WorldWideScience

Sample records for heterokont algae based

  1. A molecular phylogeny of the heterokont algae based on analyses of choroplast-encoded rbcL sequence data

    DEFF Research Database (Denmark)

    Daugbjerg, Niels; Andersen, Robert A.

    1997-01-01

    of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum......-likelihood analysis (branch containing the Chrysophyceae and Synurophyceae. This clade, charactetized by siliceous structures (frustules, cysts, scales), was the sister group to the Pelagophyceae/Sarcinochrysidales and Phaeo....... The branch lengths in the maximum-likelihood reconstruction suggest that these two classes have evolved at an accelerated rate. Six major carotenoids were analyzed cladistically to study the usefulness of carotenoid pigmentation as a class-level character in the heterokont algae. In addition, each carotenoid...

  2. Heterokont predator Develorapax marinus gen. et sp. nov. – a model of the ochrophyte ancestor

    Directory of Open Access Journals (Sweden)

    Vladimir V. Aleoshin

    2016-08-01

    Full Text Available Heterotrophic lineages of Heterokonta (or stramenopiles, in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heteretrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms, and has likely occured in the ochrophyte ancestor.

  3. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  4. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  5. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  6. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  7. Economic evaluation of algae biodiesel based on meta-analyses

    Science.gov (United States)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  8. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    Directory of Open Access Journals (Sweden)

    Corre Erwan

    2009-10-01

    Full Text Available Abstract Background Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. Results The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including

  9. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    Science.gov (United States)

    2012-11-15

    development of such an algal model system for basic discovery, we sequenced the genome and two sets of transcriptomes of N. oceanica CCMP1779, assembled...CCMP1779 has a gene encoding a highly conserved violax- anthin de-epoxidase ( VDE ) protein like that found in plants (Table S9). In Arabidopsis, VDE is...HLA3 or LCI1 were present. This result suggests that CCMP1779 might have a plastid Ci transport system similar to that of Chlamydomonas, but a distinct

  10. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  12. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  13. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    Science.gov (United States)

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  15. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  16. Are algae relevant to the detritus-based food web in tank-bromeliads?

    Directory of Open Access Journals (Sweden)

    Olivier Brouard

    Full Text Available We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼10(2 to 10(4 cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter, our results indicate that primary producers (i.e., autochtonous organic matter are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web.

  17. Spectral classifying base on color of live corals and dead corals covered with algae

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  18. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    Science.gov (United States)

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-01-01

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae. PMID:8041781

  19. Preliminary development and evaluation of an algae-based air regeneration system

    Science.gov (United States)

    Nienow, J. A.

    2000-01-01

    The potential of air regeneration system based on the growth of microalgae on the surface of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786), Stichococcus sp., and Gloeocapsa sp. Under standard test conditions (photosynthetic photon flux approximately 66 micromoles m-2 s-1, initial CO2 concentration approximately 450 micromoles mol-1), mature tubes remove up to 0.2 micromoles of CO2 per tube per minute. The rate of removal increases with photon flux up to at least 225 micromoles m-2 s-1 (PPF); peak rates of 0.35 micromoles of CO2 per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to between 120 and 210 micromoles of CO2 removed per square meter of projected area per minute.

  20. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  1. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  3. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  5. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  6. A New Treatment Strategy for Inactivating Algae in Ballast Water Based on Multi-Trial Injections of Chlorine.

    Science.gov (United States)

    Sun, Jinyang; Wang, Junsheng; Pan, Xinxiang; Yuan, Haichao

    2015-06-09

    Ships' ballast water can carry aquatic organisms into foreign ecosystems. In our previous studies, a concept using ion exchange membrane electrolysis to treat ballast water has been proven. In addition to other substantial approaches, a new strategy for inactivating algae is proposed based on the developed ballast water treatment system. In the new strategy, the means of multi-trial injection with small doses of electrolytic products is applied for inactivating algae. To demonstrate the performance of the new strategy, contrast experiments between new strategies and routine processes were conducted. Four algae species including Chlorella vulgaris, Platymonas subcordiformis, Prorocentrum micans and Karenia mikimotoi were chosen as samples. The different experimental parameters are studied including the injection times and doses of electrolytic products. Compared with the conventional one trial injection method, mortality rate time (MRT) and available chlorine concentration can be saved up to about 84% and 40%, respectively, under the application of the new strategy. The proposed new approach has great potential in practical ballast water treatment. Furthermore, the strategy is also helpful for deep insight of mechanism of algal tolerance.

  7. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Jamers, An; Blust, Ronny; De Coen, Wim [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Griffin, Julian L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 2QA (United Kingdom); Jones, Oliver A.H., E-mail: oliver.jones@rmit.edu.au [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia)

    2013-01-15

    The effects of cadmium were assessed in the freshwater alga Chlamydomonas reinhardtii. Algae were exposed to concentrations of 0, 8.1 or 114.8 {mu}M of cadmium and growth rates, gene transcription and metabolite profiles were examined after 48 and 72 h of exposure. In algae exposed to 8.1 {mu}M Cd, several genes were differentially transcribed after 48 h but no adverse growth related effects were detected. A transient effect on both gene transcription patterns and metabolite profiles could be discerned after 48 h of exposure but the majority of these changes disappeared after 72 h. In contrast, all effects were more pronounced at the 114.8 {mu}M cadmium exposure. Here growth was clearly reduced and transcription of a large number of genes involved in oxidative stress defense mechanisms was differentially increased. Metabolites involved in the glutathione synthesis pathway (an important antioxidant defense) were also affected but the effects of cadmium were found to be more pronounced at the transcript level than in the metabolome, suggesting that the former exhibits greater sensitivity toward cadmium exposure.

  8. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea.

    Science.gov (United States)

    Xu, Fuxiang; Gao, Zhiqiang; Jiang, Xiaopeng; Shang, Weitao; Ning, Jicai; Song, Debin; Ai, Jinquan

    2018-03-01

    Previous studies have shown that the initial biomass of green tide was the green algae attaching to Pyropia aquaculture rafts in the Southern Yellow Sea. In this study, the green algae was identified with unmanned aerial vehicle (UAV), an biomass estimation model was proposed for green algae biomass in the radial sand ridge area based on Sentinel-2A image (S2A) and UAV images. The result showed that the green algae was detected highly accurately with the normalized green-red difference index (NGRDI); approximately 1340 tons and 700 tons of green algae were attached to rafts and raft ropes respectively, and the lower biomass might be the main cause for the smaller scale of green tide in 2017. In addition, UAV play an important role in raft-attaching green algae monitoring and long-term research of its biomass would provide a scientific basis for the control and forecast of green tide in the Yellow Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Ferrándiz-Mas, V.; Bond, T.; Zhang, Z.; Melchiorri, J.; Cheeseman, C.R.

    2016-01-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm"2 of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave maximum

  10. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al- and Fe-based coagulants.

    Science.gov (United States)

    Xu, Jie; Zhao, Yanxia; Gao, Baoyu; Zhao, Qian

    2018-05-01

    The water eutrophication caused by cyanobacteria seasonally proliferates, which is a hot potato to be resolved for water treatment plants. This study firstly investigated coagulation performance of titanium tetrachloride (TiCl 4 ) for Microcystis aeruginosa synthetic water treatment. Results show complete algal cell removal by TiCl 4 coagulation without damage to cell membrane integrity even under harsh conditions; 60 mg/L TiCl 4 was effective in removing the microcystins up to 85%. Furthermore, besides having stronger UV 254 removal capability and the higher removal of fluorescent substances over Al- and Fe-based coagulants, TiCl 4 coagulant required more compact coagulation and sedimentation tanks due to its significantly improved floc growth and sedimentation speed. Meanwhile, its' short hydraulic retention time avoided algal cell breakage and subsequent algal organic matter release. Microcystin concentrations were kept at a low level during sludge storage period, indicating that the TiCl 4 flocs could prevent algal cells from natural lysis. To facilitate water recycling without secondary contamination, the algae-containing sludge after TiCl 4 coagulation ought to be disposed within 12 days at 20 °C and 8 days at 35 °C.

  11. Neutron activation analysis for development of mercury sorbent based on blue-green alga salipriina palatinates

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Mosulishvili, L.M.; Belokobylsky, A.I.; Khizanishvili, A.I.

    2005-01-01

    Epithermal neutron activation analysis was used to study interaction of blue-green alga Spirulina platensis with toxic metal mercury. Various concentrations of Hg(II) were added to cell cultures in a nutrient medium. The dynamic of accumulation of Hg was investigated over days in relation to Spirulina biomass growth. The process of Hg adsorption by Spirulina biomass was studied in short-time experiments. The isotherm of adsorption was / out in Freindlich coordinates. Natural Spirulina biomass has potential to be used in the remediation of sewage waters at Hg concentrations ∼ 100 μg/1

  12. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system.

    Science.gov (United States)

    Chi, Zhanyou; Elloy, Farah; Xie, Yuxiao; Hu, Yucai; Chen, Shulin

    2014-01-01

    Using microalgae to capture CO2 from flue gas is an ideal way to reduce CO2 emission, but this is challenged by the high cost of carbon capture and transportation. To address this problem, a bicarbonate-based integrated carbon capture and algae production system (BICCAPS) has been proposed, in which bicarbonate is used for algae culture, and the regenerated carbonate from this process can be used to capture more CO2. High-concentration bicarbonate is obligate for the BICCAPS. Thus, different strains of microalgae and cyanobacteria were tested in this study for their capability to grow in high-concentration NaHCO3. The highest NaHCO3 concentrations they are tolerant to were determined as 0.30 M for Synechocystis sp. PCC6803, 0.60 M for Cyanothece sp., 0.10 M for Chlorella sorokiniana, 0.60 M for Dunaliella salina, and 0.30 M for Dunaliella viridis and Dunaliella primolecta. In further study, biomass production from culture of D. primolecta in an Erlenmeyer flask with either 0.30 M NaHCO3 or 2 % CO2 bubbling was compared, and no significant difference was detected. This indicates BICCAPS can reach the same biomass productivity as regular CO2 bubbling culture, and it is promising for future application.

  13. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ferrándiz-Mas, V., E-mail: v.ferrandiz@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Bond, T., E-mail: t.bond@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Zhang, Z., E-mail: zhen.zhang14@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Melchiorri, J., E-mail: jpmelchiorri@gmail.com [ARBOREA Research, Bessemer Building, Prince Consort Road, London SW7 2AZ (United Kingdom); Cheeseman, C.R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom)

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm{sup 2} of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave

  14. Harmful algae and toxis in paranaguá bay , Brazil: bases for monitoring

    Directory of Open Access Journals (Sweden)

    Luiz Laureno Mafra Junior

    2006-09-01

    Full Text Available The estuarine complex of Paranaguá - ECP (South Brazil, 25º30'S, 48º30'W is a large subtropical system, where pristine mangrove forests are still present, and fishery and aquaculture are important economic activities. This work investigated the occurrence of harmful algae in Paranaguá Bay, as well as the presence of toxins in the filter feeding mussel Mytella guyanensis, a local fishery resource. Samples along the Paranaguá sub-system were collected almost monthly from August 2002 to October 2003. Besides physical and chemical variables, cell densities of harmful species and presence of toxins in the mussel by mouse bioassay (DSP, PSP and HPLC (ASP were performed. HAB species included Pseudo-nitzschia spp., Dinophysis acuminata,Prorocentrum minimum,Gymnodinium catenatum,Phaeocystis spp., Chattonella spp. and Heterosigma akashiwo.Trichodesmium erythraeum and Coscinodiscus wailesii were also included in this study due to their potential for harmful bloom formation. Toxin results showed the occurrence of DSP (December 2002 in shellfish related to the presence of D. acuminata (max. 4,566 cells.l-1. Additionally, cultivated strains produced paralytic and amnesic toxins in laboratory. Spring (October to December, Southern Hemisphere and late summer (February to April were the periods of higher abundance of harmful algae, mainly in euhaline and inner polyhaline sectors of the ECP.O complexo estuarino de Paranaguá (CEP; 25º30'S, 48º30'W, localizado no litoral sul do Brasil, abriga extensas áreas preservadas de manguezais e tem a pesca e aqüicultura como importantes atividades econômicas. Este trabalho investigou a ocorrência de microalgas nocivas no CEP e a presença de ficotoxinas no molusco bivalve Mytella guyanensis. Para tanto, foram coletadas amostras com periodicidade aproximadamente mensal, entre agosto de 2002 e outubro de 2003. Foram avaliadas variáveis físico-químicas, densidade de espécies nocivas e a presença de toxinas nos

  15. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cellscope Aquatic: a Lab Quality, Portable Cellphone-Based Microscope for On-Site Collection of Algae Images

    Science.gov (United States)

    Steinberg, S. J.; Howard, M. D.

    2016-02-01

    Collecting algae samples from the field presents issues of specimen damage or degradation caused by preservation methods, handling and transport to laboratory facilities for identification. Traditionally, in-field collection of high quality microscopic images has not been possible due to the size, weight and fragility of high quality instruments and training of field staff in species identification. Scientists at the Southern California Coastal Water Research Project (SCCWRP) in collaboration with the Fletcher Lab, University of California Berkeley, Department of Bioengineering, tested and translated Fletcher's original medical CellScope for use in environmental monitoring applications. Field tests conducted by SCCWRP in 2014 led to modifications of the clinical CellScope to one better suited to in-field microscopic imaging for aquatic organisms. SCCWRP subsequently developed a custom cell-phone application to acquire microscopic imagery using the "CellScope Aquatic "in combination with other cell-phone derived field data (e.g. GPS location, date, time and other field observations). Data and imagery collected in-field may be transmitted in real-time to a web-based data system for tele-taxonomy evaluation and assessment by experts in the office. These hardware and software tools was tested in field in a variety of conditions and settings by multiple algae experts during the spring and summer of 2015 to further test and refine the CellScope Aquatic platform. The CellScope Aquatic provides an easy-to-use, affordable, lightweight, professional quality, data collection platform for environmental monitoring. Our ongoing efforts will focus on development of real-time expert systems for data analysis and image processing, to provide onsite feedback to field scientists.

  17. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  18. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    Science.gov (United States)

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  20. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature.

    Science.gov (United States)

    Baier, Fabian; Gruber, Edith; Hein, Thomas; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A; Spangl, Bernhard; Zaller, Johann G

    2016-01-01

    Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L -1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L -1 ) on larval development of Common toads ( Bufo bufo , L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose

  1. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia and associated algae are altered by temperature

    Directory of Open Access Journals (Sweden)

    Fabian Baier

    2016-11-01

    Full Text Available Background Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. Methods We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L−1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L−1 on larval development of Common toads (Bufo bufo, L.; Amphibia: Anura and associated algae communities under two temperature regimes (15 vs. 20 °C. Results Herbicide contamination reduced tail growth (−8%, induced the occurrence of tail deformations (i.e. lacerated or crooked tails and reduced algae diversity (−6%. Higher water temperature increased tadpole growth (tail and body length (tl/bl +66%, length-to-width ratio +4% and decreased algae diversity (−21%. No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. Discussion These herbicide- and temperature-induced changes may have decided effects on ecological

  2. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  3. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage based diet with flaxseed or algae.

    Science.gov (United States)

    Ponnampalam, Eric N; Burnett, Viv F; Norng, Sorn; Hopkins, David L; Plozza, Tim; Jacobs, Joe L

    2016-01-01

    The effect of feeding flaxseed or algae supplements to lambs on muscle antioxidant potential (vitamin E), major fatty acid groups, lipid oxidation and retail colour was investigated. Lambs (n=120) were randomly allocated to one of 4 dietary treatments according to liveweight and fed the following diets for eight weeks: Annual ryegrass hay [60%]+subterranean clover hay [40%] pellets=Basal diet; Basal diet with flaxseed (10.7%)=Flax; Basal diet with algae (1.8%)=Algae; Basal diet with flaxseed (10.7%) and algae (1.8%)=FlaxAlgae. Flaxseed or algae supplementation significantly affected major fatty acid groups in muscle. The addition of algae (average of Algae and FlaxAlgae) resulted in lower vitamin E concentration in muscle (Palgae (average of Basal and Flax). Increasing muscle EPA+DHA by algae supplementation significantly increased lipid oxidation, but retail display colour of fresh meat was not affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  5. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  6. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    Science.gov (United States)

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Phylogenetic relationships of the freshwater alga Boldia erythrosiphon (Compsopogonales, Rhodophyta) based on 18S rRNA gene sequences

    NARCIS (Netherlands)

    Holton, R.W; Boele-Bos, S.A.; Stam, W.T.

    The nuclear small-subunit ribosomal DNA sequence from the freshwater red alga Boldia erythrosiphon Herndon emend Howard et Parker was determined. Phylogenetic analysis confirms the positioning of this species within the bangiophycidean order of the Compsopogonales. The results strongly suggest that

  8. Gas-Chromatography Mass-Spectrometry (GC-MS Based Metabolite Profiling Reveals Mannitol as a Major Storage Carbohydrate in the Coccolithophorid Alga Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    Alisdair R. Fernie

    2013-03-01

    Full Text Available Algae are divergent organisms having a wide variety of evolutional histories. Although most of them share photosynthetic activity, their pathways of primary carbon metabolism are rather diverse among species. Here we developed a method for gas chromatography-mass spectroscopy (GC-MS based metabolite profiling for the coccolithophorid alga Emiliania huxleyi, which is one of the most abundant microalgae in the ocean, in order to gain an overview of the pathway of primary metabolism within this alga. Following method optimization, twenty-six metabolites could be detected by this method. Whilst most proteogenic amino acids were detected, no peaks corresponding to malate and fumarate were found. The metabolite profile of E. huxleyi was, however, characterized by a prominent accumulation of mannitol reaching in excess of 14 nmol 106 cells−1. Similarly, the accumulation of the 13C label during short term H13CO3− feeding revealed a massive redistribution of label into mannitol as well as rapid but saturating label accumulation into glucose and several amino acids including aspartate, glycine and serine. These results provide support to previous work suggesting that this species adopts C3 photosynthesis and that mannitol functions as a carbon store in E. huxleyi.

  9. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy.

    Science.gov (United States)

    Xin, Xiaying; Huang, Guohe; Liu, Xia; An, Chunjiang; Yao, Yao; Weger, Harold; Zhang, Peng; Chen, Xiujuan

    2017-07-01

    Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 μM), but attenuated at lower concentration (0.391 μM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  11. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  12. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  13. Macro-economics of algae products : Output WP2A7.02

    NARCIS (Netherlands)

    Voort, van der M.P.J.; Vulsteke, E.; Visser, de C.L.M.

    2015-01-01

    This report is part of the EnAlgae Workpackage 2, Action 7, directed at the economics of algae production. The goal of this report is to highlight potential markets for algae. Per type of algae market the market size, product alternatives, constraints and prices are highlighted. Based on these

  14. Experimental grounds for developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Pavlov, S.S.; Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kirkesali, E.I.

    2002-01-01

    The possibility of using blue-green algae Spirulina platensis as a matrix for production of the selenium- and iodine-containing pharmaceuticals was studied. The dependence of Se and I accumulation in Spirulina biomass during the cultivation in a nutrient medium loading of above elements was determined more precisely. The dynamics of Spirulina biomass growth was observed with nutrient medium loading of selenium. It is found that Spirulina platensis biomass quality may be used for pharmaceutical purposes

  15. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  16. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    Directory of Open Access Journals (Sweden)

    Xiliang Zhang

    2013-09-01

    Full Text Available A life-cycle analysis (LCA of greenhouse gas (GHG emissions and energy use was performed to study bio-jet fuel (BJF production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM. Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP from the residual biomass after oil extraction, including fugitive methane (CH4 emissions during the production of biogas and nitrous oxide (N2O emissions during the use of digestate (solid residue from anaerobic digestion as agricultural fertilizer. Analyses were performed based on examination of process parameters, mass balance conditions, material requirement, energy consumptions and the realities of energy supply and transport in China (i.e., electricity generation and heat supply primarily based on coal, multiple transport modes. Our LCA result of the BJF pathway showed that, compared with the traditional petrochemical pathway, this new pathway will increase the overall fossil energy use and carbon emission by 39% and 70%, respectively, while decrease petroleum consumption by about 84%, based on the same units of energy service. Moreover, the energy conservation and emission reduction benefit of this new pathway may be accomplished by two sets of approaches: wider adoption of low-carbon process fuels and optimization of algae cultivation and harvest, and oil extraction processes.

  17. Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Nagy, Valéria; Podmaniczki, Anna; Vidal-Meireles, André; Tengölics, Roland; Kovács, László; Rákhely, Gábor; Scoma, Alberto; Tóth, Szilvia Z

    2018-01-01

    Photobiological H 2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H 2 , only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O 2 -sensitive. Sulphur deprivation is a common way to induce H 2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. We report on the establishment of an alternative H 2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O 2 . Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H 2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H 2 production, which enables industrial application of algal biohydrogen production.

  18. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  19. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  20. Algae to Economically Viable Low-Carbon-Footprint Oil.

    Science.gov (United States)

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  1. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  2. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan; Fatih Demirbas, M.

    2011-01-01

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  3. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  4. New methodologies for the integration of power plants with algae ponds

    NARCIS (Netherlands)

    Schipper, K.; Gijp, S. van der; Stel, R.W van der; Goetheer, E.L.V.

    2013-01-01

    It is generally recognized that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  5. Screening of proteins based on macro-algae from West Java coast in Indonesian marine as a potential anti-aging agent

    Science.gov (United States)

    Putri, Arlina Prima; Dewi, Rizna Triana; Handayani, Aniek Sri; Harjanto, Sri; Chalid, Mochamad

    2018-02-01

    Algae has been known as one of the potential marine bio-resources that have been used in many fields such as bio-energy, food, pharmaceutical and medical applications. Study of macro-algae or seaweed for medicine application, in particular, highlights to empower their ingredients as a promising antioxidant like anti-aging agent due to their diversity in biological activity. The tropical climate of Indonesia with the highest marine biodiversity puts this country an auspicious source of numerous alga species as a novel antioxidant source. A Sample of 29 species of macroalgae has been collected from Coast of Pari Island as a part of Seribu Islands, Indonesia. Screening and extracting of aqueous tropical marine alga protein as a potential source for an antioxidant agent has been done by using 2,2-diphenyl-1-picrylhydrazyl scavenging method, and protein contents have been determined by Lowry method. Sample number 26 of the phylum Rhodophyta have 9.00±0.03 % protein content, which is potential for nutritional food in form of nutraceutical. That sample demonstrated the maximum DPPH scavenging activity 79.27±1.81 %. Moreover, crude extract from another species from phylum Rhodophyta had the very lower IC50 (3.4333±0.29 mg/ml) followed by Chlorophyta species (7.1069±1.78 mg/ml). In general, this study found that algae from phylum Rhodophyta possess a high content of protein, high activity towards free radical. Nevertheless, algae acquire the lowest IC50 value not only dominated by Rhodophyta but also from phylum Chlorophyta. The conclusion of this study leads to empowering high antioxidant activity algae as an anti-aging agent, which can be used in pharmaceutical applications. Therefore, the next study should be concerned on the properties of the algae which has been known to be suitable for pharmaceutical fields.

  6. Taxonomic Challenges and Distribution of Gracilarioid Algae ...

    African Journals Online (AJOL)

    This paper reviews the taxonomical literature of the gracilarioid algae from Tanzania, and provides information about their ecology and distribution based on an intensive regime of local collection. Its aim was to provide names, even if on a preliminary basis, for local gracilarioid taxa. Our revision shows that species ...

  7. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  8. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  9. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  10. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.

    Science.gov (United States)

    Sucaldito, Melvir R; Camacho, Drexel H

    2017-08-01

    Cellulose nanocrystals (CNCs) are promising materials that are readily extracted from plants and other cellulose-containing organisms. In this study, CNCs were isolated from freshwater green algae (Cladophora rupestris) thriving in a volcanic lake, using hydrobromic acid (HBr) hydrolysis. Morphological and structural studies revealed highly crystalline CNCs (94.0% crystallinity index) with preferred orientation to [100] lattice plane as shown by XRD measurements and have an average diameter of 20.0 (±4.4)nm as shown by TEM. Thermal studies showed increased temperature for thermal decomposition of CNCs (381.6°C), which is a result of HBr hydrolysis for CNCs isolation. The isolated CNCs were reinforced into starch based biocomposites via solution casting and evaporation method. Mechanical strength was improved as high as 78% upon addition of 1% cellulose nanocrystals in the films. The produced films are promising materials for their high mechanical strength, biodegradability and availability of raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  12. Hematologia de tilápia-do-nilo alimentada com suplemento à base de algas frente a desafios de estresse agudo e crônico

    Directory of Open Access Journals (Sweden)

    F. Garcia

    2012-02-01

    Full Text Available Avaliou-se o efeito da suplementação com produto à base de algas, ergosan, em dietas para tilápias Oreochromis niloticus, submetidas ao desafio de estresse agudo e crônico sobre as características hematológicas. O ensaio foi realizado com tilápias jovens (15g em caixas de 500L de capacidade de estocagem, em sistema com recirculação da água, com fluxo constante, na densidade de 35 peixes por caixa. Os peixes foram alimentados com as dietas-teste durante 10 dias e, ao final deste período, voltaram a receber dieta isenta de ergosan, quando foram submetidos aos desafios de estresses agudo e crônico. Utilizou-se o delineamento inteiramente ao acaso (DIC, em esquema fatorial 4x2, sendo testados: quatro porcentagens do suplemento 0; 0,25; 0,5 e 1% de ergosan na ração em dois tipos de estresse, agudo e crônico. Os resultados permitem concluir que os estímulos de estresse aplicados foram capazes de provocar alterações fisiológicas nos peixes, incluindo redução no número de eritrócitos, eritroblastos e leucócitos e aumento do volume corpuscular médio dos eritrócitos. A administração oral de 1% de suplemento durante 10 dias para juvenis de tilápia-do-nilo, em condição de estresse agudo, induz o incremento de 69% no número de trombócitos circulantes.

