WorldWideScience

Sample records for heterogeneous photocatalytic degradation

  1. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor

    International Nuclear Information System (INIS)

    Kamble, Sanjay P.; Sawant, Sudhir B.; Pangarkar, Vishwas G.

    2007-01-01

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation

  2. Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications

    International Nuclear Information System (INIS)

    El-Kemary, Maged; Abdel-Moneam, Yasser; Madkour, Metwally; El-Mehasseb, Ibrahim

    2011-01-01

    Nanostructure titanium dioxide (TiO 2 ) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO 2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO 2 and Ag-TiO 2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO 2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO 2 . The positive effect of silver on the photocatalytic activity of TiO 2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO 2 surface and therefore enhances the photocatalytic activity of the synthesized TiO 2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO 2 and 96% for Ag-TiO 2 . - Research highlights: → Ag-TiO 2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO 2 . → Dye photodegradation follows pseudo-first-order kinetics. → Observed maximum degradation efficiency of SO is about 60% for TiO 2 and 96% for Ag-TiO 2 .

  3. Photocatalytic Degradation of Aniline Using TiO2 Nanoparticles in a Vertical Circulating Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    F. Shahrezaei

    2012-01-01

    Full Text Available Photocatalytic degradation of aniline in the presence of titanium dioxide (TiO2 and ultraviolet (UV illumination was performed in a vertical circulating photocatalytic reactor. The effects of catalyst concentration (0–80 mg/L, initial pH (2–12, temperature (293–323 K, and irradiation time (0–120 min on aniline photodegradation were investigated in order to obtain the optimum operational conditions. The results reveal that the aniline degradation efficiency can be effectively improved by increasing pH from 2 to 12 and temperature from 313 to 323 K. Besides, the effect of temperature on aniline photo degradation was found to be unremarkable in the range of 293–313 K. The optimum catalyst concentration was about 60 mg/L. The Langmuir Hinshelwood kinetic model could successfully elucidate the effects of the catalyst concentration, pH, and temperature on the rate of heterogeneous photooxidation of aniline. The data obtained by applying the Langmuir Hinshelwood treatment are consistent with the available kinetic parameters. The activated energy for the photocatalytic degradation of aniline is 20.337 kj/mol. The possibility of the reactor use in the treatment of a real petroleum refinery wastewater was also investigated. The results of the experiments indicated that it can therefore be potentially applied for the treatment of wastewater contaminated by different organic pollutants.

  4. Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO(2) aqueous solution.

    Science.gov (United States)

    Cao, Hua; Lin, Xiulian; Zhan, Haiying; Zhang, Hong; Lin, Jingxin

    2013-01-01

    5-Ethyl-5-phenylpyrimidine-2,4,6(1H, 3H, 5H)-trione is an anti-convulsant used to treat disorders of movement, e.g. tremors. This work deals with the transformation of phenobarbital by UV/TiO(2) heterogeneous photocatalysis, to assess the decomposition of the pharmaceutical compound, to identify intermediates, as well as to elucidate some mechanistic details of the degradation. The photocatalytic removal efficiency of 100 μm phenobarbital is about 80% within 60 min, while the degradation efficiency of phenobarbital was better in alkaline solution. The study on contribution of reactive oxidative species (ROSs) has shown that ()OH is responsible for the major degradation of phenobarbital, while the photohole, photoelectrons and the other ROSs have the minor contribution to the degradation. Finally, based on the identification of degradation intermediates, two main photocatalytic degradation pathways have been tentatively proposed, including the hydroxylation and cleavage of pyrimidine ring in the phenobarbital molecule respectively. Certainly, the phenobarbital can be mineralized when the photocatalytic reaction time prolongs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Photocatalytic degradation of trichloroethylene: influence of trichloroethylene and TiO/sub 2/ concentrations

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.

    2005-01-01

    Industrial wastewater streams usually contain highly toxic pollutants, cyanides, chlorinated compounds such as trichloroethylene (TCE) etc. The heterogeneous photocatalysis is more efficient technique other than traditionally employed methods used for detoxification of wastewater. The paper describes photocatalytic degradation of trichloroethylene in aqueous solution using TiO/sub 2/. Variable parameters such as initial concentration of TCE, concentration of TiO/sub 2/ and time were investigated. The TCE contaminated water was circulated in the reactor to expose it to UV radiation. The circulation speed and UV radiation intensity was kept constant. The photocatalytic degradation rate increased with increasing the initial concentration of TCE, but beyond the certain limit, 45 micro l of TCE per litter of water the rate started decreasing. (author)

  6. Photocatalytic Oxidation and Reduction Chemistry and a New Process for Treatment of Pink Water and Related Contaminated Water

    Science.gov (United States)

    1996-10-01

    Influence of pH on the Degradation Kinetics of Nitrophenol Isomers in a Heterogeneous ...34 Heterogeneous Photocatalytic Degradation of Organic Water Contaminants: Kinetics and Hydroxyl Radical Mechanisms," Ph.D. Thesis, Raleigh, NC: North Carolina...Dioxide Systems : Photocatalytic Degradation of Chloro- and Nitrophenols ." Trace Met. Environ 3, no. Photocatalytic Purification and Treatment of Water

  7. Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds

    Science.gov (United States)

    Osin, Oluwatomiwa A.; Yu, Tianyu; Cai, Xiaoming; Jiang, Yue; Peng, Guotao; Cheng, Xiaomei; Li, Ruibin; Qin, Yao; Lin, Sijie

    2018-06-01

    The photocatalytic activity of TiO2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO2 (C, N-TiO2) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO2 was much higher than the anatase TiO2 (A-TiO2) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.

  8. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide

    Science.gov (United States)

    Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin

    2018-04-01

    Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.

  9. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Dong, Qimei; Chen, Yingying; Wang, Lingli; Ai, Shasha; Ding, Hanming

    2017-12-01

    Alkalinized graphitic carbon nitride (CNK-OH) has been synthesized by one-step thermal poly-condensation method, and Cu-modified alkalinized g-C3N4 (Cu-CNK-OH) has been prepared by impregnation approach over CNK-OH. These copper species in Cu-CNK-OH are embedded in the frame of CNK-OH mostly via the Cu-N bonds. Cu-CNK-OH has been employed as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB). Both the production efficiency of hydroxyl radicals and the transformation rate of Cu(II)/Cu(I) redox pair increase under visible-light irradiation. As a result, Cu-CNK-OH exhibits improved Fenton-like catalytic activity on the degradation of RhB. The synergetic interaction between Fenton-like process and photocatalytic process also contributes such improvement. The hydroxyl radicals and holes are the major reactive species in the photocatalytically assisted Fenton-like process. This study provides a valuable strategy for metal modification of alkalinized g-C3N4 with enhanced Fenton-like catalytic performance for the degradation of organic contaminants.

  10. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    Science.gov (United States)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  11. Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures.

    Science.gov (United States)

    Rao, Martha Purnachander; Wu, Jerry J; Asiri, Abdullah M; Anandan, Sambandam

    2017-03-01

    Straw-sheaf-like CuO nanostructures were fruitfully synthesized using a chemical precipitation approach for the photocatalytic degradation assessment of tartrazine. Phase identification, composition, and morphological outlook of prepared CuO nanostructures were established by X-ray diffraction and scanning electron microscopy analysis. The photocatalytic performance of the synthesized CuO nanostructures was appraised in the presence of visible light and the possible intermediates formed during the photocatalytic degradation were analyzed by gas chromatography-mass spectrometry. A suitable degradation pathway has also been proposed.

  12. Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites

    International Nuclear Information System (INIS)

    Muktha, B.; Mahanta, Debajyoti; Patil, Satish; Madras, Giridhar

    2007-01-01

    An heterogeneous conducting polymer composite, poly(3-hexylthiophene)/TiO 2 (P3HT/TiO 2 ), was synthesized. The photocatalytic activity of P3HT alone and the composite was investigated for the first time by degrading a common dye under UV exposure. It was shown that the photocatalytic activity of the nanocomposites was higher compared to either the polymer or TiO 2 alone. A simple mechanism was proposed to explain this observed synergetic effect. - Graphical abstract: Photocatalytic mechanism of the polymer composite with titania. A new heterogeneous conducting polymer composite with titania (P3HT/TiO 2 ) was synthesized and the photocatalytic activity this composite was investigated by degrading a common dye under UV exposure. It was shown that the nanocomposite exhibited synergetic photocatalytic catalytic activity compared to either the polymer or TiO 2 alone. The scheme of the possible mechanism of enhancement of photocatalytic degradation rate in a conducting polymer nanocomposite is shown in the figure

  13. Photocatalytic degradation of methyl red dye by silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Y. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt); Abd El-Wahed, M.G. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mahmoud, M.A. [Chemistry Department, Faculty of Science, Zagazig University, Zagazig (Egypt)], E-mail: mahmoudchem@yahoo.com

    2008-06-15

    Silica nanoparticles (SiO{sub 2} NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO{sub 2} NPs and SiO{sub 2} NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO{sub 2} NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO{sub 2} NPs, SiO{sub 2} NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO{sub 2} NPs coated with Ag NPs, SiO{sub 2} NPs coated with Au NPs, Ag{sup +}-doped SiO{sub 2} NPs, and Au{sup 3+}-doped SiO{sub 2} NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.

  14. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    International Nuclear Information System (INIS)

    Prasad, G.K.; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-01-01

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 × 10 −3 min −1 . Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 × 10 −3 min −1 due to photocatalysis. Gas chromatography–mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P–O–C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: ► Synthesis of titania nanoparticles by sol–gel method. ► Fabrication of titania nanoparticulate film by dip coating. ► Paraoxon ethyl degradation reactions followed pseudo first order behaviour. ► Paraoxon-ethyl degraded to non toxic compounds like CO 2 , acetaldehyde, and nitrophenol.

  15. Photocatalytic degradation of diuron in aqueous solution by platinized TiO2

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Sada, Maki; Nakaoka, Yusuke; Kaneco, Satoshi; Suzuki, Tohru; Ohta, Kiyohisa

    2009-01-01

    The photocatalytic degradation of diuron, which is one of phenylurea herbicides, was carried out in the presence of platinized TiO 2 photocatalyst. Platinization was found to increase the rate of diuron degradation. When 0.2 wt.% of platinum was deposited onto the surface of TiO 2 , an initial diuron concentration of 10 mg L -1 was completely degraded after 20 min. Furthermore, the first-order rate constant for diuron degradation by Pt-TiO 2 was ca. 4 times higher than P-25 TiO 2 . In addition, the photocatalytic activity of Pt-TiO 2 was appeared under visible light. The decrease of TOC as a result of mineralization of diuron was observed during the photocatalytic process. The degree of diuron mineralization was about 97% under UV irradiation after 8 h. The formations of chloride, nitrate and ammonium ions as end-products were observed during the photocatalytic system. The decomposition of diuron gave four kinds of intermediate products. The degradation mechanism of diuron was proposed on the base of the evidence of the identified intermediates. Based on these results, the photocatalytic reaction by Pt-TiO 2 could be useful technology for the treatment of wastewater containing diuron.

  16. Photocatalytic degradation of diethyl phthalate using TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Pooja, E-mail: pooja.singla@thapar.edu; Pandey, O. P., E-mail: pooja.singla@thapar.edu; Singh, K., E-mail: pooja.singla@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala-147004 (India)

    2014-04-24

    TiO{sub 2} nanoparticles predominantly in rutile phase are synthesized by ultrasonication assisted sol-gel method. TiO{sub 2} powder is characterized using X-ray powder diffraction and UV-vis diffuse reflectance. TiO{sub 2} is used as catalyst in photocatalytic degradation of Diethyl Phthalate. TiO{sub 2} exhibits good photocatalytic activity for the degradation of diethyl phthalate.

  17. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-06-30

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 Multiplication-Sign 10{sup -3} min{sup -1}. Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 Multiplication-Sign 10{sup -3} min{sup -1} due to photocatalysis. Gas chromatography-mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P-O-C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: Black-Right-Pointing-Pointer Synthesis of titania nanoparticles by sol-gel method. Black-Right-Pointing-Pointer Fabrication of titania nanoparticulate film by dip coating. Black-Right-Pointing-Pointer Paraoxon ethyl degradation reactions followed pseudo first order behaviour. Black-Right-Pointing-Pointer Paraoxon-ethyl degraded to non toxic compounds like CO{sub 2}, acetaldehyde, and nitrophenol.

  18. Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tiele Caprioli, E-mail: tiele@enq.ufrgs.br [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil); Pizzolato, Tânia Mara [Chemical Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Arenzon, Alexandre [Ecology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Segalin, Jeferson [Biotechnology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Lansarin, Marla Azário [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil)

    2015-01-01

    Photocatalytic degradation of rosuvastatin, which is a drug that has been used to reduce blood cholesterol levels, was studied in this work employing ZnO as catalyst. The experiments were carried out in a temperature-controlled batch reactor that was irradiated with UV light. Preliminary the effects of the photocatalyst loading, the initial pH and the initial rosuvastatin concentration were evaluated. The experimental results showed that rosuvastatin degradation is primarily a photocatalytic process, with pseudo-first order kinetics. The byproducts that were generated during the oxidative process were identified using nano-ultra performance liquid chromatography tandem mass spectrometry (nano-UPLC–MS/MS) and acute toxicity tests using Daphnia magna were done to evaluate the toxicity of the untreated rosuvastatin solution and the reactor effluent. - Highlights: • The photocatalytic degradation of rosuvastatin was studied under UV irradiation. • Commercial catalyst ZnO was used. • Initial rosuvastatin concentration, photocatalyst loading and pH were evaluated. • The byproducts generated during the oxidative process were detected and identified. • Acute toxicity tests using Daphnia magna were carried out.

  19. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Li, Jinliang; Liu, Junying [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Zhang, Jing; Li, Ping; Chen, Chen [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-11-15

    Graphical abstract: F-doped TiO2 is synthesized using a modified sol–gel method for visible photocatalytic degradation of MB with a high degradation rate of 91%. - Highlights: • F-doped TiO{sub 2} are synthesized using a modified sol–gel method. • The photocatalytic degradation of methylene blue by F-doped TiO{sub 2} is investigated. • A high methylene blue degradation rate of 91% is achieved under visible light irradiation. - Abstract: F-doped TiO{sub 2} (F-TiO{sub 2}) were successfully synthesized using a modified sol–gel method. The morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, and electrochemical impedance spectra, respectively. The results show that F-TiO{sub 2} exhibits an enhanced photocatalytic performance in the degradation of MB with a maximum degradation rate of 91% under visible light irradiation as compared with pure TiO{sub 2} (32%). The excellent photocatalytic activity is due to the contribution from the increased visible light absorption, promoted separation of photo-generated electrons and holes as well as enhanced photocatalytic oxidizing species with the doping of F in TiO{sub 2}.

  20. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jin Chul; Ahn, Chang Hyuk; Jang, Dae Gyu; Yoon, Young Han [Korea Institute of Construction Technology, Water Resource and Environment Research Department (Korea, Republic of); Kim, Jong Kyu; Campos, Luiza [University College London, Department of Civil, Environmental, and Geomatic Engineering (United Kingdom); Ahn, Hosang, E-mail: hahn@kict.re.kr [Korea Institute of Construction Technology, Water Resource and Environment Research Department (Korea, Republic of)

    2013-12-15

    Highlights: • Stable nano-ZnO/Laponite composites (NZLc) as an alternative to TiO{sub 2} were produced. • Nanoscale ZnO complexed with NZLc was found to be an effective photocatalyst. • TCE removal efficiency of NZLc was greater than that of bare nanoscale ZnO. • Nanoscale ZnO-mediated photodegradation varied with experimental conditions. • Developed NZLc overcame drawbacks (e.g., filtration and recovery of photocatalysts). -- Abstract: The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO{sub 2} to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO{sub 2} powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources.

  1. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites

    International Nuclear Information System (INIS)

    Joo, Jin Chul; Ahn, Chang Hyuk; Jang, Dae Gyu; Yoon, Young Han; Kim, Jong Kyu; Campos, Luiza; Ahn, Hosang

    2013-01-01

    Highlights: • Stable nano-ZnO/Laponite composites (NZLc) as an alternative to TiO 2 were produced. • Nanoscale ZnO complexed with NZLc was found to be an effective photocatalyst. • TCE removal efficiency of NZLc was greater than that of bare nanoscale ZnO. • Nanoscale ZnO-mediated photodegradation varied with experimental conditions. • Developed NZLc overcame drawbacks (e.g., filtration and recovery of photocatalysts). -- Abstract: The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO 2 to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO 2 powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources

  2. Photocatalytic degradation of diuron in aqueous solution by platinized TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katsumata, Hideyuki, E-mail: hidek@chem.mie-u.ac.jp [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Sada, Maki; Nakaoka, Yusuke; Kaneco, Satoshi [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Suzuki, Tohru [Environmental Preservation Center, Mie University, Tsu, Mie 514-8507 (Japan); Ohta, Kiyohisa [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507 (Japan)

    2009-11-15

    The photocatalytic degradation of diuron, which is one of phenylurea herbicides, was carried out in the presence of platinized TiO{sub 2} photocatalyst. Platinization was found to increase the rate of diuron degradation. When 0.2 wt.% of platinum was deposited onto the surface of TiO{sub 2}, an initial diuron concentration of 10 mg L{sup -1} was completely degraded after 20 min. Furthermore, the first-order rate constant for diuron degradation by Pt-TiO{sub 2} was ca. 4 times higher than P-25 TiO{sub 2}. In addition, the photocatalytic activity of Pt-TiO{sub 2} was appeared under visible light. The decrease of TOC as a result of mineralization of diuron was observed during the photocatalytic process. The degree of diuron mineralization was about 97% under UV irradiation after 8 h. The formations of chloride, nitrate and ammonium ions as end-products were observed during the photocatalytic system. The decomposition of diuron gave four kinds of intermediate products. The degradation mechanism of diuron was proposed on the base of the evidence of the identified intermediates. Based on these results, the photocatalytic reaction by Pt-TiO{sub 2} could be useful technology for the treatment of wastewater containing diuron.

  3. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  4. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension.

    Science.gov (United States)

    Dai, Ke; Peng, Tianyou; Chen, Hao; Liu, Juan; Zan, Lin

    2009-03-01

    Photocatalytic degradation of commercial phoxim emulsion in aqueous suspension was investigated by using La-doped mesoporous TiO2 nanoparticles (m-TiO2) as the photocatalyst under UV irradiation. Effects of La-doping level, calcination temperature, and additional amount of the photocatalyst on the photocatalytic degradation efficiency were investigated in detail. Experimental results indicate that 20 mg L(-1) phoxim in 0.5 g L(-1) La/m-TiO2 suspension (the initial pH 4.43) can be decomposed as prolonging the irradiation time. Almost 100% phoxim was decomposed after 4 h irradiation according to the spectrophotometric analyses, whereas the mineralization rate of phoxim just reached ca. 80% as checked by ion chromatography (IC) analyses. The elimination of the organic solvent in the phoxim emulsion as well as the formation and decomposition of some degradation intermediates were observed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). On the basis of the analysis results on the photocatalytic degradation intermediates, two possible photocatalytic degradation pathways are proposed under the present experimental conditions, which reveal that both the hydrolysis and adsorption of phoxim under UV light irradiation play important roles during the photocatalytic degradation of phoxim.

  5. Photocatalytic Degradation of Malachite Green Using Nano-sized cerium-iron Oxide

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-05-01

    Full Text Available Nano-sized cerium-iron oxide nanoparticles has been synthesized, characterized and explored as an efficient photocatalyst for the photocatalytic degradation of malachite green. The effects of different variables on degradation of dye were optimized such as the pH of the dye solution, dye concentration, amount of photocatalyst and light intensity. About 91% degradation of dye of 2×10-5 M concentration was observed after 2 hours at 8.5 pH and 600 Wm-2 light intensity. The reason for the high catalytic activity of the synthesized nanoparticles is ascribed to the high surface area which determines the active sites of the catalyst and accelerates the photocatalytic degradation.

  6. Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst

    Directory of Open Access Journals (Sweden)

    Gunvant H. Sonawane

    2016-09-01

    Full Text Available The ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 accompanied by Nb2O5 nano catalysts were studied. The structure and morphology of synthesized Nb2O5 nano catalyst was investigated using scanning election microscopy (SEM, Electron dispersive X-ray spectroscopy (EDS and X-ray diffraction (XRD.The effects of various experimental parameters such as the Basic Red-2 concentration, catalyst dose, pH and addition of H2O2 on the ultrasonic, photocatalytic and sonophotocatalytic degradation were investigated. Photocatalytic and sonophotocatalytic degradation of Basic Red-2 was strongly affected by initial dye concentration, catalyst dose, H2O2 addition and pH. Basic pH (pH-10 was favored for the ultrasonic (US, photocatalytic (UV + Nb2O5 and sonophotocatalytic (US + UV + Nb2O5 degradation of Basic Red-2 by using Nb2O5 nano catalyst. The ultrasonic degradation of Basic Red-2 was enhanced by the addition of photocatalyst. Then, the effect of Nb2O5 dose on photocatalytic and sonophotocatalytic degradation were studied, and it was found that increase in catalyst dose increase in the percentage degradation of Basic Red-2. In addition, the effects of H2O2 on ultrasonic, photolytic, photocatalytic and sonophotocatalytic degradation was also investigated, and it was found that H2O2 enhances the % degradation of Basic Red-2. The possible mechanism of ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 reported by LC-MS shows generation of different degradation products

  7. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide

    NARCIS (Netherlands)

    Ballari, M.M.; Hunger, Martin; Hüsken, Götz; Brouwers, Jos

    2010-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of NOx (combining the degradation of NO and the appearance and disappearance of

  8. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    Science.gov (United States)

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    Science.gov (United States)

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles

    International Nuclear Information System (INIS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Chen, Huang-Han

    2012-01-01

    The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO 3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).

  11. A study on heterogeneous photocatalytic degradation of various organic compounds using N-Tio2 under Uv-light irradiation

    Science.gov (United States)

    Srujana, Dhegam; Sailu, Chinta

    2018-04-01

    The aim of this work is to determine the photocatalytic degradation of mixture of four selected organic compounds are Congo Red (CR), Methylene Blue (MB), Diclofenaec (DC), 4-Chlorophenol (4-CP) have been subjected to Photo catalytic degradation by Ultraviolet (λ=254nm) radiation in presence of Nitrogen-doped Titanium dioxide (N-TiO2) catalyst. This paper focused on the enhancement of photo catalysis by modification of TiO2 employing non-metal ion (Nitrogen) doping. Experiments are conducted with a mixture of equal proportions of organic compounds (CR, MB, DC, and 4-CP) with combined concentrations of 10, 20, 30, 40 and 50 mg/l in water in a batch reactor in presence of N-TiO2catalyst with UV light (λ=254nm). The rate of degradation of each compound is determined by using spectrophotometer. The kinetics of degradation of the selected organic compounds is followed first order rate.

  12. Magnetic and photocatalytic response of Ag-doped ZnFeO nano-composites for photocatalytic degradation of reactive dyes in aqueous solution

    International Nuclear Information System (INIS)

    Mahmood, Asif; Ramay, Shahid Mahmood; Al-Zaghayer, Yousef S.; Imran, Muhammad; Atiq, Shahid; Al-Johani, Meshal S.

    2014-01-01

    Highlights: • Self-consistent sol–gel based auto-combustion route was used. • Photocatalytic degradation of reactive dyes in aqueous solution was investigated. • Due to Ag doping, band gap reduced. • Activity of Ag-doped samples was higher than that of un-doped ones. - Abstract: To investigate the photocatalytic degradation of reactive dyes in aqueous solution, pure ZnO and Fe/Ag-doped magnetic photocatalysts having nominal compositions of Zn 0.95−x Fe 0.05 Ag x O (x = 0.0, 0.05 and 0.1) have been synthesized via self-consistent sol–gel based auto-combustion route. Thermally stable samples were subsequently confirmed to exhibit wurtzite type hexagonal structure, characteristic of ZnO. The nature of chemical bonding was elaborated by Fourier transform analysis. Electron microscopic techniques were employed to investigate the structural morphology and to evaluate the particle size. Ferromagnetic nature of the Fe/Ag doped samples was revealed by vibrating sample magnetometry, enabling the photocatalytic samples to be re-collected magnetically for repeated usage. The enhanced photocatalytic activity in the degradation of methylene blue under UV light irradiation with 5 and 10 wt.% Ag/ZnFeO has been observed validating the potential applications of these materials in the field of photo-degradation of organic pollutants

  13. Photocatalytic degradation of indigo carmine by ZnO photocatalyst under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Ali Al- Taie

    2017-09-01

    Full Text Available In this work, the photocatalytic degradation of indigo carmine (IC using zinc oxide suspension was studied. The effect of influential parameters such as initial indigo carmine concentration and catalyst loading were studied with the effect of Vis irradiation in the presence of reused ZnO was also investigated. The increased in initial dye concentration decreased the photodegradation and the increased catalyst loading increased the degradation percentage and the reused-ZnO exhibits lower photocatalytic activity than the ZnO catalyst. It has been found that the photocatalytic degradation of indigo carmine obeyed the pseudo-first-order kinetic reaction in presence of zinc oxide. This was found from plotting the relationship between ln (C0/Ct and irradiation the rate constant of the process.UV- spectrophotometer was used to study the indigo carmine photodegradation

  14. Visible light induced photocatalytic degradation of some xanthene ...

    African Journals Online (AJOL)

    Photocatalytic degradation of eosin and erythrosin-B (xanthene dyes) has been carried out using anthracene semiconductor immobilized on polyethylene films. Effect of various parameters like pH, concentration of dyes, amount of semiconductor and light intensity have been studied on the rate of reaction. Various control ...

  15. Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation.

    Science.gov (United States)

    Sakkas, Vasilios A; Islam, Md Azharul; Stalikas, Constantine; Albanis, Triantafyllos A

    2010-03-15

    The use of chemometric methods such as response surface methodology (RSM) based on statistical design of experiments (DOEs) is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Applied catalysis, is certainly not the exception. It is clear that photocatalytic processes mated with chemometric experimental design play a crucial role in the ability of reaching the optimum of the catalytic reactions. The present article reviews the major applications of RSM in modern experimental design combined with photocatalytic degradation processes. Moreover, the theoretical principles and designs that enable to obtain a polynomial regression equation, which expresses the influence of process parameters on the response are thoroughly discussed. An original experimental work, the photocatalytic degradation of the dye Congo red (CR) using TiO(2) suspensions and H(2)O(2), in natural surface water (river water) is comprehensively described as a case study, in order to provide sufficient guidelines to deal with this subject, in a rational and integrated way. (c) 2009 Elsevier B.V. All rights reserved.

  16. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites

    Institute of Scientific and Technical Information of China (English)

    Ming GE; Changsheng GUO; Xingwang ZHU; Lili MA; Zhefian HAN; Wei HU; Yuqiu WANG

    2009-01-01

    ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composi-tion and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.

  17. Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    International Nuclear Information System (INIS)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-01-01

    Highlights: ► Sequential photocatalytic reduction–oxidation degradation of TBBPA was firstly examined. ► Different atmospheres were found to have significant effect on debromination reaction. ► A possible sequential photocatalytic reduction–oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC–MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N 2 -saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO 2 system by changing the reaction atmospheres.

  18. Photocatalytic degradation of methylene blue by C 3 N 4 /ZnO

    Indian Academy of Sciences (India)

    The photocatalytic activities of prepared samples were investigated under the illumination of blacklight and fluorescent lamps as the low wattage light source. The C 3 N 4 /ZnO showed a better photocatalytic activity than ZnO to degrade a methylene blue (MB) dye solution using blacklight lamps, but there is no significant ...

  19. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  20. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  1. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Science.gov (United States)

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  2. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    Nurhidayatullaili Muhd Julkapli

    2014-01-01

    Full Text Available During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag and organic matter (C, N, Cl, and F showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.

  3. Photocatalytic degradation of malachite green dye using Au/NaNbO_3 nanoparticles

    International Nuclear Information System (INIS)

    Baeissa, E.S.

    2016-01-01

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl_4. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO_3 due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO_2 Degussa under visible light irradiation. - Highlights: • Au/NaNbO_3 were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  4. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst

    International Nuclear Information System (INIS)

    Długosz, Maciej; Żmudzki, Paweł; Kwiecień, Anna; Szczubiałka, Krzysztof; Krzek, Jan; Nowakowska, Maria

    2015-01-01

    Highlights: • Sulfamethoxazole was degraded using a floating photocatalyst under UV irradiation. • The photocatalyst was obtained by supporting TiO 2 onto expanded perlite. • The mechanism of sulfamethoxazole photodegradation in water was proposed. • The photodegradation rate of sulfamethoxazole is greater at higher pH. - Abstract: Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO 2 -expanded perlite photocatalyst (EP-TiO 2 -773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir–Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained

  5. Photocatalytic degradation of textile dyestuffs using TiO{sub 2} nanotubes prepared by sonoelectrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Derya, E-mail: deryatekin@atauni.edu.tr

    2014-11-01

    Highlights: • TiO{sub 2} nanotubes prepared by electrochemical and sonoelectrochemical method. • More regular TiO{sub 2} nanotubes diameters prepared by sonoelectrochemical method. • Obtained nanotubes were used in the photocatalytic degradation of Orange G dye. • TiO{sub 2} nanotubes prepared by sonoelectrochemical method showed 10% faster degradation of Orange G dye compared with the one by electrochemical method. - Abstract: TiO{sub 2} nanotubes were prepared by anodization of Ti plates by conventional electrochemical technique as well as by an emerging sonoelectrochemical technique. Scanning electron miscroscope (SEM) analysis showed that ultrasound assisted anodization yielded more ordered and controllable TiO{sub 2} tube banks with higher tube diameter. The photocatalytical activities of TiO{sub 2} nanotubes were tested in the photocatalytical degradation of Orange G dye. The results showed that sonoelectrochemically prepared TiO{sub 2} tubes exhibited 10% higher photocatalytic performance than the electrochemical prepared ones, and more than 18% higher activity than the other TiO{sub 2} samples.

  6. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  7. Multi-branched Cu2O nanowires for photocatalytic degradation of methyl orange

    Science.gov (United States)

    Yu, Chunxin; Shu, Yun; Zhou, Xiaowei; Ren, Yang; Liu, Zhu

    2018-03-01

    Multi-branched cuprous oxide nanowires (Cu2O NWs) were prepared by one-step hydrothermal method of a facile process. The architecture of these Cu2O NWs was examined by scanning electron microscopy, and the resulting crystal nanowire consists of the trunk growing along [100] plane and the branch growing along [110] plane. Photocatalytic degradation of methyl orange (MO) in the experiment indicates that pure Cu2O NWs prepared at 150 °C have a higher photocatalytic activity (90% MO were degraded within 20 min without the presence of H2O2) compared with the samples obtained at other temperatures. In the photoelectrochemical test, pure Cu2O NWs had outstanding photoelectric response, which corresponds to the catalytic performance. The superior photocatalytic performance can be attributed to the absence of grain boundaries between the small branches and the nanowire trunk, which is conducive to the transport of photo-generated carriers, and the reduction of Cu impurities to reduce the number of recombination centers.

  8. Application of zinc oxide fiber in the photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2011-01-01

    In this work, zinc oxide fibers were obtained by electrospinning using polyvinylbutyral and zinc nitrate as precursors. After the synthesis, the material was heat treated at different temperatures to evaluate the effect of microstructure on its photocatalytic activity. The fibers obtained after heat treatment were characterized for morphology, phases, crystallinity and photocatalytic activity. The photocatalysis reaction was accompanied by the degradation of methyl orange in the presence of zinc oxide under UV illumination. It was observed that the crystallinity of zincite is a fundamental factor for the control of the photocatalytic activity of this material. (author)

  9. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery.

