8. Electrogenerated chemiluminescence: An oxidative-reductive mechanism between quinolone antibiotics and tris(2,2'-bipyridyl)ruthenium(II)

    International Nuclear Information System (INIS)

    Burkhead, Matthew S.; Wang, Heeyoung; Fallet, Marcel; Gross, Erin M.

    2008-01-01

    The cyclic voltammetry and electrogenerated chemiluminescent (ECL) reactions of a series of quinolone and fluoroquinolone antibiotics were investigated in a flow injection analysis (FIA) system. 7-Piperazinyl fluoroquinolone antibiotics were found to participate as a coreactant in an oxidative-reductive ECL mechanism with tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 2+ ) as the luminescent reagent. The reaction mechanism was investigated in order to understand and optimize the processes leading to light emission. The optimal conditions included a solution pH ∼7 at a flow rate of 3.0 mL min -1 with no added organic modifier and application of 1.2 V vs. a Pt quasi-reference electrode (QRE). Fluoroquinolones containing a tertiary distal nitrogen on the piperazine ring, such as enrofloxacin and ofloxacin, reacted to produce more intense ECL than those with a secondary nitrogen, such as ciprofloxacin and norfloxacin. The method linear range, precision, detection limits, and sensitivity for the detection of enrofloxacin and ciprofloxacin were compared to that of tripropylamine. The method was applied to the determination of the ciprofloxacin content in a pharmaceutical preparation. The assay is discussed in terms of its analytical figures of merit, ease of use, speed, accuracy and application to pharmaceutical samples

  9. Electrogenerated chemiluminescence: An oxidative-reductive mechanism between quinolone antibiotics and tris(2,2'-bipyridyl)ruthenium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Burkhead, Matthew S.; Wang, Heeyoung; Fallet, Marcel [Department of Chemistry, Creighton University, Omaha, NE 68178 (United States); Gross, Erin M. [Department of Chemistry, Creighton University, Omaha, NE 68178 (United States)], E-mail: eringross@creighton.edu

    2008-04-21

    The cyclic voltammetry and electrogenerated chemiluminescent (ECL) reactions of a series of quinolone and fluoroquinolone antibiotics were investigated in a flow injection analysis (FIA) system. 7-Piperazinyl fluoroquinolone antibiotics were found to participate as a coreactant in an oxidative-reductive ECL mechanism with tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy){sub 3}{sup 2+}) as the luminescent reagent. The reaction mechanism was investigated in order to understand and optimize the processes leading to light emission. The optimal conditions included a solution pH {approx}7 at a flow rate of 3.0 mL min{sup -1} with no added organic modifier and application of 1.2 V vs. a Pt quasi-reference electrode (QRE). Fluoroquinolones containing a tertiary distal nitrogen on the piperazine ring, such as enrofloxacin and ofloxacin, reacted to produce more intense ECL than those with a secondary nitrogen, such as ciprofloxacin and norfloxacin. The method linear range, precision, detection limits, and sensitivity for the detection of enrofloxacin and ciprofloxacin were compared to that of tripropylamine. The method was applied to the determination of the ciprofloxacin content in a pharmaceutical preparation. The assay is discussed in terms of its analytical figures of merit, ease of use, speed, accuracy and application to pharmaceutical samples.

  10. Palladium(II/Cationic 2,2’-Bipyridyl System as a Highly Efficient and Reusable Catalyst for the Mizoroki-Heck Reaction in Water

    Directory of Open Access Journals (Sweden)

    Fu-Yu Tsai

    2010-01-01

    Full Text Available A water-soluble and air-stable Pd(NH32Cl2/cationic 2,2’-bipyridyl system was found to be a highly-efficient and reusable catalyst for the coupling of aryl iodides and alkenes in neat water using Bu3N as a base. The reaction was conducted at 140 °C in a sealed tube in air with a catalyst loading as low as 0.0001 mol % for the coupling of activated aryl iodides with butyl and ethyl acrylates, providing the corresponding products in good to excellent yields with very high turnover numbers. In the case of styrene, Mizoroki-Heck coupling products were obtained in good to high yields by using a greater catalyst loading (1 mol % and TBAB as a phase-transfer agent. After extraction, the residual aqueous solution could be reused several times with only a slight decrease in its activity, making the Mizoroki-Heck reaction “greener”.

  11. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    International Nuclear Information System (INIS)

    Lobello, Maria Grazia; Fantacci, Simona; Manfredi, Norberto; Coluccini, Carmine; Abbotto, Alessandro; Nazeeruddin, Mohammed K.; De Angelis, Filippo

    2014-01-01

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO 2 nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO 2

  12. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lobello, Maria Grazia; Fantacci, Simona [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy); Manfredi, Norberto; Coluccini, Carmine [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Abbotto, Alessandro, E-mail: alessandro.abbotto@unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Nazeeruddin, Mohammed K., E-mail: mdkhaja.nazeeruddin@epfl.ch [Laboratory for Photonics and Interfaces, Station 6, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); De Angelis, Filippo, E-mail: filippo@thch.unipg.it [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy)

    2014-06-02

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO{sub 2} nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO{sub 2}.

  13. (Carbonato-κ2 O,O′)bis­(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-01-01

    In the title complex, [Co(CO3)(C12H12N2)2]Br·3H2O, the CoIII cation has a distorted octa­hedral coordination environment. It is chelated by four N atoms of two different 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol­ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O—H⋯O hydrogen bonding. The crystal packing is consolidated by C—H⋯O and C—H⋯Br hydrogen bonds, as well as π–π stacking inter­actions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å. PMID:22589773

  14. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    Science.gov (United States)

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  15. Is the bipyridyl thorium metallocene a low-valent thorium complex? A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wenshan; Lukens, Wayne W.; Zi, Guofu; Maron, Laurent; Walter, Marc D.

    2012-01-12

    Bipyridyl thorium metallocenes [5-1,2,4-(Me3C)3C5H2]2Th(bipy) (1) and [5-1,3-(Me3C)2C5H3]2Th(bipy) (2) have been investigated by magnetic susceptibility and computational studies. The magnetic susceptibility data reveal that 1 and 2 are not diamagnetic, but they behave as temperature independent paramagnets (TIPs). To rationalize this observation, density functional theory (DFT) and complete active space SCF (CASSCF) calculations have been undertaken, which indicated that Cp2Th(bipy) has indeed a Th(IV)(bipy2-) ground state (f0d0 2, S = 0), but the open-shell singlet (f0d1 1, S = 0) (almost degenerate with its triplet congener) is lying only 9.2 kcal/mol higher in energy. Complexes 1 and 2 react cleanly with Ph2CS to give [ 5-1,2,4-(Me3C)3C5H2]2Th[(bipy)(SCPh2)] (3) and [ 5-1,3-(Me3C)2C5H3]2Th[(bipy)(SCPh2)] (4), respectively, in quantitative conversions. Since no intermediates were observed experimentally, this reaction was also studied computationally. Coordination of Ph2CS to 2 in its S = 0 ground state is not possible, but Ph2CS can coordinate to 2 in its triplet state (S = 1) upon which a single electron transfer (SET) from the (bipy2-) fragment to Ph2CS followed by C-C coupling takes place.

  16. Simultaneous determination of amiodarone and its metabolite desethylamiodarone by high-performance liquid chromatography with chemiluminescent detection

    International Nuclear Information System (INIS)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Garcia-Martinez, Maria Dolores

    2008-01-01

    A novel method was developed for the determination of amiodarone and desethylamiodarone by high-performance liquid chromatography (HPLC) coupled with chemiluminescent (CL) detection. The procedure is based on the post-column photolysis of the analytes into photoproducts which are active in the tris(2,2'-bipyridyl)ruthenium(III) [Ru(bpy) 3 3+ ] CL system. Ru(bpy) 3 3+ was on-line generated by photo-oxidation of the Ru(II) complex in the presence of peroxydisulfate. The separation was carried out on a Mediterranea C 18 column with isocratic elution using a mixture of methanol and 0.017 mol L -1 ammonium sulfate buffer of pH 6.8. Under the optimum conditions, analytical curves, based on standard solutions, were linear over the range 0.1-50 μg mL -1 for amiodarone and 0.5-25 μg mL -1 for desethylamiodarone. The detection limits of amiodarone and desethylamiodarone were 0.02 and 0.11 μg mL -1 , respectively. Intra- and inter-day precision values of 0.9% relative standard deviation (R.S.D.) (n = 10) and 1.6% R.S.D. (n = 15), respectively, were obtained. The method was applied successfully to the determination of these compounds in serum and pharmaceutical formulations

  17. A Ru(II) complex with 2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5- f][1,10]phenanthroline: Synthesis, characterization, and acid-base and DNA-binding properties

    Science.gov (United States)

    Gao, Jie; Wang, Zhi-Ping; Yuan, Cui-Li; Jia, Hai-Shun; Wang, Ke-Zhi

    2011-09-01

    A new Ru(II) complex of [Ru(bpy) 2(Hmspip)]Cl 2 {in which bpy = 2,2'-bipyridine, Hmspip = 2-(4-(methylsulfonyl)phenyl)-1 H-imidazo[4,5- f][1,10]phenanthroline} have been synthesized and characterized. The ground- and excited-state acid-base properties of [Ru(bpy) 2(Hmspip)]Cl 2 and its parent complex of [Ru(bpy) 2(Hpip)]Cl 2 {Hpip = 2-phenyl-1H-imidazo[4,5- f][1,10]phenanthroline} have been studied by UV-visible (UV-vis) and emission spectrophotometric pH titrations. [Ru(bpy) 2(Hmspip)]Cl 2 acts as a calf thymus DNA intercalators with a binding constant of 4.0 × 10 5 M -1 in buffered 50 mM NaCl, as evidenced by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN) 6] 4-, DNA competitive binding with ethidium bromide, reverse salt titrations and viscosity measurements.

  18. Oxovanadium(IV) complexes with tridentate dibasic schiff base ligands and 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, R N; Chakravortty, V; Dash, K C [Utkal Univ., Bhubaneswar (India). Dept. of Chemistry

    1991-05-01

    The present work deals with the monomeric, six-coordinated mixed-ligand complexes of oxovanadium(IV) with dibasic tridentate schiff base ligands(ONO donor set) and the bidentate chelating ligand 2-(2'-pyridyl)benzimidazole (PBH) containing N{sub 2} donor set. (author). 1 tab., 22 refs.

  19. A new Kaempferol-based Ru(II) coordination complex, Ru(kaem)Cl(DMSO)3: Structure and absorption-emission spectroscopy study

    International Nuclear Information System (INIS)

    Shao, Ming Wei; Gang, Jong Back; Kim, Sang Ho; Yoon, Min Young

    2016-01-01

    Recent interest in developing a new anticancer drug with low side effects has led to the study of the combination of two new anticancer drugs. Although both kaempferol (kaem) and Ru-based metal complexes have not been proven as effective drugs, their unique anticancer activities with reduced side effects have drawn our attention to the need for further studies on their potential in anticancer application. Herein, we report the synthesis, characterization, structure, and spectroscopic properties of a kaem-based Ru (II) complex, RuCl(kaem)(DMSO) 3 (1). Because of the presence of a catechol-like functional group in its dihydropyran ring, kaem can strongly bind to the Ru(II) metal center in a basic medium. The molecular structure of the complex was characterized by spectroscopic studies and X-ray crystal structure analysis. In addition, the complex forms a molecular dimer as a result of the cooperative effect of H-bonding and π–π stacking interactions. Moreover, the molecular dimer forms a ladder-like one-dimensional network structure by water mediated H-bonding that further extended into a three-dimensional packing structure. UV–Vis spectroscopy studies of the complex demonstrated the appearance of a strong metal to ligand charge transfer (MLCT) band in the visible region with strong fluorescence emission derived from the MLCT. Further studies are now in progress to demonstrate synergetic anticancer activity

  20. Scandium interaction with diantipyrylmethane homologues and 2-(n-sulphophenylazo)-1,8-dihydroxynaphthalene-3,6 sodium disulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Ganago, L I; Alinovskaya, L A [AN Belorusskoj SSR, Minsk. Inst. Fiziki Tverdogo Tela i Poluprovodnikov

    1979-01-01

    The reactions of scandium with homologs of diantipyrilmethane (DAM)-propyldiantipyrilmethane (PDAM) and phenyldiantipyrilmethane (PhDAM) - are studied. The relationship of components in the complexes formed is found, and chemism of their formation is established. The complexes Sc-SPADNE (sodium salt 2-(n-sulphophenylazo)-1,8-dioxynaphthalene-3,6-disulphonic acid) are shown to form within a wide pH range. The maximum yield of complexes is observed at 6.0-7.5 pH. By the ion-exchange method the anion character of heteroligand scandium complexes is established. The complex Sc-SPADNE-PDAM is faster as compared with the complexes Sc-SPADNE-DAM and Sc-SPADNE-PhDAM. The decrease in amine excess and increase in the sensitivity of heteroligand formation of the complexes of scandium with SPADNE and PDAM make them better suited for analysis. The technique is developed for the determination of Sc/sub 2/O/sub 3/ in perovskites using the complete differential spectrophotometry method.

  1. Electrochemiluminescent determination of nicotine based on tri(2,2'-bipyridyl) ruthenium (II) complex through flow injection analysis

    International Nuclear Information System (INIS)

    Lin Mengshan; Wang Junsheng; Lai Chienhung

    2008-01-01

    This paper describes the electrogenerated chemiluminescence (ECL) processes of Ru(bpy) 3 2+ /nicotine system at ITO working electrode. An ECL-based method for rapid and sensitive detection of nicotine in phosphate buffer solution at pH 8.0 is established. Strong ECL emission was observed at a positive potential of 1.4 V vs. Ag/AgCl. A possible ECL mechanism is proposed for the Ru(bpy) 3 2+ /nicotine system, the oxidation product of nicotine at the electrode surface reacts with the 3+ state of ruthenium bipyridyl (2+) complex and form ruthenium complex exited state ions and thus releases photons. Effect of pH (medium/electrolyte), working potential, buffer composition, buffer concentration, reactant and co-reactant (nicotine) concentration, flow rate and loop size on the ECL spectrum of the Ru(bpy) 3 2+ /nicotine were studied. At the optimized experimental conditions, lower detection limit for nicotine was observed as 1.2 nmol L -1 (S/N = 3). Linear relationship between ECL current and concentration of nicotine was observed (up to 100 μmol L -1 ) with R-value of 0.997. The relative standard deviation with 5 μmol L -1 concentration of nicotine for 20 analyses was only 1.4%. A 94% recovery rate was observed in a real sample analysis without any complications/disturbance in measurement. Interferences of humid acid, camphor and SDS were not observed in their presence in the sample solution. The established procedure for nicotine quantification manifests fascinating results and can be suggested for further applications

  2. Experimental studies on the nature of bonding of DNA/bipyridyl-(ethylenediamine)platinum(II) and DNA/netropsin complexes in solution and oriented wet-spun films

    Science.gov (United States)

    Marlowe, R. L.; Szabo, A.; Lee, S. A.; Rupprecht, A.

    2002-03-01

    The stability of complexes of NaDNA with bipyridyl-(ethylenediamine)platinum(II) (abbreviated [(bipy)Pt(en)]) and with netropsin has been studied using two techniques: (i) ultraviolet melting experiments were done on NaDNA/[(bipy)Pt(en)], showing that the [(bipy)Pt(en)] ligand stabilizes the DNA double helix structure; and (ii) swelling measurements (via optical microscopy) as a function of relative humidity were done on wet-spun oriented films of NaDNA/[(bipy)Pt(en)] and of NaDNA/netropsin. The swelling data shows that an irreversible transition of the films occurs at high relative humidity, first for the NaDNA/netropsin, then for pure NaDNA, and lastly for the NaDNA/[(bipy)Pt(en)]. These results are indicative that the [(bipy)Pt(en)] complex stabilizes the intermolecular bonds which mediate the film swelling characteristics. A model is suggested for the binding of [(bipy)Pt(en)] to DNA to explain why the swelling experiments show this ligand as increasing the intermolecular bond strength between the DNA double helices, while netropsin decreases this degree of stabilization.

  3. A new Kaempferol-based Ru(II) coordination complex, Ru(kaem)Cl(DMSO){sub 3}: Structure and absorption-emission spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ming Wei; Gang, Jong Back; Kim, Sang Ho; Yoon, Min Young [Gachon University, Sungnam (Korea, Republic of)

    2016-10-15

    Recent interest in developing a new anticancer drug with low side effects has led to the study of the combination of two new anticancer drugs. Although both kaempferol (kaem) and Ru-based metal complexes have not been proven as effective drugs, their unique anticancer activities with reduced side effects have drawn our attention to the need for further studies on their potential in anticancer application. Herein, we report the synthesis, characterization, structure, and spectroscopic properties of a kaem-based Ru (II) complex, RuCl(kaem)(DMSO){sub 3} (1). Because of the presence of a catechol-like functional group in its dihydropyran ring, kaem can strongly bind to the Ru(II) metal center in a basic medium. The molecular structure of the complex was characterized by spectroscopic studies and X-ray crystal structure analysis. In addition, the complex forms a molecular dimer as a result of the cooperative effect of H-bonding and π–π stacking interactions. Moreover, the molecular dimer forms a ladder-like one-dimensional network structure by water mediated H-bonding that further extended into a three-dimensional packing structure. UV–Vis spectroscopy studies of the complex demonstrated the appearance of a strong metal to ligand charge transfer (MLCT) band in the visible region with strong fluorescence emission derived from the MLCT. Further studies are now in progress to demonstrate synergetic anticancer activity.

  4. Electrochemiluminescent determination of nicotine based on tri(2,2'-bipyridyl) ruthenium (II) complex through flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mengshan [Department of Chemistry, Tamkang University, Tamsui 25137, Taiwan (China)], E-mail: mslin@mail.tku.edu.tw; Wang Junsheng; Lai Chienhung [Department of Chemistry, Tamkang University, Tamsui 25137, Taiwan (China)

    2008-11-01

    This paper describes the electrogenerated chemiluminescence (ECL) processes of Ru(bpy){sub 3}{sup 2+}/nicotine system at ITO working electrode. An ECL-based method for rapid and sensitive detection of nicotine in phosphate buffer solution at pH 8.0 is established. Strong ECL emission was observed at a positive potential of 1.4 V vs. Ag/AgCl. A possible ECL mechanism is proposed for the Ru(bpy){sub 3}{sup 2+}/nicotine system, the oxidation product of nicotine at the electrode surface reacts with the 3+ state of ruthenium bipyridyl (2+) complex and form ruthenium complex exited state ions and thus releases photons. Effect of pH (medium/electrolyte), working potential, buffer composition, buffer concentration, reactant and co-reactant (nicotine) concentration, flow rate and loop size on the ECL spectrum of the Ru(bpy){sub 3}{sup 2+}/nicotine were studied. At the optimized experimental conditions, lower detection limit for nicotine was observed as 1.2 nmol L{sup -1} (S/N = 3). Linear relationship between ECL current and concentration of nicotine was observed (up to 100 {mu}mol L{sup -1}) with R-value of 0.997. The relative standard deviation with 5 {mu}mol L{sup -1} concentration of nicotine for 20 analyses was only 1.4%. A 94% recovery rate was observed in a real sample analysis without any complications/disturbance in measurement. Interferences of humid acid, camphor and SDS were not observed in their presence in the sample solution. The established procedure for nicotine quantification manifests fascinating results and can be suggested for further applications.

  5. Electrochemiluminescent determination of nicotine based on tri(2,2'-bipyridyl) ruthenium (II) complex through flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Shan; Wang, Jun Sheng; Lai, Chien Hung [Department of Chemistry, Tamkang University, Tamsui 25137 (China)

    2008-11-01

    This paper describes the electrogenerated chemiluminescence (ECL) processes of Ru(bpy){sub 3}{sup 2+}/nicotine system at ITO working electrode. An ECL-based method for rapid and sensitive detection of nicotine in phosphate buffer solution at pH 8.0 is established. Strong ECL emission was observed at a positive potential of 1.4 V vs. Ag/AgCl. A possible ECL mechanism is proposed for the Ru(bpy){sub 3}{sup 2+}/nicotine system, the oxidation product of nicotine at the electrode surface reacts with the 3+ state of ruthenium bipyridyl (2+) complex and form ruthenium complex exited state ions and thus releases photons. Effect of pH (medium/electrolyte), working potential, buffer composition, buffer concentration, reactant and co-reactant (nicotine) concentration, flow rate and loop size on the ECL spectrum of the Ru(bpy){sub 3}{sup 2+}/nicotine were studied. At the optimized experimental conditions, lower detection limit for nicotine was observed as 1.2 nmol L{sup -1} (S/N = 3). Linear relationship between ECL current and concentration of nicotine was observed (up to 100 {mu}mol L{sup -1}) with R-value of 0.997. The relative standard deviation with 5 {mu}mol L{sup -1} concentration of nicotine for 20 analyses was only 1.4%. A 94% recovery rate was observed in a real sample analysis without any complications/disturbance in measurement. Interferences of humid acid, camphor and SDS were not observed in their presence in the sample solution. The established procedure for nicotine quantification manifests fascinating results and can be suggested for further applications. (author)

  6. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties

    International Nuclear Information System (INIS)

    Liu Lina; Li Bin; Qin Ruifei; Zhao Haifeng; Ren Xinguang; Su Zhongmin

    2010-01-01

    A new type of bifunctional nanocomposites for biomedical applications, upconversion NaY F 4 :Y b 3+ , Tm 3+ nanoparticles coated with Ru(II) complex chemically doped SiO 2 , has been developed by combining the useful functions of upconversion and oxygen-sensing properties into one nanoparticle. NaY F 4 :Y b 3+ , Tm 3+ nanoparticles were successfully coated with an Ru(II) complex doped SiO 2 shell with a thickness of ∼ 30 nm, and the surface of the SiO 2 was functionalized with amines. The obtained nanocomposites exhibited bright blue upconversion emission, and the luminescent emission intensity of the Ru(II) complex in the nanocomposites was sensitive to oxygen. Compared with the simple mixture of Ru(II) complex and SiO 2 , the core-shell nanocomposites showed better linearity between emission intensity of Ru(II) complex and oxygen concentrations. These bifunctional nanocomposites may find applications in biochemical and biomedical fields, such as biolabels and optical oxygen sensors, which can measure the oxygen concentrations in biological fluids.

  7. The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection system.

    Science.gov (United States)

    Anastos, Nicole; Lewis, Simon W; Barnett, Neil W; Sims, D Noel

    2006-01-01

    This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 x 10(-8) and 3.5 x 10(-9) mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom.

  8. Synthesis, photophysical and preliminary investigation of the dye-sensitized solar cells properties of functionalized anthracenyl-based bipyridyl and phenanthrolyl Ru(II) complexes

    CSIR Research Space (South Africa)

    Adeloye, AO

    2013-01-01

    Full Text Available .Ali S, Arta S, Sina H, Siguang C, Pierre G P and Sylvie M 2008 J. New Mat. Electrochem. Systems 11 281 39.Ruhle S, Greenshtein M, Chen S G, Merson A, Pizen H, Sukenik S, Cahen D and Zaban A 2005 J. Phys. Chem. B 109 18907 40.Hoshikawa T, Kikuchi R...

  9. One-step immobilization of tris(2,2'-bipyridyl)ruthenium(II) via vapor-surface sol-gel deposition towards solid-state electrochemiluminescence detection

    International Nuclear Information System (INIS)

    Qian Lei; Yang Xiurong

    2008-01-01

    A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 Cl 2 ) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy) 3 Cl 2 immobilized sol-gel (Ru(bpy) 3 Cl 2 /sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy) 3 Cl 2 was successfully incorporated into the silica sol-gel film. It was found that many irregular Ru(bpy) 3 Cl 2 /sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition. Electrochemical properties and electrochemiluminescence (ECL) behaviors of Ru(bpy) 3 Cl 2 /sol-gel films could be easily adjusted by deposition numbers and time. At last, the Ru(bpy) 3 Cl 2 /sol-gel film modified electrode was used for solid-state ECL detection of tripropylamine. The linear range was from 5.8 x 10 -8 to 2.4 x 10 -4 M with the detection limit of 5 nM, which was three orders of magnitude lower than that from pure Nafion-modified electrodes. The ECL sensor also exhibited high stability, and still remained 92% response after being stored in air for 35 days. This method for immobilization of Ru(bpy) 3 Cl 2 is simple, convenient and low-cost relative to others, so it shows promising applications in solid-state ECL detection

  10. Multichromophoric hybrid species made of perylene bisimide derivatives and Ru(ii) and Os(ii) polypyridine subunits.

    Science.gov (United States)

    Nastasi, Francesco; La Ganga, Giuseppina; Campagna, Sebastiano; Syrgiannis, Zois; Rigodanza, Francesco; Vitale, Stefania; Licciardello, Antonino; Prato, Maurizio

    2017-05-31

    Herein, the synthesis and the photophysical and redox properties of a new perylene bisimide (PBI) species (L), bearing two 1,10-phenanthroline (phen) ligands at the two imide positions of the PBI, and its dinuclear Ru(ii) and Os(ii) complexes, [(bpy) 2 Ru(μ-L)Ru(bpy) 2 ](PF 6 ) 4 (Ru2; bpy = 2,2'-bipyridine) and [(Me 2 -bpy) 2 Os(μ-L)Os(Me 2 -bpy) 2 ](PF 6 ) 4 (Os2; Me 2 -bpy = (4,4'-dimethyl)-2,2'-bipyridine), are reported. The absorption spectra of the compounds are dominated by the structured bands of the PBI subunit due to the lowest-energy spin-allowed π-π* transition. The spin-allowed MLCT transitions in Ru2 and Os2 are inferred by the absorption at 350-470 nm, where the PBI absorption is negligible. The absorption band extends towards the red region for Os2 due to the spin-forbidden MLCT transitions, intensified by the heavy osmium center. The reduction processes of the compounds are dominated by two successive mono-electronic PBI-based processes, which in the metal complexes are slightly shifted compared to the free ligand. On oxidation, both metal complexes undergo an apparent bi-electronic process (at 1.31 V vs. SCE for Ru2 and 0.77 V for Os2), attributed to the simultaneous one-electron oxidation of the two weakly-interacting metal centers. In Ru2 and Os2, the intense fluorescence of L subunit (λ max , 535 nm; τ, 4.3 ns; Φ, 0.91) is fully quenched, mainly by photoinduced electron transfer from the metal centers, on the ps timescale (time constant, 11 ps in Ru2 and 3 ps in Os2). Such photoinduced electron transfer leads to the formation of a charge-separated state, which directly decays to the ground state in about 70 ps in Os2, but produces the triplet π-π* state of the PBI subunit in 35 ps in Ru2. The results provide information on the excited-state processes of the hybrid species combining two dominant classes of chromophore/luminophore species, the PBI and the metal polypyridine complexes, and can be used for future design on new hybrid

  11. Electrochemical sensing platform based on tris(2,2'-bipyridyl)cobalt(III) and multiwall carbon nanotubes-Nafion composite for immunoassay of carcinoma antigen-125

    International Nuclear Information System (INIS)

    Chen Shihong; Yuan Ruo; Chai Yaqin; Min Ligen; Li Wenjuan; Xu Yang

    2009-01-01

    A new strategy for constructing a sensitive mediator-type electrochemical immunosensor for the detection of carcinoma antigen-125 (CA125) was developed. In this strategy, mediator tris(2,2'-bipyridyl)cobalt(III) (Co(bpy) 3 3+ ) was incoporated into the multiwall carbon nanotubes-Nafion (MWNTs-Nafion) composite film via a simple ion-exchange route. Then, gold colloidal nanoparticles (nano-Au) were attached onto Co(bpy) 3 3+ /MWNTs-Nafion film through electrostatic interaction between negatively charged nano-Au and positively charged Co(bpy) 3 3+ . Finally, CA125 monoclonal antibody (anti-CA125), used as a model antibody, was assembled onto the surface of nano-Au to achieve an immunosensor for the determination of CA125 antigen. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the assembly process of the modified electrode. The resulting immunosensor showed a high sensitivity, wide dynamic range consisting of two linear parts from 1.0 to 30 U mL -1 and 30 to 150 U mL -1 with a low detection limit of 0.36 U mL -1 at 3 times the background noise. Moreover, it displayed good reproducibility and stability, and would be potentially attractive for clinical immunoassay of CA125. The integration of mediator Co(bpy) 3 3+ and MWNTs-Nafion composite would offer potential promise for the fabrication of biosensors and biocatalysts.

  12. Crystal structure of a mononuclear Ru(II) complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy-tpy)](.).

    Science.gov (United States)

    Rein, Francisca N; Chen, Weizhong; Scott, Brian L; Rocha, Reginaldo C

    2015-09-01

    We report the structural characterization of [6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine](2,2'-bi-pyridine)-chlorido-ruthenium(II) hexa-fluorido-phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2'-bi-pyridine (bpy) and the tridendate ligand 6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine (tpy-tpy). The [RuCl(bpy)(tpy-tpy)](+) monocation has a distorted octa-hedral geometry at the central Ru(II) ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru-N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru-Cl. For tpy-tpy, the mean Ru-N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru-Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy-tpy adopts a trans,trans conformation about the inter-annular C-C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π-π stacking inter-actions based on tpy-tpy. The crystal structure reported here is the first for a tpy-tpy complex of ruthenium.

  13. Synthesis And Characterization Of 6,6'-Bis (2-Hydroxyphenyl)-2,2'-Bipyridyl Ligand And Its Platinum Complex for the Interaction with CT-DNA

    International Nuclear Information System (INIS)

    Norhidayah Selamat; Heng, L.Y.; Nurul Izzaty Hassan; Nurul Huda Abd Karim

    2016-01-01

    A tetradentate ligand with four donor atoms OONN and its platinum metal complex were synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6 ' -dibromo-2,2 ' -bipyridyl and 2-hydroxy phenylboronic acid with the presence of palladium (II) acetate. The formation of platinum complex was done by introducing the ligand with platinum (II) chloride in benzonitrile. Both ligand and complex structures were confirmed by 1 H, 2D cosy and 13 C NMR spectroscopy, ESIMS spectrometry and FTIR spectroscopy. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs or sensors targeted on DNA. In this study, the binding interaction between the synthesized ligand and complex with calf thymus DNA (CT-DNA) has been investigated using UV-Visible and emission DNA titration. From the UV-Visible DNA study, it showed that platinum (II) bipyridine complex had higher affinity towards CT-DNA with binding constant K b =(3.1 ± 0.02 x 10 5 ) ± 0.02 M -1 compared to that of bis(phenoxy) bipyridine ligand with binding constant (K b ) = (1.19 ± 0.08) x 10 3 M -1 . These findings will be valuable for the potential use of platinum (II) bipyridine complex as a phosphorescent probe in optical sensor DNA. (author)

  14. Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs.

    Science.gov (United States)

    Martínez, Ma Ángeles; Carranza, M Pilar; Massaguer, Anna; Santos, Lucia; Organero, Juan A; Aliende, Cristina; de Llorens, Rafael; Ng-Choi, Iteng; Feliu, Lidia; Planas, Marta; Rodríguez, Ana M; Manzano, Blanca R; Espino, Gustavo; Jalón, Félix A

    2017-11-20

    The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in

  15. 3D coordination polymers with nitrilotriacetic and 4,4'-bipyridyl mixed ligands: structural variation based on dinuclear or tetranuclear subunits assisted by Na-O and/or O-H...O interactions.

    Science.gov (United States)

    Lü, Xing-Qiang; Jiang, Ji-Jun; Chen, Chun-Long; Kang, Bei-Sheng; Su, Cheng-Yong

    2005-06-27

    The reactions of Cu(II) with the mixed nitrilotriacetic acid (H3NTA) and 4,4'-bipyridyl (4,4'-bpy) ligands in different metal-to-ligand ratios in the presence of NaOH and NaClO4 afforded two complexes, Na3[Cu2(NTA)2(4,4'-bpy)]ClO4 x 5H2O (1) and [Cu2(NTA) (4,4'-bpy)2]ClO4 x 4H2O (2). The two complexes have been characterized by elemental analysis, IR, XRD, and single-crystal X-ray diffraction. 1 contains a basic doubly negatively charged [Cu2(NTA)2(4,4'-bpy)]2- dinuclear unit which was further assembled via multiple Na-O and O-H...O interactions into a three-dimensional (3D) pillared-layer structure. 2 features a two-dimensional (2D) undulated brick-wall architecture containing a basic doubly positively charged [Cu4(NTA)2(4,4'-bpy)2]2+ tetranuclear unit. The 2D network possesses large cavities hosting guest molecules and was further assembled via O-H...O hydrogen bonds into a 3D structure with several channels running in different directions.

  16. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.

    Science.gov (United States)

    Xu, Yuanhong; Cao, Mengmei; Liu, Huihui; Zong, Xidan; Kong, Na; Zhang, Jizhen; Liu, Jingquan

    2015-07-01

    In this study, electron transfer behavior of the graphene nanosheets attachment on glassy carbon electrode (GCE) via direct electrochemical reduction of graphene oxide (GO) is investigated for the first time. The graphene modified electrode was achieved by simply dipping the GCE in GO suspension, followed by cyclic voltammetric scanning in the potential window from 0V to -1.5V. Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] was immobilized on the graphene modified electrode and used as the redox probe to evaluate the electron transfer behavior. The electron transfer rate constant (Ks) was calculated to be 61.9±5.8s(-1), which is much faster than that of tiled graphene modified GCE (7.1±0.6s(-1)). The enhanced electron transfer property observed with the GCE modified by reductively deposited graphene is probably due to its standing configuration, which is beneficial to the electron transfer comparing with the tiled one. Because the abundant oxygen-containing groups are mainly located at the edges of GO, which should be much easier for the reduction to start from, the reduced GO should tend to stand on the electrode surface as evidenced by scanning electron microscopy analysis. In addition, due to the favored electron transfer and standing configuration, the Ru(bpy)3(2+) electrochemiluminescence sensor fabricated with standing graphene modified GCE provided much higher and more stable efficiency than that fabricated with tiled graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. (1,6,7,12-Tetraazaperylene-κ2N,N′bis(4,4′,5,5′-tetramethyl-2,2′-bipyridyl-κ2N,N′ruthenium(II bis(hexafluoridophosphate acetonitrile trisolvate

    Directory of Open Access Journals (Sweden)

    Thomas Brietzke

    2014-06-01

    Full Text Available In the title compound, rac-[Ru(C14H16N22(C16H8N4](PF62·3C2H3N, discrete dimers of complex cations, [Ru(tmbpy2tape]2+, of opposite chirality are formed (tmbpy = tetramethylbipyridine; tape = tetraazaperylene, held together by π–π stacking interactions between the tetraazaperylene moieties with centroid–centroid distances in the range 3.563 (3–3.837 (3 Å. These interactions exhibit a parallel displaced π–π stacking mode. Additional weak C—H...π-ring and C—H...N and C—H...F interactions are found, leading to a three-dimensional architecture. The RuII atom is coordinated in a distorted octahedral geometry. The counter-charge is provided by two hexafluoridophosphate anions and the asymmetric unit is completed by three acetonitrile solvent molecules of crystallization. Four F atoms of one PF6− anion are disordered over three sets of sites with occupancies of 0.517 (3:0.244 (3:0.239 (3. Two acetonitrile solvent molecules are highly disordered and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek (2009. Acta Cryst. D65, 148–155].

  18. Anticancer activities of self-assembled molecular bowls containing a phenanthrene-based donor and Ru(II acceptors

    Directory of Open Access Journals (Sweden)

    Kim I

    2015-08-01

    Full Text Available Inhye Kim,1,* Young Ho Song,2,* Nem Singh,2 Yong Joon Jeong,3 Jung Eun Kwon,3 Hyunuk Kim,4 Young Mi Cho,3 Se Chan Kang,3 Ki-Whan Chi2 1Laboratory of Bio-Resources, Yongin-si, Gyeonggi-Do, 2Department of Chemistry, University of Ulsan, Ulsan, 3Department of Life Science, Gachon University, Seongnam, 4Energy Materials Lab, Korea Institute of Energy Research, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: Nano-sized multinuclear ruthenium complexes have rapidly emerged as promising therapeutic candidates with unique anticancer activities. Here, we describe the coordination-driven self-assembly and anticancer activities of a set of three organometallic tetranuclear Ru(II molecular bowls. [2+2] Coordination-driven self-assembly of 3,6-bis(pyridin-3-ylethynylphenanthrene (bpep (1 and one of the three dinuclear arene ruthenium clips, [(ƞ6-p-iPrC6H4Me2Ru2-(OO\\OO][OTf]2 (OO\\OO =2,5-dioxido-1,4-benzoquinonato, OTf = triflate (2, 5,8-dioxido-1,4-naphthoquinonato (3, or 6,11-dioxido-5,12-naphthacenediona (4, resulted in three molecular bowls 5–7 of general formula [{(ƞ6-p-iPrC6H4Me2Ru2-(OO\\OO}2(bpep2][OTf]4. All molecular bowls were obtained as triflate salts in very good yields (>90% and were fully characterized using multinuclear nuclear magnetic resonance (NMR, electrospray ionization–mass spectrometry (ESI-MS, and elemental analysis. The structure of the representative molecular bowl 5 was confirmed by single-crystal X-ray diffraction analysis. The anticancer activities of molecular bowls 5–7 were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, autophagy, and Western blot analysis. Bowl 6 showed the strongest cytotoxicity in AGS human gastric carcinoma cells and was more cytotoxic than doxorubicin. In addition, autophagic activity and the ratio of apoptotic cell death increased in AGS cells by treatment with bowl 6. Bowl 6 also induced autophagosome formation via upregulation

  19. DFT Simulation of Structural and Optical Properties of 9-Aminoacridine Half-Sandwich Ru(II), Rh(III), and Ir(III) Antitumoral Complexes and Their Interaction with DNA.

