WorldWideScience

Sample records for heterogeneous plume chemistry

  1. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B; Luo, B P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1998-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  2. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Luo, B.P. [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1997-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  3. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  4. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  5. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  6. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N V; Popovitcheva, O B; Rakhimova, T V [Moscow State Univ. (Russian Federation)

    1998-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  7. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  8. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  9. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  10. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    Science.gov (United States)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  11. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  12. On the validity of a Fickian diffusion model for the spreading of liquid infiltration plumes in partially saturated heterogeneous media

    International Nuclear Information System (INIS)

    Pruess, K.

    1994-01-01

    Localized infiltration of aqueous and -non-aqueous phase liquids (NAPLs) occurs in many circumstances. Examples include leaky underground pipelines and storage tanks, landfill and disposal sites, and surface spills. Because of ever-present heterogeneities on different scales such infiltration plumes are expected to disperse transversally and longitudinally. This paper examines recent suggestions that liquid plumes are being dispersed from medium heterogeneities in a manner that is analogous to Fickian diffusion. Numerical simulation experiments on liquid infiltration in heterogeneous media are performed to study the dispersive effects of small-scale heterogeneity. It is found that plume spreading indeed tends to be diffusive. Our results suggest that, as far as infiltration of liquids is concerned, broad classes of heterogeneous media behave as dispersive media with locally homogeneous (albeit anisotropic) permeability

  13. Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model

    National Research Council Canada - National Science Library

    Calhoon, W. H; Kenzakowski, D. C

    2000-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  14. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  15. New Hf-Nd evidence supports a heterogeneous plume source for the Caribbean Plateau

    International Nuclear Information System (INIS)

    Thompson, P.M.E; Kempton, P.D; White, R.V; Kerr, A.C; Tarney, J.; Sauders, A.D

    2001-01-01

    Hf-Nd systematics provide us with a valuable tool for tracing mantle sources and signatures in ancient or altered rocks. Hf and Nd are amongst the most resistant of all elements to secondary alteration processes (Pearce et al., 1999) and hence can give us insights into the source compositions of altered plateau basalts that other isotopic systems will not. Here we use Hf-Nd systematics to probe the depths of the Cretaceous Caribbean Plateau, in order to characterise its isotope systematics, and hence determine the geochemical nature of the mantle plume responsible for its formation. Much of the plateau is already well characterised in terms of trace elements and isotopes such as Sr, Nd, Pb and Os (Kerr et al., 1997; White et al., 1999; Walker et al., 1999). Unfortunately, isotope system resetting due to sub- solidus alteration, amongst other factors, has ensured that these isotopes have been inconclusive in resolving many important issues, such as whether the Caribbean plateau is a product of an earlier Galapagos plume phase, and how the apparently unique Gorgona komatiites relate to the rest of the Caribbean plateau. We present new Hf-Nd isotopic data which reveal that the Caribbean plume must have been compositionally heterogeneous, comprising at least three different source components. We then compare this 'Caribbean plume' to other present-day plumes, (e.g. Galapagos) and from this speculate whether initial magmatism from the Galapagos plume could indeed have been responsible for the formation of the Caribbean Plateau (au)

  16. Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations

    Science.gov (United States)

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Wei Min Hao

    2010-01-01

    Data-processing techniques for the scanning lidar data are considered that allow determining the upper and lower boundaries of the smoke plume or smoke layering in the vicinity of wildfires. The task is fulfilled by utilizing the Atmospheric Heterogeneity Height Indicator (AHHI). The AHHI is a histogram, which shows a number of heterogeneity events defined by scanning...

  17. The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry

    Science.gov (United States)

    Roberts, T. J.; Vignelles, D.; Liuzzo, M.; Giudice, G.; Aiuppa, A.; Coltelli, M.; Salerno, G.; Chartier, M.; Couté, B.; Berthet, G.; Lurton, T.; Dulac, F.; Renard, J.-B.

    2018-02-01

    Volcanoes are an important source of aerosols to the troposphere. Within minutes after emission, volcanic plume aerosol catalyses conversion of co-emitted HBr, HCl into highly reactive halogens (e.g. BrO, OClO) through chemical cycles that cause substantial ozone depletion in the dispersing downwind plume. This study quantifies the sub-to-supramicron primary volcanic aerosol emission (0.2-5 μm diameter) and its role in this process. An in-situ ground-based study at Mt Etna (Italy) during passive degassing co-deployed an optical particle counter and Multi-Gas SO2 sensors at high time resolution (0.1 Hz) enabling to characterise the aerosol number, size-distribution and emission flux. A tri-modal volcanic aerosol size distribution was found, to which lognormal distributions are fitted. Total particle volume correlates to SO2 (as a plume tracer). The measured particle volume:SO2 ratio equates to a sulfate:SO2 ratio of 1-2% at the observed meteorological conditions (40% Relative Humidity). A particle mass flux of 0.7 kg s-1 is calculated for the measured Mt Etna SO2 flux of 1950 tonnes/day. A numerical plume atmospheric chemistry model is used to simulate the role of the hygroscopic primary aerosol surface area and its humidity dependence on volcanic plume BrO and OClO chemistry. As well as predicting volcanic BrO formation and O3 depletion, the model achieves OClO/SO2 in broad quantitative agreement with recently reported Mt Etna observations, with a predicted maximum a few minutes downwind. In addition to humidity - that enhances aerosols surface area for halogen cycling - background ozone is predicted to be an important control on OClO/SO2. Dependence of BrO/SO2 on ambient humidity is rather low near-to-source but increases further downwind. The model plume chemistry also exhibits strong across-plume spatial variations between plume edge and centre.

  18. Numerical simulation of the impact of water-air fronts on radionuclides plumes in heterogeneous media

    International Nuclear Information System (INIS)

    Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.

    2004-01-01

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  19. Unveiling CO2 heterogeneous freezing plumes during champagne cork popping.

    Science.gov (United States)

    Liger-Belair, Gérard; Cordier, Daniel; Honvault, Jacques; Cilindre, Clara

    2017-09-14

    Cork popping from clear transparent bottles of champagne stored at different temperatures (namely, 6, 12, and 20 °C) was filmed through high-speed video imaging in the visible light spectrum. During the cork popping process, a plume mainly composed of gaseous CO 2 with traces of water vapour freely expands out of the bottleneck through ambient air. Most interestingly, for the bottles stored at 20 °C, the characteristic grey-white cloud of fog classically observed above the bottlenecks of champagne stored at lower temperatures simply disappeared. It is replaced by a more evanescent plume, surprisingly blue, starting from the bottleneck. We suggest that heterogeneous freezing of CO 2 occurs on ice water clusters homogeneously nucleated in the bottlenecks, depending on the saturation ratio experienced by gas-phase CO 2 after adiabatic expansion (indeed highly bottle temperature dependent). Moreover, and as observed for the bottles stored at 20 °C, we show that the freezing of only a small portion of all the available CO 2 is able to pump the energy released through adiabatic expansion, thus completely inhibiting the condensation of water vapour found in air packages adjacent to the gas volume gushing out of the bottleneck.

  20. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  1. Aircraft observations of aerosols O3 and NOy in a nighttime urban plume

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Zaveri, R.A.; Xindi Bian; Shiyuan Zhong; Disselkamp, R.S.; Laulainen, N.S.; Chapman, E.G.

    2001-01-01

    Nighttime measurements of aerosol surface area, O 3 , NO y and moisture were made downwind of Portland, Oregon, as part of a study to characterize the chemistry in a nocturnal urban plume. Air parcels sampled within the urban plume soon after sunset had positive correlations between O 3 , relative humidity, NO y and aerosol number density. However, the air parcels sampled within the urban plume just before dawn had O 3 mixing ratios that were highly anti-correlated with aerosol number density, NO y and relative humidity. Back-trajectories from a mesoscale model show that both the post-sunset and pre-dawn parcels came from a common maritime source to the northwest of Portland. The pre-dawn parcels with strong anti-correlations passed directly over Portland in contrast to the other parcels that were found to pass west of Portland. Several gas-phase mechanisms and a heterogeneous mechanism involving the loss of O 3 to the aerosol surface, are examined to explain the observed depletion in O 3 within the pre-dawn parcels that had passed over Portland. (Author)

  2. OClO and BrO observations in the volcanic plume of Mt. Etna - implications on the chemistry of chlorine and bromine species in volcanic plumes

    Science.gov (United States)

    Gliß, J.; Bobrowski, N.; Vogel, L.; Platt, U.

    2014-10-01

    Spatial and temporal profiles of chlorine dioxide (OClO), bromine monoxide (BrO) and sulphur dioxide (SO2) were measured in the plume of Mt. Etna, Italy, in September 2012 using Multi-Axis-Differential-Optical-Absorption-Spectroscopy (MAX-DOAS). OClO (BrO) was detected in 119 (452) individual measurements covering plume ages up to 6 (23) minutes. The retrieved slant column densities (SCDs) reached values up to 2.0 × 1014 molecules cm-2 (OClO) and 1.1 × 1015 molecules cm-2 (BrO). In addition, the spectra were analysed for signatures of IO, OIO and OBrO, none of these species could be detected. The corresponding detection limits for IO / SO2, OIO / SO2 and OBrO / SO2 were 1.8 × 10-6, 2.0 × 10-5 and 1.1 × 10-5 respectively. The measurements were performed at plume ages (τ) from zero to 23 min downwind the emission source. The chemical variability of BrO and OClO in the plume was studied analysing the OClO / SO2 and BrO / SO2-ratio. A marked increase of both ratios was observed in the young plume (τ 3 min) with mean abundances of 3.17 × 10-5 (OClO / SO2), 1.55 × 10-4 (BrO / SO2) and 0.16 (OClO / BrO). Furthermore, enhanced BrO/SO2-ratios were found at the plume edges (by ~30-37%) and a strong indication of enhanced OClO / SO2-ratios as well (~10-250%). A measurement performed in the early morning (05:20-06:20 UTC, sunrise: 04:40 UTC) showed an BrO / SO2-ratio increasing with time until 05:35 UTC and a constant ratio afterwards. Observing this increase was only possible due to a correction for stratospheric BrO signals in the plume spectra. The corresponding OClO / SO2-ratio showed a similar trend stabilising around 06:13 UTC, approximately 40 min later than BrO. This is another strong indication for the photochemical nature of the reactions involved in the formation of oxidised halogens in volcanic plumes. In particular, these findings support the current understanding of the underlying chemistry, namely, that BrO is formed in an autocatalytic reaction

  3. Naval Weapons Center Plume Radar Frequency Interference Code

    Science.gov (United States)

    1982-10-01

    ppm sodium. Both equilibrium and finite rate chemistry during the expansion from the chamber were tried as initial conditions for the plume. In...was too large. The difference between the.e two sets of initial conditions diminished downstream as the chemistry in the plume mixing region began to...Rerkirre Arvliral I Comirlnrnde!- ir.C h ic 1. tVS. Pacific Hice ((Code 3251 1 Corimu tinde r. ’n, r-d I leer. Pearl I atar I Coimniaide r. Sevent

  4. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    Science.gov (United States)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Akagi, S. K.; Coe, H.; Craven, J. S.; Fischer, E. V.; McMeeking, G. R.; Seinfeld, J. H.; Soni, T.; Taylor, J. W.; Weise, D. R.; Wold, C. E.

    2015-06-01

    Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use version 2.1 of the Aerosol Simulation Program (ASP) to simulate the evolution of O3 and secondary organic aerosol (SOA) within a young biomass burning smoke plume from the Williams prescribed fire in chaparral, which was sampled over California in November 2009. We demonstrate the use of a method for simultaneously accounting for the impact of the unidentified intermediate volatility, semi-volatile, and extremely low volatility organic compounds (here collectively called "SVOCs") on the formation of OA (using the Volatility Basis Set - VBS) and O3 (using the concept of mechanistic reactivity). We show that this method can successfully simulate the observations of O3, OA, NOx, ethylene (C2H4), and OH to within measurement uncertainty using reasonable assumptions about the average chemistry of the unidentified SVOCs. These assumptions were (1) a reaction rate constant with OH of ~ 10-11 cm3 s-1; (2) a significant fraction (up to ~ 50 %) of the RO2 + NO reaction resulted in fragmentation, rather than functionalization, of the parent SVOC; (3) ~ 1.1 molecules of O3 were formed for every molecule of SVOC that reacted; (4) ~ 60 % of the OH that reacted with the unidentified non-methane organic compounds (NMOC) was regenerated as HO2; and (5) that ~ 50 % of the NO that reacted with the SVOC peroxy radicals was lost, presumably to organic nitrate formation. Additional evidence for the fragmentation pathway is provided by the observed rate of formation of acetic acid (CH3COOH), which is consistent with our assumed fragmentation rate. However, the model overestimates peroxyacetyl

  5. On Fluid and Thermal Dynamics in a Heterogeneous CO2 Plume Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Tianfu Xu

    2017-01-01

    Full Text Available CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve both the energy exploitation and CO2 geological sequestration. The migration pathway and the process of fluid flow within the reservoirs affect significantly a CO2 plume geothermal (CPG system. In this study, we built three-dimensional wellbore-reservoir coupled models using geological and geothermal conditions of Qingshankou Formation in Songliao Basin, China. The performance of the CPG system is evaluated in terms of the temperature, CO2 plume distribution, flow rate of production fluid, heat extraction rate, and storage of CO2. For obtaining a deeper understanding of CO2-geothermal system under realistic conditions, heterogeneity of reservoir’s hydrological properties (in terms of permeability and porosity is taken into account. Due to the fortissimo mobility of CO2, as long as a highly permeable zone exists between the two wells, it is more likely to flow through the highly permeable zone to reach the production well, even though the flow path is longer. The preferential flow shortens circulation time and reduces heat-exchange area, probably leading to early thermal breakthrough, which makes the production fluid temperature decrease rapidly. The analyses of flow dynamics of CO2-water fluid and heat may be useful for future design of a CO2-based geothermal development system.

  6. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  7. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  8. The physico-chemistry of SO2 in the smoke plumes of fossil-fueled power plants

    International Nuclear Information System (INIS)

    Sabroux, Jean-Christophe

    1974-01-01

    An experimental determination was made of the type and speed of chemical-physical transformations occurring in the stack effluents of fossil-fueled power-plants, from their emission into the atmosphere. The homogeneous chemical reactions were taken into consideration, as well as the heterogeneous reactions in the presence of a metal, oxide aerosol or water droplets owed to condensation. The results gave a general indication that the quantitatively important transformations of SO 2 , in a stack plume produced by fuel combustion, took place at the moment of water-vapor condensation; in these conditions the oxidising role of NO 2 became prevailing. (author) [fr

  9. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain

    Science.gov (United States)

    Wang, Zhe; Wang, Weihao; Tham, Yee Jun; Li, Qinyi; Wang, Hao; Wen, Liang; Wang, Xinfeng; Wang, Tao

    2017-10-01

    Dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO2) are key species in nocturnal tropospheric chemistry and have significant effects on particulate nitrate formation and the following day's photochemistry through chlorine radical production and NOx recycling upon photolysis of ClNO2. To better understand the roles of N2O5 and ClNO2 in the high-aerosol-loading environment of northern China, an intensive field study was carried out at a high-altitude site (Mt. Tai, 1465 m a.s.l.) in the North China Plain (NCP) during the summer of 2014. Elevated ClNO2 plumes were frequently observed in the nocturnal residual layer with a maximum mixing ratio of 2.1 ppbv (1 min), whilst N2O5 was typically present at very low levels (coal-fired industry and power plants in the NCP. The heterogeneous N2O5 uptake coefficient (γ) and ClNO2 yield (ϕ) were estimated from steady-state analysis and observed growth rate of ClNO2. The derived γ and ϕ exhibited high variability, with means of 0.061 ± 0.025 and 0.28 ± 0.24, respectively. These values are higher than those derived from previous laboratory and field studies in other regions and cannot be well characterized by model parameterizations. Fast heterogeneous N2O5 reactions dominated the nocturnal NOx loss in the residual layer over this region and contributed to substantial nitrate formation of up to 17 µg m-3. The estimated nocturnal nitrate formation rates ranged from 0.2 to 4.8 µg m-3 h-1 in various plumes, with a mean of 2.2 ± 1.4 µg m-3 h-1. The results demonstrate the significance of heterogeneous N2O5 reactivity and chlorine activation in the NCP, and their unique and universal roles in fine aerosol formation and NOx transformation, and thus their potential impacts on regional haze pollution in northern China.

  10. Interrelation of chemistry and process design in biodiesel manufacturing by heterogeneous catalysis

    NARCIS (Netherlands)

    Dimian, A.C.; Srokol, Z.W.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.

    2010-01-01

    The pros and cons of using heterogeneous catalysis for biodiesel manufacturing are introduced, and explained from a chemistry and engineering viewpoint. Transesterification reactions of various feed types are then compared in batch and continuous process operation modes. The results show that the

  11. Californian forest fire plumes over Southwestern British Columbia: lidar, sunphotometry, and mountaintop chemistry observations

    Directory of Open Access Journals (Sweden)

    I. McKendry

    2011-01-01

    Full Text Available Forest fires in Northern California and Oregon were responsible for two significant regional scale aerosol transport events observed in southern British Columbia during summer 2008. A combination of ground based (CORALNet and satellite (CALIPSO lidar, sunphotometry and high altitude chemistry observations permitted unprecedented characterization of forest fire plume height and mixing as well as description of optical properties and physicochemistry of the aerosol. In southwestern BC, lidar observations show the smoke to be mixed through a layer extending to 5–6 km a.g.l. where the aerosol was confined by an elevated inversion in both cases. Depolarization ratios for a trans-Pacific dust event (providing a basis for comparison and the two smoke events were consistent with observations of dust and smoke events elsewhere and permit discrimination of aerosol events in the region. Based on sunphotometry, the Aerosol Optical Thicknesses (AOT reached maxima of ~0.7 and ~0.4 for the two events respectively. Dubovik-retrieval values of reff, f during both the June/July and August events varied between about 0.13 and 0.15 μm and confirm the dominance of accumulation mode size particles in the forest fire plumes. Both Whistler Peak and Mount Bachelor Observatory data show that smoke events are accompanied by elevated CO and O3 concentrations as well as elevated K+/SO4 ratios. In addition to documenting the meteorology and physic-chemical characteristics of two regional scale biomass burning plumes, this study demonstrates the positive analytical synergies arising from the suite of measurements now in place in the Pacific Northwest, and complemented by satellite borne instruments.

  12. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    Science.gov (United States)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  13. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  14. Aircraft observations of aerosols O{sub 3} and NO{sub y} in a nighttime urban plume

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, C.M.; Zaveri, R.A.; Xindi Bian; Shiyuan Zhong; Disselkamp, R.S.; Laulainen, N.S.; Chapman, E.G. [Pacific Northwest National Lab., Richland, WA (United States)

    2001-05-01

    Nighttime measurements of aerosol surface area, O{sub 3}, NO{sub y} and moisture were made downwind of Portland, Oregon, as part of a study to characterize the chemistry in a nocturnal urban plume. Air parcels sampled within the urban plume soon after sunset had positive correlations between O{sub 3}, relative humidity, NO{sub y} and aerosol number density. However, the air parcels sampled within the urban plume just before dawn had O{sub 3} mixing ratios that were highly anti-correlated with aerosol number density, NO{sub y} and relative humidity. Back-trajectories from a mesoscale model show that both the post-sunset and pre-dawn parcels came from a common maritime source to the northwest of Portland. The pre-dawn parcels with strong anti-correlations passed directly over Portland in contrast to the other parcels that were found to pass west of Portland. Several gas-phase mechanisms and a heterogeneous mechanism involving the loss of O{sub 3} to the aerosol surface, are examined to explain the observed depletion in O{sub 3} within the pre-dawn parcels that had passed over Portland. (Author)

  15. Effect of grid resolution and subgrid assumptions on the model prediction of a reactive buoyant plume under convective conditions

    International Nuclear Information System (INIS)

    Chock, D.P.; Winkler, S.L.; Pu Sun

    2002-01-01

    We have introduced a new and elaborate approach to understand the impact of grid resolution and subgrid chemistry assumption on the grid-model prediction of species concentrations for a system with highly non-homogeneous chemistry - a reactive buoyant plume immediately downwind of the stack in a convective boundary layer. The Parcel-Grid approach plume was used to describe both the air parcel turbulent transport and chemistry. This approach allows an identical transport process for all simulations. It also allows a description of subgrid chemistry. The ambient and plume parcel transport follows the description of Luhar and Britter (Atmos. Environ, 23 (1989) 1911, 26A (1992) 1283). The chemistry follows that of the Carbon-Bond mechanism. Three different grid sizes were considered: fine, medium and coarse, together with three different subgrid chemistry assumptions: micro-scale or individual parcel, tagged-parcel (plume and ambient parcels treated separately), and untagged-parcel (plume and ambient parcels treated indiscriminately). Reducing the subgrid information is not necessarily similar to increasing the model grid size. In our example, increasing the grid size leads to a reduction in the suppression of ozone in the presence of a high-NO x stack plume, and a reduction in the effectiveness of the NO x -inhibition effect. On the other hand, reducing the subgrid information (by using the untagged-parcel assumption) leads to an increase in ozone reduction and an enhancement of the NO x -inhibition effect insofar as the ozone extremum is concerned. (author)

  16. Experiments on Plume Spreading by Engineered Injection and Extraction

    Science.gov (United States)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  17. Modelling of plume chemistry of high flying aircraft with H2 combustion engines

    International Nuclear Information System (INIS)

    Weibring, G.; Zellner, R.

    1993-01-01

    Emissions from hydrogen fueled aircraft engines include large concentrations of radicals such as NO, OH, O and H. We describe the result of modelling studies in which the evolution of the radical chemistry in an expanding and cooling plume for three different mixing velocities is evaluated. The simulations were made for hydrogen combustion engines at an altitude of 26 km. For the fastest mixing conditions, the radical concentrations decrease only because of dilution with the ambient air, since the time for chemical reaction is too short. With lower mixing velocities, however, larger chemical conversions were determined. For the slowest mixing conditions the unburned hydrogen is converted into water. As a consequence the radicals O and OH increase considerably around 1400 K. The only exception being NO, for which no chemical change during the expansion is found. The concentrations of the reservoir molecules like H 2 O 2 , N 2 O 5 or HNO 3 have been calculated to remain relatively small. (orig.)

  18. Lithosphere erosion and continental breakup : Interaction of extension, plume upwelling and melting

    NARCIS (Netherlands)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-01-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by

  19. Microimpact phenomena on Australasian microtektites: Implications for ejecta plume characteristics and lunar surface processes

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    . The microimpacts are a consequence of interparticle collisions within the ejecta plume (as suggested by their chemistry) subsequent to a major impact and, therefore, reveal processes inherent in an impact-generated plume. All the impact phenomena observed here have...

  20. Nuclear thermal rocket plume interactions with spacecraft. Final report

    International Nuclear Information System (INIS)

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-01-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions

  1. Dynamic Data-Driven UAV Network for Plume Characterization

    Science.gov (United States)

    2016-05-23

    AFRL-AFOSR-VA-TR-2016-0203 Dynamic Data-Driven UAV Network for Plume Characterization Kamran Mohseni UNIVERSITY OF FLORIDA Final Report 05/23/2016...AND SUBTITLE Dynamic Data-Driven UAV Network for Plume Characterization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0090 5c.  PROGRAM ELEMENT...studied a dynamic data driven (DDD) approach to operation of a heterogeneous team of unmanned aerial vehicles ( UAVs ) or micro/miniature aerial

  2. Using MOPITT data and a Chemistry and Transport Model to Investigate Injection Height of Plumes from Boreal Forest Fires

    Science.gov (United States)

    Hyer, E. J.; Allen, D. J.; Kasischke, E. S.; Warner, J. X.

    2003-12-01

    Trace gas emissions from boreal forest fires are a significant factor in atmospheric composition and its interannual variability. A number of recent observations of emissions plumes above individual fire events (Fromm and Servranckx, 2003; COBRA 2003; Lamarque et al., 2003; Wotawa and Trainer, 2000) suggest that vertical properties of forest fire emission plumes can be very different from fossil fuel emission plumes. Understanding and constraining the vertical properties of forest fire emission plumes and their injection into the atmosphere during fire events is critical for accurate modeling of atmospheric transport and chemistry. While excellent data have been collected in a handful of experiments on individual fire events, a systematic examination of the range of behavior observed in fire events has been hampered by the scarcity of vertical profiles of atmospheric composition. In this study, we used a high-resolution model of boreal forest fire emissions (Kasischke et al, in review) as input to the Goddard/UM CTM driven by the GEOS-3 DAS, operating at 2 by 2.5 degrees with 35 vertical levels. We modeled atmospheric injection and transport of CO emissions during the fire season of 2000 (May-September). We altered the parameters of the model to simulate a range of scenarios of plume injection, and compared the resulting output to the CO profiles from the MOPITT instrument. The results presented here pertain to the boreal forest, but our methods should be useful for atmospheric modelers hoping to more realistically model transport of emission plumes from biomass burning. References: COBRA2003: see http://www.fas.harvard.edu/~cobra/smoke_canada_030530.pdf Fromm, M. and R. Servranckx, 2003. "Stratospheric Injection of Forest Fire Emissions on August 4, 1998: A Satellite Image Analysis of the Causal Supercell Convection." Geophysical Research Abstracts 5:13118. Kasischke, E.S.; E.J. Hyer, N.H.F. French, A.I. Sukhinin, J.H. Hewson, B.J. Stocks, in review. "Carbon

  3. The Development of a Combined Search for a Heterogeneous Chemistry Database

    Directory of Open Access Journals (Sweden)

    Lulu Jiang

    2015-05-01

    Full Text Available A combined search, which joins a slow molecule structure search with a fast compound property search, results in more accurate search results and has been applied in several chemistry databases. However, the problems of search speed differences and combining the two separate search results are two major challenges. In this paper, two kinds of search strategies, synchronous search and asynchronous search, are proposed to solve these problems in the heterogeneous structure database and the property database found in ChemDB, a chemistry database owned by the Institute of Process Engineering, CAS. Their advantages and disadvantages under different conditions are discussed in detail. Furthermore, we applied these two searches to ChemDB and used them to screen for potential molecules that can work as CO2 absorbents. The results reveal that this combined search discovers reasonable target molecules within an acceptable time frame.

  4. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    Science.gov (United States)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    plume model of the CLIP. The exact form of the secular cooling curve depends on whether the Gorgona komatiites were produced by the Galapagos or another plume. Iceland also exhibits secular cooling, in agreement with previous studies. In general, mantle plumes for LIPS with Paleocene-Permian ages were hotter and melted more extensively than plumes of more modern oceanic islands. This is interpreted to reflect episodic flow from lower mantle domains that are lithologically and geochemically heterogeneous. The majority of lavas from the present-day Galapagos plume formed in a column where melting ended at pressures less than 2 GPa, and this pressure is highly variable. Melting ended at much lower pressures for lavas from the Cocos and Carnegie Ridges, consistent with the channeling of the Galapagos plume to locations of thinner lithosphere. Low pressures of final melting are also inferred for older CLIP lavas, which suggest that the plume head impacted a mid-ocean ridge system.

  5. The EtnaPlumeLab (EPL research cluster: advance the understanding of Mt. Etna plume, from source characterisation to downwind impact

    Directory of Open Access Journals (Sweden)

    Pasquale Sellitto

    2017-01-01

    Full Text Available In 2013, a multidisciplinary research cluster named EtnaPlumeLab (EPL was established, gathering experts from volcanology and atmospheric science communities. Target of EPL is to advance the understanding of Mt. Etna's gas and aerosol emissions and the related processes, from source to its regional climatic impact in the Mediterranean area. Here, we present the cluster and its three interacting modules: EPL-RADIO (Radioactive Aerosols and other source parameters for better atmospheric Dispersion and Impact estimatiOns, SMED (Sulfur MEditerranean Dispersion and Med-SuV (MEDiterranean SUpersite Volcanoes Work Package 5. Preliminary results have for the first time highlighted the relevance of Mt. Etna's plume impact at the Mediterranean regional scale. These results underline that further efforts need to be made to get insight into a synoptic volcanogenic-atmospheric chemistry/climatic understanding of volcanic plumes impact.

  6. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  7. A regional scale model for ozone in the United States with subgrid representation of urban and power plant plumes

    International Nuclear Information System (INIS)

    Sillman, S.; Logan, J.A.; Wofsy, S.C.

    1990-01-01

    A new approach to modeling regional air chemistry is presented for application to industrialized regions such as the continental US. Rural chemistry and transport are simulated using a coarse grid, while chemistry and transport in urban and power plant plumes are represented by detailed subgrid models. Emissions from urban and power plant sources are processed in generalized plumes where chemistry and dilution proceed for 8-12 hours before mixing with air in a large resolution element. A realistic fraction of pollutants reacts under high-NO x conditions, and NO x is removed significantly before dispersal. Results from this model are compared with results from grid odels that do not distinguish plumes and with observational data defining regional ozone distributions. Grid models with coarse resolution are found to artificially disperse NO x over rural areas, therefore overestimating rural levels of both NO x and O 3 . Regional net ozone production is too high in coarse grid models, because production of O 3 is more efficient per molecule of NO x in the low-concentration regime of rural areas than in heavily polluted plumes from major emission sources. Ozone levels simulated by this model are shown to agree with observations in urban plumes and in rural regions. The model reproduces accurately average regional and peak ozone concentrations observed during a 4-day ozone episode. Computational costs for the model are reduced 25-to 100-fold as compared to fine-mesh models

  8. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    Science.gov (United States)

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On transport in formations of large heterogeneity scales

    International Nuclear Information System (INIS)

    Dagan, Gedeon

    1990-01-01

    It has been suggested that in transport through heterogeneous aquifers, the effective dispersivity increases with the travel distance, since plumes encounter heterogeneity of increasing scales. This conclusion is underlain, however, by the assumption of ergodicity. If the plume is viewed as made up of different particles, this means that these particles move independently from a statistical point of view. To satisfy ergodicity the solute body has to be of a much larger extent than heterogeneity scales. Thus, if the latter are increasing for ever and the solute body is finite, ergodicity cannot be obeyed. To demonstrate this thesis we relate to the two-dimensional heterogeneity associated with transmissivity variations in the horizontal plane. First, the effective dispersion coefficient is defined as half the rate of change of the expected value of the solute body second spatial moment relative to its centroid. Subsequently the asymptotic large time limit of dispersivity is evaluated in terms of the log transmissivity integral scale and of the dimensions of the initial solute body in the direction of mean flow and normal to it. It is shown that for a thin plume aligned with the mean flow the effective dispersivity is zero and the effect of heterogeneity is a slight and finite expansion determined solely by the solute body size. In the case of a solute body transverse to the mean flow the effective dispersivity is different from zero, but has a maximal value which is again dependent on the solute body size and not on the heterogeneity scale. It is concluded that from a theoretical standpoint and for the definition of dispersivity adopted here for non-ergodic conditions, the claim of ever-increasing dispersivity with travel distance is not valid for the scale of heterogeneity analyzed here. (Author) (21 refs., 6 figs.)