    Science.gov (United States)

    Tang, Heqing; Li, Jing; Bie, Yeqiang; Zhu, Lihua; Zou, Jing

    2010-03-15

    Organic pollutants may be treated by either a degradation process or a recovery process in the view point of sustainable chemistry. Photocatalytic removal of aniline was investigated in aqueous solutions. It was found that the photocatalytic oxidation of aniline resulted in its degradation or polymerization, depending on its concentration. Hence a new treatment strategy was proposed in combination of photocatalytic degradation and polymerization, where the polymerization was in fact a recovery process. When aniline concentration was as low as 0.1 mmol L(-1), it was possible to photocatalytically degrade aniline, which could be further enhanced by increasing solution pH, modifying TiO(2) surface with the addition of anions, or coupling with the photoreduction of added oxidants. When aniline concentration was increased to about 1 mmol L(-1), the photocatalytic oxidation was observed to yield the polymerization of aniline, leading to nanocomposites of polyaniline (PAN) and TiO(2). Alternatively, the photo-enhanced chemical polymerization of aniline at higher concentrations (>or=50 mmol L(-1)) in the presence of chemical oxidants produced PAN nanostructures. The conversion of pollutant aniline to valuable PAN nanostructures or nano-PAN/TiO(2) composites is suggestive for possible applications in the treatment of aniline wastewaters as a sustainable environmental protection measure. (c) 2009 Elsevier B.V. All rights reserved.

  10. Photocatalytic Degradation of Safranine by ZnO-Bentonite: Photodegradation versus Adsorbability

    Science.gov (United States)

    Sonawane, Gunvant H.; Patil, Sandip P.; Shrivastava, V. S.

    2017-06-01

    ZnO-bentonite nanocomposite was obtained by incorporation of bentonite clay with ZnO. The effects of pH, contact time, initial dye concentration and photocatalyst dose on the rate of degradation of dye solution were studied. It was observed that working conditions strongly influence the dye removal process. Contact time 70 min and pH 4 was optimized for photocatalytic degradation of Safranine. Adsorption kinetics for 20-80 mg/l dye concentration was found to follow pseudo-second-order kinetics. Adsorption of dye was described by Langmuir and Freundlich isotherm. In adsorption isotherm, Langmuir isotherm was found to fit well with experimental data than Freundlich isotherm. The monolayer adsorption capacity was found to be 50 mg/g. The amount of dye adsorbed ( q t ) increases from 17.31 to 159.62 mg/g as dye concentration increases from 20 to 80 mg/l for 0.4 g/l photocatalyst dose. The photocatalytic degradation of Safranine by ZnO-bentonite takes place by advanced oxidation process.

  11. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    International Nuclear Information System (INIS)

    Abramović, Biljana; Kler, Sanja; Šojić, Daniela; Laušević, Mila; Radović, Tanja; Vione, Davide

    2011-01-01

    Highlights: ► Kinetics and efficiency of photocatalytic degradation of the β 1 -blocker metoprolol tartrate (MET). ► Two TiO 2 specimens employed. ► Faster degradation of MET, but slower mineralization, obtained with the TiO 2 specimen having lower surface area. ► Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used β 1 -blocker, in TiO 2 suspensions of Wackherr's “Oxyde de titane standard” and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01–0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO 2 Wackherr induced a significantly faster MET degradation compared to TiO 2 Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals (·OH), it was shown that the reaction with ·OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO 2 and H 2 O, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied in detail and a number of them were identified using LC–MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO 2 specimen.

  12. Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2015-06-01

    Full Text Available After the dyeing process, part of the dyes used to color textile materials are not fixed into the substrate and are discharged into wastewater as residual dyes. In this study, a heterogeneous photocatalytic process combined with microfiltration has been investigated for the removal of C.I. Disperse Red 73 from synthetic textile effluents. The titanium dioxide (TiO2 Aeroxide P25 was selected as photocatalyst. The photocatalytic treatment achieved between 60% and 90% of dye degradation and up to 98% chemical oxygen demand (COD removal. The influence of different parameters on photocatalytic degradation was studied: pH, initial photocatalyst loading, and dye concentration. The best conditions for dye degradation were pH 4, an initial dye concentration of 50 mg·L−1, and a TiO2 loading of 2 g·L−1. The photocatalytic membrane treatment provided a high quality permeate, which can be reused.

  13. Photocatalytic degradation kinetics, mechanism and ecotoxicity assessment of tramadol metabolites in aqueous TiO{sub 2} suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulou, U. [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Hela, D. [Department of Business Administration of Food and Agricultural Products, University of Patras, Agrinio 30100 (Greece); Konstantinou, I., E-mail: iokonst@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2016-03-01

    This study investigated for the first time the photocatalytic degradation of three well-known transformation products (TPs) of pharmaceutical Tramadol, N-desmethyl-(N-DES), N,N-bidesmethyl (N,N-Bi-DES) and N-oxide-tramadol (N-OX-TRA) in two different aquatic matrices, ultrapure water and secondary treated wastewater, with high (10 mg L{sup −1}) and low (50 μg L{sup −1}) initial concentrations, respectively. Total disappearance of the parent compounds was attained in all experiments. For initial concentration of 10 mg L{sup −1}, the target compounds were degraded within 30–40 min and a mineralization degree of more than 80% was achieved after 240 min of irradiation, while the contained organic nitrogen was released mainly as NH{sub 4}{sup +} for N-DES, N,N-Bi-DES and NO{sub 3}{sup −} for N-OX-TRA. The degradation rates of all the studied compounds were considerably decreased in the wastewater due to the presence of inorganic and organic constituents typically found in effluents and environmental matrices which may act as scavengers of the HO{sup •}. The effect of pH (4, 6.7, 10) in the degradation rates was studied and for N-DES-TRA and N,N-Bi-DES-TRA, the optimum pH value was 6.7. In contrast, N-OX-TRA showed an increasing trend in the photocatalytic degradation kinetic in alkaline solutions (pH 10). The major transformation products were identified by high resolution accurate mass spectrometry coupled with liquid chromatography (HR-LC–MS). Scavenging experiments indicated for all studied compounds the important role of HO{sup •} in the photocatalytic degradation pathways that included mainly hydroxylation and further oxidation of the parent compounds. In addition, Microtox bioassay (Vibrio fischeri) was employed for evaluating the ecotoxicity of photocatalytically treated solutions. Results clearly demonstrate the progressive decrease of the toxicity and the efficiency of the photocatalytic process in the detoxification of the irradiated solutions

  14. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO{sub 2}-expanded perlite photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Długosz, Maciej [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Żmudzki, Paweł; Kwiecień, Anna [Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków (Poland); Szczubiałka, Krzysztof, E-mail: szczubia@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Krzek, Jan [Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków (Poland); Nowakowska, Maria, E-mail: nowakows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-15

    Highlights: • Sulfamethoxazole was degraded using a floating photocatalyst under UV irradiation. • The photocatalyst was obtained by supporting TiO{sub 2} onto expanded perlite. • The mechanism of sulfamethoxazole photodegradation in water was proposed. • The photodegradation rate of sulfamethoxazole is greater at higher pH. - Abstract: Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO{sub 2}-expanded perlite photocatalyst (EP-TiO{sub 2}-773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir–Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained.

  15. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  16. Photocatalytic degradation of malachite green dye using Au/NaNbO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baeissa, E.S., E-mail: elhambaeissa@gmail.com

    2016-07-05

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl{sub 4}. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO{sub 3} due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO{sub 2} Degussa under visible light irradiation. - Highlights: • Au/NaNbO{sub 3} were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  17. Photocatalytic Degradation Effect of μ-Dielectric Barrier Discharge Plasma Treated Titanium Dioxide Nanoparticles on Environmental Contaminant.

    Science.gov (United States)

    Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo

    2018-09-01

    This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.

  18. The effect of operational parameters on the photocatalytic degradation of pesticide.

    Science.gov (United States)

    Choi, Euiso; Cho, Il-Hyoung; Park, Jaehong

    2004-01-01

    The photocatalytic degradation of Cartap Hydrochloride, a synthetic pesticide. has been investigated over coated TiO2 photocatalysts irradiated with a ultraviolet (UV) light. The effect of operational parameters, i.e., Cartap Hydrochloride concentration, reaction time, light intensity and additive on the degradation rate of aqueous solution of Cartap Hydrochloride has been examined. Results show that the employment of efficient photocatalysts and the selection of optimal operational parameters may lead to degradation of Cartap Hydrochloride solutions.

  19. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sojic, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Despotovic, Vesna N., E-mail: vesna.despotovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Abazovic, Nadica D., E-mail: kiki@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Comor, Mirjana I., E-mail: mirjanac@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Abramovic, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2010-07-15

    The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light ({lambda} {>=} 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO{sub 2} (rutile/anatase) and of the most frequently used TiO{sub 2} Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results. The results indicate that the efficiency of photocatalytic degradation is greatly influenced by the molecular structure of the compound. Lowering of the band gap of titanium dioxide by doping is not always favorable for increasing photocatalytic efficiency of degradation.

  20. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  1. Indoor air purificaton using heterogeneous photocatalytic oxidation, Part 2: Kinetic study

    NARCIS (Netherlands)

    Yu, Q.; Ballari, M.; Brouwers, H.J.H.

    2010-01-01

    In part I to this article [1], the application of the heterogeneous photocatalytic oxidation (PCO) theory for the indoor air quality improvement was presented. With a modified TiO2 that can be activated by visible light as the photocatalyst coated on a special wall paper, and one typical indoor air

  2. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode

    Directory of Open Access Journals (Sweden)

    Hossein Ali Rangkooy

    2017-01-01

    Full Text Available The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO2 nano coupled oxide and application of absorbent (activated carbon may be efficient and effective technique for refinement of toluene from air flow.

  3. Degradation of 17α-ethinylestradiol in water by heterogeneous photocatalysis

    Directory of Open Access Journals (Sweden)

    Wilton Silva Lopes

    2015-11-01

    Full Text Available We investigated the degradation of 17α-ethynylestradiol in an aqueous solution using a batch heterogeneous photocatalytic (HPC reactor with ultraviolet (UV light and TiO2 catalyst. In order to determine appropriate operating conditions, a 23 factorial experiment was conducted with initial an substrate concentration of 15 or 30 mg L-1, TiO2 concentration of 0.02 or 0.05%, pH of 5.0 or 9.0 and total reaction time 240 min. Degradation profiles and kinetic parameters were determined with an initial substrate concentration of 15 or 30 mg L-1, 0.02% TiO2 and pH 7.0.With17α-ethynylestradiol at 15 mg L-1, degradation efficiency was 100% after 120 min independent of TiO2 concentration and pH. However, less than 50% of the substrate was degraded when the initial concentration was 30 mg L-1 (0.05% TiO2 and pH 5.0. Initial substrate concentration was a limiting factor for HPC, although the reaction was also strongly influenced by TiO2 concentration and the interaction between initial substrate concentration and TiO2 concentration. All degradations followed first-order kinetics. With 17α-ethynylestradiol at 15 mg L-1, the half-life time (t½ was 64.16 min and the rate constant was 0.108 min-1, while at 30 mg L-1, substrate degradation proceeded in two stages, the t½ values of which were 44.71 and 433.12 min.

  4. Reduced graphene oxide-CdS nanocomposite with enhanced photocatalytic 4-Nitrophenol degradation

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-05-01

    We report the photocatalytic activity of reduced graphene oxide cadmium sulfide (RGO-CdS) composite towards the degradation of 4-Nitrophenol (4-NP) under simulated solar light illumination. The solution processable RGO-CdS composite was synthesized by one pot single step low cost solvothermal process, where the reduction of graphene oxide (GO), synthesis and attachment of CdS onto RGO sheets were done simultaneously. The structural and morphological characterization of the RGO-CdS composite and the reduction of GO was confirmed by X-ray diffractometry, TEM imaging and Fourier transform infrared spectroscopy respectively. The photocatalytic efficiency of RGO-CdS composite is 2.6 times higher in compare to controlled CdS. In RGO-CdS composite the photo induced electrons transfer from CdS nanorod to RGO sheets, which reduces the recombination probability of photo generated electron-hole in the CdS. These well separated photoinduced charges enhanced the photocatalytic activity of the RGO-CdS composite. Our study establishes the RGO-CdS composite as a potential photocatalyst for the degradation of organic water pollutant.

  5. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    Science.gov (United States)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  6. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn

  7. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  8. Bi2WO6 nanoflowers: An efficient visible light photocatalytic activity for ceftriaxone sodium degradation

    Science.gov (United States)

    Zhao, Yanyan; Wang, Yongbo; Liu, Enzhou; Fan, Jun; Hu, Xiaoyun

    2018-04-01

    The morphology-controlled synthesis of nano-structure photocatalyst have leaded a new possibility to improve their physical and chemical properties. Herein, Bi2WO6 nanocrystals (BWO) with nano-flower, nano plates, knot shape, rod like and irregular morphologies have been successfully synthesized through a highly facile hydrothermal process by simply adjusting pH values, reactive solvents and temperature. Photocatalytic activity of the as-prepared samples were evaluated by degradation of Ceftriaxone sodium under visible light irradiation (λ > 420 nm), the results indicated that all the BWO samples exhibit morphology-associated photocatalytic activity, and the 3D flowerlike-structure of BWO composed of well-ordered nano plates (BWO-D-5) displayed the outstanding photocatalytic activity. Through getting insight into the mechanism, h+ and rad O2- play major roles compared with rad OH in photocatalytic degradation process. The possible pathway of Ceftriaxone sodium and the intermediates were proposed to better understand the reaction process. Moreover, this work not only provides an example of morphology-dependent photocatalytic activity of BWO but also provides an illustrative example for removing organic pollutant molecules according to practical requirements.

  9. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2

    International Nuclear Information System (INIS)

    Chang Chien, S.W.; Chang, C.H.; Chen, S.H.; Wang, M.C.; Madhava Rao, M.; Satya Veni, S.

    2011-01-01

    The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO 2 in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO 2 was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO 2 ) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO 2 and the photooxidation (without TiO 2 ) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO 2 -enhanced photocatalytic pyrene degradation and in photooxidation (without TiO 2 ) of pyrene. The percentages of photocatalytic pyrene degradation by TiO 2 in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5 h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO 2 -enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO 2 -enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO 2 ) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO 2 -enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated. - Highlights: → Synergistic effect of sunlight irradiation and TiO 2 promoted degradation of pyrene. → Micro-nano size TiO 2 enhanced

  10. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    I. Abdul Rahman

    2014-01-01

    Full Text Available ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.

  11. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO{sub 2}-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Abramovic, Biljana, E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Kler, Sanja, E-mail: sanja.kler@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Sojic, Daniela, E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Lausevic, Mila, E-mail: milal@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Radovic, Tanja, E-mail: tradovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Vione, Davide, E-mail: davide.vione@unito.it [Dipartimento di Chimica Analitica, Universita di Torino, Via Pietro Giuria 5, 10125 Torino (Italy)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Kinetics and efficiency of photocatalytic degradation of the {beta}{sub 1}-blocker metoprolol tartrate (MET). Black-Right-Pointing-Pointer Two TiO{sub 2} specimens employed. Black-Right-Pointing-Pointer Faster degradation of MET, but slower mineralization, obtained with the TiO{sub 2} specimen having lower surface area. Black-Right-Pointing-Pointer Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used {beta}{sub 1}-blocker, in TiO{sub 2} suspensions of Wackherr's 'Oxyde de titane standard' and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO{sub 2} Wackherr induced a significantly faster MET degradation compared to TiO{sub 2} Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals ({center_dot}OH), it was shown that the reaction with {center_dot}OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO{sub 2} and H{sub 2}O, while the nitrogen was predominantly present as NH{sub 4}{sup +}. Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO{sub 2} specimen.

  12. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO{sub 2} dispersion

    Energy Technology Data Exchange (ETDEWEB)

    An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); An, Jibin [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Nie, Xiangping [Institute of Hydrobiology, Jinan University, Guangzhou 510632 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Photocatalytic degradation kinetics of antivirus drug lamivudine. Black-Right-Pointing-Pointer The degradation kinetics was optimized by the single-variable-at-a-time. Black-Right-Pointing-Pointer The degradation kinetics was optimized by central composite design. Black-Right-Pointing-Pointer The contribution of reactive species was investigated with addition of scavengers. Black-Right-Pointing-Pointer Six intermediates were identified and a degradation mechanism was proposed. - Abstract: Photocatalytic degradation kinetics of antivirus drug-lamivudine in aqueous TiO{sub 2} dispersions was systematically optimized by both single-variable-at-a-time and central composite design based on the response surface methodology. Three variables, TiO{sub 2} content, initial pH and lamivudine concentration, were selected to determine the dependence of degradation efficiencies of lamivudine on independent variables. Response surface methodology modeling results indicated that degradation efficiencies of lamivudine were highly affected by TiO{sub 2} content and initial lamivudine concentration. The highest degradation efficiency was achieved at suitable amount of TiO{sub 2} and with maintaining initial lamivudine concentration to a minimum. In addition, the contribution experiments of various primary reactive species produced during the photocatalysis were investigated with the addition of different scavengers and found that hydroxyl radicals was the major reactive species involved in lamivudine degradation in aqueous TiO{sub 2}. Six degradation intermediates were identified using HPLC/MS/MS, and photocatalytic degradation mechanism of lamivudine was proposed by utilizing collective information from both experimental results of HPLC/MS/MS, ion chromatography as well as total organic carbon and theoretical data of frontier electron densities and point charges.

  13. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  14. TiO₂-Based Photocatalytic Geopolymers for Nitric Oxide Degradation.

    Science.gov (United States)

    Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele

    2016-06-24

    This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO₂ by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

  15. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  16. HETEROGENEOUS PHOTOCATALYTIC DEGRADATION OF PHENOL IN AQUEOUS SUSPENSION OF PERIWINKLE SHELL ASH CATALYST IN THE PRESENCE OF UV FROM SUNLIGHT

    Directory of Open Access Journals (Sweden)

    OSARUMWENSE, J. O.

    2015-12-01

    Full Text Available The batch photocatalytic degradation of phenol in aqueous solution wasinvestigated using periwinkle shell ash (PSA as photocatalyst. Chemical characterisation of the PSA revealed that the major oxides present were calcium oxide (CaO, silica (SiO2 and aluminium oxide (Al2O3 which accounted for 41.3, 33.2 and 9.2% of the weight of PSA characterised. The major elements in PSA were iron (19.2% and zinc (16.5%. FTIR results revealed absorption peaks of 3626.59 cm−1, 1797.58 cm−1, 1561.43 cm−1 and 1374.34 cm−1 in the infrared spectrum of PSA corresponding to O–H, C= O, C= C and C–H bonds respectively. Increasing the initial phenol concentration resulted in a decrease in the degradation efficiency of PSA. Lower catalyst loadings favoured the degradation process. Maximum degradation efficiency was obtained when the initial phenol concentration and catalyst loading were set as 50 g/L and 5 g/L respectively. The kinetics of the degradation process was well described by the pseudo first order equation while the diffusion mechanism was well represented by the intra particle diffusion model (R2>0.90. The adsorption equilibrium data fitted well to the Langmuir isotherm equation with an R2 value of 0.997.

  17. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor

    International Nuclear Information System (INIS)

    Cai, Li; Long, Qiyi; Yin, Chao

    2014-01-01

    Highlights: • Ag 3 PO 4 /TiO 2 fibers were prepared via in situ Ag 3 PO 4 particles onto the surface of TiO 2 fiber. • Ag 3 PO 4 /TiO 2 fibers have stronger catalytic activity and excellent chemical stability. • Ag 3 PO 4 /TiO 2 fibers act as an efficient catalyst for the photocatalytic degradation of black liquor. - Abstract: The TiO 2 fiber was prepared by using cotton fiber as a template, and then Ag 3 PO 4 /TiO 2 fibers were synthesized via in situ Ag 3 PO 4 particles onto the surface of TiO 2 fiber. Their structure and physical properties were characterized by means of scanning electron microscopy (SEM), specific surface analyzer, X-ray diffraction (XRD), UV–vis absorption spectra and photoluminescence spectra (PL). SEM analysis indicated that the well-defined surface morphology of natural cotton fiber was mostly preserved in TiO 2 and Ag 3 PO 4 /TiO 2 fibers. Compared with TiO 2 fiber, the absorbance wavelengths of Ag 3 PO 4 /TiO 2 fibers were apparently red shifted and the PL intensities revealed a significant decrease. By using the photocatalytic degradation of black liquor as a model reaction, the visible light and ultraviolet light catalytic efficiencies of TiO 2 , Ag 3 PO 4 and Ag 3 PO 4 /TiO 2 fibers were evaluated. The reaction results showed that Ag 3 PO 4 /TiO 2 fibers had stronger photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared Ag 3 PO 4 /TiO 2 fibers could act as an efficient catalyst for the photocatalytic degradation of black liquor, which suggested their promising applications. It was proposed that the • OH radicals played the leading role in the photocatalytic degradation of the black liquor by Ag 3 PO 4 /TiO 2 fibers system

  18. Solution processable RGO-CdZnS composite for solar light responsive photocatalytic degradation of 4-Nitrophenol

    Science.gov (United States)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-05-01

    We report the one pot single step synthesis and characterization of solution processable reduced graphene oxide (RGO) - cadmium zinc sulfide (CdZnS) nanocomposite materials. The composite was characterized structurally and morphologically by XRD and TEM studies. The reduction of GO in RGO-CdZnS composite, was confirmed by XPS and Raman spectroscopy. The photocatalytic activity of the RGO-CdZnS composite was investigated towards the degradation of 4-Nitrophenol. A notable increase of photocatalytic efficiency of RGO-CdZnS compare to controlled CdZnS was observed. Here RGO plays a crucial role to efficient photo induced charge separation from the CdZnS, and decreases the electron-hole recombination probability and subsequently enhanced the photocatalytic activity of the RGO-CdZnS composite material under simulated solar light irradiation. This work highlights the potential application of RGO-based materials in the field of photocatalytic degradation of organic water pollutant.

  19. Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension.

    Science.gov (United States)

    Ziegmann, Markus; Frimmel, Fritz H

    2010-01-01

    The combination of powdered activated carbon (PAC) and TiO(2) has been tested for synergistic/antagonistic effects in the photocatalytic degradation of carbamazepine, clofibric acid and iomeprol. Synergistic effects are thought to be caused by rapid adsorption on the PAC surface followed by diffusion to the TiO(2) surface and photocatalytic degradation. The Freundlich constant K(F) was used for comparing the sorption properties of the three substances and it was found that K(F) for clofibric acid was 3 times lower than for carbamazepine and iomeprol, regardless of the kind of PAC used. A PAC with a distinct tendency to form conglomerates was selected so that a high percentage of the PAC surface was in direct proximity to the TiO(2) surface. The photocatalytic degradation of the pharmaceutically active compounds studied followed pseudo-first order kinetics. Synergistic effects only occurred for clofibric acid (factor 1.5) and an inverse relationship between adsorption affinity and synergistic effects was found. High affinity of the target substances to the PAC surface seemed to be counterproductive for the photocatalytic degradation.

  20. Preparation of Ag–AgBr/TiO2–graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide

    International Nuclear Information System (INIS)

    Rong, Xinshan; Qiu, Fengxian; Zhang, Chen; Fu, Liang; Wang, Yuanyuan; Yang, Dongya

    2015-01-01

    Highlights: • Ag–AgBr/TiO 2 –graphene (AATG) composite photocatalyst was prepared. • AATG was applied to photocatalytic degradation of polyacrylamide (PAM). • Degradation condition such as mass ratio of TiO 2 /graphene, dose, pH and time, was investigated. • The AATG composite photocatalyst can be separated from system effectively and easily. • The prepared AATG exhibits significant photocatalytic activity after five successive recycles. - Abstract: In current work, TiO 2 was modified by Ag/AgBr semiconductor and graphene to enhance its photocatalytic activity for the degradation of polyacrylamide (PAM). Ag–AgBr/TiO 2 –graphene (AATG) composite photocatalysts were prepared by the deposition–precipitation method combining a subsequent calcination process. The structure, surface morphology and chemical composition of AATG composite photocatalysts were investigated by XRD, XPS, DRS, PL, SEM, EDS, TEM, and HRTEM methods. XRD and XPS results show that Ag 0 is generated from Ag + under visible light irradiation. Degradation of PAM was chosen to evaluate photocatalytic activity using AATG composite as photocatalysts. The conditions such as mass ratio of TiO 2 /graphene, catalyst dose, pH and contact time, were investigated for the degradation of PAM. Possible pathway and mechanism were proposed for photocatalytic degradation of PAM over AATG composite photocatalyst under visible light irradiation. The prepared AATG composite photocatalyst can be separated from system effectively and easily; and exhibits significant photocatalytic activity after five successive recycles, which confirmed that the components of the AATG are not photo decomposed and the structure is stable during the photocatalytic process

  1. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  2. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Bora, Tanujjal; Dutta, Joydeep

    2016-01-01

    Highlights: • Sb doped SnO 2 nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO 2 :Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO 2 ) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO 2 . In this study antimony (Sb) doped tin dioxide (SnO 2 ) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO 2 :Sb was found to be a maximum for 0.6 wt.% Sb doped SnO 2 nanoparticles with 10 mg L −1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  3. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems

    International Nuclear Information System (INIS)

    Sharma, Mangalampalli V. Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-01-01

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO 2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO 2 , H-MOR support and different wt% of TiO 2 over the support on the photocatalytic degradation and influence of parameters such as TiO 2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15 wt% TiO 2 /H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and ∼80% mineralization occurred in 5 h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS)

  4. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    Science.gov (United States)

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  5. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor.

    Science.gov (United States)

    Aoudjit, L; Martins, P M; Madjene, F; Petrovykh, D Y; Lanceros-Mendez, S

    2018-02-15

    Recalcitrant dyes present in effluents constitute a major environmental concern due to their hazardous properties that may cause deleterious effects on aquatic organisms. Tartrazine is a widely-used dye, and it is known to be resistant to biological and chemical degradation processes and by its carcinogenic and mutagenic nature. This study presents the use of TiO 2 (P25) nanoparticles immobilized into a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) membrane to assess the photocatalytic degradation of this dye in a solar photoreactor. The nanocomposite morphological properties were analyzed, confirming an interconnected porous microstructure and the homogeneous distribution of the TiO 2 nanoparticles within the membrane pores. It is shown that the nanocomposite with 8wt% TiO 2 exhibits a remarkable sunlight photocatalytic activity over five hours, with 78% of the pollutant being degraded. It was also demonstrated that the degradation follows pseudo-first-order kinetics model at low initial tartrazine concentration. Finally, the effective reusability of the produced nanocomposite was also assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.

    Science.gov (United States)

    Zhang, Maolin; An, Taicheng; Fu, Jiamo; Sheng, Guoying; Wang, Xinming; Hu, Xiaohong; Ding, Xuejun

    2006-06-01

    An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.

  7. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang, E-mail: luwy@zstu.edu.cn; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing, E-mail: wxchen@zstu.edu.cn

    2016-11-05

    Highlights: • A facile synthetic strategy to prepare visible-light responsive electrospun nanofibers. • Self-floating nanofiber photocatalyts for the effective utilization of solar. • Possible degradation pathway of RhB and CBZ under visible light and solar irradiation. • Present a method for removing highly hazardous contaminants. - Abstract: The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C{sub 3}N{sub 4}/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C{sub 3}N{sub 4}/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C{sub 3}N{sub 4}/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules.

  8. Preparation and photocatalytic degradation performance of Ag_3PO_4 with a two-step approach

    International Nuclear Information System (INIS)

    Li, Jiwen; Ji, Xiaojing; Li, Xian; Hu, Xianghua; Sun, Yanfang; Ma, Jingjun; Qiao, Gaowei

    2016-01-01

    Highlights: • Ag_3PO_4 photocatalysts were synthesized via one-step and two-step ion-exchange reaction. • Photocatalytic properties of Ag_3PO_4 photocatalysts was investigated, the result indicated the Ag_3PO_4 (2) was higher than that of Ag_3PO_4 (1) under the same experimental condition. • Ag_3PO_4 (2) particles were larger than Ag_3PO_4 (1) particles and many polygonal-shaped surfaces could be clearly observed in the Ag_3PO_4 (2) particles. - Abstract: Ag_3PO_4 photocatalysts were prepared via two and one-step through a facile ion-exchange route. The photocatalysts were then characterized through powder X-ray diffraction, scanning electron microscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated on the basis of the photocatalytic degradation of methyl orange (MO) and methylene blue (MB) under solar irradiation. The MO degradation rate of the Photocatalyst synthesized by the two-step ion-exchange route was 89.18% in 60 min. This value was four times that of the Photocatalyst synthesized by the one-step approach.The MB degradation rate was 97% in 40 min. After six cycling runs were completed, the MO degradation rate was 73%

  9. Photocatalytic activity of porous multiwalled carbon nanotube-TiO{sub 2} composite layers for pollutant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zouzelka, Radek [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, University of Chemistry and Technology Prague, 16628 Prague (Czech Republic); Kusumawati, Yuly [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Remzova, Monika [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, University of Chemistry and Technology Prague, 16628 Prague (Czech Republic); Rathousky, Jiri [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Pauporté, Thierry, E-mail: thierry.pauporte@chimie-paristech.fr [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-05

    Highlights: • A simple method for TiO{sub 2}/graphene nanocomposite layer preparation. • Stable coatings on glass substrate. • Mesoporous nanocomposite films with high internal surface area. • High photoactivity for 4-chlorophenol degradation. • Analysis of photocatalysis enhancement mechanism. - Abstract: TiO{sub 2} nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily

  10. Photocatalytic degradation mechanisms of self-assembled rose-flower-like CeO2 hierarchical nanostructures

    International Nuclear Information System (INIS)

    Sabari Arul, N.; Mangalaraj, D.; Whan Kim, Tae

    2013-01-01

    Hierarchical rose-flower-like CeO 2 nanostructures were formed by using solvothermal and thermal annealing processes. The CeCO 3 OH thin film was transformed into CeO 2 roses due to thermal annealing. CeO 2 nanostructured roses exhibited excellent photocatalytic activity with a degradation rate of 65% for the azo dye acid orange 7 (AO7) under ultraviolet illumination. The fitting of the absorbance maximum versus time showed that the degradation of AO7 obeyed pseudo-first-order reaction kinetics. The enhancement of the photocatalytic activity for the CeO 2 roses was attributed to the high adsorptivity resulting from the surface active sites and special 4f electron configuration.

  11. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  12. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Science.gov (United States)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  13. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater.

    Science.gov (United States)

    Ates, Hasan; Dizge, Nadir; Yatmaz, H Cengiz

    2017-01-01

    In this study, an electrocoagulation reactor (ECR) and photocatalytic reactor (PCR) were tested to understand the performance of combined electrocoagulation and photocatalytic-degradation of olive washing wastewater (OWW). The effects of initial pH (6.0, 6.9, 8.0, 9.0), applied voltage (10.0, 12.5, 15.0 V), and operating time (30, 60, 90, 120 min) were investigated in the electrocoagulation reactor when aluminum electrodes were used as both anode and cathode. The pH, conductivity, color, chemical oxygen demand (COD), and phenol were measured versus time to determine the efficiency of the ECR and PCR process. It was observed that electrocoagulation as a single treatment process supplied the COD removal of 62.5%, color removal of 98.1%, and total phenol removal of 87% at optimum conditions as pH 6.9, applied voltage of 12.5 V, and operating time of 120 min. Moreover, final pH and conductivity were 7.7 and 980 μS/cm, respectively. On the other hand, the effect of semiconductor catalyst type (TiO 2 and ZnO) and loading (1, 2, 3 g/L) were tested using PCR as a stand-alone technique. It was found that photocatalytic degradation as a single treatment process when using 1 g/L ZnO achieved the COD removal of 46%, color removal of 99% with a total phenol removal of 41% at optimum conditions. Final pH and conductivity were 6.2 and 915 μS/cm, respectively. Among semiconductor catalysts, TiO 2 and ZnO performed identical efficiencies for both COD and total phenol removal. Moreover, combination in which electrochemical degradation was employed as a pre-treatment to the photocatalytic degradation process obtained high COD removal of 88% and total phenol, as well as color removal of 100% for the OWW. The electrochemical treatment alone was not effective, but in combination with the photocatalytic process, led to a high-quality effluent. Finally, sludge collected from the electrocoagulation process was characterized by attenuated total reflection Fourier transform infrared and X

  14. TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation

    Science.gov (United States)

    Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele

    2016-01-01

    This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features. PMID:28773634

  15. TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation

    Directory of Open Access Journals (Sweden)

    Alberto Strini

    2016-06-01

    Full Text Available This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin, composite systems (siloxane-hybrid, foamed hybrid, and curing temperatures (room temperature and 60 °C were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste. The geopolymer matrices were previously designed for different applications, ranging from insulating (foam to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM and energy dispersive X-ray (EDS analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

  16. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El-Kemary, Maged, E-mail: elkemary@yahoo.co [Photo- and Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt); El-Shamy, Hany; El-Mehasseb, Ibrahim [Photo- and Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt)

    2010-12-15

    We report the synthesis of nanostructure ZnO semiconductor with {approx}2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV-vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at {approx}334 nm corresponding to band gap of {approx}3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at {approx}410 nm and a green emission peak at {approx}525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency ({approx}50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.