  13. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    Science.gov (United States)

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  14. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?

    Science.gov (United States)

    Danger, Michael; Cornut, Julien; Chauvet, Eric; Chavez, Paola; Elger, Arnaud; Lecerf, Antoine

    2013-07-01

    In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous

  15. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.

    Science.gov (United States)

    Im, Sungoh; Lee, Ha-Nul; Jung, Hyun Shin; Yang, Sunghwan; Park, Eun-Jeong; Hwang, Mi Sook; Jeong, Won-Joong; Choi, Dong-Woog

    2017-06-01

    Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.

  16. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  17. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  18. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  19. Algae-Derived Dietary Ingredients Nourish Animals

    Science.gov (United States)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  20. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  1. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  2. Scenario studies for algae production

    OpenAIRE

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass productivity and energy consumption, while considering the uncertainty and complexity in such large-scale systems. In this thesis frameworks are developed to assess 1) the productivity during algae culti...

  3. Phthalate esters in marine algae

    OpenAIRE

    Gezgin, Tuncay; Güven, Kasim Cemal; Akçin, Göksel

    2001-01-01

    Abstract o-Phthalate esters as diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and diethylhexyl phthalate were identified at surface and inner part of algae collected in the Bosphorus, as Ulva lactuca, Enteromorpha linza, Cystoseria barbata, Pterocladia capillaceaeand Ceramium rubrum. The same esters were also detected in seawater samples taken from the same area. Thus parallelism in pollution was noted between the algae and the surrounding seawater,

  4. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    OpenAIRE

    Xunmin Ou; Xiaoyu Yan; Xu Zhang; Xiliang Zhang

    2013-01-01

    A life-cycle analysis (LCA) of greenhouse gas (GHG) emissions and energy use was performed to study bio-jet fuel (BJF) production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM). Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP) from the residual biomass after oil extraction, including fugitive methane (CH 4 ) emissions during the production of biogas and nitrous oxide (N 2 O) ...

  5. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  6. Recomendations concerning technical research and development with the purpose to industrially exploit marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B.

    1980-10-01

    This report formulates a proposal for a program for technical research and development concerning use of Marine algae.The report is based on a retrospective literature search, an inquiry to potential algae users and producers in Sweden, visits to and correspondence with scientists and industries in Sweden and abroad. Technical research and development concerning marine algae is needed within the following fields: -Development of new sorts of algae offering resistance to parasite and disease adoptation to cultivation and har- vesting systems,and high-yielding concerning technically interesting components. -Development of suitable cultivation systems for Swedish conditions. -Co-cultivation of fish, mussels, oysters and crustaceans with algae. -Development of harvesting systems. -Methane rotting. -Fatty acid/hydrocarbon production as an alternative to methane rotting. -Physical-chemical properties of marine polysaccharides in relation to their technical properties. -Marine algae as fodder supplement.

  7. Indigenous algae: Potential factories for biodiesel production

    CSIR Research Space (South Africa)

    Maharajh, Dheepak M

    2008-11-01

    Full Text Available advantages. Approximately 30% of South African environments favourable for isolating algae have been sampled. Samples were enriched, purified and assessed for lipid content, resulting in a database of indigenous algae. Positive isolates were grown under...

  8. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  9. SOIL ALGAE OF BLADE OF COIL IN DONETSK REGION

    Directory of Open Access Journals (Sweden)

    Maltseva I.A.

    2011-12-01

    Full Text Available On territory of Donbass for more than 200 years the underground coal mining has produced, accompanied by the formation of the mine dumps. Finding ways to reduce their negative impact on the environment should be based on their comprehensive study. The soil algae are active participants in the syngenetic processes in industrial dumps of different origin. The purpose of this paper is to identify the species composition and dominant algae groups in dump mine SH/U5 “Western” in the western part of Donetsk.The test blade is covered with vegetation to the middle from all sides, and on the north side of 20-25 m to the top. The vegetation cover of the lower and middle tiers of all the exposures range in 70-80%. Projective vegetation cover of upper tiers of the northern, north-eastern and north-western exposures are in the range of 20-40%, other – 5-10%. We revealed some 38 algae species as a result of our research in southern, northern, western, and eastern slopes of the blade “Western”. The highest species diversity has Chlorophyta - 14 species (36.8% of the total number of species, then Cyanophyta - 9 (23,7%, Bacillariophyta - 7 (18,4%, Xantophyta - 5 (13.2%, and Eustigmatophyta - 3 (7.9%. The dominants are represented by Hantzschia amphyoxys (Ehrenberg Grunow in Cleve et Grunow, Bracteacoccus aerius, Klebsormidium flaccidum (Kützing Silva et al., Phormidium autumnale, Pinnularia borealis Ehrenberg, Planothidium lanceolatum (Brebisson in Kützing Bukhtiyarova, Xanthonema exile (Klebs Silva.It should be noted that the species composition of algae groups in different slopes of the blade was significantly different. Jacquard coefficient was calculated for algae communities varied in the range of 15,4-39,1%. The smallest number of algae species was observed on the southern slope of the blade (14 species, maximum was registered in the areas of north and west slopes. Differences in the species composition of algae were also observed in three

  10. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  11. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass

  12. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  13. Experimental Substantiation of the Possibility of Developing Selenium- and Iodine-Containing Pharmaceuticals Based on Blue-Green Algae Spirulina Platensis

    CERN Document Server

    Mosulishvili, L M; Belokobylsky, A I; Khisanishvili, L A; Frontasyeva, M V; Pavlov, C C; Gundorina, S F

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using -reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loding of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  14. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    Science.gov (United States)

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  15. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Pavlov, S.S.; Gundorina, S.F.

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed

  16. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  17. The blue water footprint and land use of biofuels from algae

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Xu, L.; de Vries, G.J.; Hoekstra, Arjen Ysbert

    2014-01-01

    Biofuels from microalgae are potentially important sources of liquid renewable energy. Algae are not yet produced on a large scale, but research shows promising results. This study assesses the blue water footprint (WF) and land use of algae-based biofuels. It combines the WF concept with an energy

  18. Toxicity of Silver Nanoparticles to Green Algae – Towards a Biotic Ligand Understanding

    DEFF Research Database (Denmark)

    Laruelle, Sacha; Sørensen, Sara Nørgaard; Cupi, Denisa

    with the freshwater green algae Pseudokirschneriella subcapitata were carried out to falsify the hypothesis: “The toxicity of silver nanoparticles towards algae is solely caused by the monovalent silver ion”. These experiments were based on PHREEQC modeling of silver ion behavior (added as AgNO3) in 72h OECD algal...

  19. Mg-lattice associations in red coralline algae

    Science.gov (United States)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  20. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  1. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  2. Enhanced high energy efficient steam drying of algae

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  3. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  4. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Red algae and their use in papermaking.

    Science.gov (United States)

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  7. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    Science.gov (United States)

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  9. Ruminant Nutrition Symposium: The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets.

    Science.gov (United States)

    Lodge-Ivey, S L; Tracey, L N; Salazar, A

    2014-04-01

    Two experiments were conducted to determine the influence of lipid extracted algae (LEA) on OM digestibility, N flow, and rumen fermentation. Six samples of LEA were evaluated representing 2 genus of microalgae (Nannochloropsis spp. [n = 3] or Chlorella spp. [n = 3]). Four dual-flow continuous flow fermenters (2,700 mL) were used in a Latin square design to evaluate LEA in forage or concentrate diets compared with soybean meal. Temperature (39 °C), pH, solid (5%/h) and liquid (10%/h) dilution rates, and feed schedule were maintained constant for all experiments. Each experimental period consisted of 6-d adaptation and 4-d sampling periods. There were 7 treatments consisting of 6 different samples of LEA and a soybean meal control (SOY). Diets for Exp.1 were formulated to be 13.0% CP (DM basis) using either soybean meal or LEA and met or exceeded the requirements of a nonpregnant and nonlactating beef cow (450 kg). The forage portion consisted of sorghum-sudan hay (6.4% CP and 46.2% TDN, DM basis) and alfalfa (26.1% CP and 82.3% TDN, DM basis). Concentrate diets used in Exp. 2 met or exceeded the nutrient requirements of a (400 kg) growing steer and contained 85% fine ground corn and included 7% (DM basis) soybean meal or LEA. Data were analyzed as mixed model considering the effect of each LEA compared with soybean meal. Orthogonal contrasts were used to determine the overall effect of LEA genus vs. SOY. True OM digestibility were not influenced by LEA addition to forage diets (P ≥ 0.08) but increased with Chlorella LEA addition to concentrate diets (P ruminant diets. Further research is necessary to fully understand the interactions and consequences of upstream processes and what role algal strain plays in LEA quality.

  10. Biosynthesis of 3-Dimethylsulfoniopropionate in Marine Algae

    National Research Council Canada - National Science Library

    Rhodes, David

    2000-01-01

    ...) in marine algae, including identification of intermediates and enzymes of the pathway in the macroalgae Enteromorpha Intestinalis, and three diverse marine phytoplankton species; Tetraselmis sp...

  11. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.

  12. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    Science.gov (United States)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  13. Bioremediation of acid mine drainage using algae strains: A review

    Directory of Open Access Journals (Sweden)

    J.K. Bwapwa

    2017-12-01

    Full Text Available Acid mine drainage (AMD causes massive environmental concerns worldwide. It is highly acidic and contains high levels of heavy metals causing environmental damage. Conventional treatment methods may not be effective for AMD. The need for environmental remediation requires cost effective technologies for efficient removal of heavy metals. In this study, algae based systems were reviewed and analyzed to point out the potentials and gaps for future studies. Algae strains such as Spirulina sp., Chlorella, Scenedesmus, Cladophora, Oscillatoria, Anabaena, Phaeodactylum tricornutum have showed the capacity to remove a considerable volume of heavy metals from AMD. They act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity for different elements. In addition, they generate high alkalinity which is essential for precipitation of heavy metals during treatment. However, algae based methods of abating AMD are not the ultimate solution to the problem and there is room for more studies. : The bioremediation of acid mine drainage is achievable with the use of microalgae. Keywords: Acid mine drainage, Algae strains, Contamination, Heavy metals, Bioremediation

  14. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  15. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  16. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  17. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  18. MORPHOLOGICAL ANATOMICAL AND PHITOCHEMICAL CHARACTERISTICS OF SOME ALGAE

    Directory of Open Access Journals (Sweden)

    N. S. Kaysheva

    2014-01-01

    Full Text Available Morphological and anatomical features of thalluses of brown (Laminaria saccharina, Fucus vesiculosus and red (Ahnfeltia plicata algae, procured at a coastal strip of the Northern basin in gulfs of Ura-Guba and Palkina-Guba at different depths. Compliance of Fucus and Ahnfeltia with pharmacopoeial norms and merchandising indices for Laminaria was established, except for high concentration of sand in Ahnfeltia thalluses. The identity of algae between each other was shown based on the results of qualitative analysis on polysaccharides, alginic acids, reducing sugars, iodine, mannitol, amino acids presence. Quantitative content of polysaccharides, alginic acids, reducing sugars, pentosans, iodine, cellulose, mannitol, proteins, lipids, agar was determined. In comparison with Fucus and Ahnfeltia higher concentration of the following content was noted in Laminaria: alginic acids (1.4 and 5.75 times higher, polysaccharides (1.3 and 1.4 times, iodine (4.5 and 1.8 times, mannatol (1.5 and 2.5 times (data received is statistically reliable. Impropriety of storm algae for processing was shown as law quality raw material. The highest concentration of active substances was revealed in Laminaria thalluses which were procured at the depth of 10 m in a period from September to October. Active accumulation of sodium, potassium, calcium, iron, magnesium, manganese corresponding to similar sea water composition was established in algae. Mathematical equations of regression between protein and manganese, protein and iron content in algae were deduced. Under proper conditions of drying and storage high quality of the materials can be preserved during 3 years. Based on the findings of photochemical researches, taking into account squares of plantations and possible exploitation stocks, the possibility and prospectivity of industrial processing of Fucus vesiculosus and Ahnfeltia plicata together with Laminaria saccharina as plant sources of polysaccharides (mainly

  19. Algae viability over time in a ballast water sample

    Science.gov (United States)

    Gollasch, Stephan; David, Matej

    2018-03-01

    The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.

  20. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  2. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mass cultures of marine algae for energy farming in coastal deserts

    Science.gov (United States)

    Wagener, K.

    1983-09-01

    This paper provides a description of construction and subsequent operation of a seawater based system for biomass farming of micro-algae. Seawater was pumped through shallow artificial ponds located in coastal areas of Calabria, Italy. We describe pond construction, mixing procedure for micro algae mass cultures, optimization of the carbon and mineral nutrient budget, potential algal yields, methods for harvesting micro-algae, a source of energy to run the seawater pumps, and environmental variables of the pond system under subtropical conditions of Calabria, Italy.

  4. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  5. Biodegradation of an oily bilge waste using algae

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.J.

    1987-01-01

    A mixed community of microogranisms was collected from the harbor at the North Island Navy Base and was monitored in a test ecosystem containing an oily bilge waste obtained from off-loading ships. Cultures were examined in the presence and absence of the algae. It was thought that the algae might enhance the degradation of the oil waste by providing oxygen and possibly a nutrient source from dying phytoplankton for the bacterial community. The change in community structure was monitored by isolating the various groups of organisms and determining the biomass change over time for the algae, bacteria and yeasts/fungi subjected to the bilge waste. The biomass (i.e., colony forming units) of the yeasts and fungi increased 100 fold in a 6 week test period. The community containing only the bacteria and fungi/yeasts lost the fungal component of the population, although active bacteria biomass increased more than 10 fold during exposure to the waste. The test ecosystem was subjected to a radiolabeled compound (/sup 14/C-phenol) and bilge waste mixture to ascertain the ability of the communities to mineralize the phenol and/or assimilate the labeled hydrocarbon. The community containing the algae started mineralizing the phenol (measure by /sup 14/CO/sub 2/ production) 24 hours after exposure to the waste/phenol mixture. The bacteria/yeast-fungi community had a lag period of 384 hours before extensive catabolism of the labeled compound occurred. Current data indicate algae may enhance the biodegradation rate of oil bilge waste in a mixed microbial community.

  6. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    Science.gov (United States)

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  7. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet of algae in fish feed (aquafeed resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal, Verdemin (derived from Ulva ohnoi and Rosamin (derived from diatom Entomoneis spp. for their possible inclusion into diet of Atlantic Salmon (Salmo salar. Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination, in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA content in whole body of fish fed 5% Rosamin was observed.

  8. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  9. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  10. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  11. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  12. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  13. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  14. Techno-Economic Assessment of Micro-Algae Production Systems

    OpenAIRE

    Hoffman, Justin

    2016-01-01

    Global oil consumption is rising at an unprecedented rate renewing interest in alternative fuels. Micro-algae represents a promising feedstock due to inherent advantages such as high solar energy efficiencies, large lipid fractions, and utilization of various waste streams including industrial flue gas. Current technological challenges have limited the commercial viability of microalgae based biofuel production systems. This study directly evaluates and compares the economic viability of biom...

  15. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  16. Diatom algae of the Guni river (Pamir)

    International Nuclear Information System (INIS)

    Kurbonova, P.A.; Hisoriev, H.H.

    2006-01-01

    There are presented the dates of the results of diatom algae (Bacillariophyta) of the Gunt river. There was found 107 species and 9 subspecies which belong to 3 classics, 12 ordos, 13 families and 28 genus

  17. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  18. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Kamat, S.Y.

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  19. Sustainable Algae Biodiesel Production in Cold Climates

    OpenAIRE

    Baliga, Rudras; Powers, Susan E.

    2010-01-01

    This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a ...

  20. The physiological responses of Vallisneria natans to epiphytic algae with the increase of N and P concentrations in water bodies.

    Science.gov (United States)

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia; Xie, Xue-Jian

    2015-06-01

    To reveal the mechanism of submerged plants decline in progressively eutrophicated freshwaters, physiological responses of Vallisneria natans to epiphytic algae were studied in simulation lab by measuring plant physiological indexes of chlorophyll content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity based on a 2 × 4 factorial design with two epiphytic conditions (with epiphytic algae and without) and four levels of N and P concentrations in water (N-P[mg.L(-1)]: 0.5, 0.05; 2.5, 0.25; 4.5, 0.45; 12.5, 1.25). Compared with control (non-presence of epiphytic algae), chlorophyll contents of V. natans were significantly decreased (p algae under any concentrations of N and P in water bodies. While the presence of epiphytic algae induced peroxidation of membrane lipids, MDA contents of V. natans had significantly increased (p algae in the treatments of T2 and T3 in the whole culture process by comparing with control, sometimes reaching an extremely significant level (p algae (p algae on chlorophyll content and SOD activity in the leaves of V. natans were increased at first and then decreased with the concentrations of N and P in water, and MDA content became higher with the increase of N and P. concentrations. Repeated measurement data testing showed that the effects of epiphytic algae on the chlorophyll content and MDA content and SOD activity were significant, respectively (p algae were combining with effects of concentrations of N and P (p algae directly produced adverse effects on physiology of V. natans and epiphytic algal biomass were positively correlated with nutrient available in the water column.

  1. [Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].

    Science.gov (United States)

    Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun

    2015-08-01

    To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (Palgae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.

  2. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  3. The study of LED light source illumination conditions for ideal algae cultivation

    Science.gov (United States)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  4. The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement

    NARCIS (Netherlands)

    Houcke, van Jasper; Medina, Isabel; Maehre, Hanne K.; Cornet, Josiane; Cardinal, Mireille; Linssen, Jozef; Luten, Joop

    2017-01-01

    Oyster refinement, a common practice in France, is aimed at increasing the weight of oyster tissue and influencing the taste properties of the refined oysters. Refinement usually takes place in land-based systems where the oysters are fed with relatively high concentrations of microalgae. In this

  5. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation.

    Science.gov (United States)

    Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng

    2014-01-01

    Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.

  6. Instrumental neutron activation analysis study of elemental concentrations in some species of marine algae form different regions of Libyan coast

    International Nuclear Information System (INIS)

    Abugassa, I. O.; Al-Dalem, B. S.

    2012-12-01

    Algae are an ideal marine species to study responses to different environmental factors free complication inherent in research with more complex higher plants. One of the advantages of environmental study using algae is the possibility to achieve and observe many generations during relative short time period. Algae materials have been used as ecological and environmental indicators to monitor and control in many fields of study such as freshwater and marine ecosystems, soil fertility, industrial applications, etc. It also has been shown that algae assemblages could be used as indicators of clean or polluted water. Previous studies proved high sensitivity of the most algae towards changing of environmental conditions, especially as consequences of water pollution. Algae respond rapidly and predictably to a wide range of pollutants and potentially use full early warning signals of deteriorating conditions and possible causes. Because of their nutritional needs and their position at the base of aquatic food web, algae indicators provide relativity unique information concerning ecosystem conditions compared with commonly used animal indicators. In most cases ecologically relevant signals of ecosystem changes are being provided that can be used to distinguish acceptable from unacceptable environmental conditions. Algae indicators are also a cost-effective monitoring tool as well. (Author)

  7. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries

    International Nuclear Information System (INIS)

    Adenle, Ademola A.; Haslam, Gareth E.; Lee, Lisa

    2013-01-01

    The possibility of economically deriving fuel from cultivating algae biomass is an attractive addition to the range of measures to relieve the current reliance on fossil fuels. Algae biofuels avoid some of the previous drawbacks associated with crop-based biofuels as the algae do not compete with food crops. The favourable growing conditions found in many developing countries has led to a great deal of speculation about their potentials for reducing oil imports, stimulating rural economies, and even tackling hunger and poverty. By reviewing the status of this technology we suggest that the large uncertainties make it currently unsuitable as a priority for many developing countries. Using bibliometric and patent data analysis, we indicate that many developing countries lack the human capital to develop their own algae industry or adequately prepare policies to support imported technology. Also, we discuss the potential of modern biotechnology, especially genetic modification (GM) to produce new algal strains that are easier to harvest and yield more oil. Controversy surrounding the use of GM and weak biosafety regulatory system represents a significant challenge to adoption of GM technology in developing countries. A range of policy measures are also suggested to ensure that future progress in algae biofuels can contribute to sustainable development. - Highlights: • Algae biofuels can make positive contribution to sustainable development in developing countries. • Bibliometric and patent data indicate that many lack the human capital to develop their own algae industry. • Large uncertainties make algae biofuels currently unsuitable as a priority for many developing countries

  8. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Chimpanzees routinely fish for algae with tools during the dry season in Bakoun, Guinea.

    Science.gov (United States)

    Boesch, Christophe; Kalan, Ammie K; Agbor, Anthony; Arandjelovic, Mimi; Dieguez, Paula; Lapeyre, Vincent; Kühl, Hjalmar S

    2017-03-01

    Wild chimpanzees regularly use tools, made from sticks, leaves, or stone, to find flexible solutions to the ecological challenges of their environment. Nevertheless, some studies suggest strong limitations in the tool-using capabilities of chimpanzees. In this context, we present the discovery of a newly observed tool-use behavior in a population of chimpanzees (Pan troglodytes verus) living in the Bakoun Classified Forest, Guinea, where a temporary research site was established for 15 months. Bakoun chimpanzees of every age-sex class were observed to fish for freshwater green algae, Spirogrya sp., from rivers, streams, and ponds using long sticks and twigs, ranging from 9 cm up to 4.31 m in length. Using remote camera trap footage from 11 different algae fishing sites within an 85-km 2 study area, we found that algae fishing occurred frequently during the dry season and was non-existent during the rainy season. Chimpanzees were observed algae fishing for as little as 1 min to just over an hour, with an average duration of 9.09 min. We estimate that 364 g of Spirogyra algae could be retrieved in this time, based on human trials in the field. Only one other chimpanzee population living in Bossou, Guinea, has been described to customarily scoop algae from the surface of the water using primarily herbaceous tools. Here, we describe the new behavior found at Bakoun and compare it to the algae scooping observed in Bossou chimpanzees and the occasional variant reported in Odzala, Republic of the Congo. As these algae are reported to be high in protein, carbohydrates, and minerals, we hypothesize that chimpanzees are obtaining a nutritional benefit from this seasonally available resource. © 2016 Wiley Periodicals, Inc.

  10. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  11. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    Science.gov (United States)

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. PIXE application for measurement of bioaccumulation of lead by marine micro-algae

    International Nuclear Information System (INIS)

    Iwata, Y.; Suzuki, M.

    2000-01-01

    Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were obtained from the Pacific Ocean of Iwate Pref., Japan and purely cultured in nutritive seawater as a culture solution. The culture size for algae was 10-250 ml and every apparatus was small and of low cost. Marine micro-algae were given in different culture solutions including Pb 2+ from 0.01 to 1.0 mg/l. The algae in 5 ml of the culture solution were collected on a polycarbonate filter (pore size: 1.0 μm) by suction filtration. The algae on the filter were subjected to PIXE analysis. Concentrations of Na, Mg, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Sr and Pb were simultaneously determined. PIXE can do multi-element analysis for a sample of below 1 mg. The quantity of lead in marine micro-algae increases in proportion to the Pb 2+ concentration in the culture solution. The concentration factor (wet weight base) for lead is given as 200±20 ml/g for Nannochloropsis sp. and 1900±400 ml/g for Phaeodactylum sp.. It is shown that PIXE is a powerful tool for the measurement of the bioaccumulation of trace elements. (author)

  13. The Significance of Forests and Algae in CO2 Balance: A Hungarian Case Study

    Directory of Open Access Journals (Sweden)

    Attila Bai

    2017-05-01

    Full Text Available This study presents the sequestration and emissions of forests and algae related to CO2 while providing a comparison to other biomass sources (arable crops, short rotation coppices. The goal of the paper is to analyze the impact of the current CO2 balance of forests and the future prospects for algae. Our calculations are based on data, not only from the literature but, in the case of algae, from our own previous experimental work. It was concluded that the CO2 sequestration and natural gas saving of forests is typically 3.78 times higher than the emissions resulting from the production technology and from the burning process. The economic and environmental protection-related efficiency operate in opposite directions. The CO2 sequestration ability of algae can primarily be utilized when connected to power plants. The optimal solution could be algae production integrated with biogas power plants, since plant sizes are smaller and algae may play a role, not only in the elimination of CO2 emissions and the utilization of heat but also in wastewater purification.

  14. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Science.gov (United States)

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  15. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    Science.gov (United States)

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  16. [The effects of blue algae on health].

    Science.gov (United States)

    van Riel, A J H P; Schets, F M; Meulenbelt, J

    2007-08-04

    Cyanobacteria (blue algae) regularly cause recreational waters to become murky and smelly. Skin irritation and mild gastrointestinal disorders have regularly been reported following recreational activities in water suspected of being contaminated with cyanobacteria. The exact cause of these effects on health is not clear. Severe effects are not to be expected from recreational exposure to water contaminated with cyanobacteria. Cyanobacteria can produce hepatotoxins, neurotoxins, cytotoxins and irritants. In Brazil lethal intoxications have occurred due to the occurrence of toxins in drinking water and in dialysis fluid. The Dutch policy is based on the Commissie Integraal Waterbeheer (Commission Integral Water Management) guidelines for recreational waters. It is not clear to what extent the other cyanotoxins occur in the Netherlands. However, several genera ofcyanobacteria capable of producing these other cyanotoxins have been found in the Netherlands. For a good risk assessment in the Netherlands, more information is needed on the effects on health of cyanobacteria. There is also a need for more data on the prevalence of different cyanobacteria and toxins in Dutch recreational waters.