    Science.gov (United States)

    Cerón-Carrasco, José Pedro; Ruiz, José; Vicente, Consuelo; de Haro, Concepción; Bautista, Delia; Zúñiga, José; Requena, Alberto

    2017-08-08

    In this work, we use DFT-based methods to simulate the chemical structures, optical properties, and interaction with DNA of a recently synthesized chelated C^N 9-aminoacridine arene Ru(II) anticancer agent and two new closely related Rh(III) and Ir(III) complexes using DFT-based methods. Four chemical models and a number of theoretical approaches, which representatively include the PBE0, B97D, ωB97X, ωB97X-D, M06, and M06-L density functionals and the LANL2DZ, def2-SVP, and def2-TZVP basis sets, are tested. The best overall accuracy/cost performance for the optimization process is reached at the ωB97X-D/def2-SVP and M06/def2-SVP levels of theory. Inclusion of explicit solvent molecules (CHCl 3 ) further refines the geometry, while taking into account the crystal network gives no significant improvements of the computed bond distances and angles. The analysis of the excited states reveals that the M06 level matches better the experimental absorption spectra, compared to ωB97X-D. The use of the M06/def2-SVP approach is therefore a well-balanced method to study theoretically the bioactivity of this type of antitumoral complexes, so we couple this TD-DFT approach to molecular dynamics simulations in order to assess their reactivity with DNA. The reported results demonstrate that these drugs could be used to inject electrons into DNA, which might broaden their applications in photoactivated chemotherapy and as new materials for DNA-based electrochemical nanodevices.

  20. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    Science.gov (United States)

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces

  1. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    Science.gov (United States)

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    CONSPECTUS Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3

  2. Extractive-photometric determination of niobium with N-benzoylphenylhydroxylamine and lumogallion in alloyed steels

    International Nuclear Information System (INIS)

    Patratij, Yu.V.; Pilipenko, A.T.

    1978-01-01

    An extractive-photometric method has been developed to determine niobium (5) present as a heteroligand complex with N-benzoylphenylhydroxylamine (BPH) and lumogallion in alloyed steels. The method is based on preliminary extraction of niobium in a complex with BPH from concentrated HCl and subsequent determination of niobium in a 5-n (with respect to HCl) solution with lumogallion added. Sensitivity of the method is 2.0 μg of niobium in 10 ml of extract. The method has been tested on standard steels specimens

  3. Synthesis and Photophysical and Electrochemical Properties of Functionalized Mono-, Bis-, and Trisanthracenyl Bridged Ru(II Bis(2,2′:6′,2″-terpyridine Charge Transfer Complexes

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2014-01-01

    Full Text Available With the aim of developing new molecular devices having long-range electron transfer in artificial systems and as photosensitizers, a series of homoleptic ruthenium(II bisterpyridine complexes bearing one to three anthracenyl units sandwiched between terpyridine and 2-methyl-2-butenoic acid group are synthesized and characterized. The complexes formulated as bis-4′-(9-monoanthracenyl-10-(2-methyl-2-butenoic acid terpyridyl ruthenium(II bis(hexafluorophosphate (RBT1, bis-4′-(9-dianthracenyl-10-(2-methyl-2-butenoic acid terpyridyl ruthenium(II bis(hexafluorophosphate (RBT2, and bis-4′-(9-trianthracenyl-10-(2-methyl-2-butenoic acid terpyridyl ruthenium(II bis(hexafluorophosphate (RBT3 were characterized by elemental analysis, FT-IR, UV-Vis, photoluminescence, 1H and 13C NMR spectroscopy, and electrochemical techniques by elemental analysis, FT-IR, UV-Vis, photoluminescence, 1H and 13C NMR spectroscopy, and electrochemical techniques. The cyclic voltammograms (CVs of (RBT1, (RBT2, and (RBT3 display reversible one-electron oxidation processes at E1/2 = 1.13 V, 0.71 V, and 0.99 V, respectively (versus Ag/AgCl. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, the Ru(II bisterpyridyl complexes show characteristic broad and intense metal-to-ligand charge transfer (MLCT band absorption transitions between 480–600 nm, ε=9.45×103 M−1 cm−1, and appreciable photoluminescence spanning the visible region.

  4. Towards PSII analogs driven by ruthenium photophysics

    International Nuclear Information System (INIS)

    Olsson, Jerry

    2002-01-01

    A number of model complexes have been prepared in an attempt to develop models for photosystem II (PSII) in green plants. As replacement for the chlorophyll photosensitizer, we have used Ru(ll) tris-2,2-bipyridyl or Ru(ll) bis-2,2';6',2 - terpyridyl complexes linked to a pendant 2,2'-bipyridyl or 2,2';6',2''-terpyridyl moieties via spacers of varying lengths. Manganese (ll) has been covalently linked to the pendant 2,2'-bipyridyl /2,2';6',2''-terpyridyl moieties. The use of different ruthenium centres and spacers has made it possible to make assumptions about the way and how easily manganese is coordinated through self-assembly to the pendant 2,2'-bipyridyl or 2,2';6',2''-terpyridyl groups. Several polynuclear complexes containing a photoactive centre (Ru(ll) tris-2,2'-bipyridine or Ru(ll) bis-2,2';6',2''-terpyridine) or other metal ions (Co 2+ , Fe 2+ , Mn 2= ) have been prepared and characterised. The main work has been focused on organic synthesis and characterisation of polypyridine ligands and coordinated to different metal centres. The complexes have been investigated electrochemically and photophysically. Several new phenol-based ligands have been prepared by organic synthetic methods and characterised by various different methods. (author)

  5. Gas-phase behaviour of Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands by electrospray ionization mass spectrometry: fragmentation pathways and energetics.

    Science.gov (United States)

    Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena

    2012-08-15

    The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and

  6. A High Molar Extinction Coefficient Ru(II Complex Functionalized with cis-Dithiocyanato-bis-(9-anthracenyl-10-(2-methyl-2-butenoic acid-1,10-phenanthroline: Potential Sensitizer for Stable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2014-01-01

    Full Text Available New heteroleptic ruthenium(II complex was formulated as [Ru(L12(NCS2], where L1 = 9-anthracenyl-10-(2-methyl-2-butenoic acid-1,10-phenanthroline was synthesized and its photophysical properties were studied and compared to previously reported analogue complex containing no anthracene moiety [Ru(L22(NCS2], L2 = (2-methyl-2-butenoic acid-1,10-phenanthroline. The two complexes though exhibit very strong molar extinction coefficient values; however, [Ru(L12(NCS2] shows better characteristic broad and intense metal-to-ligand charge transfer (MLCT absorption band and higher molar absorptivity coefficient at (λmax=522 nm, ε=6.60×104 M−1 cm−1 than that of [Ru(L22(NCS2] complex, (λmax=446 nm, ε=4.82×104 M−1 cm−1. At room temperature, long wavelength emissions with strong intensity ratio centered at 660 nm were recorded for [Ru(L12(NCS2] complex with a bathochromic shift (λem=700 nm for [Ru(L22(NCS2] complex. It was shown that the luminescence wavelength characteristic of the complexes may be a function relating to the increasing length of π-conjugation and/or molecular weight. A preliminary cyclic voltammetry of [Ru(L12(NCS2] complex also exhibits good electroredox activity with oxidation potential of about 1.04 V, significantly better than other Ru(II polypyridine complexes containing bidentate ligands.

  7. cis-Bis(O-methyl-dithio-carbonato-κ(2) S,S')bis-(tri-phenyl-phosphane-κP)ruthenium(II).

    Science.gov (United States)

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the Ru(II) atom is in a distorted octa-hedral coordination by two xanthate anions (CH3OCS2) and two tri-phenyl-phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the Ru(II) atom with two slightly different Ru-S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C-H⋯O and C-H⋯π inter-actions.

  8. cis-Bis(O-methyl­dithio­carbonato-κ2 S,S′)bis­(tri­phenyl­phosphane-κP)ruthenium(II)

    Science.gov (United States)

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the RuII atom is in a distorted octa­hedral coordination by two xanthate anions (CH3OCS2) and two tri­phenyl­phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the RuII atom with two slightly different Ru—S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C—H⋯O and C—H⋯π inter­actions. PMID:24046578

  9. trans-(Cl)-[Ru(5,5'-diamide-2,2'-bipyridine)(CO)2 Cl2 ]: Synthesis, Structure, and Photocatalytic CO2 Reduction Activity.

    Science.gov (United States)

    Kuramochi, Yusuke; Fukaya, Kyohei; Yoshida, Makoto; Ishida, Hitoshi

    2015-07-06

    A series of trans-(Cl)-[Ru(L)(CO)2 Cl2 ]-type complexes, in which the ligands L are 2,2'-bipyridyl derivatives with amide groups at the 5,5'-positions, are synthesized. The C-connected amide group bound to the bipyridyl ligand through the carbonyl carbon atom is twisted with respect to the bipyridyl plane, whereas the N-connected amide group is in the plane. DFT calculations reveal that the twisted structure of the C-connected amide group raises the level of the LUMO, which results in a negative shift of the first reduction potential (Ep ) of the ruthenium complex. The catalytic abilities for CO2 reduction are evaluated in photoreactions (λ>400 nm) with the ruthenium complexes (the catalyst), [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine; the photosensitizer), and 1-benzyl-1,4-dihydronicotinamide (the electron donor) in CO2 -saturated N,N-dimethylacetamide/water. The logarithm of the turnover frequency increases by shifting Ep a negative value until it reaches the reduction potential of the photosensitizer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Complexes of molybdenum(III) with 2-(2'-pyridyl)benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S P [Patna Univ. (India). Dept. of Chemistry; Prasad, K M [H.D. Jain Coll., Arrah (India). Dept. of Chemistry

    1979-07-01

    Molybdenum(III) forms with 2-(2'-pyridyl) benzimidazole(LH) the trischelated complexes, (Mo(LH)/sub 3/)X/sub 3/ as well as the cationic-anionic complexes, (Mo(LH)/sub 3/X/sub 2/)/sup +/ (Mo(LH)X/sub 4/)/sup -/(X=Cl/sup -/,Br/sup -/ or NCS/sup -/), depending on pH. These complexes have been synthesised and characterised from elemental analyses, i.r. and electronic spectra, magnetic moments and molar conductance.

  11. Complexes of molybdenum(III) with 2-(2'-pyridyl)benzimidazole

    International Nuclear Information System (INIS)

    Ghosh, S.P.; Prasad, K.M.

    1979-01-01

    Molybdenum(III) forms with 2-(2'-pyridyl) benzimidazole(LH) the trischelated complexes, [Mo(LH) 3 ]X 3 as well as the cationic-anionic complexes, [Mo(LH) 3 X 2 ] + [Mo(LH)X 4 ] - (X=Cl - ,Br - or NCS - ), depending on pH. These complexes have been synthesised and characterised from elemental analyses, i.r. and electronic spectra, magnetic moments and molar conductance. (auth.)

  12. Multifunctional material based on ionic transition metal complexes and gold-silica nanoparticles: synthesis and photophysical characterization for application in imaging and therapy.

    Science.gov (United States)

    Ricciardi, Loredana; Martini, Matteo; Tillement, Olivier; Sancey, Lucie; Perriat, Pascal; Ghedini, Mauro; Szerb, Elisabeta I; Yadav, Yogesh J; La Deda, Massimo

    2014-11-01

    A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.

  13. New type of colour reactions of o,o'-dihydroxyazo compounds

    International Nuclear Information System (INIS)

    Dedkov, Yu.M.; Podvigina, T.I.

    1977-01-01

    It is shown that in the system: zirconium (hafnium)-picramine-epsilon (PE)-ethylrhodamine S (ERS), a heteroligand complex is formed, with an excess of the organic reagents, having the following ratio of components: Zr(Hf):PE:ERS=1:2:5. The molecules of ERS substitute the protons of free OH groups in binary complexes of zirconium (hafnium) with PE, while the excess molecules of ERS are added associatively. The resulting complex is floated off, the flotation product is dissolved in acetone, and its optical density is measured. The true molar extinction coefficient of the complex is equal to 6x10 5 , while the apparent one equals 3.2x10 5 . It is possible to determine submicroamounts of zirconium (hafnium) with preminary Ti and Nb masking

  14. Ruthenium sulfoxides structure and reactivity with nitrogen heterocyclic bases

    International Nuclear Information System (INIS)

    Oliveira, Denise de.

    1990-01-01

    Ruthenium (II) sulfoxides are compounds of great interest in oxidative catalysis and in chemotherapy. In order to contribute for the understanding of the chemistry and electronic structure of this class of compounds, it has been studied a series of [Ru Cl 2 (S-DMSO) 2 L x ] complexes, where x = 1 (polymeric compounds) or 2 (monomers) and L N-heterocyclic ligands (pyridine, pyrazine and imidazole derivatives). The nature of N-heterocyclic ligand and their coordination are of great relevance to the stability, spectroscopic and electrochemical characteristics of the complexes. The trans-interactions are extremely important in this series, influencing the strength of the Ru(II)-> S-DMSO and Ru(II)-> L π-back donation. The DMSO and L ligands are π-acceptors. The metal-> ligand π-back donation is strengthened when the ligand is trans to chloride, which is π-donor, due to trans-cooperative interactions of the type: π-donor -> Ru(II) π-acceptor. Another interesting aspect in the series of [Ru Cl 2 (S-DMSO) 2 L 2 ] complexes is the occurrence of dissociative equilibria in the solution, due to the existence of three types of ligands. It was observed that the trans-N isomer of 2,6-dimethyl pyrazine derivative undergoes thermal substitution, with preferential liabilization of the N-heterocyclic ligand. Chloride ion is the most inert ligand in this complex. (author). 145 refs., 76 figs., 21 tabs

  15. 1.3.3. Synthesis, characterization and crystal structure of a new ruthenium polypyridyl complex [Ru(phen2(4,4'-dicarboxy-2,2'- bipyridine]PF6

    Directory of Open Access Journals (Sweden)

    Jiaxi Chen, Jing Sun*, Jufang Kong, Wenxiu Chen and Hongqing Hao*

    2015-03-01

    Full Text Available Abstract: A new Ru(II polypyridyl complex, [Ru(phen2(4,4'-dicarboxy-2,2'-bipyridine]PF6·1.5H2O, was synthesized andcharacterized by single crystal X-ray diffraction, elementalanalyses, electrospray ionization mass spectrometry, infraredspectra, ultraviolet (UV spectra, and emission spectra. Thestructure of the cation [Ru(phen2(4,4'-(COO-,(COOH-2,2'-bpy]+ consists of a six-coordinated ruthenium atom chelated bytwo phen ligands and one 4,4'-dicarboxy-2,2'-bipyridine ligand.The absorption spectrum of the Ru(II complex is characterizedby two intense ligand-centered transitions in the UV region andone metal to ligand charge transfer in the visible region. Moreover,the complex can display luminescence in water at roomtemperature, with maximum emission at 623 nm.Supporting information: Cif file

  16. supp24.doc

    Indian Academy of Sciences (India)

    bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity. PERUMAL GURUMOORTHYa, JAYARAM RAVICHANDRANa,b and. AZIZ KALILUR RAHIMANa,*. aPost-Graduate and Research Department of Chemistry, The New ...

  17. Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes.

    Science.gov (United States)

    Zedler, Linda; Guthmuller, Julien; Rabelo de Moraes, Inês; Kupfer, Stephan; Krieck, Sven; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin

    2014-05-25

    The sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(ii) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.

  18. Cobalt(III), nickel(II) and ruthenium(II) complexes of 1,10 ...

    Indian Academy of Sciences (India)

    Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled ... DNA is related to their utility in the design and development of synthetic restriction ..... ∗Quasi-reversible/irreversible (electrochemical behaviour of ...

  19. synthesis, characterization an complexes with schiff base co

    African Journals Online (AJOL)

    userpc

    active Ru(II) complexes with coordinating Schiff base were synthesiz lemental ... synthesis and stability of Schiff bases wh ... chelates with anticancer activity have also ..... iron.Inorg. Chem,23(1), 3-10. Kostova, I.; Sasa, L.(2013). Advances in.

  20. cis,cis,cis-(Acetato-κ2O,O′bis[1,2-bis(diphenylphosphanylethane-κ2P,P′]ruthenium(II 0.75-trifluoromethanesulfonate 0.25-chloride

    Directory of Open Access Journals (Sweden)

    João Figueira

    2013-04-01

    Full Text Available In the title RuII carboxylate compound, [Ru(C2H3O2(C26H24P22](CF3O3S0.75Cl0.25, the distorted tris-bidentate octahedral stereochemistry about the RuII atom in the complex cation comprises four P-atom donors from two 1,2-bis(diphenylphosphanylethane ligands [Ru—P = 2.2881 (13–2.3791 (13 Å] and two O-atom donors from the acetate ligand [Ru—O = 2.191 (3 and 2.202 (3 Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoromethanesulfonate anions and one chloride anion, with two such formula units in the unit cell.

  1. Do nonbonded H--H interactions in phenanthrene stabilize it relative to anthracene? A possible resolution to this question and its implications for ligands such as 2,2'-bipyridyl.

    Science.gov (United States)

    Hancock, Robert D; Nikolayenko, Igor V

    2012-08-23

    The problem of whether interactions between the hydrogen atoms at the 1,10-positions in the "cleft" of the "bent" phenanthrene stabilize the latter molecule thermodynamically relative to "linear" anthracene, or whether the higher stability of phenanthrene is due to a more energetically favorable π-system, is considered. DFT calculations at the X3LYP/cc-pVTZ(-f)++ level of the ground state energies (E) of anthracene, phenanthrene, and the set of five benzoquinolines are reported. In the gas phase, "bent" phenanthrene was computed to be thermodynamically more stable than "linear" anthracene by -28.5 kJ mol(-1). This fact was attributed predominantly to the phenomenon of higher aromatic stabilization of the π-system of phenanthrene relative to anthracene, and not to the stabilizing influence of the nonbonding H--H interactions in its cleft. In fact, these interactions in phenanthrene were shown to be destabilizing. Similar calculations for five benzoquinolines (bzq) indicate that ΔE values vary as: 6,7-bzq (linear) ≤ 2,3-bzq (linear) < 5,6-bzq (bent) ≤ 3,4-bzq (bent) < 7,8-bzq (bent, no H--H nonbonding interactions in cleft), supporting the idea that it is a more stable π-system that favors 7,8-bzq over 2,3-bzq and 6,7-bzq, and that the H--H interactions in the clefts of 3,4-bzq and 5,6-bzq are destabilizing. Intramolecular hydrogen bonding in the cleft of 7,8-bzq plays a secondary role in its stabilization relative 6,7-bzq. The question of whether H--H nonbonded interactions between H atoms at the 3 and 3' positions of 2,2'-bipyridyl (bpy) coordinated to metal ions are stabilizing or destabilizing is then considered. The energy of bpy is scanned as a function of N-C-C-N torsion angle (χ) in the gas-phase, and it is found that the trans form is 32.8 kJ mol(-1) more stable than the cis conformer. A relaxed coordinate scan of energy of bpy in aqueous solution as a function of χ is modeled using the PBF approach, and it is found that the trans conformer is

  2. Use of heteroligand complexes in analytical chemistry of niobium and tantalum

    International Nuclear Information System (INIS)

    Elinson, S.V.

    1975-01-01

    A review of modern precise spectrophotometric and extraction-spectrophotometric methods for analyzing Nb and Ta is presented. These methods are based on the use of multi-ligand (trinary, quaternary, mixed) complexes of these elements with organic reagents. To develop extraction-photometric methods for quantitative analysis of Ta in the presence of Nb use is made of complexes which these elements form with polyphenols, azo compounds, metallochromic indicators and heteropolyacids. The extraction-photometric methods are based on the use of multi-ligand complexes of the ionic association type. Owing to this the volumetric and gravimetric methods can be used here. The research on multi-ligand complexes of Nb and Ta with a number of reagents provides a basis for developing precise analytical methods for determining Nb and Ta in different materials and in the presence of many other elements without their separation

  3. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    Science.gov (United States)

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... that is responsible for metal-promoted reactivities. Electrochemical properties of all of these complexes have been investigated, Rh(III) complexes are excellent catalysts for electrocatalytic reduction of CO2, and dinuclear Ru(II) and Os(II) complexes exhibit strong electronic communication between the metal centres.

  5. Influence of phase boundaries on photo-induced electron transfer reactions. Final report, July 1, 1977-August 31, 1979

    International Nuclear Information System (INIS)

    1979-08-01

    A summary is presented of results of research which was conducted on bipyridyl complexes of ruthenium, with the objective of storing visible light energy. The research covered analytical techniques, synthesis, properties of Ru complexes in monolayers and micelles, and luminescence quenching. 23 references

  6. Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD+

    NARCIS (Netherlands)

    Soldevila-Barreda, J.J.; Bruijnincx, P.C.A.; Habtemariam, A.; Clarkson, G.J.; Deeth, R.J.; Sadler, Peter J.

    2012-01-01

    A series of neutral RuII half-sandwich complexes of the type [(η6-arene)Ru(N,N′)Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N′ is N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide

  7. Novel cleavage and oligomerization reactions of nickel (o) complexes. Application to homogeneous deoxygenation and desulfurization

    International Nuclear Information System (INIS)

    Eisch, J.J.; Im, K.R.

    1979-01-01

    The ease of interaction of Ni(0) complexes with organic substrates has been shown to depend upon both the ligands on nickel and the solvent. The presence of α,α'-bipyridyl with the Ni(0) complex and the alkyne led to the isolation of a nickelacyclopropene, an observation in accord with the recently proposed metallocyclic pathway for the Ni(0)-catalyzed trimerization of alkynes. Allylic and benzylic ethers and epoxides have been observed to undergo oxidative insertion of Ni(0) into their C-O bonds with solvent (TMEDA > THF (tetrahydrofuran) > Et 2 O > C 6 H 6 ) and ligand (Et 3 P (tripthyl phosphine) > Ph 3 P (triphenyl phosphine); α,α'-bipy > COD) effects consistent with an electron-transfer attack by Ni(0). With such sulfur heterocycles as dibenzothiophene, phenoxathiin, phenothiazine, and thianthrene, a 1:1 admixture of (COD) 2 Ni with α,α'-bipyridyl gave as the principal product the desulfurized, ring-contracted cyclic product

  8. Enantioselective light switch effect of Δ- and Λ-[Ru(phenanthroline)2 dipyrido[3,2-a:2', 3'-c]phenazine]2+ bound to G-quadruplex DNA.

    Science.gov (United States)

    Park, Jin Ha; Lee, Hyun Suk; Jang, Myung Duk; Han, Sung Wook; Kim, Seog K; Lee, Young-Ae

    2018-06-01

    The interaction of Δ- and Λ-[Ru(phen) 2 DPPZ] 2+ (DPPZ = dipyrido[3,2-a:2', 3'-c]phenazine, phen = phenanthroline) with a G-quadruplex formed from 5'-G 2 T 2 G 2 TGTG 2 T 2 G 2-3 '(15-mer) was investigated. The well-known enhancement of luminescence intensity (the 'light-switch' effect) was observed for the [Ru(phen) 2 DPPZ] 2+ complexes upon formation of an adduct with the G-quadruplex. The emission intensity of the G-quadruplex-bound Λ-isomer was 3-fold larger than that of the Δ-isomer when bound to the G-quadruplex, which is opposite of the result observed in the case of double stranded DNA (dsDNA); the light switch effect is larger for the dsDNA-bound Δ-isomer. In the job plot of the G-quadruplex with Δ- and Λ-[Ru(phen) 2 DPPZ] 2+ , a major inflection point for the two isomers was observed at x ≈ .65, which suggests a binding stoichiometry of 2:1 for both enantiomers. When the G base at the 8th position was replaced with 6-methyl isoxanthopterin (6MI), a fluorescent guanine analog, the excited energy of 6-MI transferred to bound Δ- or Λ-[Ru(phen) 2 DPPZ] 2+ , which suggests that at least a part of both Ru(II) enantiomers is close to or in contact with the diagonal loop of the G-quadruplex. A luminescence quenching experiment using [Fe(CN) 6 ] 4- for the G-quadruplex-bound Ru(II) complex revealed downward bending curves for both enantiomers in the Stern-Volmer plot, which suggests the presence of Ru(II) complexes that are both accessible and inaccessible to the quencher and may be related to the 2:1 binding stoichiometry.

  9. Photoreactions of ruthenium(II) and osmium(II) complexes with deoxyribonucleic acid (DNA).

    Science.gov (United States)

    Moucheron, C; Kirsch-De Mesmaeker, A; Kelly, J M

    1997-09-01

    The design of Ru(II) and Os(II) complexes which are photoreactive with deoxyribonucleic acid (DNA) represents one of the main targets for the development of novel molecular tools for the study of DNA and, in the future, for the production of new, metal-based, anti-tumor drugs. In this review, we explain how it is possible to make a complex photoreactive with nucleobases and nucleic acids. According to the photophysical behaviour of the Ru(II) compounds, two types of photochemistry are expected: (1) photosubstitution of a ligand by a nucleobase and another monodentate ligand, which takes place from the triplet, metal-centred (3MC) state; this state is populated thermally from the lowest lying triplet metal to ligand charge transfer (3MLCT) state; (2) photoreaction from the 3MLCT state, corresponding to photoredox processes with DNA bases. The two photoreactivities are in competition. By modulating appropriately the redox properties of the 3MLCT state, an electron transfer process from the base to the excited complex takes place, and is directly correlated with DNA cleavage or the formation of an adduct of the complex to DNA. In this adduct, guanine is linked by N2 to the alpha-position of a non-chelating nitrogen of the polyazaaromatic ligand without destruction of the complex. Different strategies are explained which increase the affinity of the complexes for DNA and direct the complex photoreactivity to sites of special DNA topology or targeted sequences of bases. Moreover, the replacement of the Ru(II) ion by the Os(II) ion in the photoreactive complexes leads to an increased specificity of photoreaction. Indeed, only one type of photoreactivity (from the 3MLCT state) is present for the Os(II) complexes because the 3MC state is too high in energy to be populated at room temperature.

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. L Giribabu. Articles written in Journal of Chemical Sciences. Volume 112 Issue 3 June 2000 pp 357-357. Synthesis and DNA-interactions of new Co(III), Fe(II), Ni(II), Ru(II) and Os(II) complexes of modified phenanthroline ligands · C V Sastria D Easwaramoorthy Athilakshmi L ...

  11. Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with RuII(bpy)2

    Science.gov (United States)

    Respondek, Tomasz; Garner, Robert N.; Herroon, Mackenzie K.; Podgorski, Izabela; Turro, Claudia; Kodanko, Jeremy J.

    2013-01-01

    A novel method for caging protease inhibitors is described. The complex [RuII(bpy)2(1)2](PF6)2 (2) was prepared from the nitrile-based peptidomimetic inhibitor Ac-Phe-NHCH2CN (1). 1H NMR, UV-vis and IR spectroscopic and mass spectrometric data confirm that two equiv of inhibitor 1 bind to RuII through the nitrile functional group. Complex 2 shows excellent stability in aqueous solution in the dark and fast release of 1 upon irradiation with visible light. Due to binding to the RuII center, the nitriles of complex 2 are caged, and 2 does not act as a potent enzyme inhibitor. However, when 2 is irradiated, it releases 1 that inhibits the cysteine proteases papain and cathepsins B, K and L, up to two times more potently than 1 alone. Ratios for IC50 values for 2 range from 6:1 to 33:1 under dark vs. light conditions, against isolated enzymes and in human cell lysates, confirming a high level of photoinduced enzyme inhibition is obtained with this method. PMID:21973207

  12. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    Science.gov (United States)

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.

  13. Electrochemical determination of hydrogen peroxide using Rhodobacter capsulatus cytochrome c peroxidase at a gold electrode

    NARCIS (Netherlands)

    De Wael, K.; Buschop, H.; Heering, H.A.; De Smet, L.; Van Beeumen, J.; Devreese, B.; Adriaens, A.

    2007-01-01

    We describe the redox behaviour of horse heart cytochrome c (HHC) and Rhodobacter capsulatus cytochrome c peroxidase (RcCCP) at a gold electrode modified with 4,4?-bipyridyl. RcCCP shows no additional oxidation or reduction peaks compared to the electrochemistry of only HHC, which indicates that it

  14. Bulletin of the Chemical Society of Ethiopia - Vol 11, No 2 (1997)

    African Journals Online (AJOL)

    Intramolecular hydophobic and stacking interactions in mixed ligand complexes formed by copper (II), 2,2'-bipyridyl or 1,10-phenanthroline, and n-butyl diphosphate (BuDP3-) or phenyl diphosphate (PhDP3-), EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells · M Chandrasekharam Ch Srinivasarao T Suresh M Anil Reddy M Raghavender G Rajkumar M Srinivasu P Yella Reddy · More Details Abstract Fulltext PDF. Heteroleptic ruthenium(II) bipyridyl complex, cis-Ru(II)(4 ...

  16. Modulation of the endogenous production of protoporphyrin IX in a yeast-based model organism

    Science.gov (United States)

    Joniová, Jaroslava; Gerelli, Emmanuel; Wagnières, Georges

    2017-02-01

    The main aim of this study was to assess conditions at which simple yeast-based model organism produces maximal levels of protoporphyrin IX (PpIX) after an exogenous administration of its precursor, 5-aminolevulinic acid (ALA), and the ferrous-ion chelator 2,2'-bipyridyl. We observed that the fluorescing porphyrin, produced after these administrations, was likely to be PpIX since fluorescence spectroscopy of the porphyrins produced endogenously in yeast cells resembles that of PpIX in DMSO and in vivo in the chick's chorioallantoic membrane model. Also, fluorescence lifetimes of these porphyrins are very similar to that of PpIX in vitro and in vivo. This suggests that PpIX is the main fluorescent compound produced by yeast in our conditions. We found that the conditions at which yeast produces the maximal PpIX were a synchronous administration of 5 μM ALA and 1 mM 2,2'-bipyridyl for yeast incubated in aqueous glucose and 1 mM 2,2'-bipyridyl in the presence of YPD medium. Such a simple model is of high interest to study basic mechanisms involved in the mitochondrial respiration since PpIX, which is produced in this organelle, can be used as an oxygen sensor, or to perform photodynamic therapy and photodiagnosis. Since the absorption and scattering coefficients of this model are much smaller than those of soft tissues over the visible part of the spectrum, a version of this model loaded with appropriated amounts of light absorbing and scattering particles could be designed as a phantom to mimic tumors containing PpIX, a useful tool to optimize certain cancer photodetection set-ups.

  17. Artificial Metalloproteins for Binding and Stabilization of a Semiquinone Radical

    NARCIS (Netherlands)

    Segaud, Nathalie; Drienovska, Ivana; Chen, Juan; Browne, Wesley R.; Roelfes, Gerard

    2017-01-01

    The interaction of a number of first-row transition-metal ions with a 2,2'-bipyridyl alanine (bpyA) unit incorporated into the lactococcal multidrug resistance regulator (LmrR) scaffold is reported. The composition of the active site is shown to influence binding affinities. In the case of Fe(II),

  18. Synthesis, spectroscopic, electrochemical and luminescence studies ...

    Indian Academy of Sciences (India)

    Unknown

    Ruthenium (II) 2,2′-bipyridyl and 1,10-phenanthroline complexes with 4- ... with hydrazine to form its N2 complex which is of great interest in the chemistry of N2 ... part of this ligand could be converted into N2 also enthused us to take up the ...

  19. Toxicity of copper chelates of azomethines and amino acids for Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, G.K.; Rukhadze, E.G.; Talyzenkova, G.P.

    1979-01-01

    The authors have attempted to assess the toxicity of copper-containing compounds from the point of view of their interrelationship with the structural characteristics of the chelate compound and the structure of the ligand. The copper chelates of the azomethines tested may be provisionally divided into three types: A - complexes with N-alkly-azomethines; B - complexes with N-aryl-azomethines; C - binuclear complexes. Consideration was also given to chelates with aromatic and heterocyclic amino acids and to heteroligand chelates in which the copper atom coordinates azomethine and an amino acid simultaneously. Toxicity was determined by the method previously described and expressed as a critical concentration (C/sub cr/, mg Cu/liter) and in relative toxicity units (T/sub c/). The compounds investigated were obtained from the interaction between a bidentant ligand of an azomethine or anamino acid and copper acetate in a water-alcohol medium at pH 6-8. Since they are not very soluble in water, true solutions were obtained by using dimethyl sulfoxide.

  20. Supramolecular architectures constructed using angular bipyridyl ligands

    International Nuclear Information System (INIS)

    Barnett, Sarah Ann

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO 3 ) 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO 3 ) 2 and Zn(NO 3 ) 2 . Whereas Zn(NO 3 ) 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO 3 ) 2 , including the first example of a doubly parallel interpenetrated 4.8 2 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  1. Metalloradical Reactivity of RuI and Ru0 Stabilized by an Indole-Based Tripodal Tetraphosphine Ligand

    NARCIS (Netherlands)

    van de Watering, F.F.; van der Vlugt, J.I.; Dzik, W.I.; de Bruin, B.; Reek, J.N.H.

    2017-01-01

    The tripodal, tetradentate tris(1-(diphenylphosphanyl)-3-methyl-1H-indol-2-yl)phosphane PP3-ligand 1 stabilizes Ru in the RuII, RuI, and Ru0 oxidation states. The octahedral [(PP3)RuII(Cl)2] ( 2 ), distorted trigonal bipyramidal [(PP3)RuI(Cl)] ( 3 ), and trigonal bipyramidal [(PP3)Ru0(N2)] ( 4 )

  2. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Univ. of Chicago, Chicago, IL (United States); Zhang, Teng [Univ. of Chicago, Chicago, IL (United States); Greene, Francis X. [Univ. of Chicago, Chicago, IL (United States); Lin, Wenbin [Univ. of Chicago, Chicago, IL (United States)

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  3. Substituted 2,2'-bipyridines by nickel-catalysis: 4,4'-di-tert-butyl-2,2'-bipyridine.

    Science.gov (United States)

    Buonomo, Joseph A; Everson, Daniel A; Weix, Daniel J

    2013-11-01

    A simple, ligand-free synthesis of the important bipyridyl ligand 4,4'-di- tert -butyl-2,2'-bipyridine is presented. 5,5'-bis(trifluoromethyl)-2,2'-bipyridine is also synthesized by the same protocol. The syntheses efficiently couple the parent 2-chlorpyridies by a nickel-catalyzed dimerization with manganese powder as the terminal reductant.

  4. Photo-degradation of CT-DNA with a series of carbothioamide ruthenium (II) complexes - Synthesis and structural analysis

    Science.gov (United States)

    Muthuraj, V.; Umadevi, M.

    2018-04-01

    The present research article is related with the method of preparation, structure and spectroscopic properties of a series of carbothioamide ruthenium (II) complexes with N and S donor ligands namely, 2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene) hydrazine carbothioamide (ClChrTs)/2-((6-methoxy-4-oxo-4H-chromen-3-yl)methylene)hydrazine carbothioamide (MeOChrTS). The synthesized complexes were characterized by several techniques using analytical methods as well as by spectral techniques such as FT-IR, 1HNMR, 13CNMR, ESI mass and thermogravimetry/differential thermal analysis (TG-DTA). The IR spectra shows that the ligand acts as a neutral bidentate with N and S donor atoms. The biological activity of the prepared compounds and metal complexes were tested against cell line of calf-thymus DNA via an intercalation mechanism (MCF-7). In addition, the interaction of Ru(II) complexes and its free ligands with CT-DNA were also investigated by titration with UV-Vis spectra, fluorescence spectra, and Circular dichroism studies. Results suggest that both of the two Ru(II) complexes can bind with calf-thymus DNA via an intercalation mechanism.

  5. Photovoltaic Performance and Characteristics of Dye-Sensitized Solar Cells Prepared with the N719 Thermal Degradation Products Ru(LH)(2)(NCS)(4-tert-butylpyridine) N(Bu)(4) and Ru(LH)(2)(NCS)(1-methylbenzimidazole) N(Bu)(4)

    DEFF Research Database (Denmark)

    Nguyen, P. T.; Binh, X. T. L.; Andersen, A. R.

    2011-01-01

    The dye-sensitized solar cell N719 thermal degradation products [Ru(LH)(2)(NCS)(4-tert-butylpyridine)][N(Bu)(4)] (1) and [Ru(LH)(2)(NCS)(1-methylbenzimidazole)][N(Bu)(4)] (2) were synthesized from [Ru(LH)(2)(NCS)(2)][N(Bu)(4)](2) (N719), (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid) and characterized...

  6. Substituted 2,2′-bipyridines by nickel-catalysis: 4,4′-di-tert-butyl-2,2′-bipyridine

    OpenAIRE

    Buonomo, Joseph A.; Everson, Daniel A.; Weix, Daniel J.

    2013-01-01

    A simple, ligand-free synthesis of the important bipyridyl ligand 4,4′-di-tert-butyl-2,2′-bipyridine is presented. 5,5′-bis(trifluoromethyl)-2,2′-bipyridine is also synthesized by the same protocol. The syntheses efficiently couple the parent 2-chlorpyridies by a nickel-catalyzed dimerization with manganese powder as the terminal reductant.

  7. THE SYNTHESIS AND THE REACTIVITY OF ARENE RUTHENIUM ...

    African Journals Online (AJOL)

    a

    [RuCl(η6-p-cymene)(η2-dppm)][PF6] ruthenium complexes with C2O4(Me4N)2 in the ... the Service de Microanalyse du CNRS (Vernaison/France). .... Once bonded to the Ru(II), the characterization of the oxalato ligand by infrared .... The 1H NMR spectrum shows signals of the aromatic proton resonances at 5.45 and 5.15,.

  8. Photoinduced electron transfer from organic semiconductors onto redox mediators for CO2

    International Nuclear Information System (INIS)

    Portenkirchner, E.