  17. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water.

    Science.gov (United States)

    Hao, Xiao Long; Zhou, Ming Hua; Lei, Le Cheng

    2007-03-22

    TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  18. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    International Nuclear Information System (INIS)

    Hao Xiaolong; Zhou Ming Hua; Lei Lecheng

    2007-01-01

    TiO 2 photocatalyst (P-25) (50 mg L -1 ) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO 2 were obviously increased. Pulsed high-voltage discharge process with TiO 2 had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10 -6 to 1.50 x 10 -6 M s -1 , the ozone formation rate from 1.99 x 10 -8 to 2.35 x 10 -8 M s -1 , respectively. In addition, this process had no influence on the photocatalytic properties of TiO 2 . The introduction of TiO 2 photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants

  19. Photocatalytic performance of graphene/TiO_2-Ag composites on amaranth dye degradation

    International Nuclear Information System (INIS)

    Roşu, Marcela-Corina; Socaci, Crina; Floare-Avram, Veronica; Borodi, Gheorghe; Pogăcean, Florina; Coroş, Maria; Măgeruşan, Lidia; Pruneanu, Stela

    2016-01-01

    Ternary nanocomposites containing TiO_2, silver and graphene with different reduction levels were prepared and used as photocatalysts for amaranth azo dye degradation, under UV and natural light exposure. The obtained materials were characterized by TEM, XRD, FTIR and UV-Vis spectroscopy, confirming the successful formation of the nanocomposites. HPLC analysis along with UV-Vis spectroscopy were employed to quantify the concentration of non-degraded dye in solution. The graphene/TiO_2-Ag nanocomposites proved to have remarkable photocatalytic activities for amaranth degradation under UV and solar irradiation (85.3–98% of dye has disappeared in the first 2 h). Also, significant removal efficiencies (between 40.5 and 71.8%) of photocatalysts, in day light conditions, were demonstrated. The best result for amaranth dye degradation was obtained with the reduced graphene/TiO_2-Ag catalyst (up to 99.9%). Based on the degradation products analysis, a photodegradation pathway of amaranth dye was also proposed. - Highlights: • Graphene/TiO_2-Ag composites were prepared by a combined chemical-thermal method. • The composites showed improved light-absorption characteristics. • A significant degradation performance of amaranth was obtained with these composites under UV and natural light exposure. • Graphene/TiO_2-Ag composites offer a high potential for various photocatalytic applications in pollutant removal processes.

  20. Solar photocatalytic degradation of isoproturon over TiO{sub 2}/H-MOR composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mangalampalli V. Phanikrishna; Durgakumari, Valluri [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500607 (India); Subrahmanyam, Machiraju [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500607 (India)], E-mail: subrahmanyam@iict.res.in

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO{sub 2} over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO{sub 2}, H-MOR support and different wt% of TiO{sub 2} over the support on the photocatalytic degradation and influence of parameters such as TiO{sub 2} loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15 wt% TiO{sub 2}/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and {approx}80% mineralization occurred in 5 h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS)

  1. Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation

    International Nuclear Information System (INIS)

    Dong Dianbo; Li Peijun; Li Xiaojun; Zhao Qing; Zhang Yinqiu; Jia Chunyun; Li Peng

    2010-01-01

    Photocatalytic degradation of pyrene on soil surfaces was investigated in the presence of nanometer anatase TiO 2 under a variety of conditions. After being spiked with pyrene, soil samples loaded with different amounts of TiO 2 (0%, 1%, 2%, 3%, and 4%, w/w) were exposed to UV irradiation for 25 h. The results indicated that the photocatalytic degradation of pyrene followed pseudo-first-order kinetics. TiO 2 accelerated the degradation of pyrene generally as indicated by the half-life reduction from 45.90 to 31.36 h, corresponding to the TiO 2 amounts from 0% to 4%, respectively. The effects of H 2 O 2 , light intensity and humic acids on the degradation of pyrene were also investigated. The degradation of pyrene increased along with increasing the concentration of H 2 O 2 , light intensity and the concentration of humic acids. All results indicated that the photocatalytic method in the presence of nanometer anatase TiO 2 was an advisable choice for the treatments of PAHs polluted soil in the future.

  2. Photocatalytic Active Coatings for Lignin Degradation in a Continuous Packed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Colin Awungacha Lekelefac

    2014-01-01

    Full Text Available The synthesis of immobilized catalyst on porous glass support material via the sol-gel route is reported. TiO2-P25-SiO2 + Pt, TiO2-P25-SiO2, TiOSO4_30.6 wt%, and ZnO + TiO2-P25-SiO2 catalysts were synthesized and a comparative study is done regarding morphology of coatings, degradation rates, reaction rates, dissolved carbon (DC, formation of peaks, and fluorescence of products formed from the photocatalytic degradation of lignin sulfonate obtained from a local paper plant. Through simultaneous reaction-extraction pathways applying dialysis filtration and highly porous polystyrene divinylbenzene adsorbent resin (HR-P for solid phase extraction (SPE, an attempt has been made to isolate smaller molecules produced from photocatalytic degradation. Moreover relatively high lignin sulfonate (0.5 g/L concentrations are used in the reactions. UV-Vis spectroscopy revealed a faster reduction in the concentration values for the aliphatic moiety compared to the aromatic moiety. Peaks were observed by both fluorescence spectroscopy and HPLC suggesting the production of new substances and fluorophores.

  3. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  4. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Dutta, Joydeep

    2015-01-01

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO 2 :I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO 2 :I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO 2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO 2 nanoparticles under similar illumination conditions

  5. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longxing, E-mail: hulxhhhb@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Deng, Guihua [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Lu, Wencong [College of Sciences, Shanghai University, Shanghai 200444 (China); Pang, Siwei; Hu, Xing [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2017-07-15

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB{sub aq}-visible light system was O{sub 2}{sup −}·; nevertheless, h{sup +} and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs

  6. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    International Nuclear Information System (INIS)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-01-01

    Graphical abstract: The CdS/MIL-53(Fe) photocatalyst has been synthesized by a facile two-step solvothermal method and applied for photocatalytic degradation of organic pollutant RhB under visible light irradiation. - Highlights: • A novel CdS/MIL-53(Fe) photocatalyst was successfully synthesized via a facile two-step solvothermal method. • CdS/MIL-53(Fe) exhibited an enhanced visible-light photocatalytic degradation of RhB in water. • The mechanisms for the formation of CdS/MIL-53(Fe) and photocatalytic degradation of RhB were proposed. - Abstract: A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV–vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhB aq -visible light system was O 2 − ·; nevertheless, h + and ·OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the

  7. Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B

    NARCIS (Netherlands)

    Rasalingam, S; Kibombo, H.S.; Wu, C.M.; Budhi, S.; Peng, R.; Baltrusaitis, Jonas; Koodali, R.T.

    2013-01-01

    The influence of Ti–O–Si hetero-linkages in the degradation of Rhodamine B (RhB) dye over TiO2–SiO2 xerogels is exemplified by XPS analysis. We demonstrate a relationship between the percentage surface content of Ti–O–Si and the rate of photocatalytic degradation of RhB. Our detailed surface

  8. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light

    Science.gov (United States)

    Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin

    2018-06-01

    In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.

  9. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    Science.gov (United States)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  10. Application of Titanium Dioxide-Graphene Composite Material for Photocatalytic Degradation of Alkylphenols

    Directory of Open Access Journals (Sweden)

    Chanbasha Basheer

    2013-01-01

    Full Text Available Titanium dioxide-graphene (TiO2-G composite was used for the photodegradation of alkylphenols in wastewater samples. The TiO2-G composites were prepared via sonochemical and calcination methods. The synthesized composite was characterized by X-ray diffraction (XRD, infrared spectroscopy (IR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDX, and fluorescence spectroscopy. The photocatalytic efficiency was evaluated by studying the degradation profiles of alkylphenols using gas chromatography-flame ionization detector (GC-FID. It was found that the synthesized TiO2-G composites exhibit enhanced photocatalytic efficiencies as compared to pristine TiO2. The presence of graphene not only provides a large surface area support for the TiO2 photocatalyst, but also stabilizes charge separation by trapping electrons transferred from TiO2, thereby hindering charge transfer and enhancing its photocatalytic efficiency.

  11. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  12. Heterogeneous Photocatalysis: Fundamentals and Application for Treatment of Polluted Air

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2011-07-01

    Full Text Available The use of heterogeneous photocatalysts for the abatement of environmental problems has received increased attention during the last three decades. The photocatalyst used in most of these studies was titanium dioxide. This fact relates to the unique physical and chemical properties of titanium dioxide and similar semiconductor materials, such as ZnO, MgO,WO3, Fe2Oa, CdS, etc. that may be utilized for a wide range of potential applications. Specifically, upon ultraviolet irradiation these materials exhibit photocatalytic activity that enables the oxidative destruction of a wide range of organic compounds and biological species on their surface. In addition, these materials may also exhibit photocatalytically induced superhydrophilicity that converts the hydrophobic character of the surface to hydrophilic when exposed to UV light. This causes the formation of uniform water films on the surface of these materials, which prevents the adhesion of inorganic or organic components and thus retains a clean surface on the photocatalyst. Photocatalytic materials may be deployed on surfaces of various substrates, such as glass, ceramics or metals to provide layers that exhibit photocatalytic activity when they are exposed to light. Excitation of a photocatalyst leads to the creation of electrons and holes in the semiconductor material. Furthermore, these electrons and holes interact with molecules adsorbed on the semiconductor and can induce charge transfer process that results in the degradation of the adsorbate. The commercial potentials of heterogeneous photocatalysis are huge, including medical applications, application in the field of architecture (particularly for the cultural heritage purposes, facade paints, etc., automotive and food industries (cleaner technologies, non-fogging glass and mirrors, product safety, textile and glass industry, as well as in environmental protection (water and air purification and disinfection. After the discovery that

  13. Synergetic effect of Ag_2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO_2

    International Nuclear Information System (INIS)

    Chu, Haipeng; Liu, Xinjuan; Liu, Junying; Li, Jinliang; Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan; Pan, Likun

    2016-01-01

    Graphical abstract: Ag_2O/N-TiO_2 composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag_2O/N-TiO_2 composites were synthesized via a facile precipitation method. • Ag_2O/N-TiO_2 composites exhibited enhanced photocatalytic activity. • Ag_2O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag_2O/N-TiO_2 composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag_2O/N-TiO_2 composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO_2, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag_2O and N-TiO_2 including the increased light absorption and the reduced electron-hole pair recombination in N-TiO_2 with the presence of Ag_2O.

  14. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Improved photocatalytic degradation of Orange G using hybrid nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Ledwaba, Mpho; Masilela, Nkosiphile; Nyokong, Tebello; Antunes, Edith, E-mail: ebeukes@uwc.ac.za [Rhodes University, Department of Chemistry (South Africa)

    2017-05-15

    Functionalised electrospun polyamide-6 (PA-6) nanofibres incorporating gadolinium oxide nanoparticles conjugated to zinc tetracarboxyphenoxy phthalocyanine (ZnTCPPc) as the sensitizer were prepared for the photocatalytic degradation of Orange G. Fibres incorporating the phthalocyanine alone or a mixture of the nanoparticles and phthalocyanine were also generated. The singlet oxygen-generating ability of the sensitizer was shown to be maintained within the fibre mat, with the singlet oxygen quantum yields increasing upon incorporation of the magnetic nanoparticles. Consequently, the rate of the photodegradation of Orange G was observed to increase with an increase in singlet oxygen quantum yield. A reduction in the half-lives for the functionalised nanofibres was recorded in the presence of the magnetic nanoparticles, indicating an improvement in the efficiency of the degradation process.

  16. Synthesis of Cu/TiO{sub 2}/organo-attapulgite fiber nanocomposite and its photocatalytic activity for degradation of acetone in air

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn; Wang, He; Guo, Sheng; Wang, Junting; Liu, Jin

    2016-01-30

    Graphical abstract: - Highlights: • A novel Cu/TiO{sub 2}/organo-attapulgite fiber nanocomposite was synthesized successfully. • Micro-mesopore nanocomposite structure was in favor of the degradation of acetone. • CTAB modification improved the adsorption capability of the catalyst. • The photocatalytic degradation mechanism of the acetone by the catalyst was studied. - Abstract: The Cu/TiO{sub 2}/organo-attapulgite fiber (CTOA) nanocomposite was synthesized by a facile method and was used for photocatalytic degradation of acetone in air under UV light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrum (UV–vis DRS), inductively coupled plasma (ICP) spectrometry and N{sub 2} adsorption–desorption measurement. The results showed that the structure of organo-attapulgite (OAT) had no obvious change as compared to unmodified attapulgite (AT) and the attapulgite fibers in the OAT were well-dispersed. Both micropores and mesopores exist in the CTOA catalyst. The CTOA catalysts prepared at the Cu/TiO{sub 2} molar ratio of 0.003 shows an excellent photocatalytic activity for the degradation of acetone in air. The synergistic effect of Cu species and cetyltrimethylammonium bromide modification can be responsible for the enhanced photocatalytic activity of the CTOA catalyst. The mechanism of the photocatalytic degradation of acetone by the CTOA catalyst was discussed.

  17. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqin [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Jinze; Ma, Changchang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Lu, Ziyang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-02-28

    Highlights: • We demonstrated the as-prepared photocatalyst of g-C{sub 3}N{sub 4}-TiO{sub 2} with the commercial TiO{sub 2} (P25) composited melamine under ball milling and calcined. • The enhanced photocatalytic performance could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. • The possible photocatalytic mechanism of g-C{sub 3}N{sub 4}/P25 under visible light irradiation is proposed. - Abstract: The graphitic carbon nitride (g-C{sub 3}N{sub 4}), as one photocatalyst which possess the suitable band gap, is better for modified TiO{sub 2} and enhanced photocatalytic degradation of organic pollutants. In this work, the g-C{sub 3}N{sub 4}/TiO{sub 2} were successfully prepared via directly calcined the mixture of melamine and P25. The as-prepared g-C{sub 3}N{sub 4}/TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution electron microscopy (HRTEM), Raman and Fourier transform-infrared spectroscopy (FT-IR). The photocatalytic performances of g-C{sub 3}N{sub 4}/TiO{sub 2} composites were investigated by degradation of ciprofloxacin. The results showed that the g-C{sub 3}N{sub 4} and P25 were successfully composited, and the bond of C–N was well formed, the calcined temperature for as-prepared photocatalysts and the ratio of melamine and P25 were important to the degradation rate of ciprofloxacin. When the mixture of melamine and P25 with 1:2, and calcined temperature at 600 °C, the degradation rate of ciprofloxacin could reach 95% in 60 min. The enhanced photocatalytic performances could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. Finally, the possible transferred processes of photoelectrons and photoholes were proposed.

  18. Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    International Nuclear Information System (INIS)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi; Mohamed, Abdul Rahman

    2010-01-01

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO 2 /ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO 2 as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO 2 :ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m 2 /g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  19. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  20. Efficient photocatalytic degradation of phenol in aqueous solution by SnO{sub 2}:Sb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M., E-mail: Abdullah.Al.Hamdi@lut.fi [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Chemistry Department, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Dutta, Joydeep [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Functional Materials Division, ICT, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 KistaStockholm (Sweden)

    2016-05-01

    Highlights: • Sb doped SnO{sub 2} nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO{sub 2}:Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO{sub 2}) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO{sub 2}. In this study antimony (Sb) doped tin dioxide (SnO{sub 2}) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO{sub 2}:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO{sub 2} nanoparticles with 10 mg L{sup −1} phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  1. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiaolong [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Zhou Ming Hua [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)]. E-mail: lclei@zju.edu.cn

    2007-03-22

    TiO{sub 2} photocatalyst (P-25) (50 mg L{sup -1}) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO{sub 2} were obviously increased. Pulsed high-voltage discharge process with TiO{sub 2} had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10{sup -6} to 1.50 x 10{sup -6} M s{sup -1}, the ozone formation rate from 1.99 x 10{sup -8} to 2.35 x 10{sup -8} M s{sup -1}, respectively. In addition, this process had no influence on the photocatalytic properties of TiO{sub 2}. The introduction of TiO{sub 2} photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  2. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO{sub 2} nanocrystals supported on graphene-like bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fangjun; Liu, Wei, E-mail: wlscau@163.com; Qiu, Jielong; Li, Jinzhen; Zhou, Wuyi; Fang, Yueping; Zhang, Shuting, E-mail: zhangshuting@gmail.com; Li, Xin, E-mail: Xinliscau@yahoo.com

    2015-12-15

    Graphical abstract: - Abstract: In this study, a novel efficient photocatalytic nanomaterial, TiO{sub 2} nanocrystals supported on graphene-like bamboo charcoal, has been successfully synthesized via a facile multi-step process. The structural and optical properties of the as-prepared samples were characterized by different techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis absorption spectroscopy, photoluminescence spectra (PL), Raman spectra and nitrogen adsorption–desorption isotherms. The photocatalytic activities under sunlight were evaluated by the degradation of methylene blue (MB). The results indicated that the ternary hybrid photocatalysts exhibited much higher photocatalytic activities toward the degradation of MB than the pure TiO{sub 2} under UV light irradiation. Moreover, the optimum weight content of graphene-like bamboo charcoal in composite photocatalysts was 6 wt% for achieving the maximum photocatalytic degradation rate. The apparent rate constant of the best sample (0.0509 min{sup −1}) was about 3 times greater than that of the commercial P25 (0.0170 min{sup −1}). The adsorption and degradation kinetics of MB can be described by the pseudo-first-order model and apparent first-order kinetics model, respectively. The highly enhanced photocatalytic performance was attributed to the synergetic effect of graphene-like carbon and bamboo charcoal, which lead to the promoted charge separation and reduction reaction of oxygen, and enhanced adsorption capacities of MB, respectively. The composite photocatalysts displayed a high photochemical stability under repeated irradiation. This work may provide new insights and understanding on the graphene-like bamboo charcoal as an excellent support for photocatalyst nanoparticles to enhance their visible-light photocatalytic activity.

  3. Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method

    International Nuclear Information System (INIS)

    Tian Hua; Ma Junfeng; Li Kang; Li Jinjun

    2008-01-01

    Nanosized W-doped TiO 2 photocatalysts were synthesized by a simple hydrothermal method, and characterized by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface area analyzer. The photocatalytic activity of undoped TiO 2 and W-doped TiO 2 photocatalysts was evaluated by the photocatalytic oxidation degradation of methyl orange in aqueous solution. The results show that the photocatalytic activity of the W-doped TiO 2 photocatalyst is much higher than that of undoped TiO 2 , and the optimum percentage of W doped is 2.0 mol%. The enhanced photocatalytic activity of the doped photocatalyst may be attributed to the increase in the charge separation efficiency and the presence of surface acidity

  4. The role played by different TiO2 features on the photocatalytic degradation of paracetamol

    Science.gov (United States)

    Rimoldi, Luca; Meroni, Daniela; Falletta, Ermelinda; Ferretti, Anna Maria; Gervasini, Antonella; Cappelletti, Giuseppe; Ardizzone, Silvia

    2017-12-01

    Photocatalytic reactions promoted by TiO2 can be affected by a large number of oxide features (e.g. surface area, morphology and phase composition). In this context, the role played by the surface characteristics (e.g. surface acidity, wettability, etc.) has been often disregarded. In this work, pristine and Ta-doped TiO2 nanomaterials with different phase composition (pure anatase and anatase/brookite mixture) were synthesized by sol-gel and characterized under the structural and morphological point of view. A careful characterization of the acid properties of the materials has been performed by liquid-solid acid-base titration by means of 2-phenylethylamine (PEA) adsorption to determine the acid site density and average acid strength. Photocatalytic tests were performed in the degradation of paracetamol (acetaminophen) under UV irradiation and results were discussed in the light of the detailed scenarios describing the different oxides. The surface acidity of the samples, was recognized as one of the key parameters controlling the photocatalytic activity. A possible molecule degradation route is proposed on the ground of GC-MS and ESI-MS analyses.

  5. Removal of MCs by Bi2O2CO3: adsorption and the potential of photocatalytic degradation.

    Science.gov (United States)

    Wang, Yujiao; Cao, Yanqiu; Li, Hongmei; Gong, Aijun; Han, Jintao; Qian, Zhen; Chao, Wenran

    2018-04-01

    Microcystins (MCs) is a kind of hepatotoxin, which is the secondary metabolite of cyanobacteria. Bi 2 O 2 CO 3 (BOC) is a kind of cheap and nontoxic semiconductor material. BOC was synthetized by solvothermal method and then microcystin-LR (MC-LR) and microcystin-RR (MC-RR) were removed by BOC, through adsorption and photocatalytic degradation. When the dosage of BOC is 6 g/L, the MC-LR and MC-RR in the natural water sample can be completely adsorbed in 30 min and then after 12 h irradiation, MC-LR and MC-RR were photocatalytically degraded by BOC.

  6. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination

    International Nuclear Information System (INIS)

    Saravanan, R.; Karthikeyan, S.; Gupta, V.K.; Sekaran, G.; Narayanan, V.; Stephen, A.

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV–visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Highlights: ► Visible light active photocatalyst ► Degradation of methylene blue and methyl orange ► Preparation of composite materials is a simple, fast and cost effective method. ► Nano composite materials ► Degradation of textile waste water

  7. Photocatalytic performance of graphene/TiO{sub 2}-Ag composites on amaranth dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Roşu, Marcela-Corina, E-mail: marcela.rosu@itim-cj.ro; Socaci, Crina; Floare-Avram, Veronica; Borodi, Gheorghe; Pogăcean, Florina; Coroş, Maria; Măgeruşan, Lidia; Pruneanu, Stela

    2016-08-15

    Ternary nanocomposites containing TiO{sub 2}, silver and graphene with different reduction levels were prepared and used as photocatalysts for amaranth azo dye degradation, under UV and natural light exposure. The obtained materials were characterized by TEM, XRD, FTIR and UV-Vis spectroscopy, confirming the successful formation of the nanocomposites. HPLC analysis along with UV-Vis spectroscopy were employed to quantify the concentration of non-degraded dye in solution. The graphene/TiO{sub 2}-Ag nanocomposites proved to have remarkable photocatalytic activities for amaranth degradation under UV and solar irradiation (85.3–98% of dye has disappeared in the first 2 h). Also, significant removal efficiencies (between 40.5 and 71.8%) of photocatalysts, in day light conditions, were demonstrated. The best result for amaranth dye degradation was obtained with the reduced graphene/TiO{sub 2}-Ag catalyst (up to 99.9%). Based on the degradation products analysis, a photodegradation pathway of amaranth dye was also proposed. - Highlights: • Graphene/TiO{sub 2}-Ag composites were prepared by a combined chemical-thermal method. • The composites showed improved light-absorption characteristics. • A significant degradation performance of amaranth was obtained with these composites under UV and natural light exposure. • Graphene/TiO{sub 2}-Ag composites offer a high potential for various photocatalytic applications in pollutant removal processes.

  8. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  9. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2010-01-01

    The study examined the effect of operating conditions (zinc oxide concentration, pH and irradiation time) of the UV/ZnO photocatalytic process on degradation of amoxicillin, ampicillin and cloxacillin in aqueous solution. pH has a great effect on amoxicillin, ampicillin and cloxacillin degradation. The optimum operating conditions for complete degradation of antibiotics in an aqueous solution containing 104, 105 and 103 mg/L amoxicillin, ampicillin and cloxacillin, respectively were: zinc oxide 0.5 g/L, irradiation time 180 min and pH 11. Under optimum operating conditions, complete degradation of amoxicillin, ampicillin and cloxacillin occurred and COD and DOC removal were 23.9 and 9.7%, respectively. The photocatalytic reactions under optimum conditions approximately followed a pseudo-first order kinetics with rate constant (k) 0.018, 0.015 and 0.029 min -1 for amoxicillin, ampicillin and cloxacillin, respectively. UV/ZnO photocatalysis can be used for amoxicillin, ampicillin and cloxacillin degradation in aqueous solution.

  10. Morphological influence of TiO{sub 2} nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sadaf Bashir; Hou, Mengjing; Shuang, Shuang; Zhang, Zhengjun, E-mail: zjzhang@tsinghua.edu.cn

    2017-04-01

    Highlights: • Glancing angle deposition technique is used to fabricate various columnar nanostructures in a single step to tune physiochemical properties. • Enhanced surface area induces porosity, with dispersion of active sites at different length scales of pores. • The increase interface between nanostructures and organic dye is promising factor to enhance photocatalytic degradation. • Morphologies having high surface to volume ratio increases the number of catalytic reaction sites to facilitate organic molecules adsorption favorable for reaction kinetics. - Abstract: Hierarchical nanostructures have drawn significant attention and incredible performance in photodriven chemical conversion area due to its unique physicochemical properties. Herein, we study the morphological influence of TiO{sub 2} nanostructures on photocatalytic degradation of different organic dyes methyl blue, methyl violet and methyl orange present in industrial wastewater. Nanorod, nanohelics and nanozigzag TiO{sub 2} nanofilms were fabricated by using galancing angle deposition technique (GLAD). TiO{sub 2} nanofilms were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and raman analysis. BET surface area analysis were carried out by using nitrogen adsorption desorption curves. The results show that TiO{sub 2} morphology had great influence on photocatalytic degradation of organic dyes due to difference in specific surface area and pore volume of nanostructures. The photocatalytic degradation experiments were carried out for three hours under UV–vis light irradiation. Catalysis recycling and organic dyes concentration influence were also studied. In case of high concentration of organic dyes, negligible degradation rate is observed. TiO{sub 2} nanozigzag films show better degradation performance than nanohelics and nanorod due to presence of large surface area for reaction, higher porosity with dispersion of active sites at different length

  11. Enhanced visible light photocatalytic activity of copper-doped titanium oxide–zinc oxide heterojunction for methyl orange degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dorraj, Masoumeh, E-mail: masidor20@gmail.com [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alizadeh, Mahdi [UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4 Wisma R& D, University of Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur (Malaysia); Sairi, Nor Asrina, E-mail: asrina@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, Wan Jefrey [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Goh, Boon Tong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng; Alias, Yatimah [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-08-31

    Highlights: • The novel Cu-TiO{sub 2}/ZnO heterojunction nanocomposite was synthesized for the first time via a two-step process. • The Cu-TiO{sub 2}/ZnO heterostructured nanocomposite exhibited an enhanced visible-light-driven photocatalytic activity for MO degradation. • The heterostructured nanocomposite could be recycled during the degradation of MO in a three-cycle experiment with good stability. - Abstract: A novel Cu-doped TiO{sub 2} coupled with ZnO nanoparticles (Cu-TiO{sub 2}/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO{sub 2}/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra and Brunauer–Emmett–Teller adsorption isotherm techniques. The Cu-TiO{sub 2}/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO{sub 2} and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO{sub 2}/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron−hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  12. Photocatalytic degradation of TCE in water using TiO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Muhammad [Pakistan National Accreditation Council, 4th Floor Evacuee Trust Complex, F-5/1 Islamabad (Pakistan); Raja, Iftikhar A.; Pervez, Arshad [Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad (Pakistan)

    2009-09-15

    Wastewater is generally released untreated into the rivers and streams in developing countries. Industrial wastewater usually contains highly toxic pollutants, cyanides, chlorinated compounds such as trichloroethylene (TCE). Ultraviolet (UV) radiation from sunlight also decomposes organic compounds by oxidation process. However, the process is less effective due to large amount of toxic effluent entering the main stream water. The solar radiation can effectively be applied to accelerate the process by using suitable catalyst for economically cleaning the major fresh water sources. This paper describes photocatalytic degradation of trichloroethylene in aqueous solution using TiO{sub 2}. Variable parameters such as initial concentration of TCE, type and concentration of TiO{sub 2} and reaction time are investigated. The powder TiO{sub 2} is found more effective than the sand TiO{sub 2} for decomposing TCE. The effect of sand TiO{sub 2} as photocatalyst is investigated at various water depths. It is observed that up to 45 mm water depth, sand TiO{sub 2} shows photo-degradation of TCE. The degradation rate increases as the concentration of TCE is increased up to 45 {mu}l of TCE per litre of water. Similarly the photocatalytic degradation increases with TiO{sub 2} concentration up to 0.7 g L{sup -1} of solution but then starts decreasing. The optimum values of TiO{sub 2} and TCE concentration obtained are 0.7 g and 35 {mu}l L{sup -1} of the solution, respectively. (author)

  13. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    Science.gov (United States)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  14. Photocatalytic degradation of perfluorooctanoic acid with beta-Ga2O3 in anoxic aqueous solution.

    Science.gov (United States)

    Zhao, Baoxiu; Lv, Mou; Zhou, Li

    2012-01-01

    Perfluorooctanoic acid (PFOA) is a new-found hazardous persistent organic pollutant, and it is resistant to decomposition by hydroxyl radical (HO*) due to its stable chemical structure and the high electronegativity of fluorine. Photocatalytic reduction of PFOA with beta-Ga2O3 in anoxic aqueous solution was investigated for the first time, and the results showed that the photoinduced electron (e(cb-)) coming from the beta-Ga2O3 conduction band was the major degradation substance for PFOA, and shorter-chain perfluorinated carboxylic acids (PFCAs, CnF2n+i1COOH, 1 < or = n < or = 6) were the dominant products. Furthermore, the concentration of F- was measured by the IC technique and defluorination efficiency was calculated. After 3 hr, the photocatalytic degradation efficiency was 98.8% and defluorination efficiency was 31.6% in the presence of thiosulfate and bubbling N2. The degradation reaction followed first-order kinetics (k = 0.0239 min(-1), t1/2 = 0.48 hr). PFCAs (CnF2n+1COOH, 1 < or = n < or = 7) were detected and measured by LC-MS and LC-MS/MS methods. It was deduced that the probable photocatalytic degradation mechanism involves e(cb-) attacking the carboxyl of CnF2n+1COOH, resulting in decarboxylation and the generation of CnF2n+1*. The produced CnF2n+1* reacted with H2O, forming CnF2n+1OH, then CnF2n+1OH underwent HF loss and hydrolysis to form CnF2n+1COOH.

  15. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  16. Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S.

    2009-01-01

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO 2 /mPMMA) microspheres. The TiO 2 /mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO 2 /mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO 2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO 2 /mPMMA microspheres are observed as 2.21 m 2 /g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO 2 /mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO 2 /mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO 2 /mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented

  17. Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products

    Science.gov (United States)

    Zhou, Kefu; Xie, Xiao-Dan; Chang, Chang-Tang

    2017-09-01

    Ti-doped MCM-41 with different Si/Ti molar ratios was prepared at room temperature to degrade tetracycline antibiotics in aqueous solution. The Ti was doped into the skeleton structure of MCM-41. The photocatalytic activity of Ti-doped MCM-41 was investigated. The optimal catalyst had Si/Ti molar ratio of 25 and over 99% removal of oxytetracycline in 150 min, and the removal could maintain 98% after 5 reuses. Ions and soluble organic matters in natural water affected the degradation reaction when Ti-doped MCM-41 was used to treat simulated wastewater of chicken farms. The degradation products of oxytetracycline, tetracycline and chlortetracycline were detected by Escherichia coli DH5α and HPLC-MS/MS. No intermediate product with higher toxicity was detected.

  18. Characteristics of supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Zainudin, Nor Fauziah; Abdullah, Ahmad Zuhairi [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2010-02-15

    Photocatalytic degradation of phenol was investigated using the supported nano-TiO{sub 2}/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO{sub 2} as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO{sub 2}:ZSM-5:silica gel:colloidal silica gel = 1:0.6:0.6:1) which giving about 90% degradation of 50 mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m{sup 2}/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.