  17. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling.

    Science.gov (United States)

    Quinn, Jason C; Davis, Ryan

    2015-05-01

    Microalgae biofuel production has been extensively evaluated through resource, economic and life cycle assessments. Resource assessments consistently identify land as non-limiting and highlight the need to consider siting based on combined geographical constraints of land and other critical resources such as water and carbon dioxide. Economic assessments report a selling cost of fuel that ranges between $1.64 and over $30 gal(-1) consistent with large variability reported in the life cycle literature, -75 to 534 gCO2-eq MJ(-1). Large drivers behind such variability stem from differences in productivity assumptions, pathway technologies, and system boundaries. Productivity represents foundational units in these assessments with current assumed yields in various assessments varying by a factor of 60. A review of the literature in these areas highlights the need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  19. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  20. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  1. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  2. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  4. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  5. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  6. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  7. Bioavailability of mineral-bound iron to a snow algae-bacteria co-culture and implications for albedo-altering snow algae blooms.

    Science.gov (United States)

    Harrold, Z R; Hausrath, E M; Garcia, A H; Murray, A E; Tschauner, O; Raymond, J; Huang, S

    2018-01-26

    Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo, increase local melt rates, and may impact the global heat budget and water cycle. Yet, underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algae blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe) -bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite and pyrite as Fe sources for a Chloromonas brevispina - bacteria co-culture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted co-cultures. Fo 90 -bearing systems also exhibited a decrease in bacteria:algae ratios compared to Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina co-culture also increased the rate of Fo 90 dissolution relative to an abiotic control. Analysis of 16S rRNA genes in the co-culture identified Gammaproteobacteria , Betaprotoeobacteria and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (> 1 %) OTUs. These data provide unequivocal evidence that mineral dust can support elevated snow algae growth under otherwise Fe-depleted growth conditions, and that snow algae can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algae blooms. The laboratory experiments described herein allow for a systematic investigation of snow algae-bacteria-mineral interactions and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and

  8. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  9. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  10. Biological synthesis of metallic nanoparticles using algae.

    Science.gov (United States)

    Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio

    2013-09-01

    The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.

  11. P-32 uptake in lentic algae

    International Nuclear Information System (INIS)

    Strange, J.R.; Williamson, G.D.; Fletcher, D.J.

    1975-01-01

    A study of the Flat Creek Embayment of Lake Sidney Lanier near Gainesville, Georgia revealed three genera of algae, Chlorococcum, Fragillaria and Nostoc, to be prominent in this eutrophic region of the lake. The algae was grown in phosphate-rich media and subsequently labelled with P-32. All species incorporated luxury amounts of phosphorus as determined by the uptake of P-32. The results indicate that the P-32 uptake is proportional to the surface-per-volume ratio. The higher surface-per-volume ratio resulted in greater uptake of P-32

  12. Algas: cosmética y salud

    OpenAIRE

    Arenas, Patricia Marta; Guayta, Silvina L.

    1998-01-01

    El uso de las algas con fines estéticos y terapéuticos tiene su origen en tiempos muy antiguos. El auge de la utilización de “productos naturales” ha llevado a sobrevalorar las propiedades de los vegetales en general y de las algas en particular. Por tal razón, las mismas gozan de un elevado prestigio, incluso cuando las propiedades reales son en gran medida superadas por las popularmente atribuidas. De allí que surja la necesidad de abordar estudios interdisciplinarios y de naturaleza aplica...

  13. Growth acceleration and photosynthesis of the scenedesmus algae and cocconeis algae in deuterium water

    International Nuclear Information System (INIS)

    Liu Feng; Wang Wenqing

    1998-01-01

    In order to find new way to treat the radioactive tritium waste water, scenedesmus algae and cocconeis algae are cultured in medium which contains 30% (w) deuterium water. During different time, activities of photosymthesis, absorption spectrum, growth rate and low-temperature fluorescence spectrum are measured. Accelerated growth is found in the deuterium water compared to the normal water. Activities of photosynthesis show the similar result (F v /F m ) to the growth data. It is also concluded from low-temperature fluorescence spectra that algae activities in the deuterium water, which are expressed by PS I/PS II, are more sensitive than those in the normal water

  14. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  15. Accumulation of polycyclic arenes in Baltic Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Veldre, I.A.; Itra, A.R.; Paal' me, L.P.; Kukk, Kh.A.

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Kaesmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  16. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  17. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  18. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    Science.gov (United States)

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  19. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  20. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  1. KAROTENOID PADA ALGAE: KAJIAN TENTANG BIOSINTESIS, DISTRIBUSI SERTA FUNGSI KAROTENOID

    OpenAIRE

    Merdekawati, Windu; Karwur, Ferry F.; Susanto, A. B.

    2017-01-01

    ABSTRAK   Karotenoid terdistribusi pada archaea, bakteri, jamur, tumbuhan, hewan serta algae. Karotenoid dihasilkan dari komponen isopentenyl pyrophosphate (IPP) yang mengalami proses secara bertahap untuk membentuk beragam jenis karotenoid. Terdapat dua kelompok karotenoid yaitu karoten dan xantofil dengan berbagai jenis turunannya. Struktur kimia pada karotenoid algae yaitu allene, acetylene serta acetylated carotenoids. Algae mempunyai karotenoid spesifik yang menarik untuk dipe...

  2. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  3. Agricultural importance of algae | Abdel-Raouf | African Journal of ...

    African Journals Online (AJOL)

    Algae are a large and diverse group of microorganisms that can carry out photosynthesis since they capture energy from sunlight. Algae play an important role in agriculture where they are used as biofertilizer and soil stabilizers. Algae, particularly the seaweeds, are used as fertilizers, resulting in less nitrogen and ...

  4. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth.

    Science.gov (United States)

    Yang, Chu-Ching; Hung, Chi-Feng; Chen, Bing-Huei

    2017-01-01

    Coffee grounds, a waste by-product generated after making coffee, contains approximately 15% coffee oil which can be used as a raw material in cosmetics. Algae oil rich in docosahexaenoic acid (DHA) has been demonstrated to possess anticancer and anti-inflammation functions. The objectives of this study were to develop a gas chromatography-mass spectrometry (GC-MS) method for the determination of fatty acids in coffee oil and algae oil and prepare a nanoemulsion for studying its inhibition effect on ultraviolet A-induced skin damage in mice and growth of melanoma cells B16-F10. A total of 8 and 5 fatty acids were separated and quantified in coffee oil and algae oil by GC-MS, respectively, with linoleic acid (39.8%) dominating in the former and DHA (33.9%) in the latter. A nanoemulsion with a particle size of 30 nm, zeta potential -72.72 mV, and DHA encapsulation efficiency 100% was prepared by using coffee oil, algae oil, surfactant (20% Span 80 and 80% Tween 80), and deionized water. Differential scanning calorimetry (DSC) analysis revealed a high stability of nanoemulsion when heated up to 110°C at a pH 6, whereas no significant changes in particle size distribution and pH occurred over a 90-day storage period at 4°C. Animal experiments showed that a dose of 0.1% coffee oil-algae oil nanoemulsion was effective in mitigating trans-epidermal water loss, skin erythema, melanin formation, and subcutaneous blood flow. Cytotoxicity test implied effective inhibition of melanoma cell growth by nanoemulsion with an IC 50 value of 26.5 µg/mL and the cell cycle arrested at G2/M phase. A dose-dependent upregulation of p53, p21, cyclin B, and cyclin A expressions and downregulation of CDK1 and CDK2 occurred. Also, both Bax and cytochrome c expressions were upregulated and bcl-2 expression downregulated, accompanied by a rise in caspase-3, caspase-8, and caspase-9 activities for apoptosis execution. Collectively, the apoptosis pathway of melanoma cells B16-F10 may involve

  5. UV effects on bottom ice algae

    International Nuclear Information System (INIS)

    Ryan, K.; Buckley, B.

    1993-01-01

    Antarctic sea ice can be surprisingly transparent to UV radiation, particularly during spring when ozone depletion reaches a maximum. A 5% reduction in photosynthetic production was observed in laboratory experiments for UVB levels expected under the ice at this time. In situ studies modifying the UVB radiation falling onto algae were inconclusive. (author). 5 refs

  6. Analysis, numerics, and optimization of algae growth

    NARCIS (Netherlands)

    Kumar, K.; Pisarenco, M.; Rudnaya, M.; Savcenco, V.

    2010-01-01

    We extend the mathematical model for algae growth as described in [11] to include new effects. The roles of light, nutrients and acidity of the water body are taken into account. Important properties of the model such as existence and uniqueness of solution, as well as boundedness and positivity are

  7. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  8. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  9. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  11. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  12. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... used in food only within the following specific limitations: Category of food Maximum level of use in... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  13. 21 CFR 184.1121 - Red algae.

    Science.gov (United States)

    2010-04-01

    ... within the following specific limitations: Category of food Maximum level of use in food (as served... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  14. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  15. Photoprotection strategies of the alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Chukhutsina, Volha U.; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-01-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical

  16. Usos industriales de las algas diatomeas.

    OpenAIRE

    Illana Esteban, Carlos

    2007-01-01

    Las diatomeas son algas microscópicas que habitan tanto en aguas dulces como marinas. Aparte de su destacado papel en la cadena trófica de los ecosistemas acuáticos, con el tiempo forman depósitos a los que el hombre ha encontrado abundantes aplicaciones prácticas.

  17. Heterotrophic bacteria associated with the green alga

    NARCIS (Netherlands)

    Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; El Bour, M.

    2018-01-01

    Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated andsubsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla:Proteobacteria (Alpha-and Gamma- subclasses),

  18. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    Science.gov (United States)

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    Science.gov (United States)

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor.

    Science.gov (United States)

    Xu, Meng; Bernards, Matthew; Hu, Zhiqiang

    2014-02-01

    An algae-based membrane bioreactor (A-MBR) was evaluated for high-density algae cultivation and phosphorus (P) removal. The A-MBR was seeded with Chlorella emersonii and operated at a hydraulic retention time of 1day with minimal biomass wastage for about 150days. The algae concentration increased from initially 385mg/L (or 315mg biomass COD/L) to a final of 4840mg/L (or 1664mg COD/L), yielding an average solids (algae biomass+minerals) production rate of 32.5gm(-3)d(-1) or 6.2gm(-2)d(-1). The A-MBR was able to remove 66±9% of the total P from the water while the algal biomass had an average of 7.5±0.2% extracellular P and 0.4% of intracellular P. The results suggest that algae-induced phosphate precipitation by algae is key to P removal and high-density algae cultivation produces P-rich algal biomass with excellent settling properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Methane production by anaerobic digestion of algae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nyns, E.J.; Naveau, H.P.

    Methane is produced experimentally by anaerobic fermentation of algae, principally of species Hydrodictyon and Cladophora, grown in cooling water from nuclear power plants. The accumulation of fatty acids, by-products of fermentation, is found to have an inhibitory effect on methane production. Methods to remove fatty acids and stabilise the reaction are investigated. An economic analysis is presented using a financial model processor based on data from experimental digesters. The experimental work is described and the results are presented in an Appendix (in French). Seven relevant papers, of which two are in French are also annexed.

  2. Sustainable Use Of Macro-Algae For Biogas Production In Latvian Conditions: A Preliminary Study Through An Integrated Mca And Lca Approach

    Directory of Open Access Journals (Sweden)

    Pastare Laura

    2014-12-01

    Full Text Available The study focuses on sustainability evaluation of an algae-based energy system in Latvia with a holistic and integrated approach of multi-criteria analysis combined with life cycle assessment (including a practical side - biogas yield experiments of locally available algae.

  3. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  5. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    Science.gov (United States)

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  6. The effect of algae species on biodiesel and biogas production observed by using a data model combines algae cultivation with an anaerobic digestion (ACAD) and a biodiesel process

    International Nuclear Information System (INIS)

    Sapci, Zehra; Morken, John

    2014-01-01

    Highlights: • A combined ACAD-biorefinery based model was investigated. • The model was implemented in the data analysis program MathCad. • Three different scenarios were modeled. • Chlorella vulgaris, Nannochloropsis sp. and Haematococcus pluvialis were evaluated. - Abstract: The influence of an algae species based on the biodiesel yield was investigated by using a combined plant model from the literature. The model has six different processes: algal cultivation, the flocculation and separation process, biodiesel production, anaerobic digestion, scrubbing, and combined heat and power (CHP). The data model in the literature was operated with the values for Chlorella vulgaris. To investigate the roles of the algae species on the biodiesel yield in the model, two different algae species, Nannochloropsis sp. and Haematococcus pluvialis, were selected. Depending on the data from these algae in the literature, three different scenarios were modeled in the study. The model shows that all of the scenarios for biodiesel production can be totally independent of an external energy supply. Energy estimations for all of the applications scenarios show that the system produces more energy than the amount that is required for the processing operation

  7. Evaluation of lipid extractability after flash hydrolysis of algae

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao; Kumar, Sandeep

    2018-07-01

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) at 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the

  8. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  9. Determination of the distribution of shallow-water seagrass and drift algae communities with acoustic seafloor discrimination

    Directory of Open Access Journals (Sweden)

    B Riegl

    2005-05-01

    Full Text Available The spatial distribution of seagrass and algae communities can be difficult to determine in large,shallow lagoon systems where high turbidity prevents the use of optical methods like aerial photography or satellite imagery.Further complications can arise when algae are not permanently attached to the substratum and drift with tides and currents.A study using acoustic seafloor discrimination was conducted in the Indian River Lagoon (Florida,USAto determine the extent of drift algae and seagrass.Acoustic surveys using the QTC View V system based on 50 and 200 kHz transducers were conducted near Sebastian Inlet.Results indicate that areas of seagrass can be identified,and are mixed with a high abundance of drift algae.Nearest-neighbor extrapolation was used to fill in spaces between survey lines and thus obtain spatially cohesive maps.These maps were then ground-truthed using data from towed video and compared using confusion matrices.The maps showed a high level of agreement (60%with the actual distribution of algae,however some confusion existed between bare sand and algae as well as seagrass.La distribución espacial de comunidades de pastos marinos y algas puede ser difícil de determinar en sistema lagunares grandes y someros donde la alta turbidez no permite el uso de métodos ópticos,como fotografías aéreas e imágenes satelitales. Complicaciones adicionales pueden surgir cuando las algas no están adheridas permanentemente al sustrato y derivan con las mareas y corrientes.Se realizó un estudio utilizando discriminación acústica del fondo marino en el Indian River Lagoon (Florida,EUA para determinar la cantidad de algas y pastos que derivan. Se realizaron sondeos acústicos en el Sebastian Inlet con el sistema QTC View V y transductores de 50 y 200 kHz.Las áreas de pastos marinos pudieron ser identificadas,y están mezcladas con una gran cantidad de algas a la deriva.Se rellenó los espacios sin datos con extrapolaciones basadas en la

  10. Taxonomic biodiversity of geniculate coralline red algae (Corallinales, Rhodophyta) from the Macaronesian region: summary and analysis

    Science.gov (United States)

    Rosas-Alquicira, Edgar F.; Riosmena-Rodríguez, Rafael; Afonso-Carrillo, Julio; Neto, Ana I.

    2011-06-01

    A catalog and critical review of species and infraspecific taxa of non-fossil geniculate coralline red algae (Corallinales, Rhodophyta) previously reported from the Macaronesian region are presented along with an assessment of species diversity in the region. Published records of geniculate coralline algae are included along with comments relating to type material. Within the catalog, taxa are organized alphabetically by genus and within this by final epithet. From the 31 taxa recorded, 4 are based on type collections from Macaronesian localities. The types of most species and infraspecific taxa reported from the region have yet to be re-examined in a modern context, and most Macaronesian records require verification. The biodiversity of Macaronesian geniculate coralline algae may be lower than current information indicates.

  11. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Masayoshi Yamamoto

    2014-01-01

    Full Text Available Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS, has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera, Tokushima (Ulva prolifera, and Ehime prefecture (Ulva linza. Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera and Tokushima prefecture (Ulva prolifera. Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum. Multivariant statistical analysis (PCA enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  12. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    Science.gov (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  13. Enemy release an unlikely explanation for the invasive potential of the brown alga Sargassum muticum

    DEFF Research Database (Denmark)

    Pedersen, Morten Foldager; Johnsen, Kathrine L.; Halle, Louise L.

    2016-01-01

    included in the comparison. We conducted therefore a series of feeding experiments to test if Danish S. muticum is grazed less upon than a range of native algae by the sea urchin Psammechinus miliaris and complemented the experiments with a meta-analysis based on published data. In no-choice trials, P......-choice experiments, where S. muticum was generally consumed faster than F. vesiculosus and H. siliquosa, but slower than S. latissima and the two most fast-growing algal species (U. intestinalis and C. virgatum). We screened the literature for comparable data and found 26 experiments with 27 species of algae and 14...

  14. Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution

    International Nuclear Information System (INIS)

    Khan, A.M.; Obaid, M.; Sultana, R.

    2015-01-01

    This research article demonstrates the conversion of oily contents of marine macroalgae, namely Cystoseira indica and Scinia hatei to fatty acid methyl ester (FAME) through alkaline transesterification. The algae were dried, crushed and grinded into the powder form, which were analyzed for physical appearance, water content and particle size profile. The oily contents from these powdered algae were extracted by using different non-polar solvents like n-hexane, n-heptane, dichloromethane, diethyl ether and n-hexane: diethyl ether (1:1) mixture at small scale. The efficiency index of the solvent was developed based on the yield of the oily content and boiling point of these solvents, which showed that n-hexane: diethyl ether (1:1) mixture is the best solvent system for the extraction of oils. The yield of oily contents with respect to the dried algal weight was found to be 2.81 ± 0.43 percentage w/w and 3.10 ± 0.27 percentage w/w for C. indica and S. hatei respectively. These oily contents were subjected to physical and chemical analysis. The oily contents were converted into biodiesel by alkaline transesterification using potassium methoxide as catalyst which is prepared by dissolving KOH in methanol (0.5g/12 ml, 4.2 percentage w/v) in a separate flask. All the reactions were carried out under completely anhydrous conditions using silica as desiccant and with continuous stirring so that the reactants in two immiscible phases of oily contents and methanol were remain in contact. The yield of biodiesel was found to be 89.0 ± 0.51 percentage w/w (2.50 percentage w/w of dried alga) and 90.6 ± 0.36 percentage w/w (2.81 percentage w/w of dried alga) of biodiesel from C. indica and S. hatei respectively. Finally, biodiesel was characterized by gas chromatography and American Society for Testing and Materials (ASTM) as well as by European (EN) standards which were found to be in agreement with the standard values of biodiesel. (author)

  15. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  16. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  17. Feasibility study of micro-filtration for algae separation in an innovative nuclear effluents decontamination process

    International Nuclear Information System (INIS)

    Gouvion Saint Cyr, D. de; Wisniewski, C.; Schrive, L.; Farhi, E.; Rivasseau, C.

    2014-01-01

    Bio-remediation technologies often offer efficiency, cost and environmental impact benefits against physico-chemical technologies. Concerning the remediation of radionuclide-containing water, a few bio-based technologies have been proposed but none is currently operational in highly radioactive environments. A new radio-tolerant micro-alga, isolated from a nuclear facility, possesses properties that offer new decontamination prospects for the nuclear industry or for the clean-up of environmental water. A pilot-scale treatment unit based on this alga is currently under development for the decontamination of radioactive water. It includes separation and/or concentration steps relying on membrane filtration. This work aims at verifying the feasibility of micro-filtration as separation step for the targeted algae separation. Recommendations about the choice of operating conditions limiting and/or controlling the membrane fouling are provided with the objective to enhance the separation efficiency. Lab-scale dead-end filtration tests were implemented and the key factors involved in the separation performances were investigated. Membrane characteristics, biomass composition, and hydrodynamic conditions were considered. Organic membranes provided adequate filtration performance. Membrane fouling was essentially induced by a rapid reversible algae deposit and to a lesser extent by irreversible pore blockage caused by smaller particles and dissolved organic matter. To cancel the reversible fouling, hydrodynamic actions such as stirring and back-flush efficiently prevented algae deposit, allowing higher filtration productivity. This study demonstrates the feasibility of membrane separation for micro-algae harvesting at laboratory-scale and specifies the suitable working conditions. (authors)

  18. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  19. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  20. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  1. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  2. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells

    NARCIS (Netherlands)

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-01-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes.

  3. Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems

    Science.gov (United States)

    2012-05-01

    concentration to 5% water based on latent heat of vaporization Algae Botryococcus braunii Chlorella vulgaris Euglena gracilis Nannochlorops is...microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507, 2006 [9] Acièn Fernández F-G, Garcìa Camacho F

  4. Development and characterization of 35 single nucleotide polymorphism markers for the brown alga Fucus vesiculosus

    NARCIS (Netherlands)

    Canovas, Fernando; Mota, Catarina; Ferreira-Costa, Joana; Serrao, Ester; Coyer, Jim; Olsen, Jeanine; Pearson, Gareth

    2011-01-01

    We characterized 35 single nucleotide polymorphism (SNP) markers for the brown alga Fucus vesiculosus. Based on existing Fucus Expressed Sequence Tag libraries for heat and desiccation-stressed tissue, SNPs were developed and confirmed by re-sequencing cDNA from a diverse panel of individuals. SNP

  5. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Timsina, J.

    2012-01-01

    Photosynthetic aquatic biomass (PAB – algae and other floodwater flora) is a significant source of organic carbon (C) in rice-based cropping systems. A portion of PAB is capable of fixing nitrogen (N), and is hence also a source of N for crop nutrition. To account for this phenomenon in long term

  6. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  7. [Food value of the spiruline algae to man].

    Science.gov (United States)

    Sautier, C; Tremolieres, J

    1975-01-01

    The acceptability of various culinary products based on the algae spirulina was tested by questionaire: formulas rich in proteins, soups, omelets, desserts. Spirulina are little appreciated in France due to offensive color, smell and taste. Tomato and chocolate are the most acceptable flavors. Lyophilisation is preferable to atomisation, and discoloration using alcohol is preferable to the acetone method. The hydrolysate obtained, having neither the smell nor the taste of algae, is excellent. Nitrogen, sodium and potassium balances were recorded in 5 undernourished subjects fed via a gastric tube. The spirulina provided respectively 15 p. 100 (1 subject), 30 p. 100 (2 subjects), and 50 p. 100 (2 subjects) of the protein ration. There were no intestinal problems. The spirulina did not modify the investigated balances. However, faecal nitrogen increased to 2.08 g (compared to control period values, 1.33 g and 1.51 g). The various coefficients: digestibility, nitrogen retention and protein utilization did not vary. In man as in animals, nitrogen retention is satisfactory, but digestibility is diminished. Uric acid did not vary in the urine, but serum values increased slightly. Ingestion of spirulina in small doses even over a long period should be tolerable in the normal subject.

  8. Alga-Produced Cholera Toxin-Pfs25 Fusion Proteins as Oral Vaccines

    Science.gov (United States)

    Gregory, James A.; Topol, Aaron B.; Doerner, David Z.

    2013-01-01

    Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy. PMID:23603678

  9. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    Science.gov (United States)

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  10. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  11. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  12. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  13. Determination of the distribution of shallow-water seagrass and drift algae communities with acoustic seafloor discrimination.

    Science.gov (United States)

    Riegl, B; Moyer, R P; Morris, L; Virnstein, R; Dodge, R E

    2005-05-01

    The spatial distribution of seagrass and algae communities can be difficult to determine in large, shallow lagoon systems where high turbidity prevents the use of optical methods like aerial photography or satellite imagery. Further complications can arise when algae are not permanently attached to the substratum and drift with tides and currents. A study using acoustic seafloor discrimination was conducted in the Indian River Lagoon (Florida, USA) to determine the extent of drift algae and seagrass. Acoustic surveys using the QTC View V system based on 50 and 200 kHz transducers were conducted near Sebastian Inlet. Results indicate that areas of seagrass can be identified, and are mixed with a high abundance of drift algae. Nearest-neighbor extrapolation was used to fill in spaces between survey lines and thus obtain spatially cohesive maps. These maps were then ground-truthed using data from towed video and compared using confusion matrices, The maps showed a high level of agreement (60%) with the actual distribution of algae, however some confusion existed between bare sand and algae as well as seagrass.

  14. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  15. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  16. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  17. Development of life cycle water footprints for the production of fuels and chemicals from algae biomass.

    Science.gov (United States)

    Nogueira Junior, Edson; Kumar, Mayank; Pankratz, Stan; Oyedun, Adetoyese Olajire; Kumar, Amit

    2018-09-01

    This study develops life cycle water footprints for the production of fuels and chemicals via thermochemical conversion of algae biomass. This study is based on two methods of feedstock production - ponds and photobioreactors (PBRs) - and four conversion pathways - fast pyrolysis, hydrothermal liquefaction (HTL), conventional gasification, and hydrothermal gasification (HTG). The results show the high fresh water requirement for algae production and the necessity to recycle harvested water or use alternative water sources. To produce 1 kg of algae through ponds, 1564 L of water are required. When PBRs are used, only 372 L water are required; however, the energy requirements for PBRs are about 30 times higher than for ponds. From a final product perspective, the pathway based on the gasification of algae biomass was the thermochemical conversion method that required the highest amount of water per MJ produced (mainly due to its low hydrogen yield), followed by fast pyrolysis and HTL. On the other hand, HTG has the lowest water footprint, mainly because the large amount of electricity generated as part of the process compensates for the electricity used by the system. Performance in all pathways can be improved through recycling channels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  19. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  20. Snow algae and lichen algae differ in their resistance to freezing temperature: An ice nucleation study

    Czech Academy of Sciences Publication Activity Database

    Hajek, J.; Kvíderová, Jana; Worland, R.; Barták, M.; Elster, Josef; Vaczi, P.