  10. Integrating wildfire plume rises within atmospheric transport models

    Science.gov (United States)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  11. A study of space shuttle plumes in the lower thermosphere

    Science.gov (United States)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  12. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    Science.gov (United States)

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections

    Science.gov (United States)

    Legrande, Allegra N.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modeling efforts also illustrate the role of water vapor in controlling the chemical evolution, and hence climate impacts, of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.

  14. Session 4: The influence of elementary heterogeneous reforming chemistry within solid-oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Kee, R.J. [Engineering Division, Colorado School of Mines, Golden, CO (United States); Janardhanan, V.M.; Deutschmann, O. [Karlsruhe Univ., Institute for Chemical Technology (Germany); Goodwin, D.G. [Engineering and Applied Science., California Inst. of Technology, Pasadena, CA (United States); Sullivan, N.P. [ITN Energy Systems, Littleton, CO (United States)

    2004-07-01

    In the work presented a computational model is developed that represents the coupled effects of fluid flow in fuel channels, porous media transport and chemistry in the anode, and electrochemistry associated with the membrane-electrode assembly. An important objective is to explore the role of heterogeneous chemistry within the anode. In addition to cell electrical performance the chemistry model predicts important behaviors like catalyst-fouling deposit formation (i.e., coking). The model is applied to investigate alternative fuel-cell operating conditions, including varying fuel flow rates, adding air to the fuel stream, and recirculating exhaust gases. Results include assessments of performance metrics like fuel utilization, cell efficiency, power density, and catalyst coking. The model shows that 'direct electrochemical oxidation' of hydrocarbon fuels in solid-oxide fuel cells can be explained by a process that involves reforming the fuel to H{sub 2}, with hydrogen being the only species responsible for charge exchange. The model can be applied to investigate alternative design and operating conditions, seeking to improve the overall performance. (O.M.)

  15. Using WRF-Chem to investigate the impact of night time nitrate radical chemistry and N2O5 heterogeneous chemistry on the chemical composition of the UK troposphere.

    Science.gov (United States)

    Archer-Nicholls, S.; Lowe, D.; Utembe, S.; McFiggans, G.

    2012-04-01

    It is believed that NO3 is the primary oxidant at night time, significantly impacting ozone formation, rain acidification and the formation and transformation of aerosols, particularly through the formation of the ammonium nitrate particulate (Allan et. al., 2000). However, many of the basic chemical processes controlling the formation and removal of NO3, in particular, the N2O5 heterogeneous reactions, are often not represented in models, although general parameterisations have been developed (c.f. Bertram & Thornton, 2009). The ROle of Night time chemistry in controlling the Oxidising Capacity of the atmOsphere (RONOCO) campaign is a project being funded by NERC and being carried out by a collaboration of UK Universities. It aims to better understand the role of the NO3 radical on the chemistry of the night time atmosphere, its oxidation capacity and thus its overall effects on the composition of the troposphere. The Weather Research and Forecasting model with Chemistry (WRF-Chem) is a state of the art regional climate model with fully coupled online air quality and meteorological components allowing for better resolution of aerosol and gas-phase chemistry (Grell et. al., 2005). It has been extended to include the Common Representative Intermediates scheme (CRIv2-R5) (Watson et. al., 2008), a reduced chemical scheme designed to simulate the atmospheric degradation of 220 species of hydrocarbons and VOCs. The MOSAIC aerosol scheme (Zaveri et. al., 2008), has been extended to include a reduced complexity condensed organic phase consisting of 13 semi-volatile and 2 involatile species (Topping et. al., 2012), as well as the N2O5 heterogeneous reaction scheme of Bertram & Thornton (2009). We aim to use WRF-Chem to compare the oxidation capacity of nighttime NO3 chemistry with that of daytime OH chemistry. The model was run using two nested grids: a 15km resolution domain over western Europe, containing a 5km resolution domain over the UK. The RONOCO campaign consisted

  16. Halogen speciation in volcanic plumes - Development of compact denuder sampling techniques with in-situ derivatization followed by gas chromatography-mass spectrometry and their application at Mt. Etna, Mt. Nyiragongo and Mt. Nyamulagira in 2015.

    Science.gov (United States)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2016-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulfur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometer at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2as an intermediate product. The reaction of HBr to BrO involves heterogeneous reactions involving aerosol particles, while Br2 reacts directly with O3 to form BrO in a UV radiation induced mechanism. Due to the lack of analytical approaches for the species analysis of halogens (HBr, Br2, Br, BrCl, HOBr) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their speciation and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study a gas diffusion denuder sampling method using a 1,3,5-trimethoxybenzene (1,3,5-TMB) coating for the derivatization of reactive halogen species (Rüdiger et al., 2015) was characterized by reaction chamber experiments. The coating proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (such as Br2, BrCl, BrO(H) and BrONO2), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding

  17. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-09-01

    Full Text Available This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made.

  18. Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curaçao

    Science.gov (United States)

    Walker, Richard J.; Storey, Michael; Kerr, Andrew C.; Tarney, John; Arndt, Nicholas T.

    1999-03-01

    Recent work has suggested that the mafic-ultramafic volcanism in evidence throughout portions of the Caribbean, Central America, and northern South America, including the islands of Gorgona and Curaçao, was generated as part of a middle-Cretaceous, large igneous province. New Re-Os isochron results for tholeiitic basalts from Gorgona and Curaçao indicate crystallization ages of 89.2 ± 5.2 and 85.6 ± 8.1 Ma, respectively, consistent with reported Ar ages. The Gorgona ultramafic suite shows a large range in initial Os isotopic composition, with γ Os values ranging from -0.5 to +12.4. This large range reflects isotopic heterogeneities in the mantle source similar to those observed for modern ocean island basalts. In contrast to ocean island basalts, however, Os isotopic compositions do not correlate with variations in Nd, Sr, or Pb isotopic compositions, which are within the range of depleted mid-ocean ridge basalts. The processes that produced these rocks evidently resulted in the decoupling of Os isotopes from the Nd, Sr, and Pb isotopic systems. Picrites from Curaçao have very uniform, chondritic initial Os isotopic compositions, with initial γ Os values ranging only from -0.4 to ±1.4. Basalts from Curaçao, however, define an isochron with a 187Os-enriched initial isotopic composition (γ Os = +9.5). In contrast to the 187Os-enriched ultramafic rocks from Gorgona, the enrichment in these basalts could have resulted from lithospheric contamination. If the Gorgona and Curaçao rocks were derived from the same plume, Os results, combined with Sr, Nd, and Pb data indicate a heterogeneous plume, with multiple compositionally and isotopically distinct domains. The Os isotopic results require derivation of Os from a minimum of two distinct reservoirs, one with a composition very similar to the chondritic average and one with long-term enriched Re/Os. Oceanic crustal recycling has been invoked to explain most of the 187Os enrichments that have been observed in

  19. When the Sun's Away, N2O5 Comes Out to Play: An Updated Analysis of Ambient N2O5 Heterogeneous Chemistry

    Science.gov (United States)

    McDuffie, E. E.; Brown, S. S.

    2017-12-01

    The heterogeneous chemistry of N2O5 impacts the budget of tropospheric oxidants, which directly controls air quality at Earth's surface. The reaction between gas-phase N2O5 and aerosol particles occurs largely at night, and is therefore more important during the less-intensively-studied winter season. Though N2O5-aerosol interactions are vital for the accurate understanding and simulation of tropospheric chemistry and air quality, many uncertainties persist in our understanding of how various environmental factors influence the reaction rate and probability. Quantitative and accurate evaluation of these factors directly improves the predictive capabilities of atmospheric models, used to inform mitigation strategies for wintertime air pollution. In an update to last year's presentation, The Wintertime Fate of N2O5: Observations and Box Model Analysis for the 2015 WINTER Aircraft Campaign, this presentation will focus on recent field results regarding new information about N2O5 heterogeneous chemistry and future research directions.

  20. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts

    Science.gov (United States)

    Arndt, Nicholas T.; Kerr, Andrew C.; Tarney, John

    1997-01-01

    The small Pacific island of Gorgona, off the coast of Colombia, is well known for its spectacular spinifex-textured komatiites. These high-Mg liquids, which have been linked to a late Cretaceous deep mantle plume, are part of a volcanic series with a wide range of trace-element compositions, from moderately enriched basalts ( La/SmN ˜ 1.5) to extremely depleted ultramafic tuffs and picrites ( La/SmN ˜ 0.2). Neither fractional crystallization, nor partial melting of a homogeneous mantle source, can account for this large variation: the source must have been chemically heterogeneous. Low 143Nd/144Nd in the more enriched basalts indicates some initial source heterogeneity but most of the variation in magma compositions is believed to result from dynamic melting during the ascent of a plume. Modelling of major- and trace-element compositions suggests that ultramafic magmas formed at ˜ 60-100 km depth, and that the melt extraction that gave rise to their depleted sources started at still greater depths. The ultra-depleted lavas represent magmas derived directly from the hottest, most depleted parts of the plume; the more abundant moderately depleted basalts are interpreted as the products of pooling of liquids from throughout the melting region.

  1. Total peroxy nitrates and ozone production : analysis of forest fire plumes during BORTAS campaign

    Science.gov (United States)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Lewis, Ally; Parrington, Mark; Palmer, Paul; Dari Salisburgo, Cesare

    2014-05-01

    The goal of this work is to investigate the connection between PNS and ozone within plumes emitted from boreal forest fires and the possible perturbation to oxidant chemistry in the troposphere. During the Aircraft campaign in Canada called BORTAS (summer 2011 ) were carried out several profiles from ground up to 10 km with the BAe-146 aircraft to observe the atmospheric composition inside and outside fire plumes. The BORTAS flights have been selected based on the preliminary studies of 'Plume identification', selecting those effected by Boreal forest fire emissions (CO > 200 ppbv). The FLAMBE fire counts were used concertedly with back trajectory calculations generated by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to locate the sources of Boreal biomass burning.Profiles measured on board the BAe-146 aircraft are used to calculate the productions of PNs and O3 within the biomass burning plume. By selecting the flights that intercept the biomass burning plume, we evaluate the ratio between the ozone production and the PNs production within the plume. Analyzing this ratio it is possible to determine whether O3 production or PNs production is the dominant process in the biomass burning boreal plume detected during BORTAS campaign.

  2. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    Directory of Open Access Journals (Sweden)

    D. Lowe

    2015-02-01

    Full Text Available Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5 heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem model simulations, run with a detailed volatile organic compound (VOC gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.7–0.9 for NO2 and O3. However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6. Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air. Two flights from the campaign were used as test cases – one with low relative humidity (RH (60–70%, the other with high RH (80–90%. N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less

  3. Determination of smoke plume and layer heights using scanning lidar data

    Science.gov (United States)

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Shawn Urbanski; Wei Min Hao

    2009-01-01

    The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt. 48, 2559 (2009)]. In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI...

  4. Heterogenous phase as a mean in combinatorial chemistry

    International Nuclear Information System (INIS)

    Abdel-Hamid, S.G.

    2007-01-01

    Combinatorial chemistry is a rapid and inexpensive technique for the synthesis of hundreds of thousands of organic compounds of potential medicinal activity. In the past few decades a large number of combinatorial libraries have been constructed, and significantly supplement the chemical diversity of the traditional collections of the potentially active medicinal compounds. Solid phase synthesis was used to enrich the combinatorial chemistry libraries, through the use of solid supports (resins) and their modified forms. Most of the new libraries of compounds appeared recently, were synthesized by the use of solid-phase. Solid-phase combinatorial chemistry (SPCC) is now considered as an outstanding branch in pharmaceutical chemistry research and used extensively as a tool for drug discovery within the context of high-throughput chemical synthesis. The best pure libraries synthesized by the use of solid phase combinatorial chemistry (SPCC) may well be those of intermediate complexity that are free of artifact-causing nuisance compounds. (author)

  5. Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires

    International Nuclear Information System (INIS)

    Olsen, K.B.; Wright, C.W.; Veverka, C.; Ball, J.C.; Stevens, R.

    1995-03-01

    Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 x 10 6 barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ''super'' plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed

  6. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  7. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-11-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  8. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    NARCIS (Netherlands)

    Kim, S.-W.; McKeen, S.A.; Frost, G.J.; Lee, S.-H.; Trainer, M.; Richter, A.; Angevine, W. M.; Atlas, E.; Bianco, L.; Boersma, K.F.; Brioude, J.; Burrow, J.P.; Gouw, de J.; Fried, A.; Gleason, J.F.; Hilboll, A.; Mellqvist, J.; Peischl, J.; Richter, D.; Rivera, C.; Ryerson, T.; Lintel Hekkert, te L.; Walega, J.; Warneke, C.; Weibring, P.; Williams, E.

    2011-01-01

    Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem) model with input from the US EPA's 2005 National

  9. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  10. Wildland fire emissions, carbon, and climate: Plume rise, atmospheric transport, and chemistry processes

    Science.gov (United States)

    Warren Heilman; Yongqiang Liu; Shawn Urbanski; Vladimir Kovalev; Robert Mickler

    2014-01-01

    This paper provides an overview and summary of the current state of knowledge regarding critical atmospheric processes that affect the distribution and concentrations of greenhouse gases and aerosols emitted from wildland fires or produced through subsequent chemical reactions in the atmosphere. These critical atmospheric processes include the dynamics of plume rise,...

  11. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    Science.gov (United States)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  12. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation.

    Science.gov (United States)

    Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D

    2010-10-21

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.

  13. Thermal History of CBb Chondrules and Cooling Rate Distributions of Ejecta Plumes

    Science.gov (United States)

    Hewins, R. H.; Condie, C.; Morris, M.; Richardson, M. L. A.; Ouellette, N.; Metcalf, M.

    2018-03-01

    It has been proposed that some meteorites, CB and CH chondrites, contain material formed as a result of a protoplanetary collision during accretion. Their melt droplets (chondrules) and FeNi metal are proposed to have formed by evaporation and condensation in the resulting impact plume. We observe that the skeletal olivine (SO) chondrules in CBb chondrites have a blebby texture and an enrichment in refractory elements not found in normal chondrules. Because the texture requires complete melting, their maximum liquidus temperature of 1928 K represents a minimum temperature for the putative plume. Dynamic crystallization experiments show that the SO texture can be created only by brief reheating episodes during crystallization, giving a partial dissolution of olivine. The ejecta plume formed in a smoothed particle hydrodynamics simulation served as the basis for 3D modeling with the adaptive mesh refinement code FLASH4.3. Tracer particles that move with the fluid cells are used to measure the in situ cooling rates. Their cooling rates are ∼10,000 K hr‑1 briefly at peak temperature and, in the densest regions of the plume, ∼100 K hr‑1 for 1400–1600 K. A small fraction of cells is seen to be heating at any one time, with heating spikes explained by the compression of parcels of gas in a heterogeneous patchy plume. These temperature fluctuations are comparable to those required in crystallization experiments. For the first time, we find an agreement between experiments and models that supports the plume model specifically for the formation of CBb chondrules.

  14. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing...... concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed...... by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic...

  15. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources.

    Science.gov (United States)

    Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H

    2013-01-15

    On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Eruption Conditions of Pele Volcano on Io Inferred from Chemistry of Its Volcanic Plume

    Science.gov (United States)

    Zolotov, M. Yu.; Fegley, B., Jr.

    2000-01-01

    We used thermodynamic models and HST observations of Pele plume to calculate the temperature (1430 K) and oxidation state (log fO2 = -11.7) of volcanic gases and magmas of Pele. Our estimated vent pressure is 10(exp -3) to 10(exp -5) bars.

  17. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  18. The Biogeochemistry of Contaminant Groundwater Plumes Arising from Waste Disposal Facilities

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Albrechtsen, Hans-Jørgen; Kjeldsen, Peter

    2014-01-01

    Landfills with solid waste are abundant sources of groundwater pollution all over the world. Old uncontrolled municipal landfills are often large, heterogeneous sources with demolition waste, minor fractions of commercial or industrial waste, and organic waste from households. Strongly anaerobic...... leachate with a high content of dissolved organic carbon, salts, and ammonium, as well as specific organic compounds and metals is released from the waste for decades or centuries. Landfill leachate plume hosts a variety of biogeochemical processes, which is the key to understand the significant potential...... and the literature are the following: (1) Local hydrogeological conditions in the landfill area may affect the spreading of the contaminants; (2) investigations of landfill leachate plumes in geologic settings with clayey till deposits and fractured consolidated sediments are lacking; (3) the size of the landfill...

  19. Entrainment by turbulent plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2017-11-01

    Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.

  20. Background Radiance Estimation for Gas Plume Quantification for Airborne Hyperspectral Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Ramzi Idoughi

    2016-01-01

    Full Text Available Hyperspectral imaging in the long-wave infrared (LWIR is a mean that is proving its worth in the characterization of gaseous effluent. Indeed the spectral and spatial resolution of acquisition instruments is steadily decreasing, making the gases characterization increasingly easy in the LWIR domain. The majority of literature algorithms exploit the plume contribution to the radiance corresponding to the difference of radiance between the plume-present and plume-absent pixels. Nevertheless, the off-plume radiance is unobservable using a single image. In this paper, we propose a new method to retrieve trace gas concentration from airborne infrared hyperspectral data. More particularly the outlined method improves the existing background radiance estimation approach to deal with heterogeneous scenes corresponding to industrial scenes. It consists in performing a classification of the scene and then applying a principal components analysis based method to estimate the background radiance on each cluster stemming from the classification. In order to determine the contribution of the classification to the background radiance estimation, we compared the two approaches on synthetic data and Telops Fourier Transform Spectrometer (FTS Imaging Hyper-Cam LW airborne acquisition above ethylene release. We finally show ethylene retrieved concentration map and estimate flow rate of the ethylene release.

  1. Ion Formation Resulting from Freezing, Thawing, and Collisional Processes in Plumes Emitted from Planetary Bodies: Implications for Plume Chemistry and the Detection of Trace Organics Present in Enceladus Geysers

    Science.gov (United States)

    Beauchamp, J. L.; Wiley, J. S.; Thomas, D. A.

    2014-12-01

    Icy plumes emitted into space from Enceladus and other planetary bodies offer the intriguing possibility of sampling the composition of subsurface liquid reservoirs that may comprise habitable zones of particular astrobiological significance in our solar system. Mass spectrometric sampling of plume materials enables the detection of molecules that facilitate an assessment of the extent of chemical and biological evolution that may have occurred in a subsurface sea. In laboratory experiments we have investigated the physical and chemical processes that occur in the complex plume environment that lead to ionization of trace organic constituents, both as a result of the freezing of liquid droplets and the thawing of icy particles. We also demonstrate that collisions between icy particles lead to triboelectric charging. Subsequent discharges between oppositely charged particles result not only in the ionization of trace organics but to chemical reactions between molecular components present in the particles. For example, nitriles react with water to form amides and acids. In particular, icy particles doped with small amounts of aminoacetonitrile and water lead to the formation of the simplest amino acid glycine. The implications which these observations may have for sampling plume composition from orbit in a future mission to Enceladus will be discussed.

  2. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  3. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T F; Wennberg, P O; Cohen, R C; Anderson, J G [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D W; Keim, E R; Gao, R S; Wamsley, R C; Donnelly, S G; Del Negro, L A [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; others, and

    1998-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  4. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T.F.; Wennberg, P.O.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D.W.; Keim, E.R.; Gao, R.S.; Wamsley, R.C.; Donnelly, S.G.; Del Negro, L.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  5. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  6. IR sensor design insight from missile-plume prediction models

    Science.gov (United States)

    Rapanotti, John L.; Gilbert, Bruno; Richer, Guy; Stowe, Robert

    2002-08-01

    Modern anti-tank missiles and the requirement of rapid deployment have significantly reduced the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. An analysis of missile propellants suggests that missile detection based on plume characteristics alone may be more difficult than anticipated. Currently, the passive detection of missiles depends on signatures with a significant ultraviolet component. This approach is effective in detecting anti-aircraft missiles that rely on powerful motors to pursue high-speed aircraft. The high temperature exhaust from these missiles contains significant levels of carbon dioxide, water and, often, metal oxides such as alumina. The plumes emits strongest in the infrared, 1 to 5micrometers , regions with a significant component of the signature extending into the ultraviolet domain. Many anti-tank missiles do not need the same level of propulsion and radiate significantly less. These low velocity missiles, relying on the destructive force of shaped-charge warhead, are more difficult to detect. There is virtually no ultraviolet component and detection based on UV sensors is impractical. The transition in missile detection from UV to IR is reasonable, based on trends in imaging technology, but from the analysis presented in this paper even IR imagers may have difficulty in detecting missile plumes. This suggests that the emphasis should be placed in the detection of the missile hard body in the longer wavelengths of 8 to 12micrometers . The analysis described in this paper is based on solution of the governing equations of plume physics and chemistry. These models will be used to develop better sensors and threat detection algorithms.

  7. Ion binding by humic and fulvic acids: A computational procedure based on functional site heterogeneity and the physical chemistry of polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.; Mathuthu, A.

    1988-04-01

    Ion binding equilibria for humic and fulvic acids are examined from the point of view of functional site heterogeneity and the physical chemistry of polyelectrolyte solutions. A detailed explanation of the potentiometric properties of synthetic polyelectrolytes and ion-exchange gels is presented first to provide the basis for a parallel consideration of the potentiometric properties exhibited by humic and fulvic acids. The treatment is then extended to account for functional site heterogeneity. Sample results are presented for analysis of the ion-binding reactions of a standard soil fulvic acid (Armadale Horizons Bh) with this approach to test its capability for anticipation of metal ion removal from solution. The ultimate refined model is shown to be adaptable, after appropriate consideration of the heterogeneity and polyelectrolyte factors, to programming already available for the consideration of ion binding by inorganics in natural waters. (orig.)

  8. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers

    Science.gov (United States)

    Pedretti, Daniele; Masetti, Marco; Beretta, Giovanni Pietro

    2017-10-01

    The expected long-term efficiency of vertical cutoff walls coupled to pump-and-treat technologies to contain solute plumes in highly heterogeneous aquifers was analyzed. A well-characterized case study in Italy, with a hydrogeological database of 471 results from hydraulic tests performed on the aquifer and the surrounding 2-km-long cement-bentonite (CB) walls, was used to build a conceptual model and assess a representative remediation site adopting coupled technologies. In the studied area, the aquifer hydraulic conductivity Ka [m/d] is log-normally distributed with mean E (Ya) = 0.32 , variance σYa2 = 6.36 (Ya = lnKa) and spatial correlation well described by an exponential isotropic variogram with integral scale less than 1/12 the domain size. The hardened CB wall's hydraulic conductivity, Kw [m/d], displayed strong scaling effects and a lognormal distribution with mean E (Yw) = - 3.43 and σYw2 = 0.53 (Yw =log10Kw). No spatial correlation of Kw was detected. Using this information, conservative transport was simulated across a CB wall in spatially correlated 1-D random Ya fields within a numerical Monte Carlo framework. Multiple scenarios representing different Kw values were tested. A continuous solute source with known concentration and deterministic drains' discharge rates were assumed. The efficiency of the confining system was measured by the probability of exceedance of concentration over a threshold (C∗) at a control section 10 years after the initial solute release. It was found that the stronger the aquifer heterogeneity, the higher the expected efficiency of the confinement system and the lower the likelihood of aquifer pollution. This behavior can be explained because, for the analyzed aquifer conditions, a lower Ka generates more pronounced drawdown in the water table in the proximity of the drain and consequently a higher advective flux towards the confined area, which counteracts diffusive fluxes across the walls. Thus, a higher σYa2 results

  9. 3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Lesmes, D.; Morgan, F.D.; Rodi, W.

    1998-01-01

    'The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are: (1) understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations; (2) developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field; (3) developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties. The authors laboratory experiments to date are described in Appendices A and B, which consist of two papers submitted to the annual SAGEEP conference (Frye et al., 1998; Sturrock et al., 1998). The experiments involved measurements of complex resistivity vs. frequency on a suite of brine saturated sandstone samples. In one set of experiments, the fluid chemistry (pH, ionic strength, and cation type) was varied. In a second set of experiments, the microgeometry of the rock matrix was varied. The experiments showed that spectral IP responses are sensitive to subtle variations in both the solution chemistry and rock microgeometry. The results demonstrate that spectral IP responses have the potential of being sensitive indicators of in-situ chemistry and microgeometry, the latter of which may be related to the hydraulic properties. Data Acquisition The authors have been looking in some detail at the effects of electromagnetic coupling and how to practically deal with it. In this area, the results to date are summarized in Vandiver (1998). The progress in the development of modeling and inversion algorithms for IP is described in Appendix C, a paper submitted to the

  10. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  11. Simulation of Mexico City plumes during the MIRAGE-Mex field campaign using the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    X. Tie

    2009-07-01

    Full Text Available The quantification of tropospheric O3 production in the downwind of the Mexico City plume is a major objective of the MIRAGE-Mex field campaign. We used a regional chemistry-transport model (WRF-Chem to predict the distribution of O3 and its precursors in Mexico City and the surrounding region during March 2006, and compared the model with in-situ aircraft measurements of O3, CO, VOCs, NOx, and NOy concentrations. The comparison shows that the model is capable of capturing the timing and location of the measured city plumes, and the calculated variability along the flights is generally consistent with the measured results, showing a rapid increase in O3 and its precursors when city plumes are detected. However, there are some notable differences between the calculated and measured values, suggesting that, during transport from the surface of the city to the outflow plume, ozone mixing ratios are underestimated by about 0–25% during different flights. The calculated O3-NOx, O3-CO, and O3-NOz correlations generally agree with the measured values, and the analyses of these correlations suggest that photochemical O3 production continues in the plume downwind of the city (aged plume, adding to the O3 already produced in the city and exported with the plume. The model is also used to quantify the contributions to OH reactivity from various compounds in the aged plume. This analysis suggests that oxygenated organics (OVOCs have the highest OH reactivity and play important roles for the O3 production in the aging plume. Furthermore, O3 production per NOx molecule consumed (O3 production efficiency is more efficient in the aged plume than in the young plume near the city. The major contributor to the high O3 production efficiency in the aged plume is the

  12. The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from a coal fired power plant

    International Nuclear Information System (INIS)

    Newman, L.; Forrest, J.; Manowitz, B.

    1975-01-01

    The extent of oxidation of sulfur dioxide to sulfate in the plume of a coal fired plant has been studied by using sampling with a single engine aircraft. A technique employing isotopic ratio measurements was utilized in conjunction with simultaneous concentration measurements of sulfur dioxide and sulfate. The use of sulfur hexafluroide as a conservative tracer was explored. The heterogeneous mechanism postulated in an oil fired plume study appears to pertain to the coal fired plume. However, the extent of oxidation seldom exceeded 5% and is limited by the relatively low particulate content of the coal fired plume. Evidence is presented for the apparent dropping out of sulfate from the plume. Implications pertaining to the ambient oxidation of sulfur dioxide are presented. (author)

  13. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones.

    Science.gov (United States)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  14. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones

    Science.gov (United States)

    Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.

    2018-04-01

    Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of

  15. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  16. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  17. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  18. Measurements at cooling tower plumes. Part 3. Three-dimensional measurements at cooling tower plumes

    International Nuclear Information System (INIS)

    Fortak, H.

    An extended field experiment is described in which cooling tower plumes were studied by means of three-dimensional in situ measurements. The goal was to obtain input data for numerical models of cooling tower plumes. Of special interest were data for testing or developing assumptions for sub-grid parametrizations. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station Neurath and also two (1975) at the single cooling tower of the RWE power station Meppen. Because of the broad spectrum of weather situations it can be assumed that the results are representative with regard to the interrelationship between structure of cooling tower plume and large-scale meteorological situation. A large number of flights with a powered glider crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapor pressure. Therefore, a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the boundary, which could be defined by the mentioned jumps of temperature and vapor pressure, a maximum of downward vertical motion could be observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. High-resolution aerology is necessary in order to explain the structure and behavior of such plumes. This is especially the case in investigations regarding the dynamic break-through of temperature inversions. Such cases were observed frequently under various meteorological conditions and are described

  19. On predicting mantle mushroom plumes

    Directory of Open Access Journals (Sweden)

    Ka-Kheng Tan

    2011-04-01

    Top cooling may produce plunging plumes of diameter of 585 km and at least 195 Myr old. The number of cold plumes is estimated to be 569, which has not been observed by seismic tomography or as cold spots. The cold plunging plumes may overwhelm and entrap some of the hot rising plumes from CMB, so that together they may settle in the transition zone.

  20. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River

    Science.gov (United States)

    Tseng, Y.-F.; Lin, J.; Dai, M.; Kao, S.-J.

    2014-01-01

    The Changjiang (Yangtze) River discharges vast amount of unbalanced nutrients (dissolved inorganic nitrogen and phosphorus with N / P ratio > 80 in general) into the East China Sea in summer. To study nutrient dynamics and P-stress potential for phytoplankton, a cruise was conducted in the Changjiang plume during summer 2011. With 3-D observations of nutrients, chlorophyll a (Chl a), and bulk alkaline phosphatase activity (APA), we concluded that the Changjiang Diluted Water and coastal upwelling significantly influenced the horizontal and vertical heterogeneities of phytoplankton P deficiency in the Changjiang plume. Allochthonous APA was detected at nutrient-enriched freshwater end. Excessive N (~ 10 to 112 μM) was observed throughout the entire plume surface. In the plume fringe featuring stratification and excess N, diapycnal phosphate supply was blocked and phytoplankton APA was stimulated for growth. We observed an upwelling just attaching to the turbidity front at seaward side where Chl a peaked yet much less APA was detected. An external phosphate supply from subsurface, which promoted phytoplankton growth but inhibited APA, was suggested to be sourced from the Nearshore Kuroshio Branch Current. In the so hydrographically complicated Changjiang plume, phosphate supply instead of its concentration may be more important in determining the expression of APA. Meanwhile, allochthonous APA may also alter the usefulness of APA as a P-stress indicator.