  19. Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV-vis light irradiation

    International Nuclear Information System (INIS)

    Liu Guanglong; Zhu Duanwei; Zhou Wenbing; Liao Shuijiao; Cui Jingzhen; Wu Kang; Hamilton, David

    2010-01-01

    A novel photodegradable polyethylene-boron-goethite (PE-B-goethite) composite film was prepared by embedding the boron-doped goethite into the commercial polyethylene. The goethite catalyst was modified by boron in order to improve its photocatalytic efficiency under the ultraviolet and visible light irradiation. Solid-phase photocatalytic degradation of the PE-B-goethite composite film was carried out in an ambient air at room temperature under ultraviolet and visible light irradiation. The properties of composite films were compared with those of the pure PE films and the PE-goethite composite films through performing weight loss monitoring, scanning electron microscope (SEM) analysis, FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The photo-induced degradation of PE-B-goethite composite films was higher than that of the pure PE films and the PE-goethite composite films under the UV-irradiation, while there has been little change under the visible light irradiation. The weight loss of the PE-B-goethite (0.4 wt.%) composite film reached 12.6% under the UV-irradiation for 300 h. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  20. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    International Nuclear Information System (INIS)

    Yu, Hang; Ming, Hai; Zhang, Hengchao; Li, Haitao; Pan, Keming; Liu, Yang; Wang, Fang; Gong, Jingjing; Kang, Zhenhui

    2012-01-01

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: ► The composites that Au nanoparticles supported on ZnO nanowires were synthesized. ► Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. ► Two operating mechanisms were proposed depending on excitation wavelength.

  1. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    International Nuclear Information System (INIS)

    Xie, Hong; Ye, Xiaoliang; Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun; Wang, Chunming

    2015-01-01

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k app ) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes

  2. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  3. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    Science.gov (United States)

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lei; Zhang, Anfeng [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Li, Keyan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Ordered mesoporous graphitic carbon nitrides with S{sub BET} = 279.3 m{sup 2}/g were prepared. • Enhanced photocatalytic activity and reusability were presented. • Improved S{sub BET} and charge carrier separation efficiency contribute to the activity. - Abstract: Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N{sub 2} physical adsorption, XRD, FT-IR, XPS, UV–vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C{sub 3}N{sub 4}, ordered mesoporous g-C{sub 3}N{sub 4} exhibits a larger specific surface area of 279.3 m{sup 2}/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV–Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min{sup −1} which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved S{sub BET}, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C{sub 3}N{sub 4} is a practical candidate for further modification.

  5. Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation

    International Nuclear Information System (INIS)

    Zhao Xu; Li Zongwei; Chen Yi; Shi Liyi; Zhu Yongfa

    2008-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) plastic, one of the most common commercial plastic, over copper phthalocyanine (CuPc) modified TiO 2 (TiO 2 /CuPc) photocatalyst was investigated in the ambient air under solar light irradiation. Higher PE weight loss rate, greater texture change; more amount of generated CO 2 , which is the main product of the photocatalytic degradation of the composite PEC plastic can be achieved in the system of PE-(TiO 2 /CuPc) in comparison with PE-TiO 2 system. The CuPc promoted charge separation of TiO 2 and enhanced the photocatalytic degradation of PE based on the analysis of surface photovoltage spectroscopy (SPS). During the photodegradation of PE plastic, the reactive oxygen species generated on TiO 2 or TiO 2 /CuPc particle surfaces play important roles. The present study demonstrates that the combination of polymer plastic with TiO 2 /CuPc composite photocatalyst in the form of thin film is a practical and useful way to photodegrade plastic contaminants under solar light irradiation

  6. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    International Nuclear Information System (INIS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-01-01

    Graphical abstract: A novel approach was developed for fabrication of TiO 2 /MoS 2 @zeolite photocatalyst using bulk MoS 2 as a photosensitizer and zeolite as carrier. The as-prepared TiO 2 /MoS 2 @zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS 2 from micro-MoS 2 . • The embedded sensitizer composite mode of (TiO 2 /MoS 2 /TiO 2 ) was used in the fabrication of TiO 2 /MoS 2 @zeolite composite photocatalyst. • The photocatalytic mechanism of TiO 2 /MoS 2 @zeolite photocatalyst was presented. - Abstract: TiO 2 /MoS 2 @zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl 4 as Ti source, MoS 2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO 2 /MoS 2 @zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k app ) (2.304 h −1 ) is higher than that of Degussa P25 (0.768 h −1 ); (3) the heterostructure consisted of zeolite, MoS 2 and TiO 2 nanostructure could provide synergistic effect for degradation

  7. Preparation of re-usable photocatalytic filter for degradation of Malachite Green dye under UV and vis-irradiation

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Sn 4+ doped and undoped nano-TiO 2 particles easily dispersed in water were synthesized without using organic solvent by hydrothermal process. Nanostructure-TiO 2 based thin films were prepared on flyswatter substrate, made with stainless steel, by dip-coating technique. The structure, surface and optical properties of the particles and thin films were characterized by element analysis and XRD, BET, SEM and UV/vis/NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that the coated flyswatter has a very high photocatalytic performance for the photodegradation of Malachite Green irradiated with UV and vis-lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces are hydrophilic, and the doping of transition metal ion efficiently improved the degradation performance of TiO 2 -coated flyswatter. The photocatalytic performances determined at both irradiation conditions were very good and were almost similar to each other for Sn 4+ doped TiO 2 -coated flyswatter and it can be repeatedly used with increasing photocatalytic activity compared to undoped TiO 2 -coated flyswatter

  8. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation

    International Nuclear Information System (INIS)

    Tang, Lin; Wang, Jiajia; Zeng, Guangming; Liu, Yani; Deng, Yaocheng; Zhou, Yaoyu; Tang, Jing; Wang, Jingjing; Guo, Zhi

    2016-01-01

    Highlights: • TX100 strongly enhanced the adsorption and photodegradation of NOF in Bi 2 WO 6 dispersions under visible light irradiation (400–750 nm). • Cu 2+ (10 mM) significantly suppressed the photocatalytic degradation of NOF. • FT-IR demonstrated that the NOF adsorbed on Bi 2 WO 6 was completely degraded. • Three possible photocatalytic degradation pathways of NOF were proposed, according to the HPLC/MS/MS analysis. - Abstract: Photocatalytic degradation is an alternative method to remove pharmaceutical compounds in water, however it is hard to achieve efficient rate because of the poor solubility of pharmaceutical compounds in water. This study investigated the photodegradation of norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi 2 WO 6 dispersion under visible light irradiation (400–750 nm). It was found that the degradation of poorly soluble NOF can be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly on Bi 2 WO 6 surface and accelerated NOF photodegradation at the critical micelle concentration (CMC = 0.25 mM). Higher TX100 concentration (>0.25 mM) lowered the degradation rate. In the presence of TX100, the degradation rate reached the maximum value when the pH value was 8.06. FTIR analyses demonstrated that the adsorbed NOF on the catalyst was completely degraded after 2 h irradiation. According to the intermediates identified by HPLC/MS/MS, three possible degradation pathways were proposed to include addition of hydroxyl radical to quinolone ring, elimination of piperazynilic ring in fluoroquinolone molecules, and replacement of F atoms on the aromatic ring by hydroxyl radicals.

  9. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation

    Science.gov (United States)

    Hu, Longxing; Deng, Guihua; Lu, Wencong; Pang, Siwei; Hu, Xing

    2017-07-01

    A novel composite, CdS/MIL-53(Fe), was successfully fabricated via a facile solvothermal method and characterized with XRD, SEM, TEM, XPS, FT-IR and UV-vis DRS. The results showed that the fabrication was able to result in a good dispersion of CdS nanoparticles onto MIL-53(Fe). The photocatalytic activities of the as-synthesized composite were investigated through the degradation of Rhodamine B (RhB) in water under visible light irradiation. It was found that the composite prepared at the mass ratio of CdS to MIL-53(Fe) of 1.5:1 displayed the highest photocatalytic activity. An approximately 92.5% of photocatalytic degradation of RhB was achieved at 0.5 g/L of 1.5-CdS/MIL dosage, 10 mg/L of initial RhB concentration and 23 °C of reaction temperature under visible light irradiation. The RhB photocatalytic degradation followed well the first-order kinetics equation and the increased catalyst dosage and optimal initial RhB concentration were responsible for the enhanced photocatalytic degradation. Quenching tests revealed that the predominant free radicals in the CdS/MIL-(53)-RhBaq-visible light system was O2-rad ; nevertheless, h+ and rad OH also contributed to a certain degree. The enhanced photocatalytic performance was ascribed to the formation of heterojunction structure between CdS and MIL-53(Fe) which significantly suppressed the recombination of photogenerated electron-hole pairs. Moreover, the reusability of 1.5-CdS/MIL composite was also studied.

  10. Applied studies in solar photocatalytic detoxification: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Vidal, A.; Alarcon, D.; Maldonado, M.I.; Caceres, J.; Gernjak, W. [CIEMAT - Plataforma Solar de Almeria, Tabernas (Spain)

    2003-10-01

    The technical feasibility and performance of photocatalytic degradation of four water-soluble pesticides (diuron, imidacloprid, formetanate and methomyl) have been studied at pilot scale in two well-defined systems which are of special interest because natural-solar UV light can be used for them: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. The pilot plant is made up of compound parabolic collectors specially designed for solar photocatalytic applications. The initial concentration tested with imidacloprid, formetanate and methomyl was 50 and 30 mg/l with diuron, and the catalyst concentrations were 200 mg/l and 0.05 mM with TiO{sub 2} and iron, respectively. Total disappearance of the parent compounds, 90% mineralisation and toxicity reduction below the threshold (EC{sub 50}) have been attained with all pesticides tested. All these results have contributed to an evaluation of photocatalytic treatment capacity and comments on the main parameters of TiO{sub 2} and Fe separation from the treated water. (author)

  11. Adsorption and Photocatalytic Decomposition of the β-Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    Directory of Open Access Journals (Sweden)

    Violette Romero

    2013-01-01

    Full Text Available This study reports the photocatalytic degradation of the β-blocker metoprolol (MET using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different initial pH were studied to evaluate noncatalytic degradation for this pharmaceutical. MET adsorption onto titania was fitted to two-parameter Langmuir isotherm. From adsorption results it appears that the photocatalytic degradation can occur mainly on the surface of TiO2. MET removed by photocatalysis was 100% conditions within 300 min, while only 26% was achieved by photolysis at the same time. TiO2 photocatalysis degradation of MET in the first stage of the reaction followed approximately a pseudo-first-order model. The major reaction intermediates were identified by LC/MS analysis such as 3-(propan-2-ylaminopropane-1,2-diol or 3-aminoprop-1-en-2-ol. Based on the identified intermediates, a photocatalytic degradation pathway was proposed, including the cleavage of side chain and the hydroxylation addition to the parent compounds.

  12. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    International Nuclear Information System (INIS)

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag 3 PO 4 /ZnO system. The accumulated electrons in the CB of Ag 3 PO 4 can be transferred to O 2 adsorbed on the surface of the composite semiconductors and H 2 O 2 yields. H 2 O 2 reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites were successfully prepared. ► Effect of Ag 3 PO 4 content on the catalytic activity of Ag 3 PO 4 /ZnO is studied in detail. ► Rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of Ag 3 PO 4 . ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag 3 PO 4 /ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag 3 PO 4 /ZnO composites with various weight percents of Ag 3 PO 4 were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag 3 PO 4 /ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag 3 PO 4 and ZnO. The rate constant of RhB degradation over Ag 3 PO 4 (3.0 wt.%)/ZnO is 3 times that of single-phase Ag 3 PO 4 . The optimal percentage of Ag 3 PO 4 in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag 3 PO 4 /ZnO systems under visible light irradiation.

  13. Synergetic effect of Ag{sub 2}O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Jinliang [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China)

    2016-09-15

    Graphical abstract: Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a facile precipitation method. • Ag{sub 2}O/N-TiO{sub 2} composites exhibited enhanced photocatalytic activity. • Ag{sub 2}O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag{sub 2}O/N-TiO{sub 2} composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag{sub 2}O/N-TiO{sub 2} composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO{sub 2}, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag{sub 2}O and N-TiO{sub 2} including the increased light absorption and the reduced electron-hole pair recombination in N-TiO{sub 2} with the presence of Ag{sub 2}O.

  14. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract

    Science.gov (United States)

    Mankamna Kumari, R.; Thapa, Nikita; Gupta, Nidhi; Kumar, Ajeet; Nimesh, Surendra

    2016-12-01

    The present study focuses on the biosynthesis of silver nanoparticles (AgNPs) along with its antibacterial and photocatalytic activity. The AgNPs were synthesized using Cordia dichotoma leaf extract and were characterized using UV-vis spectroscopy to determine the formation of AgNPs. FTIR was done to discern biomolecules responsible for reduction and capping of the synthesized nanoparticles. Further, DLS technique was performed to examine its hydrodynamic diameter, followed by SEM, TEM and XRD to determine its size, morphology and crystalline structure. Later, these AgNPs were studied for their potential role in antibacterial activity and photocatalytic degradation of azo dyes such as methylene blue and Congo red.

  15. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    International Nuclear Information System (INIS)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu_2O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu_2O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu_2O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu_2O nanoparticles), or two component systems (RGO/Cu_2O composite hydrogel and PANI/Cu_2O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu_2O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  16. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Bo, E-mail: willycb@163.com; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Highlights: • The phosphorus doped g-C{sub 3}N{sub 4} photocatalysts are synthesized by a co-pyrolysis procedure. • The crystal phase, morphology, and optical property of P doped g-C{sub 3}N{sub 4} are characterized. • The P doped g-C{sub 3}N{sub 4} photocatalysts show the improved photocatalytic activity. • The possible mechanism for enhanced photocatalytic activity is proposed. - Abstract: Phosphorus doped graphitic carbon nitride (g-C{sub 3}N{sub 4}) was easily synthesized using ammonium hexafluorophosphate (NH{sub 4}PF{sub 6}) as phosphorus source, and ammonium thiocyanate (NH{sub 4}SCN) as g-C{sub 3}N{sub 4} precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C{sub 3}N{sub 4} was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV–vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C{sub 3}N{sub 4} samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C{sub 3}N{sub 4} had a superior photocatalytic activity than that of pristine g-C{sub 3}N{sub 4}, attributing to the phosphorus atoms substituting carbon atoms of g-C{sub 3}N{sub 4} frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C{sub 3}N{sub 4}. Moreover, the tests of radical scavengers demonstrated that the holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) were the main active species for the

  17. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials--determination of intermediates and reaction pathways.

    Science.gov (United States)

    Doll, Tusnelda E; Frimmel, Fritz H

    2004-02-01

    The light-induced degradation of clofibric acid, carbamazepine, iomeprol and iopromide under simulated solar irradiation has been investigated in aqueous solutions suspended with different TiO2 materials (P25 and Hombikat UV100). Kinetic studies showed that P25 had a better photocatalytic activity for clofibric acid and carbamazepine than Hombikat UV100. For photocatalytic degradation of iomeprol Hombikat UV100 was more suitable than P25. The results can be explained by the higher adsorption capacity of Hombikat UV100 for iomeprol. The study also focuses on the identification and quantification of possible degradation products. The degradation process was monitored by determination of sum parameters and inorganic ions. In case of clofibric acid various aromatic and aliphatic degradation products have been identified and quantified. A possible multi-step degradation scheme for clofibric acid is proposed. This study proves the high potential of the photocatalytic oxidation process to transform and mineralize environmentally relevant pharmaceuticals and contrast media in water.

  18. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  19. Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B

    Science.gov (United States)

    Wang, Min; Han, Jin; Guo, Pengyao; Sun, Mingzhi; Zhang, Yu; Tong, Zhu; You, Meiyan; Lv, Chunmei

    2018-02-01

    B-doped Bi2MoO6 photocatalysts have been synthesized by a hydrothermal method using HBO3 as the doping source and the effect of B doping content on Bi2MoO6 structure and performance was studied. The samples were characterized with XPS, XRD, SEM, BET, UV-Vis DRS, and PL. The photocatalytic activity was evaluated by photocatalytic degradation of Rhodamine B (RhB) under visible light (λ ≥ 420 nm). The results show that all samples are orthorhombic structure. Doping Bi2MoO6 with B increases the amount of Bi5+ and oxygen vacancies, which led to stronger absorption in visible light region and lower band gap energy of the B-doped Bi2MoO6 but had little impact on morphology. B doping significantly improves the photocatalytic activity of Bi2MoO6 and the highest photocatalytic degradation rate is 89% when the initial molar ratio of B to Bi is 0.01.

  20. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation.

    Science.gov (United States)

    Mendiola-Alvarez, Sandra Yadira; Hernández-Ramírez, Ma Aracely; Guzmán-Mar, Jorge Luis; Garza-Tovar, Lorena Leticia; Hinojosa-Reyes, Laura

    2018-05-24

    Mesoporous phosphorous-doped TiO 2 (TP) with different wt% of P (0.5, 1.0, and 1.5) was synthetized by microwave-assisted sol-gel method. The obtained materials were characterized by XRD with cell parameters refinement approach, Raman, BET-specific surface area analysis, SEM, ICP-OES, UV-Vis with diffuse reflectance, photoluminescence, FTIR, and XPS. The photocatalytic activity under visible light was evaluated on the degradation of sulfamethazine (SMTZ) at pH 8. The characterization of the phosphorous materials (TP) showed that incorporation of P in the lattice of TiO 2 stabilizes the anatase crystalline phase, even increasing the annealing temperature. The mesoporous P-doped materials showed higher surface area and lower average crystallite size, band gap, and particle size; besides, more intense bands attributed to O-H bond were observed by FTIR analysis compared with bare TiO 2 . The P was substitutionally incorporated in the TiO 2 lattice network as P 5+ replacing Ti 4+ to form Ti-O-P bonds and additionally present as PO 4 3-  on the TiO 2 surface. All these characteristics explain the observed superior photocatalytic activity on degradation (100%) and mineralization (32%) of SMTZ under visible radiation by TP catalysts, especially for P-doped TiO 2 1.0 wt% calcined at 450 °C (TP1.0-450). Ammonium, nitrate, and sulfate ions released during the photocatalytic degradation were quantified by ion chromatography; the nitrogen and sulfur mass balance evidenced the partial mineralization of this recalcitrant molecule.

  1. Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air

    Science.gov (United States)

    Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming

    2018-03-01

    When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.

  2. Styrene–tin (IV) phosphate nanocomposite for photocatalytic degradation of organic dye in presence of visible light

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Bhim Singh [School of Chemistry, Shoolini University, Solan 173 212, Himachal Pradesh (India); Department of Chemistry, Government P.G. College, Solan 173 212, Himachal Pradesh (India); Pathania, Deepak, E-mail: dpathania74@gmail.com [School of Chemistry, Shoolini University, Solan 173 212, Himachal Pradesh (India)

    2014-09-01

    Highlights: • Styrene–tin (IV) phosphate nanocomposite (ST/TPNC) ion exchanger was chemically prepared by simple sol–gel method at pH 0–1. • ST/TPNC exhibited higher ion exchange capacity as compared to its inorganic component. • ST/TPNC retained about 35.5% of the initial value of ion exchange capacity after heating up to 400 °C. • ST/TPNC was used as efficient photocatalyst for the degradation of MB dye from aqueous system in the presence of solar light. • The pH titrations studies confirmed the monofunctional strong cationic nature of ST/TPNC. - Abstract: Styrene–tin (IV) phosphate nanocomposite (ST/TPNC) ion exchanger was used as efficient photocatalyst for the degradation of methylene blue dye from aqueous system in the presence of solar light. ST/TPNC exhibited a high efficiency in heterogeneous photocatalytic process for the removal of MB from the water system. The degradation efficiency after 2 h illumination was 80%. The degradation of MB follows the pseudo-first-order kinetics with rate constant 0.00702 min{sup −1}. The nanocomposite ion exchanger was explored for its ion exchange capacity, pH titration, elution behavior, elution concentration and distribution coefficient (K{sub d}). ST/TPNC exhibited a higher ion exchange capacity (1.83 meg/g) compared to its inorganic counterpart (0.55 meg/g). ST/TPNC was characterized using some techniques such as Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and thermogravimetric analysis (TGA)

  3. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO{sub 3} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhen-dong [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Jia-jun [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Wang, Liang, E-mail: wangl@shu.edu.cn [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Yang, Xiong-yu; Xu, Gang [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Tang, Liang, E-mail: tang1liang@shu.edu.cn [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China)

    2016-07-15

    Highlights: • A novel heterojunction photocatalyst, GQD/AgVO{sub 3} was prepared. • The morphology of GQD/AgVO{sub 3} was well characterized. • Ibuprofen was easily decomposed using GQD/AgVO{sub 3} under visible-light irradiation. • The degradation pathway of ibuprofen was also suggested. - Abstract: Single crystalline, non-toxicity, and long-term stability graphene quantum dots (GQDs) were modified onto the AgVO{sub 3} nanoribbons by a facile hydrothermal and sintering technique which constructs a unique heterojunction photocatalyst. Characterization results indicate that GQDs are well dispersed on the surface of AgVO{sub 3} nanoribbons and GQD/AgVO{sub 3} heterojunctions are formed, which can greatly promote the separation efficiency of photogenerated electron-hole pairs under visible light irradiation. By taking advantage of this feature, the GQD/AgVO{sub 3} heterojunctions exhibit considerable improvement on the photocatalytic activities for the degradation of ibuprofen (IBP) under visible light irradiation as compared to pure AgVO{sub 3}. The photocatalytic activity of GQD/AgVO{sub 3} heterojunctions is relevant with GQD ratio and the optimal activity is obtained at 3 wt% with the highest separation efficiency of photogenerated electron-hole pairs. Integrating the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of GQD/AgVO{sub 3} heterojunctions are discussed in detail. Moreover, potential photocatalytic degradation mechanisms of IBP via GQD/AgVO{sub 3} heterojunctions under visible light are proposed.

  4. Photocatalytic degradation of p-phenylenediamine with TiO{sub 2}-coated magnetic PMMA microspheres in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-H. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Road, Taipei 106, Taiwan (China)], E-mail: yhchen1@ntu.edu.tw; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China)

    2009-04-30

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO{sub 2}/mPMMA) microspheres. The TiO{sub 2}/mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO{sub 2}/mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO{sub 2} nanoparticles. The BET-specific surface area and saturation magnetization of the TiO{sub 2}/mPMMA microspheres are observed as 2.21 m{sup 2}/g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO{sub 2}/mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO{sub 2}/mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO{sub 2}/mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented.

  5. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changjun; Gong Chuqing; Peng Tianyou [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film was prepared by embedding VC modified nano-TiO{sub 2} photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO{sub 2} nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO{sub 2} film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO{sub 2} nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO{sub 2} film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO{sub 2} is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti{sup IV}-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  6. Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ashar, Ambreen [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Iqbal, Munawar, E-mail: bosalvee@yahoo.com [Department of Chemistry, Qurtuba University of Science and Information Technology, Peshawar 25100, KPK (Pakistan); Bhatti, Ijaz Ahmad; Ahmad, Muhammad Zubair; Qureshi, Khizar [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Nisar, Jan [National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Bukhari, Iftikhar Hussain [Department of Chemistry, Government College University, Faisalabad (Pakistan)

    2016-09-05

    ZnO particles (flower and pseudo sphere) were synthesized via precipitation route and characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), Fourier transform infra-red (FTIR) spectroscopy, Atomic force microscopy (AFM), Particle size analyzer and UV–visible techniques. The photocatalytic activities (PCA) of ZnO flower (uncalcined) and pseudo-sphere (calcined) were evaluated by degrading nonylphenol ethoxylate-9 (NP9EO) under UV and solar irradiation. The process variables i.e., catalyst dose, calcination temperature, H{sub 2}O{sub 2} concentration, pH and UV/solar light exposure were investigated and under optimum conditions of process variables, paper, textile and leather industries effluents were also treated. Calcination at high temperature affected the morphology of ZnO particles. Both ZnO flower and pseudo-sphere degraded NP9EO and pollutants in industrial wastewater efficiently under both UV and solar irradiation. Maximum NP9EO degradation was achieved at 2.5 g/L catalyst dose, high calcination temperature, 4% H{sub 2}O{sub 2} concentration, 6 pH, 110 UV exposure and 12 h solar light exposure. Results reveal that ZnO is efficient photo-catalyst and could be used under solar irradiation for photocatalytic application by tuning the band gap. - Highlights: • ZnO flower and pseudo-spheres were synthesized via precipitation route. • The photocatalytic activities by degrading surfactant. • ZnO particles showed considerable photocatalytic activity under UV and solar irradiation. • By tuning the band gap of ZnO absorption capacity can be enhanced.

  7. Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2013-11-01

    Full Text Available In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Förster resonance energy transfer.

  8. Photocatalytic degradation properties of α-Fe2O3 nanoparticles for dibutyl phthalate in aqueous solution system

    Science.gov (United States)

    Liu, Yue; Sun, Nan; Hu, Jianshe; Li, Song; Qin, Gaowu

    2018-04-01

    The phthalate ester compounds in industrial wastewater, as kinds of environmental toxic organic pollutants, may interfere with the body's endocrine system, resulting in great harm to humans. In this work, the photocatalytic degradation properties of dibutyl phthalate (DBP) were investigated using α-Fe2O3 nanoparticles and H2O2 in aqueous solution system. The optimal parameters and mechanism of degradation were discussed by changing the morphology and usage amount of catalysts, the dosage of H2O2, pH value and the initial concentration of DBP. Hollow α-Fe2O3 nanoparticles showed the highest degradation efficiency when 30 mg of catalyst and 50 µl of H2O2 were used in the DBP solution with the initial concentration of 13 mg l-1 at pH = 6.5. When the reaction time was 90 min, DBP was degraded 93% for the above optimal parameters. The photocatalytic degradation mechanism of DBP was studied by the gas chromatography-mass spectrometry technique. The result showed that the main degradation intermediates of DBP were ortho-phthalate monobutyl ester, methyl benzoic acid, benzoic acid, benzaldehyde, and heptyl aldehyde when the reaction time was 2 h. DBP and its intermediates were almost completely degraded to CO2 and H2O in 12 h in the α-Fe2O3/ H2O2/UV system.

  9. Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A = Ba, Ca and Sr) complex oxides

    International Nuclear Information System (INIS)

    Vijayaraghavan, T.; Suriyaraj, S.P.; Selvakumar, R.; Venkateswaran, R.; Ashok, Anuradha

    2016-01-01

    Highlights: • Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe 2 O 4 exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe 2 O 4 was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe 2 O 4 exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe 2 O 4 showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe 2 O 4 showed the highest dye adsorption (44% after 75 min).

  10. Facile Synthesis of Uniform Zinc-blende ZnS Nanospheres with Excellent Photocatalytic Activity toward Methylene Blue Degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Si-Yan; YANG Liu-Sai; LV Ying-Ying; YU Le-Shu; HUANG Hai-Jin; WU Li-Dan

    2017-01-01

    Uniform and well-dispersed ZnS nanospheres have been successfully synthesized via a facile chemical route.The crystal structure,morphology,surface area and photocatalytic properties of the sample were characterized by powder X-ray diffraction (XRD),scanning electron microscopy (SEM),Brunauer-Emmett-Teller (BET) and ultraviolet-visible (UV-vis) spectrum.The results of characterizations indicate that the products are identified as mesoporous zinc-blende ZnS nanospheres with an average diameter of 200 nm,which are comprised of nanoparticles with the crystallite size of about 3.2 nm calculated by XRD.Very importantly,photocatalytic degradation of methylene blue (MB)shows that the as-prepared ZnS nanospheres exhibit excellent photocatalytic activity with nearly 100% of MB decomposed after UV-light irradiation for 25 min.The excellent photocatalytic activity of ZnS nanospheres can be ascribed to the large specific surface area and hierarchical mesoporous structure.

  11. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  12. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    Science.gov (United States)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  13. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  14. Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films

    Directory of Open Access Journals (Sweden)

    Iis Sopyan

    2007-01-01

    Full Text Available The characteristics of the UV illumination-assisted degradation of gaseous acetaldehyde, hydrogen sulfide, and ammonia on highly active nanostructured-anatase and rutile films were investigated. It was found that the anatase film showed a higher photocatalytic activity than the counterpart did, however, the magnitude of difference in the photocatalytic activity of both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide. To elucidate the reasons for the observation, the adsorption characteristics and the kinetics of photocatalytic degradation of the three reactants on both films were analyzed. The adsorption analysis examined using a simple Langmuir isotherm, showed that adsorbability on both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide, which can be explained in terms of the decreasing electron-donor capacity. Acetaldehyde and ammonia adsorbed more strongly and with higher coverage on anatase film (1.2 and 5.6 molecules/nm2, respectively than on rutile (0.6 and 4.7 molecules/nm2, respectively. Conversely, hydrogen sulfide molecules adsorbed more strongly on rutile film (0.7 molecules/nm2 than on anatase (0.4 molecules/nm2. Exposure to UV light illumination brought about the photocatalytic oxidation of the three gases in contact with both TiO2 films, and the decrease in concentration were measured, and their kinetics are analyzed in terms of the Langmuir–Hinshelwood kinetic model. From the kinetic analysis, it was found that the anatase film showed the photocatalytic activities that were factors of ~8 and ~5 higher than the rutile film for the degradation of gaseous ammonia and acetaldehyde, respectively. However, the activity was only a factor of ~1.5 higher for the photodegradation of hydrogen sulfide. These observations are systematically explained by the charge separation efficiency and the adsorption characteristics of each catalyst as well as by the physical and electrochemical properties of each

  15. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    International Nuclear Information System (INIS)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C.; Tuerk, Jochen

    2016-01-01

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO_2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  16. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Salma, Alaa [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Thoröe-Boveleth, Sven [University Hospital Aachen, Institute for Hygiene and Environmental Medicine, Pauwelsstraße 30, 52074 Aachen (Germany); Schmidt, Torsten C. [University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, 45141 Essen (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany); Tuerk, Jochen, E-mail: tuerk@iuta.de [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany)

    2016-08-05

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO{sub 2}/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  17. Fabrication of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiping; Xiao, Xinyan, E-mail: cexyxiao@scut.edu.cn; Zheng, Lili; Wan, Caixia

    2015-12-15

    Graphical abstract: A novel approach was developed for fabrication of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst using bulk MoS{sub 2} as a photosensitizer and zeolite as carrier. The as-prepared TiO{sub 2}/MoS{sub 2}@zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS{sub 2} from micro-MoS{sub 2}. • The embedded sensitizer composite mode of (TiO{sub 2}/MoS{sub 2}/TiO{sub 2}) was used in the fabrication of TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalyst. • The photocatalytic mechanism of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst was presented. - Abstract: TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl{sub 4} as Ti source, MoS{sub 2} as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k{sub app}) (2.304 h{sup −1}) is higher than that of Degussa P25 (0.768 h{sup −1}); (3) the heterostructure

  18. Photocatalytic Degradation of Chlorobenzene by TiO2 in High-Temperature and High-Pressure Water

    Directory of Open Access Journals (Sweden)

    N. Kometani

    2008-01-01

    Full Text Available A fluidized-bed-type flow reactor available for the photocatalytic treatment of the suspension of model soil under high-temperature, high-pressure conditions was designed. An aqueous suspension containing hydrogen peroxide (H2O2 as an oxidizer and inorganic oxides as a model soil, titania (TiO2, silica (SiO2, or kaoline (Al2Si2O5(OH4 was continuously fed into the reactor with the temperature and the pressure controlled to be T=20–400∘C and P = 30 MPa, respectively. The degradation of chlorobenzene (CB in water was chosen as a model oxidation reaction. It appeared that most of the model soils are not so harmful to the SCWO treatment of CB in solutions. When the TiO2 suspension containing H2O2 was irradiated with near-UV light, the promotion of the degradation caused by photocatalytic actions of TiO2 was observed at all temperatures. Persistence of the photocatalytic activity in the oxidation reaction in high-temperature, high-pressure water would open up a possibility of the development of the hybrid process based on the combination of SCWO process and TiO2 photocatalysis for the treatment of environmental pollutants in soil and water, which are difficult to handle by conventional SCWO process or catalytic SCWO process alone.