    2014-01-01

    In this work the photoinduced electron transfer from organic semiconductors onto redox mediator catalysts for CO 2 reduction has been investigated. In the beginning, the work focuses on the identication, characterization and test of suitable catalyst materials. For this purpose, rhenium compounds with 2,2'-bipyridine bis(arylimino) acenaphthene ligands and pyridinium were tested for molecular homogenous catalysis. Infrared, ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy were used for initial characterization of the catalyst substances. Since the interpretation of infrared spectra was difficult for large molecules based on measured data only, additionally infrared absorption spectra obtained by quantum mechanical density functional theory(DFT) calculations were successfully used to correlate characteristic features in the measured spectra to their molecular origin. It was found that experimentally observed data and quantum chemical predictions for the infrared spectra of the novel compounds are in good agreement. Additionally, quantum mechanical calculations were carried out for the determination of molecular orbital frontier energy levels and correlated to UV-Vis absorption and cyclic voltammetry measurements. Extensive cyclic voltammetry measurements and bulk controlled-potential electrolysis experiments were performed using a N 2 - and CO 2 -saturated electrolyte solution. Together with a detailed product analysis via infrared spectroscopy, gas and ion chromatography the results allowed electrochemical characterizations of the novel catalysts regarding their suitability for electrochemical CO 2 reduction. Once suitable catalysts were identied, the materials were immobilized on the electrode surface by electro-polymerization of the catalyst (5,5'bisphenylethynyl-2,2'-bipyridyl)Re(CO) 3 Cl itself or by incorporation of (2,2'-bipyridyl)Re(CO) 3 Cl into a polypyrrole matrix, thereby changing from homogeneous to

  9. Quenching of excited uranyl ion during its photochemical reduction with triphenyl-phosphine : Part IV - effect of heterocyclic molecules

    International Nuclear Information System (INIS)

    Sidhu, M.S.; Bhatia, P.V.K.

    1994-01-01

    The presence of heterocyclic compounds triggers off a competition between photophysical and photochemical annihilation of excited uranyl ion during its photochemical reduction with triphenylphosphine. This competition is used to measure Stern-Volmer constant using UV visible spectrophotometer for quenching the uranyl ion luminescence with a number of heterocyclic molecules viz., pyridine, thiophene bipyridyl, tetrahydrofuran and piperidine. (author). 7 refs., 2 figs., 1 tab

  10. Substituted 2,2′-bipyridines by nickel-catalysis: 4,4′-di-tert-butyl-2,2′-bipyridine

    Science.gov (United States)

    Buonomo, Joseph A.; Everson, Daniel A.; Weix, Daniel J.

    2014-01-01

    A simple, ligand-free synthesis of the important bipyridyl ligand 4,4′-di-tert-butyl-2,2′-bipyridine is presented. 5,5′-bis(trifluoromethyl)-2,2′-bipyridine is also synthesized by the same protocol. The syntheses efficiently couple the parent 2-chlorpyridies by a nickel-catalyzed dimerization with manganese powder as the terminal reductant. PMID:25221358

  11. Synthesis and Isotope Effects on the Excited State Properties of NN Bound Complexes

    NARCIS (Netherlands)

    Soman, Suraj; Younis, Hamid M.; Browne, Wesley R.; Vos, Johannes G.; Pryce, Mary T.

    2017-01-01

    A versatile approach to the preparation of [Ir(LL)(2)Cl-2](PF6) type complexes is reported, in which LL is an (NN)-N- bound polypyridyl ligand [X(2)bpy, X(2)phen, where X = H-, CH3-, (CH3)(3)C-, or phenyl-, and bpy = 2,2-bipyridyl, phen = 1,10-phenanthroline] as well as their deuterated analogues.

  12. Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for Hydrogen Production. Final Report of Progress August 2017

    Energy Technology Data Exchange (ETDEWEB)

    Tanko, James M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry

    2017-08-01

    Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H2 fuel from H2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.

  13. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  14. Synthesis and characterization of 6,6'-bis(2-hydroxyphenyl)-2,2'-bipyridine ligand and its interaction with ct-DNA

    Science.gov (United States)

    Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty; Karim, Nurul Huda Abd

    2015-09-01

    The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6'-dibromo-2,2'-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6'-bis(2-methoxyphenyl)-2,2'-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by 1H, 2D cosy and 13C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant Kb = 1.19 × 103 ± 0.08 M-1.

  15. Synthesis and characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridine ligand and its interaction with ct-DNA

    International Nuclear Information System (INIS)

    Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty; Karim, Nurul Huda Abd

    2015-01-01

    The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by 1 H, 2D cosy and 13 C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K b = 1.19 × 10 3 ± 0.08 M −1

  16. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: Structure diversity and properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Jing [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Li, Jin; Ma, Lu-Fang [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia); Qin, Guo-Zhan [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China)

    2015-10-15

    Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities in solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.

  17. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  18. A sulfhydryl-reactive ruthenium (II complex and its conjugation to protein G as a universal reagent for fluorescent immunoassays.

    Directory of Open Access Journals (Sweden)

    Jing-Tang Lin

    Full Text Available To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2'-dipyridine Ruthenium bis (hexafluorophosphate. The synthesized Ru(II complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The emission peak wavelength of the Ru(II-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II complex, indicating that Ru(II-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG binding assay was conducted. The result showed that Ru(II-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays.

  19. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, M P; Singh, V K

    1982-05-01

    The nitrato-complexes, (Y(PyBzH)/sub 2/(NO/sub 3/)/sub 2/)NO/sub 3/.H/sub 2/O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole) are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm/sup -1/cm/sup 2/mol/sup -1/) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the positive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C/sub 2/v) and uncoordinated (D/sub 3/h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms.

  20. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    International Nuclear Information System (INIS)

    Mishra, A.; Singh, M.P.; Singh, V.K.

    1982-01-01

    The nitrato-complexes, [Y(PyBzH) 2 (NO 3 ) 2 ]NO 3 .H 2 O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole] are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm -1 cm 2 mol -1 ) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the terpositive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C 2 v) and uncoordinated (D 3 h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms. (author)

  1. Synthesis and structure of bivalent ytterbocenes and their coordination chemistry with pi-acceptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Madeleine [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    structure consistent with the presence of bipyridyl radical anion. However, the shape of the magnetic susceptibility curve is unusual. 2,2’-Bipyridyl and 1,10- phenanthroline complexes of several ytterbocenes have been prepared for comparison with this molecule, The phenanthroline complexes display coupling, with the degree of coupling dependent on cyclopentadienide rings. The magnetism of the bipyridyl strong electron exchange the substituents complexes may on the also be ascribed to electron exchange coupling, or to an equilibrium between a diamagnetic bivalent ytterbium complex and a trivalent complex resulting from the transfer of one electron from the metal to the bipyridyl Iigand.

  2. Synthesis and characterisation of some lanthanon-tris (chlorosulphate) complexes with nitrogen and oxygen donors

    International Nuclear Information System (INIS)

    Zaidi, S.A.A.; Zaidi, S.R.A.; Zahoor, M.A.; Khan, T.A.

    1992-01-01

    Some eight-coordinated complexes of Eu II , Tm II and Yb II chlorosulphates with pyridine, pyridine-N-oxide, acridine and bipyridine have been prepared and characterised by elemental analyses, conductance magnetic and infrared spectral data. Spectroscopic investigation has shown that SO 3 Cl - groups and bipyridyl ligand are all coordinated to the metal ions in a bidentate manner whereas the other ligand groups are coordinated monodentately. (author). 5 refs., 1 tab

  3. Modeling of Platinum-Aryl Interaction with Amyloid-β Peptide.

    Science.gov (United States)

    Turner, Matthew; Platts, James A; Deeth, Robert J

    2016-03-08

    Ligand field molecular mechanics (LFMM), density functional theory (DFT), and semiempirical PM7 methods are used to study the binding of two Pt(II)-L systems to an N-terminal fragment of the amyloid-β peptide, where L = 2,2-bipyridyl or 1,10-phenanthroline. Molecular dynamics simulations are used to explore the conformational freedom of the peptide using LFMM combined with AMBER molecular mechanics parameters. We establish a modeling protocol, allowing for identification and analysis of favorable platinum-binding modes and peptide conformations. Preferred binding modes are identified for each ligand investigated; metal coordination occurs via Nε in His residues for both ligands--His6ε-His13ε and His6ε-His14ε for the bipyridyl and phenanthroline ligands, respectively. The observed change in binding mode for the different ligands suggests that the binding mode of these platinum-based structures can be controlled by the choice of ligand. In the bipy systems, Boltzmann population at 310 K is dominated by a single conformer, while in the phenanthroline case, three conformations make significant contributions to the ensemble. The relative stability of these conformations is due to the inherent stability of binding platinum via Nε in addition to subtle H-bonding effects.

  4. Synthesis and characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridine ligand and its interaction with ct-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor (Malaysia)

    2015-09-25

    The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by {sup 1}H, 2D cosy and {sup 13}C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for the application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K{sub b} = 1.19 × 10{sup 3} ± 0.08 M{sup −1}.

  5. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    Science.gov (United States)

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ruthenium(II carbonyl compounds with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand

    Directory of Open Access Journals (Sweden)

    Rajendhraprasad Tatikonda

    2017-04-01

    Full Text Available Two ruthenium carbonyl complexes with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand (tpy-Cl, C15H10ClN3, i.e. [RuCl(tpy-Cl(CO2][RuCl3(CO3] (I [systematic name: cis-dicarbonylchlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ3Nruthenium(II fac-tricarbonyltrichloridoruthenate(II], and [RuCl2(tpy-Cl(CO2] (II [cis-dicarbonyl-trans-dichlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ2N1,N1′ruthenium(II], were synthesized and characterized by single-crystal X-ray diffraction. The RuII atoms in both centrosymmetric structures (I and (II display similar, slightly distorted octahedral coordination spheres. The coordination sphere in the complex cation in compound (I is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octahedral [Ru(CO3Cl3]− counter-anion. In the neutral compound (II, the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the RuII atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I and (II, weak C—H...Cl interactions are observed.

  7. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    OpenAIRE

    Wu, Hong; Huo, Qisheng; Varnum, Susan; Wang, Jun; Liu, Guodong; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-01-01

    We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, Interleukin-6 (IL-6), on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as ...

  8. Synthesis, DNA-binding and photocleavage studies of Ru(II ...

    Indian Academy of Sciences (India)

    Administrator

    (Finngan MAT, USA) using CH3CN as the mobile phase. ..... cence can be quenched, at least partially, by the ad- dition of a ... in good agreement with the linear Stern–Volmer ... helix, resulting in the decrease of its effective length and its ...

  9. Foreign Military Sales between Thailand and U.S.

    Science.gov (United States)

    1982-06-01

    appointed by the President with the advice and consent of Senate for a term of 15 years. The audit authority of the GAO extends to all departments and...i»i<Mariu rui*i cutiv Cl»l» Prior To OaUwrf QB|Min<l«ala tn^rCAiiing X2X,XXX CU.UX TX-4 A# N/A M/A 2 ACcA i2M AMOVUvr 0« "Mfiav 9«𔃺«4r t XAX.ZXX

  10. Electronic properties of Fe charge transfer complexes – A combined experimental and theoretical approach

    International Nuclear Information System (INIS)

    Ferreira, Hendrik; Eschwege, Karel G. von; Conradie, Jeanet

    2016-01-01

    Highlights: • Experimental and computational study of Fe II -phen, -bpy & -tpy compleesx. • Close correlations between experimental redox and spectral, and computational data. • Computational methods fast-track DSSC research. - Abstract: Dye-sensitized solar cell technology holds huge potential in renewable electricity generation of the future. Due to demand urgency, ways need to be explored to reduce research time and cost. Against this background, quantum computational chemistry is illustrated to be a reliable tool at the onset of studies in this field, simulating charge transfer, spectral (solar energy absorbed) and electrochemical (ease by which electrons may be liberated) tuning of related photo-responsive dyes. Comparative experimental and theoretical DFT studies were done under similar conditions, involving an extended series of electrochemically altered phenanthrolines, bipyridyl and terpyridyl complexes of Fe II . Fe II/III oxidation waves vary from 0.363 V for tris(3,6-dimethoxybipyridyl)Fe II to 0.894 V (versus Fc/Fc + ) for the 5-nitrophenanthroline complex. Theoretical DFT computed ionization potentials in the bipyridyl sub-series achieved an almost 100% linear correlation with experimental electrochemical oxidation potentials, while the phenanthroline sub-series gave R 2 = 0.95. Apart from the terpyridyl complex which accorded an almost perfect match, in general, TDDFT oscillators were computed at slightly lower energies than what was observed experimentally, while molecular HOMO and LUMO renderings reveal desired complexes with directional charge transfer propensities.

  11. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    Science.gov (United States)

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A label-free photoelectrochemical cocaine aptasensor based on an electropolymerized ruthenium-intercalator complex

    International Nuclear Information System (INIS)

    Haddache, Fatima; Le Goff, Alan; Spinelli, Nicolas; Gairola, Priyanka; Gorgy, Karine; Gondran, Chantal; Defrancq, Eric; Cosnier, Serge

    2016-01-01

    Highlights: • Electrodes were modified by an electrogenerated Ru(II) complex which demonstrates photosensitive properties and intercalating properties towards the stem-loop base pairing domain of cocaine aptamers. • Cocaine aptamers were immobilized as mono-and double-fragment which showed different behaviour towards photocurrent generation. • The binding of aptamer could be followed by photelectrochemistry and modelized using a Langmuir-Freundlich isotherm. • Using the double-fragment aptamer, a label-free photoelectrochemical aptasensor was designed, exhibiting a LOD of 10 nmol L −1 and linear range of 1 10 −8 –5 10 −4 mol L −1 . - Abstract: A photoelectrode was designed by electrodeposition of a pyrrole monomer modified with a polypyridyl Ru(II) complex bearing benzo[i]dipyrido-[3,2-a:2′.3′-c]phenazine (dppn) ligand. Owing to the intercalating properties of these immobilized complexes towards DNA double helix, cocaine aptamer was immobilized on the modified electrodes thanks to its stem-loop configuration in order to design a photoelectrochemical cocaine aptasensor. Especially using a double-fragment aptamer strategy, the binding of cocaine and the formation of the aptamer/cocaine complex was successfully observed and modeled by a Langmuir-Freundlich isotherm, giving access to an apparent dissociation constant K d of 3.8 mmol L −1 . The photoelectrochemical aptasensor exhibits a LOD of 10 nmol L −1 and linear range of 1 10 −8 –5 10 −4 mol L −1 .

  13. Asymmetric Ruthenium(II and Osmium(II Complexes with New Bidentate Polyquinoline Ligands. Synthesis and NMR Characterization

    Directory of Open Access Journals (Sweden)

    Antonino Mamo

    2010-03-01

    Full Text Available A series of Ru(II and Os(II tris-chelate complexes with new bidentate 2-pyridylquinoline ligands have been synthesized and fully characterized by EA,1H-NMR and FAB-MS techniques. The new ligands are: L1 = 4-p-methoxyphenyl-6-bromo-2-(2′- pyridylquinoline (mphbr-pq and L2 = 4-p-hydroxyphenyl-6-bromo-2-(2′-pyridyl-quinoline (hphbr-pq. The complexes studied are: [Ru(bpy2L1](PF62 (C1, [Ru(bpy2L2](PF62 (C2, [Os(bpy2L1](PF62 (C3, [Os(bpy2L2](PF62 (C4 (bpy = 2,2′-bipyridine, [Ru(dmbpy2L1](PF62 (C5, [Ru(dmbpy2L2](PF62 (C6, [Os(dmbpy2L1](PF62 (C7, and [Os(dmbpy2L2](PF62 (C8 (dmbpy = 4,4′-dimethyl-2,2′-bipyridine. Moreover, new functionalized complexes C9-C12 were obtained by the basecatalyzed direct alkylation of C2, C4, C6, and C8 with 6-bromo-1-hexene. The complete assignment of the 1H-NMR spectra for the two new ligands (L1 and L2, and their Ru(II or Os(II complexes has been accomplished using a combination of one- and two-dimensional NMR techniques. The JH,H values have been determined for the majority of the resonances.

  14. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  15. [1,4-Bis(diphenylphosphanylbutane-κ2P,P′]chlorido(η5-indenylruthenium(II

    Directory of Open Access Journals (Sweden)

    Hui-Ling Sung

    2011-05-01

    Full Text Available Facile ligand substitution is observed when the ruthenium chloride complex [Ru(η5-C9H7Cl(PPh32] is treated with 1,4-bis(diphenylphosphanylbutane in refluxing toluene yielding the title compound, [Ru(C9H7Cl(C28H28P2]. The RuII atom has a typical piano-stool coordination, defined by the indenyl ligand, one Cl atom and two phosphanyl P atoms. The Ru—P bond lengths are 2.2502 (9 and 2.2968 (8 Å.

  16. (2,2′-Bipyridine-κ2N,N′iodido(piperidine-1-carbodithioato-κ2S,S′copper(II

    Directory of Open Access Journals (Sweden)

    Le-Qing Fan

    2009-01-01

    Full Text Available In the title compound, [Cu(C6H10NS2I(C10H8N2], the CuII ion is coordinated by one iodide ion, two N atoms of the bipyridine ligand and two S atoms from the piperidinecarbodithioate ligand in a distorted square-pyramidal environment. π–π stacking interactions, with centroid–centroid distances of 3.643 (4 Å, between pyridyl rings of the bipyridyl ligands of neighbouring molecules lead to chains propagating parallel to the a axis.

  17. Bis(bipyridine)ruthenium(II) complexes with an aliphatic sulfinato donor: synthesis, characterization, and properties.

    Science.gov (United States)

    Tamura, Motoshi; Tsuge, Kiyoshi; Igashira-Kamiyama, Asako; Konno, Takumi

    2011-06-06

    Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described. © 2011 American Chemical Society

  18. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6- arene)(en)Cl]+ complexes: Density functional theory computational study

    Science.gov (United States)

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.

    2011-01-01

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.

  19. Thermochemical behaviour of Ru(II) complex–SiO2 microcomposites

    Indian Academy of Sciences (India)

    WINTEC

    both the gel spectra are to be expected accounting for the complex molar mass of ..... (ii) TEOS + OtEOS-produced gel: No principle diffe- rences in the DTG, DTA ... Acknowledgements. The study was carried out with the financial support from.

  20. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    Science.gov (United States)

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  1. Isothiocyanato complexes of Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl)benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, V K

    1982-01-01

    Six-coordinated complexes of the type (Ln(PyBzH)/sub 2/NCS.H/sub 2/O) (NCS)/sub 2/.nH/sub 2/O/mC/sub 2/H/sub 5/OH (Ln = Gd(III), Tb(III), Dy(III) and Ho(III), n=1-2; m=1) have been prepared from Ln(NCS)/sub 6//sup 3 -/. The room temperature magnetic moment values confirm the terpositive state of the lanthanide ions. Infrared spectra suggest the N-coordination of thiocyanate group. Electronic spectral studies of Tb(III), Dy(III) and Ho(III) complexes have been made in terms of LSJ term energies. 13 refs.

  2. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    Science.gov (United States)

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  3. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Eththilu [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Muthu Mareeswaran, Paulpandian [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Department of Industrial Chemistry, Alagappa Univesity, Karaikudi 630003, Tamil Nadu (India); Ramdass, Arumugam [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Ramesh, Pandian [UCIBIO-REQUIMTE, Departmento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Rajagopal, Seenivasan, E-mail: rajagopalseenivasan@yahoo.com [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India)

    2016-07-15

    A simple and sensitive aptamer-based luminescence strategy for ATP detection is developed using Ru(II) complexes as probe molecule. It is based on the fact that Ru(II)-dppz complexes show the light switching behavior with DNA aptamers and found to show significant luminescence spectral change on the addition of ATP molecules. The binding efficiencies of aptamer with ATP, ADP and AMP are calculated and compared. The structural change of aptamer is also studied using circular dichroism (CD) spectral techniques. Moreover, the binding nature of aptamer with ATP, ADP and AMP is demonstrated by computational techniques. The proposed strategy was successfully applied to the detection of ATP.

  4. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes

    International Nuclear Information System (INIS)

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Ramdass, Arumugam; Ramesh, Pandian; Rajagopal, Seenivasan

    2016-01-01

    A simple and sensitive aptamer-based luminescence strategy for ATP detection is developed using Ru(II) complexes as probe molecule. It is based on the fact that Ru(II)-dppz complexes show the light switching behavior with DNA aptamers and found to show significant luminescence spectral change on the addition of ATP molecules. The binding efficiencies of aptamer with ATP, ADP and AMP are calculated and compared. The structural change of aptamer is also studied using circular dichroism (CD) spectral techniques. Moreover, the binding nature of aptamer with ATP, ADP and AMP is demonstrated by computational techniques. The proposed strategy was successfully applied to the detection of ATP.

  5. NMR study of heteroligand lanthanide complexes. Structure and stoichiometry of chelates of cerium subgroup with 18-member polyethers

    International Nuclear Information System (INIS)

    Bajbalov, S.P.; Kriger, Yu.G.

    1993-01-01

    Different ligand complexes of lanthanides were studied by the method of 1 H NMR, the results being presented. The literature data on the study of complexes of the class in solution were generalized. Detection of lanthanide-induced splitting of group CH 2 diastereotopic proton signals of macrocyclic polyethers in the complexes is enough to identify kinetically stable complexes, having inclusive type structure. 16 refs., 2 figs., 2 tabs

  6. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.

    Science.gov (United States)

    Mondal, Bhaskar; Neese, Frank; Ye, Shengfa

    2015-08-03

    The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η(2)-H2)(PP3(Ph))](n+) (M = Fe(II), Ru(II), and Co(III); PP3(Ph) = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal-hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid-base complex.

  7. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  8. A hybrid FIA/HPLC system incorporating monolithic column chromatography

    International Nuclear Information System (INIS)

    Adcock, Jacqui L.; Francis, Paul S.; Agg, Kent M.; Marshall, Graham D.; Barnett, Neil W.

    2007-01-01

    We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2'-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection

  9. Diversity and distribution of sandflies (Diptera: Psychodidae: Phlebotominae in a military area in the state of Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Luís Henrique Monteiro Gomes

    2013-08-01

    Full Text Available This study reports the distribution, ecotopes and fauna diversity of sandflies captured in five training bases on a military reserve in Manaus, state of Amazonas (AM. A total of 10,762 specimens were collected, which were distributed among 58 species, with the highest number recorded at Base Instruction 1 (BI1. A higher rate of species richness was found at the Base Instruction Boina Rajada and low levels of diversity associated with a high abundance index with the clear dominance of Lutzomyia umbratilis, Lutzomyia ruii and Lutzomyia anduzei were found at BI1. The abundance of Lu. umbratilis raises the possibility of outbreaks of American cutaneous leishmaniasis by the main vector of the disease in AM.

  10. Interpretation of electronic spectra of ruthenium nitroso complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ivanova, N.V.; Lyubimova, O.O.; Nikol'skij, A.B.

    2004-01-01

    Relaying on ab initio and semiempirical CINDO/CI calculations of free ligands L and complexes trans-[Ru(NO)(NH 3 ) 4 (L)] 3+ (L=pyridine, pyrazine, nicotinamide, l-histidine, imidazole), electronic absorption spectra of nitroso complexes with nitrogen-containing heterocyclic ligands L have been analyzed. Spectral manifestations of strong covalent bond Ru-NO was pointed out and the conclusion was made about advisability of presentation of Ru and NO oxidation states in grouping RuNO 3+ as Ru(III) and NO 0 . Introduction of nitroso group into inner coordination sphere of Ru(II) complexes with nitrogen-containing heterocyclic ligands results in essential rearrangement of the entire structure and deprives ligands L of their ability to manifest chromophore properties [ru

  11. Diversity and distribution of sandflies (Diptera: Psychodidae: Phlebotominae) in a military area in the state of Amazonas, Brazil

    Science.gov (United States)

    Gomes, Luís Henrique Monteiro; Albuquerque, Maria Ivonei Carvalho; da Rocha, Liliane Coelho; Pinheiro, Francimeire Gomes; Franco, Antonia Maria Ramos

    2013-01-01

    This study reports the distribution, ecotopes and fauna diversity of sandflies captured in five training bases on a military reserve in Manaus, state of Amazonas (AM). A total of 10,762 specimens were collected, which were distributed among 58 species, with the highest number recorded at Base Instruction 1 (BI1). A higher rate of species richness was found at the Base Instruction Boina Rajada and low levels of diversity associated with a high abundance index with the clear dominance of Lutzomyia umbratilis, Lutzomyia ruii and Lutzomyia anduzei were found at BI1. The abundance of Lu. umbratilis raises the possibility of outbreaks of American cutaneous leishmaniasis by the main vector of the disease in AM. PMID:23903983

  12. (4-Aminobenzenesulfonatoheptaaquagadolinium(III 4-aminobenzenesulfonate nitrate 4,4′-bipyridyl tetrasolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Lujiang Hao

    2010-07-01

    Full Text Available In the title compound, [Gd(C6H6O3S(H2O7](C6H6O3S(NO3·4C10H8N2·2H2O, the GdIII ion is octacoordinated by seven water molecules and one O-bonded 4-aminobenzenesulfonate anion in a square-antiprismatic arrangement. In the crystal, the components are linked by N—H...O, O—H...N and O—H...O hydrogen bonds.

  13. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage

    Czech Academy of Sciences Publication Activity Database

    Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Munoz-García, A. B.; Zakeeruddin, S. M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; Kavan, Ladislav; Moser, J. E.; Grätzel, M.; Hagfeldt, A.; Freitag, M.

    2016-01-01

    Roč. 138, č. 45 (2016), s. 15087-15096 ISSN 0002-7863 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Conversion efficiency * Copper * Dye-sensitized solar cells Subject RIV: CG - Electrochemistry Impact factor: 13.858, year: 2016

  14. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Song, Na [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States); Concepcion, Javier J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Binstead, Robert A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Rudd, Jennifer A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Vannucci, Aaron K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry and Biochemistry; Dares, Christopher J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Coggins, Michael K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Meyer, Thomas J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry

    2015-04-06

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2$-$)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.

  15. Weak aurophilic interactions in a series of Au(III) double salts.

    Science.gov (United States)

    Chernyshev, Alexander N; Chernysheva, Maria V; Hirva, Pipsa; Kukushkin, Vadim Yu; Haukka, Matti

    2015-08-28

    In this work, several new examples of rare Au(III)Au(III) aurophilic contacts are reported. A series of gold(iii) double salts and complexes, viz. [AuX2(L)][AuX4] (L = 2,2'-bipyridyl, X = Cl , Br ; L = 2,2'-bipyrimidine, X = Cl , Br ; L = 2,2'-dipyridylamine, X = Cl , Br ), [AuX3(biq)] (biq = 2,2'-biquinoline, X = Cl , Br ), [LH][AuX4] (L = 2,2'-bipyridyl, X = Cl ; L = 2,2'-bipyrimidine, X = Cl ; L = 2,2'-dipyridylamine, X = Cl , Br ; L = 2,2'-biquinoline, X = Cl , Br ), [AuBr2(bpy)]2[AuBr4][AuBr2] , [AuCl2(bpm)][AuCl2] , (bpmH)2[AuBr4][AuBr2] , and (dpaH)[AuBr2] (, , and were reported earlier) was synthesized by coordination of a particular ligand to the Au(III) center and subsequent reduction of the formed product with acetone. Inspection of the X-ray structural data for , , and indicates that the Au(III) metal centers approach each other closer than the sum of their van der Waals radii, thus forming the aurophilic contacts, which were confirmed by topological charge density analysis according to the Quantum Theory of Atoms in Molecules (QTAIM). In , , and , such contacts are located only between the metal centers of the ion pair, whereas in , the aurophilic interactions form the cation-anion-anion array, and in , the aurophilicity exists between the gold atoms of the cations. It was also demonstrated that the interatomic distance alone is not a reliable measure of the aurophilic interactions, at least at the weakest limit of the interaction strength, and it needs to be complemented with structural analysis of the whole molecule and computational results.

  16. An advanced study on non-homogeneous radiation physical chemistry

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Kudo, Hisaaki; Muroya, Yusa; Lin, Mingzhang; Han, Zhenhui; Yamada, Reiji; Nagaishi, Ryuji

    2008-01-01

    In order to characterize the radiolysis of supercritical fluids, the yields of solvated electron in methanol have been measured from room temperature to supercritical state, 280degC, at 9 MPa by pulse radiolysis with 4,4'-bipyridyl(BPY) taken as a scavenger. The change of the solvated electron yield is similar to that of hydrated electron observed in water. Further more, the yield of solvated electron dependent on BPY concentration has been measured and rate constant of the reaction of solvated electron toward the BPY has also determined from room temperature to supercritical state. On the basis of above data, mechanism of the temperature dependent yield of solvated electrons in methanol has been discussed. (author)

  17. N-Chlorosuccinimide (NCS): A Novel Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    WANG,Xia-Yan; CHANG,Li-Qun; ZHOU,Hong; ZHANG,Ke-Da

    2006-01-01

    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiethyl-enetriamine), CuCl/MA5-DETA (N,N,N',N',N"-penta(methylacrylate)diethylenetriamine), and CuCl/bipy (bipy=2,2'-bipyridyl) respectively. The results indicated that the polymerization possessed typical controlled/living radical polymerization characteristics. The analysis for terminal group of obtained polymer by 1H NMR proved that NCS is an initiator for ATRP. In comparison with NBS, the polymerization rate was slower and the resulted polymer had narrower molecular weight distribution (MWD) when NCS was employed as the initiator.

  18. Preparation of Mg2FeH6 Nanoparticles for Hydrogen Storage Properties

    Directory of Open Access Journals (Sweden)

    N. A. Niaz

    2013-01-01

    Full Text Available Magnesium (Mg and iron (Fe nanoparticles are prepared by thermal decomposition of bipyridyl complexes of metals. These prepared Mg-Fe (2 : 1 nanoparticles are hydrogenated under 4 MPa hydrogen pressure and 673 K for 48 hours to achieve Mg2FeH6. Their structural analysis was assessed by applying manifold techniques. The hydrogen storage properties of prepared compound were measured by Sieverts type apparatus. The desorption kinetics were measured by high pressure thermal desorption spectrometer (HP-TDS. More than 5 wt% hydrogen released was obtained by the Mg2FeH6 within 5 min, and during rehydrogenation very effective hydrogen absorption rate was observed by the compound.

  19. cis,trans-Dicarbonyldichlorido(1,10-phenanthroline-5,6-dione-κ2N,N′ruthenium(II

    Directory of Open Access Journals (Sweden)

    Tsugiko Takase

    2017-02-01

    Full Text Available In the title compound, [RuCl2(C12H6N2O2(CO2], the RuII atom (site symmetry ..2 adopts a distorted octahedral coordination sphere defined by two carbonyl C atoms, two Cl− anions and two N atoms from the chelating 1,10-phenanthroline-5,6-dione (phendione ligand. The carbonyl ligands are cis to each other, while the Cl atoms are trans. In the phendione ligand, the C=O [1.239 (5 Å] and the C—C [1.537 (5 Å] bond lengths in the diketone moiety have typical values. In the crystal, C—H...Cl and C—H...O hydrogen bonds lead to the formation of a three-dimensional supramolecular network.

  20. Photoactive Molecular Dyads [Ru(bpy)3-M(ttpy)2] n+ on Gold (M = Co(III), Zn(II)): Characterization, Intrawire Electron Transfer, and Photoelectric Conversion.

    Science.gov (United States)

    Le-Quang, Long; Farran, Rajaa; Lattach, Youssef; Bonnet, Hugues; Jamet, Hélène; Guérente, Liliane; Maisonhaute, Emmanuel; Chauvin, Jérôme

    2018-04-23

    We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy) 3 ] 2+ photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[Zn II -Ru II ] 4+ and Au/[Co III -Ru II ] 5+ ). The stepwise construction was characterized by electrochemistry, quartz crystal microbalance, and atomic force microscopy imaging. The results show that the dyads behave as rigid layers and are inhomogeneously distributed on the surface. The surface coverages are estimated to be in the order of 10 -11 mol cm -2 . The kinetics of the heterogeneous electron transfer is determined on modified gold ball microelectrodes using Laviron's formula. The oxidation rates of the terminal Ru(II) subunits are estimated to be 700 and 2300 s -1 for Au/[Zn II -Ru II ] 4+ and Au/[Co III -Ru II ] 5+ , respectively. In the latter case, the rate is limited by the kinetics of electron transfer between an intermediate Co(II) center and the gold surface. For Au/[Zn II -Ru II ] 4+ , the Zn-bis-terpyridine center is not involved in the electron-transfer process and the oxidation of the Ru(II) subunit occurs through a superexchange process. In the presence of a tertiary amine in solution, the electrodes at a bias of 0.12 V behave as photoanodes when subjected to visible light irradiation. The magnitude of the photocurrent is around 10 μA cm -2 for Au/[Co III -Ru II ] 5+ and 5 μA cm -2 for Au/[Zn II -Ru II ] 4+ , proving the importance of an electron relay on the photon-to-current conversion. The results suggest an efficient conversion for Au/[Co III -Ru II ] 5+ , since each bound dyad, once excited, injects an electron around 10 times per second.

  1. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  2. Incorporation of amphiphilic ruthenium(II) ammine complexes into Langmuir-Blodgett thin films with switchable quadratic nonlinear optical behavior.

    Science.gov (United States)

    Boubekeur-Lecaque, Leïla; Coe, Benjamin J; Harris, James A; Helliwell, Madeleine; Asselberghs, Inge; Clays, Koen; Foerier, Stijn; Verbiest, Thierry

    2011-12-19

    Nine nonlinear optical (NLO) chromophores with pyridinium electron acceptors have been synthesized by complexing new proligands with {Ru(II)(NH(3))(5)}(2+) electron-donor centers. The presence of long alkyl/fluoroalkyl chain substituents imparts amphiphilic properties, and these cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Each complex shows three reversible/quasireversible redox processes; a Ru(III/II) oxidation and two ligand-based reductions. The energies of the intense visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions correlate to some extent with the ligand reduction potentials. (1)H NMR spectroscopy also provides insights into the relative electron-withdrawing strengths of the new ligands. Single crystal X-ray structures have been determined for two of the proligand salts and one complex salt, [Ru(II)(NH(3))(5)(4-C(16)H(33)PhQ(+))]Cl(3)·3.25H(2)O (PhQ(+) = N-phenyl-4,4'-bipyridinium), showing centrosymmetric packing structures in each case. The PF(6)(-) analogue of the latter complex has been used to deposit reproducibly high-quality, multilayered Langmuir-Blodgett (LB) thin films. These films show a strong second harmonic generation (SHG) response from a 1064 nm laser; their MLCT absorbance increases linearly with the number of layers (N) and I(2ω)/I(ω)(2) (I(2ω) = intensity at 532 nm; I(ω) = intensity at 1064 nm) scales quadratically with N, consistent with homogeneous deposition. LB films on indium tin oxide (ITO)-coated glass show electrochemically induced switching of the SHG response, with a decrease in activity of about 50% on Ru(II) → Ru(III) oxidation. This effect is reversible, but reproducible over only a few cycles before the signal from the Ru(II) species diminishes. This work extrapolates our original solution studies (Coe, B. J. et al. Angew. Chem., Int. Ed.1999, 38, 366) to the first demonstration of

  3. Simulating Ru L3-edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers.

    Science.gov (United States)

    Van Kuiken, Benjamin E; Valiev, Marat; Daifuku, Stephanie L; Bannan, Caitlin; Strader, Matthew L; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  4. Synthesis and study of heteroligand rare earth element complexes containing N,N'-tetraethyl-N''-(trichloracetyl)phospho triamide and hexamethylphospho triamide

    International Nuclear Information System (INIS)

    Amirkhanov, V.M.; Ovchinnikov, V.A.; Rekhta, A.N.; Grytskiv, A.Ya.; Skopenko, V.V.

    1998-01-01

    Two series of the coordination compounds of the [LnL(Hmpa) 4 ](BPh) 2 and [LnL 2 (Hmpa) 2 ]BPh 4 composition, where Ln = La, Ce-Nd, Sm-Yb, Y; HL CCl 3 C(O)N(H)P(O)(NEt 2 ) 2 ; Hmpa = O=P[N(CH 3 ) 2 ] 3 ], are synthesized. The conclusion is made on the deformed-octahedral structure of the compounds on the basis of the data obtained through the IR-, NMR 1 H- and 31 P- and electron spectroscopy. It is shown that L - anions are coordinated bidentately by rare earth atom (through oxygen atoms of the phosphoryl and carbonyl groups) and the Hmpa molecules - monodentately (through the oxygen atom of the phosphoryl group) [ru

  5. The solvent extraction of ytterbium from a molten eutectic

    International Nuclear Information System (INIS)

    Lengyel, T.

    1977-01-01

    The paper summarizes the results which were obtained in measurements performed with different binary mixtures of solvents being capable of effectively extracting ytterbium from the molten eutectic lithium nitrate--ammonium nitrate. In the course of elaborating the possible ways of extractive separation of rare earths systematic investigations regarding the individual members of the group are required. The binary solvent mixtures consisted of thenoyl-trifluoracetone (TTA), β-isopropil-tropolone (IPT), tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (HDEHP), 2,2'-bipyridyl (bipy), dibutyl phtalate (DBP) and Amberlite LA-2 (LA-2). The concentration of the central ion was kept at 5x10 -6 M by using Yb-169 of high specific activity as a tracer for the radiometric assay. (T.I.)