  1. Effect of Anisotropy Structure on Plume Entropy and Reactive Mixing in Helical Flows

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Lu, Chunhui

    2018-01-01

    Plume dilution and reactive mixing can be considerably enhanced by helical flows occurring in three-dimensional anisotropic porous media. In this study, we perform conservative and reactive transport simulations considering different anisotropy structures of a single inclusion with the objective...... of exploring the effect of the inclusion’s geometry and orientation on the patterns of twisted streamlines and on the overall dilution and reaction of solute plumes. We analyzed 100 different scenarios by varying key parameters such as the angle of the anisotropic structures with respect to the average flow...... velocity, the spacing between alternated heterogeneous zones of coarse and fine materials, the permeability contrast between such matrices, and the magnitude of the seepage velocity. Entropy conservation equations and entropy-based metrics for both conservative and reactive species were adopted to quantify...

  2. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  3. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  4. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... above a point heat source cannot be used. This is caused either by the way of generating the plume including a long intermediate region or by the environmental conditions where vertical temperature gradients are present. The flow has a larger angle of spread and the entrainment factor is greather than...... turbulent plumes from different heated bodies are investigated. The measurements have taken place in a full-scale test room where the vertical temperature gradient have been changed. The velocity and the temperature distribution in the plume are measured. Large scale plume axis wandering is taken...

  5. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift

    Directory of Open Access Journals (Sweden)

    Alexander Koptev

    2016-03-01

    Full Text Available The East African Rift system (EARS provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rift, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plume-lithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western and magmatic (eastern branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to

  6. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  7. Microbiology, Redox and Contaminat Fate in the Grindsted Landfill Leachate Plume - A Summary of 25 Years of work

    Science.gov (United States)

    Christensen, T. H.

    2001-05-01

    The contamination by leachate of the upper aquifer at the Grindsted Landfill (Denmark) stretches about 300 m downgradient from the landfill. The plume has been described with respect to water chemistry, sediment chemistry, pollutant distribution, microbial counts, PLFA and redox rates determined by unamended bioassays. This presentation summaries the findings and discusses unanswered questions. The landfill was active from 1930 to the mid 1970 and has no engineered leachate collection system. Leachate from municipal as well as from industrial waste has entered the aquifer for more than thirty years. The redox conditions change from strongly anaerobic (methanogenic, sulfate reducing, iron reducing) close to the landfill over manganese reduction and denitrification to aerobic conditions in the outskirts of the plume The redox conditions were determined from groundwater sample composition, hydrogen concentrations and sediment chemistry. The plume showed strong attenuation of aromatic compounds within the first 100 m downgradient of the landfill. Degradation experiments (batch, in-situ testers, long term field injection experiments) could not fully document degradation of all the compounds. MPN-measurements of methanogens, sulfate-reducers, iron-reducers, manganese-reducers and denitrifiers showed abundance of all groups with a slight trend with the redox conditions. PLFA measurements did not provide much insight into the microbial populations of the plume, but confirmed some previous observations. Bioassays gave estimates of the rates of the various redox processes, but showed for some samples more simultaneous redox processes. More than 25 years of work has been put into the Grindsted Landfill leachate plume. References Bjerg, P.L., Rugge, K., Cortsen, J., Nielsen, P.H. & Christensen, T.H. (1999): Degradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted Landfill leachate plume: In situ microcosm and laboratory batch

  8. Heterogeneous continuous-time random walks

    Science.gov (United States)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  9. Heterogeneous catalysis: on bathroom mirrors and boiling stones

    NARCIS (Netherlands)

    Philipse, A.P.

    2011-01-01

    A catalyst is defined as a substance that accelerates a process without undergoing a net change due to that process. Most chemistry students learn about catalysts in the context of chemical reactions, such as the enzymes in biochemistry or the heterogeneous metal catalysts in inorganic chemistry (1,

  10. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S R

    1976-01-01

    A one-dimensional numerical cloud growth model and several empirical models for plume rise and cloud growth are compared with twenty-seven sets of observations of cooling tower plumes from the 2900 MW John E. Amos power plant in West Virginia. The three natural draft cooling towers are 200 m apart. In a cross wind, the plumes begin to merge at a distance of about 500 m downwind. In calm conditions, with reduced entrainment, the plumes often do not merge until heights of 1000 m. The average plume rise, 750 m, is predicted well by the models, but day-to-day variations are simulated with a correlation coefficient of about 0.5. Model predictions of visible plume length agree, on the average, with observations for visible plumes of short to moderate length (less than about 1 km). The prediction of longer plumes is hampered by our lack of knowledge of plume spreading after the plumes level off. Cloud water concentrations predicted by the numerical model agree with those measured in natural cumulus clouds (about 0.1 to 1 g kg/sup -1/).

  11. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  12. Study of the mixing and ageing of polluted plumes from major West Africa cities

    Science.gov (United States)

    Tocquer, Flore; Mari, Céline; Leriche, Maud; Dacciwa Team

    2017-04-01

    Massive economic and population growth, fast urbanization in megacities along the Guinea Coast, would triple anthropogenic emissions by 2030 (Knippertz et al., 2015). Impacts of the rapid increase of atmospheric pollutants on weather and climate in this region are largely unstudied due to a lack of observations. The DACCIWA (Dynamics-aerosol-chemistry-cloud interactions in West Africa) project carried out an important airborne measurements campaign in June-July 2016 together with ground-based observations in urban and remote sites. Urban and industrial, biogenic dominated environment, dust and biomass burning air masses, ship plumes and flaring emissions were sampled successfully. The goal of this work is to investigate the transport and ageing of anthropogenic emissions from major West African megacities during boreal summer. For this purpose, the coupled atmosphere-chemistry mesoscale model Méso-NH was run at kilometric scale and results were compared with in-situ meteorological and chemical data. The study focuses on 06-07-08 July 2016. Three research aircrafts operated over the coastal region sampling downwind pollution from Lomé and Accra and biogenic emissions further inland. Preliminary simulation results will be presented to understand the mixing between and ageing of cities plumes during the post-onset period of the campaign.

  13. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  14. Flow of miscible and immiscible hydrocarbons in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.B.

    1996-12-31

    A series of large-scale two-dimensional physical model studies has been carried out in order to better understand and predict the multiphase flow of hydrocarbon contaminants and the release of the water-soluble fraction of such contaminants into the groundwater stream. The detailed measurements of the fluid saturations within the bulk hydrocarbon plume as well as the aqueous concentrations recorded downstream should provide a useful data set for testing and improving numerical models of both multiphase flow and transport. Predictions of a numerical model of immiscible multiphase flow developed in the petroleum industry were found to compare favourably with the observed oil plume for the case of an immiscible oil spill. Nevertheless, subtle layering within the experimental flume altered the long-term development of the oil plume in a manner not predicted by the numerical model. A stochastic model for three-dimensional, two-phase incompressible flow in heterogeneous soil and rock formations is developed. Analytical solutions for the resulting stochastic differential equations are derived for asymptotic flows using a perturbation approach. These solutions were used to derive general expressions for the large-scale (effective) properties for large-scale two-phase flow in porous media. An important observation from this analysis is that general large-scale flow in heterogeneous soils cannot be predicted on the basis of simple averages of the soil hydraulic properties alone. The large-scale capillary pressure saturation relation is evaluated for imbibition into a wet soil or rock formation. (EG) 194 refs.

  15. Flow of miscible and immiscible hydrocarbons in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M B

    1997-12-31

    A series of large-scale two-dimensional physical model studies has been carried out in order to better understand and predict the multiphase flow of hydrocarbon contaminants and the release of the water-soluble fraction of such contaminants into the groundwater stream. The detailed measurements of the fluid saturations within the bulk hydrocarbon plume as well as the aqueous concentrations recorded downstream should provide a useful data set for testing and improving numerical models of both multiphase flow and transport. Predictions of a numerical model of immiscible multiphase flow developed in the petroleum industry were found to compare favourably with the observed oil plume for the case of an immiscible oil spill. Nevertheless, subtle layering within the experimental flume altered the long-term development of the oil plume in a manner not predicted by the numerical model. A stochastic model for three-dimensional, two-phase incompressible flow in heterogeneous soil and rock formations is developed. Analytical solutions for the resulting stochastic differential equations are derived for asymptotic flows using a perturbation approach. These solutions were used to derive general expressions for the large-scale (effective) properties for large-scale two-phase flow in porous media. An important observation from this analysis is that general large-scale flow in heterogeneous soils cannot be predicted on the basis of simple averages of the soil hydraulic properties alone. The large-scale capillary pressure saturation relation is evaluated for imbibition into a wet soil or rock formation. (EG) 194 refs.

  16. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  17. The planet beyond the plume hypothesis

    Science.gov (United States)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction

  18. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  19. Early episodes of high-pressure core formation preserved in plume mantle

    Science.gov (United States)

    Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei

    2018-01-01

    The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the mantle that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the mantle. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of mantle that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of mantle could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of mantle involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient mantle. This would aid the long-term preservation of these mantle portions, and potentially points to their modern manifestation within seismically slow, deep mantle reservoirs with high 3He/4He ratios.

  20. Plume rise from multiple sources

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  1. Analysis of the Coupled Influence of Hydraulic Conductivity and Porosity Heterogeneity on Probabilistic Risk Analysis

    Science.gov (United States)

    Libera, A.; Henri, C.; de Barros, F.

    2017-12-01

    Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.

  2. Project Opalinus Clay: Sorption Data Bases For Opalinus Clay Influenced By A High pH Plume

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H.; Baeyens, B

    2004-11-01

    The interaction of groundwater with the large quantities of cement/concrete used in the construction and backfilling of emplacement tunnels containing long-lived intermediate level radioactive waste may give rise to the release of a pulse of hyper alkaline fluid (pH plume) into the surrounding rock. Since the pH of this plume could remain in excess of 12.5 for tens of thousands of years, many minerals in a sedimentary host rock would be unstable leading to dissolution reactions, secondary mineral precipitation and changes in groundwater chemistry. An Opalinus day formation in the Zuercher Weinland, is under consideration by Nagra as a potential host rock for a repository of spent fuel (SF), vitrified high-level waste (HLW) from reprocessing of spent fuel and long-lived intermediate-Ievel radioactive waste (ILW). The purpose of this report is to assess the effects of the interactions between a pH plume and Opalinus day on the sorption properties of the formation and to provide appropriate sorption data bases. (author)

  3. Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region

    International Nuclear Information System (INIS)

    Xu Xinhua; Wang Shengwei; Ma Zhenjun

    2008-01-01

    Hong Kong is a typical subtropical region with frequently high humidity in late spring and summer seasons. Plume from evaporative cooling towers, which service air-conditioning systems of civil buildings, has aroused public concerns since 2000 when the fresh water evaporative cooling towers were allowed to be used for high energy efficiency and environmental issues. This paper presents the evaluation of the plume potential and its effect on the sizing of the plume abatement system in a large commercial office building in Hong Kong for practical application. This evaluation was conducted based on a dynamic simulation platform using the typical meteorological year of Hong Kong since the occurrence of the plume heavily depends on the state conditions of the exhaust air from cooling towers and the ambient air, while the state condition of the exhaust air is determined by the total building cooling load and the control strategies of cooling towers employed mainly for improving energy efficiency. The results show that the control strategies have a significant effect on the plume potential and further affect the system design and sizing of the plume abatement system

  4. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Sanjay [Univ. of Texas, Austin, TX (United States)

    2014-09-30

    In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were

  5. Is the track of the Yellowstone hotspot driven by a deep mantle plume? -- Review of volcanism, faulting, and uplift in light of new data

    Science.gov (United States)

    Pierce, Kenneth L.; Morgan, Lisa A.

    2009-01-01

    Geophysical imaging of a tilted mantle plume extending at least 500 km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17 Ma with eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle–plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River–Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14 Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely "scraped off" the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~ 250 km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62 km/m.y. from 17 to 10 Ma, compared to the rate of ~ 25 km/m.y. from 10 to 2 Ma.

  6. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    Science.gov (United States)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    New Orleans endured flooding on a massive scale subsequent to Hurricane Katrina in August of 2005. Contaminant plumes were noticeable in satellite images of the city in the days following flooding. Many of these plumes were caused by oil, gasoline, and diesel that leaked from inundated vehicles, gas stations, and refineries. News reports also suggested that the flood waters were contaminated with sewage from breached pipes. Effluent plumes such as these pose a potential health hazard to humans and wildlife in the aftermath of hurricanes and potentially from other catastrophic events (e.g., earthquakes, shipping accidents, chemical spills, and terrorist attacks). While the extent of effluent plumes can be gauged with synthetic aperture radar and broad- band visible-infrared images (Rykhus, 2005) (e.g., Radarsat and Landsat ETM+) the composition of the plumes could not be determined. These instruments lack the spectral resolution necessary to do chemical identification. Imaging spectroscopy may help solve this problem. Over 60 flight lines of NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected over New Orleans, the Mississippi Delta, and the Gulf Coast from one to two weeks after Katrina while the contaminated water was being pumped out of flooded areas. These data provide a unique opportunity to test if imaging spectrometer data can be used to identify the chemistry of these flood-related plumes. Many chemicals have unique spectral signatures in the ultraviolet to near-infrared range (0.2 - 2.5 microns) that can be used as fingerprints for their identification. We are particularly interested in detecting thin films of oil, gasoline, diesel, and raw sewage suspended on or in water. If these materials can be successfully differentiated in the lab then we will use spectral-shape matching algorithms to look for their spectral signatures in the AVIRIS data collected over New Orleans and other areas impacted by Katrina. If imaging spectroscopy

  7. The Alberta smoke plume observation study

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2018-02-01

    Full Text Available A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS. Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018 at http://cwfis.cfs.nrcan.gc.ca/datamart.

  8. The Alberta smoke plume observation study

    Science.gov (United States)

    Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly

    2018-02-01

    A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.

  9. Field study of macrodispersion in a heterogeneous aquifer. I

    International Nuclear Information System (INIS)

    Boggs, J.M.; Young, S.C.; Waldrop, W.R.; Gelhar, L.W.; Adams, E.E.; Rehfeldt, K.R.

    1990-01-01

    A large-scale natural gradient tracer experiment has been conducted at a field site located at Columbus Air Force Base in northeastern Mississippi. The alluvial aquifer at the test site is composed of lenticular deposits of sand, gravel, silt and clay, and is quite heterogeneous with respect to its hydraulic properties. Ten cubic meters of a solution containing bromide and three organic tracers (pentafluorobenzoic acid, o-trifluoromethylbenzoic acid, and 2,6-difluorobenzoic acid) were injected into the aquifer at a uniform rate over a period of two days. The tracer plume was subsequently monitored in three dimensions over a 20-month period using a network of 258 multilevel sampling wells. The tracer concentration distribution of the plume at the conclusion of the experiment was highly asymmetric in the longitudinal direction. The peak tracer concentration was located only 7 m from the injection point, while the advancing side of the plume extended downgradient a distance of more than 260 m. The extreme skewness of the plume was caused by large scale spatial variations in the mean groundwater velocity along the plume travel path produced by the approximate two order-of-magnitude increase in the mean hydraulic conductivity between the near-field and far-field regions of the experimental site. The tracer mass balance during the experiment showed a declining trend between sampling events with approximately 50 percent of the injected tracer mass unaccounted for at the end of the experiment. Laboratory column experiments indicated that approximately 20 percent of the tracer mass was adsorbed to the aquifer matrix. The remaining 30 percent of the missing tracer mass was attributed to incomplete sampling coverage of the plume, particularly on the advancing side, and to a sampling bias produced by the multilevel samplers. (Author) (17 refs., 3 tabs., 11 figs.)

  10. Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry

    Science.gov (United States)

    Young, Mark A.

    2009-01-01

    Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…

  11. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  12. Liquid Booster Module (LBM) plume flowfield model

    Science.gov (United States)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  13. Complex plume dynamics in the transition zone underneath the Hawaii hotspot: seismic imaging results

    Science.gov (United States)

    Cao, Q.; van der Hilst, R. D.; de Hoop, M. V.; Shim, S.

    2010-12-01

    In recent years, progress has been made in seismology to constrain the depth variations of the transition zone discontinuities, e.g. 410 km and 660 km discontinuities, which can be used to constrain the local temperature and chemistry profiles, and hence to infer the existences and morphology of mantle plumes. Taking advantage of the abundance of natural earthquake sources in western Pacific subduction zones and the many seismograph stations in the Americas, we used a generalized Radon transform (GRT), a high resolution inverse-scattering technique, of SS precursors to form 3-D images of the transition zone structures of a 30 degree by 40 degree area underneath Hawaii and the Hawaii-Emperor seamount chain. Rather than a simple mushroom-shape plume, our seismic images suggest complex plume dynamics interacting with the transition zone phase transitions, especially at the 660’ discontinuity. A conspicuous uplift of the 660 discontinuity in a region of 800km in diameter is observed to the west of Hawaii. No correspondent localized depression of the 410 discontinuity is found. This lack of correlation between and differences in lateral length scale of the topographies of the 410 and 660 km discontinuities are consistent with many geodynamical modeling results, in which a deep-mantle plume impinging on the transition zone, creating a pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes connecting to the present-day hotspot at Earth’s surface. This more complex plume dynamics suggests that the complicated mass transport process across the transition zone should be taken into account when we try to link the geochemical observations of Hawaiian basalt geochemistry at the Earth’s surface to deep mantle domains. In addition to clear signals at 410km, 520km and 660km depth, the data also reveals rich structures near 350km depth and between 800 - 1000km depth, which may be regional, laterally intermittent scatter interfaces

  14. Measurements on cooling tower plumes. Pt. 3

    International Nuclear Information System (INIS)

    Fortak, H.

    1975-11-01

    In this paper an extended field experiment is described in which cooling tower plumes were investigated by means of three-dimensional in situ measurements. The goal of this program was to obtain input data for numerical models of cooling tower plumes. Data for testing or developing assumptions for sub-grid parametrizations were of special interest. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station at Neurath and also two (1975) at the single cooling tower of the RWE power station at Meppen. Because of the broad spectrum of weather situations, it can be assumed that the results are representative with regard to the interrelationship between the structure of cooling tower plumes and the large-scale meteorological situation. A large number of flights with a powered glider ASK 16 (more than 100 flight hours) crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapour pressure. Therefore a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the plumes boundaries, which could be defined by the mentioned jumps of temperature and vapour pressure, a maximum of downward vertical motion was observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. The discontinuities of temperature and vapour pressure show that the plume fills the space below the visible plume down to the ground. However, all effects decrease rapidly towards the ground. It turned out that high

  15. Influence of magma fragmentation on the plume dynamics of Vulcanian explosions

    Science.gov (United States)

    Scheu, B.; Alatorre-Ibarguengoitia, M.; Dingwell, D. B.

    2013-12-01

    Mach disk at the vent. During this phase few or no particles are ejected, depending on the position of the sample in the experimental conduit. Ejection of particles usually starts when the Mach disk collapsed or is collapsing and the flow expands at subsonic velocities. Here experiments with and without sample fragmentation show different characteristics. The ejection of unconsolidated particles exhibits a near-homogeneous pattern typical of the expansion of granular material with uniformly decaying ejection velocities of individual particles. In contrast, the ejection of fragmenting samples results heterogeneous patterns, most pronounced in the later stage of ejection. Here individual pulses can be traced with significantly varying ejection velocities. We demonstrate here that this pulsation can be traced back to discrete fragmentation events. Our results yield insights into the internal structure of plumes from short-lived, Vulcanian explosions and should contribute to a better understanding of the plume dynamics with respect to the transition from buoyant to collapsing plumes and their associated hazards.

  16. Radioactive Plumes Monitoring Simulator

    International Nuclear Information System (INIS)

    Kapelushnik, I.; Sheinfeld, M.; Avida, R.; Kadmon, Y.; Ellenbogen, M.; Tirosh, D.

    1999-01-01

    The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs

  17. Investigation of Balcony Plume Entrainment

    OpenAIRE

    Liu, F.; Nielsen, Peter V.; Heiselberg, Per; Brohus, Henrik; Li, B. Z.

    2009-01-01

    An investigation on the scenarios of the spill plume and its equation was presented in this paper. The study includes two aspects, i.e., the small-scale experiment and the numerical simulation. Two balcony spill plume models are assessed by comparing with the FDS (Fire Dynamic Simulation) and small scale model experiment results. Besides validating the spill model by experiments, the effect of different fire location on balcony plume is also discussed.The results show that the balcony equatio...

  18. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  19. Are splash plumes the origin of minor hotspots?

    Science.gov (United States)

    Davies, J. H.; Bunge, H.-P.

    2006-05-01

    It has been claimed that focused hot cylindrical upwelling plumes cause many of the surface volcanic hotspots on Earth. It has also been argued that they must originate from thermal boundary layers. In this paper, we present spherical simulations of mantle circulation at close to Earth-like vigor with significant internal heating. These show, in addition to thermal boundary layer plumes, a new class of plumes that are not rooted in thermal boundary layers. These plumes develop as instabilities from the edge of bowls of hot mantle, which are produced by cold downwelling material deforming hot sheets of mantle. The resulting bowl and plume structure can look a bit like the “splash” of a water droplet. These splash plumes might provide an explanation for some hotspots that are not underlain by thermal boundary layer sourced plumes and not initiated by large igneous provinces. We suggest that in Earth's mantle, lithospheric instabilities or small pieces of subducting slab could play the role of the model downwelling material in initiating splash plumes. Splash plumes would have implications for interpreting ocean-island basalt geochemistry, plume fixity, excess plume temperature, and estimating core heat flux. Improved seismic imaging will ultimately test this hypothesis.

  20. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    Science.gov (United States)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels

  1. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    Science.gov (United States)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  2. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  3. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  4. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  5. Plume rise measurements at Turbigo

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, D

    1982-01-01

    This paper presents analyses of plume measurements obtained during that campaign by the ENEL ground-based Lidar. The five stacks of Turbigo Power Plant have different heights and emission parameters and their plumes usually combine, so a model for multiple sources was used to predict the plume rises. These predictions are compared with the observations. Measurements of sigma/sub v/ and sigma/sub z/ over the first 1000 m are compared with the curves derived from other observations in the Po Valley, using the no-lift balloon technique over the same range of downwind distance. Skewness and kurtosis distributions are shown, both along the vertical and the horizontal directions. In order to show the plume structure in more detail, we present two examples of Lidar-derived cross sections and the corresponding vertically and horizontally integrated concentration profiles.

  6. The impact from emitted NO{sub x} and VOC in an aircraft plume. Model results for the free troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Pleijel, K.

    1998-04-01

    The chemical fate of gaseous species in a specific aircraft plume is investigated using an expanding box model. The model treats the gas phase chemical reactions in detail, while other parameters are subject to a high degree of simplification. Model simulations were carried out in a plume up to an age of three days. The role of emitted VOC, NO{sub x} and CO as well as of background concentrations of VOC, NO{sub x} and ozone on aircraft plume chemistry was investigated. Background concentrations were varied in a span of measured values in the free troposphere. High background concentrations of VOC were found to double the average plume production of ozone and organic nitrates. In a high NO{sub x} environment the plume production of ozone and organic nitrates decreased by around 50%. The production of nitric acid was found to be less sensitive to background concentrations of VOC, and increased by up to 50% in a high NO{sub x} environment. Mainly, emitted NO{sub x} caused the plume production of ozone, nitric acid and organic nitrates. The ozone production during the first hours is determined by the relative amount of NO{sub 2} in the NO{sub x} emissions. The impact from emitted VOC was in relative values up to 20% of the ozone production and 65% of the production of organic nitrates. The strongest relative influence from VOC was found in an environment characterized by low VOC and high NO{sub x} background concentrations, where the absolute peak production was lower than in the other scenarios. The effect from emitting VOC and NO{sub x} at the same time added around 5% for ozone, 15% for nitric acid and 10% for organic nitrates to the plume production caused by NO{sub x} and VOC when emitted separately 47 refs, 15 figs, 4 tabs

  7. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations

    Science.gov (United States)

    Kumar, S.; Dumka, U. C.

    2017-12-01

    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and

  8. Plume meander and dispersion in a stable boundary layer

    Science.gov (United States)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  9. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  10. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  11. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-08-01

    In this paper a new integral mathematical model for volcanic plumes, named PLUME-MoM, is presented. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. A proper description of such a multi-particle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows for a description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of parameters of the continuous size distribution of the particles. This is achieved by formulation of fundamental transport equations for the multi-particle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows for the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables the investigation of the response of four key output variables (mean and standard deviation of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and standard deviation) characterizing the

  12. Fossil plume head beneath the Arabian lithosphere?

    Science.gov (United States)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  13. Industrial applications of radiation chemistry

    International Nuclear Information System (INIS)

    Puig, Jean Rene

    1959-01-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959

  14. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  15. PLUME and research sotware

    Science.gov (United States)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  16. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  17. Io Pele plume

    Science.gov (United States)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  18. Io's Active Eruption Plumes: Insights from HST

    Science.gov (United States)

    Jessup, K. L.; Spencer, J. R.

    2011-10-01

    Taking advantage of the available data, we recently [10] completed a detailed analysis of the spectral signature of Io's Pele-type Tvashtar plume as imaged by the HST Wide Field and Planetary Camera 2 (HST/WFPC2) via absorption during Jupiter transit and via reflected sunlight in 2007, as well as HST/WFPC2 observations of the 1997 eruption of Io's Prometheus-type Pillan plume (Fig. 1). These observations were obtained in the 0.24-0.42 μm range, where the plumes gas absorption and aerosol scattering properties are most conspicuous. By completing a detailed analysis of these observations, several key aspects of the reflectance and the absorption properties of the two plumes have been revealed. Additionally, by considering the analysis of the HST imaging data in light of previously published spectral analysis of Io's Prometheus and Pele-type plumes several trends in the plume properties have been determined, allowing us to define the relative significance of each plume on the rate of re-surfacing occurring on Io and providing the measurements needed to better assess the role the volcanoes play in the stability of Io's tenuous atmosphere.

  19. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M; Sausen, R; Grewe, V; Koehler, I; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1998-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  20. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M.; Sausen, R.; Grewe, V.; Koehler, I.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch. [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1997-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  1. Small rocket exhaust plume data

    Science.gov (United States)

    Chirivella, J. E.; Moynihan, P. I.; Simon, W.

    1972-01-01

    During recent cryodeposit tests with an 0.18-N thruster, the mass flux in the plume back field was measured for the first time for nitrogen, carbon dioxide, and a mixture of nitrogen, hydrogen, and ammonia at various inlet pressures. This mixture simulated gases that would be generated by a hydrazine plenum attitude propulsion system. The measurements furnish a base upon which to build a mathematical model of plume back flow that will be used in predicting the mass distribution in the boundary region of other plumes. The results are analyzed and compared with existing analytical predictions.

  2. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    International Nuclear Information System (INIS)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.; Denham, Miles E.

    2014-01-01

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these 'legacy' sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the cost of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead

  3. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.; Denham, Miles E.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the cost of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead

  4. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  5. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  6. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii

    Science.gov (United States)

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika

    2008-09-01

    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also

  7. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  8. Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D. M.

    1999-07-29

    The subject of this report is chemistry and engineering for the application of heterogeneous photocatalysts. The state of the art in catalysts are forms of titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included.

  9. 5 Ma of plume source evolution in the Niihau - Kauai - North Arch magmas, Hawaii

    Science.gov (United States)

    Beguelin, P.; Bizimis, M.; McIntosh, E. C.; Cousens, B.; Clague, D. A.

    2017-12-01

    The Hawaiian islands of Kauai, Niihau and Kaula form a 200 km wide platform across the plume track and record the longest activity record of Hawaiian volcanism ( > 5Ma) [1]. We present new Hf and high precision Pb (MC-ICP-MS with Tl addition) isotope data on 56 previously characterized [2] shield, post-shield and rejuvenated stage lavas from Kauai and Niihau, and on rejuvenated lavas from the North Arch volcanic field, 250 km NE of Kauai. These samples cover nearly the full eruptive history of Kauai and Niihau, and complete an across-plume transect of rejuvenated volcanism, along with published Kaula values [3]. In Nd-Hf-Sr-Pb isotope spaces [2], shield and post-shield lavas from Kauai and Niihau partially overlap the Koolau shield lavas (KSDP, Oahu [4]). Rejuvenated lavas from Kauai and Niihau show a 3 ɛNd units variability and overlap North Arch at a common depleted composition at ɛNd 9 and ɛHf 14. Kauai rejuvenated lavas in part overlap shield and post-shield lavas in Nd-Hf, but extend to lower ɛHf values for a given 87Sr/86Sr and ɛNd. In contrast Niihau rejuvenated lavas have higher ɛHf for a given ɛNd and 87Sr/86Sr compared to all Hawaiian shield lavas. The Niihau data cannot be explained by contribution of a proximal shield stage plume source (e.g. Niihau or Kauai). Instead it is consistent with mixing between a depleted mantle source and an enriched component with high Nd/Hf, Sr/Hf ratios, akin to a carbonatite with low ɛHf and ɛNd, and with their trace element systematics [5] . ICP-MS Pb isotope data for rejuvenated lavas from Kaula, Niihau, Kauai, and North Arch form three distinct arrays, confirming heterogeneity in the rejuvenated source. Our data is consistent with the presence of an enriched, Koolau-like component in the source of shield, post-shield and rejuvenated volcanism in Kauai and Niihau. The rejuvenated sources are heterogeneous across the plume, with the most isotopically depleted values seen in the distal North Arch volcanic field

  10. Rise of a cold plume

    International Nuclear Information System (INIS)

    Kakuta, Michio

    1977-06-01

    The rise of smoke from the stacks of two research reactors in normal operation was measured by photogrametric method. The temperature of effluent gas is less than 20 0 C higher than that of the ambient air (heat emission of the order 10 4 cal s -1 ), and the efflux velocity divided by the wind speed is between 0.5 and 2.8 in all 16 smoke runs. The field data obtained within downwind distance of 150m are compared with those by plume rise formulas presently available. Considering the shape of bending-over plume, the Briggs' formula for 'jet' gives a reasonable explanation of the observed plume rise. (auth.)

  11. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    Science.gov (United States)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  12. Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dubé, William P.; Aikin, Kenneth C.; Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; Sparks, Tamara L.; Wooldridge, Paul; Weinheimer, Andrew J.; Montzka, Denise D.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Nicola J.; DiGangi, Josh P.; Wolfe, Glenn M.; Bililign, Solomon; Cohen, Ronald C.; Thornton, Joel A.; Brown, Steven S.

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10% of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  13. Wintertime Overnight NOx Removal in a Southeastern United States Coal-Fired Power Plant Plume: A Model for Understanding Winter NOx Processing and Its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; hide

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  14. A numerical study of the Magellan Plume

    Science.gov (United States)

    Palma, Elbio D.; Matano, Ricardo P.

    2012-05-01

    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume's waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50°S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.