  19. Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide

    International Nuclear Information System (INIS)

    Ramos-Delgado, N.A.; Gracia-Pinilla, M.A.; Maya-Treviño, L.; Hinojosa-Reyes, L.; Guzman-Mar, J.L.; Hernández-Ramírez, A.

    2013-01-01

    Highlights: • TiO 2 and WO 3 /TiO 2 (2 and 5%) were tested in the photocatalytic malathion degradation. • The use of solar radiation in the photocatalytic degradation process was evaluated. • Modified catalyst showed greater photocatalytic activity than pure TiO 2 . • The mineralization rate was improved when WO 3 content on TiO 2 was 2%. -- Abstract: In this study, the solar photocatalytic activity (SPA) of WO 3 /TiO 2 photocatalysts synthesized by the sol–gel method with two different percentages of WO 3 (2 and 5%wt) was evaluated using malathion as a model contaminant. For comparative purpose bare TiO 2 was also prepared by sol–gel process. The powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance UV–vis spectroscopy (DRUV–vis), specific surface area by the BET method (SSA BET ), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy with a high annular angle dark field detector (STEM-HAADF). The XRD, Raman, HRTEM and STEM-HAADF analyses indicated that WO 3 was present as a monoclinic crystalline phase with nanometric cluster sizes (1.1 ± 0.1 nm for 2% WO 3 /TiO 2 and 1.35 ± 0.3 nm for 5% WO 3 /TiO 2 ) and uniformly dispersed on the surface of TiO 2 . The particle size of the materials was 19.4 ± 3.3 nm and 25.6 ± 3 nm for 2% and 5% WO 3 /TiO 2 , respectively. The SPA was evaluated on the degradation of commercial malathion pesticide using natural solar light. The 2% WO 3 /TiO 2 photocatalyst exhibited the best photocatalytic activity achieving 76% of total organic carbon (TOC) abatement after 300 min compared to the 5% WO 3 /TiO 2 and bare TiO 2 photocatalysts, which achieved 28 and 47% mineralization, respectively. Finally, experiments were performed to assess 2% WO 3 /TiO 2 catalyst activity on repeated uses; after several successive cycles its photocatalytic activity was retained showing long-term stability

  20. Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

    Directory of Open Access Journals (Sweden)

    Ranfang Zuo

    2014-01-01

    Full Text Available Nano-TiO2 showed a good catalytic activity, but it is easy to agglomerate, resulting in the reduction or even complete loss of photocatalytic activity. The dispersion of TiO2 particles on porous materials was a potential solution to this problem. Diatomite has high specific surface and absorbability because of its particular shell structure. Thus, TiO2/diatomite composite, prepared by loading TiO2 on the surface of diatomite, was a good photocatalyst, through absorbing organic compounds with diatomite and degrading them with TiO2. Scanning electron microscopy (SEM, energy dispersive spectrum (EDS, X-ray diffraction (XRD, chemical analysis, and Fourier transform infrared spectrometry (FTIR indicated that TiO2 was impregnated well on the surface of diatomite. Furthermore, TiO2/diatomite was more active than nano-TiO2 for the degradation of methylene blue (MB in solution. MB at concentrations of 15 and 35 ppm can be completely degraded in 20 and 40 min, respectively.

  1. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, M.I.; Gohary, F.El. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt); Ghaly, M.Y., E-mail: ghalynrc@yahoo.com [Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), Dokki, Cairo (Egypt); Ali, M.E.M. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt)

    2009-09-30

    Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO{sub 2}, ZrO{sub 2} and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO{sub 2} were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD{sub 5}/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

  2. Ag loaded WO_3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    International Nuclear Information System (INIS)

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-01-01

    Highlights: • WO_3/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO_3/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO_3/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO_3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO_3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO_3 nanoplates using a photo-reduction method to generate WO_3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO_3 and WO_3/Ag composites was conducted under visible light irradiation. The results show that WO_3/Ag composites performed much better than pure WO_3 where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO_3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO_3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO_3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  3. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    Science.gov (United States)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  4. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi{sub 2}WO{sub 6} dispersions containing nonionic surfactant under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Jiajia [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Liu, Yani; Deng, Yaocheng; Zhou, Yaoyu; Tang, Jing; Wang, Jingjing; Guo, Zhi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-04-05

    Highlights: • TX100 strongly enhanced the adsorption and photodegradation of NOF in Bi{sub 2}WO{sub 6} dispersions under visible light irradiation (400–750 nm). • Cu{sup 2+} (10 mM) significantly suppressed the photocatalytic degradation of NOF. • FT-IR demonstrated that the NOF adsorbed on Bi{sub 2}WO{sub 6} was completely degraded. • Three possible photocatalytic degradation pathways of NOF were proposed, according to the HPLC/MS/MS analysis. - Abstract: Photocatalytic degradation is an alternative method to remove pharmaceutical compounds in water, however it is hard to achieve efficient rate because of the poor solubility of pharmaceutical compounds in water. This study investigated the photodegradation of norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi{sub 2}WO{sub 6} dispersion under visible light irradiation (400–750 nm). It was found that the degradation of poorly soluble NOF can be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly on Bi{sub 2}WO{sub 6} surface and accelerated NOF photodegradation at the critical micelle concentration (CMC = 0.25 mM). Higher TX100 concentration (>0.25 mM) lowered the degradation rate. In the presence of TX100, the degradation rate reached the maximum value when the pH value was 8.06. FTIR analyses demonstrated that the adsorbed NOF on the catalyst was completely degraded after 2 h irradiation. According to the intermediates identified by HPLC/MS/MS, three possible degradation pathways were proposed to include addition of hydroxyl radical to quinolone ring, elimination of piperazynilic ring in fluoroquinolone molecules, and replacement of F atoms on the aromatic ring by hydroxyl radicals.

  5. Popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} microsphere for photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Liu, Yutang [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xia, Xinnian, E-mail: xnxia@hnu.edu.cn [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wang, Longlu [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2017-06-15

    Highlights: • Popcorn balls-like microsphere photocatalyst. • High photocatalytic activity toward 2,4-DNP degradation. • Degradation kinetics, mechanism, active species were analyzed. • Excellent stable recycling performance. - Abstract: In this paper, novel popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe{sub 2}O{sub 4}-ZrO{sub 2} photocatalyst (mass ratio of ZnFe{sub 2}O{sub 4}/ZrO{sub 2} = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe{sub 2}O{sub 4} and ZrO{sub 2}. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  6. MoS{sub 2}–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Zhou, Yifeng, E-mail: yifengzhou@126.com; Nie, Wangyan; Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn

    2015-12-01

    Graphical abstract: - Highlights: • The molybdenum disulfide–graphene oxide (MoS{sub 2}–GO) nanocomposite was synthesized via a one-step hydrothermal hydrogel method. • MoS{sub 2} and GO were composited fairly well in the obtained nanocomposites. • The electrons–hole pair recombination rate of MoS{sub 2} was greatly reduced via compositing with graphene. • The MoS{sub 2}–GO nanocomposite exhibited excellent photocatalytic performance for the degradation of methylene blue under solar light irradiation. - Abstract: In this work, molybdenum disulfide–graphene oxide (MoS{sub 2}–GO) composite hydrogel was prepared via a one-step hydrothermal method. The morphology and structure of the as-prepared hydrogels with different proportions of MoS{sub 2} and GO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, electrochemical impedance spectra and UV–vis absorption spectroscopy. The photocatalytic performance of MoS{sub 2}–GO nanocomposites was studied toward the degradation of methylene blue (MB). Results showed that the MoS{sub 2}–GO nanocomposites exhibited improved photocatalytic activities in the degradation of MB with a maximum degradation rate of 99% under solar lights irradiation within 60 min. The synthesized MoS{sub 2}–GO composite hydrogel possesses great potential toward the development of newly synthesizable catalysts in the field of organic degradation in water.

  7. Photocatalytic degradation of Acephate, Omethoate, and Methyl parathion by Fe_3O_4@SiO_2@mTiO_2 nanomicrospheres

    International Nuclear Information System (INIS)

    Zheng, Lingling; Pi, Fuwei; Wang, Yifan; Xu, Hui; Zhang, Yinzhi; Sun, Xiulan

    2016-01-01

    Highlights: • An efficient photocatalyst Fe_3O_4@SiO_2@mTiO_2 with high magnetic response and large specific surface area was synthesized. • Photocatalytic efficiency of Fe_3O_4@SiO_2@mTiO_2 on Acephate, Omethoate, and Methyl Parathion was higher than TiO_2 P-25. • Possible photocatalytic degradation mechanisms for the Acephate, Omethoate, and Methyl Parathion were proposed. - Abstract: A novel magnetic mesoporous nanomicrospheres Fe_3O_4@SiO_2@mTiO_2 were synthetized and characterized by a series of techniques including FE-TEM, EDS, FE-SEM, PXRD, XPS, BET, TGA as well as VSM, and subsequently tested as a photocatalyst for the degradation of Acephate, Omethoate, and Methyl parathion under UV irradiation. The well-designed nanomicrospheres exhibit a pure and highly crystalline anatase TiO_2 layer, large specific surface area, and high-magnetic-response. Photocatalytic degradation of the three organophosphorus pesticides (OPPs) and the formation intermediates were identified using HPLC, TOC-V_c_p_n, IC, pH meter and GC–MS. Acephate, Omethoate, and Methyl parathion disappeared after 45 min, 45 min, and 80 min UV illumination, respectively. At the end of the treatment, the total organic carbon (TOC) of the OPPs was reduced 80–85%. The main mineralization products were SO_4"2"−, NO_3"− and PO_4"3"− and Omethoate additionally formed NO_2"−. Based on the results, we proposed the photocatalytic degradation pathways for Acephate, Omethoate, and Methyl parathion.

  8. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Alaa [Department of Materials and NanoPhysics, Royal Institute of Technology (KTH), 16440 Kista, Stockholm (Sweden); Mechanical Design and Production Engineering Department, Cairo University, 12613 Giza (Egypt); Production Engineering and Printing Technology Department, Akhbar El Yom Academy, 12655 Giza (Egypt); El-Sayed, Ramy [Experimental Cancer Medicine, KFC, Novum, Department of laboratory Medicine, Karolinska Institute, 14186 Stockholm (Sweden); Osman, T.A. [Mechanical Design and Production Engineering Department, Cairo University, 12613 Giza (Egypt); Toprak, M.S.; Muhammed, M. [Department of Materials and NanoPhysics, Royal Institute of Technology (KTH), 16440 Kista, Stockholm (Sweden); Uheida, A., E-mail: salam@kth.se [Department of Materials and NanoPhysics, Royal Institute of Technology (KTH), 16440 Kista, Stockholm (Sweden)

    2016-02-15

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO{sub 2} nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles. - Highlights: • Develop effective photocatalyst based on PAN–CNT/TiO{sub 2}–NH{sub 2} composite nanofibers. • High photodegradation efficiency and fast kinetics was obtained. • Regeneration of the composite nanofibers allowed the reuse of these material. • Mechanism of the photocatalytic degradation was proposed. • The flexibility of the composite nanofibers allows use in a continuous operation mode.

  9. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water

    International Nuclear Information System (INIS)

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A.

    2016-01-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO 2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles. - Highlights: • Develop effective photocatalyst based on PAN–CNT/TiO 2 –NH 2 composite nanofibers. • High photodegradation efficiency and fast kinetics was obtained. • Regeneration of the composite nanofibers allowed the reuse of these material. • Mechanism of the photocatalytic degradation was proposed. • The flexibility of the composite nanofibers allows use in a continuous operation mode.

  10. Photocatalytic degradation of 4-amino-6-chlorobenzene-1,3-disulfonamide stable hydrolysis product of hydrochlorothiazide: Detection of intermediates and their toxicity.

    Science.gov (United States)

    Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F

    2018-02-01

    In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Photocatalytic degradation of an organophosphorus pesticide from agricultural waste by immobilized TiO2 under solar radiation

    Directory of Open Access Journals (Sweden)

    Marcia Regina Assalin

    2016-11-01

    Full Text Available This paper describes solar heterogeneous photocatalysis using immobilized TiO2 applied in the treatment of agricultural waste resulting from the application of commercial formulations of methyl parathion. The disappearance of the insecticide, as well as the formation of its metabolite, was monitored by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS, while mineralization efficiency was monitored by measurements of total organic carbon (TOC. Toxicity studies were performed using the microcrustacean Artemia salina. The TOC removal efficiency by photocatalytic process was 48.5%. After 45 minutes of treatment, the removal efficiency of methyl parathion was 90%, being completely mineralized at the end of treatment. The formation and removal of the metabolite methyl paraoxon was observed during the photocatalytic process. The photocatalytic treatment resulted in increased microcrustacean mobility, indicating a reduction of acute toxicity.

  12. Hydrogenated TiO{sub 2} nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jian [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Leng, Yanhua [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Cui, Hongzhi, E-mail: cuihongzhi1965@163.com [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Liu, Hong, E-mail: hongliu@sdu.edu.cn [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-12-15

    Highlights: • A facile synthesis of hydrogenated TiO{sub 2} nanobelts is reported. • Utilizing UV and visible light in photocatalytic degradation and H{sub 2} production. • The improved photocatalytic property is owe to Ti{sup 3+} ions and oxygen vacancies. - Abstract: TiO{sub 2} nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO{sub 2} (H-TiO{sub 2}) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti{sup 3+} ions and oxygen vacancies in TiO{sub 2} nanobelts created by hydrogenation. Ti{sup 3+} ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron–hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source.

  13. A three-dimensional graphene-TiO{sub 2} nanotube nanocomposite with exceptional photocatalytic activity for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fenghuan [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China); Dong, Bohua, E-mail: dongbohua@ouc.edu.cn [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China); Gao, Rongjie; Su, Ge; Liu, Wei [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China); Shi, Liang [College of Chemistry and Chemical Engineering, Ocean University of China, 266000 Qingdao (China); Xia, Chenghui [Debye Institute, Utrecht University, Princetonplein 1, 3584 CC Utrecht (Netherlands); Cao, Lixin, E-mail: caolixin@ouc.edu.cn [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China)

    2015-10-01

    Highlights: • A new kind of three-dimensional graphene/TiO{sub 2} nanotube composites were fabricated by facile hydrothermal method. • The graphene with optimized amount has a great influence on the photocatalytic activity of TiO{sub 2}. • The special and well-structured composites nanomaterials have outstanding photocatalytic activity. - Abstract: Three dimensional nanocomposites made up of TiO{sub 2} nanotubes (TNTs) and conducting reduced graphene oxide nanosheets (RGO) were fabricated successfully via hydrothermal method. These graphene/TNTs nanocomposites (GTNCs) with unique nanostructure not only provided sufficient active sites but supplied electron-transport path, Which gave big rise to their photocatalytic activity. In addition, the graphene amount and calcination temperature were intensively optimized. A series of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. The photocatalytic activity of as-prepared GTNCs was investigated through the degradation of methyl orange (MO) under UV-light irradiation. The results show that these GTNCs are well-structured with outstanding photocatalytic activity which is much better than that of traditional TiO{sub 2} nanotubes.

  14. Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol–gel TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Ćurković, Lidija, E-mail: lcurkov@fsb.hr [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb (Croatia); Ljubas, Davor [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb (Croatia); Šegota, Suzana [Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia); Bačić, Ivana [Forensic Science Centre Ivan Vučetić, Ministry of the Interior, Ilica 335, Zagreb (Croatia)

    2014-08-01

    Highlights: • Nanostructured photocatalytic TiO{sub 2} films were prepared by sol–gel methods. • The addition of PEG to the TiO{sub 2} film changes the surface morphology and roughness parameters. • The addition of PEG to the initial sols increases photocatalytic properties of TiO{sub 2}. • LGB water solution could be decolourised within 2 h. • The influence of photolysis and adsorption on the LGB removal from the solution is negligible. - Abstract: Nanostructured sol–gel TiO{sub 2} films were prepared on a glass substrate by means of the dip-coating technique with titanium tetraisopropoxide as a precursor. TiO{sub 2} sols were synthesized with and without the addition of polyethylene glycol (PEG) as a structure-directing agent. The synthesized sol–gel TiO{sub 2} were characterized by XRD, AFM, FTIR and Micro-Raman spectroscopy. The photocatalytic activity of the films was evaluated by the photocatalytic degradation of Lissamine Green B (LGB) dye (dissolved in water) as a model pollutant with the predominant irradiation wavelength of 365 nm (UV-A). It was found that the addition of PEG to the initial sol affects the surface morphology and the photocatalytic properties of prepared sol–gel TiO{sub 2} films. AFM analysis confirmed the presence of nanostructured sol–gel titania films on the glass substrate. Roughness parameters (R{sub a}, R{sub q}, and Z{sub max}) of the sol–gel TiO{sub 2} film with the addition of PEG are higher than the parameters of the sol–gel TiO{sub 2} film without the addition of PEG. The TiO{sub 2} film prepared with the addition of PEG has a higher surface density (a larger active surface area) and better photocatalytic activity in the degradation of the LGB dye solution than the TiO{sub 2} film prepared without the addition of PEG.

  15. Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia

    Science.gov (United States)

    Meng, Ze-Da; Zhao, Wei; Kim, Sukyoung

    2017-11-01

    Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2- nor NO3- were detected.[Figure not available: see fulltext.

  16. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  17. Continuous-Flow Photocatalytic Degradation of Organics Using Modified TiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-01-01

    Full Text Available In this study, TiO2 nanotubes (TNTs were fabricated on a Ti sheet following the anodic oxidation method and were decorated with reduced graphene oxide (RGO, graphene oxide (GO, and bismuth (Bi via electrodeposition. The surface morphologies, crystal structures, and compositions of the catalyst were characterized by field emission scanning electron microscopy, Auger electron spectroscopy, X-ray diffraction, photoluminance spectra, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The TNTs loaded with RGO, GO, and Bi were used in a continuous-flow system as photocatalysts for the degradation of methylene blue (MB dye. It was found that the TNTs are efficient photocatalysts for the removal of color from water; upon UV irradiation on TNTs, the MB removal ratio was ~89%. Moreover, the photocatalytic activities of the decorated TNTs were higher than that of pristine TNTs in visible light. In comparison with TNTs, the rate of MB removal in visible light was increased by a factor of 3.4, 3.2, and 2.9 using RGO-TNTs, Bi-TNTs, and GO-TNTs, respectively. The reusability of the catalysts were investigated, and their quantum efficiencies were also calculated. The cylindrical anodized TNTs were excellent photocatalysts for the degradation of organic pollutants. Thus, it was concluded that the continuous-flow photocatalytic reactor comprising TNTs and modified TNTs is suitable for treating wastewater in textile industries.

  18. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    Science.gov (United States)

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation

    International Nuclear Information System (INIS)

    Yuan, Wenhui; Liu, Xiaoxia; Li, Li

    2014-01-01

    Graphical abstract: Hydrothermal synthesis method was applied for preparation of cubic-like CuCr 2 O 4 spinel nanoparticles without template. The synthesized cubic-like CuCr 2 O 4 shows excellent photocatalytic activity for degradation of RhB and MB cationic dyes but not for MO anionic dye in the presence of H 2 O 2 under visible light irradiation. - Highlights: • The cubic-like CuCr 2 O 4 spinel nanoparticles were successfully synthesized via the hydrothermal synthesis method. • The calcination temperature has a great influence on the morphology, particle size and photocatalytic activity of CuCr 2 O 4 . • The pH at the point of zero charge (pH pzc ) of the CuCr 2 O 4 calcined at 600 °C is about 4.52. • The cubic-like CuCr 2 O 4 calcined at 600 °C exhibits excellent photocatalytic activity for RhB and MB in the presence of H 2 O 2 under visible-light irradiation. - Abstract: CuCr 2 O 4 nanoparticles with cubic-like morphology were prepared via hydrothermal synthesis method without template. The CuCr 2 O 4 samples were characterized by thermogravimetry and differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS) and Zeta potentials, respectively. The results indicated that cubic-like CuCr 2 O 4 could be successfully synthesized by calcining the precursor at 600 °C, and the calcination temperature greatly influenced the morphology and optical performance of CuCr 2 O 4 . The pH at the point of zero charge (pH pzc ) of the CuCr 2 O 4 calcined at 600 °C was about 4.52. The photocatalytic activity of CuCr 2 O 4 was evaluated for degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) in the presence of H 2 O 2 under visible light irradiation and the effects of the calcination temperature, dosage of photocatalyst, etc., on photocatalytic activity were studied in detail. The photocatalytic results

  20. A novel iron-containing polyoxometalate heterogeneous photocatalyst for efficient 4-chlorophennol degradation by H{sub 2}O{sub 2} at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Qian; Zhang, Lizhong [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); Zhao, Xiufeng, E-mail: zhaoxiufeng19670@126.com [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); Chen, Han; Yin, Dongju [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); Li, Jianhui [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2016-07-30

    Graphical abstract: An iron-containing polyoxometalate (Fe{sup III}LysSiW) catalyst showes good performance in the degradation of 4-chlorophenol by H{sub 2}O{sub 2}, especially in irradiated system. The catalytic activity of Fe{sup III}LysSiW stems from synergetic effect of ferric iron for Fenton-like catalysis and SiW{sub 12}O{sub 40}{sup 4−} for photocatalysis, respectively. The chemisorption of H{sub 2}O{sub 2} on Fe{sup III}LysSiW surface by hydrogen bonding also promotes both the Fenton-like and photocatalytic processes. - Highlights: • An iron-containing POM was synthesized as heterogeneous Fenton-like catalyst. • The catalyst has both the Fenton-like and photocatalytic activity at neutral pH. • The activity stems from the co-existence of iron and heteropolyanion in the catalyst. • The hydrogen bonding of H{sub 2}O{sub 2} on the catalyst surface enhances the reaction rate. - Abstract: An iron-containing polyoxometalate (Fe{sup III}LysSiW) was synthesized from ferric chloride (Fe{sup III}), lysine (Lys) and silicotungstic acid (SiW), and characterized using ICP-AES, TG, FT-IR, UV–vis DRS, XRD and SEM. The chemical formula of Fe{sup III}LysSiW was determined as [Fe(H{sub 2}O){sub 5}(C{sub 6}H{sub 14}N{sub 2}O{sub 2})]HSiW{sub 12}O{sub 40}·8H{sub 2}O, with Keggin-structured SiW{sub 12}O{sub 40}{sup 4−} heteropolyanion and lysine moiety. As a heterogeneous catalyst, the as prepared Fe{sup III}LysSiW showed good performance in the degradation of 4-chlorophenol by H{sub 2}O{sub 2} in both the dark and irradiated systems. Under the conditions of 4-chlorophenol 100 mg/L, Fe{sup III}LysSiW 1.0 g/L, H{sub 2}O{sub 2} 20 mmol/L and pH 6.5, 4-chlorophenol could be completely degraded in ca. 40 min in the dark and ca. 15 min upon irradiation. Prolonging the reaction time to 3 h, the TOC removal reached to ca. 71.3% in the dark and ca. 98.8% under irradiation. The catalytic activity of Fe{sup III}LysSiW stems from synergetic effect of ferric iron and Si

  1. SILAR BiOI-Sensitized TiO2 Films for Visible-Light Photocatalytic Degradation of Rhodamine B and 4-Chlorophenol.

    Science.gov (United States)

    Odling, Gylen; Robertson, Neil

    2017-04-05

    BiOI nanoplates were deposited upon a film of TiO 2 nanoparticles derived from a commercial source using a simple room temperature sequential ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, X-ray photoelectron spectroscopy and electron microscopies have been used to confirm the crystal phase, chemical states of key elements and morphology of the BiOI nanoplate-TiO 2 composites. Using both valence band X-ray photoelectron spectroscopy and UV/Vis diffuse reflectance measurements the band structure of the composites is determined to be that of a type II heterojunction. Through initial screening of the photocatalytic activity of the SILAR-modified films it was determined that five SILAR cycles are optimal in the photocatalytic degradation of rhodamine B. The visible-light sensitisation effect of BiOI was then proven by examination of the photocatalytic degradation of the colourless organic pollutant 4-chlorophenol, showing a large enhancement over an equivalent TiO 2 film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH.

    Science.gov (United States)

    Mazille, F; Schoettl, T; Klamerth, N; Malato, S; Pulgarin, C

    2010-05-01

    Photocatalytic degradation of phenol, nalidixic acid, mixture of pesticides, and another of emerging contaminants in water was mediated by TiO(2) and iron oxide immobilized on functionalized polyvinyl fluoride films (PVF(f)-TiO(2)-Fe oxide) in a compound parabolic collector (CPC) solar photoreactor. During degradation, little iron leaching (compounds and less efficient for six other compounds. The significant reactivity differences between tested compounds were assigned to the differences in structure namely that the presence of complexing or chelating groups enhanced the rates. PVF(f)-TiO(2)-Fe oxide photoactivity gradually increased during 20 days of experiments. X-ray photoelectron spectroscopy (XPS) measurements revealed significant changes on the catalyst surface. These analyses confirm that during photocatalysis mediated by PVF(f)-TiO(2)-Fe oxide, some iron leaching led to enlargement of the TiO(2) surface exposed to light, increasing its synergy with iron oxides and leading to enhanced pollutant degradation.

  3. Hydrothermal synthesis of CdS nanoparticle/functionalized graphene sheet nanocomposites for visible-light photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Yan, Shancheng; Wang, Bojun; Shi, Yi; Yang, Fan; Hu, Dong; Xu, Xin; Wu, Jiansheng

    2013-01-01

    CdS nanoparticle/functionalized graphene sheet (CdS NP/FGS) nanocomposites were successfully prepared in a one-step hydrothermal synthesis route. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. In addition, the photocatalytic performance of CdS NP/FGS composites and pure CdS in the degradation of methyl orange (MO) was examined using visible light. Results show that the addition of FGS can enhance the photocatalytic performance of CdS NP/FGS composites with a maximum degradation efficiency of 98.1% under visible light irradiation as compared with pure CdS (60.1%). This finding can be attributed to three reasons. First is the strong redox ability of CdS in the nanocomposite with smaller crystal size. Second is the increase in specific surface area for more adsorbed MO. Third is the reduction in electron–hole pair recombination with the introduction of FGS. Based on their high photocatalytic activity, the CdS NP/FGS composites can be expected to be a practical visible light photocatalyst.

  4. Hydrothermal synthesis of CdS nanoparticle/functionalized graphene sheet nanocomposites for visible-light photocatalytic degradation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shancheng, E-mail: yansc@njupt.edu.cn [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Bojun [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shi, Yi [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan; Hu, Dong; Xu, Xin; Wu, Jiansheng [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2013-11-15

    CdS nanoparticle/functionalized graphene sheet (CdS NP/FGS) nanocomposites were successfully prepared in a one-step hydrothermal synthesis route. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. In addition, the photocatalytic performance of CdS NP/FGS composites and pure CdS in the degradation of methyl orange (MO) was examined using visible light. Results show that the addition of FGS can enhance the photocatalytic performance of CdS NP/FGS composites with a maximum degradation efficiency of 98.1% under visible light irradiation as compared with pure CdS (60.1%). This finding can be attributed to three reasons. First is the strong redox ability of CdS in the nanocomposite with smaller crystal size. Second is the increase in specific surface area for more adsorbed MO. Third is the reduction in electron–hole pair recombination with the introduction of FGS. Based on their high photocatalytic activity, the CdS NP/FGS composites can be expected to be a practical visible light photocatalyst.

  5. Experimental study of photocatalytic concrete products for air purification

    Energy Technology Data Exchange (ETDEWEB)

    Huesken, G.; Hunger, M.; Brouwers, H.J.H. [Department of Civil Engineering, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2009-12-15

    Air quality in inner-city areas is a topic which receives much attention nowadays but in the coming years, the overall interest on this topic will become even bigger. One major concern is caused by the reduction of the limiting values given by the European Council Directive 1999/30/EC [Relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal of the European Communities 1999, L 163/41-60] and increasing traffic rates especially for diesel powered passenger cars and freight vehicles. A promising approach for solving the problem of nitrogen oxides (NO{sub x}) is the photochemical conversion of nitrogen oxides to low concentrated nitrates due to heterogeneous photocatalytic oxidation (PCO) using titanium dioxide (TiO{sub 2}) as photocatalyst. A variety of products containing TiO{sub 2} are already available on the European market and their working mechanism under laboratory conditions is proven. However, there is still a lack of transforming the experimental results obtained under laboratory conditions to practical applications considering real world conditions. This paper presents the research conducted on photocatalytic concrete products with respect to the evaluation of air-purifying properties. The degradation process of nitric oxide (NO) under laboratory conditions is studied using a test setup for measuring the performance of photocatalytic active concrete products. The test setup uses the UV-A induced degradation of NO and is oriented on the ISO standard ISO 22197-1:2007. Besides the introduction of the test setup, a uniform measuring procedure is presented to the reader which allows for an evaluation and direct comparison of the performance of photocatalytic active concrete products. This kind of direct comparison was not possible so far. Furthermore, the results of a comparative study on varying photocatalytic concrete products of the European market will be discussed

  6. An AgI@g-C3N4 hybrid core@shell structure: Stable and enhanced photocatalytic degradation

    Science.gov (United States)

    Liu, Li; Qi, Yuehong; Yang, Jinyi; Cui, Wenquan; Li, Xingang; Zhang, Zisheng

    2015-12-01

    A novel visible-light-active material AgI@g-C3N4 was prepared by ultrasonication/chemisorption method. The core@shell structure AgI@g-C3N4 catalyst showed high efficiency for the degradation of MB under visible light irradiation (λ > 420 nm). Nearly 96.5% of MB was degraded after 120 min of irradiation in the presence of the AgI@g-C3N4 photocatalyst. Superior stability was also observed in the cyclic runs indicating that the as prepared hybrid composite is highly desirable for the remediation of organic contaminated wastewaters. The improved photocatalytic performance is due to synergistic effects at the interface of AgI and g-C3N4 which can effectively accelerate the charge separation and reinforce the photostability of hybrid composite. The possible mechanism for the photocatalytic activity of AgI@g-C3N4 was tentatively proposed.

  7. Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO{sub 2} under ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Marcela Andrea Espina de, E-mail: marcela.eq@gmail.com; Silva, William Leonardo da; Bagnara, Mônica; Lansarin, Marla Azário; Zimnoch dos Santos, João Henrique

    2014-10-01

    Nicotine, a highly toxic alkaloid, has been detected in effluents, surface and groundwater and even bottled mineral water. The present work studied the photocatalytic degradation of nicotine in aqueous solution, under ultraviolet irradiation. The experiments were carried out using commercial (ZnO, TiO{sub 2}) and non-conventional catalysts, which were prepared from industrial and laboratory waste. Two experimental designs (CCD) were performed for both commercial catalysts, and initial nicotine concentration, catalyst concentration and initial solution pH effects were studied. Then, the synthesized catalysts were tested under the optimal conditions which were found through CCDs. Using commercial catalysts, about 98% of the alkaloid was degraded by ZnO, and 88% by TiO{sub 2}, in 1 h. Among the non-conventional catalysts, the highest photocatalytic degradation (44%) was achieved using the catalyst prepared from a petrochemical industry residue. - Highlights: • The photocatalytic degradation of nicotine was studied under UV irradiation. • Commercial catalysts ZnO and TiO{sub 2} were tested using two central composite designs. • Initial nicotine concentration, catalyst concentration and pH were evaluated. • Catalysts were prepared using chemical wastes and tested at the best conditions.

  8. Preparation of flower-like TiO{sub 2} sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Woong [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Park, Mira [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong [Department of BIN Convergence technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of)

    2016-07-15

    In this study, novel flower-like TiO{sub 2} sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contents over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO{sub 2} sphere composite photocatalysts. - Graphical abstract: Schematic illustration of high photocatalytic activity for FTS-G composites. Display Omitted.