  6. Theoretical modelling of photoactive molecular systems: insights using the Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ciofini, I.; Adamo, C. [Ecole Nationale Superieure de Chimie de Paris, Lab. d' Electrochimie et Chimie Analytique, CNRS UMR 7575, 75 - Paris (France); Laine, Ph.P. [Universite Rene-Descartes, Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, 75 - Paris (France); Bedioui, F. [Ecole Nationale Superieure de Chimie de Paris, Lab. de Pharmacologie Chimique et Genetique, CNRS FRE 2463 and INSERM U 640, 75 - Paris (France); Daul, C.A. [Fribourg Univ., Dept. de Chimie (Switzerland)

    2006-02-15

    An account of the performance of a modern and efficient approach to Density Functional Theory (DFT) for the prediction of the photophysical behavior of a series of Ru(II) and Os(II) complexes is given. The time-dependent-DFT method was used to interpret their electronic spectra. Two different types of compounds have been analyzed: (1) a complex undergoing a light induced isomerization of one of its coordination bonds; (2) an inorganic dyads expected to undergo intramolecular photoinduced electron transfer to form a charge separated (CS) sate. Besides the noticeable quantitative agreement between computed and experimental absorption spectra, our results allow to clarify, by first principles, both the nature of the excited states and the photochemical behavior of these complex systems, thus underlying the predictive character of the theoretical approach. (authors)

  7. Facile synthesis of RuII Schiff base complexes: spectral characterization and antimicrobial applications

    International Nuclear Information System (INIS)

    Arunachalam, S.; Padma Priya, N.; Shahul Meeran, H.

    2014-01-01

    Diamagnetic ruthenium (II) complexes of the type (RuCl (CO) (pyridine) (L)) (where L = monobasic tridentate Schiff base ligands) were synthesized by the reactions of Schiff bases derived from the reactions of o-aminobenzoic acid and Knovenegal condensate of β - ketoesters and appropriate ruthenium metal precursor (RuHCl (CO) (PPh 3 ) 2 (py)). Elemental analyses and spectral (FT-IR, UV-Vi s and 1 H, 31 P NMR) studies of all the new synthesized complexes suggest the presence of an octahedral environment around the Ru II ion. Cyclic voltammograms of all the complexes display oxidation and reduction potentials. Superoxide dismutase activity (SOD) of these complexes has also been examined. These complexes were also subjected to study their biocidal activity against Staphylococcus epidermidis, Escherichia coli, Botrytis cinerea and Aspergillus niger. (author)

  8. Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom

    Science.gov (United States)

    Ding, Xin; Tuikka, Matti; Hirva, Pipsa; Haukka, Matti

    2017-09-01

    Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2'-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]ṡI2 with only one NCSṡṡṡI2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCSṡṡṡI2 and SCNṡṡṡI2 bonding modes. The reason for the observed NCSṡṡṡI2 mode lies most probably in the more favourable packing effects rather than energetic preferences between NCSṡṡṡI2 and SCNṡṡṡI2 contacts.

  9. The Spectroscopic and Conductive Properties of Ru(II Complexes with Potential Anticancer Properties

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2014-01-01

    Full Text Available Different density functional methods (DFT have been used to optimize and study the chemistry of five potential anticancer complexes in terms of their electronic, conductive, and spectroscopic properties. Many of the computed properties in addition to the IR and QTAIM analysis of the NMR are dipole moment vector (μi, linear polarizability tensor (αij, first hyperpolarizability tensors (βijk, polarizability exaltation index (Γ, and chemical hardness (η of the complexes. Stable low energy geometries are obtained using basis set with effective core potential (ECP approximation but, in the computation of atomic or molecular properties, the metal Ru atom is better treated with higher all electron basis set like DGDZVP. The spectroscopic features like the IR of the metal-ligand bonds and the isotropic NMR shielding tensor of the coordinated atoms are significantly influenced by the chemical environment of the participating atoms. The carboxylic and pyrazole units are found to significantly enhance the polarizabilities and hyperpolarizabilities of the complexes while the chloride only improves the polarity of the complexes. Fermi contacts (FC have the highest effect followed by the PSO among all the four Ramsey terms which defined the total spin-spin coupling constant J (HZ of these complexes.

  10. DNA interactions of dinuclear RuII arene antitumor complexes in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Nováková, Olga; Nazarov, A.A.; Hartinger, Ch.G.; Keppler, B.K.; Brabec, Viktor

    2009-01-01

    Roč. 77, č. 3 (2009), s. 364-374 ISSN 0006-2952 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : dinuclear ruthenium complex * DNA * cross-links Subject RIV: BO - Biophysics Impact factor: 4.254, year: 2009

  11. Novel synthesis of Prussian blue nanoparticles and nanocomposite sol: Electro-analytical application in hydrogen peroxide sensing

    International Nuclear Information System (INIS)

    Pandey, Prem C.; Pandey, Ashish K.

    2013-01-01

    Highlights: ► Novel process for the synthesis of PBNPs sol of 15.8 nm size is reported. ► The PBNPs sol shows the electron transfer rate constant to the order of 32.1 s −1 ► The PBNPs sol has shown the functional activity for making the nanocomposite. ► The nanocomposite with tris(2,2′-bipyridyl)ruthenium shows photoluminiscent ability. ► The PBNPs and its nanocomposite (PB-Rubpy) show high sensitivity for H 2 O 2 sensing. - Abstract: This paper reports a new method for the synthesis of Prussian blue nanoparticles (PBNPs) sol of homogeneous dispersion with average particle size to the order of 15.8 nm. The new method of PBNPs sol synthesis is based on the interaction of active concentrations of 3-aminopropylalkoxysilane, cyclohexanone and single precursor potassium ferricyanide under ambient conditions. The PBNPs sol shows excellent electrochemistry with electron transfer rate constant to the order of 32.1 s −1 . The resulting PBNPs sol has been found highly stable for practical applications and shows functional activity for making nanocomposite sol with tris(2,2′-bipyridyl) ruthenium (Rubpy). The PB-Rubpy nanocomposite shows high sensitivity for H 2 O 2 electrochemical sensing to the order of 1102.0 μA mM −1 cm −2 and storage stability of the materials for more than 3 months. In addition, these nanocomposite exhibits excellent electrocatalytic property for hydrogen peroxide (H 2 O 2 ) sensing with catalytic rate constant to the order of 3.14 × 10 3 M −1 s −1 . The PB-Rubpy nanocomposite sol, apart from electrocatalytic application, shows photoluminiscent ability for many opto-electroanalytical applications. In addition to that functional property of PBNPs sol for making nanodispersion with several known nanoparticles of gold, silver, palladium along with in situ synthesis of mixed metal hexacyanoferrate have also been observed.

  12. Synthesis and characterization of Ruthenium (II) amines with the chelating agent 4-4' dithio-pyridine occluded in Na Y zeolite

    International Nuclear Information System (INIS)

    Marques, Clelia Mara de Paula; Franco, Douglas Wagner; Sanches, Rosemary

    1993-01-01

    The aim of this work is to study the chemical behavior of metallic complexes of Ru(II) encapsulated in Na Y zeolites. We chose systems with well known chemical behaviour in solution and which present a great interest, because of the bridging ligand used (4,4-Dithiodipyridine). This ligand is the first example of the great efficiency of the S-S bridge in conducting electrons. In this work we describe the ionic exchange reactions between the Na Y zeolite and the complex ion [Ru (N H 3 ) 5 DTDP] 2+ to obtain [Ru (N H 3 ) 5 DTDP]-Y sample. The [Ru (N H 3 ) 5 ] 2 DTDP)-Y sample is prepared through the reaction between [Ru (N H 3 ) 5 H 2 O] 2+ and [Ru (N H 3 ) 5 DTDP]-Y. These sample were characterized by spectroscopic techniques. (author)

  13. cis-[1,4-Bis(diphenylphosphanylbutane-κ2P,P′]dichlorido(cyclohexane-1,2-diamine-κ2N,N′ruthenium(II dichloromethane monosolvate

    Directory of Open Access Journals (Sweden)

    Ismail Warad

    2012-05-01

    Full Text Available In the title compound, [RuCl2(C6H14N2(C28H28P2]·CH2Cl2, the RuII ion is coordinated in a slightly distorted octahedral environment, formed by two cis-oriented chloride ligands, two cis P atoms of a 1,4-bis(diphenylphosphanylbutane ligand and two cis-chelating N atoms of a bidentate cyclohexane-1,2-diamine ligand. In the crystal, pairs of molecules form inversion dimers via N—H...Cl hydrogen bonds. In addition, intramolecular N—H...Cl and weak C—H...Cl, C—H...N, N—H...π and C—H...π hydrogen bonds are observed. One of the Cl atoms of the solvent molecule is disordered over two sites with refined occupancies of 0.62 (1 and 0.38 (1.

  14. Nonlinear optical properties of systems based on ruthenium(II) tetra-15-crown-5-phthalocyaninate

    International Nuclear Information System (INIS)

    Grishina, A.D.; Gorbunova, Yu.G.; Enakieva, Yu.Yu.; Krivenko, T.V.; Savel'ev, V.V.; Vannikov, A.V.; Tsivadze, A.Yu.

    2008-01-01

    The third-order nonlinear optical properties of the ruthenium (II) complex with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules (R 4 Pc)Ru(TED) 2 were analyzed by means of the z-scanning technique. A solution of (R 4 Pc)Ru(TED) 2 in tetrachloroethane was exposed to nanosecond laser pulses at a wavelength of 1064 nm. It was found that the third-order molecular polarizability of the Ru(II) complex is 4.5 x 10 -32 cm 4 /C (esu). The polarizability per molecule increases by a factor of 3.6 when the single molecule occurs in a supramolecular assembly of (R 4 Pc)Ru(TED) 2 complexes. The photoelectric and photorefractive properties at 1064 nm of polymer composites, determined by the supramolecular assemblies that exhibits optical absorption and photoelectric sensitivity in the near IR region, are reported [ru

  15. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    Science.gov (United States)

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  16. The effects of linear assembly of two carbazole groups on acid-base and DNA-binding properties of a ruthenium(II) complex

    Science.gov (United States)

    Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi

    2013-07-01

    A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy = 2,2-bipyridine, Hbcpip = 2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5 ± 1.4) × 105 M-1 in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived.

  17. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  18. Application of the Raman spectroscopy for the characterization of organic pesticides

    International Nuclear Information System (INIS)

    Sato B, R.Y.; Medina G, C.; Medina V, J.; Frausto R, C.

    2004-01-01

    Raman spectra of organophosphate, organo chlorine and bipyridyl pesticides are presented in this study. They have been obtained satisfactorily by the NlR-Raman spectroscopy technique. Pesticides have been analyzed in solution or as a solid in glass containers and on aluminum substrates. This analytic technique can be an alternative tool for the detection of pesticides in the agriculture, presenting advantages as be quick, not destructive and require little or no sample preparation. Moreover, samples can be analyzed through transparent containers avoiding contact with the toxic substances. The implementation of the aluminium substrate is easy and practical. Moreover, it is commercially available and does not need a previous preparation. The analysis of a mixture of two pesticides in a β carotene solution is shown. (Author) 25 refs., 8 figs

  19. Application of the Raman spectroscopy for the characterization of organic pesticides; Aplicacion de la espectroscopia Raman para la caracterizacion de pesticidas organicos

    Energy Technology Data Exchange (ETDEWEB)

    Sato B, R.Y.; Medina G, C.; Medina V, J.; Frausto R, C. [Centro de Investigaciones en Optica, A.C., Unidad Aguascalientes, Prol. Constitucion 607, Reserva Loma Bonita, C.P. 20200, Aguascalientes (Mexico)]. e-mail: rsato@foton.cio.mx

    2004-07-01

    Raman spectra of organophosphate, organo chlorine and bipyridyl pesticides are presented in this study. They have been obtained satisfactorily by the NlR-Raman spectroscopy technique. Pesticides have been analyzed in solution or as a solid in glass containers and on aluminum substrates. This analytic technique can be an alternative tool for the detection of pesticides in the agriculture, presenting advantages as be quick, not destructive and require little or no sample preparation. Moreover, samples can be analyzed through transparent containers avoiding contact with the toxic substances. The implementation of the aluminium substrate is easy and practical. Moreover, it is commercially available and does not need a previous preparation. The analysis of a mixture of two pesticides in a {beta} carotene solution is shown. (Author) 25 refs., 8 figs.

  20. Half-Sandwich Ru(II and Os(II Bathophenanthroline Complexes Containing a Releasable Dichloroacetato Ligand

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2018-02-01

    Full Text Available We report on the preparation and thorough characterization of cytotoxic half-sandwich complexes [Ru(η6-pcym(bphen(dca]PF6 (Ru-dca and [Os(η6-pcym(bphen(dca]PF6 (Os-dca containing dichloroacetate(1– (dca as the releasable O-donor ligand bearing its own cytotoxicity; pcym = 1-methyl-4-(propan-2-ylbenzene (p-cymene, bphen = 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline. Complexes Ru-dca and Os-dca hydrolyzed in the water-containing media, which led to the dca ligand release (supported by 1H NMR and electrospray ionization mass spectra. Mass spectrometry studies revealed that complexes Ru-dca and Os-dca do not interact covalently with the model proteins cytochrome c and lysozyme. Both complexes exhibited slightly higher in vitro cytotoxicity (IC50 = 3.5 μM for Ru-dca, and 2.6 μM for Os-dca against the A2780 human ovarian carcinoma cells than cisplatin (IC50 = 5.9 μM, while their toxicity on the healthy human hepatocytes was found to be IC50 = 19.1 μM for Ru-dca and IC50 = 19.7 μM for Os-dca. Despite comparable cytotoxicity of complexes Ru-dca and Os-dca, both the complexes modified the cell cycle, mitochondrial membrane potential, and mitochondrial cytochrome c release by a different way, as revealed by flow cytometry experiments. The obtained results point out the different mechanisms of action between the complexes.

  1. Influence of temperature and light intensity on Ru(II) complex based organic-inorganic device

    International Nuclear Information System (INIS)

    Asubay, Sezai; Durap, Feyyaz; Aydemir, Murat; Baysal, Akin; Ocak, Yusuf Selim; Tombak, Ahmet

    2016-01-01

    An organic-inorganic junction was fabricated by forming [Ru(Cy_2PNHCH_2-C_4H_3O)(η"6-p-cymene)Cl_2] complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. It was seen that the structure had perfect rectification property. Current-voltage (I-V) measurements were carried out in dark and under various illumination conditions (between 50-100 mW/cm"2) and with the temperature range from 303 to 380 K. The structure showed unusually forward and reverse bias temperature and light sensing behaviors. It was seen that the current both in forward and reverse bias increased with the increase in light intensity and temperature.

  2. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    OpenAIRE

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2015-01-01

    Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet meta...

  3. Synthesis and DNA-interactions of new Co(III), Fe(II), Ni(II), Ru(II ...

    Indian Academy of Sciences (India)

    Administrator

    phen) or a modified phen, are particularly attractive species for developing new diagnostic and therapeutic agents that can recognise and cleave DNA. The ligands or the metal in these complexes can be varied in an easily controlled manner ...

  4. Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.

    Science.gov (United States)

    Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier

    2016-08-04

    Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparative study of the anchorage and the catalytic properties of nanoporous TiO2 films modified with ruthenium (II) and rhenium (I) carbonyl complexes

    Science.gov (United States)

    Oyarzún, Diego P.; Chardon-Noblat, Sylvie; Linarez Pérez, Omar E.; López Teijelo, Manuel; Zúñiga, César; Zarate, Ximena; Shott, Eduardo; Carreño, Alexander; Arratia-Perez, Ramiro

    2018-02-01

    In this article we study the anchoring of cis-[Ru(bpyC4pyr)(CO)2(CH3CN)2]2+, cis-[Ru(bpy)2(CO)2]2+ and cis-[Ru(bpyac)(CO)2Cl2], onto nanoporous TiO2 employing electropolymerization, electrostatic interaction and chemical bonding. Also, the [Re(bpyac)(CO)3Cl] rhenium(I) complex for chemical anchorage was analyzed. The characterization of TiO2/Ru(II) and TiO2/Re(I) nanocomposite films was performed by field emission scanning electron microscopy (FESEM), electron dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. In addition, for the more stable nanocomposites obtained, the catalytic properties (solar energy conversion and CO2 reduction) were evaluated. The efficiency improvement in redox process derived from the (photo)electrochemical evidence indicates that modified nanoporous TiO2 structures enhance the rate of charge transfer reactions.

  6. η6-Arene complexes of ruthenium and osmium with pendant donor functionalities

    KAUST Repository

    Reiner, Thomas

    2010-11-01

    Conversion of 4′-(2,5-dihydrophenyl)butanol or N-trifluoroacetyl-2,5- dihydrobenzylamine with MCl3·n H2O (M = Ru, Os) affords the corresponding dimeric η6-arene complexes in good to excellent yields. Under similar reaction conditions, the amine functionalized arene precursor 2,5-dihydrobenzylamine yields the corresponding Ru(II) complex. For osmium, HCl induced oxidation leads to formation of [OsCl6] 2- salts. However, under optimized reaction conditions, conversion of the precursor 2,5-dihydrobenzylamine chloride results in clean formation of η6-arene Os(II) complex. X-ray structures of [(η6- benzyl ammonium)(dmso)RuCl2] and (2,5-dihydrobenzyl ammonium) 4[OsCl6]2confirm the spectroscopic data. High stability towards air and acid as well as enhanced solubility in water is observed for all η6-arene complexes. © 2010 Elsevier B.V. All rights reserved.

  7. Catalytic behaviors of Co{sup II} and Mn{sup II} compounds bearing α-Diimine ligands for oxidative polymerization or drying oils

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Gilvan E.S.; Nunes, Everton V.; Dantas, Roberta C.; Meneghetti, Mario R.; Meneghetti, Simoni M.P., E-mail: simoni.plentz@gmail.com [Universidade Federal de Alagoas (UFAL), Maceió, AL (Brazil). Grupo de Catálise e Reatividade Química; Simone, Carlos A. de [Universidade de Sao Paulo (USP), São Carlos, USP, SP (Brazil). Instituto de Física

    2018-05-01

    The oxidative polymerization of linseed oil was investigated comparing the classical catalysts cobalt(II) 2-ethylhexanoate and manganese(II) 2-ethylhexanoate and their derivatives modified by the presence of chelating nitrogen ligands, i.e., 2,2’-bipyridyl, 2-(acetyl-2,6-diisopropylphenylimine)- pyridine and [N-(2,6-diisopropylphenyl)imine]acenaphthoquinone. The suitable stoichiometries between the two precursor complexes with the three ligands were determined by UV-visible spectroscopy. All complexes were characterized by infrared spectroscopy, and one complex was characterized also by X-ray diffraction. The apparent kinetic constants of oxidative polymerization of linseed oil was determined, for each catalytic system, via the periodic measurements of the oil viscosity during the oxidation reaction. The results indicated that the modifications of the classical two complexes with the chelating nitrogen ligands improved the catalytic efficiency at least to the manganese complex. (author)

  8. Synthesis of highly functionalized 2,2'-bipyridines by cyclocondensation of β-ketoenamides – scope and limitations

    Directory of Open Access Journals (Sweden)

    Paul Hommes

    2016-06-01

    Full Text Available The scope of a flexible route to unsymmetrically functionalized bipyridines is described. Starting from 1,3-diketones 1a–e, the corresponding β-ketoenamines 2a–e were converted into different β-ketoenamides 3a–g by N-acylation with 2-pyridinecarboxylic acid derivatives. These β-ketoenamides were treated with a mixture of TMSOTf and Hünig’s base to promote the cyclocondensation to 4-hydroxypyridine derivatives. Their immediate O-nonaflation employing nonafluorobutanesulfonyl fluoride provided the expected 4-nonafloxy-substituted bipyridine derivatives 5a–g in moderate to good overall yields. The bipyridyl nonaflates are excellent precursors for palladium-catalyzed reactions as demonstrated by representative Suzuki and Sonogashira couplings. Thus, a library of specifically substituted bipyridine derivatives was generated, showing the versatility of the simple 1,3-diketone-based approach to this important class of ligands.

  9. Synthesis of fluorinated ReCl(4,4'-R2-2,2'-bipyridine)(CO)3 complexes and their photophysical characterization in CH3CN and supercritical CO2.

    Science.gov (United States)

    Doherty, Mark D; Grills, David C; Fujita, Etsuko

    2009-03-02

    Two new CO(2)-soluble rhenium(I) bipyridine complexes bearing the fluorinated alkyl ligands 4,4'-(C(6)F(13)CH(2)CH(2)CH(2))(2)-2,2'-bipyridine (1a), and 4,4'-(C(8)F(17)CH(2)CH(2)CH(2))(2)-2,2'-bipyridine (1b) have been prepared and their photophysical properties investigated in CH(3)CN and supercritical CO(2). Electrochemical and spectroscopic characterization of these complexes in CH(3)CN suggests that the three methylene units effectively insulate the bipyridyl rings and the rhenium center from the electron-withdrawing effect of the fluorinated alkyl chains. Reductive quenching of the metal-to-ligand charge-transfer excited states with triethylamine reveals quenching rate constants in supercritical CO(2) that are only 6 times slower than those in CH(3)CN.

  10. New dinuclear palladium(II) complexes: Studies of the nucleophilic substitution reactions, DNA/BSA interactions and cytotoxic activity.

    Science.gov (United States)

    Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana

    2017-10-01

    Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell

  11. Mesoporous MCM-41 embeded with Ru(II)-based chemosensor: Preparation, characterization, and emission variation towards pH

    International Nuclear Information System (INIS)

    Jingxia, Wang

    2014-01-01

    In this article, a pH sensing mesoporous MCM-41 material containing covalently bonded Ru(II) complex in the silicate network was prepared and named as Ru–MCM-41. The emission signal shows a tendency to decrease upon increasing pH values. The luminescent pH sensor can be explained by the protonation and deprotonation of the PIP ligand (PIP=2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and the fact that the mesoporousity of the MCM-41 matrix favors the –OH that diffused to the complex, resulting in quick emission quenching. It also shows a slight sensitivity towards dissolved molecular oxygen and varying temperatures, which, however, may not be too troublesome for actual applications. The sensing mechanism is also investigated. - Highlights: • An Ru complex was covalently grafted in mesoporous silicate network. • The emission signal decreased with increasing pH values. • The protonation and deprotonation of the ligand caused emission variation. • The emission was insensitive towards oxygen and temperature

  12. Electronic and magnetic properties of infinite 1D chains of paddlewheel carboxylates M2(COOR)4 (M = Mo, W, Ru, Rh, Ir, Cu)

    KAUST Repository

    Peskov, Maxim

    2013-03-14

    Dinuclear complexes of transition metals bridged by four carboxylate-groups are examples of stable atomic configurations serving as fundamental building blocks of catalysts and prototypical molecular electronic devices. The electronic structure and magnetic properties of many molecular tetracarboxylate complexes were meticulously studied; however, the properties of the one-dimensional (1D) polymeric chain of associated tetracarboxylates have so far evaded much attention. Using periodic density-functional theory calculations, we analyze the electronic structure of condensed tetracarboxylates Mo(II), W(II), Ru(II), Rh(II), Ir(II), and Cu(II). The relationship between crystal structure of the polymerized tetracarboxylates and the electronic properties of the metal-metal bond in the M24+ core is studied. The electronic effects emanating from the association of dinuclear transition metal tetracarboxylates are important for designing molecular electronic devices. In this study, its influence on both direct and indirect metal-metal interactions, and the electronic structure, in particular transport properties, is discussed. © 2013 American Chemical Society.

  13. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  14. Investigation of anticancer properties of caffeinated complexes via computational chemistry methods

    Science.gov (United States)

    Sayin, Koray; Üngördü, Ayhan

    2018-03-01

    Computational investigations were performed for 1,3,7-trimethylpurine-2,6-dione, 3,7-dimethylpurine-2,6-dione, their Ru(II) and Os(III) complexes. B3LYP/6-311 ++G(d,p)(LANL2DZ) level was used in numerical calculations. Geometric parameters, IR spectrum, 1H-, 13C and 15N NMR spectrum were examined in detail. Additionally, contour diagram of frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) maps, MEP contour and some quantum chemical descriptors were used in the determination of reactivity rankings and active sites. The electron density on the surface was similar to each other in studied complexes. Quantum chemical descriptors were investigated and the anticancer activity of complexes were more than cisplatin and their ligands. Additionally, molecular docking calculations were performed in water between related complexes and a protein (ID: 3WZE). The most interact complex was found as Os complex. The interaction energy was calculated as 342.9 kJ/mol.

  15. Tracking Target and Spiral Waves

    DEFF Research Database (Denmark)

    Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads

    2002-01-01

    A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined...... by the evolutes of the actual spiral or target wave. With the use of Gaussian smoothing, a robust method is developed that permits the identification of targets and spirals foci independently of the wave profile. Examples of an analysis of long image sequences from experiments with the Belousov......–Zhabotinsky reaction catalyzed by ruthenium-tris-bipyridyl are presented. Moving target and spiral foci are found, and the speed and direction of movement of single as well as double spiral foci are investigated. For the experiments analyzed in this paper it is found that the movement of a focus correlates with foci...

  16. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. This journal is © The Royal Society of Chemistry 2012

  17. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    Science.gov (United States)

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of chemical modifications on photophysics and exciton dynamics on {pi}-conjugation attenuated and metal-chelated photoconducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. X.; Jager, W. J. H.; Gosztola, D. J.; Niemczyk, M. P.; Wasielewski, M. R.

    2000-03-11

    Effects of two types of chemical modifications on photoconducting polymers consisting of polyphenylenevinylene (PPV) derivatives are studied by static and ultrafast transient optical spectroscopy as well as semi-empirical ZINDO calculations. The first type of modification inserts 2,2{prime}-bipyridyl-5-vinylene units (bpy V) in the PPV backbone, and the second type involves metal-chelation with the bpy sites. Photoluminescence and exciton dynamics of polymers 1 and 2 with PV:bpyV ratios of 1 and 3 were examined in solution, and compared to those of the homopolymer, poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). Similar studies were carried out for several metal-chelated polymers. These results can be explained by changes in {pi}-conjugation throughout the polymer backbone. The attenuation in {pi}-conjugation by the chemical modifications transforms a conducting polymer from one-dimensional semiconductor to molecular aggregates.

  19. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  20. Synthesis of (plus or minus) [5-3H] N'-Nitrosoanatabine, a tobacco-specific nitrosamine

    International Nuclear Information System (INIS)

    Desai, Dhimant; Lin, Guoying; Morimoto, Hiromi; Williams, Philip G.; El-Bayoumy, Karam; Amin, Shantu

    2002-01-01

    Tobacco-specific N'-nitrosamines (TSNA) are a unique class of systemic organ-specific carcinogens. The TSNA are formed by N-nitrosation of nicotine and of the minor tobacco alkaloids after harvesting of tobacco and during smoking. The N-nitrosation of anatabine leads to N'-nitrosoanatabine (NAT; 1-nitroso-1,2,3,4-tetrahydro-2,3'-bipyridyl) which requires in-depth assays in laboratory animals other than the rat. Furthermore, delineation of its tissue distribution and metabolism is needed for structure:activity comparisons with other TSNA and for the assessment of potential human risk from this TSNA. We have, therefore, synthesized (+)[5-3H]NAT. 5-Bromo-3-pyridine-carboxaldehyde was condensed with ethyl carbamate prior to Diels-Alder reaction with 1,4-butadiene to give the racemic anatabine ring system. Hydrolysis followed by reduction with LiAlT4 and nitrosation, led to (+)[5-3H]NAT (60 percent yield, specific activity 266 mCi/mmol, radiochemical purity of >99 percent)

  1. Syntheses, structures and properties of three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers based on 2,2'-dipyridyl-5,5'-dicarboxylate ligands.

    Science.gov (United States)

    Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan

    2013-12-01

    Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Synthesis of (plus or minus) [5-{sup 3}H] N'-Nitrosoanatabine, a tobacco-specific nitrosamine

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Dhimant; Lin, Guoying; Morimoto, Hiromi; Williams, Philip G.; El-Bayoumy, Karam; Amin, Shantu

    2002-06-14

    Tobacco-specific N'-nitrosamines (TSNA) are a unique class of systemic organ-specific carcinogens. The TSNA are formed by N-nitrosation of nicotine and of the minor tobacco alkaloids after harvesting of tobacco and during smoking. The N-nitrosation of anatabine leads to N'-nitrosoanatabine (NAT; 1-nitroso-1,2,3,4-tetrahydro-2,3'-bipyridyl) which requires in-depth assays in laboratory animals other than the rat. Furthermore, delineation of its tissue distribution and metabolism is needed for structure:activity comparisons with other TSNA and for the assessment of potential human risk from this TSNA. We have, therefore, synthesized (+)[5-3H]NAT. 5-Bromo-3-pyridine-carboxaldehyde was condensed with ethyl carbamate prior to Diels-Alder reaction with 1,4-butadiene to give the racemic anatabine ring system. Hydrolysis followed by reduction with LiAlT4 and nitrosation, led to (+)[5-3H]NAT (60 percent yield, specific activity 266 mCi/mmol, radiochemical purity of >99 percent).

  3. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  4. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant.

    Science.gov (United States)

    Kitte, Shimeles Addisu; Wang, Chao; Li, Suping; Zholudov, Yuriy; Qi, Liming; Li, Jianping; Xu, Guobao

    2016-10-01

    Coreactant plays a critical role for the application of electrochemiluminescence (ECL). Herein, N-(3-aminopropyl)diethanolamine (APDEA) has been explored as a potential coreactant for enhancing tris(2,2'-bipyridyl)ruthenium(II) ECL. It is much more effective than tripropylamine at gold and platinum electrodes although it has one primary amine group besides a tertiary amine group. The presence of primary amine group and hydroxyl groups in APDEA promotes the oxidation rates of amine and thus remarkably increases ECL intensity. The ECL intensities of the Ru(bpy)3 (2+)/APDEA system are approximately 10 and 36 times stronger than that of Ru(bpy)3 (2+)/tripropylamine system and about 1.6 and 1.14 times stronger than that of Ru(bpy)3 (2+)/N-butyldiethanolamine system at Au and Pt electrodes, respectively. The ECL intensity of the Ru(bpy)3 (2+)/APDEA system is 2.42 times stronger than that of Ru(bpy)3 (2+)/N-butyldiethanolamine at glassy carbon electrodes.

  5. Pistachio (Pistacia vera L.) gum: a potent inhibitor of reactive oxygen species.

    Science.gov (United States)

    Sehitoglu, M Hilal; Han, Hatice; Kalin, Pınar; Gülçin, İlhami; Ozkan, Ali; Aboul-Enein, Hassan Y

    2015-04-01

    In the present study, in order to evaluate antioxidant and radical scavenging properties of Pistachio gum (P-Gum), different bioanalytical methods such as DPPH(•) scavenging activity, DMPD(•+) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, reducing ability Fe(3+)-Fe(2+) transformation, Cuprac and FRAP assays, O2(•-) scavenging by riboflavin-methionine-illuminate system and ferrous ions (Fe(2+)) chelating activities by 2,2'-bipyridyl reagent were performed separately. P-Gum inhibited 54.2% linoleic acid peroxidation at 10 µg/ml concentration. On the other hand, BHA, BHT, α-tocopherol and trolox, pure antioxidant compounds, indicated inhibition of 80.3%, 73.5%, 36.2% and 72.0% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, all of sample had an effective DPPH(•), DMPD(•+) and O2(•-) scavenging, Fe(3+) reducing power by Fe(3+)-Fe(2+) transformation and FRAP assay, Cu(2+) reducing ability by Cuprac method and Fe(2+) chelating activities.

  6. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    Directory of Open Access Journals (Sweden)

    S.M M Akram

    2015-10-01

    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  7. Kinetics and Mechanism of Paracetamol Oxidation by Chromium(VI in Absence and Presence of Manganese(II and Sodiumdodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Maqsood Ahmad Malik

    2007-11-01

    Full Text Available The kinetics of paracetamol oxidation are first order each in [paracetamol] and [HClO4]. The kinetic study shows that the oxidation proceeds in two steps. The effects of anionic micelles of sodiumdodecyl sulphate (SDS and complexing agents (ethylenediammine tetraacetic acid (EDTA and 2,2′-bipyridyl (bpy were also studied. Fast kinetic spectrophotometric method has been described for the determination of paracetamol. The method is based on the catalytic effect of manganese(II on the oxidation of paracetamol by chromium(VI in the presence of HClO4 (= 0.23 mol dm−3. Optimum reaction time is 4 to 6 minutes at a temperature of 30∘C. The addition of manganese(II ions largely decreased the absorbance of chromium(VI at 350 nm. This reaction can be utilized for the determination of paracetamol in drugs.

  8. Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film onto electrode

    International Nuclear Information System (INIS)

    Yun Wen; Xu Ying; Dong Ping; Ma Xiongxiong; He Pingang; Fang Yuzhi

    2009-01-01

    Tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 2+ ) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy) 3 2+ /AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy) 3 2+ . Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy) 3 2+ , AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pK a (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy) 3 2+ . Additionally, these doping Ru(bpy) 3 2+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy) 3 2+ /AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 x 10 -10 M

  9. Ruthenium(II) chloro-bis(bipyridyl) complexes with substituted pyridine ligands: interpretation of their electronic absorption spectra

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ershov, A.Yu.; Ivanova, N.V.; Shashko, A.D.; Kutejkina-Teplyakova, A.V.

    2003-01-01

    A number of complexes cis-[Ru(Bipy) 2 (L)(Cl)](BF 4 ), where Bipy-2,2'-bipyridine, L-pyridine, 4-aminopyridine, 4-picoline, nicotinamide, isonicotinamide, 3- and 4-cyanopyridine, 4,4'-bipyridine, trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azopyridine, pyrazine, imidazole and NH 3 , were prepared. Using the CINDO-CI semiempirical method the energies and intensities of transition in electronic absorption spectra (EAS) of the complexes were calculated. It is shown that major differences in EAS of the compounds stem from position of transitions with charge transfer d π (Ru)→π*(L) [ru

  10. (η(6)-Benzene)(carbonato-κ(2) O,O')[di-cyclohex-yl(naphthalen-1-ylmeth-yl)phosphane-κP]ruthenium(II) chloro-form tris-olvate.

    Science.gov (United States)

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-07-01

    The title compound, [Ru(CO3)(η(6)-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η(6)-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The Ru(II) atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C-H⋯O and C-H⋯Cl hydrogen-bonding inter-actions between adjacent metal complexes and between the complexes and the solvent mol-ecules. The asymmetric unit contains one metal complex and three chloro-form solvent mol-ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro-form solvent mol-ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].

  11. (η6-Benzene)(carbonato-κ2 O,O′)[di­cyclohex­yl(naphthalen-1-ylmeth­yl)phosphane-κP]ruthenium(II) chloro­form tris­olvate

    Science.gov (United States)

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-01-01

    The title compound, [Ru(CO3)(η6-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η6-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H⋯O and C—H⋯Cl hydrogen-bonding inter­actions between adjacent metal complexes and between the complexes and the solvent mol­ecules. The asymmetric unit contains one metal complex and three chloro­form solvent mol­ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro­form solvent mol­ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148–155]. PMID:25161531

  12. (η6-Benzene(carbonato-κ2O,O′[dicyclohexyl(naphthalen-1-ylmethylphosphane-κP]ruthenium(II chloroform trisolvate

    Directory of Open Access Journals (Sweden)

    Saravanan Gowrisankar

    2014-07-01

    Full Text Available The title compound, [Ru(CO3(η6-C6H6{(C6H112P(CH2C10H7}]·3CHCl3, was synthesized by carbonation of [RuCl2(η6-C6H6{(C6H112P(CH2C10H7}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H...O and C—H...Cl hydrogen-bonding interactions between adjacent metal complexes and between the complexes and the solvent molecules. The asymmetric unit contains one metal complex and three chloroform solvent molecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloroform solvent molecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009. Acta Cryst. D65, 148–155].

  13. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    Science.gov (United States)

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  14. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection.

    Science.gov (United States)

    Chen, Anyi; Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-06-16

    A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Fc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.

  15. Ruthenium(II) bipyridine complexes bearing quinoline-azoimine (NN'N″) tridentate ligands: synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis.

    Science.gov (United States)

    Al-Noaimi, Mousa; Abdel-Rahman, Obadah S; Fasfous, Ismail I; El-khateeb, Mohammad; Awwadi, Firas F; Warad, Ismail

    2014-05-05

    Four octahedral ruthenium(II) azoimine-quinoline complexes having the general molecular formula [Ru(II)(L-Y)(bpy)Cl](PF6) {L-Y=YC6H4N=NC(COCH3)=NC9H6N, Y=H (1), CH3 (2), Br (3), NO2 (4) and bpy=2,2'-bipyrdine} were synthesized. The azoimine-quinoline based ligands behave as NN'N″ tridentate donors and coordinated to ruthenium via azo-N', imine-N' and quinolone-N″ nitrogen atoms. The composition of the complexes has been established by elemental analysis, spectral methods (FT-IR, electronic, (1)H NMR, UV/Vis and electrochemical (cyclic voltammetry) techniques. The crystal structure of complex 1 is reported. The Ru(II) oxidation state is greatly stabilized by the novel tridentate ligands, showing Ru(III/II) couples ranging from 0.93-1.27 V vs. Cp2Fe/Cp2Fe(+). The absorption spectrum of 1 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A study on the alkalimetric titration with gran plot in noncomplexing media for the determination of free acid in spent fuel solutions

    International Nuclear Information System (INIS)

    Suh, Moo Yul; Lee, Chang Heon; Sohn, Se Chul; Kim, Jung Suk; Kim, Won Ho; Eom, Tae Yoon

    1999-01-01

    Based on the study of hydrolysis behaviour of U(VI) ion and major fission product metal ions such as Cs(I), Ce(III), Nd(III), Mo(VI), Ru(II), and Zr(VI) in the titration media, the performance of noncomplexing-alkalimetric titration method for the determination of free acid in the presence of these metal ions was investigated and its results were compared to those from the complexing methods. The free acidities could be determined as low as 0.05 meq in uranium solutions in which the molar ratio of U(VI)/H + was less than 5, when the end-point of titration was estimated by Gran plot. The biases in the determinations were less than ±1% and about +3% respectively for 0.4 meq and 0.05 meq of free acid at the U(VI)/H + molar ratio of up to 5. Applicability of this method to the determination of free acid in spent fuel solutions was confirmed by the analysis of nitric acid content in simulated spent fuel solutions and in a real spent fuel solution

  17. Crystal structure of μ-oxalodihydroxamato-bis[(2,2′-bipyridyl(dimethyl sulfoxide-κOcopper(II] bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Irina A. Odarich

    2016-02-01

    Full Text Available The centrosymmetric binuclear complex, [Cu2(C2H2N2O4(C10H8N22(C2H6OS2](ClO42, contains two copper(II ions, connected through an N-deprotonated oxalodihydroxamic acid dianion, two terminal 2,2′-bipyridine ligands, and two apically coordinating dimethylsulfoxide molecules. Two non-coordinating perchlorate anions assure electrical neutrality. The copper(II ions in the complex dication [Cu2(C10H8N22(μ-C2H2N2O4(C2H6SO2]2+ are in an O2N3 square-pyramidal donor environment, the Cu–Cu separation being 5.2949 (4 Å. Two hydroxamate groups in the deprotonated oxalodihydroxamic acid are located trans to one each other. In the crystal, O—H...O and C—H...O hydrogen bonds link the complex cations to the perchlorate anions. Further C—H...O hydrogen bonds combine with π–π contacts with a centroid-to-centroid separation of 3.6371 (12 Å to stack the molecules along the a-axis direction.