  15. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ΔHCN/ΔCO emission ratio, however, is fairly consistent at 0.9 ± 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of

  16. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    Science.gov (United States)

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  17. The evolution of photochemical smog in a power plant plume

    Science.gov (United States)

    Luria, Menachem; Valente, Ralph J.; Tanner, Roger L.; Gillani, Noor V.; Imhoff, Robert E.; Mueller, Stephen F.; Olszyna, Kenneth J.; Meagher, James F. Present address: Aeronomy Laboratory, NOAA, 325 Broadway, Boulder CO 80303, USA.)

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.

  18. The evolution of photochemical smog in a power plant plume

    International Nuclear Information System (INIS)

    Luria, M.; The Hebrew University, Jerusalem; Valente, R.J.; Tanner, R.L.; Imhoff, R.E.; Mueller, S.F.; Olszyna, K.J.; Meagher, J.F.; Gillani, N.V.; University of Alabama, Huntsville, AL

    1999-01-01

    The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study - Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west-northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50-60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O 3 that peaked at 120 ppbv at a short distance (15-25 km) downwind of Nashville. Ozone productivity (the ratio of excess O 3 to NO y and NO z ) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism. (author)

  19. Generic evolution of mixing in heterogeneous media

    Science.gov (United States)

    De Dreuzy, J.; Carrera, J.; Dentz, M.; Le Borgne, T.

    2011-12-01

    Mixing in heterogeneous media results from the competition bewteen flow fluctuations and local scale diffusion. Flow fluctuations quickly create concentration contrasts and thus heterogeneity of the concentration field, which is slowly homogenized by local scale diffusion. Mixing first deviates from Gaussian mixing, which represents the potential mixing induced by spreading before approaching it. This deviation fundamentally expresses the evolution of the interaction between spreading and local scale diffusion. We characterize it by the ratio γ of the non-Gaussian to the Gaussian mixing states. We define the Gaussian mixing state as the integrated squared concentration of the Gaussian plume that has the same longitudinal dispersion as the real plume. The non-Gaussian mixing state is the difference between the overall mixing state defined as the integrated squared concentration and the Gaussian mixing state. The main advantage of this definition is to use the full knowledge previously acquired on dispersion for characterizing mixing even when the solute concentration field is highly non Gaussian. Using high precision numerical simulations, we show that γ quickly increases, peaks and slowly decreases. γ can be derived from two scales characterizing spreading and local mixing, at least for large flux-weighted solute injection conditions into classically log-normal Gaussian correlated permeability fields. The spreading scale is directly related to the longitudinal dispersion. The local mixing scale is the largest scale over which solute concentrations can be considered locally uniform. More generally, beyond the characteristics of its maximum, γ turns out to have a highly generic scaling form. Its fast increase and slow decrease depend neither on the heterogeneity level, nor on the ratio of diffusion to advection, nor on the injection conditions. They might even not depend on the particularities of the flow fields as the same generic features also prevail for

  20. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  1. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  2. Multi-scale Modeling of Power Plant Plume Emissions and Comparisons with Observations

    Science.gov (United States)

    Costigan, K. R.; Lee, S.; Reisner, J.; Dubey, M. K.; Love, S. P.; Henderson, B. G.; Chylek, P.

    2011-12-01

    The Remote Sensing Verification Project (RSVP) test-bed located in the Four Corners region of Arizona, Utah, Colorado, and New Mexico offers a unique opportunity to develop new approaches for estimating emissions of CO2. Two major power plants located in this area produce very large signals of co-emitted CO2 and NO2 in this rural region. In addition to the Environmental Protection Agency (EPA) maintaining Continuous Emissions Monitoring Systems (CEMS) on each of the power plant stacks, the RSVP program has deployed an array of in-situ and remote sensing instruments, which provide both point and integrated measurements. To aid in the synthesis and interpretation of the measurements, a multi-scale atmospheric modeling approach is implemented, using two atmospheric numerical models: the Weather Research and Forecasting Model with chemistry (WRF-Chem; Grell et al., 2005) and the HIGRAD model (Reisner et al., 2003). The high fidelity HIGRAD model incorporates a multi-phase Lagrangian particle based approach to track individual chemical species of stack plumes at ultra-high resolution, using an adaptive mesh. It is particularly suited to model buoyancy effects and entrainment processes at the edges of the power plant plumes. WRF-Chem is a community model that has been applied to a number of air quality problems and offers several physical and chemical schemes that can be used to model the transport and chemical transformation of the anthropogenic plumes out of the local region. Multiple nested grids employed in this study allow the model to incorporate atmospheric variability ranging from synoptic scales to micro-scales (~200 m), while including locally developed flows influenced by the nearby complex terrain of the San Juan Mountains. The simulated local atmospheric dynamics are provided to force the HIGRAD model, which links mesoscale atmospheric variability to the small-scale simulation of the power plant plumes. We will discuss how these two models are applied and

  3. DSMC Simulations of Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, D.; Varghese, P.; Trafton, L.

    2012-10-01

    Io’s Pele plume rises over 300km in altitude and leaves a deposition ring 1200km across on the surface of the moon. Material emerges from an irregularly-shaped vent, and this geometry gives rise to complex 3D flow features. The Direct Simulation Monte Carlo method is used to model the gas flow in the rarefied plume, demonstrating how the geometry of the source region is responsible for the asymmetric structure of the deposition ring and illustrating the importance of very small-scale vent geometry in explaining large observed features of interest. Simulations of small particles in the plume and comparisons to the black “butterfly wings” seen at Pele are used to constrain particle sizes and entrainment mechanisms. Preliminary results for the effects of plasma energy and momentum transfer to the plume will also be presented.

  4. Simulating Fine-Scale Marine Pollution Plumes for Autonomous Robotic Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Fahad

    2018-05-01

    Full Text Available Marine plumes exhibit characteristics such as intermittency, sinuous structure, shape and flow field coherency, and a time varying concentration profile. Due to the lack of experimental quantification of these characteristics for marine plumes, existing work often assumes marine plumes exhibit behavior similar to aerial plumes and are commonly modeled by filament based Lagrangian models. Our previous field experiments with Rhodamine dye plumes at Makai Research Pier at Oahu, Hawaii revealed that marine plumes show similar characteristics to aerial plumes qualitatively, but quantitatively they are disparate. Based on the field data collected, this paper presents a calibrated Eulerian plume model that exhibits the qualitative and quantitative characteristics exhibited by experimentally generated marine plumes. We propose a modified model with an intermittent source, and implement it in a Robot Operating System (ROS based simulator. Concentration time series of stationary sampling points and dynamic sampling points across cross-sections and plume fronts are collected and analyzed for statistical parameters of the simulated plume. These parameters are then compared with statistical parameters from experimentally generated plumes. The comparison validates that the simulated plumes exhibit fine-scale qualitative and quantitative characteristics similar to experimental plumes. The ROS plume simulator facilitates future evaluations of environmental monitoring strategies by marine robots, and is made available for community use.

  5. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2016-05-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes

  6. Chemistry Division annual progress report for period ending April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  7. Does Everyone's Motivational Beliefs about Physical Science Decline in Secondary School?: Heterogeneity of Adolescents' Achievement Motivation Trajectories in Physics and Chemistry.

    Science.gov (United States)

    Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue

    2017-08-01

    Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.

  8. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  9. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    International Nuclear Information System (INIS)

    Laase, A.D.; Clausen, J.L.

    1998-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 microg/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields

  10. Follow the plume: the habitability of Enceladus.

    Science.gov (United States)

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  11. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    Science.gov (United States)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  12. Birth, life, and death of a solar coronal plume

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, AL 35812 (United States)

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  13. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    Science.gov (United States)

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  14. Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes

    Science.gov (United States)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2015-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulphur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulphur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometers at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. Due to the lack of analytical approaches for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr etc.) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their specificationtheir species and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study, the first application of a 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated gas diffusion denuder (Huang and Hoffmann, 2008) on volcanic gases proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (Br2 and BrO(H)), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with bromine gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Choosing a flow rate of 500 mL-min-1 and a denuder length of 0.5 m a nearly quantitative collection efficiency was achieved. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography

  15. Heterogeneous membranes filled with hypercrosslinked microparticle adsorbent

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Krystl, V.; Hrabánek, P.; Bernauer, B.; Kočiřík, Milan

    2005-01-01

    Roč. 65, 1-2 (2005), s. 57-68 ISSN 1381-5148 R&D Projects: GA ČR GA104/03/0680 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous membranes * hypercrosslinked adsorbent * microparticle s Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.565, year: 2005

  16. Smoke plumes: Emissions and effects

    Science.gov (United States)

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  17. Plume Splitting in a Two-layer Stratified Ambient Fluid

    Science.gov (United States)

    Ma, Yongxing; Flynn, Morris; Sutherland, Bruce

    2017-11-01

    A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.

  18. Teaching the Mantle Plumes Debate

    Science.gov (United States)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  19. The Potential for Ozone Depletion in Solid Rocket Motor Plumes by Heterogeneous Chemistry

    National Research Council Canada - National Science Library

    Hanning-Lee, M

    1996-01-01

    ... (hydroxylated alumina), respectively, over the temperature range -60 to 200 degrees C. This work addresses the potential for stratospheric ozone depletion by launch vehicle solid rocket motor exhaust...

  20. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  1. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  2. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  3. Saharan dust plume charging observed over the UK

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  4. Chemistry and Vent Pressure of Very High-Temperature Gases Emitted from Pele Volcano on Io

    Science.gov (United States)

    Zolotov, M. Y.; Fegley, B., Jr.

    2001-01-01

    Galileo data for magma temperature at Pele and HST chemical data (SO2, S2, and SO) for Pele plumes were used to evaluate vent pressure (10 -4 -2 bar), the oxidation state (2-3 log fO2 units below Ni-NiO), and chemistry of volcanic gases. Additional information is contained in the original extended abstract.

  5. Model calculations of the chemical processes occurring in the plume of a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, J F; Luria, M

    1982-02-01

    Computer simulations of the homogeneous, gas phase chemical reactions which occur in the plume of a coal-fired power plant were conducted in an effort to understand the influence of various environmental parameters on the production of secondary pollutants. Input data for the model were selected to reproduce the dilution of a plume from a medium-sized power plant. The environmental conditions chosen were characteristic of those found during mid-August in the south-eastern United States. Under most conditions examined, it was found that hydroxyl radicals were the most important species in the homogeneous conversion of stack gases into secondary pollutants. Other free radicals, such as HO/sub 2/ and CH/sub 3/O/sub 2/, exceeded the contribution of HO radicals only when high background hydrocarbon concentrations are used. The conversion rates calculated for the oxidation of SO/sub 2/ to SO/sub 4//sup 2 -/ in these plumes were consistent with those determined experimentally. The concentrations and relative proportions of NO/sub x/ (from the power plant) and reactive hydrocarbons (from the background air) determine, to a large extent, the plume reactivity. Free radical production is suppressed during the initial stages of dilution due to the high NO/sub x/ levels. Significant dilution is required before a suitable mix is attained which can sustain the free radical chain processes common to smog chemistry. In most cases, the free radical concentrations were found to pass through maxima and return to background levels. Under typical summertime conditions, the hyroxyl radical concentration was found to reach a maximum at a HC/NO/sub x/ ratio of approximately 20.

  6. Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2009-06-01

    Full Text Available Several cases of aerosol plumes resulting from trans-Pacific transport were observed between 2 km and 5.3 km at Whistler, BC from 22 April 2006 to 15 May 2006. The fine particle (<1 μm chemical composition of most of the plumes was dominated by sulphate that ranged from 1–5 μg m−3 as measured with a Quadrapole Aerosol Mass Spectrometer (Q-AMS. Coarse particles (>1 μm were enhanced in all sulphate plumes. Fine particle organic mass concentrations were relatively low in most plumes and were nominally anti-correlated with the increases in the number concentrations of coarse particles. The ion chemistry of coarse particles sampled at Whistler Peak was dominated by calcium, sodium, nitrate, sulphate and formate. Scanning transmission X-ray microscopy of coarse particles sampled from the NCAR C-130 aircraft relatively close to Whistler indicated carbonate, potassium and organic functional groups, in particular the carboxyl group. Asian plumes reaching Whistler, BC during the INTEX-B study were not only significantly reduced of fine particle organic material, but organic compounds were attached to coarse particles in significant quantities. Suspension of dust with deposited organic material and scavenging of organic materials by dust near anthropogenic sources are suggested, and if any secondary organic aerosol (SOA was formed during transport from Asian source regions across the Pacific it was principally associated with the coarse particles. An average of profiles indicates that trans-Pacific transport between 2 and 5 km during this period increased ozone by about 10 ppbv and fine particle sulphate by 0.2–0.5 μg m−3. The mean sizes of the fine particles in the sulphate plumes were larger when dust particles were present and smaller when the fine particle organic mass concentration was larger and dust was absent. The coarse particles of dust act to accumulate sulphate, nitrate and organic material in larger particles

  7. Silica sulfuric acid: a versatile and reusable heterogeneous catalyst ...

    African Journals Online (AJOL)

    ... and reusable heterogeneous catalyst for the synthesis of N-acyl carbamates and ... All the reactions were done at room temperature and the N-acyl carbamates ... This method is attractive and is in a close agreement with green chemistry.

  8. Proceedings of plumes, plates and mineralisation symposium: an introduction

    CSIR Research Space (South Africa)

    Hatton, CJ

    1997-12-01

    Full Text Available of plume-theory. Mechanisms of magma formation are identified and plume positions and distances to their surface expression considered. Mantle plumes are considered as a heat and fluid source for the Witwatersrand gold deposits....

  9. Using ASCEM Modeling and Visualization to Inform Stakeholders of Contaminant Plume Evolution and Remediation Efficacy at F-Basin Savannah River, SC – 15156

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arora, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Krishnan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Denham, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eddy-Dilek, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lipnikov, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-28

    Communication with stakeholders, regulatory agencies, and the public is an essential part of implementing different remediation and monitoring activities, and developing site closure strategies at contaminated sites. Modeling of contaminant plume evolution plays a critical role in estimating the benefit, cost, and risk of particular options. At the same time, effective visualization of monitoring data and modeling results are particularly important for conveying the significance of the results and observations. In this paper, we present the results of the Advanced Simulation Capability for Environmental Management (ASCEM) project, including the discussion of the capabilities of newly developed ASCEM software package, along with its application to the F-Area Seepage Basins located in the U.S. Department of Energy Savannah River Site (SRS). ASCEM software includes state-of-the-art numerical methods for simulating complex flow and reactive transport, as well as various toolsets such as a graphical user interface (GUI), visualization, data management, uncertainty quantification, and parameter estimation. Using this software, we have developed an advanced visualization of tritium plume migration coupled with a data management system, and simulated a three-dimensional model of flow and plume evolution on a high-performance computing platform. We evaluated the effect of engineered flow barriers on a nonreactive tritium plume, through advanced plume visualization and modeling of tritium plume migration. In addition, we developed a geochemical reaction network to describe complex geochemical processes at the site, and evaluated the impact of coupled hydrological and geochemical heterogeneity. These results are expected to support SRS’s monitoring activities and operational decisions.

  10. Simplified scheme or radioactive plume calculations

    International Nuclear Information System (INIS)

    Gibson, T.A.; Montan, D.N.

    1976-01-01

    A simplified mathematical scheme to estimate external whole-body γ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and γ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred

  11. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  12. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  13. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  14. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Science.gov (United States)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  15. Heterogeneity of the Caribbean plateau mantle source: Sr, O and He isotopic compositions of olivine and clinopyroxene from Gorgona Island

    Science.gov (United States)

    Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.

    2002-12-01

    The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3

  16. CO chemistry/research trends in CO chemistry in the US

    Energy Technology Data Exchange (ETDEWEB)

    Cantacuzene, M

    1978-10-01

    Research trends in CO chemistry in the U.S. include the development of stable and selective homogeneous catalysts which would facilitate the removal of the heat of reaction and be resistant to sulfur poisoning for the methanation reaction, methanol synthesis, and Fischer-Tropsch synthesis; development of low-temperature homogeneous water gas shift catalysts; and research on the coordination chemistry and photochemical conversions of CO/sub 2/. In 1977, the National Science Foundation awarded 16 contracts for a total of $720,000 to promote the research in this field, including studies on chemisorption and heterogeneous catalysis (four contracts) and on transition metal complexes (ten contracts, of which seven are dedicated to metal clusters). Carbon monoxide-based processes, including water gas shift reactions, CO reduction to alkanes and alcohols, hydroformylation, and homogeneous carbonylation processes, recently developed in the U.S. are listed.

  17. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a California chaparral fire

    Science.gov (United States)

    M. J. Alvarado; C. R. Lonsdale; R. J. Yokelson; S. K. Akagi; I. R. Burling; H. Coe; J. S. Craven; E. Fischer; G. R. McMeeking; J. H. Seinfeld; T. Soni; J. W. Taylor; D. R. Weise; C. E. Wold

    2014-01-01

    Within minutes after emission, rapid, complex photochemistry within a biomass burning smoke plume can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under 5 a wide variety of conditions is a critical part of forecasting the impact of these fires...

  18. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  19. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-03-01

    Full Text Available Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19–23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1 and the other passing over the coastal regions of eastern China (DS2. Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 ∕ PM10 and NO2 ∕ PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42− and NO3− and the ratio of Ca2+ ∕ Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] ∕ [SO42−+NO3−] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ∼ 80–90 % of the total particle extinction from near the ground to ∼ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ∼ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  20. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Science.gov (United States)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  1. The controversy over plumes: Who is actually right?

    Science.gov (United States)

    Puchkov, V. N.

    2009-01-01

    The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the

  2. CALIOP-based Biomass Burning Smoke Plume Injection Height

    Science.gov (United States)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection

  3. Modern trends in contemporary chemistry

    International Nuclear Information System (INIS)

    Javed, H.; Pervez, H.; Qadeer, R.

    1993-01-01

    This publication contains a collection of papers presented at symposium on M odern Trends in Contemporary Chemistry , that was held in Islamabad, Pakistan, March 6-8, 1990. The symposium was divided into five sections for presentation of about 55 scientific and technical papers and 6 review papers. The contents of these papers were of good quality in the widespread concern in new trends of chemistry. The six reviews papers covered fields of ortho metallation reactions, evaluation of heterogeneous electron transfer rate contents, macro reticular ion-exchange resins, spectrochemical analytical techniques, liquid crystal-high technology materials for practical applications and trends in advanced ceramics. (A.B.)

  4. Chemistry and physics of fogwater collection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, W.; Enderle, K.H. (eds.)

    1988-01-01

    Increasing interest in the problems of air pollution and source receptor relationships has led to a significant expansion of knowledge in the field of atmospheric chemistry. In recent years the multiphase atmospheric chemistry was given great scholarly attention, and slogans like acid precipitation, dirty cloud or killer fog indicated these phenomena. The report describes results of collection and chemical analysis of fog water with emphasis or fog microphysics, of the heterogeneous atmospheric chemistry project in the Po-valley, of the development of the Great Dun Fell project, of the mountain cloud chemistry project in eastern U.S., of the design of fog water collectors and of the numerical study of the radiation fog event on October 10/11, 1982 in Albany, N.Y.

  5. Numerical modeling of continental lithospheric weak zone over plume

    Science.gov (United States)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  6. On the relative motions of long-lived Pacific mantle plumes.

    Science.gov (United States)

    Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G

    2018-02-27

    Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.

  7. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  8. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations

    Directory of Open Access Journals (Sweden)

    F. Darrouzet

    2006-07-01

    Full Text Available Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles have been derived from the electron plasma frequency identified by the WHISPER sounder supplemented, in-between soundings, by relative variations of the spacecraft potential measured by the electric field instrument EFW; ion velocity is also measured onboard these satellites. The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 min; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations of three plume events and compare CLUSTER in-situ data with global images of the plasmasphere obtained by IMAGE. In particular, we study the geometry and the orientation of plasmaspheric plumes by using four-point analysis methods. We compare several aspects of plume motion as determined by different methods: (i inner and outer plume boundary velocity calculated from time delays of this boundary as observed by the wave experiment WHISPER on the four spacecraft, (ii drift velocity measured by the electron drift instrument EDI onboard CLUSTER and (iii global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  9. River plume patterns and dynamics within the Southern California Bight

    Science.gov (United States)

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  10. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  11. Using satellite imagery for qualitative evaluation of plume transport in modeling the effects of the Kuwait oil fire smoke plumes

    International Nuclear Information System (INIS)

    Bass, A.; Janota, P.

    1992-01-01

    To forecast the behavior of the Kuwait oil fire smoke plumes and their possible acute or chronic health effects over the Arabian Gulf region, TASC created a comprehensive health and environmental impacts modeling system. A specially-adapted Lagrangian puff transport model was used to create (a) short-term (multiday) forecasts of plume transport and ground-level concentrations of soot and SO 2 ; and (b) long-term (seasonal and longer) estimates of average surface concentrations and depositions. EPA-approved algorithms were used to transform exposures to SO 2 and soot (as PAH/BaP) into morbidity, mortality and crop damage risks. Absent any ground truth, satellite imagery from the NOAA Polar Orbiter and the ESA Geostationary Meteosat offered the only opportunity for timely qualitative evaluation of the long-range plume transport and diffusion predictions. This paper shows the use of actual satellite images (including animated loops of hourly Meteosat images) to evaluate plume forecasts in near-real-time, and to sanity-check the meso- and long-range plume transport projections for the long-term estimates. Example modeled concentrations, depositions and health effects are shown

  12. Field experimental observations of highly graded sediment plumes

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Saremi, Sina; Jimenez, Carlos

    2015-01-01

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes......-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages...... are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model....

  13. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, V.

    2007-07-01

    This dissertation layes out detailed descriptions for heterogeneous chemistry, electrochemistry, and porous media transport models to simulate solid oxide fuel cells (SOFCs). An elementary like heterogeneous reaction mechanism for the steam reforming of CH4 developed in our research group is used throughout this work. Based on assumption of hydrogen oxidation as the only electrochemical reaction and single step electron transfer reaction as rate limiting, a modified Butler-Volmer equation is used to model the electrochemistry. The pertinence of various porous media transport models such as Modified Fick Model (MFM), Dusty Gas Model (DGM), Mean Transport Pore Model, Modified Maxwell Stefan Model, and Generalized Maxwell Stefan Model under reaction conditions are studied. In general MFM and DGM predictions are in good agreement with experimental data. Physically realistic electrochemical model parameters are very important for fuel cell modeling. Button cell simulations are carried out to deduce the electrochemical model parameters, and those parameters are further used in the modeling of planar cells. Button cell simulations are carried out using the commercial CFD code FLUENT coupled with DETCHEM. For all temperature ranges the model works well in predicting the experimental observations in the high current density region. However, the model predicts much higher open circuit potentials than that observed in the experiments, mainly due to the absence of coking model in the elementary heterogeneous mechanism leading to nonequilibrium compositions. Furthermore, the study presented here employs Nernst equation for the calculation of reversible potential which is strictly valid only for electrochemical equilibrium. It is assumed that the electrochemical charge transfer reaction involving H2 is fast enough to be in equilibrium. However, the comparison of model prediction with thermodynamic equilibrium reveals that this assumption is violated under very low current

  14. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  15. Calculation of doses received while crossing a plume of radioactive material

    International Nuclear Information System (INIS)

    Scherpelz, R.I.; Desrosiers, A.E.

    1981-04-01

    A method has been developed for determining the dose received by a person while crossing a plume of radioactive material. The method uses a Gaussian plume model to arrive at a dose rate on the plume centerline at the position of the plume crossing. This dose rate may be due to any external or internal dose pathway. An algebraic formula can then be used to convert the plume centerline dose rate to a total dose integrated over the total time of plume crossing. Correction factors are presented for dose pathways in which the dose rate is not normally distributed about the plume centerline. The method is illustrated by a study done at the Pacific Northwest Laboratory, and results of this study are presented

  16. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    Science.gov (United States)

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  18. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.

  19. Research needs and opportunities in radiation chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, Paul F

    1998-04-19

    heterogeneous systems. These various goals necessitate the development and application of complementary programs of experiment and theory, and will involve the use of nonconventional radiation sources and the study of novel homogeneous and heterogeneous chemical systems. There is also a need to upgrade other types of instrumentation used in radiation chemistry in the national laboratories, including high field electron paramagnetic resonance, and modern analytical tools. The development and enhancement of these various tools will allow for a much wider use of the national radiation chemistry facilities.

  20. Effect of Electromagnetic Fields on Transfer Processes in Heterogeneous Systems

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Kim, H. Y.; Kim, H. C.; Smolík, Jiří; Moravec, Pavel

    2001-01-01

    Roč. 44, č. 5 (2001), s. 1065-1071 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : electromagnetic field * transfer processes * heterogeneous system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.240, year: 2001

  1. Io with Loki Plume on Bright Limb

    Science.gov (United States)

    1990-01-01

    Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles).

  2. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    Science.gov (United States)

    Itina, Tatiana E.; Hermann, Jörg; Delaporte, Philippe; Sentis, Marc

    2002-12-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation.

  3. Laser-generated plasma plume expansion: Combined continuous-microscopic modeling

    International Nuclear Information System (INIS)

    Itina, Tatiana E.; Hermann, Joerg; Delaporte, Philippe; Sentis, Marc

    2002-01-01

    The physical phenomena involved in the interaction of a laser-generated plasma plume with a background gas are studied numerically. A three-dimensional combined model is developed to describe the plasma plume formation and its expansion in vacuum or into a background gas. The proposed approach takes advantages of both continuous and microscopic descriptions. The simulation technique is suitable for the simulation of high-rate laser ablation for a wide range of background pressure. The model takes into account the mass diffusion and the energy exchange between the ablated and background species, as well as the collective motion of the ablated species and the background-gas particles. The developed approach is used to investigate the influence of the background gas on the expansion dynamics of the plume obtained during the laser ablation of aluminum. At moderate pressures, both plume and gas compressions are weak and the process is mainly governed by the diffusive mixing. At higher pressures, the interaction is determined by the plume-gas pressure interplay, the plume front is strongly compressed, and its center exhibits oscillations. In this case, the snowplough effect takes place, leading to the formation of a compressed gas layer in front of the plume. The background pressure needed for the beginning of the snowplough effect is determined from the plume and gas density profiles obtained at various pressures. Simulation results are compared with experimentally measured density distributions. It is shown that the calculations suggest localized formation of molecules during reactive laser ablation

  4. Field experimental observations of highly graded sediment plumes.

    Science.gov (United States)

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. All-union conference on theoretical and applied radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, A.V.; Barashkov, N.N.

    1985-01-01

    The All-Union Conference on Theoretical and Applied Radiation Chemistry was held in Obninsk in October 1984. The subjects covered by the all-union conference included practically all urgent problems of modern radiation chemistry: theoretical principles of radiation chemistry, solid state radiation chemistry, radiation chemistry of heterogeneous processes, radiolysis of organic and inorganic substances, radiation polymerization and hardening, radiation chemistry of polymers, the technology of radiation chemistry and instrument making. Twenty-three plenary reports given by scientists representing the corresponding directions were devoted to an examination of the basic problems of modern radiation chemistry. Around 100 oral communications were heard and discussed at meetings of six sections operating within the framework of the conference. In addition the conference participants were able to acquaint themselves with and discuss more than 230 displays in parallel with the oral reports. Abstracts of all of the section oral reports and displays were published by the organizing committee in the form of a separate collection. The texts of the plenary reports were published in the journal Khimiya Vysokikh Energiy in 1985.

  6. Plume rise from stacks with scrubbers: a state-of-the-art review

    International Nuclear Information System (INIS)

    Schatzmann, M.; Policastro, A.J.

    1984-01-01

    The state of the art of predicting plume rise from stacks with scrubbers is evaluated critically. The significant moisture content of the scrubbed plume upon exit leads to important thermodynamic effects during plume rise that are unaccounted for in the usual dry plume rise theories. For example, under conditionally unstable atmospheres, a wet scrubbed plume treated as completely dry acts as if the atmosphere were stable, whereas in reality the scrubbed plume behaves instead as if the atmosphere were unstable. Even the use of moist plume models developed for application to cooling tower plume rise is not valid since these models 1) employ the Boussinesq approximation, 2) use a number of additional simplifying approximations that require small exit temperature differences between tower exit and ambient temperatures, and 3) are not calibrated to stack data

  7. Diagnostics of laser ablated plasma plumes

    DEFF Research Database (Denmark)

    Amoruso, S.; Toftmann, B.; Schou, Jørgen

    2004-01-01

    The effect of an ambient gas on the expansion dynamics of laser ablated plasmas has been studied for two systems by exploiting different diagnostic techniques. First, the dynamics of a MgB2 laser produced plasma plume in an Ar atmosphere has been investigated by space-and time-resolved optical...... of the laser ablated plasma plume propagation in a background gas. (C) 2003 Elsevier B.V All rights reserved....

  8. Mantle plumes on Venus revisited

    Science.gov (United States)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  9. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    Science.gov (United States)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  10. Molecular ingredients of heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described

  11. Molecular ingredients of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    1982-06-01

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

  12. ALOFT-PC a smoke plume trajectory model for personal computers

    International Nuclear Information System (INIS)

    Walton, W.D.; McGrattan, K.B.; Mullin, J.V.

    1996-01-01

    A computer model, named ALOFT-PC, was developed for use during in-situ burning of oil spills to predict smoke plume trajectory. The downwind distribution of smoke particulate is a complex function of fire parameters, meteorological conditions, and topographic features. Experimental burns have shown that the downwind distribution of smoke is not Gaussian and simple smoke plume models do not capture the observed plume features. ALOFT-PC consists of the Navier-Stokes equations using an eddy viscosity over a uniform grid that spans the smoke plume and its surroundings. The model inputs are wind speed and variability, atmospheric temperature profile, and fire parameters and the output is the average of the plume. 7 refs., 3 tabs

  13. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  14. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  15. Development and evaluation of GRAL-C dispersion model, a hybrid Eulerian-Lagrangian approach capturing NO-NO 2-O 3 chemistry

    Science.gov (United States)

    Oettl, Dietmar; Uhrner, Ulrich

    2011-02-01

    Based on two recent publications using Lagrangian dispersion models to simulate NO-NO 2-O 3 chemistry for industrial plumes, a similar modified approach was implemented using GRAL-C ( Graz Lagrangian Model with Chemistry) and tested on two urban applications. In the hybrid dispersion model GRAL-C, the transport and turbulent diffusion of primary species such as NO and NO 2 are treated in a Lagrangian framework while those of O 3 are treated in an Eulerian framework. GRAL-C was employed on a one year street canyon simulation in Berlin and on a four-day simulation during a winter season in Graz, the second biggest city in Austria. In contrast to Middleton D.R., Jones A.R., Redington A.L., Thomson D.J., Sokhi R.S., Luhana L., Fisher B.E.A. (2008. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmospheric Environment 42, 415-427) and Alessandrini S., Ferrero E. (2008. A Lagrangian model with chemical reactions: application in real atmosphere. Proceedings of the 12th Int. Conf. on Harmonization within atmospheric dispersion modelling for regulatory purposes. Croatian Meteorological Journal, 43, ISSN: 1330-0083, 235-239) the treatment of ozone was modified in order to facilitate urban scale simulations encompassing dense road networks. For the street canyon application, modelled daily mean NO x/NO 2 concentrations deviated by +0.4%/-15% from observations, while the correlations for NO x and NO 2 were 0.67 and 0.76 respectively. NO 2 concentrations were underestimated in summer, but were captured well for other seasons. In Graz a fair agreement for NO x and NO 2 was obtained between observed and modelled values for NO x and NO 2. Simulated diurnal cycles of NO 2 and O 3 matched observations reasonably well, although O 3 was underestimated during the day. A possible explanation here might lie in the non-consideration of volatile organic compounds (VOCs) chemistry.