    2009-01-01

    Roč. 48, č. 4 (2009), s. 37-38 ISSN 0031-8884. [International Phycological Congress /9./. 02.08.2009-08.08.2009, Tokyo] R&D Projects: GA AV ČR IAA600050702; GA AV ČR KJB601630808 Institutional research plan: CEZ:AV0Z60050516 Keywords : ice nucleation * algae * freezing Subject RIV: EF - Botanics

  1. Role of marine algae in organic farming

    Digital Repository Service at National Institute of Oceanography (India)

    Pereira, N.; Verlecar, X.N.

    Division of Publication and Information, Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi 110 029, India e - mail: encejain@yahoo.co.in Role of marine algae in organic far m ing As rightly outlined.... The Indi an Ocean, including its adjacent seas, extends over an area of about 73.44 ? 10 6 km 2 and the potential harvest of seaweeds from the Indian Ocean is about 870 thousand tonnes (wet weight) 3 . India could draw benefits from this marine...

  2. Effect of petroleum hydrocarbons on algae

    International Nuclear Information System (INIS)

    Bhadauria, S.; Sengar, R.M.S.; Mittal, S.; Bhattacharjee, S.

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae

  3. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  4. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.; Curtis, Tom P.; Logan, Bruce E.

    2009-01-01

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  5. Self-deconstructing algae biomass as feedstock for transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Biomass Science and Conversion Technologies

    2014-09-01

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydrate and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.

  6. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    Science.gov (United States)

    Tapia, Javier E; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.

  7. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Management of autotrophic mass cultures of micro-algae

    CSIR Research Space (South Africa)

    Toerien, DF

    1987-01-01

    Full Text Available Interest in the mass cultivation of micro-algae as feed and foodstuff has existed since the turn of the century (Robinson and Toerien, 1962). Experiments using algae in photosynthetic research (Warburg, 1919) also led to an appreciation...

  9. EnAlgae Decision Support Toolset: model validation

    NARCIS (Netherlands)

    Kenny, Philip; Visser, de Chris; Skarka, Johannes; Sternberg, Kirstin; Schipperus, Roelof; Silkina, Alla; Ginnever, Naomi

    2015-01-01

    One of the drivers behind the EnAlgae project is recognising and addressing the need for increased availability of information about developments in applications of algae biotechnology for energy, particularly in the NW Europe area, where activity has been less intense than in other areas of the

  10. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  11. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  12. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  13. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  14. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  15. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with haematococcus algae... in color additive mixtures for coloring foods. (b) Specifications. Haematococcus algae meal shall... salmonid fish in accordance with the following prescribed conditions: (1) The color additive is used to...

  16. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-01

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  17. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  18. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  19. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    Science.gov (United States)

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  20. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2013-08-01

    Full Text Available Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. For example, Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of

  1. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  2. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geisy, J P; Paine, D

    1978-01-01

    Algae and bacteria are important factors in the transport and mobilization of elements in the biosphere. These factors may be involved in trophic biomagnification, resulting in a potential human hazard or environmental degradation. Although americium, one of the most toxic elements known, is not required for plant growth, it may be concentrated by algae and bacteria. Therefore, the availability of americium-241 to algae and bacteria was studied to determine their role in the ultimate fate of this element released into the environment. Both algae and bacteria concentrated americium-241 to a high degree, making them important parts of the biomagnification process. The ability to concentrate americium-241 makes algae and bacteria potentially significant factors in cycling this element in the water column. (4 graphs, numerous references, 3 tables)

  3. Investigation about Role of Algae in Kazeroon Sasan Spring Odor

    Directory of Open Access Journals (Sweden)

    A Hamzeian

    2016-05-01

    Full Text Available Introduction: As odor for potable water is unpleasant for costumers, it needs to do researches for finding the reasons of odorous water. Sasan spring that is located in, near kazeroon city, Fars, Iran, is potable water resource for Kazeroon and Booshehr city and many other villages. Water in Sasan spring has the odor problem. With regards to important   role of algae on ado r problems in this study the role of algae on   odor was investigated. Methods: After regular sampling, the TON (threshold odor number was indicated and algae species was distinguished and the number of total algae and any species  of algae was numbers by microscopic direct numbering method .as the algae mass  is related to nitrogen and phosphor concentration, results of concentration Of nitrogen and phosphor in this spring that was examined regularity by water company was investigated and compared to concentration of these component that are need for algae growing.   Results: results shows that TON was in range  of 4.477 to 6.2 that indicated  oderous limit . Regression and diagram between TON and number of total algae showed the linear relationship. The concentration of nitrogen and phosphor, showed adequate condition for algal grow. Result of determination of algae species showed high population of Oscilatoria and Microcystis species, which are known as essential case of mold odor in water resources. Investigation on geological maps in the region around the Sasan spring, show alluvium source and is effected by surface part of it’s around land. Conclusion: because of the algae was determined as the essential cause of odor   in the spring, and algal growth is related to nutrients, and because of the surface pollution can penetrate in the alluvium lands around the spring, and effect the water in spring, so nutrient control and management is the essential way for odor control in the spring.

  4. Algae façade as green building method: application of algae as a method to meet the green building regulation

    Science.gov (United States)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  5. Algas alimenticias para mejorar la calidad nutritiva de los productos cárnicos

    Directory of Open Access Journals (Sweden)

    Brita Anaya González

    2014-12-01

    Full Text Available Objetivos: Mejorar la calidad nutritiva de los productos cárnicos a través de algas alimenticias. Métodos: Investigación básica experimental, con un diseño aleatorizado. La población estuvo constituida por diversos tipos de carne: res, cordero, cerdo y alpaca; y algas: Nostoc sp. conocido como nostoc, Gigartina chamissoi (qochayuyo y Ulva sp. (yuyo que llegan al mercado Nery García de la ciudad de Huamanga, capital del departamento de Ayacucho. La muestra comprendió 2 kg de cada tipo de carne y algas. La determinación de nutrientes fue sobre la base de los métodos de la AOAC (Official Methods of Analysis. Resultados: Al ser comparadas 5 mezclas de diferentes proporciones de carnes y algas, la diferencia encontrada fue significativa entre el contenido de valor calórico (P=0,000 y nutritivo (P=0,000. La mezcla A fue la ideal con un porcentaje de proteínas de 31,87 g%, las grasas con un valor de 12,95 g%, inferior a lo existente en las carnes lo que es favorable para una disminución de riesgos de enfermedades. El porcentaje de carbohidratos reportó 7,10 g% cantidad baja, pero con buen tenor de fibra 16,00 g% sumamente importante para el peristaltismo y buen funcionamiento del sistema digestivo. La cantidad de cenizas de 4,02 g%, significa que existe un buen aporte de minerales indispensables para el organismo. Conclusiones: Se mejoró la calidad nutritiva de los productos cárnicos al adicionar algas, con un valor calórico de 272,43 kcal/100g satisfactorio, y el valor nutritivo de 2,41 lo identifica como altamente nutritivo.

  6. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A., E-mail: jimfield@email.arizona.edu

    2016-11-05

    Highlights: • Algal biomass can serve as an electron donor to drive reduction of sulfate to sulfide. • Biogenic sulfide precipitates Cu{sup 2+} as stable sulfide mineral. • Cu{sup +2} removal in sulfidogenic bioreactors amended with algal biomass exceeded 99.5%. • Acidity in synthetic acid rock drainage was consumed by sulfate reduction. - Abstract: This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H{sub 2}SO{sub 4} and Cu{sup 2+}. Sulfate, sulfide, Cu{sup 2+} and pH were monitored throughout the experiment of 123 d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7 mg SO{sub 4}{sup 2−} d{sup −1}) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu{sup 2+} removal were observed in the endogenous control. In algae amended-columns, Cu{sup 2+} was precipitated with biogenic H{sub 2}S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry.

  7. Comparative Energetics of Carbon Storage Molecules in Green Algae

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McKie-Krisberg, Zaid M. [City University of New York; Huang, Andy [City University of New York; Polle, Jurgen E. W. [City University of New York

    2018-02-28

    Several members of the green algae possess the ability to produce lipids and/or high value compounds in significant quantities. While for several of these green algal species induction of increased lipid production has been shown, and cultivation of species for high value molecules occurs at production scale, the molecular mechanisms governing over-accumulation of molecules synthesized from isoprenoid precursors, carotenoids, for example, have received far less attention. Here, we present a calculation of the required ATP equivalencies per carbon atom and reducing power equivalencies as NADH/NADPH (NAD(P)H) per carbon atom for the isoprenoid molecules ..beta..-carotene (C40), astaxanthin (C40), and squalene (C30). We compared energetic requirements of carbohydrates, triacylglycerol, and isoprenoid molecules under a gradient of conditions of cellular stress. Our calculations revealed slightly less ATP and NAD(P)H equivalency per carbon atom between triacylglycerol and the three isoprenoid molecules. Based on our results, we propose that the driving force for differences in accumulation patterns of carotenoids vs. triacylglycerols in algal cells under stress is largely dependent on the presence and regulation of bypass mechanisms at metabolic junction bottlenecks, like pyruvate dehydrogenase (PDH), within particular species. We provide a discussion of several molecular mechanisms that may influence carbon partitioning within different groups of green algae, including metabolic inhibition through accumulation of specific substrates related to ATP and reducing equivalent production (NAD(P)H) as well as cellular compartmentalization. This work contributes to the ongoing discussion of cellular homeostatic regulation during stress, as well as the potential mechanisms driving long-term carbon storage as it relates to energy and redox states within the algal cell.

  8. Antibiotic Algae by Chemical Surface Engineering.

    Science.gov (United States)

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The economics of producing biodiesel from algae

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Brian J. [Ecotonics Environmental Scientists, 1801 Century Park East, Suite 2400, Los Angeles, CA 90067 (United States)

    2011-01-15

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  10. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Gallagher, Brian J.

    2011-01-01

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  11. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  13. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, Joseph

    1977-01-01

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13 N, 24 Na and 22 Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N 2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  14. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    Science.gov (United States)

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  15. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    Science.gov (United States)

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Isolation and Structure Elucidation of Three New Dolastanes from the Brown Alga Dilophus spiralis

    Directory of Open Access Journals (Sweden)

    Vassilios Roussis

    2013-04-01

    Full Text Available Three new dolastane diterpenes (1–3 and five previously reported perhydroazulenes were isolated from the organic extracts of the brown alga Dilophus spiralis. The structure elucidation and the assignment of the relative configurations of the isolated natural products were based on extensive analyses of their spectroscopic data, whereas the absolute configuration of metabolite 2 was determined through its chemical conversion to a previously isolated compound of known configuration.

  17. Analysis of micro matter reference materials of lichen and algae by SRXRF and PIXE

    International Nuclear Information System (INIS)

    Yin Sha Xin; Wang Jian Liu; Zhang Peiqun

    2002-01-01

    In the present work two nuclear micro analysis techniques, synchrotron radiation (SRXRF) and macro proton induced X ray emission (macro PIXE), were used in the homogeneity test of Algae IAEA-413 and Lichen IAEA-338, and the certification of their elemental contents too. Finally, the Ingamell's sampling constant Ks and the relative homogeneity factor HE of some elements in these two RMs were estimated on the base of our macro PIXE results. (author)

  18. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  19. Kalaärimeeste kohus algas venitamisega / Hindrek Riikoja

    Index Scriptorium Estoniae

    Riikoja, Hindrek

    2007-01-01

    Harju maakohtus algas kohtuprotsess veterinaar- ja toiduameti endise asejuhi Vladimir Razumovski väidetava altkäemaksuvõtmise üle, kus on süüdistavaid eraisikuid ja ettevõtjaid. Lisa: Kes on kohtu all?

  20. The role of algae in agriculture: a mathematical study.

    Science.gov (United States)

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  1. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  2. Studies on allergenic algae of Delhi area: botanical aspects.

    Science.gov (United States)

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  3. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  4. Composition, Occurrences and Checklist of Periphyton Algae of ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    The periphyton is also an important indicator of water quality (Azim et al, 2006). Attached algae are primitive plants that get their nutrients from water passing over them. ... rung in the aquatic food chain depend directly ... influence of sea water.

  5. Planktonic algae and cyanoprokaryotes as indicators of ecosystem ...

    African Journals Online (AJOL)

    Planktonic algae and cyanoprokaryotes as indicators of ecosystem quality in the Mooi River system in the North-West Province, South Africa. ... is important for maintaining the quality of potable water of Potchefstroom and surrounding areas.

  6. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  7. The Belmont Valley integrated algae pond system in retrospect

    African Journals Online (AJOL)

    2013-03-26

    Mar 26, 2013 ... ness amongst all stakeholders including the public at large, the three spheres of ...... (2011) Algae biofuel from wastewater treatment high rate algal ponds. .... and OELMÜLLER R (2002) Photosynthetic electron transport.

  8. EVALUACIÓN POR MÉTODO ECOMÉTRICO DE AGAR OBTENIDO DE ALGAS ROJAS COLOMBIANAS

    Directory of Open Access Journals (Sweden)

    A. Villalobos

    2007-12-01

    Full Text Available The purpose of this study was to evaluate the productivity on agar-agar of two species of red algae of thegenera Gracilaria belonging from the Colombiam Caribean coast (G. cylindrica and G. mammillarisobtained in laboratory. Productivity of culture media elaborated with base agar - agar was determinedusing the ecometric method with 20 different bacterial species. Results obtained from ICA and ICRshowed that agar extracted from Gracilaria cylindrica and Gracillaria mammillaris are equally productive,this shows that both species can be used for agar production. For better results, it is still necessary tooptimize extraction processes and purification of agar in both species of algae.

  9. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    Science.gov (United States)

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  10. Algae biodiesel life cycle assessment using current commercial data.

    Science.gov (United States)

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Diterpenes from the Marine Algae of the Genus Dictyota.

    Science.gov (United States)

    Chen, Jiayun; Li, Hong; Zhao, Zishuo; Xia, Xue; Li, Bo; Zhang, Jinrong; Yan, Xiaojun

    2018-05-11

    Species of the brown algae of the genus Dictyota are rich sources of bioactive secondary metabolites with diverse structural features. Excellent progress has been made in the discovery of diterpenes possessing broad chemical defensive activities from this genus. Most of these diterpenes exhibit significant biological activities, such as antiviral, cytotoxic and chemical defensive activities. In the present review, we summarized diterpenes isolated from the brown algae of the genus.

  12. Algae Reefs in Shark Bay, Western Australia, Australia

    Science.gov (United States)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  13. Thermal algae in certain radioactive springs in Japan, (3)

    International Nuclear Information System (INIS)

    Mifune, Masaaki; Hirose, Hiroyuki.

    1982-01-01

    Shikano Hot Springs are located at five km to the south of Hamamura Station on the Sanin Line in Tottori Prefecture. The water temperature and the pH of the springs are 40.2 - 61.2 0 C, and 7.5 - 7.8, respectively. They belong to simple thermals. Hamamura Hot Springs are located in the neighbourhood of Hamamura Station. The highest radon content of the hot springs is 175.1 x 10 -10 Ci/l, and the great part of the springs belong to radioactive ones. From the viewpoint of the major ionic constituents, they are also classified under weak salt springs, sulfated salt springs, and simple thermals. Regarding the habitates of the algal flora, the water temperature and the pH of the springs are 28.0 - 68.0 0 C, and 6.8 - 7.4, respectively. The thermal algae found by Ikoma and Doi at Hamamura Hot Springs were two species of Cyanophyceae. By the authors, nine species and one variety of Cyanophyceae including Ikoma and Doi's two species were newly found at Shikano and Hamamura Hot Springs. Chlorophyceous alga was not found. The dominant thermal algae of these hot springs were Mastigocladus laminosus, and the other algae which mainly consist of Oscillatoriaceous algae. From these points, it seems that the thermal algae of Shikano and Hamamura Hot Springs belong to the normal type of thermal algae, and they are different from the thermal algae of Ikeda Mineral Springs and Masutomi Hot Springs which belong to strongly radioactive springs. (author)

  14. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  15. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  16. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  17. Combining of radionuclides with constituent materials of marine algae

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Nakahara, Motokazu; Ishii, Toshiaki; Ueda, Taishi; Shimizu, Chiaki.

    1979-01-01

    The relations between the accumulation-elimination of radionuclides and the constituent materials of marine algae were studied to determine more precisely the mechanism of the radioactive contamination of marine organisms. This will increase the information about the behavior of radionuclides in marine organisms in relation to the environmental conditions (temperature, physico-chemical state of radioisotope, and so on) and the biological conditions (feeding habits, species, and so on). Eisenia contaminated by 137 Cs and 106 Ru- 106 Rh was fractionated by solvent extraction into 6 fractions. The largest portion of 137 Cs was in the boiling water fraction; 106 Ru- 106 Rh was most extracted by 24% KOH solution. Elution patterns by Sephadex G-100 gel-filtration of samples differed largely from each other, both among the 3 kinds of radionuclides and between the 2 species of the algae. Therefore, the accumulation of the radionuclides by the marine algae was proved to be not only due to a physical absorption to the surface of the algae but also to the biological combining of the radionuclides with the constituents of the algae. Furthermore, it was found that radionuclides which combine with a few constituents of alga are not eliminated equally. This is considered to be useful for the physiological analysis of elimination curves. (author)

  18. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  19. Biodiesel Production From Algae to Overcome the Energy Crisis

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2017-10-01

    Full Text Available The use of energy sources has reached at the level that whole world is relying on it. Being the major source of energy, fuels are considered the most important. The fear of diminishing the available sources thirst towards biofuel production has increased during last decades. Considering the food problems, algae gain the most attention to be used as biofuel producers. The use of crop and food-producing plants will never be a best fit into the priorities for biofuel production as they will disturb the food needs. Different types of algae having the different production abilities. Normally algae have 20%–80% oil contents that could be converted into different types of fuels such as kerosene oil and biodiesel. The diesel production from algae is economical and easy. Different species such as tribonema, ulothrix and euglena have good potential for biodiesel production. Gene technology can be used to enhance the production of oil and biodiesel contents and stability of algae. By increasing the genetic expressions, we can find the ways to achieve the required biofuel amounts easily and continuously to overcome the fuels deficiency. The present review article focusses on the role of algae as a possible substitute for fossil fuel as an ideal biofuel reactant.

  20. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  1. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  2. Bifurcations and Periodic Solutions for an Algae-Fish Semicontinuous System

    Directory of Open Access Journals (Sweden)

    Chuanjun Dai

    2013-01-01

    Full Text Available We propose an algae-fish semicontinuous system for the Zeya Reservoir to study the control of algae, including biological and chemical controls. The bifurcation and periodic solutions of the system were studied using a Poincaré map and a geometric method. The existence of order-1 periodic solution of the system is discussed. Based on previous analysis, we investigated the change in the location of the order-1 periodic solution with variable parameters and we described the transcritical bifurcation of the system. Finally, we provided a series of numerical results to illustrate the feasibility of the theoretical results. These results may help to facilitate a better understanding of algal control in the Zeya Reservoir.

  3. Molecular characterization and bioactivity profile of the tropical sponge-associated bacterium Shewanella algae VCDB

    Science.gov (United States)

    Rachanamol, R. S.; Lipton, A. P.; Thankamani, V.; Sarika, A. R.; Selvin, J.

    2014-06-01

    The pigmented, rod-shaped, Gram-negative, motile bacteria isolated from marine sponge Callyspongia diffusa exhibiting bioactivity was characterized as Shewanella algae (GenBank: KC623651). The 16S rRNA gene sequence-based phylogenetic analysis showed its similarity with the member of Shewanella and placed in a separate cluster with the recognized bacteria S. algae (PSB-05 FJ86678) with which it showed 99.0 % sequence similarity. Growth of the strain was optimum at temperature 30 °C, pH 8.0 in the presence of 2.0-4.0 % of NaCl. High antibiotic activity against microbes such as Escherichia coli (MTCC 40), S. typhii (MTCC 98), P. vulgaris (MTCC 426), V. fluvialis, V. anguillarum, E. cloacae, and L. lactis was recorded. The growth of fungal pathogens such as Aspergillus niger, Aspergillus fumigatus, Saccharomyces cerevisiae, and Colletotrichum gloeosporioides was effectively controlled.

  4. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola

    1998-01-01

    -occurring algal species, all of which lack furanones. There was also a strong inverse correlation between bacterial abundance and furanone content (previously determined) for different sections of the thallus of D. pulchra, consistent with inhibition of bacteria by furanones. Based on these observations we....... pulchra the most. As inhibition of growth did not provide an adequate explanation for the inverse relationship between levels of furanones and bacteria abundance on D. pulchra, we proceeded to investigate the effects of these metabolites on other bacterial characteristics relevant to colonisation...... of different bacterial isolates or phenotypes by furanones, as well as affecting overall bacterial abundance on the alga, should have strong effects on the species composition of the bacterial community on the alga's surface. The effects of furanones on specific bacterial colonisation traits are discussed...

  5. Is the Future Really in Algae?

    Science.gov (United States)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  6. Detection of Cyanotoxins in Algae Dietary Supplements.

    Science.gov (United States)

    Roy-Lachapelle, Audrey; Solliec, Morgan; Bouchard, Maryse F; Sauvé, Sébastien

    2017-02-25

    Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae . Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer's awareness on the potential risks associated with the consumption of these supplements.

  7. Detection of Cyanotoxins in Algae Dietary Supplements

    Directory of Open Access Journals (Sweden)

    Audrey Roy-Lachapelle

    2017-02-01

    Full Text Available Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF, anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD and ultra-high performance liquid chromatography (UHPLC both coupled to high resolution mass spectrometry (HRMS enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements.

  8. Análisis del sector de producción de algas con fines alimentarios. Percepción del consumidor frente al consumo de algas

    OpenAIRE

    Balcazar Bañeras, Sara

    2014-01-01

    Algae are an important part of exploited marine resources of our planet. 21 million tons of fresh seaweed are collected each year in the world with a value of $ 5.5 trillion. 75% of this production takes place in Asian countries like China, Korea and Japan and is primarily based in food industry, the most common genera are Laminaria (Kombu), Undaria (Wakame) and Porphyra (Nori). However, in Spain is a nascent and immature industry, marked by a lack of technical and social knowledge of the pro...

  9. Bacterial community changes in an industrial algae production system.

    Science.gov (United States)

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  10. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  12. DISTRIBUTIONAND DIVERSITY OF MACRO ALGAE COMMUNITIES IN THE AMBON BAY

    Directory of Open Access Journals (Sweden)

    Christina Litaay

    2014-11-01

    Full Text Available Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon Bay contained different habitat conditions due to  sedimentation processes. The purpose of this study was to determine the distribution and diversity of macro algae communities in the Ambon Bay. The results found 21 species of macro- algae consisting of 10 species of Rhodhophyceae, 6 species of Chlorophyceae, and 5 species of Phaeophyceae. The highest density value of seaweed in Tantui was 389.0 g/m² of Chlorophyceae of Halimeda genus. In Air Salobar and Halong, the highest density value was Rhodophyceae of Gracilaria genus of 172.0 g/m² and 155.0 g/m², respectively. For the other genus in the Tantui and Lateri regions were dominated by Ulva at 92.10 gr/m2 and Padina of 20.0 gr/m2, respectively. The highest dominance of macro algae in the Hative Besar was found Chlorophyceae of Halimeda genus of 2.93 %, in the Air Salobar of Phaeophyceae of Turbinaria genus of 1.43 %. The difference values in density and the dominance of macro algae indicated an influence of habitat and environment due to seasons, sediment, and solid waste disposal to the diversity of macro algae. Keywords: Diversity, macro algae, Ambon Bay.

  13. The effects of mutagens on some algae

    International Nuclear Information System (INIS)

    Aranez, A.T.