  18. Synthesis and characterization of poly(phenylacetylene)s with Ru(II) bis-terpyridine complexes in the side-chain.

    Science.gov (United States)

    Breul, Alexander M; Kübel, Joachim; Häupler, Bernhard; Friebe, Christian; Hager, Martin D; Winter, Andreas; Dietzek, Benjamin; Schubert, Ulrich S

    2014-04-01

    An alkyne-functionalized ruthenium(II) bis-terpyridine complex is directly copolymerized with phenylacetylene by alkyne polymerization. The polymer is characterized by size-exclusion chromatography (SEC), (1) H NMR spectroscopy, cyclic voltammetry (CV) measurements, and thermal analysis. The photophysical properties of the polymer are studied by UV-vis absorption spectroscopy. In addition, spectro-electrochemical measurements are carried out. Time-resolved luminescence lifetime decay curves show an enhanced lifetime of the metal complex attached to the conjugated polymer backbone compared with the Ru(tpy)2 (2+) model complex. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and Characterization of a Heteroleptic Ru(II Complex of Phenanthroline Containing Oligo-Anthracenyl Carboxylic Acid Moieties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2010-09-01

    Full Text Available In an effort to develop new ruthenium(II complexes, this work describes the design, synthesis and characterization of a ruthenium(II functionalized phenanthroline complex with extended π-conjugation. The ligand were L1 (4,7-bis(2,3-dimethylacrylic acid-1,10-phenanthroline, synthesized by a direct aromatic substitution reaction, and L2 (4,7-bis(trianthracenyl-2,3-dimethylacrylic acid-1,10-phenanthroline, which was synthesized by the dehalogenation of halogenated aromatic compounds using a zero-valent palladium cross-catalyzed reaction in the absence of magnesium-diene complexes and/or cyclooctadienyl nickel (0 catalysts to generate a new carbon-carbon bond (C-C bond polymerized hydrocarbon units. The ruthenium complex [RuL1L2(NCS2] showed improved photophysical properties (red-shifted metal-to-ligand charge-transfer transition absorptions and enhanced molar extinction coefficients, luminescence and interesting electrochemical properties. Cyclic and square wave voltammetry revealed five major redox processes. The number of electron(s transferred by the ruthenium complex was determined by chronocoulometry in each case. The results show that processes I, II and III are multi-electron transfer reactions while processes IV and V involved one-electron transfer reaction. The photophysical property of the complex makes it a promising candidate in the design of chemosensors and photosensitizers, while its redox-active nature makes the complex a potential mediator of electron transfer in photochemical processes.

  20. Paraquat: model for oxidant-initiated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bus, J.S.; Gibson, J.E.

    1984-04-01

    Paraquat, a quaternary ammonium bipyridyl herbicide, produces degenerative lesions in the lung after systemic administration to man and animals. The pulmonary toxicity of paraquat resembles in several ways the toxicity of several other lung toxins, including oxygen, nitrofurantoin and bleomycin. Although a definitive mechanism of toxicity of parquat has not been delineated, a cyclic single electron reduction/oxidation of the parent molecule is a critical mechanistic event. The redox cycling of paraquat has two potentially important consequences relevant to the development of toxicity: generation of activated oxygen (e.g., superoxide anion, hydrogen perioxide, hydroxyl radical) which is highly reactive to cellular macromolecules; and/or oxidation of reducing equivalents (e.g., NADPH, reduced glutathione) necessary for normal cell function. Paraquat-induced pulmonary toxicity, therefore, is a potentially useful model for evaluation of oxidant mechanisms of toxicity. Furthermore, characterization of the consequences of intracellular redox cycling of xenobiotics will no doubt provide basic information regarding the role of this phenomena in the development of chemical toxicity. 105 references, 2 figures.

  1. Selective hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn(2+)-cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane).

    Science.gov (United States)

    Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin

    2011-10-17

    In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.

  2. Infrared and swelling study of wet-spun films of DNA\\cdot[(bipy)Pt(en)]^2+ as a function of hydration

    Science.gov (United States)

    Kuebler, A.; Whitson, K. B.; Marlowe, R. L.; Lee, S. A.; Rupprecht, A.

    1997-11-01

    A ladder-like conformation of DNA has been induced by the binding of bipyridyl-Pt(II)-ethylenediamine (denoted as [(bipy)Pt(en)]^2+) at a relative humidity (RH) of 75%.(Arnott et al.,) Nature 287, (1980) 561. We report the first study of oriented films of this complex as a function of hydration by using Fourier transform infrared (IR) spectroscopy and optical microscopy. Vibrational modes between 800 and 1000 cm-1 are localized in the phosphodiester backbone and are sensitive to changes in the geometry of the molecule. The IR spectrum of this region is substantially different at 59% RH than at higher humidities, implying that a conformational change occurs as the RH is lowered below 75%. Optical microscopy measurements of small pieces of films of the complex also show changes at low RH. These trends are consistent with an order-disorder transition occurring as the RH is lowered The measurements also show that the DNA\\cdot[(bipy)Pt(en)]^2+) are very stable at the highest humidities.

  3. Dye-sensitized solar cells: a successful combination of materials

    Directory of Open Access Journals (Sweden)

    Longo Claudia

    2003-01-01

    Full Text Available Dye-sensitized TiO2 solar cells, DSSC, are a promising alternative for the development of a new generation of photovoltaic devices. DSSC are a successful combination of materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a Pt coated counter-electrode. In general, Ru bipyridyl complexes are used as the dye sensitizers. The light-to-energy conversion performance of the cell depends on the relative energy levels of the semiconductor and dye and on the kinetics of the electron-transfer processes at the sensitized semiconductor | electrolyte interface. The rate of these processes depends on the properties of its components. This contribution presents a discussion on the influence of each of the materials which constitute the DSSC of the overall process for energy conversion. An overview of the results obtained for solid-state dye-sensitized TiO2 solar cells assembled with polymer electrolytes is also presented.

  4. Role of Ru(IlI) as an inhibitor in oxidation of lactose by (Cu(bipy)2)2+ in alkaline medium: spectrophotometric and kinetic studies

    International Nuclear Information System (INIS)

    Singh, Ashok Kumar; Singh, Manjula; Srivastava, Jaya; Rahmani, Shahla

    2013-01-01

    Kinetics of oxidation of lactose by (Cu(bipy) 2 ) 2+ in alkaline medium using Ru(III) as an inhibitor has been studied spectrophotometrically at 40 °C. The studies show that the rate of the reaction is zero order with respect to (Cu(bipy) 2 ) 2+ and first order with respect to (lactose). The order of reaction is found to be two at low concentrations of OH - (from 1.48×10 5 to 3.47×10 5 M) and less than two at its high concentrations (from 4.27×10 5 to 6.31×10 5 M). There is a substantial decrease in the pseudo-zero order rate constant with increase in the concentration of Ru(III) chloride, indicating the role of Ru(III) chloride as an inhibitor. Decrease in the rate with increase in dielectric constant of the medium is observed, while ionic strength of the medium and bipyridyl concentration has no influence on the rate. Based on kinetic data and spectrophotometric evidences, a suitable mechanism is proposed for the studied reaction. (author)

  5. Rhodium-Coordinated Poly(arylene-ethynylene)-alt-Poly(arylene-vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD+/NADH Reduction

    Science.gov (United States)

    2014-01-01

    A 2,2′-bipyridyl-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) polymer, acting as a light-harvesting ligand system, was synthesized and coupled to an organometallic rhodium complex designed for photocatalytic NAD+/NADH reduction. The material, which absorbs over a wide spectral range, was characterized by using various analytical techniques, confirming its chemical structure and properties. The dielectric function of the material was determined from spectroscopic ellipsometry measurements. Photocatalytic reduction of nucleotide redox cofactors under visible light irradiation (390–650 nm) was performed and is discussed in detail. The new metal-containing polymer can be used to cover large surface areas (e.g. glass beads) and, due to this immobilization step, can be easily separated from the reaction solution after photolysis. Because of its high stability, the polymer-based catalyst system can be repeatedly used under different reaction conditions for (photo)chemical reduction of NAD+. With this concept, enzymatic, photo-biocatalytic systems for solar energy conversion can be facilitated, and the precious metal catalyst can be recycled. PMID:25130570

  6. Capillary electrophoresis coupled with electrochemiluminescence for determination of atomoxetine hydrochloride and the study on its interactions with three proteins.

    Science.gov (United States)

    Zeng, Hua-jin; Yang, Ran; Zhang, Ying; Li, Jian-jun; Qu, Ling-bo

    2015-03-01

    A simple, rapid and sensitive method for the determination of atomoxetine hydrochloride (AH) by capillary electrophoresis with electrochemiluminescence detection (CE-ECL) using tris(2,2'-bipyridyl) ruthenium (II) was developed. Under optimized conditions, the determinations of AH in capsules and rat plasmas and the study on its interactions with three plasma proteins, including bovine serum albumin, cytochrome c and myoglobin were performed successfully. Relative to some previous studies, in this paper the methodologies for the determination of AH in aqueous solution and spiked plasma systems were established, respectively. By comparing the difference between the two work curves of two systems, the matrix effect in plasma samples on the determination of AH by the CE-ECL method was discussed in detail. The results indicated that the effect of the matrix in plasma samples should not be ignored even if no obvious interference was found in the electropherograms and the establishment of method validation in complex samples by the CE-ECL method was necessary. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Ruthenium(ii)-polypyridyl zirconium(iv) metal-organic frameworks as a new class of sensitized solar cells.

    Science.gov (United States)

    Maza, W A; Haring, A J; Ahrenholtz, S R; Epley, C C; Lin, S Y; Morris, A J

    2016-01-01

    A series of Ru(ii)L 2 L' (L = 2,2'-bipyridyl, L' = 2,2'-bipyridine-5,5'-dicarboxylic acid), RuDCBPY, -containing zirconium(iv) coordination polymer thin films have been prepared as sensitizing materials for solar cell applications. These metal-organic framework (MOF) sensitized solar cells, MOFSCs, each are shown to generate photocurrent in response to simulated 1 sun illumination. Emission lifetime measurements indicate the excited state quenching of RuDCBPY at the MOF-TiO 2 interface is extremely efficient (>90%), presumably due to electron injection into TiO 2 . A mechanism is proposed in which RuDCBPY-centers photo-excited within the MOF-bulk undergo isotropic energy migration up to 25 nm from the point of origin. This work represents the first example in which a MOFSC is directly compared to the constituent dye adsorbed on TiO 2 (DSC). Importantly, the MOFSCs outperformed their RuDCBPY-TiO 2 DSC counterpart under the conditions used here and, thus, are solidified as promising solar cell platforms.

  8. Temperature effect on the photoinduced reduction of methyl viologen with several sensitizers and the evolution of hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Nenadovic, M.T.; Micic, O.I.; Rajh, T.; Savic, D.

    1983-01-01

    Irradiation by visible light of an aqueous solution containing a photosensitizer, methyl viologen (MV/sup 2 +/) and ethylenediaminetetraacetic acid leads to the formation of the reduced form of methyl viologen (MV/sup +/). The quantum yield for the formation of MV/sup +/ depends strongly on the time during which the formation is observed owing to the reaction of MV/sup +/ with oxidative products and its reduction to MV/sup 0/. Proflavin, acridine yellow and ruthenium(II)tris(2,2-bipyridyl) were used as photosensitizers and showed the same ability to promote hydrogen evolution. When CdS was used as a sensitizer a factor of 10 less hydrogen was obtained than when the dyes were used. The redox catalysts platinum, Pt-TiO/sub 2/-RuO/sub 2/ and Pt-CdS in colloidal systems showed approximately the same activity towards the reduction of water. The reduction of MV/sup 2 +/ and the evolution of hydrogen were enhanced at higher temperatures (70/sup 0/C). The optimum conditions for water reduction on redox catalysts in colloidal system under continuous illumination are analysed.

  9. Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy){sub 3}{sup 2+}/AuNPs/chitosan composite film onto electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yun Wen; Xu Ying; Dong Ping; Ma Xiongxiong [Department of Chemistry, East China Normal University, ZhongShan Road North 3663, Shanghai 20062 (China); He Pingang [Department of Chemistry, East China Normal University, ZhongShan Road North 3663, Shanghai 20062 (China)], E-mail: pghe@chem.ecnu.edu.cn; Fang Yuzhi [Department of Chemistry, East China Normal University, ZhongShan Road North 3663, Shanghai 20062 (China)], E-mail: yuzhi@online.sh.cn

    2009-03-02

    Tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy){sub 3}{sup 2+}) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy){sub 3}{sup 2+}/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy){sub 3}{sup 2+}. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy){sub 3}{sup 2+}, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pK{sub a} (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy){sub 3}{sup 2+}. Additionally, these doping Ru(bpy){sub 3}{sup 2+} in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy){sub 3}{sup 2+}/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 x 10{sup -10} M.

  10. Bis(2,2′-bipyridyl-κ2 N,N′)(carbonato-κ2 O,O′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2008-01-01

    The title complex, [Co(CO3)(C10H8N2)2]Br·3H2O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2′-bipy)2CO3]+ cation (2,2′-bipy is 2,2′-bipyrid­yl), bromide ion and water mol­ecules are linked together via O—H⋯Br and O—H⋯O hydrogen bonds, generating a one-dimensional chain. PMID:21200495

  11. Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells

    Science.gov (United States)

    Zanoni, Kassio P. S.; Amaral, Ronaldo C.; Murakami Iha, Neyde Y.; Abreu, Felipe D.; de Carvalho, Idalina M. M.

    2018-06-01

    A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH2)(NCS)2(mbpy‑anth)] (dcbH2 = 2,2‧‑bipyridyl‑4,4‧‑dicarboxylic acid, mbpy‑anth = 4‑[N‑(2‑anthryl)carbamoyl]‑4‧‑methyl‑2,2‧‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1LCAnth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO2 compact layers beneath the TiO2 mesoporous film to prevent meso‑TiO2/dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%.

  12. Aquation Is a Crucial Activation Step for Anticancer Action of Ruthenium(II) Polypyridyl Complexes to Trigger Cancer Cell Apoptosis.

    Science.gov (United States)

    Li, Meng; Lai, Lanhai; Zhao, Zhennan; Chen, Tianfeng

    2016-01-01

    Aquation has been proposed as crucial chemical action step for ruthenium (Ru) complexes, but its effects on the action mechanisms remain elusive. Herein, we have demonstrated the aquation process of a potent Ru polypyridyl complex (RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , bmbp=2,6-bis(6-methylbenzimidazol-2-yl) pyridine, phen=phenanthroline) with a chloride ligand, and revealed that aquation of RuBmp effectively enhanced its hydrophilicity and cellular uptake, thus significantly increasing its anticancer efficacy. The aquation products (H-RuBmp=[Ru(II) (bmbp)(phen)Cl]ClO4 , [Ru(II) (bmbp)(phen)(H2 O)]ClO4 , bmbp) exhibited a much higher apoptosis-inducing ability than the intact complex, with involvement of caspase activation, mitochondria dysfunction, and interaction with cell membrane death receptors. H-RuBmp demonstrated a higher interaction potency with the cell membrane and induced higher levels of ROS overproduction in cancer cells to regulate the AKT, MAPK, and p53 signaling pathways. Taken together, this study could provide useful information for fine-tuning the rational design of next-generation metal medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  14. Synthesis, characterization and biological evaluation of ruthenium flavanol complexes against breast cancer

    Science.gov (United States)

    Singh, Ashok Kumar; Saxena, Gunjan; Sahabjada; Arshad, M.

    2017-06-01

    Four Ru(II) DMSO complexes (M1R-M4R) having substituted flavones viz. 3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one (HL1), 3-Hydroxy-2-(4-nitrophenyl)-4H-chromen-4-one (HL2), 3-Hydroxy-2-(4-dimethylaminophenyl)-4H-chromen-4-one (HL3) and 3-Hydroxy-2-(4-chlorophenyl)-4H-chromen-4-one (HL4) were synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR spectroscopies and ESI-MS. The molecular structures of the complexes were investigated by integrated spectroscopic and computational techniques (DFT). Both ligands as well as their complexes were screened for anticancer activities against breast cancer cell lines MCF-7. Cytotoxicity was assayed by MTT [3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. All ligands and their complexes exhibited significant cytotoxic potential of 5-40 μM concentration at incubation period of 24 h. The cell cytotoxicity increased significantly in a concentration-dependent manner. In this series of compounds, HL2 (IC50 17.2 μM) and its complex M2R (IC50 16 μM) induced the highest cytotoxicity.

  15. Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion.

    Science.gov (United States)

    Bangle, Rachel; Sampaio, Renato N; Troian-Gautier, Ludovic; Meyer, Gerald J

    2018-01-24

    The electrografting of [Ru(ttt)(tpy-C 6 H 4 -N 2 + )] 3+ , where "ttt" is 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine, was investigated on several wide band gap metal oxide surfaces (TiO 2 , SnO 2 , ZrO 2 , ZnO, In 2 O 3 :Sn) and compared to structurally analogous sensitizers that differed only by the anchoring group, i.e., -PO 3 H 2 and -COOH. An optimized procedure for diazonium electrografting to semiconductor metal oxides is presented that allowed surface coverages that ranged between 4.7 × 10 -8 and 10.6 × 10 -8 mol cm -2 depending on the nature of the metal oxide. FTIR analysis showed the disappearance of the diazonium stretch at 2266 cm -1 after electrografting. XPS analysis revealed a characteristic peak of Ru 3d at 285 eV as well as a peak at 531.6 eV that was attributed to O 1s in Ti-O-C bonds. Photocurrents were measured to assess electron injection efficiency of these modified surfaces. The electrografted sensitizers exhibited excellent stability across a range of pHs spanning from 1 to 14, where classical binding groups such as carboxylic and phosphonic derivatives were hydrolyzed.

  16. Facile reductive silylation of UO{sub 2}{sup 2+} to uranium(IV) chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, John J.; Bart, Suzanne C. [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Zeller, Matthias [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Department of Chemistry, Youngstown State University, Youngstown, OH (United States)

    2017-01-19

    General reductive silylation of the UO{sub 2}{sup 2+} cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO{sub 2}X{sub 2}(L){sub 2} (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R{sub 3}Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R{sub 3}SiO){sub 2}UX{sub 2}(L){sub 2} in high yields. Support is included for the key step in the process, reduction of U{sup VI} to U{sup V}. This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl{sub 4} or two equivalents of Me{sub 2}SiCl{sub 2} results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  18. Development of electrochemiluminescent inhibition method for determination of gentian violet in aquatic water.

    Science.gov (United States)

    Wang, Sui; Hao, Tingting; Yu, Xinwei; Gai, Panpan; Guo, Zhiyong

    2012-04-01

    Gentian violet (GV) was found to quench the electrochemiluminescence (ECL) of the tris(2,2'-bipyridyl)ruthenium(II)/tris-n-propylamine (Ru(bpy)3(2+)-TPA) system at a glass carbon electrode (GCE). Based on the ECL signal changes, a simple and ultrasensitive detection method for GV in aquatic water was established. Under the optimized conditions, the quenched ECL intensity versus the logarithm of the concentration of GV was linear over a concentration range from 1.0×10(-10) to 5.0×10(-7) mol L(-1), and the limit of detection (LOD) was found to be 4.5×10(-12) mol L(-1) (S/N=3). The results obtained by the ECL system were better than other reported methods in literatures in terms of sensitivity or linear response range. The method was successfully applied to determine GV in aquatic water, and the relative standard deviations (RSDs) were found less than 6.3%, and the recoveries were obtained from 98.7 to 111.0%. Moreover, a possible mechanism of the quenching effect was primarily discussed based on UV-visible absorption spectra, cyclic voltammograms and IECL-E curves. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.

    Science.gov (United States)

    Sakai, Shinji; Ohi, Hiromi; Hotta, Tomoki; Kamei, Hidenori; Taya, Masahito

    2018-02-01

    Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  20. Sodium fluoride-assisted modulation of anodized TiO₂ nanotube for dye-sensitized solar cells application.

    Science.gov (United States)

    Yun, Jung-Ho; Ng, Yun Hau; Ye, Changhui; Mozer, Attila J; Wallace, Gordon G; Amal, Rose

    2011-05-01

    This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO₂ nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO₂ film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2̀-bipyridyl-4,4̀-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO₂ films.

  1. Crystal structure of tetraaqua(5,5′-dimethyl-2,2′-bipyridyl-κ2N,N′iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Yamine Belamri

    2014-12-01

    Full Text Available In the title compound, [Fe(C12H12N2(H2O4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bipyridine ligand and four water O atoms in a distorted octahedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3 to 2.110 (3 Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3 and 2.177 (3 Å]. The chelating N—Fe—N angle of 75.6 (1° shows the largest deviation from an ideal octahedral geometry; the other coordination angles deviate from ideal values by 0.1 (1 to 9.1 (1°. O—H...O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further interact by means of C—H...O and π–π interactions involving the laterally positioned bipyridine rings. The perpendicular distance between π–π interacting rings is 3.365 (2 Å, with a centroid–centroid distance of 3.702 (3 Å.

  2. Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) coupled to capillary/microchip electrophoresis: A review

    International Nuclear Information System (INIS)

    Su Ming; Wei Wei; Liu Songqin

    2011-01-01

    Graphical abstract: The mechanism of Ru(bpy) 3 2+ electrochemiluminescence, addition mode of Ru(bpy) 3 2+ , recent applications of capillary electrophoresis coupled with electrochemiluminescent detection in drug and other substrates analysis are reviewed. - Abstract: A comprehensive review on the development of analytical methods, by coupling electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) and microchip electrophoresis (ME), is presented. After the description of the basic mechanism of ECL, the addition mode of luminescence reagent in CE-ECL system has been discussed. The analytical applications of the CE-ECL technique in terms of different analytes are also given. Due to the importance of ME as a separation method for the present and future, the ME detection methods based on ECL are considered in a relatively detailed way. Finally, possible trends for CE/ME-ECL in the near future are discussed.

  3. Antimicrobial mechanism of copper (II 1,10-phenanthroline and 2,2′-bipyridyl complex on bacterial and fungal pathogens

    Directory of Open Access Journals (Sweden)

    S. Chandraleka

    2014-12-01

    Full Text Available Copper based metallo drugs were prepared and their antibacterial, antifungal, molecular mechanism of [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O complexes were investigated. The [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O were derived from the Schiff base alanine salicylaldehyde. [Cu(SAlaPhen]·H2O showed noteworthy antibacterial and antifungal activity than the [Cu(SAlabpy]·H2O and ligand alanine, salicylaldehyde. The [Cu(SAlaPhen]·H2O complex showed significant antibacterial activity against Salmonella typhi, Staphylococcus aureus, Salmonella paratyphi and the antifungal activity against Candida albicans and Cryptococcus neoformans in well diffusion assay. The mode of action of copper (II complex was analyzed by DNA cleavage activity and in silico molecular docking. The present findings provide important insight into the molecular mechanism of copper (II complexes in susceptible bacterial and fungal pathogens. These results collectively support the use of [Cu(SAlaPhen]·H2O complex as a suitable drug to treat bacterial and fungal infections.

  4. A Readily Accessible Class of Chiral Cp Ligands and their Application in RuII -Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles.

    Science.gov (United States)

    Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai

    2018-05-04

    Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical study on the antitumor properties of Ru(II) complexes containing 2-pyridyl, 2-pyridine-4-carboxylic acid ligands

    Science.gov (United States)

    Erkan kariper, Sultan; Sayin, Koray; Karakaş, Duran

    2017-12-01

    [Ru(bipy)2(CppH)]2+(1), [Ru(bipy)2(Cpp-NH-Hex-COOH)]2+(2), [Ru(dppz)2(CppH)]2+(3) and [Ru(dppz)2(Cpp-NH-Hex-COOH)]2+(4) were calculated by Hartree-Fock (HF), Density Functional Theory (DFT) hybrid B3LYP and Moller-Plesset Perturbation (MPn n = 2,3) theory method and CEP-4G, CEP-31G, CEP-121G, LANL2DZ, LANL2MB, SDD basic sets and a mixed basic set with the keyword GEN in gas phase and water. Structure parameters obtained from optimized structures were compared with experimental parameters. M062X/(6-31G(d))(CEP-4G) level was taken into account for the most appropriate calculation level. IR, UV-VIS and NMR spectrums were examined for structural characterization. The optimal structure was identified via structure parameters, IR, UV-VIS and NMR spectrums. For the most compatible structure, the highest molecular orbital energy (EHOMO) which one of the most effective chemical determiners on the antitumor activity of the complexes, the lowest molecular orbital energy (ELUMO), LUMO-HOMO energy gap, hardness (η), softness (σ), electronegativity (χ), chemical potential (μ), electrophilicity index (ω), molar volume (V), dipole moment (DM), total negative charge (TNC), enthalpy (H), entropy (S) and total energy (E) were calculated. The causes of anticancer activity of the complexes have been studied.

  6. Nanocrystalline sol-gel Nb{sub 2}O{sub 5} coatings. Preparation, characterisation and application to photovoltaic cell, lithium battery and eletrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yeping

    2002-07-01

    Thick and thin films of Nb{sub 2}O{sub 5} have been prepared by the sol-gel process using cheap niobium pentachloride as precursor and a new synthesis route. The microstructure of the films was tailored by adding poly(ethylene glycol) (PEG) and carbon soot into the sol and varying the sintering temperature. The thesis describes the properties of the sols and their influence on the properties of the resulting nanocrystalline Nb{sub 2}O{sub 5} films as electrodes in dye sensitised solar cells, electrochromic devices and rechargeable lithium batteries. A solar light-to-electric conversion efficiency of Ru(II) sensitised Nb{sub 2}O{sub 5} solar cell as high as 7% under 120 W/m{sup 2} illumination was obtained. An equivalent electric circuit of the dye sensitised electrode/electrolyte interface based on the electrochemical impedance spectroscopy was modelled and found to fit all the results. The values obtained for the electric elements from the simulation of the results were found to relate material parameters to the cell performance and their influence on the cell performance are illustrated. The electrochromism and Li{sup +}-charge and discharge of the Nb{sub 2}O{sub 5} films exhibited also good performance. (orig.)

  7. Novel concepts and strategies in anticancer metallodrug development : towards oral activity, peptide conjugation and mass spectrometric applications

    Energy Technology Data Exchange (ETDEWEB)

    Meier, S.

    2013-07-01

    Some ruthenium and osmium complexes are promising anticancer drug candidates and the preparation of organometallic RuII and OsII complexes, stabilized by a η6-coordinating arene, represents the latest strategy for obtaining anticancer active metallodrugs with an intriguing activity profile. This PhD thesis reports on the discovery of novel tumour-inhibiting RuII– and OsII–arene metallodrugs and on studies aimed at understanding the molecular interactions of established anticancer agents and drug candidates with biomolecules. Although this field of research is intensely investigated, S,N-bidentate ligand-containing RuII and OsII metallodrugs are reported for the first time. The ligands are based on 2-pyridinecarbothioamides, which show activity as gastric mucosal protectants and are largely non-toxic in vivo (J. Med. Chem., 1990, 33, 327–336). Complexation to the organometallic moiety, however, yields highly cytotoxic metallodrugs in the chemoresistant colon carcinoma and multidrug-resistant non-small lung cancer cell lines. Their aqueous behaviour and drug-likeness properties suggest that this novel family of organometallic anticancer agents may be suitable for oral administration. Additionally, studies with the nucleosome core particle showed that these metallodrugs bind exclusively to the histone proteins at histone dimer–dimer and dimer–tetramer interfaces and therefore, may interfere with chromatin dynamics as a possible mode of action. Organometallic RuII–arene metallodrugs based on O,O-bidentate pyronato ligands typically show low antiproliferative activity. Intriguingly, triazolyl-modified pyrones coordinated to RuII–p-cymene yield highly cytotoxic agents in vitro. The strategy of triazolyl modification was followed to prepare the first organometallic Ru–peptide bioconjugate with cytotoxic activity in the low micromolar range in an ovarian cancer cell line. The metal–peptide bioconjugate was thoroughly characterized by different methods

  8. SYNTHESIS, CRYSTAL STRUCTURE AND LUMINESCENT PROPERTY OF A DINUCLEAR Tb(II COMPLEX WITH HOMOPHTHALIC ACID AND 2,2’-BIPYRIDYL

    Directory of Open Access Journals (Sweden)

    LI-HUA WANG

    2015-07-01

    Full Text Available A novel dinuclear Tb(III complex, [Tb(bpy2L2] (bpy = 2,2’-bipyridine, H2L = homophthalic acid, has been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Tb(III complex is monoclinic, space group P21/c with a = 9.368(2 Å, b = 15.948(4 Å, c = 12.216(3 Å, β = 103.023(4º, V= 1778.2(7 Å3, Z = 2, Dc = 1.910 mg·m-3, μ = 4.011 mm-1, F(000 = 996, and final R1 = 0.0602, ωR2 = 0.2192. The result shows that the Tb(III center is seven-coordination with a N2O5 distorted pengonal bipyramidal geometry. The luminescent property of Tb(III complex was investigated.

  9. Efficient sensitization of mesoporous electrodeposited zinc oxide by cis-bis(isothiocyanato)bis(2,2 '-bipyridyl-4,4 '-dicarboxylato)-ruthenium(II)

    Czech Academy of Sciences Publication Activity Database

    Loewenstein, T.; Nonomura, K.; Yoshida, T.; Michaelis, E.; Wöhrle, D.; Rathouský, Jiří; Wark, M.; Schlettwein, D.

    2006-01-01

    Roč. 153, č. 4 (2006), A699-A704 ISSN 0013-4651 Institutional research plan: CEZ:AV0Z40400503 Keywords : hybrid thin films * ZnO electrodes * photoelectrochemical performance Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.387, year: 2006

  10. Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) coupled to capillary/microchip electrophoresis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Su Ming; Wei Wei [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Liu Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2011-10-17

    Graphical abstract: The mechanism of Ru(bpy){sub 3}{sup 2+} electrochemiluminescence, addition mode of Ru(bpy){sub 3}{sup 2+}, recent applications of capillary electrophoresis coupled with electrochemiluminescent detection in drug and other substrates analysis are reviewed. - Abstract: A comprehensive review on the development of analytical methods, by coupling electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) and microchip electrophoresis (ME), is presented. After the description of the basic mechanism of ECL, the addition mode of luminescence reagent in CE-ECL system has been discussed. The analytical applications of the CE-ECL technique in terms of different analytes are also given. Due to the importance of ME as a separation method for the present and future, the ME detection methods based on ECL are considered in a relatively detailed way. Finally, possible trends for CE/ME-ECL in the near future are discussed.

  11. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Christopher C. Thompson

    2011-02-01

    Full Text Available Iron is an essential cofactor in a number of critical biochemical reactions, and as such, its acquisition, storage, and metabolism is highly regulated in most organisms. The obligate intracellular bacterium, Chlamydia trachomatis experiences a developmental arrest when iron within the host is depleted. The nature of the iron starvation response in Chlamydia is relatively uncharacterized because of the likely inefficient method of iron depletion, which currently relies on the compound deferoxamine mesylate (DFO. Inefficient induction of the iron starvation response precludes the identification of iron-regulated genes. This report evaluated DFO with another iron chelator, 2,2’-bipyridyl (Bpdl and presented a systematic comparison of the two across a range of criteria in a single-treatment time-of-infection regimen. We demonstrate that the membrane permeable Bpdl was superior to DFO in the inhibition of chlamydia development, the induction of aberrant morphology, and the induction of an iron starvation transcriptional response in both host and bacteria. Furthermore, iron starvation using Bpdl identified the periplasmic iron binding protein-encoding ytgA gene as iron- responsive. Overall, the data present a compelling argument for the use of Bpdl, rather than DFO, in future iron starvation studies of chlamydia and other intracellular bacteria.

  12. Electronic structure of the indium tin oxide/nanocrystalline anatase (TiO2)/ruthenium-dye interfaces in dye-sensitized solar cells

    Science.gov (United States)

    Lyon, J. E.; Rayan, M. K.; Beerbom, M. M.; Schlaf, R.

    2008-10-01

    The electronic structure of two interfaces commonly found in dye-sensitized photovoltaic cells based on nanocrystalline anatase TiO2 ("Grätzel cells") was investigated using photoemission spectroscopy (PES). X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) measurements were carried out on the indium tin oxide (ITO)/TiO2 and the TiO2/cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye ("N719" or "Ruthenium 535-bisTBA") interfaces. Both contacts were investigated using a multistep deposition procedure where the entire structure was prepared in vacuum using electrospray deposition. In between deposition steps the surface was characterized with XPS and UPS resulting in a series of spectra, allowing the determination of the orbital and band lineup at the interfaces. The results of these efforts confirm previous PES measurements on TiO2/dye contacts prepared under ambient conditions, suggesting that ambient contamination might not have significant influence on the electronic structure at the dye/TiO2 interface. The results also demonstrate that there may be a significant barrier for electron injection at the sputtered ITO/TiO2 interface and that this interface should be viewed as a semiconductor heterojunction rather than as metal-semiconductor (Schottky) contact.

  13. An ultrasensitive sandwich type electrochemiluminescence immunosensor for triiodothyronine detection using silver nanoparticle-decorated graphene oxide as a nanocarrier.

    Science.gov (United States)

    Chou, Hung-Tao; Fu, Chien-Yu; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2015-09-15

    An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed to detect 3,3',5-triiodothyronine (T3). The system employed T3-conjugated, silver nanoparticle-decorated carboxylic graphene oxide (Ag@fGO-T3) as a carrier and anti-T3 antibody-tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)3(2+)) as a probe. The Ag@fGO-T3 and Ru(bpy)3(2+) complex could be mobilized rapidly to the anode in the reaction chamber through electrophoresis. The fGO is reduced electrochemically at the electrode, and the electrons could transfer from an anode to the Ru(bpy)3(2+). The complex is excited at the electrode and an ECL signal is produced upon reacting with tripropylamine (TPrA). Because of its large surface area and excellent conductivity, Ag@fGO could enhance ECL signal significantly in the system. Quantitative measurement of T3 could be achieved in the range from 0.1 pg/mL to 0.8 ng/mL with a detection limit of 0.05 pg/mL. In addition, the novel immunosensor showed good specificity in the presence of serum, indicating its high potential in clinical use. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    Science.gov (United States)

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  16. Smart PEGylation of trypsin.

    Science.gov (United States)

    Zarafshani, Zoya; Obata, Toshihiro; Lutz, Jean-François

    2010-08-09

    Thermoresponsive oligo(ethylene glycol)-based copolymers were investigated for trypsin conjugation. These copolymers have been synthesized by atom transfer radical polymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO(2)MA) with oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475), M(n) = 475 g.mol(-1)) at 60 degrees C in the presence of copper(I) chloride and 2,2'-bipyridyl. Two different ATRP initiators, containing succinimidyl ester moieties, were tested, namely, N-succinimidyl-2-bromopropionate and N-succinimidyl-2-bromoisobutyrate. In both cases, ATRP afforded well-defined polymers with a narrow molecular weight distribution and controlled chain-ends. However, the efficiency of initiation of the two initiators was lower than 1 and therefore the formed polymers exhibited a higher than expected mean degree of polymerization. Nevertheless, all types of polymers could be conjugated to trypsin. The conjugation reaction was performed in borax-HCl buffer. Sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE) indicated that polymer/enzyme conjugates were obtained in all cases. However, (co)polymers initiated by N-succinimidyl-2-bromopropionate led to the best conjugation results. The formed P(MEO(2)MA-co-OEGMA(475))-trypsin conjugates were found to be thermoresponsive and moreover exhibited a higher enzymatic activity than unmodified trypsin.

  17. Simple and cheap steric and electronic characterization of the reactivity of Ru(II) complexes containing oxazoline ligands as epoxidation catalysts

    KAUST Repository

    Poater, Albert

    2013-07-01

    The reactivity of a new family of complexes with general formula [Ru IV(T)(R-D)(O)]2+ (T = trispyrazolylmethane (tpm); D = N-(1-hydroxy-3-methylbutan-(2S)-(-)-2-yl)-(4S)-(-)-4-isopropyl-4, 5-dihydrooxazole-2-carbimidate, R = Bz (1); iPr (2)) has been analyzed. There is a significant difference in regioselectivity between the two catalysts in the epoxidation of 4-vinylcyclohexene; 1 leads to the regioselective oxidation at the ring alkene position, whereas 2 leads to the oxidation at the terminal position. Although computational calculations indicate small energy differences, both the geometry through steric maps and the electronic parameters of the reactants via conceptual DFT, or charges via NPA, explain the reactivity differences found for the catalysts depending on the substituents of the oxazoline ligands. © 2013 Elsevier B.V. All rights reserved.