  9. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    Science.gov (United States)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2017-07-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  10. Ammonia-modified graphene sheets decorated with magnetic Fe{sub 3}O{sub 4} nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, Purna K. [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Academy of Scientific and Innovative Research (AcSIR) (India); Sharma, Bhagyasmeeta [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Karbhal, Indrapal; Shelke, Manjusha V. [Academy of Scientific and Innovative Research (AcSIR) (India); Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-11008, Maharashtra (India); Das, Manash R., E-mail: mnshrdas@yahoo.com [Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006 (India); Academy of Scientific and Innovative Research (AcSIR) (India)

    2017-03-05

    Highlights: • Ammonia-modified graphene sheets decorated with magnetic Fe{sub 3}O{sub 4} nanoparticles. • Photocatalytic and photo-Fenton degradation of phenolic compounds. • An excellent reusability of the nanocomposite was observed up to ten cycles. - Abstract: Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe{sub 3}O{sub 4} nanoparticles (AG/Fe{sub 3}O{sub 4}) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe{sub 3}O{sub 4} nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe{sub 3}O{sub 4} nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70–120 min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50–80 min using AG/Fe{sub 3}O{sub 4} nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe{sub 3}O{sub 4} nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe{sub 3}O{sub 4} NPs. Furthermore, the remarkable reusability of the AG/Fe{sub 3}O{sub 4} nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds.

  11. Facile synthesis of bird's nest-like TiO2 microstructure with exposed (001) facets for photocatalytic degradation of methylene blue

    Science.gov (United States)

    Zhang, Guozhong; Zhang, Shuqu; Wang, Longlu; Liu, Ran; Zeng, Yunxiong; Xia, Xinnian; Liu, Yutang; Luo, Shenglian

    2017-01-01

    The scrupulous design of hierarchical structure and highly active crystal facets exposure is essential for the creation of photocatalytic system. However, it is still a big challenge for scrupulous design of TiO2 architectures. In this paper, bird's nest-like anatase TiO2 microstructure with exposed highly active (001) surface has been successfully synthesized by a facile one-step solvothermal method. Methylene blue (MB) is chosen as a model pollutant to evaluate photocatalytic activity of as-obtained TiO2 samples. The results show that the photocatalytic activity of the bird's nest-like sample is more excellent than P25 in the degradation of MB due to high specific surface area and highly active (001) crystal facets exposure when tested under simulated solar light. Besides, it can be readily separated from the photocatalytic system by sedimentation after photocatalytic reaction, which is a significant advantage against conventional powder photocatalyst. The bird's nest-like microspheres with novel structure may have potential application in photocatalysis and other fields.

  12. Graphene/TiO_2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity

    International Nuclear Information System (INIS)

    Hu, Xin-Yan; Zhou, Kefu; Chen, Bor-Yann; Chang, Chang-Tang

    2016-01-01

    Graphical abstract: The mechanism of OTC degradation can be described as follows. At first, the OTC molecule was adsorbed onto the surface of GTZ material. The conduction band electron (e"−) and valence band holes (h"+) are generated when aqueous GTZ suspension is irradiated with visible light. The generation of (e"−/h+) pair leading to the formation of reactive oxygen species. The ·OH radical and ·O_2"− can oxidize OTC molecular, resulting in the degradation and mineralization of the organics. - Highlights: • Determine optimal composites of graphene, TiO_2, and zeolite for maximal photodegradation efficiency via triangular mixture design. • Unravel most promising composites for high stability and absorptive capabilities for photocatalytic degradation. • Disclose time-series profiles of toxicity of advanced oxidation processes (AOPs) treatment of wastewater. • Propose plausible routes of mechanism of photocatalytical degradation of OTC. - Abstract: This first-attempt study revealed mixture design of experiments to obtain the most promising composites of TiO_2 loaded on zeolite and graphene for maximal photocatalytic degradation of oxytetracycline (OTC). The optimal weight ratio of graphene, titanium dioxide (TiO_2), and zeolite was 1:8:1 determined via experimental design of simplex lattice mixture. The composite material was characterized by XRD, UV–vis, TEM and EDS analysis. The findings showed the composite material had a higher stability and a stronger absorption of the visible light. In addition, it was uniformly dispersed with promising adsorption characteristics. OTC was used as model toxicant to evaluate the photodegradation efficiency of the GTZ (1:8:1). At optimal operating conditions (i.e., pH 7 and 25 °C), complete degradation (ca. 100%) was achieved in 180 min. The biotoxicity of the degraded intermediates of OTC on cell growth of Escherichia coli DH5α were also assayed. After 180 min photocatalytic treatment, OTC solution treated

  13. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO{sub 2}: A case of {beta}-blockers

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hai [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); An Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Li Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Song Weihua; Cooper, William J. [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175 (United States); Luo Haiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Kehua Street, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Guangzhou Product Quality Supervision and Testing Institute, National Centre for Quality Supervision and Testing of Processed Food (Guangzhou), Guangzhou 510110 (China); Guo Xindong [Guangzhou Product Quality Supervision and Testing Institute, National Centre for Quality Supervision and Testing of Processed Food (Guangzhou), Guangzhou 510110 (China)

    2010-07-15

    This study investigated the photocatalytic degradation of three {beta}-blockers in TiO{sub 2} suspensions. The disappearance of the compounds followed pseudo-first-order kinetics according to the Langmuir-Hinshelwood model and the rate constants were 0.075, 0.072 and 0.182 min{sup -1} for atenolol, metoprolol and propranolol, respectively. After 240 min irradiation, the reaction intermediates were completely mineralized to CO{sub 2} and the nitrogen was predominantly as NH{sub 4}{sup +}. The influence of initial pH and {beta}-blocker concentration on the kinetics was also studied. From adsorption studies it appears that the photocatalytic degradation occurred mainly on the surface of TiO{sub 2}. Further studies indicated that surface reaction with {center_dot}OH radical was principally responsible for the degradation of these three {beta}-blockers. The major degradation intermediates were identified by HPLC/MS analysis. Cleavage of the side chain and the addition of the hydroxyl group to the parent compounds were found to be the two main degradation pathways for all three {beta}-blockers.

  14. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    International Nuclear Information System (INIS)

    Choi, Young In; Jung, Hye Jin; Shin, Weon Gyu; Sohn, Youngku

    2015-01-01

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H 2 O 2 addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H 2 O 2 addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  15. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    OpenAIRE

    Chepape, Kgobudi Frans; Mofokeng, Thapelo Prince; Nyamukamba, Pardon; Mubiayi, Kalenga Pierre; Moloto, Makwena Justice

    2017-01-01

    Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP) in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM) analysis of the samples showed that 50% PVP-capped Cd...

  16. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air: Update Number 1 to June, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D.M.

    1995-11-01

    This report is an update of a bibliography, published in May, 1994, of research performed on the photocatalytic oxidation of organic or inorganic compounds in air or water and on the photocatalytic reduction of metal-containing ions in water. The general focus of the research is on removing hazardous contaminants from air water to meet environmental or health regulations. The processes covered are based on the application of heterogeneous photocatalysts. The current state-of-the-art in catalysts are forms of titanium dioxide or modifications of titanium dioxide, but work on other heterogeneous catalysts is also included in this compilation. This update contains 574 references, most published between January, 1993 and June, 1995, but some references are from earlier work that were not included in the previous report. A new section has been added which gives information about companies that are active in providing products based on photocatalytic processes or that can provide pilot, demonstration, or commercial-scale water- or air-treatment systems. Key words, assigned by the author of this report, have been included with the citations in the listing of the bibliography.

  17. Solar photocatalytic activity of TiO{sub 2} modified with WO{sub 3} on the degradation of an organophosphorus pesticide

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Delgado, N.A. [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, N.L. (Mexico); Gracia-Pinilla, M.A. [Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, N.L. (Mexico); Universidad Autónoma de Nuevo León, Centro de Investigación e Innovación en Desarrollo de Ingeniería y Tecnología, PIIT Km 6, Carretera al Aeropuerto, Apodaca, N.L. (Mexico); Maya-Treviño, L.; Hinojosa-Reyes, L.; Guzman-Mar, J.L. [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, N.L. (Mexico); Hernández-Ramírez, A., E-mail: aracely.hernandezrm@uanl.edu.mx [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, N.L. (Mexico)

    2013-12-15

    Highlights: • TiO{sub 2} and WO{sub 3}/TiO{sub 2} (2 and 5%) were tested in the photocatalytic malathion degradation. • The use of solar radiation in the photocatalytic degradation process was evaluated. • Modified catalyst showed greater photocatalytic activity than pure TiO{sub 2}. • The mineralization rate was improved when WO{sub 3} content on TiO{sub 2} was 2%. -- Abstract: In this study, the solar photocatalytic activity (SPA) of WO{sub 3}/TiO{sub 2} photocatalysts synthesized by the sol–gel method with two different percentages of WO{sub 3} (2 and 5%wt) was evaluated using malathion as a model contaminant. For comparative purpose bare TiO{sub 2} was also prepared by sol–gel process. The powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance UV–vis spectroscopy (DRUV–vis), specific surface area by the BET method (SSA{sub BET}), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy with a high annular angle dark field detector (STEM-HAADF). The XRD, Raman, HRTEM and STEM-HAADF analyses indicated that WO{sub 3} was present as a monoclinic crystalline phase with nanometric cluster sizes (1.1 ± 0.1 nm for 2% WO{sub 3}/TiO{sub 2} and 1.35 ± 0.3 nm for 5% WO{sub 3}/TiO{sub 2}) and uniformly dispersed on the surface of TiO{sub 2}. The particle size of the materials was 19.4 ± 3.3 nm and 25.6 ± 3 nm for 2% and 5% WO{sub 3}/TiO{sub 2}, respectively. The SPA was evaluated on the degradation of commercial malathion pesticide using natural solar light. The 2% WO{sub 3}/TiO{sub 2} photocatalyst exhibited the best photocatalytic activity achieving 76% of total organic carbon (TOC) abatement after 300 min compared to the 5% WO{sub 3}/TiO{sub 2} and bare TiO{sub 2} photocatalysts, which achieved 28 and 47% mineralization, respectively. Finally, experiments were performed to assess 2% WO{sub 3}/TiO{sub 2} catalyst activity on

  18. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  19. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO_2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    International Nuclear Information System (INIS)

    Zhang, Xuhong; Wang, Longlu; Liu, Chengbin; Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong; Liu, Yutang; Luo, Shenglian

    2016-01-01

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO_2 nanotube arrays (Ag/CuO/TiO_2), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO_2 was about 2.0, 1.5 and 1.2 times that over TiO_2 nanotubes, CuO/TiO_2 and Ag/TiO_2, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO_2 photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO_2 photocatalyst demonstrated a promising application for organic pollutant removal from water.

  20. Hydrothermal synthesis of fluorinated anatase TiO_2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    International Nuclear Information System (INIS)

    Luo, Lijun; Yang, Ye; Zhang, Ali; Wang, Min; Liu, Yongjun; Bian, Longchun; Jiang, Fengzhi; Pan, Xuejun

    2015-01-01

    Graphical abstract: - Highlights: • F–TiO_2–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F"− and RGO improve the photocatalytic activity of TiO_2 synergistically. • The F–TiO_2–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO_2/reduced graphene oxide nanocomposites (denoted as F–TiO_2–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO_2 particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F"− ion adsorbed on the surface of TiO_2–RGO surface can enhance photocatalytic activity of F–TiO_2–RGO. The photocatalytic activities of F–TiO_2–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO_2–10RGO (0.01501 min"−"1) was 3.41 times than that over P25 (0.00440 min"−"1). The result indicated that the enhanced photocatalytic activity of F–TiO_2–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO_2–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  1. Solar CPC Pilot Plant Photocatalytic Degradation of Indigo Carmine Dye in Waters and Wastewaters Using Supported-TiO2: Influence of Photodegradation Parameters

    Directory of Open Access Journals (Sweden)

    Enrico Mendes Saggioro

    2015-01-01

    Full Text Available The photocatalytic degradation of indigo carmine (IC dye in the presence of titanium dioxide under different conditions was reported. Several factors which interfere with the photodegradation efficiency as catalyst concentration, pH, initial concentration of dye, presence of inorganic anions, temperature, and the addition of hydrogen peroxide were studied under artificial irradiation with a 125 W mercury vapor lamp. Additionally, the catalyst supported on glass spheres was used for the photocatalytic degradation of the dye present in several types of waters in a CPC solar pilot plant. The photocatalytic products, carboxylic acids, and SO42- and NH4+ were followed during IC mineralization. Formate, acetate, and oxalate were detected in real MWWTP secondary effluent. The mineralization efficiency was of 42 and 21% using in suspension and supported TiO2, respectively. In order to evaluate biological effects, Eisenia andrei earthworms were used as a model organism. No significant difference (P>0.05 of weight was observed in the earthworm submitted to different concentrations of IC and its photoproducts. The photocatalytic degradation of IC on TiO2 supported on glass spheres suffered strong influence of the water matrix; nevertheless the method has the enormous advantage that it eliminates the need for the final catalyst removal step, reducing therefore the cost of treatment.

  2. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  3. Sol-gel synthesis of anatase nanopowders for efficient photocatalytic degradation of herbicide Clomazone in aqueous media

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2017-01-01

    Full Text Available TiO2 nanopowders were produced by sol-gel technique using TiCl4 as a starting material. For the preparation of crystalline anatase with developed surface area, this aqueous solution has been mixed with 0.05 M or 0.07 M (NH42SO4 solution in a temperature-controlled bath. The pH values of the suspension were 7, 8 or 9. According to the x-ray diffraction (XRD analysis the anatase crystallite sizes were about 12 nm, which coincided with the average particle size revealed by scanning electron microscopy (SEM. The Raman scattering measurements have shown the presence of a small amount of highly disordered brookite phase in addition to dominant anatase phase with similar nanostructure in all synthesized powders. BET measurements revealed that all synthesized catalysts were fully mesoporous, except the sample synthesized with 0.07 M (NH42SO4 at pH=9, which had small amount of micropores. The photocatalytic degradation of herbicide Clomazone was carried out for both the pure active substance and as the commercial product (GAMIT 4-EC under UV irradiation. The best photocatalytic efficiency was obtained for the catalyst with the largest specific surface area, confirming this parameter as crucial for enhanced photocatalytic degradation of the pure active substance and commercial product of herbicide Clomazone. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45018

  4. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  5. Carbamazepine degradation using a N-doped TiO_2 coated photocatalytic membrane reactor: Influence of physical parameters

    International Nuclear Information System (INIS)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A.; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-01-01

    Highlights: • UV–vis N-doped TiO_2 was deposited by sol-gel onto Al_2O_3 microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al_2O_3 membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO_2 vs. non-doped TiO_2 membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al_2O_3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO_2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO_2 films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO_2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO_2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  6. Ag loaded WO{sub 3} nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenyu [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Liu, Jincheng, E-mail: JCLIU@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Current address: Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510009 (China); Yu, Shuyan; Zhou, Yan [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Yan, Xiaoli, E-mail: XLYAN@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Current address: Environmental and Water Technology Centre of Innovation, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489 (Singapore)

    2016-11-15

    Highlights: • WO{sub 3}/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO{sub 3}/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO{sub 3}/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO{sub 3} nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO{sub 3} nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO{sub 3} nanoplates using a photo-reduction method to generate WO{sub 3}/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO{sub 3} and WO{sub 3}/Ag composites was conducted under visible light irradiation. The results show that WO{sub 3}/Ag composites performed much better than pure WO{sub 3} where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO{sub 3}, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO{sub 3}/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO{sub 3}/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  7. Preparation and characterization of photocatalytic performance of hierarchical heterogeneous nanostructured ZnO/TiO2 films made by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Le Phuc Quy; Vu Thi Hanh Thu

    2013-01-01

    With the aim to enhance photocatalytic properties and anti-Ecoli bacteria abilities of TiO 2 thin films; hierarchical heterogeneous nanostructured ZnO/TiO 2 (HN s ) films were deposited by DC magnetron sputtering. The obtained results showed that both the photocatalytic performance and anti-Ecoli bacteria ability of HN s films exhibited enhancement in comparison with standard TiO 2 films. This enhancement was explained due to the reduction of the electron - hole recombination and the red shift of absorption edge of the HNs films. (author)

  8. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst

    International Nuclear Information System (INIS)

    Chala, Sinaporn; Wetchakun, Khatcharin; Phanichphant, Sukon; Inceesungvorn, Burapat; Wetchakun, Natda

    2014-01-01

    Highlights: • Fe-loaded BiVO 4 particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO 4 samples showed higher photocatalytic activity than pure BiVO 4 . • The Fe 3+ ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO 4 and nominal 0.5–5.0 mol% Fe-loaded BiVO 4 samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO 4 shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO 4 . Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO 4 sample exhibited remarkably higher activity than pure BiVO 4

  9. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO 2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD.

    Science.gov (United States)

    Yang, Chuanxi; Dong, Wenping; Cui, Guanwei; Zhao, Yingqiang; Shi, Xifeng; Xia, Xinyuan; Tang, Bo; Wang, Weiliang

    2017-06-21

    Poly-o-phenylenediamine modified TiO 2 nanocomposites were successfully synthesized via an 'in situ' oxidative polymerization method. The modified nanocomposites were characterized by BET, XRD, TEM, FT-IR, TGA, XPS, EA and UV-Vis DRS. The photocatalytic degradation of methylene blue was chosen as a model reaction to evaluate the photocatalytic activities of TiO 2 and PoPD/TiO 2 . The results indicated that PoPD/TiO 2 nanocomposites exhibited good photocatalytic activity and stability. The photocatalytic activity of PoPD/TiO 2 increased as the initial pH increased because of electrostatic adsorption between the photocatalyst and MB as well as the generation of ·OH, whereas it exhibited an earlier increasing and later decreasing trend as the concentration of the photocatalyst increased owing to the absorption of visible light. The photocatalytic stability of the PoPD/TiO 2 nanocomposite was dependent on the stability of its structure. Based on radical trapping experiments and ESR measurements, the origin of oxidizing ability of PoPD/TiO 2 nanocomposites on photocatalytic degradation of MB was proposed, which taking into account of ·OH and ·O 2 - were the first and second important ROS, respectively. The possible photocatalytic mechanism and photocatalytic activity enhanced mechanism has been proposed, taking into account the photosensitization effect and synergetic effect of TiO 2 with PoPD.

  10. Graphene/TiO{sub 2}/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xin-Yan; Zhou, Kefu [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chen, Bor-Yann, E-mail: boryannchen@yahoo.com.tw [Department of Chemical and Materials Engineering, National I-Lan University, Ilan, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang73222@gmail.com [Department of Environmental Engineering, National I-Lan University, Ilan, Taiwan (China)

    2016-01-30

    Graphical abstract: The mechanism of OTC degradation can be described as follows. At first, the OTC molecule was adsorbed onto the surface of GTZ material. The conduction band electron (e{sup −}) and valence band holes (h{sup +}) are generated when aqueous GTZ suspension is irradiated with visible light. The generation of (e{sup −}/h+) pair leading to the formation of reactive oxygen species. The ·OH radical and ·O{sub 2}{sup −} can oxidize OTC molecular, resulting in the degradation and mineralization of the organics. - Highlights: • Determine optimal composites of graphene, TiO{sub 2}, and zeolite for maximal photodegradation efficiency via triangular mixture design. • Unravel most promising composites for high stability and absorptive capabilities for photocatalytic degradation. • Disclose time-series profiles of toxicity of advanced oxidation processes (AOPs) treatment of wastewater. • Propose plausible routes of mechanism of photocatalytical degradation of OTC. - Abstract: This first-attempt study revealed mixture design of experiments to obtain the most promising composites of TiO{sub 2} loaded on zeolite and graphene for maximal photocatalytic degradation of oxytetracycline (OTC). The optimal weight ratio of graphene, titanium dioxide (TiO{sub 2}), and zeolite was 1:8:1 determined via experimental design of simplex lattice mixture. The composite material was characterized by XRD, UV–vis, TEM and EDS analysis. The findings showed the composite material had a higher stability and a stronger absorption of the visible light. In addition, it was uniformly dispersed with promising adsorption characteristics. OTC was used as model toxicant to evaluate the photodegradation efficiency of the GTZ (1:8:1). At optimal operating conditions (i.e., pH 7 and 25 °C), complete degradation (ca. 100%) was achieved in 180 min. The biotoxicity of the degraded intermediates of OTC on cell growth of Escherichia coli DH5α were also assayed. After 180 min

  11. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    Science.gov (United States)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  12. Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V{sub 2}O{sub 5} for the degradation of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, M. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ismail, Iqbal M.I. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Salah, Numan [Centre of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chandrasekaran, S. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qamar, M.Tariq [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Hameed, A., E-mail: afmuhammad@kau.edu.sa [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); National Centre for Physics, Quaid-e-Azam University, Islamabad 44000 (Pakistan)

    2015-04-09

    Highlights: • The interaction of UV photons of sunlight induces defects in V{sub 2}O{sub 5}. • The photon induced defects promotes the trapping and transfer of excited electrons. • The nature of the substituent at 2-position affects the degradation process. • The formation of the intermediates is influenced by the nature of substituents. • The released ions are subjected further transformation. - Abstract: Despite knowing the fact that vanadium pentoxide is slightly soluble in aqueous medium, its photocatalytic activity was evaluated for the degradation of phenol and its derivatives (2-hydroxyphenol, 2-chlorophenol, 2-aminophenol and 2-nitrophenol) in natural sunlight exposure. The prime objective of the study was to differentiate between the homogeneous and heterogeneous photocatalysis incurred by dissolved and undissolved V{sub 2}O{sub 5} in natural sunlight exposure. V{sub 2}O{sub 5} was synthesized by chemical precipitation procedure using Triton X-100 as morphology mediator and characterized by DRS, PLS, Raman, FESEM and XRD. A lower solubility of ∼5% per 100 ml of water at 23 °C was observed after calcination at 600 °C. The study revealed no contribution of the dissolved V{sub 2}O{sub 5} in the photocatalytic process. In sunlight exposure, V{sub 2}O{sub 5} powder exhibited substantial activity for the degradation, however, a low mineralization of phenolic substrates was observed. The initial low activity of V{sub 2}O{sub 5} followed by a sharp increase both in degradation and mineralization in complete spectrum sunlight exposure, was further investigated that revealed the decrease in the bandgap and the reduction in the particle size with the interaction of UV photons (<420 nm) as this effect was not observable in the exposure of visible region of sunlight. The role of the chemically different substituents attached to an aromatic ring at 2-positions and the secondary interaction of released ions during the degradation process with the reactive

  13. Design of micro-reactors and solar photocatalytic prototypes

    International Nuclear Information System (INIS)

    Flores E, R.M.; Hernandez H, M.; Perusquia del Cueto, M.R.; Bonifacio M, J.; Jimenez B, J.; Ortiz O, H.B.; Castaneda J, G.; Lugo H, M.

    2007-01-01

    In the ININ is carried out research in heterogeneous photocatalysis using artificial light for to degrade organic compounds. In this context, it is sought to use the solar radiation as energy source to knock down costs. Of equal form it requires to link the basic and applied research. For it, a methodology that allows to design and to build micro-reactors and plants pilot has been developed, like previous step, to request external supports and to a future commercialization. The beginning of these works gave place to the partial construction of a prototype of photocatalytic reactor of the cylinder-parabolic composed type (CPC)

  14. Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation

    Science.gov (United States)

    Salama, Ahmed; Mohamed, Alaa; Aboamera, Nada M.; Osman, T. A.; Khattab, A.

    2018-02-01

    In this work, photocatalytic degradation of organic dyes such as methylene blue (MB) and indigo carmine (IC) have been studied by composite nanofibers systems containing cellulose acetate (CA), multiwall carbon nanotubes (CNT) and TiO2 nanoparticles under UV light. The amino factionalized TiO2-NH2 NPs cross-linked to the CA/CNT composite nanofibers works as a semiconductor catalyst. The morphology and crystallinity were characterized by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, and Fourier transform infrared spectroscopy. It was also seen that many factors affected the photodegradation rate, mainly the pH of the solution and the dye concentration, temperature, etc. The study demonstrated that IC degrades at a higher rate than MB. The maximum photodegradation rate of both organic dyes was achieved at a pH 2. In comparison to other studies, this work achieved high photodegradation rate in lower time and using less power intensity.

  15. Solid-phase photocatalytic degradation of polyethylene-goethite composite film under UV-light irradiation

    International Nuclear Information System (INIS)

    Liu, G.L.; Zhu, D.W.; Liao, S.J.; Ren, L.Y.; Cui, J.Z.; Zhou, W.B.

    2009-01-01

    A novel photodegradable polyethylene-goethite (PE-goethite) composite film was prepared by embedding the goethite into the commercial polyethylene. The degradation of PE-goethite composite films was investigated under ultraviolet light irradiation. The photodegradation activity of the PE plastic was determined by monitoring its weight loss, scanning electron microscopic (SEM) analysis and FT-IR spectroscopy. The weight of PE-goethite (1 wt%) sample steadily decreased and led to the total 16% reduction in 300 h under UV-light intensity for 1 mW/cm 2 . Through SEM observation there were some cavities around the goethite powder in the composite films, but there were few changes except some surface chalking phenomenon in pure PE film. The degradation rate could be controlled by changing the concentration of goethite particles in PE plastic. The degradation of composite plastic initiated on PE-goethite interface and then extended into polymer matrix induced by the diffusion of the reactive oxygen species generated on goethite particle surface. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  16. Adsorption and photocatalytic degradation of pharmaceuticals by BiOCl{sub x}I{sub y} nanospheres in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Wang, Xiaobing [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF)-ENSCCF, BP 10448, F-63000 Clermont-Ferrand (France); Li, Hongjing, E-mail: lihongjing@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Mailhot, Gilles [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF)-ENSCCF, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2016-01-01

    Graphical abstract: - Highlights: • BiOCl{sub x}I{sub y} nanospheres were synthesised by precipitation method in EG-H{sub 2}O. • BiOCl{sub x}I{sub y} catalyst possessed high surface area and small particle size. • BiOCl{sub 0.75}I{sub 0.25} showed the best photocatalytic ability of p-HPA and ACTP. • Degradation of p-HPA and ACTP primarily proceeded by O{sub 2}·{sup −}. - Abstract: BiOCl{sub x}I{sub y} nanospheres have been synthesised via precipitation method in ethylene glycol (EG)-water (H{sub 2}O) mixed solvent at 80 °C and ambient pressure. Results of BiOCl{sub x}I{sub y} characterisation showed that these composite materials well combined BiOCl with BiOI crystals, which displayed flower-like hierarchical nanospheres consisted of numerous nanosheets and possessed smaller particle size, higher surface area than those in previous papers. The great surface area resulted in its high adsorption abilities of hydroxyphenylacetic acid (p-HPA) in the dark, the adsorption process could be suitably described by a pseudo-second-order kinetics model and the adsorption isotherms could be well fitted with Freundlich and Langmuir equations. The photocatalytic degradation of p-HPA and acetaminophen (ACTP) were investigated under simulated solar and visible irradiation using BiOCl{sub x}I{sub y} catalyst for the first time. The combination of BiOCl and BiOI to a certain extent has largely improved the remove efficiency, and BiOCl{sub 0.75}I{sub 0.25} was the optimal catalyst with almost 100% removal of p-HPA and 80% removal of ACTP under solar light for 3 h. Experimental results demonstrated that the photocatalytic degradation of p-HPA and ACTP followed pseudo-first-order kinetics and O{sub 2}·{sup −} and dissolved oxygen play predominant roles in photocatalytic process efficiency. This research will supply an environment-friendly photocatalyst for pharmaceutical wastewater treatment under sunlight.

  17. The Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants

    Directory of Open Access Journals (Sweden)

    Terry A. Egerton

    2013-03-01

    Full Text Available Practical photocatalysis for degradation of organic pollutants must take into account the influence of other chemicals. Significant Al deposition on titania can occur at naturally occurring concentrations of dissolved Al. This paper reviews the author’s work on the influence of deliberately deposited hydrous oxides of aluminium on the behavior of a ~130 m2 g−1 rutile TiO2, and then compares the behavior of deposited alumina with that of deposited silica. On rutile some adsorbed nitrogen is infrared-active. Alumina and silica deposited on the rutile reduce, and ultimately eliminate, this infrared-active species. They also reduce photocatalytic oxidation of both propan-2-ol and dichloroacetate ion and the photocatalytic reduction of diphenyl picryl hydrazine. The surface oxides suppress charge transfer and may also reduce reactant adsorption. Quantitative measurement of TiO2 photogreying shows that the adsorbed inorganics also reduce photogreying, attributed to the capture of photogenerated conduction band electrons by Ti4+ to form Ti3+. The influence of adsorbed phosphate on photocatalysis is briefly considered, since phosphate reduces photocatalytic disinfection. In the context of classical colloid studies, it is concluded that inorganic species in water can significantly reduce photoactivity from the levels that measured in pure water.

  18. Photocatalytic activity of the binary composite CeO{sub 2}/SiO{sub 2} for degradation of dye

    Energy Technology Data Exchange (ETDEWEB)

    Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Nakaruk, Auppatham [Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Centre of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok 65000 (Thailand); Channei, Duangdao, E-mail: duangdaoc@nu.ac.th [Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Research Center for Academic Excellence in Petroleum, Petrochemicals and Advanced Materials, Naresuan University, Phitsanulok 65000 (Thailand)

    2016-11-30

    Highlights: • The enhanced photocatalytic activity of the CeO{sub 2}/SiO{sub 2} composite can be explained by the presence of the SiO{sub 2} adsorbent, which effectively increased the surface area of the CeO{sub 2}. • The increased surface area of CeO{sub 2} should be helpful to facilitate more effective adsorption sites, which enhances the photocatalytic degradation of organic pollutant significantly. • SiO{sub 2} modification is effective in separating the photogenerated electrons and holes, which is of great importance for photocatalytic activity. • SiO{sub 2} acted as a carrier for CeO{sub 2} attachment and avoided the agglomeration of CeO{sub 2} particles. - Abstract: In this study, CeO{sub 2} photocatalyst was modified by composite with SiO{sub 2} to increase efficiency and improve photocatalytic activity. The as-prepared SiO{sub 2} particles have been incorporated into the precursor mixture of CeO{sub 2} by homogeneous precipitation and subsequent calcination process. The phase compositions of CeO{sub 2} before and after compositing with SiO{sub 2} were identified by X-ray diffraction (XRD). The morphology and particle size of CeO{sub 2}/SiO{sub 2} composite was analyzed by high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The results showed SiO{sub 2} spheres with the particle size approximately 100–120 nm, and a uniform layer of CeO{sub 2} nanoparticles with a diameter of about 5–7 nm that were fully composite to the surfaces of SiO{sub 2}. The X-ray photoelectron spectroscopy (XPS) technique was carried out in order to characterize the change in valence state and composite characteristic by shifted peaks of binding energies. The photocatalytic activity was studied through the degradation of Rhodamine B in aqueous solution under visible light exposure. The highest photocatalytic efficiency of CeO{sub 2}/SiO{sub 2} composite was also obtained. To explain the high photocatalytic

  19. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  20. Synthesis and characterization of CdS/CuAl2O4 core-shell: application to photocatalytic eosin degradation

    Science.gov (United States)

    Bellal, B.; Trari, M.; Afalfiz, A.

    2015-08-01

    The advantages of the hetero-junction CdS/CuAl2O4 for the photocatalytic eosin degradation are reported. Composite semiconductors are elaborated by co-precipitation of CdS on the spinel CuAl2O4 giving a core-shell structure with a uniform dispersion and intimate contact of the spinel nanoparticles inside the hexagonal CdS. The Mott-Schottky plots ( C -2- V) of both materials show linear behaviors from which flat band potentials are determined. The photoactivity increases with increasing the mass of the sensitizer CdS and the best performance is achieved on CdS/CuAl2O4 (85 %/15 %). The pH has a strong influence on the degradation and the photoactivity peaks at pH 7.78. The dark adsorption eosin is weak (~4 %), hence the change in the eosin concentration is attributed to the photocatalytic process. The degradation follows a zero-order kinetic with a rate constant of 5.2 × 10-8 mol L-1 mn-1 while that of the photolysis is seven times lower (0.75 × 10-8 mol L-1 mn-1).