  16. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  17. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    Directory of Open Access Journals (Sweden)

    X. Dong

    2016-07-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust. The default parameterization of initial threshold friction velocity constants are revised to correct the double counting of the impact of soil moisture in CMAQ by the reanalysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is also implemented. The improved dust module in the CMAQ is applied over East Asia for March and April from 2006 to 2010. The model evaluation result shows that the simulation bias of PM10 and aerosol optical depth (AOD is reduced, respectively, from −55.42 and −31.97 % by the original CMAQ to −16.05 and −22.1 % by the revised CMAQ. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry also results in better agreement with observations for sulfur dioxide (SO2, sulfate (SO42−, nitric acid (HNO3, nitrous oxides (NOx, and nitrate (NO3−. The investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variation of dust. The model evaluation also indicates potential uncertainty within the excessive soil moisture used by meteorological simulation. The mass contribution of fine-mode particles in dust emission may be underestimated by 50 %. The revised CMAQ model provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.

  18. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  19. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    Science.gov (United States)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  20. The Entrainment Rate for Buoyant Plumes in a Crossflow

    Science.gov (United States)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  1. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  2. Observations of primary and secondary emissions in a B747 exhaust plume in the upper troposphere and inferred engine exit plane OH concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H; Schulte, P; Tremmel, H G; Ziereis, H [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F; Droste-Franke, B; Klemm, M; Schneider, J [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    1998-12-31

    The speciation of NO{sub y} exhaust emissions in the near-field plume of a B747 cruising at 9.2 km was measured in situ using the DLR Falcon research aircraft instrumented with a chemical ionisation mass spectrometer of MPI-K and a chemiluminescence NO detector of DLR. In addition, CO{sub 2} was measured providing a dilution factor for the exhaust species. Observed maximum peak concentrations above background in the plume 60 s after emission were 25.4 ppmv (CO{sub 2}), 184 ppbv (NO), 2.6 ppbv (HNO{sub 2}), and 1.3 ppbv (HNO{sub 3}). The observations were used to infer the initial OH concentration (15.4 ppmv) and NO{sub 2}/NO{sub x} ratio (0.08) at the engine exit by back calculations using a chemistry box model. (author) 20 refs.

  3. Observations of primary and secondary emissions in a B747 exhaust plume in the upper troposphere and inferred engine exit plane OH concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, H.; Schulte, P.; Tremmel, H.G.; Ziereis, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Arnold, F.; Droste-Franke, B.; Klemm, M.; Schneider, J. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    1997-12-31

    The speciation of NO{sub y} exhaust emissions in the near-field plume of a B747 cruising at 9.2 km was measured in situ using the DLR Falcon research aircraft instrumented with a chemical ionisation mass spectrometer of MPI-K and a chemiluminescence NO detector of DLR. In addition, CO{sub 2} was measured providing a dilution factor for the exhaust species. Observed maximum peak concentrations above background in the plume 60 s after emission were 25.4 ppmv (CO{sub 2}), 184 ppbv (NO), 2.6 ppbv (HNO{sub 2}), and 1.3 ppbv (HNO{sub 3}). The observations were used to infer the initial OH concentration (15.4 ppmv) and NO{sub 2}/NO{sub x} ratio (0.08) at the engine exit by back calculations using a chemistry box model. (author) 20 refs.

  4. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness.

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10 13 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus-Tidal deformation-Faults-Variable ice shell thickness-Tidal heating-Plume activity and timing. Astrobiology 17, 941-954.

  5. Ablation plume dynamics in a background gas

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2010-01-01

    The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa......The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during...... the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon...... background gas show a fair agreement with predictions from the PM-model. Finally we discuss the validity of the model, if the work done by the pressure of the background gas is neglected....

  6. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  7. Subsurface oil release field experiment - observations and modelling of subsurface plume behaviour

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Reed, M.

    1996-01-01

    An experiment was conducted at sea, in which oil was released from 107 metres depth, in order to study plume behaviour. The objective of the underwater release was to simulate a pipeline leakage without gas and high pressure and to study the behaviour of the rising plume. A numerical model for the underwater plume behaviour was used for comparison with field data. The expected path of the plume, the time expected for the plume to reach the sea surface and the width of the plume was modelled. Field data and the numerical model were in good agreement. 10 refs., 2 tabs., 9 figs

  8. Cold Plasma: simple tool for convenient utilitarian chemistry in homogeneous and heterogeneous environments

    International Nuclear Information System (INIS)

    Das, Tomi Nath; Dey, Ghasi Ram

    2015-07-01

    Cold Plasma based experimental facilities have been commissioned (XI-XII Plan periods) in Radiation and Photochemistry Division, BARC to carry out free radical and excited state-induced chemistry in single- and mixed-phase milieu. In any reaction medium, Dielectric Barrier assisted Electric Discharge generates in situ non-equilibrium plasma constituting of electrons and photons (< 10 eV each) and chemically reactive ions, excited species and free radical transients near room temperature and pressure. Choice of reactants and nature of other added ingredient(s), type of interacting surface(s) and the dielectric characteristics, the rate and amount of electric energy dissipated within etc. control various reactions’ propensities and the natures of final products, following either routine or novel, atypical chemistry. A selection of results obtained from our laboratory highlight the development and the potential use of this technology. Constant improvements in Cold Plasma reactor types, and design, fabrication and assembly of a real-time measurement system, aiming to probe mechanistic chemistry, are also underway. (author)

  9. Observed rise of visible plumes from hyperbolic natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P T [Smith-Singer Meteorologists, Inc., Amityville, NY; Seymour, D E; Butler, M J; Kramer, M L; Smith, M E; Frankenberg, T T

    1976-01-01

    The behavior of natural draft cooling tower plumes and related meteorological variables have been measured from aircraft near three major plants of the American Electric Power System. The rise of those plumes which persisted long enough to reach a stabilized height depended primarily upon the height of the capping inversion aloft. All such plumes rose to elevations of 425 m or more above grade. No significant relationships between plume rise and wind speed, plant load, or ambient temperature were found. We conclude that simple temperature humidity soundings in the vicinity of the towers would serve as effective predictors of plume rise and persistence.

  10. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  11. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  12. Appearance property and mechanism of plume produced by pulsed ultraviolet laser ablating copper

    International Nuclear Information System (INIS)

    Huang Qingju; Li Fuquan; Wang Honghua

    2008-01-01

    Time-resolved measurements of plume emission spectra by pulsed ultraviolet laser ablating copper in neon were analyzed, and the photographs of plume from laser ablating copper were taken. The experimental results show that plume has different colours in different ranges. At low pressure the centre layer and middle layer colours of plume are mixed colour, and the outer layer colours of plume are yellow and green. At middle pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is pea green. At high pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is faintness green. The plume range is pressed with the rising of ambient gas pressure, and the range colour gets thin with the rising of ambient gas pressure. The plume excitation radiation mechanism in pulsed ultraviolet laser ablating copper was discussed. The primary excitation radiation mechanism in plume is electron collision energy transfer and atom collision energy transfer at low pressure and middle pressure, and it is electrons Bremsstrahlung and recombination excitation radiation of electron and ion at high pressure. The model can be used to explain the experimental result qualitatively. (authors)

  13. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  14. Characterization of DNAPL Source Zone Architecture and Prediction of Associated Plume Response: Progress and Perspectives

    Science.gov (United States)

    Abriola, L. M.; Pennell, K. D.; Ramsburg, C. A.; Miller, E. L.; Christ, J.; Capiro, N. L.; Mendoza-Sanchez, I.; Boroumand, A.; Ervin, R. E.; Walker, D. I.; Zhang, H.

    2012-12-01

    It is now widely recognized that the distribution of contaminant mass will control both the evolution of aqueous phase plumes and the effectiveness of many source zone remediation technologies at sites contaminated by dense nonaqueous phase liquids (DNAPLs). Advances in the management of sites containing DNAPL source zones, however, are currently hampered by the difficulty associated with characterizing subsurface DNAPL 'architecture'. This presentation provides an overview of recent research, integrating experimental and mathematical modeling studies, designed to improve our ability to characterize DNAPL distributions and predict associated plume response. Here emphasis is placed on estimation of the most information-rich DNAPL architecture metrics, through a combination of localized in situ tests and more readily available plume transect concentration observations. Estimated metrics will then serve as inputs to an upscaled screening model for prediction of long term plume response. Machine learning techniques were developed and refined to identify a variety of source zone metrics and associated confidence intervals through the processing of down gradient concentration data. Estimated metrics include the volumes and volume percentages of DNAPL in pools and ganglia, as well as their ratio (pool fraction). Multiphase flow and transport simulations provided training data for model development and assessment that are representative of field-scale DNAPL source zones and their evolving plumes. Here, a variety of release and site heterogeneity (sequential Gaussian permeability) conditions were investigated. Push-pull tracer tests were also explored as a means to provide localized in situ observations to refine these metric estimates. Here, two-dimensional aquifer cell experiments and mathematical modeling were used to quantify upscaled interphase mass transfer rates and the interplay between injection and extraction rates, local source zone architecture, and tracer

  15. Analysis of plume rise data from five TVA steam plants

    International Nuclear Information System (INIS)

    Anfossi, D.

    1985-01-01

    A large data set containing the measurements of the rise of plumes emitted by five TVA steam plants was examined. Particular attention was paid to the problem of the merging of the plumes emitted by adjacent stacks and to the role played by the wind angle in this respect. It was demonstrated that there is a noticeable rise enhancement of merged plumes with respect to single emissions, both in neutral and in stable conditions, as far as transversal and parallel plumes are concerned. For plumes advected normal to the row of the stacks the enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested enhancement is noticeable only in the final stage of rise. The existence of a critical angle for merging suggested by Briggs was examined. Finally, a formula to describe plume rise in the transitional and in the final phase, both in neutral and stable conditions, is proposed; it was obtained by interpolation of two familiar Brigg's equations

  16. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    Science.gov (United States)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  17. Airborne Gamma-ray Measurements in the Chernobyl Plume

    DEFF Research Database (Denmark)

    Grasty, R. L.; Hovgaard, Jens; Multala, J.

    1997-01-01

    On 29 April 1986, the Geological Survey of Finland (GSF) survey aircraft with a gamma ray spectrometer flew through a radioactive plume from the Chernobyl nuclear accident. The aircraft became contaminated and the gamma spectrometer measured radioactivity in the plume as well as radioactivity...

  18. EM Modelling of RF Propagation Through Plasma Plumes

    Science.gov (United States)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  19. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  20. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences

    Science.gov (United States)

    Baker, Edward T.; German, Christopher R.; Elderfield, Henry

    Seafloor hydrothermal circulation is the principal agent of energy and mass exchange between the ocean and the earth's crust. Discharging fluids cool hot rock, construct mineral deposits, nurture biological communities, alter deep-sea mixing and circulation patterns, and profoundly influence ocean chemistry and biology. Although the active discharge orifices themselves cover only a minuscule percentage of the ridge-axis seafloor, the investigation and quantification of their effects is enhanced as a consequence of the mixing process that forms hydrothermal plumes. Hydrothermal fluids discharged from vents are rapidly diluted with ambient seawater by factors of 104-105 [Lupton et al., 1985]. During dilution, the mixture rises tens to hundreds of meters to a level of neutral buoyancy, eventually spreading laterally as a distinct hydrographic and chemical layer with a spatial scale of tens to thousands of kilometers [e.g., Lupton and Craig, 1981; Baker and Massoth, 1987; Speer and Rona, 1989].

  1. DeepBlow - a Lagrangian plume model for deep water blowouts

    International Nuclear Information System (INIS)

    Johansen, Oeistein

    2000-01-01

    This paper presents a sub-sea blowout model designed with special emphasis on deep-water conditions. The model is an integral plume model based on a Lagrangian concept. This concept is applied to multiphase discharges in the formation of water, oil and gas in a stratified water column with variable currents. The gas may be converted to hydrate in combination with seawater, dissolved into the plume water, or leaking out of the plume due to the slip between rising gas bubbles and the plume trajectory. Non-ideal behaviour of the gas is accounted for by the introduction of pressure- and temperature-dependent compressibility z-factor in the equation of state. A number of case studies are presented in the paper. One of the cases (blowout from 100 m depth) is compared with observations from a field experiment conducted in Norwegian waters in June 1996. The model results are found to compare favourably with the field observations when dissolution of gas into seawater is accounted in the model. For discharges at intermediate to shallow depths (100-250 m), the two major processes limiting plume rise will be: (a) dissolution of gas into ambient water, or (b) bubbles rising out of the inclined plume. These processes tend to be self-enforcing, i.e., when a gas is lost by either of these processes, plume rise tends to slow down and more time will be available for dissolution. For discharges in deep waters (700-1500 m depth), hydrate formation is found to be a dominating process in limiting plume rise. (Author)

  2. Modeling ozone plumes observed downwind of New York City over the North Atlantic Ocean during the ICARTT field campaign

    Directory of Open Access Journals (Sweden)

    S.-H. Lee

    2011-07-01

    Full Text Available Transport and chemical transformation of well-defined New York City (NYC urban plumes over the North Atlantic Ocean were studied using aircraft measurements collected on 20–21 July 2004 during the ICARTT (International Consortium for Atmospheric Research on Transport and Transformation field campaign and WRF-Chem (Weather Research and Forecasting-Chemistry model simulations. The strong NYC urban plumes were characterized by carbon monoxide (CO mixing ratios of 350–400 parts per billion by volume (ppbv and ozone (O3 levels of about 100 ppbv near New York City on 20 July in the WP-3D in-situ and DC-3 lidar aircraft measurements. On 21 July, the two aircraft captured strong urban plumes with about 350 ppbv CO and over 150 ppbv O3 (~160 ppbv maximum about 600 km downwind of NYC over the North Atlantic Ocean. The measured urban plumes extended vertically up to about 2 km near New York City, but shrank to 1–1.5 km over the stable marine boundary layer (MBL over the North Atlantic Ocean. The WRF-Chem model reproduced ozone formation processes, chemical characteristics, and meteorology of the measured urban plumes near New York City (20 July and in the far downwind region over the North Atlantic Ocean (21 July. The quasi-Lagrangian analysis of transport and chemical transformation of the simulated NYC urban plumes using WRF-Chem results showed that the pollutants can be efficiently transported in (isentropic layers in the lower atmosphere (<2–3 km over the North Atlantic Ocean while maintaining a dynamic vertical decoupling by cessation of turbulence in the stable MBL. The O3 mixing ratio in the NYC urban plumes remained at 80–90 ppbv during nocturnal transport over the stable MBL, then grew to over 100 ppbv by daytime oxidation of nitrogen oxides (NOx = NO + NO2 with mixing ratios on the order of 1 ppbv. Efficient transport of reactive nitrogen species (NOy, specifically nitric

  3. Plume and wake dynamics, mixing, and chemistry behind an HSCT aircraft

    Science.gov (United States)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.

    1991-01-01

    The chemical evolution and mixing and vortical motion of a High Speed Civil Transport's engine exhausts must be analyzed in order to track the gas and its speciation as emissions are mixed to atmospheric scales. Attention is presently given to an analytic model of the wake dynamical processes which accounts for the roll-up of the trailing vorticity, its breakup due to the Crow instability, and the subsequent evolution and motion of the reconnected vorticity. The concentrated vorticity is noted to wrap up the buoyant exhaust and suppress its continued mixing and dilution. The species tracked encompass those which could be heterogeneously reactive on the surfaces of the condensed ice particles, and those capable of reacting with exhaust soot particle surfaces to form active contrail and/or cloud condensation nuclei.

  4. Studies of the environmental impact of evaporative cooling tower plumes

    International Nuclear Information System (INIS)

    Thomson, D.W.

    1978-01-01

    This ongoing research program of the environmental impact of natural-draft evaporative cooling tower plumes consists principally of a comprehensive series of airborne measurements of a variety of the physical characteristics of the plumes and, to a lesser extent, of preliminary studies of remote sodar plume probing techniques and the development of simplified dynamical numerical models suitable for use in conducting field measurement programs. The PSU Doppler sodar was used at the Keystone Power Plant in southwestern Pennsylvania for an extended series of remote measurements of the characteristics of plume turbulent temperature and velocity fluctuations and results are discussed

  5. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  6. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  7. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.

  8. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral

    Science.gov (United States)

    M.J. Alvarado; C.R. Lonsdale; R.J. Yokelson; S.K. Akagi; I.R. Burling; H. Coe; J.S. Craven; E. Fischer; G.R. McMeeking; J.H. Seinfeld; T. Soni; J.W. Taylor; D.R. Weise; C.E. Wold

    2015-01-01

    Within minutes after emission, complex photochemistry in biomass burning smoke plumes can cause large changes in the concentrations of ozone (O3) and organic aerosol (OA). Being able to understand and simulate this rapid chemical evolution under a wide variety of conditions is a critical part of forecasting the impact of these fires on air...

  9. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    Science.gov (United States)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  10. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.

    Science.gov (United States)

    Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W

    2016-09-20

    Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of

  11. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (keyhole.

  12. Plume expansion dynamics during laser ablation of manganates in oxygen atmosphere

    International Nuclear Information System (INIS)

    Amoruso, S.; Sambri, A.; Wang, X.

    2007-01-01

    The effect of ambient gas on the expansion dynamics of the plasma plume generated by excimer laser ablation of a LaMnO 3 target is investigated by using fast photography and optical emission spectroscopy. The plume propagation in an oxygen environment is examined with pressure ranging from vacuum to few hundreds Pa. Imaging analysis of the plume emission has allowed following the changes in the plume front dynamics as a function of time and pressure. The expansion dynamics of the plume front is examined by means of a theoretical description of plume evolution and shock-wave propagation in dimensionless variables. Optical emission spectroscopy analysis showed that the oxides are mainly formed in the gas-phase through reaction of the ablated atomic species with ambient oxygen. Moreover, we observed that the formation of oxides is strongly favoured at a pressure level where the formation of a shock-wave occurs

  13. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.

    2016-12-01

    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  14. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  15. Dispersal of the Pearl River plume over continental shelf in summer

    Science.gov (United States)

    Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng

    2017-07-01

    Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.

  16. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  17. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  18. Plume tracer experiments at Hinkley Point 'A' [Nuclear Power Station] during 1987

    International Nuclear Information System (INIS)

    Foster, P.M.

    1988-11-01

    The results of the first part of a programme of plume dispersion measurements at the Hinkley Point Nuclear Power Station are described. Using SF 6 gas and pyrotechnic smoke tracer techniques developed during an earlier study at Oldbury, measurements of ground level plume behaviour out to about 4 km and elevated plume behaviour out to about 1 km have been made in a series of twelve 1 hour trials and one 15 minute trial. Whereas the Oldbury study considered passive emissions, attention in this study has been focussed on the behaviour of the buoyant shield cooling air emission. Data on plume rise and the degree of plume entrainment by the building wake and on the effects of entrainment and wind meander on plume width and concentration, are presented and discussed in relation to current modelling recommendations. A limited number of 10 minute averaged measurements of plume concentration and 41-Ar decay gamma count were also made at 2 km range and their correlation and variability examined. (author)

  19. A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes

    Directory of Open Access Journals (Sweden)

    J. Cortinovis

    2005-01-01

    Full Text Available Research during the past decades has outlined the importance of biogenic isoprene emission in tropospheric chemistry and regional ozone photo-oxidant pollution. The first part of this article focuses on the development and validation of a simple biogenic emission scheme designed for regional studies. Experimental data sets relative to Boreal, Tropical, Temperate and Mediterranean ecosystems are used to estimate the robustness of the scheme at the canopy scale, and over contrasted climatic and ecological conditions. A good agreement is generally found when comparing field measurements and simulated emission fluxes, encouraging us to consider the model suitable for regional application. Limitations of the scheme are nevertheless outlined as well as further on-going improvements. In the second part of the article, the emission scheme is used on line in the broader context of a meso-scale atmospheric chemistry model. Dynamically idealized simulations are carried out to study the chemical interactions of pollutant plumes with realistic isoprene emissions coming from a Mediterranean oak forest. Two types of anthropogenic sources, respectively representative of the Marseille (urban and Martigues (industrial French Mediterranean sites, and both characterized by different VOC/NOx are considered. For the Marseille scenario, the impact of biogenic emission on ozone production is larger when the forest is situated in a sub-urban configuration (i.e. downwind distance TOWN-FOREST -1. In this case the enhancement of ozone production due to isoprene can reach +37% in term of maximum surface concentrations and +11% in term of total ozone production. The impact of biogenic emission decreases quite rapidly when the TOWN-FOREST distance increases. For the Martigues scenario, the biogenic impact on the plume is significant up to TOWN-FOREST distance of 90km where the ozone maximum surface concentration enhancement can still reach +30%. For both cases, the

  20. Large-scale compositional heterogeneity in the Earth's mantle

    Science.gov (United States)

    Ballmer, M.

    2017-12-01

    Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.

  1. Large-eddy simulation study of oil/gas plumes in stratified fluid with cross current

    Science.gov (United States)

    Yang, Di; Xiao, Shuolin; Chen, Bicheng; Chamecki, Marcelo; Meneveau, Charles

    2017-11-01

    Dynamics of the oil/gas plume from a subsea blowout are strongly affected by the seawater stratification and cross current. The buoyant plume entrains ambient seawater and lifts it up to higher elevations. During the rising process, the continuously increasing density difference between the entrained and ambient seawater caused by the stable stratification eventually results in a detrainment of the entrained seawater and small oil droplets at a height of maximum rise (peel height), forming a downward plume outside the rising inner plume. The presence of a cross current breaks the plume's axisymmetry and causes the outer plume to fall along the downstream side of the inner plume. The detrained seawater and oil eventually fall to a neutral buoyancy level (trap height), and disperse horizontally to form an intrusion layer. In this study, the complex plume dynamics is investigated using large-eddy simulation (LES). Various laboratory and field scale cases are simulated to explore the effect of cross current and stratification on the plume dynamics. Based on the LES data, various turbulence statistics of the plume are systematically quantified, leading to some useful insights for modeling the mean plume dynamics using integral plume models. This research is made possible by a RFP-V Grant from The Gulf of Mexico Research Initiative.

  2. Characterizing Io’s Pele, Tvashtar and Pillan plumes: Lessons learned from Hubble

    Science.gov (United States)

    Jessup, Kandis Lea; Spencer, John R.

    2012-03-01

    Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ∼0.035-0.12 μm for the 1997 Pillan eruption, ∼0.05-0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ∼0.05-0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is Pele eruption released ∼109 g of SO2 dust, the 1997 Pillan eruption released ∼1010 g of SO2 dust, and the 1995 Pele plume may have released ∼1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24-0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is

  3. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    Science.gov (United States)

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  4. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  5. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    Science.gov (United States)

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  6. Radiatively-driven processes in forest fire and desert dust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Bernadett Barbara

    2008-07-01

    The absorption of solar radiation by atmospheric aerosol particles is important for the climate effects of aerosols. Absorption by aerosol particles heats atmospheric layers, even though the net effect for the entire atmospheric column may still be a cooling. Most experimental studies on absorbing aerosols so far focussed mainly on the aerosol properties and did not consider the influence of the aerosols on the thermodynamic structure of the atmosphere. In this study, data from two international aircraft field experiments, the Intercontinental Transport of Ozone and Precursors study (ITOP) 2004 and the Saharan Mineral Dust Experiment (SAMUM) 2006 are investigated. The ITOP data were collected before the work on this thesis started, while the logistics and the instrument preparation of the SAMUM campaign, the weather forecast during SAMUM and the in-situ aerosol measurements during SAMUM were done within this thesis. The experimental data are used to explore the impact of layers containing absorbing forest fire and desert dust aerosol particles on the atmospheric stability and the implications of a changed stability on the development of the aerosol microphysical and optical properties during long-range transport. For the first time, vertical profiles of the Richardson number Ri are used to assess the stability and mixing in forest fire and desert dust plumes. Also for the first time, the conclusions drawn from the observations of forest fire and desert dust aerosol, at first glance apparently quite different aerosol types, are discussed from a common perspective. Two mechanisms, the selfstabilising and the sealed ageing effect, acting in both forest fire and desert dust aerosol layers, are proposed to explain the characteristic temperature structure as well as the aerosol properties observed in lofted forest fire and desert dust plumes. The proposed effects impact on the ageing of particles within the plumes and reduce the plume dilution, therefore extending the

  7. Spectrum Diagnosis for Fuchsia Plume of Hall Effect Thruster with Xenon as Propellant

    International Nuclear Information System (INIS)

    Yu Daren; Ding Jiapeng; Dai Jingmin

    2006-01-01

    The colour of the Hall effect thruster's plume is often light-green, and sometimes a fuchsia plume appears during experiments. Based on a spectrum and colour analysis, and a comparison with normal plumes, a conclusion is made that the density of the Xe ions and the temperature of electrons are low when the plume appears fuchsia. In this condition, most of the components of the plume are Xe atoms, and the ionization rate of the propellant is low

  8. Response of mantle transition zone thickness to plume buoyancy flux

    Science.gov (United States)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  9. The mantle-plume model, its feasibility and consequences

    NARCIS (Netherlands)

    Calsteren, van P.W.C.

    1981-01-01

    High beat-flow foci on the Earth have been named ‘hot-spots’ and are commonly correlated with ‘mantle-plumes’ in the deep. A mantle plume may be described as a portion of mantle material with a higher heat content than its surroundings. The intrusion of a mantle-plume is inferred to be similar to

  10. CFD investigation of balcony spill plumes in atria

    International Nuclear Information System (INIS)

    McCartney, C.J.; Lougheed, G.D.; Weckman, E.J.

    2004-01-01

    Smoke management in buildings during fire events often uses mechanical ventilation systems to maintain smoke layer elevation above a safe evacuation path. Design of these systems requires accurate correlations for the smoke production rate of the buoyant fire plume. One design issue is the smoke production rate of fire plumes which spill out from a fire compartment, under a balcony and up through an atrium or other large volume. Current engineering correlations for these balcony spill plumes are based on a combination of one-tenth scale test data and theoretical analysis. Questions have arisen over the suitability of these correlations for real-scale designs. A combined program of full-scale experimentation and CFD modeling is being conducted to analyze the accuracy of these correlations. A full-scale experimental facility was constructed with a 5 m by 5 m by 15 m fire compartment connected to a four-story atrium. Propane fires in the compartment produce balcony spill plumes which form steady-state smoke layers in the atrium. Experimental variables include fire size, compartment opening width, balcony depth and compartment fascia depth. A variable exhaust system was used to achieve various smoke layer heights for each of 100 compartment configurations. Temperature, smoke obscuration and gas concentrations were measured in the compartment, atrium and exhaust system. The experimental data was used to determine the atrium smoke layer elevation and balcony spill plume smoke production rate for each configuration and fire size. Comparison of this data with zone model results and design correlations for atrium smoke management systems will be performed to evaluate their accuracy. A CFD model of the experimental facility was implemented using the Fire Dynamics Simulator software (Version 3). Large-eddy simulations of the flow were performed with a constant radiative fraction and an infinitely fast mixture fraction combustion model. A grid sensitivity analysis was

  11. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    Science.gov (United States)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  12. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  13. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  14. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    Science.gov (United States)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary

  15. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  16. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    Science.gov (United States)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  17. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts

    KAUST Repository

    Pelletier, Jeremie

    2016-03-09

    ConspectusHeterogeneous catalysis, a field important industrially and scientifically, is increasingly seeking and refining strategies to render itself more predictable. The main issue is due to the nature and the population of catalytically active sites. Their number is generally low to very low, their "acid strengths" or " redox properties" are not homogeneous, and the material may display related yet inactive sites on the same material. In many heterogeneous catalysts, the discovery of a structure-activity reationship is at best challenging. One possible solution is to generate single-site catalysts in which most, if not all, of the sites are structurally identical. Within this context and using the right tools, the catalyst structure can be designed and well-defined, to reach a molecular understanding. It is then feasible to understand the structure-activity relationship and to develop predictable heterogeneous catalysis. Single-site well-defined heterogeneous catalysts can be prepared using concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure-activity relationship to the extent that it is becoming now quite predictable. Almost all elements of the periodical table have been grafted on surfaces of oxides (from simple oxides such as silica or alumina to more sophisticated materials regarding composition or porosity).Considering catalytic hydrocarbon transformations, heterogeneous catalysis outcome may now be predicted based on existing mechanistic proposals and the rules of molecular chemistry (organometallic, organic) associated with some concepts of surface sciences. A thorough characterization of the grafted metal centers must be carried out using tools spanning from molecular organometallic or surface chemistry. By selection of the metal, its ligand set, and the

  18. 3-D spectral Induced Polarization (IP) imaging: Non-invasive characterization of contaminant plumes. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Frye, K.M.; Lesmes, D.P.; Morgan, F.D.; Rodi, W.; Shi, W.; Sturrock, J.

    1997-01-01

    'The objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. The first-year accomplishments are (1) laboratory experiments on fluid-saturated sandstones quantifying the dependence of spectral IP responses on solution chemistry and rock micro-geometry; (2) library research on the current understanding of electromagnetic coupling effects on IP data acquired in the field: and (3) development of prototype forward modeling and inversion algorithms for interpreting IP data in terms of 3-D models of complex resistivity.'

  19. Novel plume deflection concept testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will explore the feasibility and effectiveness of utilizing an electrically driven thermal shield for use as part of rocket plume deflectors. To...

  20. Waves generated in the plasma plume of helicon magnetic nozzle

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-01-01

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  1. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  2. Waves generated in the plasma plume of helicon magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of the plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.

  3. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  4. Plume dynamics in TiC laser ablation

    International Nuclear Information System (INIS)

    D'Alessio, L.; Galasso, A.; Santagata, A.; Teghil, R.; Villani, A.R.; Villani, P.; Zaccagnino, M.