  18. Electronic optimization of heteroleptic Ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells.

    Science.gov (United States)

    Han, Won-Sik; Han, Jung-Kyu; Kim, Hyun-Young; Choi, Mi Jin; Kang, Yong-Soo; Pac, Chyongjin; Kang, Sang Ook

    2011-04-18

    We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.

  19. Simple and cheap steric and electronic characterization of the reactivity of Ru(II) complexes containing oxazoline ligands as epoxidation catalysts

    KAUST Repository

    Poater, Albert; Falivene, Laura; Cavallo, Luigi; Llobet, Antoni A.; Rodrí guez, Montserrat Carmen Rí os; Romero, Isabel; Solà , Miquel

    2013-01-01

    The reactivity of a new family of complexes with general formula [Ru IV(T)(R-D)(O)]2+ (T = trispyrazolylmethane (tpm); D = N-(1-hydroxy-3-methylbutan-(2S)-(-)-2-yl)-(4S)-(-)-4-isopropyl-4, 5-dihydrooxazole-2-carbimidate, R = Bz (1); iPr (2)) has

  20. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

    Czech Academy of Sciences Publication Activity Database

    Matuška, O.; Zápal, J.; Hrdličková, R.; Mikoška, M.; Pecháček, J.; Vilhanová, B.; Václavík, Jiří; Kuzma, M.; Kačer, P.

    2016-01-01

    Roč. 118, č. 1 (2016), s. 215-222 ISSN 1878-5190 Institutional support: RVO:61388963 Keywords : ruthenium * asymmetric transfer hydrogenation * dihydroisoquinolines * sulfonamide Subject RIV: CC - Organic Chemistry Impact factor: 1.264, year: 2016

  1. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

    Czech Academy of Sciences Publication Activity Database

    Matuška, O.; Zápal, Jakub; Hrdličková, R.; Mikoška, M.; Pecháček, J.; Vilhanová, B.; Václavík, Jiří; Kuzma, Marek; Kačer, P.

    2016-01-01

    Roč. 118, č. 1 (2016), s. 215-222 ISSN 1878-5190 R&D Projects: GA ČR GAP106/12/1276; GA ČR(CZ) GA15-08992S; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : Ruthenium * Asymmetric transfer hydrogenation * Dihydroisoquinolines Subject RIV: EE - Microbiology, Virology Impact factor: 1.264, year: 2016

  2. Molecular Engineering, Photophysical and Electrochemical Characterizations of Novel Ru(II) and BODIPY Sensitizers for Mesoporous TiO2 Solar Cells

    Science.gov (United States)

    Cheema, Hammad Arshad

    To realize the dream of a low carbon society and ensure the wide spread application of renewable energy sources such as solar energy, photovoltaic devices should be highly efficient, cost-effective and stable for at least 20 years. Dye sensitized solar cells (DSCs) are photovoltaic cells that mimic the natural photosynthesis. In a DSC, the dye absorbs photons from incident light and converts those photons to electric charges, which are then extracted to the outer circuit through semiconductor TiO2, whereas the mediator regenerates the oxidized dye. A sensitizer is the pivotal component in the device in terms of determining the spectral response, color, photocurrent density, long term stability, and thickness of a DSC. The breakthrough report by O'Regan and Gratzel in 1991 has garnered more than 18,673 citations (as of October 9, 2014), which indicates the immense scientific interest to better understand and improve the fundamental science of this technology. With the aforementioned in mind, this study has focused on the molecular engineering of novel sensitizers to provide a better understanding of structure-property relationships of novel sensitizers for DSCs. The characterization of sensitizers (HD-1-mono, HD-2-mono and HD-2) for photovoltaic applications showed that the photocurrent response of DSCs can be increased by using mono-ancillary ligand instead of bis-ancillary ligands, which is of great commercial value considering the difference in the molecular weights of both dyes. The results of this work were published in Journal of Materials Chemistry A (doi:10.1039/c4ta01942c) and ACS Applied Materials and Interfaces (doi: 10.1021/am502400b). Furthermore, structure-property relationships were investigated in Ru (II) sensitizers HL-41 and HL-42 in order to elucidate the steric effects of electron donating ancillary ligands on photocurrent and photovoltage, as discussed in Chapter 4. It was found that the electron donating group (ethoxy) ortho to the CH=CH spacer precludes coplanarity of the naphthalene moiety, thus decreasing the extracted photocurrent response from solar device. The findings were published in Dyes and Pigments (doi:10.1016/j.dyepig.2014.08.005). For HD-7 and HD-8, intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands, respectively in Ru (II) sensitizers was investigated using femtosecond transient absorption spectroscopy. It was found that the excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than that in HD-8 and those triplet electrons are not being injected in TiO2 efficiently as discussed in Chapter 5. To achieve long term stability, we combined the strong electron donor characteristics of carbazole and the hydrophobic nature of long alkyl chains, C7 (HD-14 ), C18 (HD-15) and C2 (NCSU-10), tethered to N-carbazole. HD-15 showed strikingly good long term light soaking stability and maintained up to 98% of initial efficiency value compared to 92% for HD-14 and 78% for NCSU-10, as discussed in Chapter 6. Boron dipyromethene (BODIPY) dyes HB-1, HB-2 and HB-3 were synthesized and fully characterized for dye solar cells. It was found that having long alkyl chains tethered to the donor groups alone are not sufficient for achieving highly efficient photovoltaic response from BODIPY dyes (Chapter 7). Thus, replacement of fluorines from BODIPY core with long alkoxy chains has been suggested for future work.

  3. A Decaheme Cytochrome as a Molecular Electron Conduit in Dye-Sensitized Photoanodes

    Science.gov (United States)

    Hwang, Ee Taek; Sheikh, Khizar; Orchard, Katherine L; Hojo, Daisuke; Radu, Valentin; Lee, Chong-Yong; Ainsworth, Emma; Lockwood, Colin; Gross, Manuela A; Adschiri, Tadafumi; Reisner, Erwin; Butt, Julea N; Jeuken, Lars J C

    2015-01-01

    In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems. PMID:26180522

  4. Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone

    Directory of Open Access Journals (Sweden)

    Tohru Wada

    2017-02-01

    Full Text Available We synthesized 1,8-bis(2,2′:6′,2″-terpyrid-4′-ylanthraquinone (btpyaq as a new dimerizing ligand and determined its single crystal structure by X-ray analysis. The dinuclear Ruthenium complex [Ru2(µ-Cl(bpy2(btpyaq](BF43 ([3](BF43, bpy = 2,2′-bipyridine was used as a catalyst for water oxidation to oxygen with (NH42[Ce(NO36] as the oxidant (turnover numbers = 248. The initial reaction rate of oxygen evolution was directly proportional to the concentration of the catalyst and independent of the oxidant concentration. The cyclic voltammogram of [3](BF43 in water at pH 1.3 showed an irreversible catalytic current above +1.6 V (vs. SCE, with two quasi-reversible waves and one irreversible wave at E1/2 = +0.62, +0.82 V, and Epa = +1.13 V, respectively. UV-vis and Raman spectra of [3](BF43 with controlled-potential electrolysis at +1.40 V revealed that [Ru(IV=O O=Ru(IV]4+ is stable under electrolysis conditions. [Ru(III, Ru(II] species are recovered after dissociation of an oxygen molecule from the active species in the catalytic cycle. These results clearly indicate that an O–O bond is formed via [Ru(V=O O=Ru(IV]5+.

  5. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.

    Science.gov (United States)

    Sathish, Veerasamy; Ramdass, Arumugam; Velayudham, Murugesan; Lu, Kuang-Lieh; Thanasekaran, Pounraj; Rajagopal, Seenivasan

    2017-12-12

    The detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics. This review briefly summarizes the salient features of the design and preparation of transition metal (Zn(ii), Ir(iii), Pd(ii), Pt(ii), Re(i) and Ru(ii)) complexes/metallacycles/metallosupramolecules with emphasis on their photophysical properties, sensing behavior, mechanism of action, and the driving forces for detecting explosives and future prospects and challenges. Most of the probes that have been reported to date act as "turn-off" luminescent sensors because their emission (intensity, lifetime, and quantum yield) is eventually quenched upon sensing with nitroaromatic compounds (NACs) through photo-induced electron or energy transfer. These unique properties of transition metal complexes in response to explosives open up new vistas for the development of real world applications such as on-site detection, in-field security, forensic research, etc.

  6. An Insight into the Anticancer Activities of Ru(II-Based Metallocompounds Using Docking Methods

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2013-09-01

    Full Text Available Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.

  7. Am(m)ines make the difference: organoruthenium am(m)ine complexes and their chemistry in anticancer drug development.

    Science.gov (United States)

    Babak, Maria V; Meier, Samuel M; Legin, Anton A; Adib Razavi, Mahsa S; Roller, Alexander; Jakupec, Michael A; Keppler, Bernhard K; Hartinger, Christian G

    2013-03-25

    With the aim of systematically studying fundamental structure-activity relationships as a basis for the development of Ru(II) arene complexes (arene = p-cymene or biphenyl) bearing mono-, bi-, or tridentate am(m)ine ligands as anticancer agents, a series of ammine, ethylenediamine, and diethylenetriamine complexes were prepared by different synthetic routes. Especially the synthesis of mono-, di-, and triammine complexes was found to be highly dependent on the reaction conditions, such as stoichiometry, temperature, and time. Hydrolysis and protein-binding studies were performed to determine the reactivity of the compounds, and only those containing chlorido ligands undergo aquation or form protein adducts. These properties correlate well with in vitro tumor-inhibiting potency of the compounds. The complexes were found to be active in anticancer assays when meeting the following criteria: stability in aqueous solution and low rates of hydrolysis and binding to proteins. Therefore, the complexes least reactive to proteins were found to be the most cytotoxic in cancer cells. In general, complexes with biphenyl as arene ligand inhibited the growth of tumor cells more effectively than the cymene analogues, consistent with the increase in lipophilicity. This study highlights the importance of finding a proper balance between reactivity and stability in the development of organometallic anticancer agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dissociation and Dioxygen Formation in Hydroxide Solutions of Tris (2,2- bipyridyl) Iron (III) and Tris (1,10-phenanthroline) Iron (III)

    DEFF Research Database (Denmark)

    Nord, G.; Pedersen, B.; Bjergbakke, Erling

    1983-01-01

    The fast redox reactions of the title Fe(II1) complexes in basic solutions give the Fe(I1) complexes and coordinated ligand N-oxide as primary products. Further reactions by parallel paths include dissociation to give the free ligand N-oxide and catalysis by hydroxy Fe(II1) complexes leading...

  9. Bis(2,2′-bipyridyl-κ2N,N′(sulfato-κ2O,O′cobalt(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-01-01

    Full Text Available The title compound, [Co(SO4(C10H8N22]·C2H6O2, has the Co2+ ion in a distorted octahedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethanediol molecule. In the crystal, the [CoSO4(C10H8N22] and C2H6O2 units are held together by a pair of O—H...O hydrogen bonds.

  10. Optical oxygen sensing materials based on a novel dirhenium(I) complex assembled in mesoporous silica

    International Nuclear Information System (INIS)

    Liu Yanhong; Li Bin; Cong Yan; Zhang Liming; Fan Di; Shi Linfang

    2011-01-01

    A new dirhenium(I) complex fac-[{Re(CO) 3 (4,7-dinonadecyl-1,10-phenanthro -line)} 2 (4,4'-bipyridyl)] (trifluoromethanesulfonate) 2 (denoted as D-Re(I) ) is assembled in MCM-41 and SBA-15 type mesoporous silica support. The emission peaks of D-Re(I) in D-Re(I)/MCM-41 and D-Re(I)/SBA-15 are observed at 522 and 517 nm, respectively. Their long excited lifetimes, which are of the order of microseconds, indicate the presence of phosphorescence emission arising from the metal to ligand charge-transfer (MLCT) transition. The luminescence intensities of D-Re(I)/MCM-41 and D-Re(I)/SBA-15 decrease remarkably with increase in the oxygen concentration, meaning that they can be used as optical oxygen sensing materials based on luminescence quenching. The ratios I 0 /I 100 of D-Re(I)/MCM-41 and D-Re(I)/SBA-15 are estimated to be 5.6 and 20.1, respectively. The obtained Stern-Volmer oxygen quenching plots of the mesoporous sensing materials could be fitted well to the two-site Demas model and Lehrer model. - Research highlights: → Dirhenium(I) complex assembled in mesoporous molecular sieves for oxygen sensor design. → Large α-diimine ligand L used to improve oxygen sensing properties. → High sensitivity (I 0 /I 100 ) up to 20.1.

  11. Characterization of electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Jiye; Takahashi, Fumiki; Kaneko, Tsutomu; Nakamura, Toshio

    2010-01-01

    Glyphosate, a phosphorus-containing amino acid type herbicide was used as a coreactant for studying of electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy) 3 2+ ] in an aqueous solution. In a phosphate buffer solution of pH 8, glyphosate itself was known to be electrochemically inactive at glassy carbon electrode, however, it participated in a homogeneous chemical reaction with the electrogenerated Ru(bpy) 3 3+ , and resulted in producing Ru(bpy) 3 2+ species at the electrode surface. Kinetic and mechanistic information for the catalysis of glyphosate oxidation were evaluated by the steady-state voltammetric measurement with an ultramicroelectrode. The simulated cyclic voltammogram based on this mechanism was in good agreement with that obtained experimentally. ECL reaction of Ru(bpy) 3 2+ /glyphosate system was found to be strongly dependent on the media pH. In a pH region of 5-9, an ECL wave appeared at ca. +1.1 V vs. Ag/AgCl, which was caused by the generation of *Ru(bpy) 3 2+ via a Ru(bpy) 3 3+ -mediated oxidation of glyphosate. When pH >10, a second ECL wave was observed at ca. +1.35 V vs. Ag/AgCl, which was believed to be associated with a reaction between Ru(bpy) 3 3+ and the species from direct oxidation of GLYP at a GC electrode surface.

  12. Ag-ligand modified tungstovandates and their efficient catalysis degradation properties for methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ran; Zhang, Huixia; Liu, Yunping; Wang, Xiaoxiao; Han, Zhangang, E-mail: hanzg116@126.com

    2017-02-15

    Two polytungstovandates [Ag(mbpy){sub 2}][Ag{sub 2}(mbpy){sub 3}][VW{sub 5}O{sub 19}]·H{sub 2}O (1) and [Ag(mbpy)]{sub 2}[Ag(mbpy){sub 2}]{sub 4}[VW{sub 12}O{sub 40}] (2) (mbpy =4,4′-dimethyl-2,2′-bipyridyl), had been hydrothermally synthesized and characterized by IR, TG, and single-crystal X-ray diffraction techniques. Single-crystal structural analysis revealed that the polyanionic clusters in two compounds are different: Lindqvist-type in 1 and α-Keggin-type in 2, respectively, while the cationic moieties in them are Ag-mbpy units. The experiments showed that this kind of hybrid crystal materials possesses more efficiently catalytic performance for the degradation of organic dye methylene blue (MB) in water solution under the UV irradiation. The significant degradation rate of MB can reach 89.9%, 94.9% by crystals 1 and 2 (40 mg) in the course of about 5 min. - Graphical abstract: Two Ag-ligand modified polytungstovandates had been synthesized and characterized, which were active in the catalytic degradation of organic dye methylene blue under the UV irradiation. - Highlights: • Two Ag-ligand modified tungstovandates were synthesized and characterized. • Weak interactions play important roles in constructing crystal frameworks. • Compounds are active to catalyze the degradation of methylene blue.

  13. Nanolabel for TNF-α determination

    Energy Technology Data Exchange (ETDEWEB)

    Say, Rıdvan, E-mail: rsay@anadolu.edu.tr [Anadolu University, Faculty of Sciences, Department of Chemistry 26470 Eskişehir (Turkey); Diltemiz, Sibel Emir, E-mail: semir@anadolu.edu.tr [Anadolu University, Faculty of Sciences, Department of Chemistry 26470 Eskişehir (Turkey); Çelik, Suzan, E-mail: syazar@gmail.com [Sanovel İlaç San. ve Tic. A.Ş. 34460 İstinye, Sarıyer/Istanbul (Turkey); Ersöz, Arzu, E-mail: arzuersoz@anadolu.edu.tr [Anadolu University, Faculty of Sciences, Department of Chemistry 26470 Eskişehir (Turkey)

    2013-06-15

    Tumor necrosis factor-α (TNF-α), also known as cachectin, is one of the most important regulatory cytokines and mediates a variety of cell functions, including the stimulation of nitric oxide (NO) production which has been related to oxidative stress and diseases such as arthritis, diabetes, stroke, and chronic inflammation. Determination of TNF-α concentration in human serum might be helpful in the staging and prognosis of diseases. And it is also very important for the understanding of tumor biological processes, inherent mechanisms, and discovering drugs as well as having a therapeutic potential for the treatment of diseases. So, in this study, sensor systems based on Reflectometric Interference Spectroscopy (RIfS) have been prepared for selectively recognition and binding of TNF-α biomolecules. For this purpose, photosensitive nano structured TNF-α has been synthesized applying AmiNoAcid (monomer) Decorated and Light Underpining Conjugation Approach (ANADOLUCA) method using bis (2-2′-bipyridyl) MATyr-MATyr-ruthenium(II) (MATyr-Ru-MATyr) as a photosensitive monomer. Then, these photosensitive nano structured TNF-α have been used for TNF-α recognition as an alternative and unique sensor method. Also, the affinity constant of RIfS sensor has been calculated. The method has been showed high sensitivity, good precision and accuracy, and suited for the detection of TNF-α from aqueous solution.

  14. Semi-synthetic biotin imprinting onto avidin crosslinked gold-silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    At Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I r Oezcan, Ayca, E-mail: aatilir@anadolu.edu.tr; Ersoez, Arzu; Huer, Deniz; Y Latin-Small-Letter-Dotless-I lmaz, Filiz [Anadolu University, Department of Chemistry (Turkey); Gueltekin, Aytac [Karamanoglu Mehmetbey University, Department of Engineering of Energy Systems (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Say, R Latin-Small-Letter-Dotless-I dvan [Anadolu University, Department of Chemistry (Turkey)

    2012-06-15

    This study is a different and new application of molecular imprinted polymers (MIPs) based on sensor technologies. In this study, semi-synthetic biotin imprinted polymeric shell has been decorated onto the surface of avidin crosslinked Au/Ag nanoclusters using bis (2-2 Prime -bipyridyl) MATyr-MATrp-ruthenium(II) (MATyr-Ru-MATrp) as photosensitive monomer. The synthesized nanoclusters have been used the recognition of biotin by flourometric method. Synthesis of the photosensitive monomers has been realized by AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. This method provides a strategy for the preparation of photosensitive ruthenium based aminoacid monomers and oligomers, aminoacid monomer-protein crosslinking using photosensitation and conjugation approach on micro and nano-structures by ruthenium-chelate based monomers. The affinity constant (K{sub a}) of biotin imprinted Au/Ag nanoclusters has been determined using the Scatchard method and found to be 3.89 Multiplication-Sign 10{sup 5} M{sup -1}. The obtained calibration graph is linear for the range of 0.051 and 2.50 {mu}M of biotin. The detection limit of biotin has been found to be 15 nM. Also, the reusability of these nanoclusters has been investigated and it has been observed that the same clusters could be used 10 times during a long period without any binding capacity decreasing.

  15. Semi-synthetic biotin imprinting onto avidin crosslinked gold–silver nanoparticles

    International Nuclear Information System (INIS)

    Atılır Özcan, Ayça; Ersöz, Arzu; Hür, Deniz; Yılmaz, Filiz; Gültekin, Aytaç; Denizli, Adil; Say, Rıdvan

    2012-01-01

    This study is a different and new application of molecular imprinted polymers (MIPs) based on sensor technologies. In this study, semi-synthetic biotin imprinted polymeric shell has been decorated onto the surface of avidin crosslinked Au/Ag nanoclusters using bis (2-2′-bipyridyl) MATyr-MATrp-ruthenium(II) (MATyr-Ru-MATrp) as photosensitive monomer. The synthesized nanoclusters have been used the recognition of biotin by flourometric method. Synthesis of the photosensitive monomers has been realized by AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. This method provides a strategy for the preparation of photosensitive ruthenium based aminoacid monomers and oligomers, aminoacid monomer-protein crosslinking using photosensitation and conjugation approach on micro and nano-structures by ruthenium-chelate based monomers. The affinity constant (K a ) of biotin imprinted Au/Ag nanoclusters has been determined using the Scatchard method and found to be 3.89 × 10 5 M −1 . The obtained calibration graph is linear for the range of 0.051 and 2.50 μM of biotin. The detection limit of biotin has been found to be 15 nM. Also, the reusability of these nanoclusters has been investigated and it has been observed that the same clusters could be used 10 times during a long period without any binding capacity decreasing.

  16. A stability comparison of redox-active layers produced by chemical coupling of an osmium redox complex to pre-functionalized gold and carbon electrodes

    International Nuclear Information System (INIS)

    Boland, Susan; Foster, Kevin; Leech, Donal

    2009-01-01

    The production of stable redox active layers on electrode surfaces is a key factor for the development of practical electronic and electrochemical devices. Here, we report on a comparison of the stability of redox layers formed by covalently coupling an osmium redox complex to pre-functionalized gold and graphite electrode surfaces. Pre-treatment of gold and graphite electrodes to provide surface carboxylic acid groups is achieved via classical thiolate self-assembled monolayer formation on gold surfaces and the electro-reduction of an in situ generated aryldiazonium salt from 4-aminobenzoic acid on gold, glassy carbon and graphite surfaces. These surfaces have been characterized by AFM and electrochemical blocking studies. The surface carboxylate is then used to tether an osmium complex, [Os(2,2'-bipyridyl) 2 (4-aminomethylpyridine)Cl]PF 6 , to provide a covalently bound redox active layer, E 0 '' of 0.29 V (vs. Ag/AgCl in phosphate buffer, pH 7.4), on the pre-treated electrodes. The aryldiazonium salt-treated carbon-based surfaces showed the greatest stability, represented by a decrease of <5% in the peak current for the Os(II/III) redox transition of the immobilized complex over a 3-day period, compared to a decrease of 19% and 14% for the aryldiazonium salt treated and thiolate treated gold surfaces, respectively, over the same period

  17. Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    João Barbosa Martins

    2013-01-01

    Full Text Available Paraquat (PQ, a cationic nonselective bipyridyl herbicide, has been used as neurotoxicant to modulate Parkinson’s disease in laboratory settings. Other compounds like rotenone (ROT, a pesticide, and 1-methyl-4-phenylpyridinium ion (MPP+ have been widely used as neurotoxicants. We compared the toxicity of these three neurotoxicants using differentiated dopaminergic SH-SY5Y human cells, aiming to elucidate their differential effects. PQ-induced neurotoxicity was shown to be concentration and time dependent, being mitochondrial dysfunction followed by neuronal death. On the other hand, cells exposure to MPP+ induced mitochondrial dysfunction, but not cellular lyses. Meanwhile, ROT promoted both mitochondrial dysfunction and neuronal death, revealing a biphasic pattern. To further elucidate PQ neurotoxic mechanism, several protective agents were used. SH-SY5Y cells pretreatment with tiron (TIR and 2-hydroxybenzoic acid sodium salt (NaSAL, both antioxidants, and Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, partially protected against PQ-induced cell injury. Additionally, 1-(2-[bis(4-fluorophenylmethoxy]ethyl-4-(3-phenyl-propylpiperazine (GBR 12909, a dopamine transporter inhibitor, and cycloheximide (CHX, a protein synthesis inhibitor, also partially protected against PQ-induced cell injury. In conclusion, we demonstrated that PQ, MPP+, and ROT exerted differential toxic effects on dopaminergic cells. PQ neurotoxicity occurred through exacerbated oxidative stress, with involvement of uptake through the dopamine transporter and protein synthesis.

  18. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    Science.gov (United States)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  19. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor.

    Science.gov (United States)

    Cai, Qihong; Chen, Lifen; Luo, Fang; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2011-04-01

    A novel electrochemiluminescence (ECL) "sandwich" biosensor has been developed to detect cocaine. The sandwich biosensor was fabricated on the basis of the fact that a single aptamer could be split into two fragments and the two dissociated parts could form a folded, associated complex in the presence of targets. One of these (capture probe), which had hexane-thiol at its 5'-terminus, was immobilized on a gold electrode via thiol-gold binding. The other one (detection probe) was labeled with the ECL reagent tris(2,2'-bipyridyl)ruthenium(II)-doped silica nanoparticles (RuSiNPs) at its 3'-terminus. Owing to the weak interaction between the two fragments, the sensor exhibited a low ECL signal in the absence of cocaine. After the target cocaine had been added to the solution, it induced association of the two fragments and stabilized the associated complexes, leading to immobilization of RuSiNPs on the electrode surface, and the ECL detected on the electrode surface was enhanced. The enhanced ECL intensity was directly proportional to the logarithm of the cocaine concentration in the range from 1.0 × 10(-9) to 1.0 × 10(-11) mol/L, with a detection limit of 3.7 × 10(-12) mol/L. The biosensor was applied to detect trace amounts of cocaine on banknotes with satisfactory results.

  20. Substitution of Ethynyl-Thiophene Chromophores on Ruthenium Sensitizers: Influence on Thermal and Photovoltaic Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2012-01-01

    Full Text Available A new high molar extinction coefficient ruthenium(II bipyridyl complex, “Ru(2,2-bipyridine-4,4′-dicarboxylic acid(4,4′-bis((3-hexylthiophen-2-ylethynyl-2,2′-bipyridine(NCS2 (N(C4H94, MC101” was synthesized and fully characterized by 1H-NMR, ESI-MASS, FT-IR, UV-Vis., and fluorescence spectroscopes. The dye showed relatively high molar extinction coefficient of 25.0 × 103 M-1 cm-1 at λ maximum of 544 nm, while the reference C101 has shown 15.8 × 103 M-1cm-1 at λ maximum 528 nm. The monochromatic incident photon-to-collected electron conversion efficiency of 44.1% was obtained for MC101 over the entire visible range, while the C101 sensitized solar cell fabricated and evaluated under identical conditions exhibited 40.1%. The DSSCs fabricated with 0.54 cm2 active area TiO2 electrodes and high efficient electrolyte (E01, from the sensitizers MC101 and C101 exhibited energy conversion efficiencies of 3.25% (short-circuit current density (JSC = 7.32 mA/cm2, VOC = 610 mV, ff = 0.725 and 2.94% (JSC = 6.60 mA/cm2; VOC = 630 mV; ff = 0.709, respectively, under air mass of 1.5 sunlight.

  1. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  2. New Ru(II)N'NN'-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO_2 or bicarbonates to formate salts

    International Nuclear Information System (INIS)

    Zengjin Dai; Qi Luo; Hengjiang Cong; Jing Zhang; Tianyou Peng

    2017-01-01

    [RuCl(L1)(MeCN)_2]Cl (1) and [RuCl(L2)(MeCN)_2]Cl (2) complexes were prepared through the reaction of [RuCl2(p-cymene)]_2 with 2,6-bis(benzimidazole-2-yl)-4-hydroxy-pyridine (L1) or 2,6-bis(benzimidazole- 2-yl) pyridine (L2) in acetonitrile, respectively. The treatment of [Ru(OTf)(L2)(MeCN)_2]OTf (3) with 1 equivalent of PPh_3 in ethanol resulted in the formation of [Ru(L2"-"1)(MeCN)(PPh_3)_2]OTf (4), in which one of the N-H moieties of L2 is deprotonated to give an anionic ligand (L2"-"1). It was found that complex 1 can catalyze the hydrogenation of CO_2 to formate salts, producing sodium formate in 34.0% yield with a turnover number (TON) of 407 under the optimized conditions. Further investigations revealed that complexes 1-4 can efficiently catalyze the hydrogenation of sodium bicarbonate to sodium formate, and the catalytic activity follows the order 4 ≥ 1 ≥ 2 ≅ 3. In particular, sodium formate was obtained in good yield (77%) with a high TON (1530) when complex 4 was used as the catalyst. The present results illustrate a new example of Ru(II) complexes bearing a rigid N'NN' framework for the efficient hydrogenation of CO_2 to formate salts in a homogeneous system. (authors)

  3. Characterization of electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiye, E-mail: jin@shinshu-u.ac.j [Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Takahashi, Fumiki; Kaneko, Tsutomu; Nakamura, Toshio [Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2010-08-01

    Glyphosate, a phosphorus-containing amino acid type herbicide was used as a coreactant for studying of electrochemiluminescence (ECL) reaction of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy){sub 3}{sup 2+}] in an aqueous solution. In a phosphate buffer solution of pH 8, glyphosate itself was known to be electrochemically inactive at glassy carbon electrode, however, it participated in a homogeneous chemical reaction with the electrogenerated Ru(bpy){sub 3}{sup 3+}, and resulted in producing Ru(bpy){sub 3}{sup 2+} species at the electrode surface. Kinetic and mechanistic information for the catalysis of glyphosate oxidation were evaluated by the steady-state voltammetric measurement with an ultramicroelectrode. The simulated cyclic voltammogram based on this mechanism was in good agreement with that obtained experimentally. ECL reaction of Ru(bpy){sub 3}{sup 2+}/glyphosate system was found to be strongly dependent on the media pH. In a pH region of 5-9, an ECL wave appeared at ca. +1.1 V vs. Ag/AgCl, which was caused by the generation of *Ru(bpy){sub 3}{sup 2+} via a Ru(bpy){sub 3}{sup 3+}-mediated oxidation of glyphosate. When pH >10, a second ECL wave was observed at ca. +1.35 V vs. Ag/AgCl, which was believed to be associated with a reaction between Ru(bpy){sub 3}{sup 3+} and the species from direct oxidation of GLYP at a GC electrode surface.

  4. Electrochemical oxidation of chlorpheniramine at polytyramine film doped with ruthenium (II) complex: Measurement, kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Hinaai, Mohammed; Al-Harthy, Salim; Laxman, Karthik

    2014-01-01

    Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • Doping of Ru decreases the Pty resistivity and increases the electron transfer kinetics. • The resulting sensor is stable for a large range of CPM concentration. • Estimated values of thermodynamic and kinetic parameters were comparable. • Application to commercial dosage forms was excellent and satisfactory. - Abstract: A solid-state sensor based on polytyramine film deposited at glassy carbon electrode doped with tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. A redox property represented by [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. The XPS data and AFM images confirm the grafting of Ru species on the top of Pty while the electrochemical impedance spectroscopy (EIS) data supports the immobilization of both surface modifiers onto the GCE. The constructed sensor exhibits a substantial reactivity, stability and high sensitivity to chlorpheniramine maleate (CPM) oxidation. The detection limit (S/N = 3) was brought down to 338 nM using differential pulse voltammetry method. Thermodynamic and kinetic parameters were evaluated using hydrodynamic method. The apparent diffusion coefficient and the heterogeneous electron transfer rate constant for the CPM oxidation were 2.67 × 10 −5 cm 2 s −1 and 3.21 × 10 −3 cm s −1 , respectively. Interference studies and real sample analysis were conducted with excellent performance and satisfactory results

  5. Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemiluminescence detection

    International Nuclear Information System (INIS)

    Li Yunhui; Wang Chunyan; Sun Jinying; Zhou Yongchang; You Tianyan; Wang Erkang; Fung Yingsing

    2005-01-01

    The paper presents a rapid method for the determination of dioxopromethazine hydrochloride (DPZ), an antihistamine drug, by the capillary electrophoresis with electrochemiluminescene detection (CE-ECL) using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 2+ ) reagent. This CE-ECL detection method has high sensitivity, good selectivity and reproducibility for DPZ analysis. Under the optimized conditions: separation capillary, 38 cm length (25 μm i.d.); sample injection, 10 s at 8 kV; separation voltage, 12.5 kV; running buffer, 20 mmol L -1 sodium phosphate of pH 6.0; detection potential, 1.15 V; 50 mmol L -1 of phosphate buffer (pH 7.14) containing 5 mmol L -1 of Ru(bpy) 3 2+ in ECL detection cell, the detection limit of DPZ was 0.05 μmol L -1 (S/N = 3). The linear range extended from 5 to 100 μmol L -1 . The linear curve obtained was Y = 181.62 + 9.28X with a correlation coefficient of 0.9970. The relative standard deviations of the ECL intensity and the migration time for six continuous injections of 5 μmol L -1 DPZ were 3.7% and 0.92%, respectively. The CE-ECL method was applied to analyze DPZ in real samples including tablets, rat serum and human urine, and satisfactory results were obtained without interference from samples matrix. The CE-ECL technique was proved to be a potential method for the detection of DPZ in clinic analysis

  6. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    Science.gov (United States)

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bifunctional RuII -Complex-Catalysed Tandem C-C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents.

    Science.gov (United States)

    Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan; Paul, Subhadeep; Kundu, Sabuj

    2016-12-12

    Catalytic activities of a series of functional bipyridine-based Ru II complexes in β-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional Ru II complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of β-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative Ru II system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ligand-based photooxidations of dithiomaltolato complexes of Ru(II) and Zn(II): photolytic CH activation and evidence of singlet oxygen generation and quenching.

    Science.gov (United States)

    Bruner, Britain; Walker, Malin Backlund; Ghimire, Mukunda M; Zhang, Dong; Selke, Matthias; Klausmeyer, Kevin K; Omary, Mohammad A; Farmer, Patrick J

    2014-08-14

    The complex [Ru(bpy)2(ttma)](+) (bpy = 2,2'-bipyridine; ttma = 3-hydroxy-2-methyl-thiopyran-4-thionate, 1, has previously been shown to undergo an unusual C-H activation of the dithiomaltolato ligand upon outer-sphere oxidation. The reaction generated alcohol and aldehyde products 2 and 3 from C-H oxidation of the pendant methyl group. In this report, we demonstrate that the same products are formed upon photolysis of 1 in presence of mild oxidants such as methyl viologen, [Ru(NH3)6](3+) and [Co(NH3)5Cl](2+), which do not oxidize 1 in the dark. This reactivity is engendered only upon excitation into an absorption band attributed to the ttma ligand. Analogous experiments with the homoleptic Zn(ttma)2, 4, also result in reduction of electron acceptors upon excitation of the ttma absorption band. Complexes 1 and 4 exhibit short-lived visible fluorescence and long-lived near-infrared phosphorescence bands. Singlet oxygen is both generated and quenched during aerobic excitation of 1 or 4, but is not involved in the C-H activation process.

  9. Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huang, Jian-Feng; Liu, Jun-Min; Su, Pei-Yang; Chen, Yi-Fan; Shen, Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Highlights: • Four novel thiocyanate-free cyclometalated ruthenium sensitizer were conveniently synthesized. • The D-CF 3 -sensitized DSSCs show higher efficiency compared to N719 based cells. • The DSSCs based on D-CF 3 and D-bisCF 3 sensitizers exhibit excellent long-term stability. • The diverse cyclometalated Ru complexes can be developed as high-performance sensitizers for use in DSSC. - Abstract: Four novel thiocyanate-free cyclometallted Ru(II) complexes, D-bisCF 3 , D-CF 3 , D-OMe, and D-DPA, with two 4,4′-dicarboxylic acid-2,2′-bipyridine together with a functionalized phenylpyridine ancillary ligand, have been designed and synthesized. The effect of different substituents (R = bisCF 3 , CF 3 , OMe, and DPA) on the ancillary C^N ligand on the photophysical properties and photovoltaic performance is investigated. Under standard global AM 1.5 solar conditions, the device based on D-CF 3 sensitizer gives a higher conversion efficiency of 8.74% than those based on D-bisCF 3 , D-OMe, and D-DPA, which can be ascribed to its broad range of visible light absorption, appropriate localization of the frontier orbitals, weak hydrogen bonds between -CF 3 and -OH groups at the TiO 2 surface, moderate dye loading on TiO 2 , and high charge collection efficiency. Moreover, the D-bisCF 3 and D-CF 3 based DSSCs exhibit good stability under 100 mW cm −2 light soaking at 60 °C for 400 h

  10. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    International Nuclear Information System (INIS)

    Yildirim, Hatice; Guler, Emine; Yavuz, Murat; Ozturk, Nurdan; Kose Yaman, Pelin; Subasi, Elif; Sahin, Elif; Timur, Suna

    2014-01-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η 6 -p-cymene)RuClTSC N–S ]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh 3 ) 2 TSC N–S ] (2) have been synthesized from the reaction of [{(η 6 -p-cymene)RuCl} 2 (μ-Cl) 2 ] and [Ru(H)(Cl)(CO)(PPh 3 ) 3 ] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity

  11. Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Mou

    2010-12-01

    Full Text Available A heterogeneous catalyst, nanosized MCM-41-Pd, was used to catalyze the Sonogashira coupling of aryl and heteroaryl halides with terminal alkynes in the presence of CuI and triphenylphosphine. The coupling products were obtained in high yields using low Pd loadings to 0.01 mol%, and the nanosized MCM-41-Pd catalyst was recovered by centrifugation of the reaction solution and re-used in further runs without significant loss of reactivity.

  12. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  13. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  14. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Ajmi, Khawla Y.; Al-Harthi, Salim H.

    2014-01-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage

  15. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    Science.gov (United States)

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  16. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system.