  1. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO{sub 2} nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuhong; Wang, Longlu [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu, Yutang, E-mail: liuyutang@126.com [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Luo, Shenglian [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2016-08-05

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO{sub 2} nanotube arrays (Ag/CuO/TiO{sub 2}), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO{sub 2} was about 2.0, 1.5 and 1.2 times that over TiO{sub 2} nanotubes, CuO/TiO{sub 2} and Ag/TiO{sub 2}, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO{sub 2} photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO{sub 2} photocatalyst demonstrated a promising application for organic pollutant removal from water.

  2. Hydrothermal synthesis of fluorinated anatase TiO{sub 2}/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lijun [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Biotechnology, Yunnan MinZu University, Kunming, 650500 (China); Yang, Ye [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Zhang, Ali [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Wang, Min; Liu, Yongjun; Bian, Longchun [Advanced Analysis and Measurement Center, Yunnan University, Kunming, 650091 (China); Jiang, Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Pan, Xuejun [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China)

    2015-10-30

    Graphical abstract: - Highlights: • F–TiO{sub 2}–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F{sup −} and RGO improve the photocatalytic activity of TiO{sub 2} synergistically. • The F–TiO{sub 2}–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO{sub 2}/reduced graphene oxide nanocomposites (denoted as F–TiO{sub 2}–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO{sub 2} particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F{sup −} ion adsorbed on the surface of TiO{sub 2}–RGO surface can enhance photocatalytic activity of F–TiO{sub 2}–RGO. The photocatalytic activities of F–TiO{sub 2}–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO{sub 2}–10RGO (0.01501 min{sup −1}) was 3.41 times than that over P25 (0.00440 min{sup −1}). The result indicated that the enhanced photocatalytic activity of F–TiO{sub 2}–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO{sub 2}–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  3. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young In [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Jung, Hye Jin [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Shin, Weon Gyu, E-mail: wgshin@cnu.ac.kr [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Sohn, Youngku, E-mail: youngkusohn@ynu.ac.kr [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2015-11-30

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H{sub 2}O{sub 2} addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H{sub 2}O{sub 2} addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  4. Synthesis of Nickel Oxide Nanoparticles Using Gelatine as a Green Template for Photocatalytic Degradation of Dye

    OpenAIRE

    JAY YANG LEE

    2018-01-01

    Nickel oxide (NiO) nanoparticles were synthesized through sol-gel method with an environmentally friendly templating agent, which is gelatin. The synthesized NiO were characterized to determine the chemical and physical properties of the nanoparticles. The optimum synthesis parameters were used in photocatalytic degradation of Reactive Black 5 and Acid Yellow 25 dye to determine the catalytic activity of the nanoparticles.

  5. Electrospun NiO, ZnO and composite NiO–ZnO nanofibers/photocatalytic degradation of dairy effluent

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Chronakis, Ioannis S.; Barakat, Nasser A.M.

    2015-01-01

    Among the food wastes, the dairy effluent (DE) is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. Photocatalytic degradation of DE and organic dye methylene blue (MB) was studied using Zinc oxide nanofibers (ZnO NFs), Nickel....... The significant enhancement of degradation in the composite ZnO–NiO NFs is attributed to the photoactivity of material under visible light irradiation. The composite ZnO–NiO NFs eliminated 40% of DE and 65% of MB dye, after 1h and maximum degradation of 80% DE after 3h and 100% MB dye after 90min. Overall...

  6. Fabrication of Ag{sub 2}O/TiO{sub 2} with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Tao, E-mail: renhaitaomail@163.com; Yang, Qing

    2017-02-28

    Highlights: • Ag{sub 2}O/TiO{sub 2} was synthesized by a pH-induced chemical precipitation method. • Ag{sub 2}O/TiO{sub 2} showed good activities in the photocatalytic degradation of methyl orange. • Hydroxyl radicals played the predominant role in methyl orange photodegradation. - Abstract: Ag{sub 2}O/TiO{sub 2} composites synthesized in this study were applied into the photocatalytic degradation of methyl orange (MO) under UV and visible light irradiation. X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscope analysis demonstrated that Ag{sub 2}O nanoparticles were well distributed on the surface of TiO{sub 2} and the heterostructure of Ag{sub 2}O/TiO{sub 2} was formed. Compared with the pure TiO{sub 2} and Ag{sub 2}O, the 3% and 50% Ag{sub 2}O/TiO{sub 2} composite displayed much higher photocatalytic activities in MO degradation under UV and visible light irradiation, respectively. The degradation rate constant of 50% composite was 0.01508 min{sup −1} under visible light, which was almost 20.1 and 1.2 times more than that of the pure TiO{sub 2} and Ag{sub 2}O, respectively. Moreover, the formation of Ag(0) on the surface of Ag{sub 2}O under illumination contributed to the high stability of Ag{sub 2}O/TiO{sub 2} photocatalysts. It was also found that hydroxyl radicals during the photocatalytic process played the predominant role in MO degradation. The enhanced photochemical activities were attributed to the formation of the heterostructure between Ag{sub 2}O and TiO{sub 2}, the strong visible light absorption and the high separation efficiency of photogenerated electron–hole pairs resulted from the highly dispersed Ag{sub 2}O particles.

  7. Structural insights into photocatalytic performance of carbon nitrides for degradation of organic pollutants

    Science.gov (United States)

    Oh, Junghoon; Shim, Yeonjun; Lee, Soomin; Park, Sunghee; Jang, Dawoon; Shin, Yunseok; Ohn, Saerom; Kim, Jeongho; Park, Sungjin

    2018-02-01

    Degradation of organic pollutants has a large environmental impact, with graphitic carbon nitride (g-C3N4) being a promising metal-free, low cost, and environment-friendly photocatalyst well suited for this purpose. Herein, we investigate the photocatalytic performance of g-C3N4-based materials and correlate it with their structural properties, using three different precursors (dicyandiamide, melamine, and urea) and two heating processes (direct heating at 550 °C and sequential heating at 300 and 550 °C) to produce the above photocatalysts. We further demonstrate that sequential heating produces photocatalysts with grain sizes and activities larger than those of the catalysts produced by direct heating and that the use of urea as a precursor affords photocatalysts with larger surface areas, allowing efficient rhodamine B degradation under visible light.

  8. Utilization of visible to NIR light energy by Yb"+"3, Er"+"3 and Tm"+"3 doped BiVO_4 for the photocatalytic degradation of methylene blue

    International Nuclear Information System (INIS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Ray, Schindra Kumar; Pandey, Ramesh Prasad; Lee, Soo Wohn

    2017-01-01

    Highlights: • Lanthanide doped BiVO_4 as highly efficient upconversion and photocatalytic material. • Well defined beads like morphology for better photocatalytic activity. • Effective utilization of NIR and visible light for efficient photocatalytic degradation of methylene blue. • Nontoxic to human cells, potential for application in biological fields. - Abstract: Lanthanide-doped BiVO_4 semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC"® CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO_4 with 6:3:3 mol percentage of Yb"+"3:Er"+"3:Tm"+"3 in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  9. Synthesis and characterization of novel PPy/Bi{sub 2}O{sub 2}CO{sub 3} composite with improved photocatalytic activity for degradation of Rhodamine-B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qizhao, E-mail: wangqizhao@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China); Zheng, Longhui; Chen, Yutao; Fan, Jiafeng [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China); Huang, Haohao, E-mail: scuthhh@hotmail.com [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Su, Bitao [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou 730070 (China)

    2015-07-15

    Highlights: • A new photocatalyst PPy/Bi{sub 2}O{sub 2}CO{sub 3} was synthesized by a simple hydrothermal method. • The PPy/Bi{sub 2}O{sub 2}CO{sub 3} photocatalyst shows enhanced degradation activity of RhB under UV light irradiation. • A photocatalytic mechanism is proposed based on the synergistic effect of PPy and Bi{sub 2}O{sub 2}CO{sub 3}. - Abstract: Photocatalyst Bi{sub 2}O{sub 2}CO{sub 3} modified by polypyrrole (PPy) was synthesized via a facile hydrothermal method. As-prepared PPy/Bi{sub 2}O{sub 2}CO{sub 3} composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV–vis diffuse reflectance spectroscopy (DRS). Presence of PPy did not affect the crystal structure, but exerted great influence on the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} and enhanced absorption band of pure Bi{sub 2}O{sub 2}CO{sub 3}. The photocatalytic activities of the PPy/Bi{sub 2}O{sub 2}CO{sub 3} samples were determined by photocatalytic degradation of Rhodamine-B (RhB) under ultra violet (UV) irradiation and 0.75 wt.% PPy/Bi{sub 2}O{sub 2}CO{sub 3} composite showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the synergistic effect of PPy and Bi{sub 2}O{sub 2}CO{sub 3}. A possible photocatalytic mechanism of the PPy/Bi{sub 2}O{sub 2}CO{sub 3} photocatalysts was proposed in order to guide the further improvement of its photocatalytic performance.

  10. Design of binary SnO_2-CuO nanocomposite for efficient photocatalytic degradation of malachite green dye

    International Nuclear Information System (INIS)

    Kumar, Aniket; Rout, Lipeeka; Achary, L. Satish Kumar; Mohanty, Anurag; Marpally, Jyoshna; Chand, Pradyumna Kumar; Dash, Priyabrat

    2016-01-01

    Semiconductor mediated photocatalysis has got enormous consideration as it has shown immense potential in addressing the overall energy and environmental issues. To overcome the earlier drawbacks concerning quick charge recombination and limited visible-light absorption of semiconductor photocatalysts, numerous methods have been produced in the past couple of decades and the most broadly utilized one is to develop the photocatalytic heterojunctions. In our work, a series of SnO_2-CuO nanocomposites of different compositions were synthesized by a combustion method and have been investigated in detail by various characterization techniques, such as wide angle X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The results revealed that the crystal structure and optical properties of the nanocomposites were almost same for all the compositions. FE-SEM images showed that the shape of SnO_2-CuO was spherical in nature and the 1: 1 Sn/Cu sample had a well-proportioned morphology. The malachite green dye was used for the photocatalytic studies in a photoreactor and monitored with a UV-visible spectrometer for different composition ratio of metal (Sn: Cu) such as 1:1, 1:2, 2:1, 1:0.5 and 0.5:1. The 1:1 ratio nanocomposite showed excellent photocatalytic degradation of 96 % compared to pure SnO_2 and CuO. The mechanism of degradation and charge separation ability of the nanocomposite are also explored using photocurrent measurement study.

  11. Carbamazepine degradation using a N-doped TiO{sub 2} coated photocatalytic membrane reactor: Influence of physical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Horovitz, Inna [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Avisar, Dror [The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Baker, Mark A.; Grilli, Rossana [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Lozzi, Luca; Di Camillo, Daniela [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, I-67100 L' Aquila (Italy); Mamane, Hadas, E-mail: hadasmg@post.tau.ac.il [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-05

    Highlights: • UV–vis N-doped TiO{sub 2} was deposited by sol-gel onto Al{sub 2}O{sub 3} microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al{sub 2}O{sub 3} membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO{sub 2} vs. non-doped TiO{sub 2} membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al{sub 2}O{sub 3} photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO{sub 2} photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO{sub 2} films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO{sub 2}-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO{sub 2}-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  12. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    Science.gov (United States)

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.

  13. Solar photocatalytic degradation and detoxification of EU priority substances

    Energy Technology Data Exchange (ETDEWEB)

    Hincapie, M. [Facultad de Ingeniera Ambiental, Universidad de Medellin, Carrera 87 No. 30-65, P.O. Box 1983, Medellin (Colombia); Maldonado, M.I.; Oller, I.; Gernjak, W.; Malato, S. [Plataforma Solar de Almeria-CIEMAT, Carretera Senes km4, 04200 Tabernas (Almeria) (Spain); Sanchez-Perez, J.A.; Ballesteros, M.M. [Departamento de Ingenieria Quimica, Universidad de Almeria Crta de Sacramento s/n, 04120 Almeria (Spain)

    2005-04-15

    Several different pesticides (alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol) considered PS (priority substances) by the European Commission and dissolved in water at 50mg/L (or at maximum water solubility) have been degraded at pilot-plant scale using photo-Fenton and TiO{sub 2} photocatalysis driven by solar energy. Two different iron concentrations (2 and 55mg/L) and TiO{sub 2} at 200mg/L have been tested and discussed, using mainly TOC mineralisation for comparison of treatment effectiveness. Vibrio fischeri (Microtox{sup (}R)) toxicity assays were also employed for evaluating the photocatalytic treatments, and comparison between these results and parent compound disappearance, TOC evolution and anion (or ammonia) release were discussed. Almost complete mineralisation and total detoxification were always attained. It has been demonstrated that evolution of chloride could be a key-parameter for predicting toxicity of chlorinated compounds.

  14. Rapid synthesis of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic degradation of oxytetracycline.

    Science.gov (United States)

    Chen, Hanlin; Peng, Yen-Ping; Chen, Ku-Fan; Lai, Chia-Hsiang; Lin, Yung-Chang

    2016-06-01

    This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41, which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET (Brunauer-Emmett-Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3-5nm and a high surface area of 883m(2)/g. FTIR results illustrated the existence of Si-O-Si and Si-O-Ti bonds in Ti-MCM-41. The appearance of Ti 2p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta (ζ)-potential results indicated that the iso-electric point (IEP) of Ti-MCM-41 was at about pH3.02. In this study, the photocatalytic degradation of oxytetracycline (OTC) at different pH was investigated under Hg lamp irradiation (wavelength 365nm). The rate constant (K'obs) for OTC degradation was 0.012min(-1) at pH3. Furthermore, TOC (total organic carbon) and high resolution LC-MS (liquid chromatography-mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH3, 7 and 10, respectively. LC-MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring. Copyright © 2016. Published by Elsevier B.V.

  15. Microwave assisted synthesis of porous ZnO/SnS heterojunction and its application in visible light degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Makama, A. B., E-mail: abmakama@hotmail.com; Salmiaton, A., E-mail: mie@upm.edu.my; Choong, T. S. Y., E-mail: csthomas@upm.edu.my; Abdullah, N., E-mail: nhafizah@upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor, Serdang, UPM 43400 (Malaysia); Saion, E. B., E-mail: elias@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Serdang, UPM 43400 (Malaysia)

    2016-07-06

    Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl{sub 2} and Na{sub 2}S) in the presence of fixed amount of ZnCO{sub 3} nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-C{sub t}/C{sub 0}) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.

  16. Nano Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua, E-mail: liangyh@heuu.edu.cn; Cui, Wenquan, E-mail: wkcui@163.com

    2015-01-01

    Graphical abstract: - Highlights: • The plasmatic Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} composite photocatalysts. • Ag@AgBr greatly increased visible-light absorption for Bi{sub 2}WO{sub 6}. • The plasmonic photocatalysts exhibited enhanced activity for the degradation of MB, phenol and salicylic acid. - Abstract: Nano Ag@AgBr decorated on the surface of flower-like Bi{sub 2}WO{sub 6} (hereafter designated Ag@AgBr/Bi{sub 2}WO{sub 6}) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi{sub 2}WO{sub 6}, and was approximately 20 nm in size. Ag@AgBr/Bi{sub 2}WO{sub 6} composites exhibited excellent UV–vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi{sub 2}WO{sub 6}. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi{sub 2}WO{sub 6} and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi{sub 2}WO{sub 6} samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi{sub 2}WO{sub 6}, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi{sub 2}WO{sub 6} sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi{sub 2}WO{sub 6} photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi{sub 2

  17. Photocatalytic degradation of C. I. Reactive Red 24 solution with K₆SiW₁₁O₃₉Sn(II.).

    Science.gov (United States)

    Guo, Guixiang; Zhu, Xiuhua; Shi, Fuyou; Wang, Anning; Wang, Wei; Mu, Jun; Wan, Quanli; Zhang, Rong

    2013-12-01

    Environmental friendly materials, K6SiW11O39Sn (SiWSn), was synthesized. SiWSn photocatalytic decomposition of C. I. Reactive Red 24 (RR24) with the UV-lamp (253.7 nm, 20 W), Xenon lamp filtered less than 390 nm light (500 W) and sun light was investigated. The results showed that RR24 solution could be effectively decolorized with the SiWSn photocatalyst. The photocatalytic degradation efficiency of RR24 with SiWSn was affected by the initial concentration of RR2 solution, the amount of SiWSn and the photolysis time. It is demonstrated that the process of photodegradation of RR24 with SiWSn is a pesudo first-order reaction, which can be described by Langmuir-Hinshelwood equation. Hydroxyl radicals and holes are both the main oxidants in the photocatalytic reaction of RR24 with SiWSn. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation

    International Nuclear Information System (INIS)

    Zhu, Chaosheng; Zhang, Lu; Jiang, Bo; Zheng, Jingtang; Hu, Ping; Li, Sujuan; Wu, Mingbo; Wu, Wenting

    2016-01-01

    Highlights: • Ag 3 PO 4 /MoS 2 composite photocatalysts were prepared by precipitation method. • The composites showed enhanced visible-light photocatalytic activity. • The photocorrosion of Ag 3 PO 4 was inhibited due to the introduction of MoS 2 . • Z-scheme mechanism was proposed to explain the enhanced photoactivity. - Abstract: In this study, highly efficient visible-light-driven Ag 3 PO 4 /MoS 2 composite photocatalysts with different weight ratios of MoS 2 were prepared via the ethanol-water mixed solvents precipitation method and characterized by ICP, XRD, HRTEM, FE-SEM, BET, XPS, UV–vis DRS and PL analysis. Under visible-light irradiation, Ag 3 PO 4 /MoS 2 composites exhibit excellent photocatalytic activity towards the degradation of organic pollutants in aqueous solution. The optimal composite with 0.648 wt% MoS 2 content exhibits the highest photocatalytic activity, which can degrade almost all MB under visible-light irradiation within 60 min. Recycling experiments confirmed that the Ag 3 PO 4 /MoS 2 catalysts had superior cycle performance and stability. The photocatalytic activity enhancement of Ag 3 PO 4 /MoS 2 photocatalysts can be mainly ascribed to the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of Ag 3 PO 4 , Ag and MoS 2 , in which Ag particles act as the charge separation center. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Ag 3 PO 4 by transferring the photogenerated electrons of Ag 3 PO 4 to MoS 2 . The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts could be obtained from the active species trapping experiments and the photoluminescence technique.

  19. Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2010-01-01

    Full Text Available TiO2 sol was prepared for the degradation of methylene blue (MB solution under ultraviolet (UV irradiation. The absorption spectra of MB indicated that the maximum wavelength, 663 nm, almost kept the same. The performance of 92.3% for color removal was reached after 160 min. The particle size of TiO2 sol was about 22.5 nm. X-ray diffraction showed that TiO2 consisted of a single anatase phase. The small size and anatase phase probably resulted in high photocatalytic activity of TiO2 sol. The degradation ratio decreased as the initial concentration of MB increased. The photodegradation efficiency decreased in the order of pH 2>pH 9>pH 7. Regarding catalyst load, the degradation increased with the mass of catalyst up to an amount of 1.5 g⋅L−1 then decreased as the mass continued to increase. The addition of H2O2 to TiO2 sol resulted in an increase on the degradation ratio.

  20. Photocatalytic degradation of p,p'-DDT under UV and visible light using interstitial N-doped TiO₂.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-01-01

    1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p'-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p'-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol-gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p'-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p'-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p'-DDT effectively under both UV and visible lights. The rate constant of the p,p'-DDT degradation under UV light was only 0.0121 min(-1), whereas the rate constant of the p,p'-DDT degradation under visible light was 0.1282 min(-1). Under visible light, the 100% degradation of p,p'-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p'-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg(-1), and the apparent reaction rate constant (k) was 1.3941 mg L(-1)-min. Major intermediates detected during the p,p'-DDT degradation were p,p'-DDE, o,p'-DDE, p,p'-DDD and p,p'-DDD. Results from this work can be applied further for the breakdown of p,p'-DDT molecule in the real contaminated water using this technology.

  1. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2

    International Nuclear Information System (INIS)

    Triantis, T.M.; Fotiou, T.; Kaloudis, T.; Kontos, A.G.; Falaras, P.; Dionysiou, D.D.; Pelaez, M.; Hiskia, A.

    2012-01-01

    Highlights: ► N-TiO 2 exhibited effective degradation of MC-LR under UV-A, solar and visible light. ► Complete photocatalytic mineralization of MC-LR was achieved under UV-A and solar light. ► The organic nitrogen is mainly released as ammonium and nitrate ions. - Abstract: In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO 2 (N-TiO 2 ) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO 2 , Kronos and reference TiO 2 nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO 2 followed by N-TiO 2 with 96% toxin destruction after 20 min of illumination. Under solar light illumination, N-TiO 2 nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO 2 for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO 2 displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO 2 − , NO 3 − and NH 4 + ) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light.

  2. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO2 Amount on Surface, Illumination, and Substrate Roughness

    Directory of Open Access Journals (Sweden)

    J. Hot

    2017-01-01

    Full Text Available This paper deals with the degradation of NO by photocatalytic oxidation using TiO2-based coatings. Tests are conducted at a laboratory scale through an experimental setup inspired from ISO 22197-1 standard. Various parameters are explored to evaluate their influence on photocatalysis efficiency: TiO2 dry matter content applied to the surface, nature of the substrate, and illumination conditions (UV and visible light. This article points out the different behaviors between three kinds of substrates which are common building materials: normalized mortar, denser mortar, and commercial wood. The illumination conditions are of great importance in the photocatalytic process with experiments under UV light showing the best results. However, a significant decrease in NO concentration under visible light is also observed provided that the TiO2 dry matter content on the surface is high enough. The nature of the substrate plays an important role in the photocatalytic activity with rougher substrates being more efficient to degrade NO. However, limiting the roughness of the substrate seems to be of utmost interest to obtain the highest exposed surface area and thus the optimal photocatalytic efficiency. A higher roughness promotes the surface contact between TiO2 and NO but does not necessarily increase the photochemical oxidation.

  3. Hierarchical La0.7Ce0.3FeO3/halloysite nanocomposite for photocatalytic degradation of antibiotics

    Science.gov (United States)

    Li, Xiazhang; Zhu, Wei; Yan, Xiangyu; Lu, Xiaowang; Yao, Chao; Ni, Chaoying

    2016-08-01

    The hierarchical La0.7Ce0.3FeO3/halloysite nanotubes (HNTs) composites have been successfully prepared via sol-gel method. XRD and TEM characterizations indicated that the sheet-like La0.7Ce0.3FeO3 coupled with the co-precipitated CeO2 were evenly deposited onto the surface of halloysite. The photocatalytic degradation of chlortetracycline under visible light irradiation using La0.7Ce0.3FeO3/HNTs as catalyst was evaluated by high-performance liquid chromatography, which exhibited remarkable photocatalytic activity with the removal rate up to 99 % in 90 min, due to the formation of "solid solution/co-precipitation" heterostructure as well as the excellent adsorptive capability of halloysite for antibiotics.

  4. Hierarchical La0.7Ce0.3FeO3/halloysite nanocomposite for photocatalytic degradation of antibiotics

    International Nuclear Information System (INIS)

    Li, Xiazhang; Yao, Chao; Zhu, Wei; Yan, Xiangyu; Lu, Xiaowang; Ni, Chaoying

    2016-01-01

    The hierarchical La 0.7 Ce 0.3 FeO 3 /halloysite nanotubes (HNTs) composites have been successfully prepared via sol-gel method. XRD and TEM characterizations indicated that the sheet-like La 0.7 Ce 0.3 FeO 3 coupled with the co-precipitated CeO 2 were evenly deposited onto the surface of halloysite. The photocatalytic degradation of chlortetracycline under visible light irradiation using La 0.7 Ce 0.3 FeO 3 /HNTs as catalyst was evaluated by high-performance liquid chromatography, which exhibited remarkable photocatalytic activity with the removal rate up to 99 % in 90 min, due to the formation of ''solid solution/co-precipitation'' heterostructure as well as the excellent adsorptive capability of halloysite for antibiotics. (orig.)

  5. The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2017-10-01

    Full Text Available Semiconductor based photocatalytic process is of great potential for solving the fossil fuels depletion and environmental pollution. Loading cocatalysts for the modification of semiconductors could increase the separation efficiency of the photogenerated hole-electron pairs, enhance the light absorption ability of semiconductors, and thus obtain new composite photocatalysts with high activities. Kinds of carbon allotropes, such as activated carbon, carbon nanotubes, graphene, and carbon quantum dots have been used as effective cocatalysts to enhance the photocatalytic activities of semiconductors, making them widely used for photocatalytic energy generation, and pollutants degradation. This review focuses on the loading of different carbon allotropes as cocatalysts in photocatalysis, and summarizes the recent progress of carbon materials based photocatalysts, including their synthesis methods, the typical applications, and the activity enhancement mechanism. Moreover, the cocatalytic effect among these carbon cocatalysts is also compared for different applications. We believe that our work can provide enriched information to harvest the excellent special properties of carbon materials as a platform to develop more efficient photocatalysts for solar energy utilization.

  6. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D.M.

    1997-01-01

    The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that were not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.

  7. Facile synthesis of ZnO/CuInS{sub 2} nanorod arrays for photocatalytic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yawei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Zhang, Xinyu [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Xing, Yonglei; Yin, Xingtian [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Du, Yaping, E-mail: ypdu2013@mail.xjtu.edu.cn [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-11-05

    Highlights: • Vertically-aligned ZnO nanorod arrays were synthesized by the hydrothermal process. • Monodisperse CuInS{sub 2} QDs were synthesized by the one-pot colloidal chemistry method. • ZnO/CuInS{sub 2} nanorod arrays films were fabricated by the EPD process. • The homogeneous CuInS{sub 2} loading was optimized by EPD duration. • The photoelectrochemical and photocatalytic activities of the ZnO/CuInS{sub 2} nanorod arrays films were discussed. - Abstract: Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS{sub 2} quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS{sub 2} heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS{sub 2} film with the deposition duration of 80 min showed the highest degradation rate and photocurrent density (0.95 mA/cm{sup 2}), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS{sub 2} QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS{sub 2} loading and well-maintained one-dimensional nanostructure.

  8. Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Jlaiel, Lobna [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2016-04-15

    Ce–ZnO (2 mol %) and undoped ZnO catalysts have been synthesized through hydrothermal method and characterized by X-ray diffraction (XRD), Nitrogen physisorption at 77 K; Fourier transformed infrared spectroscopy (FTIR), UV–Visible spectroscopy, Photoluminescence spectra (PL), and Raman spectroscopy. Ce-doping reduces the average crystallite size, increases the BET surface area, shifts the absorption edge, reduces the electron–hole recombination and consequently improves photodegradation efficiency of Bisphenol A (BPA) in the presence of UV irradiation and hydrogen peroxide. The photocatalytic optimum conditions were established by studying the influence of various operational parameters including catalyst concentration, initial BPA concentration, H{sub 2}O{sub 2} concentration and initial pH. Under optimum conditions, Ce–ZnO (2%) achieved 100% BPA degradation and 61% BPA mineralization after 24 h of UV irradiation. BPA degradation reaction followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. Based on the identified intermediate products, the possible mechanism for BPA photodegradation is proposed. Toxicity under the optimum condition was also evaluated. - Graphical abstract: Proposed photocatalytic degradation pathway of BPA in the presence of Ce– ZnO (2%)/UV/H{sub 2}O{sub 2} system. - Highlights: • Influence of different parameters on the degradation and mineralization of BPA. • Identification of possible degradation products. • Toxicity tests conducted with Vibrio fischeri. • Simple and direct photodegradation mechanism of BPA is proposed.

  9. Photocatalytic degradation of dairy effluent using AgTiO2 nanostructures/polyurethane nanofiber membrane

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Barakat, Nasser A.M.; Chronakis, Ioannis S.

    2015-01-01

    Dairy effluent (DE) is environmentally toxic and needs special attention. Photocatalytic degradation of DE was studied using novel polyurethane (PU)-based membranes. Typically, silver-titanium dioxide nanofibers (AgTiO2 NFs) and silver-titanium dioxide nanoparticles (AgTiO2 NPs) were individually...... incorporated in PU electrospun nanofibers to overcome the mandatory sophisticated separation of the nanocatalysts, which can create a secondary pollution, after the treatment process. These nanomembranes were characterized in SEM, TEM, XRD and UV studies. The polymeric electrospun nanofibers were smooth...

  10. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    International Nuclear Information System (INIS)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2015-01-01

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO 3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH 4 F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO 2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl 2 ] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO 2 ), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO 2 –Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst

  11. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates.

    Science.gov (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P

    2017-07-01

    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  12. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  13. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Birte Mull

    2017-01-01

    Full Text Available Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2 is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO. TiO2 coated with different GO amounts (0.75%–14% were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples.

  14. Photocatalytic degradation of dissolved organic matter in the ground water employing TiO2 film supported on stainless steel plate

    International Nuclear Information System (INIS)

    Andayani, W.; Sumartono, A.; Lindu, M.

    2012-01-01

    The Taman Palem Residences, Cengkareng, Indonesia has a groundwater problem as a main sources of drinking water in the area due to yellowish brown colour of the water, that may come from dissolved organic matter (DOM), humic substances. Photocatalytic degradation using TiO 2 coated on a stainless steel plate (8 x 8 cm) to degrade the dissolved organic matter was studied. Groundwater samples were collected at 150 m deep from Taman Palem Residences. The TiO 2 catalyst was made from deep coating in a sol-gel system of titanium (IV) diisopropoxidebisacetylacetonate (TAA) precursor and immobilized at stainless steel plate (8 x 8 cm), followed by calcination at 525°C. Two catalyst sheets were put in batch reactor containing groundwater. The ground water containing DOM were irradiated by UV black light at varying initial pH values i.e 5, 7 and 9. Sampling of solution was taken at the interval time of 0, 1, 2, 4, and 6 hours. DOM residu in water before and after irradiation were measured by spectrophotometer UV-Vis at 300 nm. Photocatalytic degradation of DOM was greater in acid solution than in basic solution. The determination of intermediate degradation products by HPLC revealed that oxalic acid was detected consistently. (author)

  15. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hosseini

    2017-04-01

    Full Text Available The photocatalytic activity of Bi2O3 and Ag2O-Bi2O3 was evaluated by degradation of aqueous methyl orange as a model dye effluent. Bi2O3 was synthesized using chemical precipitation method. Structural analysis revealed that Bi2O3 contain a unique well-crystallized phase and the average crystallite size of 22.4 nm. The SEM analysis showed that the size of Bi2O3 particles was mainly in the range of 16-22 nm. The most important variables affecting the photocatalytic degradation of dyes, namely reaction time, initial pH and catalyst dosage were studied, and their optimal amounts were found at 60 min, 5.58 and 0.025 g, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model. Incorporation of Ag2O in the structure of composite caused decreasing band gap and its response to visible light. Because a high percentage of sunlight is visible light, hence Ag2O-Bi2O3 nano-composite could be used as an efficient visible light driven photocatalyst for degradation of dye effluents by sunlight. Copyright © 2017 BCREC GROUP. All rights reserved Received: 15th August 2016; Revised: 20th December 2016; Accepted: 21st December 2016 How to Cite: Hosseini, S.A., Saeedi, R. (2017. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 96-105 (doi:10.9767/bcrec.12.1.623.96-105 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.623.96-105

  16. Kinetics of Photocatalytic Degradation of Diuron in Aqueous Colloidal Solutions of Q-TiO2 Particles

    Czech Academy of Sciences Publication Activity Database

    Macounová, Kateřina; Krýsová, Hana; Ludvík, Jiří; Jirkovský, Jaromír

    2003-01-01

    Roč. 156, - (2003), s. 273-282 ISSN 1010-6030 R&D Projects: GA ČR GA203/99/0763; GA ČR GA203/00/D071; GA ČR GA203/02/0983; GA AV ČR IAA4040804 Institutional research plan: CEZ:AV0Z4040901 Keywords : photocatalytic degradation * phenylurea herbicide diuron * Q-TiO2 Subject RIV: CG - Electrochemistry Impact factor: 1.693, year: 2003

  17. Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M. [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal); Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal, F-63177 Aubiere cedex (France); Calvete, M.J.F.; Goncalves, N.P.F.; Burrows, H.D. [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal); Sarakha, M. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal, F-63177 Aubiere cedex (France); Fernandes, A.; Ribeiro, M.F. [Instituto para a Biotecnologia e Bioengenharia, Centro para a Engenharia Biologica e Quimica, Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Azenha, M.E., E-mail: meazenha@ci.uc.pt [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal); Pereira, M.M., E-mail: mmpereira@qui.uc.pt [Departamento de Quimica, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra (Portugal)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Complete immobilization of zinc(II) phthalocyanines accomplished in Al-MCM-41. Black-Right-Pointing-Pointer Efficient photodegradation of model pesticides achieved using 365 nm irradiation. Black-Right-Pointing-Pointer Sodium azide experiments showed the involvement of singlet oxygen ({sup 1}O{sub 2}). - Abstract: In the present study the authors investigated a set of three new zinc(II) phthalocyanines (zinc(II) tetranitrophthalocyanine (ZnTNPc), zinc(II) tetra(phenyloxy)phthalocyanine (ZnTPhOPc) and the tetraiodide salt of zinc(II)tetra(N,N,N-trimethylaminoethyloxy) phthalocyaninate (ZnTTMAEOPcI)) immobilized into Al-MCM-41 prepared via ship-in-a-bottle methodology. The samples were fully characterized by diffuse reflectance-UV-vis spectroscopy (DRS-UV-vis), luminescence, thermogravimetric analysis (TG/DSC), N{sub 2} adsorption techniques and elemental analysis. A comparative study was made on the photocatalytic performance upon irradiation within the wavelength range 320-460 nm of these three systems in the degradation of pesticides fenamiphos and pentachlorophenol. ZnTNPc-Al-MCM-41 and ZnTTMAEOPcI-Al-MCM-41 were found to be the most active systems, with the best performance observed with the immobilized cationic phthalocyanine, ZnTTMAEOPcI-Al-MCM-41. This system showed high activity even after three photocatalytic cycles. LC-MS product characterization and mechanistic studies indicate that singlet oxygen ({sup 1}O{sub 2}), produced by excitation of these immobilized photosensitizers, is a key intermediate in the photocatalytic degradation of both pesticides.