    1984-01-01

    Pure cultures of Scenedesmus quadricauda (Turp.) Breb. and chlorella pyrenoidosa Chick were subjected to 0.5, 3, 6, 9 and 12 Kr gamma radiation ( 60 Co source) from the Philippine Atomic Energy Commission. Untreated cells were used as control. Dose of 0.5 Kr increased the growth rate of Scenedesmus by 3.12%, 15.27% and 20.48% during the first, third and fourth week respectively. Doses of 6, 9 and 12 decreased the growth rate by 86.33%, 70.7% and 58.2% respectively during the first week. The stimulating effect of low dose (0.5 Kr) was recovered after the fourth week while the inhibiting effect on growth by higher doses was recovered after the first week. Gamma radiation produced morphological changes in the Scenedesmus in the form of enlarged cells, cells with kidney-shape chloroplast, cells in chain, and coenobia with cells that were not in perfect alignment with each other. In chlorella, gamma radiation produced enlarged cells, cells with wrinkled surface and cells that were colourless. Ethyl methanesulfate of 0.1%, 0.4%, 0.8% and 1.25% in phosphate buffer solution was another mutagen used. Algae in distilled water and phosphate buffer were used as control. Treatment with EMS produced coenobia of Scenedesmus with cells that were twice and thrice the normal cells, cells that were rounded or oval in outline, with wavy instead of smooth margin, cells with pseudopodia-like protrusions and coenobia with abnormal number of cells. In Chlorella, EMS produced cells that were twice the size of the normal size of the normal ones, cells that were wavy in outline, abnormal in shape, and cells with no chlorophyll. Scenedesmus was more sensitive to gamma radiation and EMS than chlorella. Of the morphological changes observed, only Scenedesmus with cells around twice the size of the normal ones produced by treatment with either gamma radiation of EMS were successfully propagated. (author)

  14. Public Perception of Blue-Algae Bloom Risk in Hongze Lake of China

    Science.gov (United States)

    Huang, Lei; Sun, Kai; Ban, Jie; Bi, Jun

    2010-05-01

    In this work we characterize the public perception of one kind of ecological risk—blue-algae bloom in Hongze Lake, China, based on the psychometric paradigm method. In the first survey of May 2008, 300 respondents of Sihong County adjacent to Hongze Lake were investigated, with a total of 156 questionnaires returned. Then in a second survey of July 2008, 500 respondents from the same research area were investigated, with 318 questionnaires collected. This research firstly attempted to explore the local respondents’ degree of concern regarding ecological changes to Hongze Lake in the last ten years. Secondly, to explore the public perception of blue-algae bloom compared to three typical kinds of hazards including earthquake, nuclear power and public traffic. T-test was used to examine the difference of risk perception in these four hazards over time. The third part of this research, with demographic analysis and nonparametric statistical test, predicted the different groups of respondents’ willingness to accept (WTA) risk of blue-algae bloom in two surveys. Using multiple linear regression analysis, the risk perception model explained 28.3% of variance in the WTA blue-algae bloom risk. The variables of Knowledge, Social effect, Benefit, Controllability and Trust in government were significantly correlated with WTA, which implied that these variables were the main influencing factors explaining the respondents’ willingness to accept risk. The results would help the Chinese government to comprehend the public’s risk perception of the lake ecosystem, inducing well designed communication of risks with public and making effective mitigation policies to improve people’s rational risk judgment.

  15. Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

    Science.gov (United States)

    Beal, Colin M.; Archibald, Ian; Huntley, Mark E.; Greene, Charles H.; Johnson, Zackary I.

    2018-03-01

    Bioenergy carbon capture and storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called "ABECCS") can reduce CO2 emissions without competing with agriculture. This study presents a technoeconomic and life-cycle assessment for colocating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power (CHP) generation with subsequent amine-based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations that include 1) algal biomass sold for 1,400/t (fishmeal replacement) with a 68/t carbon credit and 2) algal biomass sold for 600/t (soymeal replacement) with a 278/t carbon credit. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.

  16. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    Science.gov (United States)

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  17. Induced production of brominated aromatic compounds in the alga Ceramium tenuicorne.

    Science.gov (United States)

    Dahlgren, Elin; Enhus, Carolina; Lindqvist, Dennis; Eklund, Britta; Asplund, Lillemor

    2015-11-01

    In the Baltic Sea, high concentrations of toxic brominated aromatic compounds have been detected in all compartments of the marine food web. A growing body of evidence points towards filamentous algae as a natural producer of these chemicals. However, little is known about the effects of environmental factors and life history on algal production of brominated compounds. In this study, several congeners of methoxylated polybrominated diphenyl ethers (MeO-PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and brominated phenols (BPs) were identified in a naturally growing filamentous red algal species (Ceramium tenuicorne) in the Baltic Sea. The identified substances displayed large seasonal variations in the alga with a concentration peak in July. Production of MeO-/OH-PBDEs and BPs by C. tenuicorne was also established in isolated clonal material grown in a controlled laboratory setting. Based on three replicates, herbivory, as well as elevated levels of light and salinity in the culture medium, significantly increased the production of 2,4,6-tribromophenol (2,4,6-TBP). Investigation of differences in production between the isomorphic female, male and diploid clonal life stages of the alga grown in the laboratory revealed a significantly higher production of 2,4,6-TBP in the brackish water female gametophytes, compared to the corresponding marine gametophytes. Even higher concentrations of 2,4,6-TBP were produced by marine male gametophytes and sporophytes.

  18. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    Science.gov (United States)

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Bio testing with micro algae in the pollution of environment with heavy metals

    International Nuclear Information System (INIS)

    Khudaverdiyev, S.R; Aliyev, E. Sh; Abdullayev, M.A; Khalilov

    2010-01-01

    Full text:Use of micro-algae is more expedient to determine how dangerous for living organisms the pollution of the environment with heavy metals. Photosynthesis is a process very sensitive to the impact of various factors. Photosynthesis is a process very sensitive to the impact of various factors. This process influences the changes in various non-photosynthetic solar energy losses of the indicator, which is the swallowing fluorescence especially in the late chordophone fluorescent (GF) parameters shows itself. The method of fluorescent indicator of photosynthetic membranes is based on the peculiar situation of the chordophone algae cells. Chlamydomonas Reinhardt by the research work presented in different environments micro-algae (Tries, taps), Fe, Ag and Au ions under the influence of changes of variable and delayed kinetics were studied fluorescent settings. In general, growth in the period of incubation experiments carried out in all the salts of the corresponding effect (increase or decrease) strengthened. At present, under the influence of radioactive pollution of the object to determine the degree of pollution due to changes in the initial work is being continued.

  20. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    International Nuclear Information System (INIS)

    Yunus, S; Abdullah, N R; Rashid, A A; Mamat, R

    2013-01-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia

  1. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  2. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    Science.gov (United States)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  3. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    OpenAIRE

    David M. Metzler; Ayca Erdem; Chin Pao Huang

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 ...

  4. Radionuclides in macro algae at Monaco following the Chernobyl accident

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.; Lopez, J.J.; Bulos, A.; Whitehead, N.E.; Barci-Funel, G.; Ardisson, G.

    1994-01-01

    Samples of macro algae, Codmium tomentosum (green), Corallina mediterranea (red), Sphaerococcus coronopifolius (red) and Dictyota dichotoma (brown), were collected off Monaco during 1984 and 1988 and analysed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2-3 May. The maximal activity concentrations in sea water occurred on 5-6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated. The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for 131 I, 129 Te m , and 110 Ag m and lowest for radiocesium and 140 Ba. The red algae Sphaerococcus coronopifoius showed generally higher concentration factors than green and brown algae. Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only 242 Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics. (author) 23 refs.; 9 figs.; 4 tabs

  5. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan [Longitude 122 West, Inc.; Efroymson, Rebecca Ann [ORNL

    2018-03-01

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of the nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.

  7. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    Directory of Open Access Journals (Sweden)

    Ingrid Ramírez

    2011-05-01

    Full Text Available Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  8. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    Science.gov (United States)

    Roberts, Griffin William

    The forefront of the 21st century presents ongoing challenges in economics, energy, and environmental remediation, directly correlating with priorities for U.S. national security. Displacing petroleum-derived fuels with clean, affordable renewable fuels represents a solution to increase energy independence while stimulating economic growth and reducing carbon-based emissions. The U.S. government embodied this goal by passing the Energy Independence and Security Act (EISA) in 2007, mandating 36 billion gallons of annual biofuel production by 2022. Algae possess potential to support EISA goals and have been studied for the past 30-50 years as an energy source due to its fast growth rates, noncompetitive nature to food markets, and ability to grow using nutrient waste streams. Algae biofuels have been identified by the National Research Council to have significant sustainability concerns involving water, nutrient, and land use. Utilizing municipal wastewater to cultivate algae provides both water and nutrients needed for growth, partially alleviating these concerns. This dissertation demonstrates a pathway for algae biofuels which increases both sustainability and production of high-value products. Algae are cultivated in pilot-scale open ponds located at the Lawrence Wastewater Treatment Plant (Lawrence, KS) using solely effluent from the secondary clarifier, prior to disinfection and discharge, as both water and nutrient sources. Open ponds were self-inoculated by wastewater effluent and produced a mixed-species culture of various microalgae and macroalgae. Algae cultivation provided further wastewater treatment, removing both nitrogen and phosphorus, which have devastating pollution effects when discharged to natural watersheds, especially in large draining watersheds like the Gulf Coast. Algae demonstrated significant removal of other trace metals such as iron, manganese, barium, aluminum, and zinc. Calcium did not achieve high removal rate but did present a

  10. Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines.

    Science.gov (United States)

    Kroll, Alexandra; Kühnel, Dana; Schirmer, Kristin

    2013-01-01

    Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present

  11. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  12. Algae from the arid southwestern United States: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  13. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  14. Stream Level Stabilization by Algae of the Genus Cladophora

    Directory of Open Access Journals (Sweden)

    Zeman J.

    2018-03-01

    Full Text Available Investigations in the Pryský brook experimental catchment revealed that the vegetation of the stream channel stabilizes water level depth in the measured profile. The explored brook has been heavily overgrown by algae of the genus Cladophora due to a strong pollution by nitrates. It seems that if the algae average length exceeds the midsize of the stones paving the bed (ca. 30 ± 7 cm in diameter, escribed circle to pentagon or heptagon, the water level stagnates in the flowrate range of 60–180 l s−1. This totally blocks the streamflow daily oscillation (in summer months in a purely stone bed reaching up to 15%, along with tidal phenomena. The article analyzes one of possible explanations of this effect due to the dependence of the algae thickness layer modifying the channel bed cross-section on the speed of flowing water.

  15. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Science.gov (United States)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  16. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  17. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  18. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2007-05-01

    Full Text Available Abstract Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales and the sarcinoid Chlorokybus atmophyticus (Chlorokybales represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag, two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean

  19. CCQM key comparison CCQM-K75: Determination of toxic metals in algae

    Science.gov (United States)

    Shakhashiro, A.; Toervenyi, A.; Gaudino, S.; Rosamilia, S.; Belli, M.; Turk, G. C.

    2011-01-01

    The determination of mass fraction of toxic elements and especially platinum emitted from automobile catalytic converters in the air is a critical factor in assessing air quality and the potential impact of possible pollutants. Air is in fact one of the main pathways for human exposure to toxic elements. Biomonitors, such as lichen and algae, are examples of environmental samples that have been widely used by the scientific community to assess and monitor the level of environmental pollution. For this purpose, the IAEA-450 algae material containing heavy metals and platinum at low level was prepared by IAEA Seibersdorf Laboratories in collaboration with the Italian National Institute for Environmental Protection—ISPRA (former APAT). During the April meeting in 2009 of the Inorganic Analysis Working Group (IAWG) of the CCQM it was agreed to organize a key comparison K75 for Pt and Ni and a parallel pilot study P118 for As, Cd, Cr, Hg, Ni, Pb and Pt using this algae material. The key comparison CCQM-K75 was successfully organized. The participating NMIs demonstrated a high level of measurement capabilities and technical competence in analysing nickel and platinum at a low level of concentration in environmental samples such as algae. The between-laboratories reproducibility standard deviation for nickel and platinum was 1.9% and 3.6% respectively, which reflects an excellent agreement of between-laboratories measurement results. The ratio between the bias and its expanded uncertainty for nickel and platinum was below 2.0 for all reported results except in one case. This study was a practical demonstration of a CCQM comparison to use the 'core-capabilities' utilized by participants as a mean of providing evidence for Calibration and Measurement Capabilities (CMC) claims for Ni and Pt. Based on this CCQM international key comparison, the measurement capability of the NMIs which participated in the CCQM-K75 has been demonstrated directly for determination of Pt and Ni

  20. Marine algae as biomonitors for heavy metals accumulation at the Red Sea Sudanese coast

    International Nuclear Information System (INIS)

    Ali, A.Y.A.

    2007-09-01

    The concentration of heavy trace elements chromium, manganese, nickel, copper, zinc, cadmium, and lead was measured in three main groups of alage, green, brown and red from the Sudanese coastal water of the Red Sea at seven main locations. The analyses were performed using atomic absorption spectrophotometry and x-ray fluorescence. Based on the overall average concentration (ppm), manganese was the most abundant element, (range 22.64-144.77) followed by chromium (rang 8.40-14.51), zinc (range 5.82-14.23), nickel (range 4.27-6.48) copper (range 2.83-7.75) lead range (1.29-1.80) and cadmium (rang 0.05-0.15). On comparing samples results at all locations, the results showed that Sawakin locations (1) and (2) algae have a highest content of trace elements. The concentration of trace elements in marine algae at, Sawakin (1), Klanieb and Sawakin (2) shows the higher uptake of lead giving the average of 1.69, 1.70, and 1.80, respectively compared with other locations, where the lowest concentration of manganese is observed at Sawakin (1) (38.19 ppm) and Sawakin (2) (41.04 ppm) with relative excess of lead concentration (1.69 and 1.80 ppm). Data obtained in this study were treated using classical descriptive statistics to explain the measuring central tendency. Correlation coefficient was also used to examine the relationship of different elements. Upon comparing the elemental concentration of the Red Sea alage with published literature, marine algae collected from the study area showed relative agreement with data reported but Sawakin harbor can be considered as slightly contaminated area by heavy metals. The study showed that the red algae has higher uptake of trace elements studied than brown and green algae with some variations of metal concentrations in some species which were apparently related to the specific accumulation capacity of each particular species. These species suggest their suitability for utilization as biomonitor for heavy metals in the Red Sea coastal

  1. Marine algae as biomonitors for heavy metals accumulation at the Red Sea Sudanese coast

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A Y.A. [Red Sea University, Department of Chemistry, Port Sudan (Sudan)

    2007-09-15

    The concentration of heavy trace elements chromium, manganese, nickel, copper, zinc, cadmium, and lead was measured in three main groups of alage, green, brown and red from the Sudanese coastal water of the Red Sea at seven main locations. The analyses were performed using atomic absorption spectrophotometry and x-ray fluorescence. Based on the overall average concentration (ppm), manganese was the most abundant element, (range 22.64-144.77) followed by chromium (rang 8.40-14.51), zinc (range 5.82-14.23), nickel (range 4.27-6.48) copper (range 2.83-7.75) lead range (1.29-1.80) and cadmium (rang 0.05-0.15). On comparing samples results at all locations, the results showed that Sawakin locations (1) and (2) algae have a highest content of trace elements. The concentration of trace elements in marine algae at, Sawakin (1), Klanieb and Sawakin (2) shows the higher uptake of lead giving the average of 1.69, 1.70, and 1.80, respectively compared with other locations, where the lowest concentration of manganese is observed at Sawakin (1) (38.19 ppm) and Sawakin (2) (41.04 ppm) with relative excess of lead concentration (1.69 and 1.80 ppm). Data obtained in this study were treated using classical descriptive statistics to explain the measuring central tendency. Correlation coefficient was also used to examine the relationship of different elements. Upon comparing the elemental concentration of the Red Sea alage with published literature, marine algae collected from the study area showed relative agreement with data reported but Sawakin harbor can be considered as slightly contaminated area by heavy metals. The study showed that the red algae has higher uptake of trace elements studied than brown and green algae with some variations of metal concentrations in some species which were apparently related to the specific accumulation capacity of each particular species. These species suggest their suitability for utilization as biomonitor for heavy metals in the Red Sea coastal

  2. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, Jr, J P; Paine, D [Savannah River Ecology Lab., Aiken, S.C. (USA)

    1978-01-01

    The uptake of americium by three algae, Scenedesmus obliguus, Selenastrum capricomutum and Chlorella pyrenosdosa and a bacterium Aeromonas hydrophila was studied. Live and fixed cells of each algal species and live bacterial cells were used. It is shown that algae and bacteria concentrate americium 241 to a high degree which makes them important links in the biomagnification phenomenon which may ultimately lead to a human hazard and be potentially important in recycling Am /sup 241/ in the water column and mobilization from sediments. Chemical fixation of algal cells caused increased uptake which indicated that uptake is by passive diffusion and probably due to chemical alteration of surface binding sites.

  3. The attached algae community near Pickering GS: III

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    The relationship between attached algae and macro-invertebrates in the nearshore zone of Lake Ontario was investigated in the vicinity of the Pickering 'A' NGS. Measures of faunal density, richness, evenness, and biomass were generally higher from areas which supported attached algae. Gammarus fasciatus, Cricotopus bicinctus, Dicrotendipes spp., Orthocladius obumbratus, Cladotanytarsus spp., Orthocladius spp., and Parakiefferiella spp., were significantly correlated with algal standing crop. All of the above dominant invertebrates ingested epiphytes associated with Cladophora glomerata. Attempts to explain the distribution of the zoobenthic assemblages using the physical/biological characteristics of the study area indicated algal cover, substrate size, wind velocity and water temperature were most important

  4. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production

    Directory of Open Access Journals (Sweden)

    Dahlia M. El Maghraby

    2015-01-01

    Full Text Available Using the total lipid contents and fatty acid profiles, the marine macro-algae Jania rubens (Rhodophyceae, Ulva linza (Chlorophyceae and Padina pavonica (Phaeophyceae were evaluated for biodiesel production during the spring, summer and autumn. Seawater parameters such as pH, salinity and temperature were measured. The total lipid content varied from 1.56% (J. rubens to 4.14% (U. linza of dry weight, with the highest values occurring in spring. The fatty acid methyl ester profiles were analysed using gas chromatography. The highest percentage of total fatty acids was recorded in P. pavonica, with 6.2% in autumn, whereas the lowest was in J. rubens, with 68.6% in summer. The relative amount of saturated to unsaturated fatty acids was significantly higher in P. pavonica than in the other macro-algae. Seasonal variations in pH, salinity and temperature had no significant effect on the total lipid and fatty acid contents. Principal component analysis grouped brown and green algae together, whereas red alga grouped out. Furthermore, methyl ester profiles indicate that brown and green seaweeds are preferred, followed by red seaweeds, which appears to have little potential for oil-based products. Therefore, these seaweeds are not targets for biodiesel production.

  5. Influence of carbon dioxide, temperature, medium kind and light intensity on the growth of algae Chlamydomonas reinhardtii and Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Olejnik Przemysław Piotr

    2016-01-01

    Full Text Available Microalgae attracts the attention of scientists because of the possibility of using in the energy industry as one of the substrates for the production of renewable energy. So far, the greatest emphasis was put on attempts to obtain strains, and technologies of their culturing, in order to efficiently acquire fat from cells and its further conversion to biodiesel using transesterification reaction. Increasingly, algae are considered also as an efficient biomass producer, which can be used as a substrate for methane production in biogas plants. In this study the influence of different physical and chemical conditions, on the growth of two algae species: Chlamydomonasreinhardtii and Scenedesmus obliquus was investigated. Based on the literature and the data obtained for the algae growth on the standard medium and the digestate remaining after fermentation, one may suggest further investigations on the use of other liquid waste from agriculture and industry for algae breeding, including chemical. analysis and supplementation of these mediums so as to provide the best conditions for their growth.

  6. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    Science.gov (United States)

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  7. Bioecology of an articulated coralline alga Amphiroa fragilissima from Anjuna, Goa, Central Western Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ambiye, V.; Untawale, A.G

    An articulated coralline alga Amphiroa fragilissima L. Lam. was found to exhibit spasmogenic and hypotensive activities due to the presence of a biogenic amine. This biologically active alga was studied for its bioecology. Its thallus is multiaxial...

  8. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    Science.gov (United States)

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-03-01

    Two novel agar-degrading, Gram-stain-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1 T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa , respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and with 2-3 % (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1 T were C 18 : 1 ω7 c , C 16 : 0 and summed feature 3 (C 16 : 1 ω7 c and/or iso-C 15 : 0 2-OH). The predominant polar lipids in strain Z1 T were phosphatidylethanolamine, phosphatidylglycerol and an aminolipid. The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1 T and JL1 were closely related, with 99.9 % 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1 T and JL1 was 99.3 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1 T and JL1 form a distinct phyletic line within the class Gammaproteobacteria , with less than 92.3 % similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a novel species of a new genus designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of the type species is Z1 T ( = ATCC BAA-2617 T  = CICC 10859 T ).

  9. Algogroup: Towards a Shared Vision of the Possible Deployment of Algae to Biofuels

    International Nuclear Information System (INIS)

    Montagne, Xavier; Porot, Pierre; Aymard, Caroline; Querleu, Cecile; Bouter, Anne; Lorne, Daphne; Cadoret, Jean-Paul; Lombaert-Valot, Isabelle; Petillon, Odile

    2013-01-01

    A strong interest has been focused from several years on the algae pathway for energy production, especially for transportation fuels called third generation bio-fuel or G3 bio-fuel, and mainly from microalgae route, considering it could be a high potential alternative strategy for renewable energy and fuel production. Algae, and especially microalgae, present significant advantages compared with land resources, such as much higher productivity and lack of competition with food applications. Nevertheless, based on current knowledge, the production of an algae biomass for energy remains a difficult target to reach, due to the numerous existing hurdles such as the energetic yield and the economic positioning, without neglecting the environmental and societal aspect. G3 bio-fuel processes are far from the industrialization step. In 2010, under the initiative of IFP Energies Nouvelles, Airbus, Safran, EADS IW and the Academie des Technologies, launched a French national study of the potential of the algae sector as resources for the so called G3 bio-fuel production. This study was called 'Algogroup' and led by IFP Energies Nouvelles. The objective was to obtain a shared vision of the deployment possibilities. It led to the creation of this Algogroup task force with the previous partners, adding Sofiproteol, INRA, IFREMER, CEVA and the Agrimip pole. Algogroup has explored several axes, which enabled a thorough analysis of the potentials and limits of the technology: from the species selection to the harvesting (lipid extraction/recovery), including environmental and economical aspects. This paper focuses on some main aspects of the Algogroup study related to economical positioning and environmental terms, specially Life Cycle Analysis (LCA). A large share of the work was dedicated to microalgae, but since it was also considered important to examine the potential role of macro-algae, a specific analysis was conducted on this aspect. It has enabled the group to issue some

  10. Cultivation Strategy for Freshwater Macro- and Micro-Algae as Biomass Stock for Lipid Production

    OpenAIRE

    Verawaty, Marieska; Melwita, Elda; Apsari, Putri; Mayumi, Mayumi

    2017-01-01

    In this research, an algae cultivation strategy was studied. Integrating algae cultivation with wastewater treatment is currently seen as one of the most economical ways of producing algae biomass. A combination of an anaerobic baffled reactor (ABR) and a constructed wetland (CW) was applied for treating domestic wastewater with an additional collection tank for improving effluent quality. The effluent produced from the three stages was used as algae cultivation media and suplemented with 10%...

  11. Treatment Failure Due to Emergence of Resistance to Carbapenem during Therapy for Shewanella algae Bacteremia

    OpenAIRE

    Kim, Dong-Min; Kang, Cheol-In; Lee, Chang Seop; Kim, Hong-Bin; Kim, Eui-Chong; Kim, Nam Joong; Oh, Myoung-don; Choe, Kang-Won

    2006-01-01

    We describe a case of bacteremia due to imipenem-susceptible Shewanella algae. Despite treatment with imipenem, the patient developed a spinal epidural abscess, from which imipenem-resistant S. algae was isolated. The development of resistance should be monitored when S. algae infection is treated with imipenem, even though the strain is initially susceptible to imipenem.

  12. A review of the taxonomical and ecological studies on Netherlands’ Algae

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1939-01-01

    The earliest account of the Netherlands’ Algae appeared in 1781 in D. de Gorter, Flora VII Prov. Belgii foederati indigen. Here, however, in the Algae lichens and liverworts have been incorporated. The true Algae, of which 35 are enumerated, are principally marine, though also aërophytical and

  13. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    The distribution and frequency of shell-boring green and blue-green algae in the intertidal at Goa, India were studied. The green alga Gomontia sp. and the blue green algae Hyella caespitosa Bornet et Flahault, H. gigas Lucas et Golubic...

  14. Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens

    Directory of Open Access Journals (Sweden)

    Anja Hartmann

    2015-10-01

    Full Text Available Mycosporine-like amino acids (MAAs, a group of small secondary metabolites found in algae, cyanobacteria, lichens and fungi, have become ecologically and pharmacologically relevant because of their pronounced UV-absorbing and photo-protective potential. Their analytical characterization is generally achieved by reversed phase HPLC and the compounds are often quantified based on molar extinction coefficients. As an alternative approach, in our study a fully validated hydrophilic interaction liquid chromatography (HILIC method is presented. It enables the precise quantification of several analytes with adequate retention times in a single run, and can be coupled directly to MS. Excellent linear correlation coefficients (R2 > 0.9991 were obtained, with limit of detection (LOD values ranging from 0.16 to 0.43 µg/mL. Furthermore, the assay was found to be accurate (recovery rates from 89.8% to 104.1% and precise (intra-day precision: 5.6%, inter-day precision ≤6.6%. Several algae were assayed for their content of known MAAs like porphyra-334, shinorine, and palythine. Liquid chromatography-mass spectrometry (LC-MS data indicated a novel compound in some of them, which could be isolated from the marine species Catenella repens and structurally elucidated by nuclear magnetic resonance spectroscopy (NMR as (E-3-hydroxy-2-((5-hydroxy-5-(hydroxymethyl-2-methoxy-3-((2-sulfoethylaminocyclohex-2-en-1-ylideneamino propanoic acid, a novel MAA called catenelline.