    Science.gov (United States)

    Mac Mahon, Joanne; Pillai, Suresh C; Kelly, John M; Gill, Laurence W

    2017-05-01

    The performance of photocatalytic treatment processes were assessed using different photocatalysts against E. coli and bacteriophages MS2, ΦX174 and PR772, in a recirculating continuous flow compound parabolic collector system under real sunlight conditions. Suspended TiO 2 and ZnO nanoparticle powders and Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate in solution were tested separately, as well as in combination, using E. coli. For a 3-log reduction of E. coli in distilled water, inactivation rates in terms of cumulative dose were in the order Ru(bpy) 3 Cl 2 >(TiO 2 & Ru(bpy) 3 Cl 2 )>(ZnO & Ru(bpy) 3 Cl 2 )>ZnO>TiO 2 >photolysis. Reactivation of E. coli was observed following all trials despite the detection limit being reached, although the reactivated colonies were observed to be under stress and much slower growing when compared to original colonies. Treatment with Ru(bpy) 3 Cl 2 was also compared against standard photolysis of bacteriophages MS2, ΦX174 and PR772 with the order of photolytic inactivation for a 3-log reduction in terms of cumulative UV-A dose being ΦX174>PR772>MS2. However, MS2 was found to be the most susceptible bacteriophage to treatment with Ru(bpy) 3 Cl 2 , with complete removal of the phage observed within the first 15min of exposure. Ru(bpy) 3 Cl 2 also significantly improved inactivation rates for PR772 and ΦX174. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chien-Hsin, E-mail: yangch@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Wen-Churng [Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan (China); Wang, Tzong-Liu; Shieh, Yeong-Tarng; Chen, Wen-Janq; Liao, Shao-Hong; Sun, Yu-Kuang [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2011-10-17

    Highlights: {yields} We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. {yields} A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. {yields} Carbazole donor in the dye molecule provides electron in increasing efficiency. {yields} Two rhodaniline-3-acetic acids play a key role in increasing efficiency. {yields} AC impedance proves this dye's effect on enhancing charge transfer in TiO{sub 2}. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO{sub 2}-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO{sub 2}, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO{sub 2} (e{sup -}). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  18. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianguo [Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006 (China); Zhao Fengjuan [Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Ju Huangxian [Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)]. E-mail: hxju@nju.edu.cn

    2006-08-04

    Amitriptyline, doxepin and chlorpromazine are often used as psychotropic drugs in treatment of the various mental diseases, and are also partly excreted by kidney. This work developed a simple, selective and sensitive method for their simultaneous monitoring in human urine using capillary electrophoresis coupled with electrochemiluminescence (ECL) detection based on end-column ECL reaction of tris-(2,2'-bipyridyl)ruthenium(II) with aliphatic tertiary amino moieties. Acetone was used as an additive to the running buffer to obtain their absolute separation. Under optimized conditions the proposed method displayed a linear range from 5.0 to 800 ng mL{sup -1} for the three drugs with the correlation coefficients more than 0.995 (n = 8). Their limits of detection were 0.8 ng mL{sup -1} (3.6 fg), 1.0 ng mL{sup -1} (4.5 fg) and 1.5 ng mL{sup -1} (6.8 fg) at a signal to noise ratio of 3, respectively. The relative standard deviations for five determinations of 20 ng mL{sup -1} amitriptyline, doxepin and chlorpromazine were 1.7%, 4.2% and 3.6%, respectively. For practical application an extract step with 90:10 heptane/ethyl acetate (v/v) was performed to eliminate the influence of ionic strength in sample. The recoveries of amitriptyline, doxepin and chlorpromazine at different levels in human urine were between 83% and 93%, which showed that the method was valuable in clinical and biochemical laboratories for monitoring amitriptyline, doxepin and chlorpromazine.

  19. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Khudaish, Emad A., E-mail: ejoudi@squ.edu.om [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Ajmi, Khawla Y. [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Harthi, Salim H. [Sultan Qaboos University, College of Science, Department of Physics, PO Box 36, PC 123 Muscat (Oman)

    2014-08-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy){sub 3}]{sup 3+/2+} couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage.

  1. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  2. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  3. Ionochromic effects and structures of metalated poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L.X.; Jager, W.J.H.; Gosztola, D.J.; Niemczyk, M.P.; Wasielewski, M.R.

    2000-01-01

    The effects of metal ion chelation to the 2,2'-bipyridine (bpy) groups on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 in solution are investigated. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of metalated polymers 1 and 2 are compared to those of the metal-free polymers (Chen et al. J. Phys. Chem. A 1999, 103, 4341-4351). The origins of ionochromic effects due the metal ion chelation were studied using both steady-state and transient optical spectroscopy, and the results indicate that both conformational flattening and participation of Jr electrons from the metal in the π-conjugation of the polymer backbone play important roles in metal ion binding induced red shifts in absorption and photoluminescence spectra. The photoluminescence properties of the metalated polymers are determined by the metal ion electronic structures, where the closed shell Zn 2+ -bound polymer 2 has an increased photoluminescence quantum yield and the corresponding open shell Ni 2+ - or Fe 3+ -bound polymers have quenched photoluminescence due to spin-orbit coupling. The dual character of metalated polymer 2 as a conjugated polymer and as a metal-bpy complex is discussed. In addition, the structures of metal ion binding sites are studied via X-ray absorption fine structure (XAFS) and are related to the photophysical properties of the metalated polymers

  4. Effects of π-conjugation attenuation on the photophysics and exciton dynamics of poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L. X.; Jager, W. J.; Niemczyk, M. P.; Wasielewski, M. R.

    1999-01-01

    The effect of π-conjugation attenuation on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 are examined in solution. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of polymers 1 and 2 were compared to those of the homopolymer, poly(2,5-bis(2'-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). A series of changes in the photophysics of polymers 1 and 2 were found as a result of π-conjugation attenuation. These changes include blue shifts in absorption and emission spectra, spectral diffusion in stimulated emission, enhancement in photoluminescence quantum yields and lifetimes, and increases in photoinduced absorption intensities and lifetimes. These changes are systematically more pronounced in polymer 1 than in polymer 2 and are correlated with π-conjugation attenuation in the polymers due to twisting of the 2,2'-bipyridine groups about the 2,2' single bond. An exciton dynamics model involving an ensemble of initial exciton states localized on oligomeric segments within the polymer with different conjugation lengths is proposed to describe the observed differences between polymers 1 and 2 and BEH-PPV. When the electronic coupling between these segments is strong, the polymer displays characteristics that are close to those of a one-dimensional semiconductor. However, when these couplings are weakened by groups, such as the 2,2'-bipyridine that attenuate π-conjugation, the polymer displays properties of an ensemble of oligomers

  5. Natural pigment sensitized solar cells based on ZnO-TiO2-Fe2O3 nanocomposite in quasi-solid state electrolyte system

    Directory of Open Access Journals (Sweden)

    C. Mebrahtu

    2017-11-01

    Full Text Available Nanocomposites of Zn-Ti-Fe oxide using zinc as a host with different ratios of precursor salts were prepared by co-precipitation method to use as semiconductors for dye sensitized solar cell (DSSC. The as-synthesized nanocomposites were characterized using XRD, SEM-EDX, TEM and UV-Vis spectrophotometer. DSSCs based on the new semiconductors and di-tetrabutylammoniumcis-bis(isothiocyanatobis(2,2’-bipyridyl-4,4’-dicarboxylato-ruthenium(II (N719 dye has been constructed and characterized. Stability towards dissolution of deposited films of semiconductors in the acidic dye and conversion efficiency was obtained in the order of: ZnO(100%

  6. Structural and Electrochemical Consequences of [Cp*] Ligand Protonation.

    Science.gov (United States)

    Peng, Yun; Ramos-Garcés, Mario V; Lionetti, Davide; Blakemore, James D

    2017-09-05

    There are few examples of the isolation of analogous metal complexes bearing [η 5 -Cp*] and [η 4 -Cp*H] (Cp* = pentamethylcyclopentadienyl) complexes within the same metal/ligand framework, despite the relevance of such structures to catalytic applications. Recently, protonation of Cp*Rh(bpy) (bpy = 2,2'-bipyridyl) has been shown to yield a complex bearing the uncommon [η 4 -Cp*H] ligand, rather than generating a [Rh III -H] complex. We now report the purification and isolation of this protonated species, as well as characterization of analogous complexes of 1,10-phenanthroline (phen). Specifically, reaction of Cp*Rh(bpy) or Cp*Rh(phen) with 1 equiv of Et 3 NH + Br - affords rhodium compounds bearing endo-η 4 -pentamethylcyclopentadiene (η 4 -Cp*H) as a ligand. NMR spectroscopy and single-crystal X-ray diffraction studies confirm protonation of the Cp* ligand, rather than formation of metal hydride complexes. Analysis of new structural data and electronic spectra suggests that phen is significantly reduced in Cp*Rh(phen), similar to the case of Cp*Rh(bpy). Backbonding interactions with olefinic motifs are activated by formation of [η 4 -Cp*H]; protonation of [Cp*] stabilizes the low-valent metal center and results in loss of reduced character on the diimine ligands. In accord with these changes in electronic structure, electrochemical studies reveal a distinct manifold of redox processes that are accessible in the [Cp*H] complexes in comparison with their [Cp*] analogues; these processes suggest new applications in catalysis for the complexes bearing endo-η 4 -Cp*H.

  7. A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao Liang [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Song Chaojun; Sun Yuanjie [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Li Xiaohua; Li Yunyun [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Jin Boquan [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China); Zhang Zhujun, E-mail: zhangzj@snnu.edu.cn [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Yang Kun, E-mail: yangkunkun@fmmu.edu.cn [Department of Immunology, The Fourth Military Medical University, Xi' an 710032 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Difunctional amino mesoporous silica nanoparticles (FCMSN) were synthesized. Black-Right-Pointing-Pointer The fluorescence and chemiluminescence properties of the FCMSN were studied. Black-Right-Pointing-Pointer The NaIO{sub 4} oxidation method was used for modification of the FCMSN. Black-Right-Pointing-Pointer Liver cancer 7721 cell was detected. Black-Right-Pointing-Pointer The specificity affected by FCMSN's amino groups was studied. - Abstract: A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2 Prime -bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core-shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO{sub 4} oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.

  8. Thermoluminescence and photoluminescence analyses of MEH-PPV, MDMO-PPV and RU(bpy)3 gamma-irradiated polymer thin films

    International Nuclear Information System (INIS)

    Ortiz-Morales, A.; Ortiz-Lopez, J.; Cruz-Zaragoza, E.; Gómez-Aguilar, R.

    2015-01-01

    Effects of irradiation with 60 Co gamma photons on poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly[2-methoxy-5-(3′,7′ dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Ru(bpy) 3 ) thin films were analyzed regarding their thermoluminescence (TL) and photoluminescence (PL) properties. A linear TL dose response was obtained from the MEH-PPV and MDMO-PPV polymer films in dose ranges of approximately 0.170–4.08 kGy and 0.170–0.850 kGy, respectively, followed by a supralinear behavior. A dependence on the conjugation length of the polymer chains which was favored by heating of the film, was observed, and irradiation generated a blue-shift in MEH-PPV and Ru(bpy) 3 . Furthermore, the PL structure was not modified. The most likely effect involved in the TL emission was trapping. The high activation energy values of the traps in the TL may be attributed in part to the binding energy of the exciton. A deconvolution process was carried out to obtain the kinetic parameters from the TL glow curves and PL spectra. - Highlights: • Irradiation effects on MEH-PPV, MDMO-PPV and Ru(bpy) 3 were analyzed by TL and PL. • The dose response of PPV derivatives was linear at higher doses (0.170–4.08 kGy). • Activation energy, was larger than 2 eV, suggest a possible good stability of traps. • PL spectra for non-irradiated and gamma irradiated polymer are almost identical

  9. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    Science.gov (United States)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  10. On the factors influencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen.

    Science.gov (United States)

    Manjón, Francisco; Villén, Laura; García-Fresnadillo, David; Orellana, Guillermo

    2008-01-01

    Two solar reactors based on compound parabolic collectors (CPCs) were optimized for water disinfection by photosensitized singlet oxygen (1O2) production in the heterogeneous phase. Sensitizing materials containing Ru(II) complexes immobilized on porous silicone were produced, photochemically characterized, and successfully tested for the inactivation of up to 10(4) CFU mL(-1) of waterborne Escherichia coli (gram-negative) or Enterococcus faecalis (gram-positive) bacteria. The main factors determining the performance of the solar reactors are the type of photosensitizing material, the sensitizer loading, the CPC collector geometry (fin- vs coaxial-type), the fluid rheology, and the balance between concurrent photothermal--photolytic and 1O2 effects on the microorganisms' inactivation. In this way, at the 40 degrees N latitude of Spain, water can be disinfected on a sunny day (0.6-0.8 MJ m(-2) L(-1) accumulated solar radiation dose in the 360-700 nm range, typically 5-6 h of sunlight) with a fin-type reactor containing 0.6 m2 of photosensitizing material saturated with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (ca. 2.0 g m(-2)). The optimum rheological conditions require laminar-to-transitional water flow in both prototypes. The fin-type system showed better inactivation efficiency than the coaxial reactor due to a more important photolytic contribution. The durability of the sensitizing materials was tested and the operational lifetime of the photocatalyst is at least three months without any reduction in the bacteria inactivation efficiency. Solar water disinfection with 1O2-generating films is demonstrated to be an effective technique for use in isolated regions of developing countries with high yearly average sunshine.

  11. Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, Maciej [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Matczuk, Magdalena, E-mail: mmatczuk@ch.pw.edu.pl [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Pawlak, Katarzyna [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Timerbaev, Andrei R. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin St. 19, 119991 Moscow (Russian Federation)

    2014-12-03

    Highlights: • Extra- and intra-cellular interactions of Ru(III) anticancer drug candidate. • ESI-TOF-MS mapping of the ruthenium species bound to transferring. • ESI-QqQ-MS identification of released Ru species under cytosol simulated conditions. - Abstract: Electrospray ionization mass spectrometry (ESI-MS) techniques have been used to characterize the speciation of a Ru(III) anticancer drug, indazolium trans-[tetrachloridobis(1H-indazole) ruthenate(III)], upon its binding to transferrin and the impact of cellular reducing components on drug–transferrin adducts. Using time-of-flight ESI-MS, the polymorphism of apo- (iron-free) and holo-form (iron-saturated) of the protein was confirmed. While the ruthenium moieties bound to each of five isoforms under simulated extracellular conditions are essentially identical in numbers for apo- and holo-transferrin, distinct differences were found in the composition of Ru(III) species attached to either of the protein forms, which are dominated by differently coordinated aquated complexes. On the other hand, at least one of the Ru-N bonds in metal-organic framework remains intact even after prolonged interaction with the protein. Triple quadrupole tandem ESI-MS measurements demonstrated that the ruthenium species released from drug adducts with holo-transferrin in simulated cancer cytosol are underwent strong ligand exchange (as compared to the protein-bound forms) but most strikingly, they contain the metal center in the reduced Ru(II) state. In vitro probing the extra- and intracellular interactions of promising Ru(III) drug candidate performed by ESI-MS is thought to shed light on the transportation to tumor cells by transferrin and on the activation to more reactive species by the reducing environment of solid tumors.

  12. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hatice [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Guler, Emine [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Yavuz, Murat, E-mail: myavuz@dicle.edu.tr [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir (Turkey); Ozturk, Nurdan; Kose Yaman, Pelin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Subasi, Elif; Sahin, Elif [Dokuz Eylul University, Faculty of Science, Department of Chemistry, 35160 Buca, Izmir (Turkey); Timur, Suna [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Ege University, Institute on Drug Abuse, Toxicology and Pharmaceutical Science (BATI), 35100 Bornova, Izmir (Turkey)

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η{sup 6}-p-cymene)RuClTSC{sup N–S}]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh{sub 3}){sub 2}TSC{sup N–S}] (2) have been synthesized from the reaction of [{(η"6-p-cymene)RuCl}{sub 2}(μ-Cl){sub 2}] and [Ru(H)(Cl)(CO)(PPh{sub 3}){sub 3}] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity.

  13. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II-Based Complexes as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-03-01

    Full Text Available In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II such as the rapta-based complexes formulated as [Ru(η6-p-cymeneL2(pta] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.

  14. Lanthanide - actinide separation: a challenge in the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mohapatra, P.K.

    2015-01-01

    Due to their similar size and chemical state, separation of trivalent lanthanide and actinide ions has always been a challenging topic of research. Of late, the growing concern for the radioactive waste management in the back end of the nuclear fuel cycle has led to the possibility of transmuting the long-lived transuranides in high flux reactors. This necessitates the development of processes for the separation of lanthanides and actinides in acidic/low pH media. In view of the high absorption cross section of few lanthanides, their presence in relatively large proportion (10-100 times) impedes the transmutation process. Processes such as the TRAMEX and TALSPEAK have been used for the separation of lanthanides from trivalent actinides. Of late soft donor ligands containing S and N donor atoms have been used for the selective extraction of trivalent actinide ions. The commercially available S-donor compound, CYANEX 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) has been used to yield separation factor (S.F.) values in the excess of 6000. Synergistic extraction with N-donor ligands such as 2,2'-bipyridyl and 1,10-phenanthroline have yielded S.F. values close to 40,000. N-donor ligands such as BTP (bis-triazinylpyridine), BTBP (bis-triazinylbipyridyl) and BTPhen (bis-triazinyl-phenanthroline) have been particularly effective from relatively acidic feed conditions. The present lecture will give a brief outline of the separation processes and experimental results of studies carried out using various S and N donor ligands. Use of room temperature ionic liquids for more favorable separations will be highlighted. Liquid membrane separation results for application to back end nuclear fuel cycle will also be discussed. (author)

  15. Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands

    International Nuclear Information System (INIS)

    Ye Junwei; Zhang Ping; Ye Kaiqi; Zhang Hongyu; Jiang Shimei; Ye Ling; Yang Guangdi; Wang Yue

    2006-01-01

    Four coordination polymers [Zn(bqdc)(phen)] n (1), [Zn(bqdc)(bpy)(H 2 O)] n (2), [Mn(bqdc)(bpy)(H 2 O) 2 ] n (3) and [Mn(bqdc)(phen)(H 2 O) 2 ] n (4) (H 2 bqdc=2,2'-biquinoline-4,4'-dicarboxylic acid, phen=1,10-phenanthroline and bpy=2,2'-bipyridyl) have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. Crystal data for 1: monoclinic system, C2/c, a=14.141(3)A, b=10.021(2)A, c=18.511(4)A, β=103.78(3) o , V=2547.6(9)A 3 , Z=4. Crystal data for 2: monoclinic system, p2 1 /n, a=13.656(3)A, b=10.015(2)A, c=19.127(4)A, β=107.13(7) o , V=2500.1(9)A 3 , Z=4. Crystal data for 3: monoclinic system, C2/c, a=14.5050(8)A, b=15.1932(8)A, c=12.7549(6)A, β=116.8010(11) o , V=2508.9(2)A 3 , Z=4. Crystal data for 4: monoclinic system, C2/c, a=14.1732(17)A, b=16.115(3)A, c=12.809(3)A, β=117.04(3) o , V=2605.7(8)A 3 , Z=4. Single helix-like chains exist in 1. The supramolecular structure of 1 exhibits extended two-dimensional network while 2-4 display extended three-dimensional architectures based on interchain hydrogen bonding and π-π interactions. Compounds 1 and 2 show blue photoluminescence under UV light suggesting that they may be employed to develop luminescent materials. Compounds 3 and 4 show interesting magnetic behaviors

  16. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  17. The electrochemical behavior of Co(TPTZ)2 complex on different carbon based electrodes modified with TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2015-01-01

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO 2 modified glassy carbon (T/GCE), carbon paste (CPE) and TiO 2 modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO 2 had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ) 2 complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully

  18. The electrochemical behavior of Co(TPTZ){sub 2} complex on different carbon based electrodes modified with TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ortaboy, Sinem, E-mail: ortaboy@istanbul.edu.tr; Atun, Gülten, E-mail: gatun@istanbul.edu.tr

    2015-04-15

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO{sub 2} modified glassy carbon (T/GCE), carbon paste (CPE) and TiO{sub 2} modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO{sub 2} had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ){sub 2} complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully.

  19. Organic salt NEDC (N-naphthylethylenediamine dihydrochloride) assisted laser desorption ionization mass spectrometry for identification of metal ions in real samples.

    Science.gov (United States)

    Hou, Jian; Chen, Suming; Zhang, Ning; Liu, Huihui; Wang, Jianing; He, Qing; Wang, Jiyun; Xiong, Shaoxiang; Nie, Zongxiu

    2014-07-07

    The significance of metals in life and their epidemiological effects necessitate the development of a direct, efficient, and rapid method of analysis. The matrix assisted laser desorption/ionization technique is on the horns of a dilemma of metal analysis as the conventional matrixes have high background in the low mass range. An organic salt, NEDC (N-naphthylethylenediamine dihydrochloride), is applied as a matrix for identification of metal ions in the negative ion mode in the present work. Sixteen metal ions, Ba(2+), Ca(2+), Cd(2+), Ce(3+), Co(2+), Cu(2+), Fe(3+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), Sn(2+) and Zn(2+), in the form of their chloride-adducted clusters were systematically tested. Mass spectra can provide unambiguous identification through accurate mass-to-charge ratios and characteristic isotope patterns. Compared to ruthenium ICP standard solution, tris(2,2'-bipyridyl)dichlororuthenium(ii) (C30H24N6Cl2Ru) can form organometallic chloride adducts to discriminate from the inorganic ruthenium by this method. After evaluating the sensitivity for Ca, Cu, Mg, Mn, Pb and Zn and plotting their quantitation curves of signal intensity versus concentration, we determined magnesium concentration in lake water quantitatively to be 5.42 mg L(-1) using the standard addition method. There is no significant difference from the result obtained with ICP-OES, 5.8 mg L(-1). Human urine and blood were also detected to ascertain the multi-metal analysis ability of this strategy in complex samples. At last, we explored its applicability to tissue slice and visualized sodium and potassium distribution by mass spectrometry imaging in the normal Kunming mouse brain.

  20. Nepem-211 ion exchange conductive membrane immobilized tris(2,2´-bipyridyl) ruthenium(II) electrogenerated chemiluminescence flow sensor for high-performance liquid chromatography and its application.

    Science.gov (United States)

    Li, Yongbo; Zhang, Zhujun

    2013-01-01

    We developed a sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor based on Ru(bpy)3(2+) immobilized with a Nepem-211 perfluorinated ion exchange conductance membrane, which has robustness and stability under a wide range of chemical and physical conditions, good electrical conductivity, isotropy and a high exchange capacity for immobilization of Ru(bpy)3(2+). The flow sensor has been used as a post-column detector in high-performance liquid chromatography for determination of erythromycin and clarithromycin in honey and pork, and tricyclic antidepressant drugs in human urine. Under optimal conditions, the linear ranges were 0.03-26 ng/μL and 0.01-1 ng/μL for macrolides and tricyclic antidepressant drugs, respectively. The detection limits were 0.02, 0.01, 0.01, 0.06 and 0.003 ng/μL for erythromycin, clarithromycin, doxepin, amitriptyline and clomipramine, respectively. There is no post-column reagent addition. In addition to the conservation expensive reagents, the experimental setup was simplified. The flow sensor was used for 2 years with high sensitivity and stability. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    International Nuclear Information System (INIS)

    Ke, Hanzhong; Ma, Wanpeng; Wang, Hongda; Cheng, Guoe; Yuan, Han; Wong, Wai-Kwok; Kwong, Daniel W.J.; Tam, Hoi-Lam; Cheah, Kok-Wai; Chan, Chi-Fai; Wong, Ka-Leung

    2014-01-01

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by 1 H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ 2 =391 GM). • The TTP–Ru exhibits a substantial 1 O 2 quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent

  2. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  3. Versatile Photocatalytic Systems for H2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst

    Science.gov (United States)

    2013-01-01

    The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2R′N2R″)2]2+ core (P2R′N2R″ = bis(1,5-R′-diphospha-3,7-R″-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 (“on particle” system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 (“through particle” system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h–1 with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system. PMID:24320740

  4. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution

    Energy Technology Data Exchange (ETDEWEB)

    Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)

    2014-10-17

    Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.

  5. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH{sub 3} and H{sub 2} as reactants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr

    2016-08-01

    Atomic layer deposition (ALD) of Ru using a non-oxidizing reactant is indispensable considering its application as a seed layer for Cu electroplating and a bottom electrode for dynamic random access memory capacitors. In this study, ALD-Ru films were deposited using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and potential non-oxidizing reducing agents, NH{sub 3} or H{sub 2}, as the reactants at a substrate temperature of 250 °C, and the effects of post-annealing in a H{sub 2} ambient on the film properties were investigated. The highly conformal deposition of Ru films was possible using the present reaction scheme but its resistivity was as high as ~ 750 μΩ-cm due to carbon incorporation into the film and the formation of an amorphous structure. Low temperature annealing at 300 °C at H{sub 2} ambient after deposition was found to improve the properties significantly in terms of the resistivity, impurities contents and crystallinity. For example, the film resistivity was decreased drastically to ~ 40 μΩ-cm with both the release of C in the film and crystallization after annealing based on secondary ion mass spectrometry and transmission electron microscopy, whereas perfect step coverage at a very small-sized dual trench (aspect ratio: ~ 3, the top opening size of 45 nm and bottom size of 20 nm) was maintained after annealing. - Highlights: • Ru thin films were deposited by atomic layer deposition (ALD) using NH{sub 3} and H{sub 2} molecules. • Effects of low temperature (300 °C) post-annealing on the film properties were investigated. • Post annealing improved the properties of ALD-Ru films. • Perfect step coverage of ALD-Ru was confirmed at trench structure (top opening width: 45 nm).

  6. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    Science.gov (United States)

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Several novel Ru(II) and Ru(III) complexes formed by reduction of (RuO4bipy) and (RuO3phen)2O with hydroquinone and methanol

    International Nuclear Information System (INIS)

    Ishiyama, Toshio

    1975-01-01

    The geometrical isomers, cis-dichloro-trans-(methanol)(hydroquinone)(2,2'-bipyridine)ruthenium(II) and cis-dichloro-cis-(methanol)(hydroquinone)(2,2'-bipyridine)ruthenium(II), [RuCl 2 (MeOH)(QH 2 )bipy] (complex I and II), were synthesized by reduction and substitution reactions of [RuO 4 bipy] and [RuO 2 (OH) 2 bipy] with hydroquinone in hydrochloric acid solution, and methanol. cis-Chloro(hydroquinonato)bis(2,2'-bipyridine)ruthenium(II), cis-[RuCl(QH)(bipy) 2 ], was obtained from the substitution reaction of complex I or II with 2,2'-bipyridine in methanol, and cis-chloro(hydroquinone)bis(2,2'-bipyridine)ruthenium(II) chloride, cis-[RuCl(QH 2 )(bipy) 2 ]Cl, was also obtained from the substitution of cis-trans-[RuCl 2 (MeOH)(QH 2 )bipy] in methanol containing hydrochloric acid. cis-Dihydroxobis(2,2'-bipyridine)ruthenium(II), cis-[Ru(OH) 2 (bipy) 2 ], was obtained by heating an aqueous solution of cis-[RuCl(QH)(bipy) 2 ]. Trihydroxoaquo(1,10-phenanthroline)ruthenium(III), [Ru(OH) 3 (H 2 O)phen] was also synthesized from [RuO 3 phen] 2 O and [Ru(OH) 3 phen] 2 O by reduction reactions similar to those used for [RuCl 2 (MeOH)(QH 2 )bipy]. These complexes were characterized by the infrared, visible and ultraviolet absorption spectra, and also by polarographic and magnetic measurements. The structures are discussed. (auth.)

  8. A novel photo-active Cd:1,4-benzene dicarboxylate metal organic framework templated using [Ru(ii)(2,2'-bipyridine)3]2+: synthesis and photophysics of RWLC-5.

    Science.gov (United States)

    Larsen, Randy W; Mayers, Jacob M; Wojtas, Lukasz

    2017-09-26

    The development of photoactive porous materials is of significant importance for applications ranging from sustainable energy to pharmaceutical development and catalysis. A particularly attractive class of photo-active materials is the metal-organic framework (MOF)-based platform in which the photo-active elements are components of the framework itself or photo-active guests encapsulated within the MOF cavities. It has now been demonstrated that the photo-active [Ru(2,2'-bipyridine) 3 ] 2+ (RuBpy) complex can template the formation of MOFs with varying three dimensional structures. Here we report the synthesis and structural and photo-physical characterization of a new RuBpy-templated MOF composed of Cd 2+ ions with 1,4-benzenedicarboxylate ligands (RWLC-5) that contains crystallographically resolved RuBpy complexes. The new material displays a biphasic emission decay (130 ns and 1180 ns, T = 20 °C) and a bathochromically shifted emission maximum, relative to RuBpy in solution (603 nm for RuBpy in ethanol vs. 630 nm for RWLC-5). The emission lifetimes also do not display temperature-dependent decays which are characteristic of RuBpy type complexes as well as other RuBpy templated MOFs. The lack of temperature dependence is consistent with the complete deactivation of the 3 LF state of the encapsulated RuBpy complex due to a constrained environment. The fast phase decay is attributed to a water molecule hydrogen bonded to a bipyridine ligand associated with ∼38% of the encapsulated RuBpy complexes resulting in the nonradiative deactivation of the 3 MLCT state.

  9. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    International Nuclear Information System (INIS)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling; Wang, Li-Ya

    2013-01-01

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ 2 -bridged ligands, namely, ([Zn(cbaa)(bpp)]·H 2 O) n (1), [Zn 2 (cbaa) 2 (bpy)] n (2), [Co 2 (cbaa) 2 (bpp) 2 ] n (3), [Co(cbaa)(bpp)] n (4), and [Co(bdaa)(bpp)(H 2 O) 2 ] n (5) (H 2 cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H 2 bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN 2 O 2 ] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn 2 (OCO) 4 ) paddlewheel unit as the node. Two (4,4) grid layers with (Co 2 O(OCO) 2 ) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN 2 O 4 ] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4 12 .5 2 .6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand

  10. Revisiting the iron pools in cucumber roots: identification and localization.

    Science.gov (United States)

    Kovács, Krisztina; Pechoušek, Jiří; Machala, Libor; Zbořil, Radek; Klencsár, Zoltán; Solti, Ádám; Tóth, Brigitta; Müller, Brigitta; Pham, Hong Diep; Kristóf, Zoltán; Fodor, Ferenc

    2016-07-01

    Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.

  11. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun, E-mail: hjun@whut.edu.cn; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2} nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10 mg COD (in 15 mg carrier) and solution pH of 7.0. Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles showed maximal catalytic activity at pH 7.0 and 50 °C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50 °C for 5 h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4 °C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy){sub 3}Cl{sub 2}) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. - Highlights: • COD was immobilized on magnetic fluorescent core-shell structured nanoparticles. • The nanoparticles were optical sensitive to oxygen in water solution. • The nanoparticles have remarkable improved stability compared with free COD. • The nanoparticles can probably be used in multi parameter fiber optic Biosensor.

  12. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  13. Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)3(2+)-KMnO4 chemiluminescence detection.

    Science.gov (United States)

    Xi, Zhijun; Zhang, Zhujun; Sun, Yonghua; Shi, Zuolong; Tian, Wei

    2009-07-15

    A novel method for determination of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in an extract from mung bean sprouts using high performance liquid chromatography (HPLC) with chemiluminescence (CL) detection is described. The method is based on the CL reaction of auxin (indole-3-acetic acid and indole-3-butyric acid) with acidic potassium permanganate (KMnO(4)) and tris(2,2'-bipyridyl)ruthenium(II), which was immobilized on the cationic ion-exchange resin. The chromatographic separation was performed on a Nucleosil RP-C18 column (i.d.: 250 mm x 4.6 mm, particle size: 5 microm, pore size: 100) with an isocratic mobile phase consisting of methanol-water-acetic acid (45:55:1, v/v/v). At a flow rate of 1.0 mL min(-1), the total run time was 20 min. Under the optimal conditions, the linear ranges were 5.0x10(-8) to 5.0x10(-6)g mL(-1) and 5.0x10(-7) to 1.0x10(-5)g mL(-1) for IAA and IBA, respectively. The detection limits were 2.0x10(-8)g mL(-1) and 2.0x10(-7)g mL(-1) for IAA and IBA, respectively. The relative standard deviation (RSD) of intra-day were 3.1% and 2.3% (n=11) for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA; The relative standard deviations of inter-day precision were 6.9% and 4.9% for 2x10(-6)g mL(-1) IAA and 2x10(-6)g mL(-1) IBA. The proposed method had been successfully applied to the determination of auxin in mung bean sprouts.

  14. Impact of iron chelators on short-term dissolution of basaltic glass

    Science.gov (United States)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  15. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    Science.gov (United States)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  16. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.

    Science.gov (United States)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  17. Photophysical properties of [Ru(2,2′-bipyridine){sub 3}]{sup 2+} encapsulated within the Uio-66 zirconium based metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Randy W., E-mail: rwlarsen@usf.edu; Wojtas, Lukasz

    2017-03-15

    The ability to encapsulate photo-active guest molecules within the pores of metal organic frameworks (MOFs) affords the opportunity to develop robust photocatalysts as well as solar energy conversion systems. An important criteria for such systems is stability of the new materials towards moisture, high temperatures, etc which preclude the use of many MOF frameworks. Here, the ability to encapsulate [Ru(II)(2,2′-bipyridine){sub 3}]{sup 2+}([Ru(bpy){sub 3}]{sup 2+}) into the cavities of the zirconium based MOF Uio-66 as well as the photophysical properties of the complex are reported. The X-ray powder diffraction data of the orange Uio-66 powder are consistent with the formation of Uio-66 in the presence of [Ru(bpy){sub 3}]{sup 2+}. The steady state emission exhibits a significant bathochromic shift from 603 nm in ethanol to 610 nm in Uio-66. The corresponding emission decay of the encapsulated [Ru(bpy){sub 3}]{sup 2+} complex is biexponential with a fast component of 128 ns and a slower component of 1176 ns (20 deg C). The slow component is consistent with encapsulation of [Ru(bpy){sub 3}]{sup 2+} into cavities with restricted volume that prevents the population of a triplet ligand field transition that is anti-bonding with respect to the Ru-N bonds. The origin of the fast component is unclear but may involve interactions of the [Ru(bpy){sub 3}]{sup 2+} encapsulated within large cavities formed through missing ligand defect sites within the Uio-66 materials. Co-encapsulated quenchers contained within these larger cavities gives rise to the reduced lifetimes of the [Ru(bpy){sub 3}]{sup 2+} complexes. - Graphical abstract: One-pot synthesis of Ru(II)tris(2,2-bipyridine)@Uio-66 (left) and the effects of encapsulation on the excited state energy levels and decay pathways of the Ru(II)tris(2,2-bipyridine) complex (right).

  18. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  19. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com; Anwar, Z.M.; Rizk, M.A.; Khairy, Gasser M.; El-Asfoury, M.H.

    2015-01-15

    This work describes the application of fluorescence for investigating the interactions of Eu(III)-TAN-1,10 phenanthroline (where TAN=4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione) with pesticides Chlorpyrifos, Malathion, Endosulfan, Heptachlor. The complex was synthesized and characterized by elemental analysis, FTIR, x-ray spectroscopy, solid fluorescence and thermal analysis. The results indicated that the composition of this complex is [Eu(TAN){sub 2}(Phen)(H{sub 2}O){sub 2}]Cl. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence at pH=7.5. The interactions of Eu-complex with different pesticides (Chlorpyrifos, Malathion, Endosulfan, and Heptachlor) in aqueous medium have been investigated by fluorescence measurements. The luminescence intensity of the probe is quenched by Malathion and enhanced by (Endosulfan, Heptachlor, and Chlorpyrifos). Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 0.47, 1.02, 0.66, 0.64 µmol/L for Chlorpyrifos, Endosulfan, Heptachlor, and Malathion, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. The emission quantum yield (QY=0.71) of Eu(III)-complex was determined using tris (2,2'-bipyridyl) dichlororuthenium(II) hexahydrate. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, river, and waste water). - Highlights: • A new luminescent probe of Eu (III) complex has been developed for sensing some organophosphorus pesticides. • Four guest pesticides Chlorpyrifos, Malathion

  20. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Anwar, Z.M.; Rizk, M.A.; Khairy, Gasser M.; El-Asfoury, M.H.

    2015-01-01

    This work describes the application of fluorescence for investigating the interactions of Eu(III)-TAN-1,10 phenanthroline (where TAN=4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione) with pesticides Chlorpyrifos, Malathion, Endosulfan, Heptachlor. The complex was synthesized and characterized by elemental analysis, FTIR, x-ray spectroscopy, solid fluorescence and thermal analysis. The results indicated that the composition of this complex is [Eu(TAN) 2 (Phen)(H 2 O) 2 ]Cl. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence at pH=7.5. The interactions of Eu-complex with different pesticides (Chlorpyrifos, Malathion, Endosulfan, and Heptachlor) in aqueous medium have been investigated by fluorescence measurements. The luminescence intensity of the probe is quenched by Malathion and enhanced by (Endosulfan, Heptachlor, and Chlorpyrifos). Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 0.47, 1.02, 0.66, 0.64 µmol/L for Chlorpyrifos, Endosulfan, Heptachlor, and Malathion, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. The emission quantum yield (QY=0.71) of Eu(III)-complex was determined using tris (2,2'-bipyridyl) dichlororuthenium(II) hexahydrate. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, river, and waste water). - Highlights: • A new luminescent probe of Eu (III) complex has been developed for sensing some organophosphorus pesticides. • Four guest pesticides Chlorpyrifos, Malathion, Endosulfan, and

  1. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2013-07-15

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ{sub 2}-bridged ligands, namely, ([Zn(cbaa)(bpp)]·H{sub 2}O){sub n} (1), [Zn{sub 2}(cbaa){sub 2}(bpy)]{sub n} (2), [Co{sub 2}(cbaa){sub 2}(bpp){sub 2}]{sub n} (3), [Co(cbaa)(bpp)]{sub n} (4), and [Co(bdaa)(bpp)(H{sub 2}O){sub 2}]{sub n} (5) (H{sub 2}cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H{sub 2}bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN{sub 2}O{sub 2}] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn{sub 2}(OCO){sub 4}) paddlewheel unit as the node. Two (4,4) grid layers with (Co{sub 2}O(OCO){sub 2}) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN{sub 2}O{sub 4}] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4{sup 12}.5{sup 2}.6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand.