    2003-01-01

    In this work, the analysis of the gaseous phase, produced by pulsed laser ablation of a TiC target and performed by emission spectroscopy and intensified charge coupled device (ICCD) imaging is reported. In the case of laser fluence higher than 3 J/cm 2 , the front of the emitting plume is identified with the presence of Ti 2+ ions, while the presence of a double maximum is due to the neutral and ionized titanium particles traveling with different velocities. At a laser fluence lower than 3 J/cm 2 , the front is marked by C + emission and only one maximum is present. The results, compared with those obtained for other carbides of group 4, evidence that only in the plume produced from TiC targets there is the presence of a large amount of ions with high kinetic energy. In particular, the highly energetic M 2+ ions (M=Ti, Zr, Hf) are present only in the TiC plume. The different energy and concentration of ions in the different carbide plumes confirm the importance of the ionized part of the gaseous phase in the film growth mechanism. In fact only in the TiC films, we find a layered structure in contrast with the columnar structure found in the other carbides of the same group

  5. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  6. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek

    2010-01-01

    Nano-materials are important in many diverse areas, from basic research to various applications in electronics, biochemical sensors, catalysis and energy. They have emerged as sustainable alternatives to conventional materials, as robust high surface area heterogeneous catalysts and catalyst supports. The nano-sized particles increase the exposed surface area of the active component of the catalyst, thereby enhancing the contact between reactants and catalyst dramatically and mimicking the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect with greater potential than these three components in isolation. To illustrate the proof-of-concept of this "green and sustainable" approach, representative examples are discussed in this article. © 2010 The Royal Society of Chemistry.

  7. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters...

  8. Contaminant plumes containment and remediation focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs

  9. Contaminant plumes containment and remediation focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  10. The effect of coal-fired power-plant SO2 and NOx control technologies on aerosol nucleation in the source plumes

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2012-12-01

    the cleaner test day in 2000. Finally, we calculate particle-formation statistics of 330 coal-fired power plants in the US in 1997 and 2010, and the model results show a median decrease of 19% in particle formation rates from 1997 to 2010 (whereas the W. A. Parish case study showed an increase. Thus, the US power plants, on average, show a different result than was found for the W. A. Parish plant specifically, and it shows that the strong NOx controls (90% reduction implemented at the W. A. Parish plant (with relatively weak SO2 emissions reductions, 30% are not representative of most power plants in the US during the past 15 yr. These results suggest that there may be important climate implications of power-plant controls due to changes in plume chemistry and microphysics, but the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.

  11. Multiscale Approach to Small River Plumes off California

    Science.gov (United States)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  12. Quantifying mantle structure and dynamics using plume tracing in seismic tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.

    2017-12-01

    Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat

  13. How relevant is heterogeneous chemistry on Mars? Strong tests via global mapping of water and ozone (sampled via O2 dayglow)

    Science.gov (United States)

    Villanueva, Geronimo Luis; Mumma, Michael J.; Novak, Robert E.

    2015-11-01

    Ozone and water are powerful tracers of photochemical processes on Mars. Considering that water is a condensable with a multifaceted hydrological cycle and ozone is continuously being produced / destroyed on short-time scales, their maps can test the validity of current 3D photochemical and dynamical models. Comparisons of modern GCM models (e.g., Lefèvre et al. 2004) with certain datasets (e.g., Clancy et al. 2012; Bertaux et al. 2012) point to significant disagreement, which in some cases have been related to heterogeneous (gas-dust) chemistry beyond the classical gas-gas homogeneous reactions.We address these concerns by acquiring full 2D maps of water and ozone (via O2 dayglow) on Mars, employing high spectral infrared spectrometers at ground-based telescopes (CRIRES/VLT and CSHELL/NASA-IRTF). By performing a rotational analysis on the O2 lines, we derive molecular temperature maps that we use to derive the vertical level of the emission (e.g., Novak et al. 2002). Our maps sample the full observable disk of Mars on March/25/2008 (Ls=50°, northern winter) and on Jan/29/2014 (Ls=83°, northern spring). The maps reveal a strong dependence of the O2 emission and water burden on local orography, while the temperature maps are in strong disagreement with current models. Could this be the signature of heterogeneous chemistry? We will present the global maps and will discuss possible scenarios to explain the observations.This work was partially funded by grants from NASA's Planetary Astronomy Program (344-32-51-96), NASA’s Mars Fundamental Research Program (203959.02.02.20.29), NASA’s Astrobiology Program (344-53-51), and the NSF-RUI Program (AST-805540). We thank the administration and staff of the European Southern Observatory/VLT and NASA-IRTF for awarding observing time and coordinating our observations.Bertaux, J.-L., Gondet, B., Lefèvre, F., et al. 2012. J. Geophys. Res. Pl. 117. pp. 1-9.Clancy, R.T., Sandor, B.J., Wolff, M.J., et al. 2012. J. Geophys. Res

  14. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide. Copyright © 2013. Published by Elsevier B.V.

  15. Tracking of smokestack and cooling tower plumes using wind measurements at different levels

    International Nuclear Information System (INIS)

    Miller, R.L.; Patrinos, A.A.N.

    1980-08-01

    Relationships between cooling tower and smokestack plumes at the Bowen Electric Generating Plant in northwestern Georgia and wind direction measurements at levels from the surface at 850 mb (approx. 1.5 km) are examined. The wind measurements play an important role in estimating plume directions which in turn are utilized to establish control and target (upwind and downwind) areas for a study of plant-induced precipitation modification. Fifty-two plume observations were made during a three week period in December 1979. Results indicate that a windset (4.5 km from the plant) mounted at a level approximating that of the cooling tower plume is a better predictor of plume direction than surface windsets (1.0 km from the plant) or 850 mb level winds. However, an apparent topographical influence on the wind direction measurements at the plume-level windset site somewhat limits its plume tracking capability, at least for ambient winds from the SW quadrant

  16. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  17. Simulating Irregular Source Geometries for Ionian Plumes

    Science.gov (United States)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  18. Simulating Irregular Source Geometries for Ionian Plumes

    International Nuclear Information System (INIS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-01-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  19. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  20. A coordination chemistry approach for modeling trace element adsorption

    International Nuclear Information System (INIS)

    Bourg, A.C.M.

    1986-01-01

    The traditional distribution coefficient, Kd, is highly dependent on the water chemistry and the surface properties of the geological system being studied and is therefore quite inappropriate for use in predictive models. Adsorption, one of the many processes included in Kd values, is described here using a coordination chemistry approach. The concept of adsorption of cationic trace elements by solid hydrous oxides can be applied to natural solids. The adsorption process is thus understood in terms of a classical complexation leading to the formation of surface (heterogeneous) ligands. Applications of this concept to some freshwater, estuarine and marine environments are discussed. (author)

  1. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    Science.gov (United States)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  2. The Robustness of Tomographically Imaged Broad Plumes in the Deep Mantle: Constraints on Mantle Dynamics

    Science.gov (United States)

    Romanowicz, B. A.; Jiménez-Pérez, H.; Adourian, S.; Karaoglu, H.; French, S.

    2016-12-01

    Existing global 3D shear wave velocity models of the earth's mantle generally rely on simple ray theoretical assumptions regarding seismic wave propagation through a heterogeneous medium, and/or consider a limited number of seismic observables, such as surface wave dispersion and/or travel times of body waves (such as P or S) that are well separated on seismograms. While these assumptions are appropriate for resolving long wavelength structure, as evidenced from the good agreement at low degrees between models published in the last 10 years, it is well established that the assumption of ray theory limits the resolution of smaller scale low velocity structures. We recently developed a global radially anisotropic shear wave velocity model (SEMUCB_WM1, French and Romanowicz, 2014, 2015) based on time domain full waveform inversion of 3-component seismograms, including surface waves and overtones down to 60s period, as well as body waveforms down to 30s. At each iteration, the forward wavefield is calculated using the Spectral Element Method (SEM), which ensures the accurate computation of the misfit function. Inversion is performed using a fast converging Gauss-Newton formalism. The use of information from the entire seismogram, weighted according to energy arrivals, provides a unique illumination of the deep mantle, compensating for the uneven distribution of sources and stations. The most striking features of this model are the broad, vertically oriented plume-like conduits that extend from the core-mantle boundary to at least 1000 km depth in the vicinity of some 20 major hotspots located over the large low shear velocity provinces under the Pacific and Africa. We here present the results of various tests aimed at evaluating the robustness of these features. These include starting from a different initial model, to evaluate the effects of non-linearity in the inversion, as well as synthetic tests aimed at evaluating the recovery of plumes located in the middle of

  3. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Science.gov (United States)

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  4. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  5. Tritium plume dynamics in the shallow unsaturated zone in an arid environment

    Science.gov (United States)

    Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.

    2014-01-01

    The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses

  6. Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI)

    Science.gov (United States)

    Pommier, Matthieu; Clerbaux, Cathy; Coheur, Pierre-Francois

    2017-09-01

    Formic acid (HCOOH) concentrations are often underestimated by models, and its chemistry is highly uncertain. HCOOH is, however, among the most abundant atmospheric volatile organic compounds, and it is potentially responsible for rain acidity in remote areas. HCOOH data from the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed from 2008 to 2014 to estimate enhancement ratios from biomass burning emissions over seven regions. Fire-affected HCOOH and CO total columns are defined by combining total columns from IASI, geographic location of the fires from Moderate Resolution Imaging Spectroradiometer (MODIS), and the surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF). Robust correlations are found between these fire-affected HCOOH and CO total columns over the selected biomass burning regions, allowing the calculation of enhancement ratios equal to 7.30 × 10-3 ± 0.08 × 10-3 mol mol-1 over Amazonia (AMA), 11.10 × 10-3 ± 1.37 × 10-3 mol mol-1 over Australia (AUS), 6.80 × 10-3 ± 0.44 × 10-3 mol mol-1 over India (IND), 5.80 × 10-3 ± 0.15 × 10-3 mol mol-1 over Southeast Asia (SEA), 4.00 × 10-3 ± 0.19 × 10-3 mol mol-1 over northern Africa (NAF), 5.00 × 10-3 ± 0.13 × 10-3 mol mol-1 over southern Africa (SAF), and 4.40 × 10-3 ± 0.09 × 10-3 mol mol-1 over Siberia (SIB), in a fair agreement with previous studies. In comparison with referenced emission ratios, it is also shown that the selected agricultural burning plumes captured by IASI over India and Southeast Asia correspond to recent plumes where the chemistry or the sink does not occur. An additional classification of the enhancement ratios by type of fuel burned is also provided, showing a diverse origin of the plumes sampled by IASI, especially over Amazonia and Siberia. The variability in the enhancement ratios by biome over the different regions show that the levels of HCOOH and CO do not only depend on the fuel types.

  7. Experimental investigation of the hydrodynamics of confined bubble plumes in water and viscous media

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Alexandr Zaruba; Eckhard Krepper; Horst-Michael Prasser

    2005-01-01

    Wire-mesh tomography measurements of void fraction and bubble size distribution in a rectangular bubble column 10 cm wide and 2 cm deep have been conducted. Experiments were performed in an air-water and ethylene glycol system with the column operating in the dispersed bubbly flow regime.Experiments were conducted for plumes with different aspect ratios between 2.2 to 13. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. The behaviour of the long plumes (larger aspect ratio) was found to be significantly different than that of the short plumes (aspect ratios 2 to 4). The oscillating nature of the bubble plume is preserved over the entire height of the water column for the short plumes. The longer plumes are characterized by two distinct regions, the near injector oscillating region and a further downstream region where the bubbles rise in a string like motion. The void fraction distribution in the oscillating region of the plume exhibits a center-peak profile. A 'wall peak' has been observed in the measured void fraction profiles (for higher gas flow rates) in the downstream string-like region. The effect of column height and superficial gas velocity on the void distribution has been investigated. This paper presents the measurement principle and the experimental results for short and long plumes in an air-water system and for short plumes rising in viscous media. The results of the visualization experiment characterizing the structure of the bubble plume and the oscillation frequency of the bubble plumes are reported. (authors)

  8. New method for calculation of integral characteristics of thermal plumes

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2008-01-01

    A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...

  9. Utilization of a hydraulic barrier to control migration of a uranium plume

    International Nuclear Information System (INIS)

    Brettschneider, D.J.; Simmons, R.A. Jr.; Kappa, J.D.; Stover, J.A.

    1995-01-01

    A uranium plume emanating from the U.S. Department of Energy's Fernald Environmental Management Project (FEMP) in Fernald, Ohio had migrated off site and the leading edge of the plume had already mixed with an organic and inorganic plume emanating from two industries south of the FEMP. A method was needed to prevent the further southern migration of the plume, minimize any impacts to the geometry, concentrations, distribution or flow patterns of the organic and inorganic plumes emanating from the off-site industries, while meeting the ultimate cleanup goals for the FEMP. This paper discusses the use of a hydraulic barrier created to meet these goals by pumping a five well recovery system and the problems associated with the disposition of over 2 million gallons per day of water with low concentrations of uranium

  10. Field studies of submerged-diffuser thermal plumes with comparisons to predictive model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; Ditmars, J.D.

    1976-01-01

    Thermal plumes from submerged discharges of cooling water from two power plants on Lake Michigan were studied. The system for the acquisition of water temperatures and ambient conditions permitted the three-dimensional structure of the plumes to be determined. The Zion Nuclear Power Station has two submerged discharge structures separated by only 94 m. Under conditions of flow from both structures, interaction between the two plumes resulted in larger thermal fields than would be predicted by the superposition of single non-interacting plumes. Maximum temperatures in the near-field region of the plume compared favorably with mathematical model predictions. A comparison of physical-model predictions for the plume at the D. C. Cook Nuclear Plant with prototype measurements indicated good agreement in the near-field region, but differences in the far-field occurred as similitude was not preserved there

  11. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  12. Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions

    Science.gov (United States)

    Liu, H.; Leng, W.

    2017-12-01

    Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.

  13. Heat and mass transfer in the mushroom-shaped head of mantle plume

    Directory of Open Access Journals (Sweden)

    Kirdyashkin Anatoly

    2017-01-01

    Full Text Available The results of experimental and theoretical modeling of free-convection flows in the melt of the plume conduit and in the mushroom-shaped head are presented. It was shown that the plumes with the mushroom-shaped heads can be responsible for the batholith formation. The main parameters of such plumes are estimated.

  14. Measurements at cooling tower plumes. Pt. 1

    International Nuclear Information System (INIS)

    Gassmann, F.; Haschke, D.; Solfrian, W.

    1976-04-01

    Referring to the present status of knowledge model conceptions, assumptions and approaches are summarized, which can lead to mathematical models for the simulation of dry or wet cooling tower plumes. By developing a one-dimensional plume model (FOG) the most important problems are considered in detail. It is shown that for the calibration of the necessary parameters as well as for the development of models full scale measurements are of decisive importance. After a discussion of different possibilities of measurement the organisation of a campaign of measurement is described. (orig.) [de

  15. Kinetic electron model for plasma thruster plumes

    Science.gov (United States)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  16. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular

  17. Characterization of ablated species in laser-induced plasma plume

    International Nuclear Information System (INIS)

    Furusawa, Hideki; Sakka, Tetsuo; Ogata, Yukio H.

    2004-01-01

    Plasma electron density and atomic population densities in the plasma plume produced by a laser ablation of aluminum metal were determined in various ambient gases at relatively high pressures. The method is based on the fit of a spectral line profile of Al(I) 2 P (convolutionsign) - 2 S emission to the theoretical spectrum obtained by one-dimensional radiative transfer calculation. The electron density was higher for a higher ambient gas pressure, suggesting the confinement of the plume by an ambient gas. The electron density also depends on the type of ambient gases, i.e., it increased in the order He 4 2 4 , while the atomic population density is almost independent of the type of ambient species and pressure. The population densities of the upper and lower levels of the transition were compared, and the ratio between their spatial distribution widths was calculated. These results provide valuable information regarding the confinement of the plume by the ambient gas and give insight into the time evolution of the plume

  18. Natural attenuation: A feasible approach to remediation of landfill leachate plumes?

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2000-01-01

    Natural attenuation has been implemented for petroleum hydrocarbons plumes and recently also for chlorinated solvent plumes, primarily in the USA, but natural attenuation has not yet gained a foothold with respect to leachate plumes. Based on the experiences gained from ten years of research on two...... Danish landfills, it is suggested that natural attenuation is a feasible approach, but much more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent....

  19. Chemistry Division progress report for the period January 1, 1977 - December 31, 1980

    International Nuclear Information System (INIS)

    Moorthy, P.N.; Ramshesh, V.; Yakhmi, J.V.

    1981-01-01

    The research and development work of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during the period 1977-1980 is reported in the form of individual summaries under the headings: basic research including radiation chemistry, photochemistry, kinetic and electrochemical studies, ion exchange and sorption behaviour, chemistry of metal complexes (in particular, of uranium complexes), radiation damage in solids, heterogeneous catalysts, studies in magnetism, physical properties, solid state studies, theoretical studies, reactor related programmes (including reactor chemistry, lubricants and sealants, surface studies, water chemistry), applied research and development (including materials development, purification and analytical techniques, apolied radiation chemistry etc.), and instrumentation. Work of service facilities such as workshop, analytical se services, and repair and maintenance of instruments is described. Lists of training programmes, staff publications and divisional seminars, are given. At the end a sectionwise list of staff members is also given. (M.G.B.)

  20. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  1. Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization

    Directory of Open Access Journals (Sweden)

    P. Pisoft

    2010-07-01

    Full Text Available In general, regional and global chemistry transport models apply instantaneous mixing of emissions into the model's finest resolved scale. In case of a concentrated source, this could result in erroneous calculation of the evolution of both primary and secondary chemical species. Several studies discussed this issue in connection with emissions from ships and aircraft. In this study, we present an approach to deal with the non-linear effects during dispersion of NOx emissions from ships. It represents an adaptation of the original approach developed for aircraft NOx emissions, which uses an exhaust tracer to trace the amount of the emitted species in the plume and applies an effective reaction rate for the ozone production/destruction during the plume's dilution into the background air. In accordance with previous studies examining the impact of international shipping on the composition of the troposphere, we found that the contribution of ship induced surface NOx to the total reaches 90% over remote ocean and makes 10–30% near coastal regions. Due to ship emissions, surface ozone increases by up to 4–6 ppbv making 10% contribution to the surface ozone budget. When applying the ship plume parameterization, we show that the large scale NOx decreases and the ship NOx contribution is reduced by up to 20–25%. A similar decrease was found in the case of O3. The plume parameterization suppressed the ship induced ozone production by 15–30% over large areas of the studied region. To evaluate the presented parameterization, nitrogen monoxide measurements over the English Channel were compared with modeled values and it was found that after activating the parameterization the model accuracy increases.

  2. Formation of mantle "lone plumes" in the global downwelling zone - A multiscale modelling of subduction-controlled plume generation beneath the South China Sea

    Science.gov (United States)

    Zhang, Nan; Li, Zheng-Xiang

    2018-01-01

    It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead of rising above the LLSVPs, it is located within the broad global mantle downwelling zone, therefore classified as a "lone plume". Here, we use the Hainan plume example to investigate the feasibility of such lone plumes being generated by subducting slabs in the mantle downwelling zone using 3D geodynamic modelling. Our geodynamic model has a high-resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adaptive-mesh-refined, 3D mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). We use a recently published plate motion model to define the top mechanical boundary condition. Our modelling results suggest that cold slabs under the present-day Eurasia, formed from the Mesozoic subduction and closure of the Tethys oceans, have prevented deep mantle hot materials from moving to the South China Sea from regions north or west of the South China Sea. From the east side, the Western Pacific subduction systems started to promote the formation of a lower-mantle thermal-chemical pile in the vicinity of the future South China Sea region since 70 Ma ago. As the top of this lower-mantle thermal-chemical pile rises, it first moved to the west, and finally rested beneath the South China Sea. The presence of a thermochemical layer (possible the D″ layer) in the model helps stabilizing the plume root. Our modelling is the first implementation of multi-scale mesh in the regional model. It has been proved to be an effective way of modelling regional dynamics within a global plate motion and mantle dynamics background.

  3. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MT response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.

  4. Io's UV-V Eclipse Emission: Implications for Pele-type Plumes

    Science.gov (United States)

    Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2010-03-01

    Simulations of Io's NUV-V emission in eclipse show that S2-rich giant plumes' S2 concentrations and activity levels effect the absolute brightness and the east/west intensity ratio across Io allowing for plume activity to be determined from observed spectra.

  5. Observational Insights into N2O5 Heterogeneous Chemistry: Influencing Factors and Contribution to Wintertime Air Pollution

    Science.gov (United States)

    McDuffie, E. E.; Fibiger, D. L.; Womack, C.; Dube, W. P.; Lopez-Hilfiker, F.; Goldberger, L.; Thornton, J. A.; Shah, V.; Jaegle, L.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano Jost, P.; Jimenez, J. L.; Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    Chemical mechanisms that underlie wintertime air pollution, including tropospheric ozone and aerosol nitrate, are poorly characterized. Due to colder temperatures and fewer hours of solar radiation, nocturnal heterogeneous uptake of N2O5 plays a relatively larger role during wintertime in controlling the oxidation of NOx (=NO+NO2) and its influence on ozone and soluble nitrate. After uptake to aerosol, N2O5 can act as both a nocturnal NOx reservoir and sink depending on the partitioning between its nitric acid and photo labile, ClNO2 reaction products. In addition, N2O5 itself can act as a NOx reservoir if the aerosol uptake coefficient is small. As a result, the nocturnal fate of N2O5 dictates the amount of NOx in an air parcel and the subsequent formation of aerosol nitrate and following-day ozone. Models of winter air pollution therefore require accurate parameterization of the N2O5 uptake coefficient, as well as factors that control its magnitude and N2O5 product partitioning. There are currently only a small number of ambient N2O5 and ClNO2 observations during the winter season concurrent with measurements of relevant variables such as aerosol size distributions and composition. The Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 10 nighttime research flights with the NCAR C-130 over the eastern U.S. during February and March, 2015. The more recent Utah Wintertime Fine Particulate Study (UWFPS) conducted over 20 research flights with the NOAA twin otter aircraft during January-February 2017 in three mountain basins near and including Salt Lake City, Utah. The two campaigns were similarly instrumented and have provided the first aircraft observations of N2O5, ClNO2, and aerosol composition in the wintertime boundary layer in these urban-influenced regions. Analysis of heterogeneous chemistry under a wide range of real environmental conditions provides insight into the factors controlling the N2O5 uptake coefficient

  6. Martian methane plume models for defining Mars rover methane source search strategies

    Science.gov (United States)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  7. Simulations of the Effects of Jupiter's Plasma Torus on Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2014-11-01

    Io’s plumes rise hundreds of kilometers above its surface and sublimation atmosphere, presenting large targets for incoming ions from Jupiter’s plasma torus. The direct simulation Monte Carlo method is used to model the gas plume at Pele and its interaction with the Jovian plasma torus. Chemical reactions resulting from ion impacts in a plume change its composition and energy from the impacts changes the plume’s structure (asymmetrically). The presence of non-condensible daughter species in a warmer plume canopy produces a more diffuse deposition ring on Io’s surface, compared to simulations without plasma. Energized molecules also escape from the plume, forming a diffuse cloud of fast particles above the plume’s canopy, which may function to resupply the plasma torus and which suggests a mechanism for lofting other species to very high altitudes.

  8. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Science.gov (United States)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~ 21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also

  9. Spatial and temporal migration of a landfill leachate plume in alluvium

    Science.gov (United States)

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  10. Industrial applications of radiation chemistry; Perspectives industrielles de la chimie sous rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Jean Rene [Commissariat a l' energie atomique et aux energies alternatives - CEA, Service de chimie-physique, CEN de Saclay (France)

    1959-07-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959.

  11. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    ) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...... the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume...... area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet....

  12. Plant odour plumes as mediators of plant-insect interactions.

    Science.gov (United States)

    Beyaert, Ivo; Hilker, Monika

    2014-02-01

    Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  13. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  14. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  15. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  16. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter

    Axisymmeric circular buoyant jets are treated both theoretically and experimentally. From a literature study the author concludes that the state of experimental knowledge is less satisfactory. Further three different measuring methods have been established to investigate the thermal plumes from...

  17. The role of plumes in mantle helium fluxes

    International Nuclear Information System (INIS)

    Kellogg, L.H.; Wasserburg, G.J.

    1990-01-01

    We present a simple model of 3 He and 4 He transport in the mantle using the appropriate rates of mass and species transfer and 4 He production. Previous workers have shown the presence of excess 3 He in hotspots such as Hawaii and Iceland and inferred that these hotspots tap a source with a higher 3 He/ 4 He ratio than the source region of mid-ocean ridge basalts (MORB). Hotspot ocean islands probably originate over upwelling plumes which carry material from the lower mantle to the upper mantle. Melting at hotspots and at mid-ocean ridges degasses the mantle of volatiles such as helium. The upper mantle is outgassed largely of helium due to melting at mid-ocean ridges and hotspots. We postulate that the excess 3 He seen in MORB originates in material that was carried from the lower mantle in plumes but not completely outgassed at hotspots. This helium is incoporated into the depleted upper mantle. Assuming that the upper mantle is in a quasi-steady-state with respect to helium, a simple model balancing 3 He and 4 He fluxes in the upper mantle indicates that the hotspots significantly outgas the lower mantle of 3 He. The concentration of 4 He in the plume source reservoir is 2-3 orders of magnitude lower than the concentration in carbonaceous chondrites. The residence time of helium in the upper mantle depends on the outgassing efficiency at hotspots, since the hotspots may outgas some upper mantle material which has been entrained in the plumes. The residence time of He in the upper mantle is about 1.4x10 9 yr. We conclude that the efficiency of outgassing of He from plumes is high and that the plumes dominate the present 3 He loss to the atmosphere. The 4 He in the less depleted layer of the mantle is not trapped ''primordial'' but is predominantly from in situ decay of U and Th in the depleted layer over ≅ 1.4x10 9 yr. The 4 He in the lower mantle is dominantly from in situ decay of U and Th over 4.4x10 9 yr. (orig./WL)

  18. Characterization and Comparison of Aluminum, Silicon, and Carbon Laser Ablation Plumes

    Science.gov (United States)

    Iratcabal, Jeremy; Swanson, Kyle; Covington, Aaron

    2017-10-01

    Laser ablation of solid targets produces plasma plumes with rapidly evolving temperature and density gradients. These gradients can be measured using laser interferometric techniques that allow for the study of the plasma as the plume expands from the target surface and the temperature and density decrease. A systematic study of the temperature and density of aluminum, silicon, and carbon plasma plumes produced with a 2 TW/cm2 laser using spectroscopic, interferometric, fast imaging, and charge diagnostics will be presented. Carbon, aluminum, and silicon plumes are of interest because they are closely grouped on the periodic table but have very different material characteristics. Temporally and spatially resolved data was collected to characterize the evolution of the plasma in the plume. To probe the plasmas produced from these materials, optical spectroscopy was employed to identify and measure the temperature of the coexisting neutral and ionized atomic and molecular species. A Mach-Zehnder interferometer was employed to measure electron density. ICCD imaging and shadowgraphy were used to image the plume dynamics. A comparison of plasma evolution for each element will also be presented and will provide data to benchmark plasma codes. This work was supported by the University of Nevada, Reno, the U.S. DOE /NNSA Cooperative Agreement No. DE-NA0002075, and National Securities Technologies, LLC under Contract No. DE-AC52-06NA25946/Subcontract No. 165819.

  19. An experimental study on the near-source region of lazy turbulent plumes

    Science.gov (United States)

    Ciriello, Francesco; Hunt, Gary R.

    2017-11-01

    The near-source region of a `lazy' turbulent buoyant plume issuing from a circular source is examined for source Richardson numbers in the range of 101 to 107. New data is acquired for the radial contraction and streamwise variation of volume flux through an experimental programme of dye visualisations and particle image velocimetry. This data reveals the limited applicability of traditional entrainment laws used in integral modelling approaches for the description of the near-source region for these source Richardson numbers. A revised entrainment function is proposed, based on which we introduce a classification of plume behaviour whereby the degree of `laziness' may be expressed in terms of the excess dilution that occurs compared to a `pure' constant Richardson number plume. The increased entrainment measured in lazy plumes is attributed to Rayleigh-Taylor instabilities developing along the contraction of the plume which promote the additional engulfment of ambient fluid into the plume. This work was funded by an EPSRC Industial Case Award sponsored by Dyson Technology Ltd. Special thanks go to the members of the Dyson Environmental Control Group that regularly visit us in Cambridge for discussions about our work.

  20. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  1. Long-term bioremediation of a subsurface plume in silty soil

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    2000-01-01

    In northern Virginia, a loss from a tank farm has produced two plumes, containing about 200,000 gal of diesel fuel, jet-A fuel, and gasoline. Evidence suggests that the longest part of the contamination plume moved to its present length of 2,500 ft in less than 5 years. Since natural biodegradation would require about 2,500 years to reduce the hydrocarbon contamination to the remediation endpoints, other methods have been considered. Excavation of the plumes would take an estimated 5 years. However, the tank farm is surrounded by commercial buildings and expensive homes, and many of these buildings would have to be removed to reach the plumes. Enhanced natural bioremediation would require about 200 years at a start-up cost of about $1 million dollars and recurring costs of approximately $500,000/year. Infiltration galleries and enhanced subsurface permeability could reduce the remediation time to as little as 20 years

  2. Wildfire simulation using a chemically-reacting plume in a crossflow

    Science.gov (United States)

    Breidenthal, Robert; Alvarado, Travis; Potter, Brian

    2010-11-01

    Water tunnel experiments reveal the flame length of a chemically-reacting plume in a crossflow. Salt water containing a pH indicator and a base is slowly injected from above into the test section of a water tunnel containing an acidic solution. The flame length is measured optically as a function of the buoyancy flux, crossflow speed, and volume equivalence ratio of the chemical reaction. Based on earlier work of Broadwell with the transverse jet, a simple dilution model predicts the flame length of the transverse plume. The plume observations are in accord with the model. As with the jet, there is a minimum in the flame length of the plume at a transition between two self-similar regimes, corresponding to the formation of a pair of counter-rotating vortices at a certain crossflow speed. At the transition, there is a maximum in the entrainment and mixing rates. In an actual wildfire with variable winds, this transition may correspond to a dangerous condition for firefighters.

  3. Infrared optical properties of a coal-fired power plant plume

    International Nuclear Information System (INIS)

    Stearns, L.P.; Pueschel, R.F.