  15. Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens

    Science.gov (United States)

    Hartmann, Anja; Becker, Kathrin; Karsten, Ulf; Remias, Daniel; Ganzera, Markus

    2015-01-01

    Mycosporine-like amino acids (MAAs), a group of small secondary metabolites found in algae, cyanobacteria, lichens and fungi, have become ecologically and pharmacologically relevant because of their pronounced UV-absorbing and photo-protective potential. Their analytical characterization is generally achieved by reversed phase HPLC and the compounds are often quantified based on molar extinction coefficients. As an alternative approach, in our study a fully validated hydrophilic interaction liquid chromatography (HILIC) method is presented. It enables the precise quantification of several analytes with adequate retention times in a single run, and can be coupled directly to MS. Excellent linear correlation coefficients (R2 > 0.9991) were obtained, with limit of detection (LOD) values ranging from 0.16 to 0.43 µg/mL. Furthermore, the assay was found to be accurate (recovery rates from 89.8% to 104.1%) and precise (intra-day precision: 5.6%, inter-day precision ≤6.6%). Several algae were assayed for their content of known MAAs like porphyra-334, shinorine, and palythine. Liquid chromatography-mass spectrometry (LC-MS) data indicated a novel compound in some of them, which could be isolated from the marine species Catenella repens and structurally elucidated by nuclear magnetic resonance spectroscopy (NMR) as (E)-3-hydroxy-2-((5-hydroxy-5-(hydroxymethyl)-2-methoxy-3-((2-sulfoethyl)amino)cyclohex-2-en-1-ylidene)amino) propanoic acid, a novel MAA called catenelline. PMID:26473886

  16. Biological removal of algae in an integrated pond system

    CSIR Research Space (South Africa)

    Meiring, PGJ

    1995-01-01

    Full Text Available A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected...

  17. The alga Trachydiscus minutus (Pseudostaurastrum minutum): growth and composition

    Czech Academy of Sciences Publication Activity Database

    Iliev, I.; Petkov, G.; Lukavský, Jaromír; Furnadzhieva, S.; Andreeva, R.; Bankova, V.

    2011-01-01

    Roč. 36, 3-4 (2011), 222-231 ISSN 1312-8183 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algae, * fatty acids * pilot plant cultivation Subject RIV: EF - Botanics

  18. Algas vene kirjanduse nädal / Raimu Hanson

    Index Scriptorium Estoniae

    Hanson, Raimu, 1957-

    2008-01-01

    22. septembril algas Tartu Linnaraamatukogus vene kirjanduse nädal Inga Ivanova raamatu "Kadunud koerte saladus" esitlusega; 24. sept. toimub Igor Kotjuhi autoriõhtu; 26.-28. toimub Tartu Ülikoolis vene kirjandusele pühendatud rahvusvaheline teaduskonverents. Raamatukogust saab osta ka venekeelseid raamatuid

  19. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... algae Gracilaria for the biosorption of Cu(II) from aqueous ... adsorbent dose, and metal ions concentration, were considered. ... precipitation, membrane separation, adsorption and ion exchange processes which are being used to remove copper ... Copper solutions of different concentration (50-180 ppm).

  20. Lab on a chip technologies for algae detection : a review

    NARCIS (Netherlands)

    Schaap, A.M.; Rohrlack, T.; Bellouard, Y.J.

    2012-01-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae

  1. Experimental analysis of the competition between algae and duckweed

    NARCIS (Netherlands)

    Roijackers, R.M.M.; Szabo, S.; Scheffer, M.

    2004-01-01

    We performed indoor competition experiments between algae and Lemna gibba L. in order to unravel mechanisms of competition. To separate effects of shading and physical interference from nutrient competition we grew the two groups physically separated while sharing the same water. A multifactorial

  2. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  3. New bromotriterpene polyethers from the Indian alga Chondria armata

    Digital Repository Service at National Institute of Oceanography (India)

    Ciavatta, M.L.; Wahidullah, S.; DeSouza, L.; Scognamiglio, G.; Cimino, G.

    Six new bromotriterpene polyethers, armatol A-F (1-6), with a rearranged carbon skeleton, were isolated from the Indian Ocean red alga Chondria armata. The structures were characterized by spectroscopic techniques, in particular 1D- and 2D-NMR...

  4. Meteorological effects on variation of airborne algae in Mexico

    Science.gov (United States)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  5. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  6. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    Science.gov (United States)

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  7. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  8. Seasonal abundance of epipelic algae and sediment parameters of ...

    African Journals Online (AJOL)

    Amadi-Ama creek is located close to sources of wastes which are introduced into the creek thus altering the physico-chemical parameters and the aquatic biota of the creek due to variation in nutrient load of the water. The seasonal abundance of epipelic algae and sediment parameters of Amadi-Ama Creek were ...

  9. Evaluation of Algae from the effluent of Dandot cement company ...

    African Journals Online (AJOL)

    Twenty genera and fifty species of algae have been reported from the effluent water of Dandot Cement Company. They include thirteen genera and thirty five species from Chlorophyceae; three genera and six species from Cyanophyceae and four genera and nine species from Bacillariophyceae. Camera Lucida drawings ...

  10. Preliminary Studies on the Occurrence of Freshwater Epipelic Algae ...

    African Journals Online (AJOL)

    The occurrence and composition of the freshwater algae in the epipelon were determined at three sites, namely Machigeni, Manhean and Weija, located in the coastal savanna thicket and grassland vegetation zone of the River Densu basin in southern Ghana. Samples of sediments from the water-substratum interface ...

  11. Prospective effect of red algae, Actinotrichia fragilis, against some ...

    African Journals Online (AJOL)

    Most of the current treatment strategies for OA are effective for symptoms relief but are accompanied with adverse side effect. Thus, the present investigation aims to evaluate the potential influence of red algae, Actinotrichia fragilis, in the dry powder form (AFP) or gel form (AFG) on some relevant factors of OA progression as ...

  12. Effects of UV-B irradiated algae on zooplankton grazing

    NARCIS (Netherlands)

    Lange, de H.J.; Lürling, M.F.L.L.W.

    2003-01-01

    We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species ( Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species ( Daphnia galeata, Bosmina longirostris and

  13. Epiphytic Algae study from pool of Ammiq (Bekaa, Lebanon)

    International Nuclear Information System (INIS)

    SLIM, K.

    1984-01-01

    In this particular place which constitutes the pool of Ammiq, 104 species and varieties have been collected. The diatoms constitute in themselves 85% of the algae population. This is an epiphytic microflora which is attached to the immerged macrophytics on this above mentioned place . (author)

  14. The occurrence of hormesis in plants and algae

    DEFF Research Database (Denmark)

    Cedergreen, Nina; Streibig, Jens Carl; Kudsk, Per

    2007-01-01

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-alga Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one...

  15. Chemical constituents of the red alga @iAcanthophora spicifera@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    Analysis of the petroleum-wither and chloroform extracts of the marine red alga @iAcanthophora spicifera@@ led to the isolation of a sterol, cholesterol, fatty acids, stearic, palmitic, behenic (C@d22@@) and arachidic acids (C@d20@@) and a fatty...

  16. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  17. Exchange of certain radionuclides between environment and freshwater algae

    International Nuclear Information System (INIS)

    Marchyulenene, E. D.P.

    1978-01-01

    Data on the dynamics and levels of accumulation of strontium, cesium, cerium and ruthenium radionuclides by Charophyta and Cladophora fresh-water algae are presented. An attempt has been made to investigate some processes that accompany the accumulation of radionuclides by plants. Under experimental conditions, the intensity and levels of radionuclide accumulation can be presented in the following order: 144 Ce> 106 Ru> 90 Sr> 137 Cs. The dynamics of radionuclide accumulation varied greatly with the radionuclide and the algae species studied. The 144 Ce accumulation coefficients (AC) in the course of experiment (from 3 hours to 16 days) increased 8-, 9-, 23.4-, 27-, 14.3- and 20.4-fold for Cladophora glomerata, Nitella syncarpa, Nitellopsis obtusa, Chara vulgaris, Ch. rudis, and Ch. aspera, respectively. In the case of 106 Ru, AC for C.glomerata, N. syncarapa, Ch. vulgaris and Ch. rudis increased 34-, 18-,24- and 23-fold, respectively. In all algae species studied the equilibrium of radionuclide accumulation was attained after 2-4 days of experiment. Levels of accumulated 90 Sr and 137 Cs in most species depended on the season while that of 144 Cs and 106 Ru remained constant throughout the vegetation period. The levels of radionuclide elimination, like the accumulation levels, are shown to depend on both isotopes and algae species

  18. Biochar production from freshwater algae by slow pyrolysis

    Directory of Open Access Journals (Sweden)

    Tanongkiat Kiatsiriroat

    2012-05-01

    Full Text Available A study on the feasibility of biochar production from 3 kinds of freshwateralgae, viz. Spirulina, Spirogyra and Cladophora, was undertaken. Using a slow pyrolysis process in a specially designed reactor, biochar could be generated at 550oC under nitrogen atmosphere. The yields of biochar were between 28-31% of the dry algae.

  19. Homogeneity of Danish environmental and clinical isolates of Shewanella algae

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Holt, H.M.; Gerner-Smidt, P.

    2000-01-01

    amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection....

  20. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor

  1. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    Science.gov (United States)

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Potential of wastewater grown algae for biodiesel production and CO

    African Journals Online (AJOL)

    Algae have been proposed as a potential renewable fuel source. Photosynthetic CO2 fixation to substrates that can be converted to biodiesel by microalgae is thought to be a feasible technology with energy-saving and environment-friendly approach. In the present study, potential of microalgae, from wastewater ...

  3. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Carbon Partitioning in Green Algae (Chlorophyta and the Enolase Enzyme

    Directory of Open Access Journals (Sweden)

    Jürgen E. W. Polle

    2014-08-01

    Full Text Available The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  5. Oxytocic principle of red alga @iAmphiroa fragilissima@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Das, B.; Patnaik, G.K.

    The crude aqueous methanolic extract of the marine red alga @iAmphiroa fragilissima@@ has been reported as exhibiting oxytocic and spasmogenic activity at a dose of 50 ~kg/ml. The activity is located in the water soluble fraction and has been found...

  6. Halogenated terpenoids from the brown alga Padina tetrastromatica (HAUCK)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Bhat, K.L.; Das, B.; Kamat, S.Y.; Harnos, S.

    ranging from 14:0 to 22:0 with palmitic acid (16:0, 67.4%) and oleic acid (18:1, 17.1%) being the major constituents, have been isolated from the pet, ether soluble fraction of the methanol extract of the brown alga Padina tetrastromatica...

  7. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body.

    Science.gov (United States)

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia

    2017-04-01

    The disappearance of submerged vascular macrophytes in shallow eutrophic lakes is a common phenomenon in the world. To explore the mechanism of the decline in submerged macrophyte abundance due to the growth of epiphytic algae along a nutrient gradient in eutrophic water, a 2 × 3 factorial experiment was performed over 4 weeks with the submerged macrophyte (Myriophyllum spicatum L.) by determining the plant's biomass and some physiological indexes, such as chlorophyll (Chl) content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in the leaves of M. spicatum L. on days 7, 14, 21, and 28, which are based on three groups of nitrogen and phosphorus levels in the water body (N-P [mg L -1 ]: NP1 0.5-0.05, NP2 2.5-0.25, NP3 4.5-0.45) and two levels of epiphytic algae (the epiphytic algae group and the control group). Epiphytic algal biomass was also assayed. The results indicated that epiphytic algal biomass remarkably enhanced in the course of the experiment with elevated levels of nitrogen and phosphorus in the water. Under the same level of nutrient condition, plants' biomass accumulation and Chl content were higher in the control group than that in the epiphytic algae group, respectively, while MDA content and SOD activity in the former were lower than that in the latter. The influences of epiphytic algae on the biomass accumulation and Chl content and MDA content became greater and greater with elevated levels of nutrients. In general, in this experiment, water nutrients promoted the growth of both epiphytic algae and submerged plants, while the growth of epiphytic algae hindered submerged macrophytes' growth by reducing Chl content and promoting peroxidation of membrane lipids in plants.

  8. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    Science.gov (United States)

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  9. Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids.

    Science.gov (United States)

    Clayton, Edward H; Lamb, Tracy A; Refshauge, Gordon; Kerr, Matthew J; Bailes, Kristy L; Ponnampalam, Eric N; Friend, Michael A; Hopkins, David L

    2014-08-01

    Algae high in docosahexaenoic acid (DHA) may provide a source of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) for inclusion in the diet of lambs to improve the LCn-3PUFA status of meat. The effect of background LCn-3PUFA status on the metabolism of high DHA algae is, however, unknown. The aim of the current study was to determine whether the response to a high in DHA algae supplement fed to lambs for six weeks prior to slaughter was mediated by a maternal periconceptional diet. Forty Poll Dorset × Border Leicester × Merino weaner lambs were allocated to receive either a ration based on oat grain, lupin grain, and chopped lucerne (control) or the control ration with DHA-Gold™ algae included at 1.92 % DM (Algae) based on whether the dams of lambs had previously been fed a diet high in n-3 or n-6 around conception. LCn-3PUFA concentration was determined in plasma and red blood cells (RBC) prior to and following feeding. The concentrations of EPA and DHA in the plasma and RBC of lambs receiving the control ration were significantly (p DHA were also significantly (p DHA was, however, significantly (p DHA.

  10. UV-A/blue-light responses in algae

    Energy Technology Data Exchange (ETDEWEB)

    Senger, H.; Hermsmeier, D. [Philipps-Universitaet Marburg (Germany)

    1994-12-31

    All life on earth depends on light. A variety of photoreceptors capture the light for a wide range of reactions. Photosynthetic organisms absorb the light necessary for energy transformation and charge separation facilitating photosynthesis. In addition to the bulk pigments there are a great diversity of photoreceptors present in minute concentrations that control development, metabolism and orientation of plants and microorganisms. Based on its spectral absorbance, the well-studied phytochrome system acts in the RL region as well as in the UV-A/BL region where the above mentioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. Phyllogenetically the UV-A/BL photoreceptors seem to be more ancient pigments that eventually were replaced by the phytochrome system. However, there are many reports that suggest a coaction between the UV-A/BL receptors and the phytochrome system. In several cases the UV-A/BL activation is the prerequisite for the phytochrome reaction. Historically it was the German botanist Julius Sachs who first discovered in 1864 that phototropism in plants was due to BL reactions. It took over 70 years until Bunning (1937) and Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention has been paid to this effect. Two international conferences in 1979 and 1983 have been entirely dedicated to the BL phenomenon. In this contribution, the general aspect of UV-A/BL responses and especially the responsiveness of algae will be covered. There are numerous review articles covering the various aspects of UV-A/BL action and the photoreceptors involved.

  11. Multilayer gyroid cubic membrane organization in green alga Zygnema.

    Science.gov (United States)

    Zhan, Ting; Lv, Wenhua; Deng, Yuru

    2017-09-01

    Biological cubic membranes (CM), which are fluid membranes draped onto the 3D periodic parallel surface geometries with cubic symmetry, have been observed within subcellular organelles, including mitochondria, endoplasmic reticulum, and thylakoids. CM transition tends to occur under various stress conditions; however, multilayer CM organizations often appear associated with light stress conditions. This report is about the characterization of a projected gyroid CM in a transmission electron microscopy study of the chloroplast membranes within green alga Zygnema (LB923) whose lamellar form of thylakoid membrane started to fold into multilayer gyroid CM in the culture at the end of log phase of cell growth. Using the techniques of computer simulation of transmission electron microscopy (TEM) and a direct template matching method, we show that these CM are based on the gyroid parallel surfaces. The single, double, and multilayer gyroid CM morphologies are observed in which space is continuously divided into two, three, and more subvolumes by either one, two, or several parallel membranes. The gyroid CM are continuous with varying amount of pseudo-grana with lamellar-like morphology. The relative amount and order of these two membrane morphologies seem to vary with the age of cell culture and are insensitive to ambient light condition. In addition, thylakoid gyroid CM continuously interpenetrates the pyrenoid body through stalk, bundle-like, morphologies. Inside the pyrenoid body, the membranes re-folded into gyroid CM. The appearance of these CM rearrangements due to the consequence of Zygnema cell response to various types of environmental stresses will be discussed. These stresses include nutrient limitation, temperature fluctuation, and ultraviolet (UV) exposure.

  12. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  13. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health

    Directory of Open Access Journals (Sweden)

    Hildreth DeWall J

    2007-09-01

    Full Text Available Abstract Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz of ProAlgaZyme (N = 22 or water placebo (N = 30 for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p Conclusion ProAlgaZyme (4 fl oz daily consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of adverse side effects. Trial Registration US ClinicalTrials.gov NCT00489333

  14. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    International Nuclear Information System (INIS)

    Deng Lin; Wang Hongli; Deng Nansheng

    2006-01-01

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (λ=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL -1 and initial algae concentration ranged from ABS algae (the absorbency of algae)=0.025 to ABS algae =0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V 0 =kC 0 0.1718 A algae 0.5235 (C 0 was initial concentration of Cr(VI); A algae was initial concentration of algae) under the condition of pH 4

  15. Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.

    Science.gov (United States)

    Metzler, David M; Erdem, Ayca; Huang, Chin Pao

    2018-03-25

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  16. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  17. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    David M. Metzler

    2018-03-01

    Full Text Available This work shows the influence of algae age (at the time of the exposure and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs. The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL at a constant NP concentration (100 mg/L caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  18. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    Science.gov (United States)

    Metzler, David M.; Erdem, Ayca; Huang, Chin Pao

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae. PMID:29587381

  19. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction.

    Science.gov (United States)

    Liu, Xiaowei; Saydah, Benjamin; Eranki, Pragnya; Colosi, Lisa M; Greg Mitchell, B; Rhodes, James; Clarens, Andres F

    2013-11-01

    Life cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens. HTL-derived algae fuels were found to have lower greenhouse gas (GHG) emissions than petroleum fuels. Algae-derived gasoline had significantly lower GHG emissions than corn ethanol. Most algae-based fuels have an energy return on investment between 1 and 3, which is lower than petroleum biofuels. Sensitivity analyses reveal several areas in which improvements by algae bioenergy companies (e.g., biocrude yields, nutrient recycle) and by supporting industries (e.g., CO2 supply chains) could reduce the burdens of the industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Caracterização ácido-base da superfície de espécies mistas da alga Spirulina através de titulação potenciométrica e modelo de distribuição de sítios discretos Acid base characterization of the surface of mixed species of algae Spirulin by potentiometric titration and discrete site distribution model

    Directory of Open Access Journals (Sweden)

    Elizabete C. de Lima

    1999-09-01

    Full Text Available Acid base properties of mixed species of the microalgae Spirulina were studied by potentiometric titration in medium of 0.01 and 0.10 mols L-1 NaNO3 at 25.0±0.10 C using modified Gran functions or nonlinear regression techniques for data fitting. The discrete site distribution model was used, permitting the characterization of five classes of ionizable sites in both ionic media. This fact suggests that the chemical heterogeneity of the ionizable sites on the cell surface plays a major role on the acid-base properties of the suspension in comparison to electrostatic effects due to charge-charge interactions. The total of ionizable sites were 1.75±0.10 and 1.86±0.20 mmolsg-1 in ionic media of 0.01 and 0.10 mols L-1 NaNO3, respectively. A major contribution of carboxylic groups was observed with an average 34 and 22% of ionizable sites being titrated with conditional pcKa of 4.0 and 5.4, respectively. The remaining 44% of ionizable sites were divided in three classes with averaged conditional pcKa of 6.9, 8.7 and 10.12, which may be assigned respectively to imidazolic, aminic, and phenolic functionalities.

  1. Cultivation Strategy for Freshwater Macro- and Micro-Algae as Biomass Stock for Lipid Production

    Directory of Open Access Journals (Sweden)

    Marieska Verawaty

    2017-07-01

    Full Text Available In this research, an algae cultivation strategy was studied. Integrating algae cultivation with wastewater treatment is currently seen as one of the most economical ways of producing algae biomass. A combination of an anaerobic baffled reactor (ABR and a constructed wetland (CW was applied for treating domestic wastewater with an additional collection tank for improving effluent quality. The effluent produced from the three stages was used as algae cultivation media and suplemented with 10% bold basal medium (BBM. The results showed both micro- and macro-algae growth and their lipid contents were higher when they were grown in effluent-BBM (9:1 v/v media. The lipid content of the micro-algae mixed culture was 16.5% while for macro-algae Oedogonium sp and Cladophora sp it was 6.90% and 6.75% respectively.

  2. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta).

    Science.gov (United States)

    Mittal, Rochak; Tavanandi, Hrishikesh A; Mantri, Vaibhav A; Raghavarao, K S M S

    2017-09-01

    Extraction of phycobiliproteins (R-phycoerythrin, R-PE and R-phycocyanin, R-PC) from macro-algae is difficult due to the presence of large polysaccharides (agar, cellulose etc.) present in the cell wall which offer major hindrance for cell disruption. The present study is aimed at developing most suitable methodology for the primary extraction of R-PE and R-PC from marine macro-algae, Gelidium pusillum(Stackhouse) Le Jolis. Such extraction of phycobiliproteins by using ultrasonication and other conventional methods such as maceration, maceration in presence of liquid nitrogen, homogenization, and freezing and thawing (alone and in combinations) is reported for the first time. Standardization of ultrasonication for different parameters such as ultrasonication amplitude (60, 90 and 120µm) and ultrasonication time (1, 2, 4, 6, 8 and 10mins) at different temperatures (30, 35 and 40°C) was carried out. Kinetic parameters were estimated for extraction of phycobiliproteins by ultrasonication based on second order mass transfer kinetics. Based on calorimetric measurements, power, ultrasound intensity and acoustic power density were estimated to be 41.97W, 14.81W/cm 2 and 0.419W/cm 3 , respectively. Synergistic effect of ultrasonication was observed when employed in combination with other conventional primary extraction methods. Homogenization in combination with ultrasonication resulted in an enhancement in efficiency by 9.3% over homogenization alone. Similarly, maceration in combination with ultrasonication resulted in an enhancement in efficiency by 31% over maceration alone. Among all the methods employed, maceration in combination with ultrasonication resulted in the highest extraction efficiency of 77 and 93% for R-PE and R-PC, respectively followed by homogenization in combination with ultrasonication (69.6% for R-PE and 74.1% for R-PC). HPLC analysis was carried out in order to ensure that R-PE was present in the extract and remained intact even after processing

  3. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  4. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  5. Dictyosphaeric acids A and B: new decalactones from an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii.

    Science.gov (United States)

    Bugni, Tim S; Janso, Jeffrey E; Williamson, R Thomas; Feng, Xidong; Bernan, Valerie S; Greenstein, Michael; Carter, Guy T; Maiese, William M; Ireland, Chris M

    2004-08-01

    Fungal isolate F01V25 was obtained from the alga Dictyosphaeria versluyii collected near Dravuni, Fiji, in 2001 and represented a previously undescribed Penicillium sp. Fermentation of isolate F01V25 resulted in the production of two new polyketides, dictyosphaeric acids A and B, along with the known anthraquinone carviolin. The relative stereochemistry of dictyosphaeric acids A and B was determined using the J-based configuration analysis method in conjunction with ROE and NOE correlations.

  6. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  7. Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Tryg [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Civil and Environmental Engineering Dept.; Spierling, Ruth [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Poole, Kyle [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Blackwell, Shelley [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Crowe, Braden [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Hutton, Matt [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Lehr, Corinne [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Dept. of Chemistry and Biochemistry

    2018-01-25

    conventional heated mixed lab digester yielded 0.22 LCH4/g VS with 0.25 g VS/L-d and 30oC. The highest yield (0.30 LCH4/g VS) was achieved by the unmixed lab digesters operated at a constant 20oC. All digesters were operated with a 40-d hydraulic residence time. 6. In general, 50-75% of initial particulate N and P could be solubilized during anaerobic digestion and available for subsequent rounds of algae cultivation. 7. Bench-scale experiments showed the recovery from hydrothermal liquefaction (HTL) wastewater of carbon via anaerobic digestion and of nutrients to grow algae. To satisfy the nitrogen demand of algae cultivation, HTL wastewater would be diluted 400-fold, which was found to eliminate inhibition of algae growth by HTL wastewater. 8. Anaerobic digestion methane yield was lower for algal biomass containing coagulants such as would be used to aid harvesting or dewatering. Depending on doses, starch-based coagulant decreased yield by 10-14% and aluminum chlorohydrate decreased it by 14-26%. The lowest yield was 0.28 L CH4/g volatile solids introduced to the digesters. 9. Algae harvested from raceways operated on recycled water had methane yields 13% higher than algae from raceways operated on both recycled water and nutrients provided by algae digestate. The slightly lower yield was expected due to the presence of previously digested biomass from the digestate fertilizer. 10. Defined media was replenished with nutrients and recycled repeatedly in sequential batch growth of Chlorella sorokiniana (DOE 1412). This laboratory study tested for inhibition and accumulation of inhibiting compounds (allelopathic or auto-inhibitory substances), information that would help estimate the blowdown ratio needed for an integrated system. In laboratory experiments in which water was recycled a total of five times, each successive round of reuse resulted in an average 4±3% reduction in log-phase specific growth rates. However, linear-phase growth

  8. Evaluation of Antioxidant Activity of Extracts of Marine Algae Halimeda tuna Collected from the Chabahar Bay

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2017-07-01

    Full Text Available Background and Objectives: Seaweeds are one of the richest sources of natural antioxidants. Antioxidants are main factors of free radical scavenging, which prevent from chronic diseases and food deterioration. These compounds can also be extracted from seaweeds. In this study, the antioxidant activity of the extracts from marine algae Halimeda tuna collected from the coast of Chabahar, was evaluated. Methods: This is an in vitro study. The antioxidant activity of methanol, chloroform, ethyl acetate, and n-hexanic extracts of the algae, were evaluated using three methods of DPPH, ferrous ion chelating activity, and reduction power methods. Data were analyzed by one-way ANOVA and Tukey test at the probability level of 95%. Results: In this study, the highest antioxidant capacity according to DPPH, was related to the chloroform extract (72.85% inhibition at the concentration of 1mg/ml. In the ferrous ion chelating activity, the highest percentage of chelating was allocated to the methanol extract (81.46%. Based on the data from the reduction power test, the highest reduction activity was related to the methanol extract with absorption of 0.553 (concentration, 1mg/ml. Conclusion: Based on the results of this research, the extracts of Halimeda tuna have the potential for application in medicine and pharmaceutical industry and must be confirmed by preclinical and clinical studies.