  2. Detailed investigations of ZnO photoelectrodes preparation for dye sensitized solar cells.

    Science.gov (United States)

    Marczak, Renata; Werner, Fabian; Ahmad, Rameez; Lobaz, Volodymyr; Guldi, Dirk M; Peukert, Wolfgang

    2011-04-05

    Wurtzite ZnO hexagonal nanopyramids were successfully synthesized in the liquid phase from homogeneous methanolic solutions of zinc acetate and tetramethylammonium hydroxide at an excess of zinc ions. The formation and properties of the nanocrystals were examined as a function of synthesis conditions. No significant influence of the [Zn(2+)]/[OH(-)] ratio was noticed on the final particle size, in spite of increased amounts of OH(-) ions, which tend to accelerate the particle nucleation and growth. Nevertheless, the reactant concentration ratio influences the surface properties of the ZnO nanocrystals. Mesoporous ZnO films were prepared by doctor blading ethanolic pastes containing ZnO nanoparticles and ethyl cellulose onto FTO conductive glass substrate followed by calcination. Additionally, the influence of a plasticizer (triacetin)-used during the paste preparation-on the film quality was investigated. A higher content of ZnO nanoparticles and plasticizer in the pastes improved the film quality. Four different temperatures (i.e., 400, 425, 450, and 475 °C) were used for the film calcination and their influence on the structural properties of the films was characterized. In principle, increasing the calcination temperature goes hand in hand with an increase of particle size, as well as the pore diameter and reduction of the surface area. Suitable mesoporous films were employed as photoanodes in dye sensitized solar cells (DSSCs). In order to assess the effect of the varied parameters on complete DSSC devices-using cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II)bis(tetrabutylammonium (N719) as a sensitizer-incident photon to current efficiency (IPCE) and current voltage measurements were carried out. The IPCE measurements confirmed photoinduced electron injection from the dye, reaching IPCE values up to 76%. Furthermore, current-voltage characteristics of complete cells emphasized the importance of the proper preparation methods and

  3. Molecules for Fluorescence Detection of Specific Chemicals

    Science.gov (United States)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  4. Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.

    Science.gov (United States)

    Ducrot, Aurélien B; Coulson, Ben A; Perutz, Robin N; Duhme-Klair, Anne-Kathrin

    2016-12-19

    Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy) 2 (L 2 )MoO 2 (solv)] 2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy) 2 (phen-NH 2 )] 2+ , while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy) 2 (H 2 -L 2 )] 2+ . In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center

  5. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Ling [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Liu, Guang-Zhen, E-mail: gzliuly@126.com [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Xin, Ling-Yun [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Wang, Li-Ya [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2017-02-15

    Two topologically new Mn(II) coordination polymers, namely ([Mn{sub 2}(H{sub 4}ipca)(4,4′-bpy){sub 1.5}(CH{sub 3}CH{sub 2}OH){sub 0.5}(H{sub 2}O){sub 1.5}]·0.5CH{sub 3}CH{sub 2}OH·2.5H{sub 2}O){sub n} (1) and (Mn{sub 4}(H{sub 4}ipca){sub 2}(bze)(H{sub 2}O){sub 4}){sub n} (2) were prepared by the solvothermal reactions of Mn(II) acetate with 5-(2’,3’-dicarboxylphenoxy)isophthalic acid (H{sub 4}ipca) in the presence of different N-donor coligands (4,4′-bpy=4,4′-bipyridyl and bze=1, 4-bis(1-imidazoly)benzene). The single crystal X-ray diffractions reveal that two complexes display 3D metal-organic frameworks with binuclear and tetranuclear Mn(II) units, respectively. Complex 1 features a (3,4,6)-connected porous framework based on dinuclear Mn(II) unit with the (4.5{sup 2}){sub 2}(4{sup 2}.6{sup 8}.8{sup 3}.9{sup 2})(5{sup 2}.8.9{sup 2}.10) new topology, and complex 2 possesses a (3,8)-connected network based on tetranuclear Mn(II) unit with the (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 14}.7{sup 7}.8{sup 2}.9) new topology. Magnetic analyses indicate that both two compounds show weak antiferromagnetic interactions within binuclear and tetranuclear Mn(II) units. - Graphical abstract: Two topologically new Mn(II) metal-organic frameworks with dinuclear and tetranuclear Mn(II) units respectively were assembled by using 5-(2′,3′-Dicarboxylphenoxy)isophthalic acid and N-donor ancillary coligands. Magnetic analysis revealed the existence of dominant antiferromagnetic interactions within the polynuclear Mn(II) units. - Highlights: • Mixed ligand strategy produces two topologically new MOFs with dinuclear and tetranuclear Mn(II) respectively. • Magnetic fitting gives weak antiferromagnetic interactions within the polynuclear Mn(II) units.

  6. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.

    Science.gov (United States)

    Moon, Hong Chul; Lodge, Timothy P; Frisbie, C Daniel

    2014-03-05

    Ion gels comprising ABA triblock copolymers and ionic liquids have received much attention as functional materials in numerous applications, especially as gate dielectrics in organic transistors. Here we have expanded the functionality of ion gels by demonstrating low-voltage, flexible electrochemiluminescent (ECL) devices using patterned ion gels containing redox-active luminophores. The ECL devices consisted only of a 30 μm thick emissive gel and two electrodes and were fabricated on indium tin oxide-coated substrates (e.g., polyester) simply by solution-casting the ECL gel and brush-painting a top Ag electrode. The triblock copolymer employed in the gel was polystyrene-block-poly(methyl methacrylate)-block-polystyrene, where the solvophobic polystyrene end blocks associate into micellar cross-links in the versatile ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). An ECL gel containing ~6.25 wt % Ru(bpy)3Cl2 (relative to [EMI][TFSI]) as the luminophore turned on at an AC peak-to-peak voltage as low as 2.6 V (i.e., -1.3 to +1.3 V) and showed a relatively rapid response (sub-ms). The wavelength of maximum emission was 610 nm (red-orange). With the use of an iridium(III) complex, Ir(diFppy)2(bpy)PF6 [diFppy = 2-(2',4'-difluorophenyl)pyridine; bpy = 2,2'-bipyridyl], the emitting color was tuned to a maximum wavelength of 540 nm (green). Moreover, when a blended luminophore system containing a 60:40 mixture of Ru(bpy)3(2+) and Ir(diFppy)2(bpy)(+) was used in the emissive layer, the luminance of red-orange-colored light was enhanced by a factor of 2, which is explained by the generation of the additional excited state Ru(bpy)3(2+)* by a coreactant pathway with Ir(diFppy)2(bpy)(+)* in addition to the usual annihilation pathway. This is the first time that enhanced ECL has been achieved in ion gels (or ionic liquids) using a coreactant. Overall, the results indicate that ECL ion gels are attractive multifunctional materials for

  7. Influence of nature, concentration and pH of buffer acid-base system on rate determining step of the electrochemiluminescence of Ru(bpy)32+ with tertiary aliphatic amines

    International Nuclear Information System (INIS)

    Pastore, Paolo; Badocco, Denis; Zanon, Francesco

    2006-01-01

    The electrogenerated chemiluminescence (ECL) of Ru(bpy) 3 2+ (bpy 2,2'-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy) 3 2+ resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pK a being known. The nature of the rate determining steps changes depending on pH. Above pH ∼ 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 10 3 s -1 ; below pH ∼ 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pK a values of the ammonium ions. An ion pair formation between R 3 N· + and the mostly charged species present in solution is hypothesized to explain the contradictory experimental

  8. Interaction and Binding Modes of bis-Ruthenium(II Complex to Synthetic DNAs

    Directory of Open Access Journals (Sweden)

    Hasi Rani Barai

    2016-06-01

    Full Text Available [μ-(linkerL2(dipyrido[3,2-a:2′,3′-c]phenazine2(phenanthroline2Ru(II2]2+ with linker: 1,3-bis-(4-pyridyl-propane, L: PF6 (bis-Ru-bpp was synthesized and their binding properties to a various polynucleotides were investigated by spectroscopy, including normal absorption, circular dichroism(CD, linear dichroism(LD, and luminescence techniques in this study. On binding to polynucleotides, the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] exhibited a negative LDr signal whose intensity was as large as that in the DNA absorption region, followed by a complicated LDr signal in the metal-to-ligand charge transfer region. Also, the emission intensity and equilibrium constant of the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] were enhanced. It was reported that both of dppz ligand of the bis-Ru-bpp complex intercalated between DNA base-pairs when bound to native, mixed sequence DNA. Observed spectral properties resemble to those observed for poly[d(A-T2] and poly[d(I-C2], led us to be concluded that both dppz ligands intercalate between alternated AT and IC bases-pairs In contrast when bis-Ru-bpp complex was bound to poly[d(G-C2], the magnitude of the LDr in the dppz absorption region, as well as the emission intensity, was half in comparison to that of bound to poly[d(A-T2], and poly[d(I-C2]. Therefore the spectral properties of the bis-Ru-bpp-poly[d(G-C2] complex suggested deviation from bis-intercalation model in the poly[d(G-C2] case. These results can be explained by a model whereby one of the dppz ligands is intercalated while the other is exposed to solvent or may exist near to phosphate. Also it is indicative that the amine group of guanine in the minor groove provides the steric hindrance for incoming intercalation binder and it also takes an important role in a difference in binding of bis-Ru-bpp bound to poly[d(A-T2] and poly[d(I-C2].

  9. A importância do estado excitado 3MLCT de compostos de Ru(II, Re(I e Ir(III no desenvolvimento de fotossensores, oleds e fotorredução de CO2

    Directory of Open Access Journals (Sweden)

    Andressa V. Müller

    Full Text Available The photochemistry and photophysics of coordination compounds have been extensively investigated not only because their structure, stability, reactivity dependence on the metal center oxidation state and the coordinated ligand; but also for their electronic transitions in a wide range of visible radiation. The knowledge of light absorption, excited state deactivation, sensitization and quenching processes are crucial to their manipulation aiming the development of systems capable of execute useful functions such as photosensors and/or probes, luminescent devices and molecular systems to convert sunlight into other types of energy. In this review, the progresses and challenges of biomolecules photosensors, organic light emitting diodes and CO2 photoreduction catalysts based on ruthenium(II, rhenium(I or iridium(III coordination compounds are discussed based on their photochemical and photophysical processes.

  10. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: characterization, spectroscopic and isothermal titration calorimetry measurements of M2+ binding and sensing (M2+=Ca2+, Mg2+).

    Science.gov (United States)

    Dixit, Namrata; Mishra, Lallan; Mustafi, Sourajit M; Chary, Kandala V R; Houjou, Hirohiko

    2009-07-01

    Bis-[methylsalicylidine-4'benzoic acid]-ethylene (LH2) complexed with cis-Ru(bpy)2Cl(2).2H2O provides a complex of composition [Ru(bpy)2L].2NH4PF6 (1), which has been characterized spectroscopically. Its binding behaviour towards Mg2+ and Ca2+ ions is monitored using 1H NMR titration, isothermal titration calorimetry (ITC) and luminescence microscopy. The luminescent ruthenium complex binds Ca2+ in a more selective manner as compared to Mg2+.

  11. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    incorporation of boronic acids, an aqueous protocol for Miyaura borylation using a highly active palladacycle catalyst was established and can be transferred to a selective borylation of proteins. It allows subsequent Suzuki cross coupling and therefore broadens the possibilities for chemical modifications and the establishment of new metalloenzymes. Different metal chelating amino acids were investigated, such as Hydrochinolin-Alanine, Bipyridyl-Alanine, Dipyridine-Lysines and phosphorous containing amino acids.

  12. Influence of nature, concentration and pH of buffer acid-base system on rate determining step of the electrochemiluminescence of Ru(bpy){sub 3} {sup 2+} with tertiary aliphatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Paolo [Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (Italy)]. E-mail: paolo.pastore@unipd.it; Badocco, Denis [Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (Italy); Zanon, Francesco [Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (Italy)

    2006-07-28

    The electrogenerated chemiluminescence (ECL) of Ru(bpy){sub 3} {sup 2+} (bpy 2,2'-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy){sub 3} {sup 2+} resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pK {sub a} being known. The nature of the rate determining steps changes depending on pH. Above pH {approx} 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 10{sup 3} s{sup -1}; below pH {approx} 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pK {sub a} values of the ammonium ions. An ion pair formation between R{sub 3}N{center_dot} {sup +} and the mostly charged species

  13. Flexible metal-organic framework compounds: In situ studies for selective CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A.J., E-mail: andrew.allen@nist.gov [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Espinal, L.; Wong-Ng, W. [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Queen, W.L. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); The Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 (United States); Brown, C.M. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Kline, S.R. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Kauffman, K.L. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); Culp, J.T. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); URS Corporation, South Park, PA 15219 (United States); Matranga, C. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States)

    2015-10-25

    Results are presented that explore the dynamic structural changes occurring in two highly flexible nanocrystalline metal-organic framework (MOF) compounds during the adsorption and desorption of pure gases and binary mixtures. The Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN){sub 4}] and catena-bis(dibenzoylmethanato)-(4,4′-bipyridyl)nickel(II) chosen for this study are 3-D and 1-D porous coordination polymers (PCP) with a similar gate opening pressure response for CO{sub 2} isotherms at 303 K, but with differing degrees of flexibility for structural change to accommodate guest molecules. As such, they serve as a potential model system for evaluating the complex kinetics associated with dynamic structure changes occurring in response to gas adsorption in flexible MOF systems. Insights into the crystallographic changes occurring as the MOF pore structure expands and contracts in response to interactions with CO{sub 2}, N{sub 2}, and CO{sub 2}/N{sub 2} mixtures have been obtained from in situ small-angle neutron scattering and neutron diffraction, combined with ex situ X-ray diffraction structure measurements. The role of structure in carbon capture functionality is discussed with reference to the ongoing characterization challenges and a possible materials-by-design approach. - Graphical abstract: We present in situ small-angle neutron scattering results for two flexible metal-organic frameworks (MOFs). The figure shows that for one (NiBpene, high CO{sub 2} adsorption) the intensity of the Bragg peak for the expandable d-spacing most associated with CO{sub 2} adsorption varies approximately with the isotherm, while for the other (NiDBM-Bpy, high CO{sub 2} selectivity) the d-spacing, itself, varies with the isotherm. The cartoons show the proposed modes of structural change. - Highlights: • Dynamic structures of two flexible MOF CO{sub 2} sorbent compounds are compared in situ. • These porous solid sorbents serve as models for pure & dual gas adsorption. • Different

  14. The Triruthenium Complex [{(acac)(2)Ru-II}(3)(L)] Containing a Conjugated Diquinoxaline[2,3-a : 2 '',3 ''-c]phenazine (L) Bridge and Acetylacetonate (acac) as Ancillary Ligands. Synthesis, Spectroelectrochemical and EPR Investigation

    Czech Academy of Sciences Publication Activity Database

    Patra, S.; Sarkar, B.; Ghumaan, S.; Fiedler, Jan; Kaim, W.; Lahiri, G. K.

    -, č. 5 (2004), s. 754-758 ISSN 1477-9226 R&D Projects: GA MŠk OC D14.20; GA MŠk OC D15.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : nonlinear-optical properties * electrochemical properties * spectroelectrochemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.926, year: 2004

  15. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    Science.gov (United States)

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at

  16. Synthesis, characterization, and reactivity of ruthenium hydride complexes of N-centered triphosphine ligands.

    Science.gov (United States)

    Phanopoulos, Andreas; Brown, Neil J; White, Andrew J P; Long, Nicholas J; Miller, Philip W

    2014-04-07

    The reactivity of the novel tridentate phosphine ligand N(CH2PCyp2)3 (N-triphos(Cyp), 2; Cyp = cyclopentyl) with various ruthenium complexes was investigated and compared that of to the less sterically bulky and less electron donating phenyl derivative N(CH2PPh2)3 (N-triphos(Ph), 1). One of these complexes was subsequently investigated for reactivity toward levulinic acid, a potentially important biorenewable feedstock. Reaction of ligands 1 and 2 with the precursors [Ru(COD)(methylallyl)2] (COD = 1,5-cycloocatadiene) and [RuH2(PPh3)4] gave the tridentate coordination complexes [Ru(tmm){N(CH2PR2)3-κ(3)P}] (R = Ph (3), Cyp (4); tmm = trimethylenemethane) and [RuH2(PPh3){N(CH2PR2)3-κ(3)P}] (R = Ph (5), Cyp (6)), respectively. Ligands 1 and 2 displayed different reactivities with [Ru3(CO)12]. Ligand 1 gave the tridentate dicarbonyl complex [Ru(CO)2{N(CH2PPh2)3-κ(3)P}] (7), while 2 gave the bidentate, tricarbonyl [Ru(CO)3{N(CH2PCyp2)3-κ(2)P}] (8). This was attributed to the greater electron-donating characteristics of 2, requiring further stabilization on coordination to the electron-rich Ru(0) center by more CO ligands. Complex 7 was activated via oxidation using AgOTf and O2, giving the Ru(II) complexes [Ru(CO)2(OTf){N(CH2PPh2)3-κ(3)P}](OTf) (9) and [Ru(CO3)(CO){N(CH2PPh2)3-κ(3)P}] (11), respectively. Hydrogenation of these complexes under hydrogen pressures of 3-15 bar gave the monohydride and dihydride complexes [RuH(CO)2{N(CH2PPh2)3-κ(3)P}] (10) and [RuH2(CO){N(CH2PPh2)3-κ(3)P}] (12), respectively. Complex 12 was found to be unreactive toward levulinic acid (LA) unless activated by reaction with NH4PF6 in acetonitrile, forming [RuH(CO)(MeCN){N(CH2PPh2)3-κ(3)P}](PF6) (13), which reacted cleanly with LA to form [Ru(CO){N(CH2PPh2)3-κ(3)P}{CH3CO(CH2)2CO2H-κ(2)O}](PF6) (14). Complexes 3, 5, 7, 8, 11, and 12 were characterized by single-crystal X-ray crystallography.

  17. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems.

    Science.gov (United States)

    Lee-Montiel, Felipe T; George, Subin M; Gough, Albert H; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-10-01

    This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we

  18. Synthesis and coordination behavior of a bipyridine platinum(II) complex with thioglucose.

    Science.gov (United States)

    Tsuji, Takaaki; Kuwamura, Naoto; Yoshinari, Nobuto; Konno, Takumi

    2013-05-06

    A mononuclear platinum(II) complex with two monodentate-S H4tg(-) ligands, [Pt(H4tg-κS)2(bpy)] (1), was newly synthesized by the reaction of [PtCl2(bpy)] (bpy = 2,2'-bipyridyl) with NaH4tg (NaH4tg =1-thio-β-d-glucose sodium salt) in water. Complex 1 reacted with additional [PtCl2(bpy)] in water to give an S-bridged dinuclear complex, [Pt2(μ2-H4tg-κ(1)S:κ(1)S)2(bpy)2](2+) ([2](2+)), in which a square-planar [Pt(H4tg)2(bpy)] unit binds to a [Pt(bpy)](2+) moiety through two thiolato groups. Treatments of 1 with Cu(2+) and Ni(2+) in water in the presence of bpy produced S-bridged dinuclear complexes [PtCu(μ2-H4tg-κ(1)S:κ(2)O,S)2(bpy)2](2+) ([3](2+)) and [PtNi(μ2-H4tg-κ(1)S:κ(2)O,S)2(bpy)2](2+) ([4](2+)), respectively, in which a square-planar [Pt(H4tg)2(bpy)] unit binds to a [M(bpy)](2+) (M = Cu(II), Ni(II)) moiety through two thiolato and two hydroxyl groups to form a chiral [M(N)2(O)2(S)2] octahedron with the Δ configuration. On the other hand, similar treatment with Cd(2+) in the presence of bpy resulted in the formation of an S-bridged trinuclear complex, [Cd{Pt(μ2-H4tg-κ(1)S:κ(2)O,S)(μ2-H4tg-κ(1)S:κ(1)S)(bpy)}2](2+) ([5](2+)), in which each of two square-planar [Pt(H4tg)2(bpy)] units binds to a Cd(II) ion through two thiolato groups and one hydroxyl group to form a chiral [Cd(O)2(S)4] octahedron with the Λ configuration. Of two geometrical configurations, syn and anti, which arise from the relative arrangement of two β-D-pyranose moieties, [2](2+) adopts the syn configuration with symmetric bridging sulfur atoms, while [3](2+), [4](2+), and [5](2+) all have the anti configuration with R configurational bridging sulfur atoms. All of the complexes were fully characterized by electronic absorption, CD, and NMR spectroscopies, along with single-crystal X-ray crystallography.

  19. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines

    Energy Technology Data Exchange (ETDEWEB)

    Haleel, A.; Mahendiran, D. [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India); Veena, V.; Sakthivel, N. [Department of Biotechnology, Pondicherry University, Pondicherry 605 014 (India); Rahiman, A. Kalilur, E-mail: akrahmanjkr@gmail.com [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India)

    2016-11-01

    A series of heteroleptic mononuclear copper(II) complexes of the type [Cu(L{sup 1–3})(diimine)]ClO{sub 4} (1–6) containing three tetrazolo[1,5-a]pyrimidine core ligands, ethyl 5-methyl-7-(2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 1}), ethyl 5-methyl-7-(4-diethylamino-2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 2}) or ethyl 5-methyl-7-(2-hydroxy-4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 3}), and two diimine coligands, 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized and characterized by spectral methods. The geometry of complexes have been determined with the help of electronic absorption and EPR splitting patterns, which suggest four coordinated square planar geometry around copper(II) ion. The lowering of HOMO–LUMO band gap value of complex 4 implies its higher biological activity compared to other complexes. Antioxidant studies revealed that the complexes possess considerable radical scavenging potency against DPPH. The binding studies of the complexes with calf thymus DNA (CT–DNA) revealed groove mode of binding, which was further supported by docking simulation. The complexes 3 and 4 strongly inhibit the topoisomerase I, and also strongly interact with VEGFR2 kinase receptor via π–π, σ–π and hydrogen bonding interaction. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. In vitro cytotoxic activities of the complexes were examined on three cancerous cell lines such as human lung (A549), cervical (HeLa) and colon (HCT-15), and two normal cells such as human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMCs). The live cell and fluorescent imaging of cancer cells were observed with acridine orange/ethidium bromide staining assay. All encouraging chemical and biological findings indicate that the complex 4 is a suitable candidate

  20. Improved performance of dye-sensitized solar cells: An TiO{sub 2}-nano-SiO{sub 2} hybrid photoanode with post-treatment of TiCl{sub 4} aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ling; Niu Haihong; Zhang Shouwei; Wan Lei [School of Electrical Engineering and Automation, Hefei University of Technology (HFUT), School of Chemical Engineering, HFUT, Hefei 230009 (China); Miao Shiding, E-mail: miaosd@iccas.ac.cn [School of Electrical Engineering and Automation, Hefei University of Technology (HFUT), School of Chemical Engineering, HFUT, Hefei 230009 (China); Xu Jinzhang, E-mail: xujz@hfut.edu.cn [School of Electrical Engineering and Automation, Hefei University of Technology (HFUT), School of Chemical Engineering, HFUT, Hefei 230009 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A TiO{sub 2}-nano-SiO{sub 2} hybrid film was prepared by depositing a paste of TiO{sub 2} (P{sub 25}) incorporated with SiO{sub 2}. Black-Right-Pointing-Pointer The optimal concentration of TiCl{sub 4} solution was found to be 75 mM for the post-treatment. Black-Right-Pointing-Pointer A photoelectron conversion efficiency of 6.39% was achieved for the prepared dye-sensitized solar cells (DSSCs). Black-Right-Pointing-Pointer SiO{sub 2} gives a significant improvement in the performance of the DSSCs. - Abstract: A TiO{sub 2}-nano-SiO{sub 2} hybrid film was prepared on a conductive F-doped tin oxide (FTO) substrate by depositing a mixture paste of TiO{sub 2} (P{sub 25}) and nano-sized SiO{sub 2} particles. The hybrid film was further treated by a titanium tetrachloride (TiCl{sub 4}) aqueous solution with different concentrations before it was assembled as a photoanode in dye sensitized solar cells (DSSCs). We studied the performance of DSSCs by using the dye molecule of cis-bis(isothiocy-anato)-bis-(2,2 Prime -bipyridyl-4,4 Prime -dicarboxylato) -ruthenium(II) bis-tetrabutylammonium (N719) as sensitizer. Results suggested that the post-treatment using TiCl{sub 4} could enhance the dye adsorption. The thin TiO{sub 2} layer hydrolyzed from TiCl{sub 4} could fill gaps between nanoparticles in the composite film, leading to a better electron transport than non-treated films, and improve the light harvesting efficiency. The optimal concentration was found to be 75 mM for the post-treatment of TiO{sub 2}-SiO{sub 2} hybrid film by TiCl{sub 4} solution. A photoelectron conversion efficiency of 6.39% was achieved in the back-side illuminated dye-sensitized solar cells, which is {approx}105% higher than the basic efficiency of the bare TiO{sub 2} sensitized sample. TiO{sub 2}-nano-SiO{sub 2} hybrid photoanode was prepared by incorporation of nano-sized SiO{sub 2} in the TiO{sub 2} film. The introduced SiO{sub 2} as a wide band

  1. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    International Nuclear Information System (INIS)

    Zhan Fangfang; Zhou Xiaoming; Xing Da

    2013-01-01

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs–TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: ► A novel method for detection of rotavirus has been developed. ► In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. ► To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. ► The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2′-bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs–TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection. In this study, rotavirus in fecal specimens was successfully detected within 1.5 h. Experimental

  2. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Fangfang; Zhou Xiaoming [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Xing Da, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2013-01-25

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs-TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: Black-Right-Pointing-Pointer A novel method for detection of rotavirus has been developed. Black-Right-Pointing-Pointer In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. Black-Right-Pointing-Pointer To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. Black-Right-Pointing-Pointer The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2 Prime -bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs-TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection

  3. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.

    Science.gov (United States)

    Xie, Puhui; Chen, Yuan-Jang; Uddin, Md Jamal; Endicott, John F

    2005-06-02

    The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted contributions of higher order vibronic terms. The emrep amplitudes of these complexes have their maxima at about 1500 cm(-1) in frozen solution, and Lambdax(max) decreases systematically by approximately 2-fold as Ef decreases from 17,220 for [Ru(bpy)3]2+ to 12,040 cm(-1) for [Ru(NH3)4bpy]2+ through the series of complexes. Corrections for higher order contributions and bandwidth differences based on the modeling with rR parameters indicate that the variations in Lambdax(max) imply somewhat larger decreases in first-order bpy vibrational reorganizational energies. The large attenuation of vibrational reorganizational energies of the [Ru(Am)6-2n(bpy)n]2+ complexes contrasts with the apparent similarity of reorganizational energy amplitudes for the absorption and emission of [Ru(NH3)4bpy]2+. These observations are consistent with increasing and very substantial excited-state/ground-state configurational mixing and decreasing excited-state distortion as Ef decreases, but more severe attenuation for singlet/singlet than triplet/singlet mixing (alphage > alphaeg for the configurational mixing coefficients at the ground-state and excited-state potential energy minima, respectively); it is inferred that 0.18 > or = alphage2 > or = 0.09 for [Ru(bpy)3]2+ and 0.37 > or = alphage2 > or = 0.18 for [Ru(NH3)4bpy]2+ in DMSO/water glasses, where the ranges are based on models that there is or is not a spin restriction on configurational mixing (alphage > alphaeg and alphage = alphaeg), respectively, for these complexes.

  4. Dual-lifetime referencing (DLR: a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts

    Directory of Open Access Journals (Sweden)

    Boniello Caterina

    2012-03-01

    Full Text Available Abstract Background Industrial-scale biocatalytic synthesis of fine chemicals occurs preferentially as continuous processes employing immobilized enzymes on insoluble porous carriers. Diffusional effects in these systems often create substrate and product concentration gradients between bulk liquid and the carrier. Moreover, some widely-used biotransformation processes induce changes in proton concentration. Unlike the bulk pH, which is usually controlled at a suitable value, the intraparticle pH of immobilized enzymes may deviate significantly from its activity and stability optima. The magnitude of the resulting pH gradient depends on the ratio of characteristic times for enzymatic reaction and on mass transfer (the latter is strongly influenced by geometrical features of the porous carrier. Design and selection of optimally performing enzyme immobilizates would therefore benefit largely from experimental studies of the intraparticle pH environment. Here, a simple and non-invasive method based on dual-lifetime referencing (DLR for pH determination in immobilized enzymes is introduced. The technique is applicable to other systems in which particles are kept in suspension by agitation. Results The DLR method employs fluorescein as pH-sensitive luminophore and Ru(II tris(4,7-diphenyl-1,10-phenantroline, abbreviated Ru(dpp, as the reference luminophore. Luminescence intensities of the two luminophores are converted into an overall phase shift suitable for pH determination in the range 5.0-8.0. Sepabeads EC-EP were labeled by physically incorporating lipophilic variants of the two luminophores into their polymeric matrix. These beads were employed as carriers for immobilization of cephalosporin C amidase (a model enzyme of industrial relevance. The luminophores did not interfere with the enzyme immobilization characteristics. Analytical intraparticle pH determination was optimized for sensitivity, reproducibility and signal stability under

  5. Roles of Bridging Ligand Topology and Conformation in Controlling Exchange Interactions between Paramagnetic Molybdenum Fragments in Dinuclear and Trinuclear Complexes.

    Science.gov (United States)

    Ung VÂ, V&acaron;n Ân; Cargill Thompson, Alexander M. W.; Bardwell, David A.; Gatteschi, Dante; Jeffery, John C.; McCleverty, Jon A.; Totti, Federico; Ward, Michael D.

    1997-07-30

    The magnetic properties of two series of dinuclear complexes, and one trinuclear complex, have been examined as a function of the bridging pathway between the metal centers. The first series of dinuclear complexes is [{Mo(V)(O)(Tp)Cl}(2)(&mgr;-OO)], where "OO" is [1,4-O(C(6)H(4))(n)O](2)(-) (n = 1, 1; n = 2, 3), [4,4'-O(C(6)H(3)-2-Me)(2)O](2)(-) (4), or [1,3-OC(6)H(4)O](2)(-) (2) [Tp = tris(3,5-dimethylpyrazolyl)hydroborate]. The second series of dinuclear complexes is [{Mo(I)(NO)(Tp)Cl}(2)(&mgr;-NN)], where "NN" is 4,4'-bipyridyl (5), 3,3'-dimethyl-4,4'-bipyridine (6), 3,8-phenanthroline (7), or 2,7-diazapyrene (8). The trinuclear complex is [{Mo(V)(O)(Tp)Cl}(3)(1,3,5-C(6)H(3)O(3))] (9), whose crystal structure was determined [9.5CH(2)Cl(2): C(56)H(81)B(3)Cl(13)Mo(3)N(18)O(6); monoclinic, P2(1)/n; a = 13.443, b = 41.46(2), c = 14.314(6) Å; beta = 93.21(3) degrees; V = 7995(5) Å(3); Z = 4; R(1) = 0.106]. In these complexes, the sign and magnitude of the exchange coupling constant J is clearly related to both the topology and the conformation of the bridging ligand [where J is derived from H = -JS(1)().S(2)() for 1-8 and H = -J(S(1)().S(2)() + S(2)().S(3)() + S(1)().S(3)()) for 9]. The values are as follows: 1, -80 cm(-)(1); 2, +9.8 cm(-)(1); 3, -13.2 cm(-)(1); 4, -2.8 cm(-)(1); 5, -33 cm(-)(1); 6, -3.5 cm(-)(1); 7, -35.6 cm(-)(1); 8, -35.0 cm(-)(1); 9, +14.4 cm(-)(1). In particular the following holds: (1) J is negative (antiferromagnetic exchange) across the para-substituted bridges ligands of 1 and 3-8 but positive (ferromagnetic exchange) across the meta-substituted bridging ligands of 2 and 9. (2) J decreases in magnitude dramatically as the bridging ligand conformation changes from planar to twisted (compare 3 and 4, or 6 and 8). These observations are consistent with a spin-polarization mechanism for the exchange interaction, propagated across the pi-system of the bridging ligand by via overlap of bridging ligand p(pi) orbitals with the d(pi) magnetic

  6. Synthesis and Characterization of Ru(II) Tris(1,1O-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium Cation or N-Benzyl-N'-methyl-viologen. Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors

    Science.gov (United States)

    Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2004-01-01

    The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.

  7. Photocatalytic water splitting: Materials design and high-throughput screening of molecular compositions

    Science.gov (United States)

    Khnayzer, Rony S.

    , photons of low energy are converted into higher energy light using a process termed photon upconversion. Using this technique, low energy photons supplied by the sun can be converted into light of appropriate energy to trigger electronic transitions in high energy absorbing photoactive materials without any chemical modification of the latter. We have shown, that this technology is capable of upconverting visible sunlight to sensitize wide-bandgap semiconductors such as WO3, subsequently extending the photoaction of these materials to cover a larger portion of the solar spectrum. Besides the engineering of different compositions that serve as either sensitizers or catalysts in these solar energy conversion schemes, we have designed an apparatus for parallel high-throughput screening of these photocatalytic compositions. This combinatorial approach to solar fuels photocatalysis has already led to unprecedented fundamental understanding of the generation of hydrogen gas from pure water. The activity of a series of new Ru(II) sensitizers along with Co(II) molecular WRCs were optimized under visible light excitation utilizing different experimental conditions. The multi-step mechanism of activity of selected compositions was further elucidated by pump-probe transient absorption spectroscopy.

  8. Evaluation of radioprotective activities Rhodiola imbricata Edgew--a high altitude plant.

    Science.gov (United States)

    Arora, Rajesh; Chawla, Raman; Sagar, Ravinder; Prasad, Jagdish; Singh, Surendar; Kumar, Raj; Sharma, Ashok; Singh, Shikha; Sharma, Rakesh Kumar

    2005-05-01

    The present study reports the radioprotective properties of a hydro-alcoholic rhizome extract of Rhodiola imbricata (code named REC-7004), a plant native to the high-altitude Himalayas. The radioprotective effect, along with its relevant superoxide ion scavenging, metal chelation, antioxidant, anti-lipid peroxidation and anti-hemolytic activities was evaluated under both in vitro and in vivo conditions. Chemical analysis showed the presence of high content of polyphenolics (0.971 +/- 0.01 mg% of quercetin). Absorption spectra analysis revealed constituents that absorb in the range of 220-290 nm, while high-performance liquid chromatography (HPLC) analysis confirmed the presence of four major peaks with retention times of 4.780, 5.767, 6.397 and 7.577 min. REC-7004 was found to lower lipid oxidation significantly (p degradation within first 24 h. The metal chelation activity of REC-7004 was found to increase concomitantly from 1 to 50 microg/ml. REC-7004 (10-50 microg/ml) exhibited significant metal chelation activity (p < 0.05), as compared to control, and maximum percentage inhibition (30%) of formation of iron-2,2'-bi-pyridyl complex was observed at 50 microg/ml, which correlated well with quercetin (34.9%), taken as standard. The reducing power of REC-7004 increased in a dose-dependent manner. The absorption unit value of REC-7004 was significantly lower (0.0183 +/- 0.0033) as compared to butylated hydroxy toluene, a standard antioxidant (0.230 +/- 0.091), confirming its high reducing ability. Superoxide ion scavenging ability of REC-7004 exhibited a dose-dependent increase (1-100 microg/ml) and was significantly higher (p < 0.05) than that of quercetin at lower concentrations (1-10 microg/ml), while at 100 microg/ml, both quercetin and REC-7004 scavenged over 90% superoxide anions. MTT assay in U87 cell line revealed an increase in percent survival of cells at doses between 25 and 125 microg/ml in case of drug + radiation group. In vivo evaluation of radio

  9. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    . Therefore, it was suggested that the supercritical primary alcohols, for example methanol, as the simplest alcohol and an analogue of water, might become a promising substitute of water in a radiolysis study. As our knowledge, the yield of solvated electron in methanol at high temperatures and pressures, especially at supercritical condition, is still unknown now. In this work, the yield of solvated electron in methanol has been investigated at different temperatures from room temperature to supercritical condition by a method of nanosecond pulse radiolysis. By using 4,4'-bipyridyl as a scavenger, the temperature-, pressure- and density-dependent yields of solvated electron, i.e., G-values, have been measured for the first time, which revealing a special density effect on the yield in supercritical methanol. With increasing temperature under 9 MPa, the yield just changes slightly below 230 deg. C, and increases dramatically to peak at around 250 deg. C, after that decreases again. The pressure and density dependence of the yields at elevated temperatures are also measured and discussed. The results imply that, in supercritical region, especially near to critical point, the density effect becomes predominant influence on the yield of radiolysis products. (authors)

  10. Isovalent and Mixed-Valent Diruthenium Complexes [(acac)(2)Ru-II (.mu.-bpytz)Ru-II(acac)(2)] and [(acac)(2)Ru-II(.mu.-bpytz)Ru-III(acac)(2)](ClO4) (acac= Acetylacetonate and bpytz=3,6-Bis(3,5-dimethylpyrazolyi)-1,2,4,5-tetrazine): Synthesis, Spectroelectrochemical, and EPR Investigation

    Czech Academy of Sciences Publication Activity Database

    Patra, S.; Sarkar, B.; Ghumaan, S.; Fiedler, Jan; Kaim, W.; Lahiri, G. K.

    2004-01-01

    Roč. 43, č. 19 (2004), s. 6108-6113 ISSN 0020-1669 R&D Projects: GA MŠk OC D15.10; GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : electron-transfer * bridging ligand * ruthenium complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2004

  11. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    , which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.