    1983-01-01

    Infrared measurements in the 8--14-μm spectral region were made of two coal-fired power plant plumes and area haze in the Four Corners region of New Mexico from 1 to 7 Nov. 1980. The layer tranmittance, optical depth, and volume extinction coefficient derived from measurements on four nonconsecutive days show the effects of the plumes on the IR optical properties of the atmosphere. The average contribution of the plume alone to the IR extinction coefficient was 74% at the Four Corners plant; the background haze contributed 7--11%. More efficient particulate emission control at the San Juan power plant reduced the average contribution of its plume to 57% of the extinction coefficient. The haze contributed an average of 16%. The results show an increase with time of the haze bulk extinction coefficient during a persistent anticyclonic synoptic situation. Extinction coefficients of the haze showed a linearity with particulate loading, which led to estimates of IR volume extinctions of the free troposphre from aerosol measurements

  4. Dispersion under low wind speed conditions using Gaussian Plume approach

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Srinivas, C.V.; Baskaran, R.; Venkatesan, R.; Venkatraman, B.

    2018-01-01

    For radioactive dose computation due to atmospheric releases, dispersion models are essential requirement. For this purpose, Gaussian plume model (GPM) is used in the short range and advanced particle dispersion models are used in all ranges. In dispersion models, other than wind speed the most influential parameter which determines the fate of the pollutant is the turbulence diffusivity. In GPM the diffusivity is represented using empirical approach. Studies show that under low wind speed conditions, the existing diffusivity relationships are not adequate in estimating the diffusion. An important phenomenon that occurs during the low wind speed is the meandering motions. It is found that under meandering motions the extent of plume dispersion is more than the estimated value using conventional GPM and particle transport models. In this work a set of new turbulence parameters for the horizontal diffusion of the plume is suggested and using them in GPM, the plume is simulated and is compared against observation available from Hanford tracer release experiment

  5. A Monte Carlo simulation method for assessing biotransformation effects on groundwater fuel hydrocarbon plume lengths

    International Nuclear Information System (INIS)

    McNab, W.W. Jr.

    2000-01-01

    Biotransformation of dissolved groundwater hydrocarbon plumes emanating from leaking underground fuel tanks should, in principle, result in plume length stabilization over relatively short distances, thus diminishing the environmental risk. However, because the behavior of hydrocarbon plumes is usually poorly constrained at most leaking underground fuel tank sites in terms of release history, groundwater velocity, dispersion, as well as the biotransformation rate, demonstrating such a limitation in plume length is problematic. Biotransformation signatures in the aquifer geochemistry, most notably elevated bicarbonate, may offer a means of constraining the relationship between plume length and the mean biotransformation rate. In this study, modeled plume lengths and spatial bicarbonate differences among a population of synthetic hydrocarbon plumes, generated through Monte Carlo simulation of an analytical solute transport model, are compared to field observations from six underground storage tank (UST) sites at military bases in California. Simulation results indicate that the relationship between plume length and the distribution of bicarbonate is best explained by biotransformation rates that are consistent with ranges commonly reported in the literature. This finding suggests that bicarbonate can indeed provide an independent means for evaluating limitations in hydrocarbon plume length resulting from biotransformation. (Author)

  6. Changes in domestic heating fuel use in Greece: effects on atmospheric chemistry and radiation

    Science.gov (United States)

    Athanasopoulou, Eleni; Speyer, Orestis; Brunner, Dominik; Vogel, Heike; Vogel, Bernhard; Mihalopoulos, Nikolaos; Gerasopoulos, Evangelos

    2017-09-01

    For the past 8 years, Greece has been experiencing a major financial crisis which, among other side effects, has led to a shift in the fuel used for residential heating from fossil fuel towards biofuels, primarily wood. This study simulates the fate of the residential wood burning aerosol plume (RWB smog) and the implications on atmospheric chemistry and radiation, with the support of detailed aerosol characterization from measurements during the winter of 2013-2014 in Athens. The applied model system (TNO-MACC_II emissions and COSMO-ART model) and configuration used reproduces the measured frequent nighttime aerosol spikes (hourly PM10 > 75 µg m-3) and their chemical profile (carbonaceous components and ratios). Updated temporal and chemical RWB emission profiles, derived from measurements, were used, while the level of the model performance was tested for different heating demand (HD) conditions, resulting in better agreement with measurements for Tmin < 9 °C. Half of the aerosol mass over the Athens basin is organic in the submicron range, of which 80 % corresponds to RWB (average values during the smog period). Although organic particles are important light scatterers, the direct radiative cooling of the aerosol plume during wintertime is found low (monthly average forcing of -0.4 W m-2 at the surface), followed by a minor feedback to the concentration levels of aerosol species. The low radiative cooling of a period with such intense air pollution conditions is attributed to the timing of the smog plume appearance, both directly (longwave radiation increases during nighttime) and indirectly (the mild effect of the residual plume on solar radiation during the next day, due to removal and dispersion processes).

  7. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jackson, G.A.

    2001-01-01

    Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow and concent......Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow...... behavior was used to examine the potential contribution of aggregate-generated solute plumes for water column bacteria] production. Despite occupying only a small volume fraction, the plumes may provide important growth habitats for free bacteria and account for a significant proportion of water column...

  8. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2017-08-01

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution.

  9. Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic

    Directory of Open Access Journals (Sweden)

    E. Real

    2008-12-01

    Full Text Available The photochemical evolution of an anthropogenic plume from the New-York/Boston region during its transport at low altitudes over the North Atlantic to the European west coast has been studied using a Lagrangian framework. This plume, originally strongly polluted, was sampled by research aircraft just off the North American east coast on 3 successive days, and then 3 days downwind off the west coast of Ireland where another aircraft re-sampled a weakly polluted plume. Changes in trace gas concentrations during transport are reproduced using a photochemical trajectory model including deposition and mixing effects. Chemical and wet deposition processing dominated the evolution of all pollutants in the plume. The mean net photochemical O3 production is estimated to be −5 ppbv/day leading to low O3 by the time the plume reached Europe. Model runs with no wet deposition of HNO3 predicted much lower average net destruction of −1 ppbv/day O3, arising from increased levels of NOx via photolysis of HNO3. This indicates that wet deposition of HNO3 is indirectly responsible for 80% of the net destruction of ozone during plume transport. If the plume had not encountered precipitation, it would have reached Europe with O3 concentrations of up to 80 to 90 ppbv and CO between 120 and 140 ppbv. Photochemical destruction also played a more important role than mixing in the evolution of plume CO due to high levels of O3 and water vapour showing that CO cannot always be used as a tracer for polluted air masses, especially in plumes transported at low altitudes. The results also show that, in this case, an increase in O3/CO slopes can be attributed to photochemical destruction of CO and not to photochemical O3 production as is often assumed.

  10. Pore-scale simulations of concentration tails in heterogeneous porous media

    Science.gov (United States)

    Di Palma, Paolo Roberto; Parmigiani, Andrea; Huber, Christian; Guyennon, Nicolas; Viotti, Paolo

    2017-10-01

    The retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e. back diffusion) is responsible for the long-term release of contaminants during remediation operation. In this paper, we perform pore-scale calculations for the transport of contaminant through heterogeneous porous media composed of low and high mobility regions with two objectives: (i) study the effect of permeability contrast and solute transport conditions on the exchange of solutes between mobile and immobile regions and (ii) estimate the mass of contaminants sequestered in low mobility regions based on concentration breakthrough curves.

  11. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.; Fellner, K.; Kurganov, A.; Lorz, A.; Markowich, P. A.

    2012-01-01

    examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface

  12. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  13. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  14. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  15. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  16. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  17. Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis

    KAUST Repository

    Falivene, Laura; Kozlov, Sergey M.; Cavallo, Luigi

    2018-01-01

    Better catalysts are needed to address numerous challenges faced by humanity. In this perspective, we review concepts and tools in theoretical and computational chemistry that can help to accelerate the rational design of homogeneous and heterogeneous catalysts. In particular, we focus on the following three topics: 1) identification of key intermediates and transition states in a reaction using the energetic span model, 2) disentanglement of factors influencing the relative stability of the key species using energy decomposition analysis and the activation strain model, and 3) discovery of new catalysts using volcano relationships. To facilitate wider use of these techniques across different areas, we illustrate their potentials and pitfalls when applied to the study of homogeneous and heterogeneous catalysts.

  18. Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis

    KAUST Repository

    Falivene, Laura

    2018-05-08

    Better catalysts are needed to address numerous challenges faced by humanity. In this perspective, we review concepts and tools in theoretical and computational chemistry that can help to accelerate the rational design of homogeneous and heterogeneous catalysts. In particular, we focus on the following three topics: 1) identification of key intermediates and transition states in a reaction using the energetic span model, 2) disentanglement of factors influencing the relative stability of the key species using energy decomposition analysis and the activation strain model, and 3) discovery of new catalysts using volcano relationships. To facilitate wider use of these techniques across different areas, we illustrate their potentials and pitfalls when applied to the study of homogeneous and heterogeneous catalysts.

  19. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    Science.gov (United States)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  20. Hf-Nd isotope constraints on the origin of the Cretaceous Caribbean plateau and its relationship to the Galápagos plume

    Science.gov (United States)

    Thompson, P. M. E.; Kempton, P. D.; White, R. V.; Kerr, A. C.; Tarney, J.; Saunders, A. D.; Fitton, J. G.; McBirney, A.

    2004-01-01

    high- ɛHf depleted component sampled by the Gorgona komatiites and depleted basalts is unique to Gorgona and is not found in the Caribbean plateau. This may be an indication of the scale of heterogeneity of the Caribbean plateau system; alternatively Gorgona may represent a separate oceanic plateau derived from a completely different Pacific plume, such as the Sala y Gomez.

  1. Morphology of the Zambezi River plume in the Sofala Bank ...

    African Journals Online (AJOL)

    In this paper, hydrographic data collected in the vicinity of the Zambezi River plume between 2004-2007 is discussed alongside historical data to infer the plume morphology. The sampling plan called for 73 CTD stations that were interspersed with sampling of shrimp recruitment. Satellite-derived wind speed and river ...

  2. Controls of Plume Dispersal at the Slow Spreading Mid-Atlantic Ridge

    Science.gov (United States)

    Walter, M.; Mertens, C.; Koehler, J.; Sueltenfuss, J.; Rhein, M.; Keir, R. S.; Schmale, O.; Schneider v. Deimling, J.; German, C. R.; Yoerger, D. R.; Baker, E. T.

    2011-12-01

    The slow-spreading Mid-Atlantic Ridges hosts a multitude of different types of hydrothermal systems. Here, we compare the fluxes and the plume dispersal at three high temperature sites located in very diverse settings at comparable depths (~3000m): The recently discovered sites Turtle Pits, and Nibelungen on the southern MAR, and the Logatchev field in the North Atlantic. Plume mapping for these sites on cruises between 2004 and 2009 consisted of CTD Towyo-, Yoyo,- and station work, including velocity profiling, as well as water sampling for analysis of trace gases (CH4, H2, 3He/4He) and metals; temperature measurements and fluid sampling at the vent sites were carried out with an ROV. The aim of this work is to gain a better understanding of how the setting of a vent site affects the dispersal of the particle plume, and what means can be used to infer possible locations of vent sites based on the hydrographic properties and plume observations, using high resolution bathymetric mapping and hydrographic information. The ultramafic-hosted Nibelungen site (8°18'S) consists of a single active smoking crater, along with several extinct smokers, which is located off-axis south of a non-transform offset. The setting is characterized by rugged topography, favorable for the generation of internal tides, internal wave breaking, and vertical mixing. Elevated mixing with turbulent diffusivities Kρ up to 0.1 m2 s-1, 3 to 4 orders of magnitude higher than open ocean values, was observed close to the vent site. The mixing as well as the flow field exhibited a strong tidal cycle; the plume dispersal is thus dominated by the fast and intermittent vertical exchange and characterized by small scale spatial and temporal variability. The Turtle Pits vent fields (4°48'S) are located on a sill in a north-south orientated rift valley. The site consists of three (known) high temperature fields: Turtle Pits, Comfortless Cove, and Red Lion. The particle plume is confined to the rift

  3. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    Science.gov (United States)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  4. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    Science.gov (United States)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  5. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery

    International Nuclear Information System (INIS)

    Alakian, A.

    2008-03-01

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 μm] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  6. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  7. Merits of a Scenario Approach in Dredge Plume Modelling

    DEFF Research Database (Denmark)

    Pedersen, Claus; Chu, Amy Ling Chu; Hjelmager Jensen, Jacob

    2011-01-01

    Dredge plume modelling is a key tool for quantification of potential impacts to inform the EIA process. There are, however, significant uncertainties associated with the modelling at the EIA stage when both dredging methodology and schedule are likely to be a guess at best as the dredging...... contractor would rarely have been appointed. Simulation of a few variations of an assumed full dredge period programme will generally not provide a good representation of the overall environmental risks associated with the programme. An alternative dredge plume modelling strategy that attempts to encapsulate...... uncertainties associated with preliminary dredging programmes by using a scenario-based modelling approach is presented. The approach establishes a set of representative and conservative scenarios for key factors controlling the spill and plume dispersion and simulates all combinations of e.g. dredge, climatic...

  8. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  9. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  10. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  11. Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere

    Science.gov (United States)

    Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam

    2009-11-01

    Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.

  12. Alkaline plume on clayey materials

    International Nuclear Information System (INIS)

    Marsal, Francois; Pellegrini, Delphine; De Windt, Laurent

    2012-01-01

    Francois Marsal from IRSN, France, gave an overview of the interactions between concrete and clays. His presentation focused on safety issues related to the concrete tunnel seals designed in France for the disposal of intermediate-level long-lived waste and related to the tunnel plugs for HLW disposal. In the study described, three main effects were identified that need to be addressed: - Changes in mineralogy and pore water chemistry. - The intensity and extent of the perturbations. - The consequences in terms of changes in the chemical and hydraulic containment capacities of the repository system. Addressing these questions requires a combination of laboratory experiments, engineered and natural analogue studies, and modelling of the long-term evolution of these systems. Several laboratory results were presented. Among the engineered analogues, results from Tournemire were described. Numerical modelling is the only available tool that can tackle the spatial and temporal perturbations at a repository scale. There are still quite a number of uncertainties concerning the modelling of the mineralogical evolution of the clay in contact with cement pore waters. Furthermore, the hydraulic properties are still difficult to assess, for example the extent of clogging and the influence of heterogeneities

  13. Nanoengineering of Ruthenium and Platinum-based Nanocatalysts by Continuous-Flow Chemistry for Renewable Energy Applications

    KAUST Repository

    AlYami, Noktan Mohammed

    2017-01-01

    This thesis presents an integrated study of nanocatalysts for heterogenous catalytic and electrochemical processes using pure ruthenium (Ru) with mixed-phase and platinum-based nanomaterials synthesized by continuous-flow chemistry. There are three

  14. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    International Nuclear Information System (INIS)

    Casey, C.P.

    1994-07-01

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving η 5 -to η 1 -cyclopentadienyl ring slippage in catalysis was completed

  15. Acoustical Survey of Methane Plumes on North Hydrate Ridge: Constraining Temporal and Spatial Characteristics.

    Science.gov (United States)

    Kannberg, P. K.; Trehu, A. M.

    2008-12-01

    While methane plumes associated with hydrate formations have been acoustically imaged before, little is known about their temporal characteristics. Previous acoustic surveys have focused on determining plume location, but as far as we know, multiple, repeated surveys of the same plume have not been done prior to the survey presented here. In July 2008, we acquired sixteen identical surveys within 19 hours over the northern summit of Hydrate Ridge in the Cascadia accretionary complex using the onboard 3.5 and 12 kHz echosounders. As in previous studies, the plumes were invisible to the 3.5 kHz echosounder and clearly imaged with 12 kHz. Seafloor depth in this region is ~600 m. Three distinct plumes were detected close to where plumes were located by Heeschen et al. (2003) a decade ago. Two of the plumes disappeared at ~520 m water depth, which is the depth of the top of the gas hydrate stability as determined from CTD casts obtained during the cruise. This supports the conclusion of Heeschen et al. (2003) that the bubbles are armored by gas hydrate and that they dissolve in the water column when they leave the hydrate stability zone. One of the plumes near the northern summit, however, extended through this boundary to at least 400 m (the shallowest depth recorded). A similar phenomenon was observed in methane plumes in the Gulf of Mexico, where the methane was found to be armored by an oil skin. In addition to the steady plumes, two discrete "burps" were observed. One "burp" occurred approximately 600 m to the SSW of the northern summit. This was followed by a second strong event 300m to the north an hour later. To evaluate temporal and spatial patterns, we summed the power of the backscattered signal in different depth windows for each survey. We present the results as a movie in which the backscatter power is shown in map view as a function of time. The surveys encompassed two complete tidal cycles, but no correlation between plume location or intensity and tides

  16. The earliest low and high δ18O caldera-forming eruptions of the Yellowstone plume: Implications for the 30–40 Ma Oregon calderas and speculations on plume-triggered delaminations

    Directory of Open Access Journals (Sweden)

    Angela Nicole Seligman

    2014-11-01

    Full Text Available We present new isotopic and trace element data for four eruptive centers in Oregon: Wildcat Mountain (40 Ma, Crooked River (32–28 Ma, Tower Mountain (32 Ma, and Mohawk River (32 Ma. The first three calderas are located too far east to be sourced through renewed subduction of the Farallon slab following accretion of the Yellowstone-produced Siletzia terrane at ~50 Ma. Basalts of the three eastern eruptive centers yield high Nb/Yb and Th/Yb ratios, indicating an enriched sublithospheric mantle source, while Mohawk River yields trace element and isotopic (δ18O and εHf values that correlate with its location above a subduction zone. The voluminous rhyolitic tuffs and lavas of Crooked River (41 x 27 km have δ18Ozircon values that include seven low δ18Ozircon units (1.8–4.5 ‰, one high δ18Ozircon unit (7.4–8.8 ‰, and two units with heterogeneous zircons (2.0–9.0 ‰, similar to younger Yellowstone-Snake River Plain rhyolites. In order to produce these low δ18O values, a large heat source, widespread hydrothermal circulation, and repeated remelting are all required. In contrast, Wildcat Mountain and Tower Mountain rocks yield high δ18Ozircon values (6.4–7.9 ‰ and normal to low εHfi values (5.2–12.6, indicating crustal melting of high-δ18O supracrustal rocks. We propose that these calderas were produced by the first appearance of the Yellowstone plume east of the Cascadia subduction zone, which is supported by plate reconstructions that put the Yellowstone plume under Crooked River at 32–28 Ma. Given the eastern location of these calderas along the suture of the accreted Siletzia terrane and North America, we suggest that the Yellowstone hotspot is directly responsible for magmatism at Crooked River, and for plume-assisted delamination of portions of the edge of the Blue Mountains that produced the Tower Mountain magmas, while the older Wildcat Mountain magmas are related to suture zone instabilities that were created

  17. Thermal turbulent convection: thermal plumes and fluctuations

    International Nuclear Information System (INIS)

    Gibert, M.

    2007-10-01

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  18. "Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles.

    Science.gov (United States)

    Enami, Shinichi; Sakamoto, Yosuke; Hara, Keiichiro; Osada, Kazuo; Hoffmann, Michael R; Colussi, Agustín J

    2016-02-16

    The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols.

  19. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  20. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths

    Science.gov (United States)

    Bizimis, Michael; Salters, Vincent J. M.; Garcia, Michael O.; Norman, Marc D.

    2013-10-01

    Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plume provide important constraints on the origin of rejuvenated volcanism. Near-contemporaneous lavas from the Kaula-Niihau-Kauai ridge and the North Arch volcanic field that are aligned approximately orthogonally to the plume track can constrain the lateral geochemical heterogeneity and distribution of the rejuvenated source across the volcanic chain. Nephelinites, phonolites and pyroxenite xenoliths from Kaula Island have radiogenic Hf, Nd and unradiogenic Sr isotope compositions consistent with a time-integrated depleted mantle source. The pyroxenites and nephelinites extend to the lowest 208Pb/204Pb reported in Hawaiian rocks. These data, along with new Pb isotope data from pyroxenites from the Salt Lake Crater (Oahu) redefine the composition of the depleted end-member of the Hawaiian rejuvenated source at 208Pb/204Pb=37.35±0.05, 206Pb/204Pb = 17.75±0.03, ɛNd = 9-10, ɛHf ˜16-17 and 87Sr/88Sr Niihau-Kauai-North Arch transect are consistent with a larger proportion of the rejuvenated depleted component in the periphery of the plume track rather than along its axis.

  1. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  2. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  3. IASI measurements of reactive trace species in biomass burning plumes

    Directory of Open Access Journals (Sweden)

    P.-F. Coheur

    2009-08-01

    Full Text Available This work presents observations of a series of short-lived species in biomass burning plumes from the Infrared Atmospheric Sounding Interferometer (IASI, launched onboard the MetOp-A platform in October 2006. The strong fires that have occurred in the Mediterranean Basin – and particularly Greece – in August 2007, and those in Southern Siberia and Eastern Mongolia in the early spring of 2008 are selected to support the analyses. We show that the IASI infrared spectra in these fire plumes contain distinctive signatures of ammonia (NH3, ethene (C2H4, methanol (CH3OH and formic acid (HCOOH in the atmospheric window between 800 and 1200 cm−1, with some noticeable differences between the plumes. Peroxyacetyl nitrate (CH3COOONO2, abbreviated as PAN was also observed with good confidence in some plumes and a tentative assignment of a broadband absorption spectral feature to acetic acid (CH3COOH is made. For several of these species these are the first reported measurements made from space in nadir geometry. The IASI measurements are analyzed for plume height and concentration distributions of NH3, C2H4 and CH3OH. The Greek fires are studied in greater detail for the days associated with the largest emissions. In addition to providing information on the spatial extent of the plume, the IASI retrievals allow an estimate of the total mass emissions for NH3, C2H4 and CH3OH. Enhancement ratios are calculated for the latter relative to carbon monoxide (CO, giving insight in the chemical processes occurring during the transport, the first day after the emission.

  4. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  5. Reaction between laser ablation plume and ambient gas studied by laser-induced fluorescence imaging spectroscopy

    International Nuclear Information System (INIS)

    Sasaki, K; Watarai, H

    2007-01-01

    We visualized the density distributions of C 2 (plume), NO (ambient gas), and CN (reaction product) when a graphite target was ablated by irradiating YAG laser pulses at wavelengths of 1064 and 355 nm in ambient gas mixture of NO and He. It has been shown by the density distributions of C 2 and NO that the expansion of the plume removes the ambient gas and the plume and the ambient gas locate exclusively in both the cases at 1064 and 355 nm. A high CN density was observed at the interface between the plume and the ambient gas at 1064 nm, which is reasonable since chemical reactions between the plume and the ambient gas may occur only at their interface. On the other hand, in the case at 355 nm, we observed considerable CN inside the plume, indicating that the chemical reaction processes in the laser ablation at 355 nm is different from that expected from the density distributions of the plume and the ambient gas

  6. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.

    Science.gov (United States)

    Arenillas, Ana; Rubiera, Fernando; Pis, José J

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.

  7. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  8. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  9. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  10. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  11. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  12. Distribution of zooplankton populations within and adjacent to a thermal plume

    International Nuclear Information System (INIS)

    Evans, M.S.

    1981-01-01

    Zooplankton distributions in the 1-m stratum differed between ambient waters and the thermal plume of the Donald C. Cook Nuclear Power Plant. Zooplankton were most abundant in the warmest waters of the plume with the region of high densities extending over an approximate area of 0.2 to 0.3 km 2 . Water temperature was not a reliable indicator of alterations in zooplankton populations. Alterations were primarily due to upward vertical displacment of deep-living zooplankton. Large horizontal variability in zooplankton densities and use of conventional sampling procedures (vertically hauled nets, widely spaced stations) prevent traditionally designed monitoring programs from detecting such alterations. Zooplankton may experience indirect mortality losses in the plume if transfer of deep-living zooplankton to the surface layers makes them more visible to visual-feeding fish predators, and turbulences in the plume reduce zooplankters' ability to detect and avoid such predators. (auth)

  13. Showmaker-Levy 9 and plume-forming collisions on Earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.E.; Crawford, D.A.

    1995-12-31

    Computational models for the July, 1994 collision of comet Shoemaker-Levy 9 with Jupiter have provided a framework for interpreting the observational data. Imaging, photometry, and spectroscopy data from ground-based, Hubble Space Telescope, and Galileo spacecraft instruments are consistent with phenomena that were dominated by the generation of incandescent fireballs that were ballistically ejected to high altitudes, where they formed plumes that subsequently collapsed over large areas of Jupiter`s atmosphere. Applications of similar computational models to collisions into Earth`s atmosphere show that a very similar sequence of events should take place for NEO impacts with energies as low as 3 megatons, recurring on 100 year timescales or less. This result suggests that the 1908 Tunguska event was a plume-forming atmospheric explosion, and that some of the phenomena associated with it might be related to the ejection and collapse of a high plume. Hazards associated with plume growth and collapse should be included in the evaluation of the impact threat to Earth, and opportunities should be sought for observational validation of atmospheric impact models by exploiting data already being collected from the natural flux of multi-kiloton to megaton sized objects that constantly enter Earth`s atmosphere on annual to decadal timescales.

  14. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  15. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  16. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.P.

    1994-07-01

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving {eta}{sup 5}-to {eta}{sup 1}-cyclopentadienyl ring slippage in catalysis was completed.

  17. Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments

    International Nuclear Information System (INIS)

    Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai

    2012-01-01

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

  18. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1980-05-01

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  19. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  20. Influences of source condition and dissolution on bubble plume in a stratified environment

    Science.gov (United States)

    Chu, Shigan; Prosperetti, Andrea

    2017-11-01

    A cross-sectionally averaged model is used to study a bubble plume rising in a stratified quiescent liquid. Scaling analyses for the peel height, at which the plume momentum vanishes, and the neutral height, at which its average density equals the ambient density, are presented. Contrary to a widespread practice in the literature, it is argued that the neutral height cannot be identified with the experimentally reported intrusion height. Recognizing this difference provides an explanation of the reason why the intrusion height is found so frequently to lie so much above predictions, and brings the theoretical results in line with observations. The mathematical model depends on three dimensionless parameters, some of which are related to the inlet conditions at the plume source. Their influence on the peel and neutral heights is illustrated by means of numerical results. Aside from the source parameters, we incorporate dissolution of bubbles and the corresponding density change of plume into the model. Contrary to what's documented in literature, density change of plume due to dissolution plays an important role in keeping the total buoyancy of plume, thus alleviating the rapid decrease of peel height because of dissolution.

  1. Aerosol composition of urban plumes passing over a rural monitoring site

    International Nuclear Information System (INIS)

    Ellestad, T.G.

    1980-01-01

    A field study conducted at a ground site 100 km north of St. Louis, Mo., to measure the aerosol composition and gaseous concentrations of urban plumes passing the site is discussed. Coarse and fine aerosol elemental concentrations, height scattering, meteorological data and concentrations of SO 2 , CO, O 3 , and NO-NO/sub x/ were measured and then analyzed together with data from associate investigators on fluorocarbon-11, total hydrocarbons, and size distributions. The results show that: (1) gaseous and elemental aerosol concentrations at the ground site 100 km from the St. Louis urban area were clearly influenced by the St. Louis urban plume, (2) the urban plumes of Chicago and Indianapolis, 350 km from the ground site, may have been detected, (3) sulfur compounds, presumably sulfates, accounted for 30-40% of the mass loading within the St. Louis urban plume, and resided almost entirely within the size range below 2.5 microns, (4) the most reliable urban-plume tracers in this study were fine Pb, fluorocarbon-11, total nonmethane hydrocarbons, and CO, and (5) over a period of several days, there may have been a regional buildup of fine S, light scattering, aerosol mass, O 3 , and NO/sub x/ and, to a lesser extent, CO and fluorocarbon-11

  2. Buoyant plumes from solute gradients generated by non-motile Escherichia coli

    International Nuclear Information System (INIS)

    Benoit, M R; Brown, R B; Todd, P; Klaus, D M; Nelson, E S

    2008-01-01

    The effect of hydrodynamic mixing in bacterial populations due to bacterial chemotaxis is a well-described phenomenon known as bioconvection. Here we report the observation of buoyant plumes that result in hydrodynamic mixing, but in contrast to bioconvection the plumes form in the absence of bacterial motility. We propose that the buoyant flow originates from solute gradients created by bacterial metabolism, similar to solute-induced buoyant flow around growing protein crystals. In our experiments, metabolically-active non-motile Escherichia coli were layered along the bottom of flat-bottomed containers. The E. coli consumed glucose in the medium creating a lighter fluid beneath a heavier fluid. The situation is an example of Rayleigh–Taylor instability, in which a lighter fluid pushes on a heavier one. We developed a numerical model to study the effect of E. coli nutrient consumption and by-product excretion on extracellular solute gradients. The model solutions showed reduced-density fluid along the bottom of the fluid domain leading to buoyant plumes, which were qualitatively similar to the experimental plumes. We also used scaling analyses to study the dependence of plume formation on container size and cell size, and to investigate the effect of reduced gravity, such as the microgravity conditions encountered during spaceflight

  3. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    Science.gov (United States)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  4. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  5. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    Science.gov (United States)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  6. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  7. Particle Simulation of Pulsed Plasma Thruster Plumes

    National Research Council Canada - National Science Library

    Boyd, Ian

    2002-01-01

    .... Our modeling had made progress in al aspects of simulating these complex devices including Teflon ablation, plasma formation, electro-magnetic acceleration, plume expansion, and particulate transport...

  8. Three-dimensional simulation of gas and dust in Io's Pele plume

    Science.gov (United States)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  9. NW Iberia shelf dynamics and the behaviour of the Douro River plume

    Science.gov (United States)

    Iglesias, Isabel; Couvelard, Xavier; Avilez-Valente, Paulo; Caldeira, Rui M. A.

    2015-04-01

    The study and modelling of the river plumes is a key factor to complete understand the coastal physics and dynamic processes and sediment transport mechanisms. Some the terrestrial materials that they transport to the ocean are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing bathymetric modifications. When the riverine water join the ocean several instabilities can be induced, generating bulges, filaments, and buoyant currents over the continental shelf. Offshore, the riverine water could form fronts that could be related with the occurrence of current-jets, eddies and strong mixing. This study focused on the Douro River plume simulation. This river is located on the north-west Iberian coast. Its daily averaged freshwater discharge can range values from 0 to 13000 m3/s, which impacts on the formation of the river plumes and its dispersion along the continental shelf. The Regional Oceanic Modeling System (ROMS) model was used to reproduce scenarios of plume generation, retention and dispersion (Shchepetkin and McWilliams, 2005). Three types of simulations were performed: schematic winds simulations with prescribed river flow, wind speed and direction; multi-year climatological simulation, with river flow and temperature change for each month; extreme case simulation. The schematic wind case-studies suggest that the plume is wind-driven. Important differences appear in its structure and dispersion pathways depending on the wind direction and strength. Northerly winds induce plumes with a narrow coastal current meanwhile southerly winds push the river water to the north finding water associated with the Douro River in the Galician Rías. The high surface salinity on the plume regions during strong wind events suggests that the wind enhances the vertical mixing. Extreme river discharges, associated with southerly winds, can transport debris to the Galician coast in about 60 h, helping to

  10. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    Science.gov (United States)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  11. A hybrid method for the simulation of radionuclide contaminant plumes in heterogeneous, unsaturated formations

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, T.J.; Souto, H.P. Amaral; Francisco, A.S.