  9. Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

    Science.gov (United States)

    Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John

    2017-06-01

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

  10. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective

    International Nuclear Information System (INIS)

    Murphy, Thomas E.; Berberoglu, Halil

    2011-01-01

    This paper reports a numerical study coupling light transfer with photosynthetic rate models to determine the size and microorganism concentration of photobioreactors based on the pigmentation of algae to achieve maximum productivity. The wild strain Chlamydomonas reinhardtii and its transformant tla1 with 63% lower pigmentation are used as exemplary algae. First, empirical models of the specific photosynthetic rates were obtained from experimental data as a function of local irradiance using inverse methods. Then, these models were coupled with the radiative transfer equation (RTE) to predict both the local and total photosynthetic rates in a planar photobioreactor (PBR). The optical thickness was identified as the proper scaling parameter. The results indicated that under full sunlight corresponding to about 400 W/m 2 photosynthetically active irradiation, enhancement of PBR productivity up to 30% was possible with tla1. Moreover, under similar irradiation, optical thicknesses above 169 and 275 for the wild strain and tla1, respectively, did not further enhance PBR productivity. Based on these results guidelines are provided for maximizing PBR productivity from a light transport perspective.

  11. Emergence of green business models: The case of algae biofuel for aviation

    International Nuclear Information System (INIS)

    Nair, Sujith; Paulose, Hanna

    2014-01-01

    Emergent business models seek to take advantage of new market mechanisms driven by technological changes, particularly those related to the production and delivery of clean or sustainable energy. Such business models often function at the intersection of various industries, with global views, and the resulting systems have distinct social, political, environmental, economic, technological, and business dimensions. Such holistic systems are not only difficult to develop but also require support from a broad range of actors with effective regulations and policies in place, such that the firm functions within a framework that integrates various factors. This study substantiates such a framework by detailing the nascent algae-based bio-fuel industry that caters to the aviation sector while arguing that businesses in the energy industry can emerge as a next-practice platform that drive a sixth wave of innovation. The framework begins with three basic enablers, innovation, flexibility, and sustainability, and explains how value from renewable energy technologies can be created and captured sustainably and innovatively with new market mechanisms implemented by firms with green business models. - Highlights: • We develop a framework that enables the emergence of green energy business models. • We present a case study on the algae based biofuel system for airline industry. • The green business models in energy are global in nature and are next practice platforms. • New market mechanisms and policy measures lead to sustainable energy business models. • Innovation, flexibility and sustainability are the basic enablers of the framework

  12. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    Science.gov (United States)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.

    Science.gov (United States)

    Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E

    2003-07-01

    This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.

  14. Feasibility study of algae-based CO2 capture

    Science.gov (United States)

    The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to eval...

  15. Feasibility study of algae-based Carbon Dioxide capture

    Science.gov (United States)

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertak...

  16. Properties of sediment-algae flocs as function of shear and environmental conditions : a laboratory study

    Science.gov (United States)

    Deng, Z.; He, Q.; Chassagne, C.; Manning, A. J.

    2017-12-01

    It has been observed that flocculation in-situ is greatly influenced by biochemical parameters[De Lucas Pardo, 2014]. In our previous work [Deng, 2017], we have found that flocs observed in the Yangtze Estuary are composed of mixtures of sediment and algae. In particular we have shown that flocs can be composed solely of algae aggregates. Depending on their position in the water column, the composition of flocs changes, as more or less sediment can be part of the floc. The presence of algae (phytoplankton biomass) in a floc is linked to the measured chlorophyll α concentration [Uncles et al., 1998]. The Particle Size Distribution (PSD) found in-situ depends on parameters such as position in the water column and shear rate, and also seasons. We showed that the PSD found in-situ is similar to the one measured in the lab, for the same floc composition and environmental conditions. In the present work we extend the laboratory investigations by analysing the impact of the floc history on its PSD. The PSD can be bimodal after a grow-break-up-regrow phase, indicating that flocs growth process depend on a timescale that is larger than the timescale associated to the change in shear rate. We will discuss the behaviour of the parameters needed in the flocculation model we propose upon the relevant variables. The ultimate goal is to propose a model that can be implemented in large scale sediment transport models. ReferencesDe Lucas Pardo, M. (2014), Effect of biota on fine sediment transport processes: A study of Lake Markermeer, TU Delft, Delft University of Technology. Deng, Z. (2017), Algae effects on cohesive sediment flocculation: a case study based on field observation in Yangtze Estuary, China (submitted)Uncles, R., A. Easton, M. Griffiths, C. Harris, R. Howland, I. Joint, R. King, A. Morris, and D. Plummer (1998), Concentrations of suspended chlorophyll in the tidal Yorkshire Ouse and Humber Estuary, Science of The Total Environment, 210-211, 367-375, doi:10.1016/s

  17. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald Timothy [Los Alamos National Laboratory; Deo, Randhir P [ASU; Rittmann, Bruce E [ASU; Songkasiri, Warinthorn [UNAFFILIATED

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  18. Effect of algae and water on water color shift

    Science.gov (United States)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  19. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  20. Accumulation and loss of technetium by macrophytic algae

    International Nuclear Information System (INIS)

    Benco, C.; Cannarsa, S.; Ceppodomo, I.; Zattera, A.

    1986-01-01

    Preliminary results are presented of a study of the accumulation of Tc by four species of brown algae (Sargassum vulgare, Cystoseira complexa, Dictyopteris membranacea, Dictyota dichotama implexa) and one species of green algae (Chlorophyta, Ulva rigida). With the exception of Cystoseira complexa, the accumulation was very rapid, and concentration factors decreased from Sargassum vulgare to Ulva rigida. Young stipes of Cystoseira complexa concentrated twice as much more Tc than cylindrical main axes. Attempts were made to understand the mechanism of Tc accumulation by brown seaweed. Fucoidan, a pool of high molecular weight polysaccharides extracted from Fucus sp. was put with sup(95m)Tc in seawater for 48 h and then dialysed, but no activity was retained by Fucoidan. (UK)

  1. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae.

    Science.gov (United States)

    Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola

    2018-03-01

    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.

  2. Algae as nutritional and functional food sources: revisiting our understanding

    OpenAIRE

    Wells, Mark L.; Potin, Philippe; Craigie, James S.; Raven, John A.; Merchant, Sabeeha S.; Helliwell, Katherine E.; Smith, Alison G.; Camire, Mary Ellen; Brawley, Susan H.

    2016-01-01

    Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, ...

  3. Rare species of fungi parasitizing on algae. IV

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The following parasites of the genera Spirogyra Link, Mougeotia Agardh and Oedogonium Link are desribed: Myzocyutium irregulare, Woroninu glomerata, Harpochytrium tenuissimum, Woronina polycystis, Chytridium acuminatu, Myzocytium irregulare and Chytridumm acuminatum are new to Poland. Also, the first information on Woronina polycystis as a parasite on algae is presented. The figure of cystosori in a cell of Mougeotia mysorensis is the first graphic documentation of this species.

  4. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    Science.gov (United States)

    1981-05-01

    well as long term effects on specific water bodies such as lakes and groundwater basins. Both the hydrazine propellants and the alternative jet fuels... freshwater bioassays was S. capricornutum. Initial investigations of marine waters used Dunaliella tertiolecta as the test organism but the differences in...AFAMRL-TR-80-85 USE OF UNICELLUAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS JAN SCHERFIG PETER S. DIXON CAROL A. JUSTICE ALBERTO ACEVEDO

  5. DNA barcode of coastal alga ( Chlorella sorokiniana ) from Ago ...

    African Journals Online (AJOL)

    Five different loci 18S, UPA, rbcl, ITS and tufA were tested for their use as deoxyribonucleic acid (DNA) barcode in this study. Although the UPA primers were designed to amplify all phototrophic algae and cyanobacteria, UPA and 18S did not amplified at all for the genus Chlorella while ITS1, ITS2 rDNA and rbcL markers ...

  6. Adsorption of copper onto char derived macro alga, Undaria pinnatifida

    International Nuclear Information System (INIS)

    Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; BAe, Yoon Ju; Kim, Jung Hwan; Park, Young-Kwon

    2010-01-01

    Full text: A release of heavy metals into the environment by industrial activities raises much environmental problems because they tend to remain indefinitely, circulating and eventually accumulating throughout the food chain. Copper is essential to human life and health but, like all heavy metals, is potentially toxic as well. The excessive intakes of copper result in its accumulation in the liver and produce gastrointestinal problems, kidney damage, anemia, and continued inhalation of copper-containing sprays is linked with an increase in lung cancer among exposed people. Consequently, we need to eliminate the copper in drinking water. Also, growth rates of marine macro algae far exceed those of terrestrial biomass, without water limitations, so annual primary production rates are higher for the major marine macro algae than for most terrestrial biomass. According to these reasons, we try to use the macro alga, Undaria pinnatifida. Adsorption of heavy metals is one of the possible technologies involved in the removal of toxic metals from industrial waste streams and mining waste water using low-cost adsorbents. In recent years, many low-cost adsorbents such as seaweeds, activated carbon, etc. have been investigated, but the char by macro alga, Undaria pinnatifida, have not proven to be the most effective and promising substrates. The aim of this study is to remove copper from its aqueous solution by Undaria pinnatifida char for various parameters like pH, contact time, and Cu(II) concentration. The adsorption capacity of Cu(II) by Undaria pinnatifida char was investigated as a function of pH, contact time, and Cu(II) concentration at room temperature. And it was verified using equilibrium studies. (author)

  7. Evidence of ancient genome reduction in red algae (Rhodophyta).

    Science.gov (United States)

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. © 2015 Phycological Society of America.

  8. Nitrogen and sulfur assimilation in plants and algae

    Czech Academy of Sciences Publication Activity Database

    Giordano, Mario; Raven, John A.

    2014-01-01

    Roč. 118, č. 2 (2014), s. 45-61 ISSN 0304-3770 Grant - others:University of Dundee(GB) SC 015096; Italian Ministry for Agriculture(IT) MIPAF, Bioforme project; Italian Ministry of Foreign Affairs(IT) MAE. Joint Italian-Israel Cooperation Program Institutional support: RVO:61388971 Keywords : nitrogen * sulfur * assimilation * algae Subject RIV: EE - Microbiology, Virology Impact factor: 1.608, year: 2014

  9. Distributionand Diversity of Macro Algae Communities in the Ambon Bay

    OpenAIRE

    Litaay, Christina

    2014-01-01

    Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon B...

  10. Boron-containing organic pigments from a Jurassic red alga.

    Science.gov (United States)

    Wolkenstein, Klaus; Gross, Jürgen H; Falk, Heinz

    2010-11-09

    Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae.

  11. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  12. Ecology of planktonic foraminifera and their symbiotic algae

    International Nuclear Information System (INIS)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs in one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the 14 C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of 14 C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts

  13. Controlling harmful algae blooms using aluminum-modified clay.

    Science.gov (United States)

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Extremophilic micro-algae and their potential contribution in biotechnology.

    Science.gov (United States)

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  16. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Partitioning of monomethylmercury between freshwater algae and water.

    Science.gov (United States)

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  18. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, J.

    1978-01-01

    Fluorescence emission spectra at 77K of isolated heterocysts of Anabaena L-31 do not show F685-695 but rather F715-730, thus confirming the absence of photosystem II and the presence of photosystem I. Recent work using radioactive nitrogen has been collated and a tentative scheme is outlined indicating the location of the enzymes and the pathways involved in the initial assimilation of nitrogen in blue-green algae. Glutamine synthetase extracted from heterocysts of Anabaena L-31 does not exhibit the adenylylation/deadenylylation phenomenon characteristic of the enzyme from bacteria. Our recent experiments suggest that nitrogenase in Anabaena is under dual control by glutamic acid and aspartic acid, the former inhibiting the enzyme synthesis and the latter relieving the inhibition. Two extracellular polypeptides have been obtained from this alga, one of which inhibits heterocyst formation whereas the other enhances heterocyst formation and partially relieves the inhibitory effect of the former. An extracellular substance, possibly a glycopeptide, has been obtained from A. torulosa, which stimulates sporulation. Studies with 24 Na and 22 Na indicate that A. torulosa, an alga from saline habitats, has an active photosynthesis-linked mechanism for the extrusion of sodium. Sodium is essential for optimum nitrogenase activity and growth. In field experiments inoculation with Nostoc 4 resulted in substantial increase in soil nitrogen. Paddy yield was comparable to those plots where 80kg N/ha of urea was used. (author)

  19. Algae as test organisms of harmful effects of various radiations

    International Nuclear Information System (INIS)

    Necas, J.

    1989-01-01

    The report describes a complex biotest in which algae serve as the test organisms and where a variety of algal characteristics are employed as indicators of the effects of harmful radiations on the cultures and single organisms. Rules for a successful choice of a suitable algal organism are discussed and the preparation of the latter for the test as well as the growth and morphogenic tests and some physiological responses of algae to harmful radiation are described. The survival and lethality are related to the interpretation of the test results particularly from the physiological and genetic points of view. The complex biotest concerns not only toxic but also mutagenic effects of the factors tested. Some easily detectable mutations in algae are mentioned and their spectra are recommended. The stability of the mutations and the possibility of their delayed manifestation are considered. The possibility of occurrence of teratogenic effects is also dealt with and the negative role of phenocopies in the correct evaluation of the mutation effects is mentioned. Advice for the breeding and laboratory maintenance of suitable algal strains for the biotest is given. Practical use of the biotest is demonstrated on the results of a test using modified samples of waste water from uranium industries. It is recommended that biotests confined to the evaluation of single characteristics of the test organism be replaced by this complex biotest whose results can be interpreted more extensively and exhibit a higher reliability. (author). 268 refs., 1 tab., 9 figs

  20. Influence of thermal loading on the ecology of intertidal algae

    International Nuclear Information System (INIS)

    Vadas, R.L.; Keser, M.; Rusanowski, P.c.

    1976-01-01

    Thermal effluents from the Maine Yankee Atomic Power Company (operating intermittently from October 1972 to December 1974) increased water temperatures in the discharge area by 7 to 15 0 C. Plant operation and the removal of a causeway increased mixing and salinities in Montsweag Bay. Four small red algae immigrated into the area, but no species were lost from the system. Distribution and abundance patterns of the dominant algae, Ascophyllum nodosum and Fucus vesiculosus, were altered by the thermal discharge. The cover of F. vesiculosus decreased, whereas that of A. nodosum increased in 1973 but declined significantly in 1974. Reductions in biomass and percent cover were accompanied by changes in the growth dynamics of A. nodosum. Growth and survival in the discharge area were enhanced in 1973 but reduced in 1974. Growth was initiated earlier at all sites affected by the warm water. Plants at experimental sites not directly in the discharge channel grew at accelerated rates during the two years, but stressed plants in the discharge produced few or no viable apexes in 1974. The net effect has been a compression and reduction of intertidal algae into a narrower and less dense band

  1. Microwave-enhanced pyrolysis of natural algae from water blooms.

    Science.gov (United States)

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparative phycoremediation of sewage water by various species of algae

    International Nuclear Information System (INIS)

    Ahmad, F.; Khan, A.U.; Yasar, A.

    2013-01-01

    In this study sewage water treatment efficiency of Chlorella vulgaris, Rhizoclonium hieroglyphicum And mixed algae culture (Microspora sp., Navicula sp., Lyngbya sp.,Cladophora sp.,Spirogyra sp. and Rhizoclonium sp.) was compared. Sampled wastewater was analyzed for various parameters (i.e., COD, BOD, TS, TSS, TDS, TC, FC, TKN, TP, NO/sub 3/-N, PO/sub 4/,SO/sub 4/and Cl-) and concentrations of all these parameters in the untreated water were above the permissible limits of National Environmental Quality Standards of Pakistan (2000). Various algal species were used to treat sewage water by varying pond size, treatment duration, seasonal variation and growth rate of algae to arrive at the optimum outcome. Maximum percent reductions of various parameters, attained with C. vulgaris, were: chemical oxygen demand (98.3%), biochemical oxygen demand (98.7%), total Kjeldahl nitrogen (93.1%), total phosphorus (98.0%), nitrate (98.3%), phosphate (98.6%), chloride (94.2%), total coliforms (99.0%), faecal coliforms (99.0%) and total dissolved solids (98.2%) while maximum reduction in total suspended solids (92.0%) was obtained with a mixed algae culture and maximum increase in biomass by R. hieroglyphicum (0.75 g L/sup -1/day/sup -1/). Reduction in the concentration of pollutants in sewage water was to such a low level that it can be thrown in water bodies without any further treatment. (author)

  3. Uptake and distribution of technetium in several marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO - 4 and the remainder is bound to small molecules. 8 references, 5 figures, 1 table

  4. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    Science.gov (United States)

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  5. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  6. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.

    Science.gov (United States)

    Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam

    2018-01-01

    Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.

  7. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  8. Epithermal neutron activation analysis of blue-green algae Spirulina Platensis as a matrix for selenium-containing pharmaceuticals

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Gundorina, S.F.; Oprea, C.D.

    2000-01-01

    To evaluate the potentiality of the blue-green algae Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals, the background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina Platensis biomass were determined by means of epithermal neutron activation analysis. The possibility of the purpose-oriented incorporation of Se into Spirulina Platensis biomass was demonstrated. The polynomial dependence of the Se accumulation on nutritional medium loading was revealed. The employed analytical technique allows one to reliably control the amount of toxic elements in algae Spirulina Platensis. Based on this study, a conclusion of the possibility to use Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals was drawn

  9. Micro -algae biomass as an alternative resource for fishmeal and fish oil in the production of fish feed

    DEFF Research Database (Denmark)

    Safafar, Hamed

    evident that the continued exploitation of industrial fish as a resource fish feed will ultimately become both environmentally and economically unsustainable. Microalgae are at the base of the entire aquatic food chain and play a major role in the diet of aquatic animals such as fish. Microalgae’s main...... application for aquaculture are related to nutrition, being used as a sole fresh feed or an additive, e.g. source of pigment. Algae produce almost all nutritious compounds which are required for fish. The diverse biochemical composition of microalgae represents them as a promising candidate...... for the formulation of fish feed. The nutritional composition of microalgae depends on the species, environmental conditions and growth medium composition. Microalgae for use in aquaculture should be non-toxic and possess the essential nutritive constituents, in a reasonable price. Photosynthetic production of algae...

  10. Bio sorption of copper ions with biomass of algae and dehydrated waste of olives; Biosorcion de iones cobre con biomasa de algas y orujos deshidratados

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, P.; Santander, M.; Pavez, O.; Valderrama, L.; Guzman, D.; Romero, L.

    2011-07-01

    They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbents green algae and olive residues under virgins conditions and chemically activated. The results of batch bio sorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na{sub 2}SO{sub 4} under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another bio sorption cycle. (Author) 42 refs.

  11. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae).

    Science.gov (United States)

    Peksa, Ondřej; Skaloud, Pavel

    2011-09-01

    The distribution patterns of symbiotic algae are thought to be conferred mainly by their hosts, however, they may originate in algal environmental requirements as well. In lichens, predominantly terrestrial associations of fungi with algae or cyanobacteria, the ecological preferences of photobionts have not been directly studied so far. Here, we examine the putative environmental requirements in lichenized alga Asterochloris, and search for the existence of ecological guilds in Asterochloris-associating lichens. Therefore, the presence of phylogenetic signal in several environmental traits was tested. Phylogenetic analysis based on the concatenated set of internal transcribed spacer rDNA and actin type I intron sequences from photobionts associated with lichens of the genera Lepraria and Stereocaulon (Stereocaulaceae, Ascomycota) revealed 13 moderately to well-resolved clades. Photobionts from particular algal clades were found to be associated with taxonomically different, but ecologically similar lichens. The rain and sun exposure were the most significant environmental factor, clearly distinguishing the Asterochloris lineages. The photobionts from ombrophobic and ombrophilic lichens were clustered in completely distinct clades. Moreover, two photobiont taxa were obviously differentiated based on their substrate and climatic preferences. Our study, thus reveals that the photobiont, generally the subsidiary member of the symbiotic lichen association, could exhibit clear preferences for environmental factors. These algal preferences may limit the ecological niches available to lichens and lead to the existence of specific lichen guilds. © 2011 Blackwell Publishing Ltd.

  12. Carboniferous calcareous algae and their associations in the San Emiliano and Lois-Ciguera Formations (Prov. León, NW Spain)

    NARCIS (Netherlands)

    Rácz, L.

    1965-01-01

    This study of the calcareous algae in the limestone deposits of the two formations (San Emiliano and Lois-Ciguera) in NW Spain is based on field observations and microscopical study. It was possible in the field to divide almost all the limestone members into smaller units on the basis of physical,

  13. Isolation and characterization of a virus infecting the freshwater algae Chrysochromulina parva

    International Nuclear Information System (INIS)

    Mirza, S.F.; Staniewski, M.A.; Short, C.M.; Long, A.M.; Chaban, Y.V.; Short, S.M.

    2015-01-01

    Water samples from Lake Ontario, Canada were tested for lytic activity against the freshwater haptophyte algae Chrysochromulina parva. A filterable lytic agent was isolated and identified as a virus via transmission electron microscopy and molecular methods. The virus, CpV-BQ1, is icosahedral, ca. 145 nm in diameter, assembled within the cytoplasm, and has a genome size of ca. 485 kb. Sequences obtained through PCR-amplification of DNA polymerase (polB) genes clustered among sequences from the family Phycodnaviridae, whereas major capsid protein (MCP) sequences clustered among sequences from either the Phycodnaviridae or Mimiviridae. Based on quantitative molecular assays, C. parva's abundance in Lake Ontario was relatively stable, yet CpV-BQ1's abundance was variable suggesting complex virus-host dynamics. This study demonstrates that CpV-BQ1 is a member of the proposed order Megavirales with characteristics of both phycodnaviruses and mimiviruses indicating that, in addition to its complex ecological dynamics, it also has a complex evolutionary history. - Highlights: • A virus infecting the algae C. parva was isolated from Lake Ontario. • Virus characteristics demonstrated that this novel virus is an NCLDV. • The virus's polB sequence suggests taxonomic affiliation with the Phycodnaviridae. • The virus's capsid protein sequences also suggest Mimiviridae ancestry. • Surveys of host and virus natural abundances revealed complex host–virus dynamics.

  14. Unlocking nature’s treasure-chest: screening for oleaginous algae

    Science.gov (United States)

    Slocombe, Stephen P.; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J.; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N.; Black, Kenneth D.; Stanley, Michele S.; Day, John G.

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for “health-foods” and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  15. Isolation and characterization of a virus infecting the freshwater algae Chrysochromulina parva

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S.F. [Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6 (Canada); Staniewski, M.A. [Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 (Canada); Short, C.M. [Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6 (Canada); Long, A.M. [Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 (Canada); Chaban, Y.V. [Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6 (Canada); Short, S.M., E-mail: steven.short@utoronto.ca [Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6 (Canada); Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 (Canada)

    2015-12-15

    Water samples from Lake Ontario, Canada were tested for lytic activity against the freshwater haptophyte algae Chrysochromulina parva. A filterable lytic agent was isolated and identified as a virus via transmission electron microscopy and molecular methods. The virus, CpV-BQ1, is icosahedral, ca. 145 nm in diameter, assembled within the cytoplasm, and has a genome size of ca. 485 kb. Sequences obtained through PCR-amplification of DNA polymerase (polB) genes clustered among sequences from the family Phycodnaviridae, whereas major capsid protein (MCP) sequences clustered among sequences from either the Phycodnaviridae or Mimiviridae. Based on quantitative molecular assays, C. parva's abundance in Lake Ontario was relatively stable, yet CpV-BQ1's abundance was variable suggesting complex virus-host dynamics. This study demonstrates that CpV-BQ1 is a member of the proposed order Megavirales with characteristics of both phycodnaviruses and mimiviruses indicating that, in addition to its complex ecological dynamics, it also has a complex evolutionary history. - Highlights: • A virus infecting the algae C. parva was isolated from Lake Ontario. • Virus characteristics demonstrated that this novel virus is an NCLDV. • The virus's polB sequence suggests taxonomic affiliation with the Phycodnaviridae. • The virus's capsid protein sequences also suggest Mimiviridae ancestry. • Surveys of host and virus natural abundances revealed complex host–virus dynamics.