    2009-01-01

    The decision concerning the location of sites for nuclear waste repositories in the subsurface depends upon the long-term containment capabilities of hydrogeological environments. The numerical simulation of the multiphase flow and contaminant transport that take place in this problem is an important tool to help engineers and scientists in selecting appropriate sites. In this paper, we employ a hybrid strategy that combines an Eulerian approximation scheme for the underlying two-phase flow problem with a locally conservative Lagrangian method to approximate the transport of radionuclide. This Lagrangian scheme is computationally efficient and virtually free of numerical diffusion. In order to face unsaturated and heterogeneous problems, four extensions in the Lagrangian scheme are implemented. To show the effectiveness of the improved version we perform a grid refinement study. (author)

  12. The chemistry-climate model ECHAM6.3-HAM2.3-MOZ1.0

    Science.gov (United States)

    Schultz, Martin G.; Stadtler, Scarlet; Schröder, Sabine; Taraborrelli, Domenico; Franco, Bruno; Krefting, Jonathan; Henrot, Alexandra; Ferrachat, Sylvaine; Lohmann, Ulrike; Neubauer, David; Siegenthaler-Le Drian, Colombe; Wahl, Sebastian; Kokkola, Harri; Kühn, Thomas; Rast, Sebastian; Schmidt, Hauke; Stier, Philip; Kinnison, Doug; Tyndall, Geoffrey S.; Orlando, John J.; Wespes, Catherine

    2018-05-01

    The chemistry-climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols using either a modal scheme (M7) or a bin scheme (SALSA). This article describes and evaluates the model version ECHAM6.3-HAM2.3-MOZ1.0 with a focus on the tropospheric gas-phase chemistry. A 10-year model simulation was performed to test the stability of the model and provide data for its evaluation. The comparison to observations concentrates on the year 2008 and includes total column observations of ozone and CO from IASI and OMI, Aura MLS observations of temperature, HNO3, ClO, and O3 for the evaluation of polar stratospheric processes, an ozonesonde climatology, surface ozone observations from the TOAR database, and surface CO data from the Global Atmosphere Watch network. Global budgets of ozone, OH, NOx, aerosols, clouds, and radiation are analyzed and compared to the literature. ECHAM-HAMMOZ performs well in many aspects. However, in the base simulation, lightning NOx emissions are very low, and the impact of the heterogeneous reaction of HNO3 on dust and sea salt aerosol is too strong. Sensitivity simulations with increased lightning NOx or modified heterogeneous chemistry deteriorate the comparison with observations and yield excessively large ozone budget terms and too much OH. We hypothesize that this is an impact of potential issues with tropical convection in the ECHAM model.

  13. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  14. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  15. Three-dimensional laser-induced fluorescence measurements of turbulent chemical plumes

    Science.gov (United States)

    True, Aaron; Crimaldi, John

    2017-11-01

    In order to find prey, mates, and suitable habitat, many organisms must navigate through complex chemical plume structures in turbulent flow environments. In this context, we investigate the spatial and temporal structure of chemical plumes released isokinetically into fractal-grid-generated turbulence in an open channel flow. We first utilized particle image velocimetry (PIV) to characterize flow conditions (mean free stream velocities, turbulence intensities, turbulent kinetic energy dissipation rates, Taylor Reynolds numbers). We then implemented a newly developed high-resolution, high-speed, volumetric scanning laser-induced fluorescence (LIF) system for near time-resolved measurements of three-dimensional chemical plume structures. We investigated cases with and without a cylinder wake, and compare statistical (mean, variance, intermittency, probability density functions) and spectral (power spectrum of concentration fluctuations) characteristics of the chemical plume structure. Stretching and folding of complex three-dimensional filament structures during chaotic turbulent mixing is greatly enhanced in the cylinder wake case. In future experiments, we will implement simultaneous PIV and LIF, enabling computation of the covariance of the velocity and chemical concentration fluctuations and thus estimation of turbulent eddy diffusivities. NSF PHY 1555862.

  16. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    Science.gov (United States)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the

  17. Multi-spacecraft observations of small-scale fluctuations in density and fields in plasmaspheric plumes

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2012-03-01

    Full Text Available In this event study, small-scale fluctuations in plasmaspheric plumes with time scales of ~10 s to minutes in the spacecraft frame are examined. In one event, plasmaspheric plumes are observed by Cluster, while IMAGE measured density enhancement at a similar location. Fluctuations in density exist in plumes as detected by Cluster and are accompanied by fluctuations in magnetic fields and electric fields. Magnetic fluctuations are transverse and along the direction of the plumes. The E/B ratio is smaller than the Alfvén velocity. Another similar event is briefly presented. We then consider physical properties of the fluctuations. Alfvén mode modulated by the feedback instability is one possibility, although non-local generation is likely. It is hard to show that the fluctuations represent a fast mode. Interchange motion is possible due to the consistency between measurements and expectations. The energy source could be a pressure or density gradient in plasmaspheric plumes. When more events are accumulated so that statistical analysis becomes feasible, this type of study will be useful to understand the time evolution of plumes.

  18. Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo

    Directory of Open Access Journals (Sweden)

    C. S. Zender

    2012-04-01

    Full Text Available Land clearing for crops, plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR since 2001. Here we analyze the size, shape, optical properties, and age of distinct fire-generated plumes in Borneo from 2001–2009. The local MISR overpass at 10:30 a.m. misses the afternoon peak of Borneo fire emissions, and may preferentially sample longer plumes from persistent fires burning overnight. Typically the smoke flows with the prevailing southeasterly surface winds at 3–4 m s−1, and forms ovoid plumes whose mean length, height, and cross-plume width are 41 km, 708 m, and 27% of the plume length, respectively. 50% of these plumes have length between 24 and 50 km, height between 523 and 993 m and width between 18% and 30% of plume length. Length and cross-plume width are lognormally distributed, while height follows a normal distribution. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are on average nearly three times longer than previously studied plumes. This could be due to sampling or to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 km2, with 25th and 75th percentiles at 99 km2 and 304 km2, respectively varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere reflectance peak about halfway down-plume, at

  19. Mo-II Cluster Complex-Based Coordination Polymer as an Efficient Heterogeneous Catalyst in the Suzuki–Miyaura Coupling Reaction

    Czech Academy of Sciences Publication Activity Database

    Bůžek, Daniel; Hynek, Jan; Kučeráková, Monika; Kirakci, Kaplan; Demel, Jan; Lang, Kamil

    2016-01-01

    Roč. 2016, č. 28 (2016), s. 4668-4673 ISSN 1434-1948 R&D Projects: GA ČR GA13-05114S; GA ČR GA15-12653S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:61388980 ; RVO:68378271 Keywords : C–C coupling * Heterogeneous catalysis * Molybdenum * Palladium * Polymers Subject RIV: CA - Inorganic Chemistry ; CF - Physical ; Theoretical Chemistry (FZU-D) Impact factor: 2.444, year: 2016

  20. Growth of plume ''resident'' fishes in Lake Michigan

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Smith, D.W.

    1974-01-01

    Brown trout, rainbow trout, and chinook salmon were collected from the Point Beach thermal discharge area, tagged with commercial dart tags and temperature-sensitive tags, and released back into the discharge area. RNA and DNA analyses were performed on epaxial muscle samples taken from each tagged fish recaptured in the plume area and from control fish. A table is presented to show mean weights, condition factors, and RNA-DNA ratios for each group of fish. Results indicated that the fish did not experience any severe growth abnormalities as a result of their residence in the thermal plume area

  1. INVESTIGATION OF THE FATE OF MERCURY IN A COAL COMBUSTION PLUME USING A STATIC PLUME DILUTION CHAMBER

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-11-01

    The overall goal of the project was to further develop and then verify SPDC's ability to determine the physical and chemical transformations of mercury in combustion stack plumes. Specific objectives of the project were to perform controlled tests at the pilot scale using dynamic spiking of known mercury compounds (i.e., Hg{sup 0} and HgCl{sub 2}) to prove the ability of the SPDC to determine the following: whether mercury condenses onto particulate matter in a cooling plume; whether there is reduction of Hg{sup 2+} to Hg{sup 0} occurring in hygroscopic aerosols; whether condensed Hg{sup 2+} on particles is photochemically reduced to Hg{sup 0}; and whether or not the Solid Ontario Hydro mercury speciation method (SOH) provides the same results as the Ontario Hydro (OH) mercury speciation method.

  2. Constraining Diameters of Ash Particles in Io's Pele Plume by DSMC Simulation

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2013-10-01

    The black “butterfly wings” seen at Pele are produced by silicate ash which is to some extent entrained in the gas flow from very low altitudes. These particles are key to understanding the volcanism at Pele. However, the Pele plume is not nearly as dusty as Prometheus, and these are not the only particles in the plume, as the SO2 in the plume will also condense as it cools. It is therefore difficult to estimate a size distribution for the ash particles by observation, and the drag on ash particles from the plume flow is significant enough that ballistic models are also of limited use. Using Direct Simulation Monte Carlo, we can simulate a gas plume at Pele which demonstrates very good agreement with observations. By extending this model down to nearly the surface of the lava lake, ash particles can be included in the simulation by assuming that they are initially entrained in the very dense (for Io) gas immediately above the magma. Particles are seen to fall to the ground to the east and west of the vent, agreeing with the orientation of the “butterfly wings”, and particles with larger diameters fall to the ground closer to the lava lake. We present a model for mapping simulated deposition density to the coloration of the surface and we use it to estimate the size distribution of ash particles in the plume.

  3. Effects of a Simple Convective Organization Scheme in a Two-Plume GCM

    Science.gov (United States)

    Chen, Baohua; Mapes, Brian E.

    2018-03-01

    A set of experiments is described with the Community Atmosphere Model (CAM5) using a two-plume convection scheme. To represent the differences of organized convection from General Circulation Model (GCM) assumptions of isolated plumes in uniform environments, a dimensionless prognostic "organization" tracer Ω is invoked to lend the second plume a buoyancy advantage relative to the first, as described in Mapes and Neale (2016). When low-entrainment plumes are unconditionally available (Ω = 1 everywhere), deep convection occurs too easily, with consequences including premature (upstream) rainfall in inflows to the deep tropics, excessive convective versus large-scale rainfall, poor relationships to the vapor field, stable bias in the mean state, weak and poor tropical variability, and midday peak in diurnal rainfall over land. Some of these are shown to also be characteristic of CAM4 with its separated deep and shallow convection schemes. When low-entrainment plumes are forbidden by setting Ω = 0 everywhere, some opposite problems can be discerned. In between those extreme cases, an interactive Ω driven by the evaporation of precipitation acts as a local positive feedback loop, concentrating deep convection: In areas of little recent rain, only highly entraining plumes can occur, unfavorable for rain production. This tunable mechanism steadily increases precipitation variance in both space and time, as illustrated here with maps, time-longitude series, and spectra, while avoiding some mean state biases as illustrated with process-oriented diagnostics such as conserved variable profiles and vapor-binned precipitation curves.

  4. Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Hong-hua Cai

    2017-01-01

    Full Text Available Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

  5. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Science.gov (United States)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  6. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  7. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    Science.gov (United States)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  8. Levy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments

    International Nuclear Information System (INIS)

    Pasternak, Zohar; Grasso, Frank W; Bartumeus, Frederic

    2009-01-01

    Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Levy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Levy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Levy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accommodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for food

  9. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  10. Levy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, Zohar; Grasso, Frank W [BioMimetic and Cognitive Robotics Laboratory, Department of Psychology, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn 11210, NY (United States); Bartumeus, Frederic [Department of Ecology and Evolutionary Biology and Princeton Environmental Institute, 106 Guyot Hall, Princeton University, Princeton 08544, NJ (United States)], E-mail: zpast@yahoo.com

    2009-10-30

    Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Levy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Levy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Levy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accommodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for food

  11. Capturing volcanic plumes in 3D with UAV-based photogrammetry at Yasur Volcano - Vanuatu

    Science.gov (United States)

    Gomez, C.; Kennedy, B.

    2018-01-01

    As a precise volume of volcanic ash-plume is essential to understand the dynamic of gas emission, exchanges and the eruptive dynamics, we have measured in 3D using photogrammetry a small-size volcanic plume at the summit of Yasur Volcano, Vanuatu. The objective was to collect the altitude and planform shape of the plume as well as the vertical variations of the shape and size. To reach this objective, the authors have used the Structure from Motion photogrammetric method applied to a series of photographs captured in a very short period of time around and above the plume. A total of 146 photographs at 3000 × 4000 pixel were collected as well as the geolocation, the pitch, tilt and orientation of the cameras. The results revealed a "mushroom"-like shape of the plume with a narrow ascending column topped by a turbulent mixing zone. The volume of the plume was calculated to be 13,430 m3 ± 512 m3 (with the error being the cube of the linear error from the Ground Control Points) for a maximum height above the terrain of 63 m. The included error was also kept high because of the irregular distribution of the Ground Control Points that could not be collected in dangerous areas due to the ongoing eruption. Based on this research, it is therefore worth investigating the usage of multiple cameras to capture plumes in 3D over time and the method is also a good complement to the recent development of photogrammetry from space, which can tackle larger-scale eruption plumes.

  12. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  13. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin, E-mail: zmwang@mail.hust.edu.cn; Zeng, Xiaoyan

    2015-01-30

    Highlights: • Spectroscopic properties of fiber laser induced Al plasma plume are measured. • The plume is usually a metal vapor dominated weakly ionized plasma. • The plume is a strongly ionized plasma after laser power is higher than 5 kW. • Plasma shielding effect must be considered after laser power reaches 5 kW. • Plasma shielding effect is dominated by inverse bremsstrahlung absorption. - Abstract: To understand the laser–matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  14. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.

    Science.gov (United States)

    Ross, James L; Andersen, Peter F

    2018-04-17

    The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen, 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g. oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater TCE plume that underlies the Tooele Army Depot-North (TEAD-N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF-based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well-calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging-based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation. This article is protected by copyright. All rights reserved.

  15. Automated Generation of 3D Volcanic Gas Plume Models for Geobrowsers

    Science.gov (United States)

    Wright, T. E.; Burton, M.; Pyle, D. M.

    2007-12-01

    A network of five UV spectrometers on Etna automatically gathers column amounts of SO2 during daylight hours. Near-simultaneous scans from adjacent spectrometers, comprising 210 column amounts in total, are then converted to 2D slices showing the spatial distribution of the gas by tomographic reconstruction. The trajectory of the plume is computed using an automatically-submitted query to NOAA's HYSPLIT Trajectory Model. This also provides local estimates of air temperature, which are used to determine the atmospheric stability and therefore the degree to which the plume is dispersed by turbulence. This information is sufficient to construct an animated sequence of models which show how the plume is advected and diffused over time. These models are automatically generated in the Collada Digital Asset Exchange format and combined into a single file which displays the evolution of the plume in Google Earth. These models are useful for visualising and predicting the shape and distribution of the plume for civil defence, to assist field campaigns and as a means of communicating some of the work of volcano observatories to the public. The Simultaneous Algebraic Reconstruction Technique is used to create the 2D slices. This is a well-known method, based on iteratively updating a forward model (from 2D distribution to column amounts). Because it is based on a forward model, it also provides a simple way to quantify errors.

  16. SAMI3 Simulations of the Persistent May 1994 Plasmasphere Plume

    Science.gov (United States)

    Krall, J.; Huba, J.; Borovsky, J.

    2017-12-01

    We use the Naval Research Laboratory SAMI3 ionosphere/plasmasphere model[1] to explore the physics of a long-lived plasmasphere plume. A plasmasphere plume is a storm feature that extends the cold plasma that is normally trapped by the geomagnetic field (the plasmasphere) outward towards the bow shock. In the case of the May 1994 storm, the storm and the plume continued for 12 days. For the model storm, we imposed a Kp-driven Volland/Stern-Maynard/Chen potential [2-4]. Results are compared to measurements of the cold ion density from the 1989-046 spacecraft in geosynchronous orbit [5]. We find that many details of the observed plume are reproduced by SAMI3, but only if a background magnetosphere density is included as a boundary condition. We also find that high-speed, field aligned plasma flows contribute significantly to the observed plume density. [1] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 [2] Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, Journal of Geophysical Research, 78, 171-180, doi:10.1029/JA078i001p00171 [3] Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, Journal of Geophysical Research, 80, 595-599, doi:10.1029/JA080i004p00595 [4] Maynard, N.C., and A.J. Chen (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, Journal of Geophysical Research, 80, 1009-1013, doi:10.1029/JA080i007p01009 [5] Borovsky, J.E., D.T. Welling, M.F. Thomsen, and M.H. Denton (2014), Long-lived plasmaspheric drainage plumes: Where does the plasma come from?, Journal of Geophysical Research: Space Physics, 119, 6496-6520, doi:10.1002/2014JA020228 Research supported by NRL base funds.

  17. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    Science.gov (United States)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  18. Modelling tools for integrating geological, geophysical and contamination data for characterization of groundwater plumes

    DEFF Research Database (Denmark)

    Balbarini, Nicola

    the contaminant plume in a shallow and a deep plume. These plumes have different chemical characteristics and different migration paths to the stream. This has implications for the risk assessment of the stream and groundwater in the area. The difficulty of determining groundwater flow paths means that it is also...... receptors, including streams. Key risk assessment parameters, such as contaminant mass discharge estimates, and tools are then used to evaluate the risk. The cost of drilling often makes investigations of large and/or deep contaminant plumes unfeasible. For this reason, it is important to develop cost...... organic compounds, including pharmaceutical compounds and chlorinated ethenes. The correlation between DCIP and organic compounds is indirect and depends on the chemical composition of the contaminant plume and the transport processes. Thus, the correlations are site specific and may change between...

  19. Gas-surface interactions and heterogeneous chemistry on interstellar grains analogues

    Directory of Open Access Journals (Sweden)

    Cazaux S.

    2012-01-01

    Full Text Available Detailed laboratory studies and progress in surface science technique, have allowed in recent years the first experimental confirmation of surface reaction schemes, as introduced by Tielens, Hagen and Charnley [1,2]. In this paper, we review few heterogeneous processes which give routes to form elementary molecules considered as precursors for explaining the variety and richness of molecular species in the interstellar medium. Adsorption, diffusion and reaction processes are discussed. With emphasis on the experimental approaches, but also supported by theoretical developments, progresses in the understanding of the “catalytic role” of a dust grain surface in various physical conditions are described. Recent advances made on few important species (H2, H2O, CH3OH are used to illustrate basic properties and raise open questions.

  20. Wind tunnel experiments on cooling tower plumes. Pt. 2

    International Nuclear Information System (INIS)

    Andreopoulos, J.

    1986-01-01

    The basic characteristics of plumes issuing into a boundary layer type of cross flow are reported. The flow can be considered as an interaction between two vorticity fields with different length scales and turbulence intensities. The large eddies of the oncoming boundary layer are responsible for the observed sudden changes in the plume direction. The type of structures emanating the tower depends on the instantaneous velocity ratio. Mean velocities and normal velocity gradients are smaller than in the case of uniform cross-flow (Andreopoulos, 1986) and therefore the measured turbulence intensities were lower too. The cross-stream turbulence brings high momentum fluid into the wake region and the velocity defect decays very rapidly. Dilution of the plumes takes place faster in the presence of external turbulence than in the case with uniform cross-flow. The spreading rate is increased dramatically by the external turbulence which causes different effects on the hydrodynamic and thermal fields. (orig.) [de

  1. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

    Science.gov (United States)

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-12-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.

  2. Cone penetrometer tests and HydroPunch sampling: A screening technique for plume definition

    International Nuclear Information System (INIS)

    Smolley, M.; Kappmeyer, J.C.

    1991-01-01

    Cone penetrometer tests and HydroPunch sampling were used to define the extent of volatile organic compounds in ground water. The investigation indicated that the combination of the these techniques is effective for obtaining ground water samples for preliminary plume definition. HydroPunch samples can be collected in unconsolidated sediments and the analytical results obtained from these samples are comparable to those obtained from adjacent monitoring wells. This sampling method is a rapid and cost-effective screening technique for characterizing the extent of contaminant plumes in soft sediment environments. Use of this screening technique allowed monitoring wells to be located at the plume boundary, thereby reducing the number of wells installed and the overall cost of the plume definition program

  3. Emplacement of zero-valent metal for remediation of deep contaminant plumes

    International Nuclear Information System (INIS)

    Hubble, D.W.; Gillham, R.W.; Cherry, J.A.

    1997-01-01

    Some groundwater plumes containing chlorinated solvent contaminants are found to be so deep that current in situ remediation technologies cannot be economically applied. Also, source zones are often found to be too deep for removal or inaccessible due to surface features. Plumes emanating from these sources require containment or treatment. Containment technologies are available for shallow sites (< 15 m) and are being developed for greater depths. However, it is important to advance the science of reactive treatment - both for cut off of plumes and to contain and treat source zones. Zero-valent metal technology has been used for remediation of solvent plumes at sites in Canada, the UK and at several industrial and military sites in the USA. To date, all of the plumes treated with zero-valent metal (granular iron) have been at depths less than 15 m. This paper gives preliminary results of research into methods to emplace granular iron at depths in the range of 15 to 60 m. The study included review of available and emerging methods of installing barrier or reactive material and the selection, preliminary design and costing of several methods. The design of a treatment system for a 122 m wide PCE plume that, immediately down gradient from its source, extends from a depth of 24 to 37 m below the ground surface is used as a demonstration site. Both Permeable Reactive Wall and Funnel-and-Gate trademark systems were considered. The emplacement methods selected for preliminary design and costing were slurry wall, driven/vibrated beam, deep soil mixing and hydrofracturing injection. For each of these methods, the iron must be slurried for ease of pumping and placement using biodegradable polymer viscosifiers that leave the iron reactive

  4. Solar Coronal Plumes and the Fast Solar Wind Bhola N. Dwivedi1 ...

    Indian Academy of Sciences (India)

    Is there any contribution of plume plasma to the fast SW streams at all? ..... but to a slow diminution of the reconnection activity, presumably with the effect ... might think, even if the thermal energy could be dumped at the base of the plume,.

  5. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  6. Plasma Observations During the Mars Atmospheric Plume Event of March-April 2012

    Science.gov (United States)

    Andrews, D. J.; Barabash, S.; Edberg, N. J. T.; Gurnett, D. A.; Hall, B. E. S.; Holmstrom, M.; Lester, M.; Morgan, D. D.; Opgenoorth, H. J.; Ramstad, R.; hide

    2016-01-01

    We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  7. Test data from small solid propellant rocket motor plume measurements (FA-21)

    Science.gov (United States)

    Hair, L. M.; Somers, R. E.

    1976-01-01

    A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

  8. On the Color of the Orinoco River Plume

    Science.gov (United States)

    Odriozola, A.; Muller-Karger, F.; Carder, K.; Hu, C.; Varela, R.

    2005-05-01

    In situ measurements were used to study the bio-optical properties of marine waters within the Gulf of Paria (GOP, Venezuela) and in the Southeastern Caribbean Sea (SEC) as they are affected by the seasonal discharge of the Orinoco River plume. The main purpose of this study was to determine the impact of colored dissolved organic matter (CDOM) (also known as Gelbstoff), phytoplankton, and total suspended matter (TSM) in the color of the Orinoco River plume. This information is essential for regional ocean color algorithms development. Salinity and silica values indicate that the GOP and SEC waters were under the influence of the Orinoco River plume during both seasons. This riverine influence resulted in high values of Gelbstoff absorption, ag(λ), which contributed to up to 90% of the total absorption at 440 nm in both the GOP and SEC regardless of the season. Phytoplankton absorption contributions were normally around 5%, but during the dry season these values reached 20% in the SEC. Ratios of ag(440) to ph(440) were extremely large, with most of the values ranging from 10 to 50. Due to the strong absorption by Gelbstoff, light at the blue wavelengths (412 nm, 440 nm and 490 nm) was attenuated to 1% of the subsurface irradiance in the first 5 m of the water column within the GOP, and in the first 10 m of the water column in the SEC. Furthermore, the absorption by Gelbstoff significantly decreased the water leaving radiance (Lw(λ)) in the blue wavelengths along the Orinoco River plume. As ag(λ) relatively decreased from the GOP to the SEC (mean ~1.6 m-1 and mean ~0.9 m-1, respectively), a shift in the maximum peak of Rrs(λ) spectra (Rrsmax(λ)), towards shorter wavelengths (from ~ 580 nm to ~500 nm) was observed. Similar to Gelbstoff, concentrations of TSM normally decreased from the stations near the Delta to the stations in the SEC. The impact of TSM on the color of the Orinoco plume was represented by a reduction in the magnitude of Rrsmax(λ) of ~50% going

  9. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Plume rise predictions

    International Nuclear Information System (INIS)

    Briggs, G.A.

    1976-01-01

    Anyone involved with diffusion calculations becomes well aware of the strong dependence of maximum ground concentrations on the effective stack height, h/sub e/. For most conditions chi/sub max/ is approximately proportional to h/sub e/ -2 , as has been recognized at least since 1936 (Bosanquet and Pearson). Making allowance for the gradual decrease in the ratio of vertical to lateral diffusion at increasing heights, the exponent is slightly larger, say chi/sub max/ approximately h/sub e/ - 2 . 3 . In inversion breakup fumigation, the exponent is somewhat smaller; very crudely, chi/sub max/ approximately h/sub e/ -1 . 5 . In any case, for an elevated emission the dependence of chi/sub max/ on h/sub e/ is substantial. It is postulated that a really clever ignorant theoretician can disguise his ignorance with dimensionless constants. For most sources the effective stack height is considerably larger than the actual source height, h/sub s/. For instance, for power plants with no downwash problems, h/sub e/ is more than twice h/sub s/ whenever the wind is less than 10 m/sec, which is most of the time. This is unfortunate for anyone who has to predict ground concentrations, for he is likely to have to calculate the plume rise, Δh. Especially when using h/sub e/ = h/sub s/ + Δh instead of h/sub s/ may reduce chi/sub max/ by a factor of anywhere from 4 to infinity. Factors to be considered in making plume rise predictions are discussed

  11. Atmospheric environmental implications of propulsion systems

    Science.gov (United States)

    Mcdonald, Allan J.; Bennett, Robert R.

    1995-01-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth's environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth's global environment, and there is no real significant difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted. Flight safety, reliability, and cost improvements are paramount for any new rocket system, and these important aspects

  12. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    International Nuclear Information System (INIS)

    Williams, Mark D.; Cole, Charles R.; Foley, Michael G.; Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-01-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values

  13. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Directory of Open Access Journals (Sweden)

    J. Zhuang

    2018-05-01

    Full Text Available Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx or vertical resolution (Δz. Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx ∕ Δzopt ∼ 1000 for simulating the plumes. This is considerably higher than current global models (Δx ∕ Δz ∼ 20 and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3 over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz  ≈  80 m preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  14. Numerical study of single and two interacting turbulent plumes in atmospheric cross flow

    Science.gov (United States)

    Mokhtarzadeh-Dehghan, M. R.; König, C. S.; Robins, A. G.

    The paper presents a numerical study of two interacting full-scale dry plumes issued into neutral boundary layer cross flow. The study simulates plumes from a mechanical draught cooling tower. The plumes are placed in tandem or side-by-side. Results are first presented for plumes with a density ratio of 0.74 and plume-to-crosswind speed ratio of 2.33, for which data from a small-scale wind tunnel experiment were available and were used to assess the accuracy of the numerical results. Further results are then presented for the more physically realistic density ratio of 0.95, maintaining the same speed ratio. The sensitivity of the results with respect to three turbulence models, namely, the standard k- ɛ model, the RNG k- ɛ model and the Differential Flux Model (DFM) is presented. Comparisons are also made between the predicted rise height and the values obtained from existing integral models. The formation of two counter-rotating vortices is well predicted. The results show good agreement for the rise height predicted by different turbulence models, but the DFM predicts temperature profiles more accurately. The values of predicted rise height are also in general agreement. However, discrepancies between the present results for the rise height for single and multiple plumes and the values obtained from known analytical relations are apparent and possible reasons for these are discussed.

  15. Cross shore transport by wind-driven turbidity plumes in western Lake Superior*

    Science.gov (United States)

    Turbidity plumes frequently occur in the western arm of Lake Superior and may represent a significant cross shelf transport mechanism for sediment, nutrient and biota. We characterize a plume that formed in late April 2016 using observations from in situ sensors and remote sensin...

  16. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    Science.gov (United States)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  17. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  18. Volcanic Plume Elevation Model Derived From Landsat 8: examples on Holuhraun (Iceland) and Mount Etna (Italy)

    Science.gov (United States)

    de Michele, Marcello; Raucoules, Daniel; Arason, Þórður; Spinetti, Claudia; Corradini, Stefano; Merucci, Luca

    2016-04-01

    The retrieval of both height and velocity of a volcanic plume is an important issue in volcanology. As an example, it is known that large volcanic eruptions can temporarily alter the climate, causing global cooling and shifting precipitation patterns; the ash/gas dispersion in the atmosphere, their impact and lifetime around the globe, greatly depends on the injection altitude. Plume height information is critical for ash dispersion modelling and air traffic security. Furthermore, plume height during explosive volcanism is the primary parameter for estimating mass eruption rate. Knowing the plume altitude is also important to get the correct amount of SO2 concentration from dedicated spaceborne spectrometers. Moreover, the distribution of ash deposits on ground greatly depends on the ash cloud altitude, which has an impact on risk assessment and crisis management. Furthermore, a spatially detailed plume height measure could be used as a hint for gas emission rate estimation and for ash plume volume researches, which both have an impact on climate research, air quality assessment for aviation and finally for the understanding of the volcanic system itself as ash/gas emission rates are related to the state of pressurization of the magmatic chamber. Today, the community mainly relies on ground based measurements but often they can be difficult to collect as by definition volcanic areas are dangerous areas (presence of toxic gases) and can be remotely situated and difficult to access. Satellite remote sensing offers a comprehensive and safe way to estimate plume height. Conventional photogrammetric restitution based on satellite imagery fails in precisely retrieving a plume elevation model as the plume own velocity induces an apparent parallax that adds up to the standard parallax given by the stereoscopic view. Therefore, measurements based on standard satellite photogrammeric restitution do not apply as there is an ambiguity in the measurement of the plume position

  19. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  20. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)