  16. Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods

    International Nuclear Information System (INIS)

    Choi, Joonhyuk; Choi, Jae-Wook; Suh, Dong Jin; Ha, Jeong-Myeong; Hwang, Ji Won; Jung, Hyun Wook; Lee, Kwan-Young; Woo, Hee-Chul

    2014-01-01

    Highlights: • Pyrolysis of Saccharina japonica, brown algae to produce hydrocarbons. • Sulfuric acid pretreatment of macroalgae to remove inorganic elements. • CaCl 2 treatment of macroalgae to remove valuable fucoidan. • Sulfuric acid pretreatment suppressed the formation of large biochar chunks. • The pretreatment methods allowed the continuous operation of pyrolysis. - Abstract: Based on observations of rapidly growing biochar in fluidization beds, kelp (Saccharina japonica), a species of brown algae, was pretreated for the efficient operation of pyrolysis processes to produce pyrolysis oils. The removal of catalytically active inorganic minerals and the softening of polymeric seaweed structures were performed by means of chemical treatments, including a CaCl 2 treatment to isolate valuable and sticky fucoidan and a sulfuric acid treatment to remove catalytically active minerals. The sulfuric acid pretreatment significantly reduced the inorganic elements but did not significantly affect the properties of the pyrolysis oil compared to the non-treated kelp pyrolysis oil. Whereas the non-treated kelp produced significantly large chunks of biochar, which hindered the continuous operation of pyrolysis, the kelp treated with sulfuric acid did not produce aggregated large particles of biochar, thereby offering a means of developing reliable continuous pyrolysis processes

  17. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  18. Removal of Selected Pharmaceutical and Personal Care Products by the Green Alga Nannochloris sp.

    Science.gov (United States)

    Bai, X.; Acharya, K.

    2016-12-01

    Emerging contaminants have become an increasing concern in the environment due to their ubiquitous distribution and potential adverse effects on wildlife and humans. Municipal wastewater is a major source of pharmaceutical and personal care products (PPCPs) in the Las Vegas metropolitan area. The ecotoxic impacts of PPCPs on aquatic organisms include development of antimicrobial resistance, decreases in plankton diversity, and endocrine disruption. Freshwater algae can be responsible for the uptake and transfer of the contaminants because they are a major food source for most aquatic organisms. This research applied laboratory-based incubation studies to evaluate the removal efficiency and uptake mechanisms of the selected PPCPs (trimethoprim, sulfamethoxazole, and triclosan) by the green alga Nannochloris sp. The results showed that trimethoprim and sulfamethoxazole remained in the algal culture at 100% and 68%, respectively, after 14 days of incubation, and therefore were not significantly removed from the medium. However, the antimicrobial triclosan was significantly removed from the medium. Immediately after incubation began, 74% of triclosan dissipated and 100% of triclosan was removed after 7 days of incubation. Additionally, over 42% of triclosan was found associated with the algal cells throughout the incubation. The results demonstrate that the presence of Nannochloris sp. eliminated triclosan in the aquatic system, but could not significantly remove the antibiotics trimethoprim and sulfamethoxazole. This study provided crucial information that toxicity of triclosan in aquatic organisms is a critical concern because of its high uptake by phytoplankton. The resistance of trimethoprim and sulfamethoxazole to uptake by phytoplankton may threaten water quality.

  19. Algae potential resource assessment for the energy and chemistry sectors in France by 2030

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Payen, Luc; Bernard, Olivier; Mairet, Francis; Grimaud, Ghjuvan; Delclaux, Etienne; Rey, David; Ras De Moncuit, Monique; Houdon, Aude-Claire; Gagnepain, Bruno; Gueudet, Alice; El Khamlichi, Aicha; Delalande, Claire; Eglin, Thomas; Pouet, Jean-Christophe; Allouche, Yohan; Lombard, Christophe; Mhiri, Tarek; Mazzenga, Anthony; Lasserre, Thomas; Potin, Philippe; Kaas, Raymond; Lecurieux-Belfond, Laura

    2014-07-01

    To address environmental and climate issues, alternative technologies to fossil resources are sought after, both for the production of fuels and of chemicals. Algae appear as an attractive solution and have applications in the food, feed, energy or chemistry at large. A study funded by ADEME and conducted by ENEA, a consulting firm for energy and sustainable development for the industrial sector, in partnership with INRIA assessed the potential of algal French resources (micro- and macro-algae) for the production of advanced bio-fuels and molecules of interest (bio-plastic, nutrients etc.) in 2030. This assessment is based both on a model of the French national resources (physical production potential without the use of agricultural land) and what the we now know of the markets concerned and their projection 2030. The analysis shows a physical potential output of up to 9% of the French bio-diesel consumption in 2030 and enough to supply many European markets in algal bio-products. R and d efforts are however required to achieve sufficient technical and economic performance to fully exploit this potential

  20. Bifurcatriol, a New Antiprotozoal Acyclic Diterpene from the Brown Alga Bifurcaria bifurcata

    Directory of Open Access Journals (Sweden)

    Vangelis Smyrniotopoulos

    2017-08-01

    Full Text Available Linear diterpenes that are commonly found in brown algae are of high chemotaxonomic and ecological importance. This study reports bifurcatriol (1, a new linear diterpene featuring two stereogenic centers isolated from the Irish brown alga Bifurcaria bifurcata. The gross structure of this new natural product was elucidated based on its spectroscopic data (IR, 1D and 2D-NMR, HRMS. Its absolute configuration was identified by experimental and computational vibrational circular dichroism (VCD spectroscopy, combined with the calculation of 13C-NMR chemical shielding constants. Bifurcatriol (1 was tested for in vitro antiprotozoal activity towards a small panel of parasites (Plasmodium falciparum, Trypanosoma brucei rhodesiense, T. cruzi, and Leishmania donovani and cytotoxicity against mammalian primary cells. The highest activity was exerted against the malaria parasite P. falciparum (IC50 value 0.65 μg/mL with low cytotoxicity (IC50 value 56.6 μg/mL. To our knowledge, this is the first successful application of VCD and DP4 probability analysis of the calculated 13C-NMR chemical shifts for the simultaneous assignment of the absolute configuration of multiple stereogenic centers in a long-chain acyclic natural product.

  1. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong; Ansari, Hifzur Rahman; Otto, Thomas D.; Linger, Christen M K; Olisko, Martin K.; Michá lek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; Del Campo, Javier; Cihlá ř, Jaromí r; Flegontov, Pavel; Gornik, Sebastian G.; Hajdušková , Eva; Horá k, Aleš; Janouškovec, Jan; Katris, Nicholas J.; Mast, Fred D.; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini Kumar; Rawlings, Neil D.; Padron Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E.; Doerig, Christian; Bowler, Chris; Keeling, Patrick J.; Roos, David S.; Dacks, Joel B.; Templeton, Thomas J.; Waller, Ross F.; Lukeš, Julius; Oborní k, Miroslav; Pain, Arnab

    2015-01-01

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  2. Levels of essential and potentially toxic trace metals in Antarctic macro algae

    International Nuclear Information System (INIS)

    Farias, Silvia; Arisnabarreta, Sebastian Perez; Vodopivez, Cristian; Smichowski, Patricia

    2002-01-01

    Eleven species of Antarctic algae were examined for their accumulation ability in the uptake of different metals and metalloids from the Antarctic aquatic environment. Macro algae were collected during the 2000 austral summer season at Jubany Station (Argentinean base) around Potter Cove, King George Island. The elements quantified were: As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. An optimized microwave-assisted digestion procedure was used to digest the samples and the elements were determined by inductively coupled plasma optical emission spectrometry. A wide range of metal retention capacity among the different species was observed. The highest levels of trace elements were found in Monostroma hariotii and Phaeurus antarcticus, with concentrations up to 3095 μg g -1 for Fe. On the basis of the levels of trace elements observed in Monostroma hariotii and its wide distribution in the Antarctic Peninsula, this organism accomplishes a number of prerequisites to be considered as an adequate biomonitor for future studies

  3. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    Science.gov (United States)

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  4. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  5. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    Peng Zhang'e; Wu Feng; Deng Nansheng

    2006-01-01

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe 3+ ions was investigated. Algae, humic acid and Fe 3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10 9 cells L -1 raw Chlorella vulgaris, 4 mg L -1 humic acid and 20 μmol L -1 Fe 3+ . The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  6. Chemical and radioactivity study of sea alga distribution along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Budeir, Y.

    2001-11-01

    Three types of sea alga distributed along the Syrian coast have been studied from the chemical and radioactivity point of view. Results have shown the metals that red alga contains the highest levels of Ca and Mg while brown alga were found to contain relatively high concentrations of other elements and non metals such as Cl, I and Br. In addition, 137 Cs concentrations in all the analyzed sample were low while the levels of naturally occurring radionuclides such as 210 Po, 210 Pb and radium isotopes were found to be high in red alga which indicates their selectivity to these isotopes. On the other hand, brown alga and especially Cysteseira has shown a clear selectivity for some trace elements such as As, Cr, Cd, Cu and Co, this selectivity may encourage the use of brown alga as biological indicator for trace elements pollution. (author)

  7. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  8. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  9. Physical characteristic of brown algae (Phaeophyta) from madura strait as irreversible hydrocolloid impression material

    OpenAIRE

    Prihartini Widiyanti; Siswanto Siswanto

    2012-01-01

    Background: Brown algae is a raw material for producing natrium alginates. One type of brown algae is Sargassum sp, a member of Phaeophyta division. Sargassum sp could be found in Madura strait Indonesia. Natrium alginate can be extracted from Sargassum sp. The demand of alginate in Indonesia is mainly fulfilled from abroad, meanwhile Sargassum sp is abundantly available. Purpose: The purpose of study were to explore the potency of brown alga Sargassum sp from Madura strait as hydrocolloid im...

  10. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78 19-30 De Smet I and Beeckman T 2011 Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Rev. Mol. Cell Biol. 12 177... of Prasinophytes, but are as evolved as any other green alga or land plant. These organisms share several ultrastructural features with the other core Chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae...

  11. Screening of Various Herbicide Modes of Action for Selective Control of Algae Responsible for Harmful Blooms

    Science.gov (United States)

    2009-01-01

    included, Scenedesmus quadricauda and Selenastrum sp. After a two-week exposure period, all flasks were filtered. The planktonic algae were measured...activity against the various algal species tested (Figures 1 through 7). Aside from the reduction in biomass of the green alga Scenedesmus by...controls (Figures 1 through 7). Penoxsulam was highly active against the blue-greens Cylindrospermopsis and Anabaena, and the green alga Scenedesmus

  12. Gain and loss of polyadenylation signals during evolution of green algae

    OpenAIRE

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-01-01

    Abstract Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related seq...

  13. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses

    OpenAIRE

    Nam, Sun-Hwa; Il Kwak, Jin; An, Youn-Joo

    2018-01-01

    Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0–50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase ...

  14. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  15. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites.

    Science.gov (United States)

    El Achaby, Mounir; Kassab, Zineb; Aboulkas, Adil; Gaillard, Cédric; Barakat, Abdellatif

    2018-01-01

    Red algae is widely available around the world and its exploitation for the production of agar products has become an important industry in recent years. The industrial processing of red algae generates a large quantity of solid fibrous wastes, which constitutes a source of serious environmental problems. In the present work, the utilization of red algae waste as raw material to produce high-quality cellulose nanocrystals (CNC) has been investigated, and the ability of the as-isolated CNC to reinforce polymer has been studied. Red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments, in order to obtain pure cellulose microfibers and CNC. The raw waste and the as-extracted cellulosic materials were successively characterized at different stages of treatments using serval analysis techniques. It was found that needle-like shaped CNC were successfully isolated at nanometric scale with diameters and lengths ranged from 5.2±2.9 to 9.1±3.1nm, and from 285.4±36.5 to 315.7±30.3nm, respectively, and the crystallinity index ranged from 81 to 87%, depending on the hydrolysis time (30, 40 and 80min). The as-extracted CNC were used as nanofillers for the production of polyvinyl alcohol (PVA)-based nanocomposite films with improved thermal and tensile properties, as well as optical transparency. It is shown that the addition of 8wt% CNC into the PVA matrix increased the Young's modulus by 215%, the tensile strength by 150%, and the toughness by 45%. Additionally, the nanocomposite films maintained the same transparency level of the neat PVA film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    Science.gov (United States)

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  17. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.

    Directory of Open Access Journals (Sweden)

    Jianfang Xu

    Full Text Available Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C₃ photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C₄ photosynthesis, so C₄ photosynthesis might be more wide-spread than previously anticipated. Both C₃ and C₄ photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C₄ metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxylase (PEPC, and phosphoenolpyruvate carboxykinase (PCK. To investigate whether the alga operates a C₄-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature. The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C₄-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.

  18. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  19. Method for delivery of small molecules and proteins across the cell wall of algae using molecular transporters

    Science.gov (United States)

    Geihe, Erika; Trantow, Brian; Wender, Paul; Hyman, Joel M.; Parvin, Bahram

    2017-11-14

    The introduction of tools to study, control or expand the inner-workings of algae has been slow to develop. Provided are embodiments of a molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing molecular cargos into algal cells. The methods of the disclosure have been shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae, including Neochloris oleoabundans and Scenedesmus dimorphus, thus providing a new and versatile tool for algal research and modification. The method of delivering a cargo compound to an algal cell comprises contacting an algal cell with a guanidinium-rich delivery vehicle comprising a guanidinium-rich molecular transporter (GR-MoTr) linked to a cargo compound desired to be delivered to the algal cell, whereby the guanidinium-rich molecular transporter can traverse the algal cell wall, thereby delivering the cargo compound to the algal cell.

  20. Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional

    OpenAIRE

    Quitral R, Vilma; Morales G, Carla; Sepúlveda L, Marcela; Schwartz M, Marco

    2012-01-01

    Las algas marinas se han consumido en Asia desde tiempos remotos, mientras que en países occidentales su principal aplicación ha sido como agente gelificante y coloide para la industria de alimentos, farmacéutica y cosmética. Las algas son buena fuente de nutrientes como proteínas, vitaminas, minerales y fibra dietética, al respecto, la fibra dietética de algas es particularmente rica en fracción soluble. Si se comparan las algas con vegetales terrestres, se encuentran más componentes benefic...

  1. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  2. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    Science.gov (United States)

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  3. Role of algae in water quality regulation in NPP water reservoirs

    International Nuclear Information System (INIS)

    Klenus, V.G.; Kuz'menko, M.I.; Nasvit, O.I.

    1985-01-01

    Investigations, carried out in Chernobyl NPP water reservoir, show that sewage water inflow, being not sufficiently purified, enriched by mineral and organic substances, is accompanied by a considerable increase of algae productivity. The algae play a determining role in accumulation of radionuclides and their transformation into bottom depositions. Comparative investigation of accumulation intensity in alga cells 12 C and 14 C gives evidence that the rate of radioactive nuclide inclusions is practically adequate to the rate of inclusions of their stable analogues. Bacterial destruction of organic contaminations occurs more intensively under aerobic conditions, which are mainly provided due to photosynthetizing activity of algae

  4. Biogas performance from co-digestion of Taihu algae and kitchen wastes

    International Nuclear Information System (INIS)

    Zhao, Ming-Xing; Ruan, Wen-Quan

    2013-01-01

    Highlights: • Co-digestion mode improves the biogas yield of Taihu algae and kitchen wastes. • Neutral protease enzyme reached maximum in algae only group. • The activity of dehydrogenase enzyme in mixed substrate groups was higher than that of algae and kitchen wastes only group. - Abstract: Co-digestion of Taihu algae with high carbon content substrate can balance the nutrients in the fermentation process. In this study, optimal mixing ratio for co-digestion of Taihu algae and kitchen wastes were investigated in order to improve biogas production potential. The results indicated that the biogas yield reached 388.6 mL/gTS at C/N15:1 group, which was 1.29 and 1.18 times of algae and kitchen wastes only. The maximum concentration of VFA reached 4239 mg/L on 8th day in kitchen wastes group, which was 1.21 times of algae group. Neutral protease enzyme activity in algae group reached maximum of 904.2 μg/(gTS h), while dehydrogenase enzyme at C/N 15:1 group reached maximum of 3402.2 μgTF/(gTS h). The feasibility of adjusting the C/N with co-digestion of Taihu algae and kitchen wastes to increase biogas production was demonstrated. Remarkably, the C/N of 15:1 was found to be the most appropriate ratio

  5. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli

    2017-01-01

    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  6. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  7. Isolaurenidificin and Bromlaurenidificin, Two New C15-Acetogenins from the Red Alga Laurencia obtusa

    Directory of Open Access Journals (Sweden)

    Nahed O. Bawakid

    2017-05-01

    Full Text Available Chromatographic fractionation of the CH2Cl2/MeOH extract of the Red Sea red alga Laurencia obtusa gave two new hexahydrofuro[3,2-b]furan-based C15-acetogenins, namely, isolaurenidificin (1 and bromlaurenidificin (2. The chemical structures were elucidated based on extensive analyses of their spectral data. Compounds 1 and 2 showed no toxicity (LC50 > 12 mM using Artemia salina as test organism. Both compounds showed weak cytotoxicity against A549, HepG-2, HCT116, MCF-7, and PC-3 cells, however, they exhibited a relatively potent cytotoxic activity against peripheral blood neutrophils. This can be attributed partly to induction of apoptosis.

  8. Bio-reduction of plutonyl and neptunyl by Shewanella alga

    International Nuclear Information System (INIS)

    Reed, D.T.; Lucchini, J.F; Rittmann, B.E.; Songkasiri, W.

    2005-01-01

    Full text of publication follows: The results of a concurrent experimental and modeling study to investigate the bio-reduction of higher-valent plutonium and neptunium by Shewanella alga strain BrY are presented. S. Alga, as a facultative metal reducer, is representative of bacteria that will be important in defining the mobility of plutonium and neptunium species as they migrate from oxic to anoxic zones. This is also an important consideration in defining the long-term stability of bio-precipitated 'immobilized' plutonium phases under changing redox conditions in biologically active systems and subsequently the effectiveness of remediation/containment approaches used for bio-remediation. Neptunium (VI) is readily reduced in groundwaters by many organics. In biologically active systems, it is unlikely, for this reason, that this oxidation state of neptunium will be important. Under all conditions investigated, neptunium (V) was reduced to neptunium (IV) when anaerobic conditions were established for a wide variety of electron donors. This was evidences by 3-4 orders of magnitude reduction in solution concentration and confirmed by XANES analysis. This led to high bio-association and/or precipitation of the neptunium. Plutonium (VI), as was the case with neptunium (VI) was reduced by the organics typically present in biologically active systems. Analogous bio-reduction experiments with plutonium (V) and plutonium (VI) are in progress and are expected to show that bio-reduction will predominate under anaerobic conditions, as was the case with neptunium. These results for neptunium and plutonium show S. Alga to be an effective microbe for the bio-reduction, and consequently the immobilization, of these important actinide contaminants. (authors)

  9. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  10. Shewanella alga bacteremia in two patients with lower leg ulcers

    DEFF Research Database (Denmark)

    Domínguez, H.; Vogel, Birte Fonnesbech; Gram, Lone

    1996-01-01

    of infection. Both patients survived; however, one of them had extensive myonecrosis, while the other patient had an uncomplicated course. The strains were initially believed to be Shewanella putrefaciens on the basis of key characteristics and results of the API 20NE identification system (bioMerieux, Marcy l......The first Danish cases of Shewanella alga bacteremia in two patients with chronic lower leg ulcers are reported. Both patients were admitted to the hospital during the same month of a very warm summer and had been exposed to the same marine environment, thereby suggesting the same source...

  11. Cadmium accumulation by the marine red alga Porphyra umbilicalis

    Energy Technology Data Exchange (ETDEWEB)

    McLean, M.W.; Williamson, F.B.

    1977-01-01

    The characteristics of cadmium accumulation by the marine red alga Porphyra umbilicalis L. in culture are reported. The time course of uptake under various light conditions shows that cadmium is concentrated as the result of an on-going anabolic process and not as a consequence of a pH gradient as provided by photosynthesis. The effect of cycloheximide is in agreement with de novo protein synthesis being a prerequisite for cadmium accumulation. Autoradiography suggests a specific intracellular location for bound cadmium--apparently the nucleus.

  12. [Epiphytic algae from Bajo Pepito, Isla Mujeres, Quintana Roo, Mexico].

    Science.gov (United States)

    Quan-Young, L I; Díaz-Martín, M A; Espinoza-Avalos, J

    2006-06-01

    A total of 96 epiphytic algae species were identified from Bajo Pepito, Quintana Roo, México. 60.4% (58) belonged to the Rhodophyta, 19.79% (19) to the Phaeophyta, 16.6% (16) to the Chlorophyta and 3.1% (3) to the Cyanophyta; 49 species (50.5%) were found only in one month, while Heterosiphonia crispella was found in all of the sampled months. That species provided the largest contribution to the biomass of epiphytes. During January we registered the greater biommass and richness of epiphytes species, coincidently with high values of host species cover and rainfall.

  13. Plutonium sorption by the green algae Scenedesmus obliquus (Tuerp) Kuetz

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Corey, J.C.

    1978-01-01

    As part of the continuing study of the possible impact of released radioisotopes to the Savannah River Plant (SRP) environment, the interaction between a biological system and plutonium was investigated. Specifically, an algal culture, Scenedesmus obliquus, was exposed to the +4 and +6 oxidation states of 238 Pu and 239-240 Pu at three plutonium concentration levels. There was no significant different (p 3) 0.05) between 238 Pu and 239-240 Pu accumulation by the algae at equivalent concentrations or at different oxidation states

  14. Multi-scale Characterization of Improved Algae Strains

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Taraka T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  15. Microsatellite Primers in the Lichen Symbiotic Alga Trebouxia decolorans (Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Francesco Dal Grande

    2013-03-01

    Full Text Available Premise of the study: Polymorphic microsatellite markers were developed for the symbiotic green alga Trebouxia decolorans to study fine-scale population structure and clonal diversity. Methods and Results: Using Illumina pyrosequencing, 20 microsatellite primer sets were developed for T. decolorans. The primer sets were tested on 43 individuals sampled from four subpopulations in Germany. The primers amplified di-, tri-, and tetranucleotide repeats with three to 15 alleles per locus, and the unbiased haploid diversity per locus ranged from 0.636 to 0.821. Conclusions: The identified microsatellite markers will be useful to study the genetic diversity, dispersal, and reproductive mode of this common lichen photobiont.

  16. Estudio de los galactanos del alga roja pterocladiella Capillacea

    OpenAIRE

    Errea, María Inés

    2001-01-01

    Existen dos familias de polisacáridos sintetizados por algas rojas, los carragenanos y el ágar, que, debido a sus propiedades reológicas, que les permiten estabilizar soluciones o emulsiones acuosas, son utilizados en la industria farmacéutica y alimentaria de todo el mundo. Este Trabajo de Tesis comprende los tópicos que se indican a continuación: a) Estudio de la estructura de los galactanos que componen el sistema de polisacáridos de la agarofita Plerocladíella capillacea (Gelidiales, Geli...

  17. Marine algae as attractive source to skin care.

    Science.gov (United States)

    Berthon, Jean-Yves; Nachat-Kappes, Rachida; Bey, Mathieu; Cadoret, Jean-Paul; Renimel, Isabelle; Filaire, Edith

    2017-06-01

    As the largest organ in the human body, the skin has multiple functions of which one of the most important is the protection against various harmful stressors. The keratinised stratified epidermis and an underlying thick layer of collagen-rich dermal connective tissues are important components of the skin. The environmental stressors such as ultraviolet radiation (UVR) and pollution increase the levels of reactive oxygen species (ROS), contributing to clinical manifestations such as wrinkle formation and skin aging. Skin aging is related to the reduction of collagen production and decrease of several enzymatic activities including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis; and tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. In addition to alterations of DNA, signal transduction pathways, immunology, UVR, and pollution activate cell surface receptors of keratinocytes and fibroblasts in the skin. This action leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. Therefore, an efficient antioxidants strategy is of major importance in dermis and epidermis layers. Marine resources have been recognised for their biologically active substances. Among these, marine algae are rich-sources of metabolites, which can be used to fight against oxidative stress and hence skin aging. These metabolites include, among others, mycosporine-like amino acids (MAAs), polysaccharides, sulphated polysaccharides, glucosyl glycerols, pigments, and polyphenols. This paper reviews the role of oxidative processes in skin damage and the action of the compounds from algae on the physiological processes to maintain skin health.

  18. Algae as nutritional and functional food sources: revisiting our understanding.

    Science.gov (United States)

    Wells, Mark L; Potin, Philippe; Craigie, James S; Raven, John A; Merchant, Sabeeha S; Helliwell, Katherine E; Smith, Alison G; Camire, Mary Ellen; Brawley, Susan H

    2017-01-01

    Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.

  19. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  20. Methane production from marine, green macro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, G.

    1983-01-01

    Fermentation studies have been carried out to produce methane from green algae native to Scandinavian water and suitable for large scale cultivation. Long term semi-continuous fermentations during mesophilic and thermophilic conditions were performed as well as batch fermentations in flasks and syringes. A mixed inoculum was prepared from sediments, rotting seaweed, sewage sludge and rumen contents. Methane production from the seaweed substrate, consisting of ground green algae without any nutrient additions, started immediately in this culture, mesophilicly as well as thermophilicly. Fermentations were carried out with retention times from 27 to 11 days and loading rates from 1.1 to 2.6 g volatile solids (VS added) per litre per day. In the mesophilic fermentation, gas yields were 250-350 ml CH/sub 4//g VS added and the VS-reduction was around 50-55% at all tested retention times and loading rates. The level of volatile fatty acids was very low in this system. In the thermophilic digestor, gas yields were somewhat lower although the VS-reduction was around 50% also in this systems. The VFA-levels were higher and the culture more sensitive to disturbances. Thus no advantages were found with the thermophilic fermentation. In mesophilic batch fermentations the gas production was rather rapid and almost completed after 12-15 days, in agreement with the continuous fermentations. The gas yields in batch experiments were high, 350-480 ml CH/sub 4//g VS added. (Refs. 20).