  18. Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides

    International Nuclear Information System (INIS)

    Silva, M.; Calvete, M.J.F.; Gonçalves, N.P.F.; Burrows, H.D.; Sarakha, M.; Fernandes, A.; Ribeiro, M.F.; Azenha, M.E.; Pereira, M.M.

    2012-01-01

    Highlights: ► Complete immobilization of zinc(II) phthalocyanines accomplished in Al-MCM-41. ► Efficient photodegradation of model pesticides achieved using 365 nm irradiation. ► Sodium azide experiments showed the involvement of singlet oxygen ( 1 O 2 ). - Abstract: In the present study the authors investigated a set of three new zinc(II) phthalocyanines (zinc(II) tetranitrophthalocyanine (ZnTNPc), zinc(II) tetra(phenyloxy)phthalocyanine (ZnTPhOPc) and the tetraiodide salt of zinc(II)tetra(N,N,N-trimethylaminoethyloxy) phthalocyaninate (ZnTTMAEOPcI)) immobilized into Al-MCM-41 prepared via ship-in-a-bottle methodology. The samples were fully characterized by diffuse reflectance-UV–vis spectroscopy (DRS-UV–vis), luminescence, thermogravimetric analysis (TG/DSC), N 2 adsorption techniques and elemental analysis. A comparative study was made on the photocatalytic performance upon irradiation within the wavelength range 320–460 nm of these three systems in the degradation of pesticides fenamiphos and pentachlorophenol. ZnTNPc-Al-MCM-41 and ZnTTMAEOPcI-Al-MCM-41 were found to be the most active systems, with the best performance observed with the immobilized cationic phthalocyanine, ZnTTMAEOPcI-Al-MCM-41. This system showed high activity even after three photocatalytic cycles. LC–MS product characterization and mechanistic studies indicate that singlet oxygen ( 1 O 2 ), produced by excitation of these immobilized photosensitizers, is a key intermediate in the photocatalytic degradation of both pesticides.

  19. Role of active species on photocatalytic degradation of remazol golden yellow textile dye employing SrSnO_3 or TiO_2 as catalyst

    International Nuclear Information System (INIS)

    Teixeira, Ana Rita Ferreira Alves

    2015-01-01

    Heterogeneous photocatalysis is an important alternative for environmental remediation, with the possibility of its use for degradation of textile dyes effluents, as remazol golden yellow (RNL). Many semiconductors can be employed as photocatalysts, highlighting commercial TiO_2 P25 Evonik, a mixture of anatase and rutile phases. Other materials have been studied for such application, including SrSnO_3. In this work, strontium stannate was synthesized by the modified Pechini method and its photocatalytic activity on the degradation of the RNL textile was evaluated, as well as the activity for the commercial P25. The aim of this study was determining the role of each active specie on the photodegradation of the RNL system. In order to achieve such objective, some experiments were carried out in the presence of hydroxyl radical, hole and electron scavengers (isopropanol, formic acid and silver, respectively). The photocatalysts were characterized by X-ray diffraction (XDR), infrared spectroscopy (IV), Raman spectroscopy, UV-visible spectroscopy, surface area by BET method, and zero charge potential. SrSnO_3 obtained showed strontium carbonate as secondary phase, and this may have caused a short-range disorder for the material. The photocatalytic performance was evaluated by UV-Vis spectroscopy analysis of the RNL solutions before and after UVC irradiation in the presence of catalysts. The use of scavengers showed that, for both catalysts, hydroxyl radical play a major role, holes have an important participation on the formation of these radicals while electrons have no considerable participation. The results confirm that recombination is a limiting factor for SrSnO_3 and P25. (author)

  20. Ag{sub 2}CO{sub 3}/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Zhou [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, 117411 (Singapore); Chan, Hardy Sze On [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu, Jishan, E-mail: chmwuj@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, 117411 (Singapore)

    2015-12-15

    Highlights: • UiO-66 was an outstanding substrate due to its superior properties and stability. • Ag{sub 2}CO{sub 3}/UiO-66 photocatalyst was synthesized by a simple solution method. • Ag{sub 2}CO{sub 3}/UiO-66 had excellent RhB degrading activity under visible-light irradiation. • Higher surface area of Ag{sub 2}CO{sub 3} in Ag{sub 2}CO{sub 3}/UiO-66 led to the enhanced activity. • Diverse active species may participate in the process of RhB degradation. - Abstract: Because of their excellent properties, metal-organic frameworks (MOFs) are considered as ideal materials for the development of visible-light photocatalyst. Particularly, although increasing research interests have been put on MOF based photocatalysts, the MOF supported Ag{sub 2}CO{sub 3} as photocatalyst has not been reported in the field of water treatment. In this study, a zirconium based MOF, UiO-66, was incorporated with Ag{sub 2}CO{sub 3} through a convenient solution method and used for visible-light prompted dye degradation. Compared to the mixture of pristine UiO-66 and Ag{sub 2}CO{sub 3}, the developed Ag{sub 2}CO{sub 3}/UiO-66 composite exhibited enhanced photocatalytic activity to the degradation of rhodamine B (RhB) under visible-light irradiation. It was supposed that the participation of UiO-66 during the synthesis of Ag{sub 2}CO{sub 3} was crucial for such improvement. In addition, the Ag{sub 2}CO{sub 3}/UiO-66 composite demonstrated good structural stability after the degradation experiment, and most of its photocatalytic activity was still preserved after the recycle test. Moreover, the photocatalytic mechanism of the Ag{sub 2}CO{sub 3}/UiO-66 composite was investigated and a possible pathway of RhB degradation was also proposed.

  1. Novel and facile synthesis of Ba-doped BiFeO{sub 3} nanoparticles and enhancement of their magnetic and photocatalytic activities for complete degradation of benzene in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Tayyebeh; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2016-10-05

    Highlights: • An efficient novel visible light photocatalyst was synthesized. • Ba doped BFO showed enhanced surface area, oxygen vacancies, magnetic and photocatalytic activities. • Ba doped BFO can be an economic photocatalyst for benzene degradation. • Complete degradation and high mineralization of benzene were achieved with 60 min irradiation. - Abstract: In this work, Bi{sub 1-x} Ba{sub x} FeO{sub 3} (x = 0.05, 0.1 and 0.2 mol%) multiferroic materials as visible-light photocatalysts were successfully synthesized via a simple and rapid sol-gel method, at a low temperature and with rapid calcination. Ba loading brought about a distorted structure of BiFeO{sub 3} magnetic nanoparticles (BFO MNPs) consisting of small, randomly oriented and non-uniform grains, leading to increased surface area and improved magnetic and photocatalytic activities. Doping of Ba{sup 2+} into pure BFO (Bi{sub 1-x} Ba{sub x} FeO{sub 3}, x = 0.2 mol%) greatly increased magnetic saturation to 3.0 emu/g and significantly decreased the band-gap energy to 1.79 eV, as compared to 2.1 emu/g and 2.1 eV, respectively, for pure BFO. Bi{sub 1-x}Ba {sub x}FeO{sub 3} of x = 0.2 mol% exhibited the greatest photocatalytic degradation effect after 60 min of visible light irradiation, and reached 97% benzene removal efficiency, leading to production of a high concentration of carbon dioxide (CO{sub 2}), with 93% and 82% reductions in chemical oxygen demand (COD) and total organic carbon (TOC), respectively. The identified major intermediate products of photodegradation enabled prediction of the proposed benzene degradation pathway. The enhanced photocatalytic activity of benzene removal is due to both mechanisms, photocatalytic and photo-Fenton catalytic degradation.

  2. Enhanced photocatalytic activity for degrading pollutants of g-C{sub 3}N{sub 4} by promoting oxygen adsorption after H{sub 3}BO{sub 3} modification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengming; Raziq, Fazal; Liu, Chong; Li, Zhijun [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Sun, Liqun [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); College of Chemical Engineering, Daqing Normal University, Daqing 163712 (China); Jing, Liqiang, E-mail: jinglq@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China)

    2015-12-15

    Graphical abstract: - Highlights: • G-C{sub 3}N{sub 4} is modified by a hydrothermal post treatment with orthoboric acid. • The surface modification could enhance the separation of photogenerated charges. • This leads to the enhanced photocatalytic activities for degrading pollutants. • The borate acid modification favors O{sub 2} adsorption to promote charge separation. - Abstract: The g-C{sub 3}N{sub 4} has been modified by a hydrothermal post treatment with orthoboric acid. It is shown that the surface modification with an appropriate amount of orthoboric acid obviously enhances the surface photovoltage responses of g-C{sub 3}N{sub 4}, clearly indicating that the separation of photogenerated charges is greatly improved. This is well responsible for the enhanced photocatalytic activities for degrading representative gas-phase acetaldehyde, and liquid-phase phenol. Moreover, it is demonstrated that the amount of O{sub 2} adsorbed on the surfaces of g-C{sub 3}N{sub 4} is greatly increased after H{sub 3}BO{sub 3} modification based on the O{sub 2} temperature-programmed desorption curves. It is suggested that the orthoboric acid modification favors O{sub 2} adsorption to promote the photogenerated electrons captured for improved photocatalytic activities. This work would provide feasible routes to further improve the photocatalytic performance of semiconductors for degrading pollutants.

  3. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    International Nuclear Information System (INIS)

    Li, Weibing; Yue, Jiguang; Hua, Fangxia; Feng, Chang; Bu, Yuyu; Chen, Zhuoyuan

    2015-01-01

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co 2+ catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l −1 in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained

  4. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weibing, E-mail: lwbing@qust.edu.cn [School of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042 (China); Yue, Jiguang; Hua, Fangxia; Feng, Chang [School of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042 (China); Bu, Yuyu; Chen, Zhuoyuan [Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071 (China)

    2015-10-15

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.

  5. Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe{sub 3}O{sub 4}/ZnO ternary nanohybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Thangavel, Srinivas [Nanomaterials Research Lab ( NmRL ), Department of Nanoscience and Technology, Karunya University, Coimbatore 641 114, Tamil Nadu (India); Center of Excellence in Advanced Materials and Green Technologies, Department of Chemical Engineering and Material Science, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, Tamil Nadu (India); Thangavel, Sakthivel [Nanomaterials Research Lab ( NmRL ), Department of Nanoscience and Technology, Karunya University, Coimbatore 641 114, Tamil Nadu (India); Department of Mechanical Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Raghavan, Nivea [Nanomaterials Research Lab ( NmRL ), Department of Nanoscience and Technology, Karunya University, Coimbatore 641 114, Tamil Nadu (India); Krishnamoorthy, Karthikeyan [Department of Mechanical Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Venugopal, Gunasekaran, E-mail: gunasekaran@karunya.edu [Nanomaterials Research Lab ( NmRL ), Department of Nanoscience and Technology, Karunya University, Coimbatore 641 114, Tamil Nadu (India); Solid State Electronics Lab, Research Institute of Electrical Communication, Tohoku University, Katahira, Sendai 980-8577 (Japan)

    2016-04-25

    A novel ternary nanohybrid structure was constructed with reduced graphene-oxide/iron-oxide/zinc-oxide (rGO/Fe{sub 3}O{sub 4}/ZnO) via a facile hydrothermal method. The structural, morphological and optical properties were explored using X-ray diffraction, scanning electron microscope (SEM) with energy dispersive spectra and photoluminescence (PL) studies. The functional groups of ternary nanohybrid were characterized by Fourier transform-infrared spectroscopy. SEM images confirm the presence of two-dimensional GO sheets, one dimensional Fe{sub 3}O{sub 4} and ZnO nanorods. The PL spectra showed the quenching effect which has been observed from the reduction of electron–hole recombination in hybrid. Degradation efficiency of this system was evaluated and compared with pure ZnO and Fe{sub 3}O{sub 4}/ZnO. Under visible light condition, the ternary nanohybrid has shown an excellent photocatalytic degradation of methylene-violet dye. The degradation efficiency of rGO/Fe{sub 3}O{sub 4}/ZnO was systematically analyzed by absorption spectra and total organic carbon removal techniques. Our experimental results will show the potential way for the development of futuristic rGO based nanohybrids as an effective photocatalytic materials for waste-water treatment and environmental remedial applications. - Graphical abstract: A new ternary nanohybrid has been constructed with 1D Fe{sub 3}O{sub 4}–ZnO and 2D rGO sheets to utilize as visible-light photocatalyst. Highly active photocatalyst has been prepared by a feasible hydrothermal approach. For the first time, rGO/Fe{sub 3}O{sub 4}/ZnO ternary nanohybrid exhibits a superior photocatalytic activity towards the degradation of methylene-violet (dye) and the same can be used for environmental remediation applications. - Highlights: • Ternary nanohybrid constructed with 1D ZnO, Fe{sub 3}O{sub 4} and 2D rGO. • Aggregation free rGO/Fe{sub 3}O{sub 4}/ZnO nanohybrid exhibits superior photocatalytic activity. • rGO boost up

  6. Photocatalytic degradation of Acephate, Omethoate, and Methyl parathion by Fe{sub 3}O{sub 4}@SiO{sub 2}@mTiO{sub 2} nanomicrospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lingling, E-mail: zllyslngj@126.com [State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Quality Control, Wuxi, Jiangsu 214122 (China); Pi, Fuwei; Wang, Yifan [State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Quality Control, Wuxi, Jiangsu 214122 (China); Xu, Hui [Key Laboratory of Healthy & Intelligent Kitchen System Integration, Ningbo, Zhejiang 315336 (China); Zhang, Yinzhi [State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Quality Control, Wuxi, Jiangsu 214122 (China); Sun, Xiulan, E-mail: sxlzzz@jiangnan.edu.cn [State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Quality Control, Wuxi, Jiangsu 214122 (China)

    2016-09-05

    Highlights: • An efficient photocatalyst Fe{sub 3}O{sub 4}@SiO{sub 2}@mTiO{sub 2} with high magnetic response and large specific surface area was synthesized. • Photocatalytic efficiency of Fe{sub 3}O{sub 4}@SiO{sub 2}@mTiO{sub 2} on Acephate, Omethoate, and Methyl Parathion was higher than TiO{sub 2} P-25. • Possible photocatalytic degradation mechanisms for the Acephate, Omethoate, and Methyl Parathion were proposed. - Abstract: A novel magnetic mesoporous nanomicrospheres Fe{sub 3}O{sub 4}@SiO{sub 2}@mTiO{sub 2} were synthetized and characterized by a series of techniques including FE-TEM, EDS, FE-SEM, PXRD, XPS, BET, TGA as well as VSM, and subsequently tested as a photocatalyst for the degradation of Acephate, Omethoate, and Methyl parathion under UV irradiation. The well-designed nanomicrospheres exhibit a pure and highly crystalline anatase TiO{sub 2} layer, large specific surface area, and high-magnetic-response. Photocatalytic degradation of the three organophosphorus pesticides (OPPs) and the formation intermediates were identified using HPLC, TOC-V{sub cpn}, IC, pH meter and GC–MS. Acephate, Omethoate, and Methyl parathion disappeared after 45 min, 45 min, and 80 min UV illumination, respectively. At the end of the treatment, the total organic carbon (TOC) of the OPPs was reduced 80–85%. The main mineralization products were SO{sub 4}{sup 2−}, NO{sub 3}{sup −} and PO{sub 4}{sup 3−} and Omethoate additionally formed NO{sub 2}{sup −}. Based on the results, we proposed the photocatalytic degradation pathways for Acephate, Omethoate, and Methyl parathion.

  7. Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution

    Science.gov (United States)

    D'Amato, C. A.; Giovannetti, R.; Zannotti, M.; Rommozzi, E.; Ferraro, S.; Seghetti, C.; Minicucci, M.; Gunnella, R.; Di Cicco, A.

    2018-05-01

    A new approach to obtain a heterogeneous photocatalytic material with gold nanoparticles and TiO2 semiconductor was performed exploiting the reducing ability of acetylacetone, a chemical present in the TiO2 paste formulation. Gold/TiO2 heterogeneous catalyst supported on polypropylene [PP@Au-TiO2]A was prepared; composition, structure and morphology of this new material were defined by using UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD), X-ray Fluorescence (XRF), Raman Spectroscopy, Photoluminescence and Diffuse Reflectance Spectroscopy. The new material was tested in the photocatalytic degradation of Alizarin Red S in water solution, as target pollutant, under visible light and correlated with structural and spectroscopic characterizations. [PP@Au-TiO2]A showed higher photocatalytic activity respect to pure [PP@TiO2]A with an improvement of photodegradation kinetic. The best performance was obtained using [PP@Au-TiO2]A sample with 0.006 wt.% of Au and the photocatalytic improvement was correlated with the band gap energy decrease of photocatalyst.

  8. Optimization of Nano-TiO Photocatalytic Reactor for Organophosphorus Degradation

    Directory of Open Access Journals (Sweden)

    Ilin Sadeghi

    2012-01-01

    Full Text Available The photocatalytic decontamination of triethyl phosphate (TEP is studied by the UV/nano-TiO2 process. The nano-TiO2 concentration and pH value for the complete oxidation of TEP were investigated in different concentrations of TEP. The kinetic reaction was calculated for TEP as a function of initial concentration of TEP. Results of adsorptions showed that TEP was adsorbed better in alkalinity pH, and the natural pH had the highest reaction rate for complete degradation. Also, the zero-kinetic order with the lag time as a function of initial concentration of TEP and TiO2 was suggested for oxidation of TEP. The optimized concentration of nano-TiO2 was 400 mg/lit which had the best conversion and the lowest lag time in the reaction.

  9. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO{sub 4} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Sinaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Highlights: • Fe-loaded BiVO{sub 4} particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO{sub 4} samples showed higher photocatalytic activity than pure BiVO{sub 4}. • The Fe{sup 3+} ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO{sub 4} and nominal 0.5–5.0 mol% Fe-loaded BiVO{sub 4} samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO{sub 4} shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO{sub 4}. Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO{sub 4} sample exhibited remarkably higher activity than pure BiVO{sub 4}.

  10. Enhanced Photocatalytic Degradation and Mineralization of Furfural Using UVC/TiO2/GAC Composite in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Bahram Ghasemi

    2016-01-01

    Full Text Available Titanium dioxide nanoparticles were immobilized on granular activated carbon (GAC as a porous and low-density support for photocatalytic degradation of furfural. The TiO2/GAC composite was synthetized using the simple sol-gel method and fully characterized. The effects of the operational parameters of furfural concentration (200–700 mg/L, initial pH (2–12, TiO2/GAC composite dosage (1–3.5 g/L, and irradiation time (20–120 min were studied. The synthetized TiO2/GAC composite exhibited a total pore volume of 0.13 cm3/g and specific surface area of 35.91 m2/g. Removal efficiency of up to 95% was observed at initial pH of 10, TiO2/GAC dosage of 2.5 g/L, irradiation time of 80 min, and initial furfural concentration of 500 mg/L. The photocatalyst could be reused at least four consecutive times with a mere 2% decrease in furfural removal efficiency. Mineralization efficiency of 94% was obtained within 80 min. Pseudo-first-order kinetics best fit the photocatalytic degradation of furfural under experimental conditions.

  11. TUNGSTOPHOSPHORIC ACID HETEROGENIZED ONTO NH4ZSM5 AS AN EFFICIENT AND RECYCLABLE CATALYST FOR THE PHOTOCATALYTIC DEGRADATION OF DYES

    Directory of Open Access Journals (Sweden)

    Candelaria Leal Marchena

    2015-05-01

    Full Text Available Materials based on tungstophosphoric acid (TPA immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH43PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.

  12. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  13. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2–In and a biofiltration process

    International Nuclear Information System (INIS)

    Hinojosa-Reyes, M.; Rodríguez-González, V.; Arriaga, S.

    2012-01-01

    Highlights: ► The best photocatalytic system for EB degradation was based on TiO 2 –In 1%/365 nm. ► A maximum EC of 290 g m −3 h −1 for the hybrid system was obtained. ► The hybrid process enhanced 40% the overall EC of ethylbenzene. ► An overall mineralization of 67% for EB degradation was reached in the hybrid system. - Abstract: The use of hybrid processes for the continuous degradation of ethylbenzene (EB) vapors has been evaluated. The hybrid system consists of an UV/TiO 2 –In photooxidation coupled with a biofiltration process. Both the photocatalytic system using P25-Degussa or indium-doped TiO 2 catalysts and the photolytic process were performed at UV-wavelengths of 254 nm and 365 nm. The experiments were carried out in an annular plug flow photoreactor packed with granular perlite previously impregnated with the catalysts, and in a glass biofilter packed with perlite and inoculated with a microbial consortium. Both reactors were operated at an inlet loading rate of 127 g m −3 h −1 . The greatest degradation rate of EB (0.414 ng m −2 min −1 ) was obtained with the TiO 2 –In 1%/365 nm photocatalytic system. The elimination capacity (EC) obtained in the control biofilter had values ∼60 g m −3 h −1 . Consequently, the coupled system was operated for 15 days, and a maximal EC of 275 g m −3 h −1 . Thus, the results indicate that the use of hybrid processes enhanced the EB vapor degradation and that this could be a promising technology for the abatement of recalcitrant volatile organic compounds.

  14. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO{sub 2}-In and a biofiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa-Reyes, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica A.C., Division de Ciencias Ambientales, Camino a la Presa San Jose 2055, Lomas 4a seccion, CP. 78216, San Luis Potosi, S.L.P. (Mexico); Rodriguez-Gonzalez, V. [Instituto Potosino de Investigacion Cientifica y Tecnologica A.C., Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Lomas 4a seccion, CP. 78216, San Luis Potosi, S.L.P. (Mexico); Arriaga, S., E-mail: sonia@ipicyt.edu.mx [Instituto Potosino de Investigacion Cientifica y Tecnologica A.C., Division de Ciencias Ambientales, Camino a la Presa San Jose 2055, Lomas 4a seccion, CP. 78216, San Luis Potosi, S.L.P. (Mexico)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The best photocatalytic system for EB degradation was based on TiO{sub 2}-In 1%/365 nm. Black-Right-Pointing-Pointer A maximum EC of 290 g m{sup -3} h{sup -1} for the hybrid system was obtained. Black-Right-Pointing-Pointer The hybrid process enhanced 40% the overall EC of ethylbenzene. Black-Right-Pointing-Pointer An overall mineralization of 67% for EB degradation was reached in the hybrid system. - Abstract: The use of hybrid processes for the continuous degradation of ethylbenzene (EB) vapors has been evaluated. The hybrid system consists of an UV/TiO{sub 2}-In photooxidation coupled with a biofiltration process. Both the photocatalytic system using P25-Degussa or indium-doped TiO{sub 2} catalysts and the photolytic process were performed at UV-wavelengths of 254 nm and 365 nm. The experiments were carried out in an annular plug flow photoreactor packed with granular perlite previously impregnated with the catalysts, and in a glass biofilter packed with perlite and inoculated with a microbial consortium. Both reactors were operated at an inlet loading rate of 127 g m{sup -3} h{sup -1}. The greatest degradation rate of EB (0.414 ng m{sup -2} min{sup -1}) was obtained with the TiO{sub 2}-In 1%/365 nm photocatalytic system. The elimination capacity (EC) obtained in the control biofilter had values {approx}60 g m{sup -3} h{sup -1}. Consequently, the coupled system was operated for 15 days, and a maximal EC of 275 g m{sup -3} h{sup -1}. Thus, the results indicate that the use of hybrid processes enhanced the EB vapor degradation and that this could be a promising technology for the abatement of recalcitrant volatile organic compounds.

  15. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light.

    Science.gov (United States)

    Yang, Chih-Chi; Doong, Ruey-An; Chen, Ku-Fan; Chen, Giin-Shan; Tsai, Yung-Pin

    2018-01-01

    This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO 2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO 2 that is doped with Cu 2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced. The CuO-doped anatase TiO 2 powder was successfully synthesized in this study by a sol-gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.

  16. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles

    Science.gov (United States)

    Kavitha, S. R.; Umadevi, M.; Janani, S. R.; Balakrishnan, T.; Ramanibai, R.

    2014-06-01

    Silver nanoparticles (Ag NPs) of different sizes have been prepared by chemical reduction method and characterized using UV-vis spectroscopy and transmission electron microscopy (HRTEM). Fluorescence spectral analysis showed that the quenching of fluorescence of textile dyeing waste water (TDW) has been found to decrease with decrease in the size of the Ag NPs. Experimental results show that the silver nanoparticles can quench the fluorescence emission of adsorbed TDW effectively. The fluorescence interaction between Ag NPs (acceptor) and TDW (donor) confirms the Förster Resonance Energy Transfer (FRET) mechanism. Long range dipole-dipole interaction between the excited donor and ground state acceptor molecules is the dominant mechanism responsible for the energy transfer. Furthermore, photocatalytic degradation of TDW was measured spectrophotometrically by using silver as nanocatalyst under UV light illumination. The kinetic study revealed that synthesized Ag NPs was found to be effective in degrading TDW.

  17. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Triantis, T.M.; Fotiou, T. [Laboratory of Catalytic - Photocatalytic Processes (Solar Energy - Environment), Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , Neapoleos 25, 15310 Agia Paraskevi, Attiki (Greece); Kaloudis, T. [Organic Micropollutants Laboratory, Athens Water Supply and Sewerage Company (EYDAP SA), WTP Aharnon, Menidi (Greece); Kontos, A.G.; Falaras, P. [Laboratory of Photo-redox Conversion and Storage of Solar Energy, Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , Neapoleos 25, 15310 Agia Paraskevi, Attiki (Greece); Dionysiou, D.D.; Pelaez, M. [Environmental Engineering and Science Program, School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, OH 45221-0012 (United States); Hiskia, A., E-mail: hiskia@chem.demokritos.gr [Laboratory of Catalytic - Photocatalytic Processes (Solar Energy - Environment), Institute of Physical Chemistry, National Center for Scientific Research ' Demokritos' , Neapoleos 25, 15310 Agia Paraskevi, Attiki (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer N-TiO{sub 2} exhibited effective degradation of MC-LR under UV-A, solar and visible light. Black-Right-Pointing-Pointer Complete photocatalytic mineralization of MC-LR was achieved under UV-A and solar light. Black-Right-Pointing-Pointer The organic nitrogen is mainly released as ammonium and nitrate ions. - Abstract: In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO{sub 2} (N-TiO{sub 2}) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO{sub 2}, Kronos and reference TiO{sub 2} nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO{sub 2} followed by N-TiO{sub 2} with 96% toxin destruction after 20 min of illumination. Under solar light illumination, N-TiO{sub 2} nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO{sub 2} for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO{sub 2} displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO{sub 2}{sup -}, NO{sub 3}{sup -} and NH{sub 4}{sup +}) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light.

  18. Graphene/TiO2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity

    Science.gov (United States)

    Hu, Xin-Yan; Zhou, Kefu; Chen, Bor-Yann; Chang, Chang-Tang

    2016-01-01

    This first-attempt study revealed mixture design of experiments to obtain the most promising composites of TiO2 loaded on zeolite and graphene for maximal photocatalytic degradation of oxytetracycline (OTC). The optimal weight ratio of graphene, titanium dioxide (TiO2), and zeolite was 1:8:1 determined via experimental design of simplex lattice mixture. The composite material was characterized by XRD, UV-vis, TEM and EDS analysis. The findings showed the composite material had a higher stability and a stronger absorption of the visible light. In addition, it was uniformly dispersed with promising adsorption characteristics. OTC was used as model toxicant to evaluate the photodegradation efficiency of the GTZ (1:8:1). At optimal operating conditions (i.e., pH 7 and 25 °C), complete degradation (ca. 100%) was achieved in 180 min. The biotoxicity of the degraded intermediates of OTC on cell growth of Escherichia coli DH5α were also assayed. After 180 min photocatalytic treatment, OTC solution treated by GTZ (1:8:1) showed insignificant biotoxicity to receptor DH5α cells. Furthermore, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process.

  19. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Sener, S.; Arpac, E.; Sayilkan, H.

    2008-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without acid catalyst at 225 deg. C in 1 h. Nanostructure-TiO 2 based thin films, contain at different solid ratio of TiO 2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics

  20. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  1. CaSnO 3 obtained by modified Pechini method applied in the photocatalytic degradation of an azo dye

    Directory of Open Access Journals (Sweden)

    G. L. Lucena

    Full Text Available Abstract Pure forms of alkaline-earth stannates with perovskite structure (ASnO3, A= Ca2+, Sr2+, Ba2+ have been used as photocatalysts. In this work, CaSnO3 perovskite sample was synthesized by a modified Pechini method at 800 ºC and characterized by X-ray diffraction (XRD, UV-visible spectroscopy, infrared spectroscopy and Raman spectroscopy. The photocatalytic degradation of remazol golden yellow (RNL dye under UV radiation was evaluated. The XRD pattern showed that the synthesis method favored the orthorhombic CaSnO3 crystallization. According to the Raman spectrum, a material with high short-range order was obtained despite of the relatively low synthesis temperature, compared to the solid-state reaction one. The highest photocatalytic activity was attained at pH 3, which presented 51% discoloration and improved activity of 35% compared to discoloration solely due to adsorption (absence of radiation. The point of zero charge (PZC and the photocatalytic results indicated that a direct mechanism prevailed at pH 3, whereas an indirect mechanism prevailed at pH 6.

  2. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    SU Bitao; WANG Ke; BAI Jie; MU Hongmei; TONG Yongchun; MIN Shixiong; SHE Shixiong; LEI Ziqiang

    2007-01-01

    Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradia-tion. The influence of doping amount of Fe3+ (ω: 0.00%-3.00%) on photocatalytic activities of TiO2 was investigated.Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorptionspectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation.

  3. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    International Nuclear Information System (INIS)

    Kaneva, N; Bojinova, A; Papazova, K

    2016-01-01

    Here we report the preparation of ZnO particles with different concentrations of La 3 + doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH 3 COO) 2 .2H 2 O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La 3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters. (paper)

  4. Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO{sub 2} hybrid carbon spheres

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Waseem; Haque, M.M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M., E-mail: m.muneer.ch@amu.ac.in [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Fleisch, M.; Hakki, A.; Bahnemann, D. [Institut fuer Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover (Germany)

    2015-05-25

    Highlights: • La and Mo doped TiO{sub 2} hybrid carbon spheres have been synthesized using hydrothermal method. • The characterization of La and Mo doped TiO{sub 2} hybrid carbon spheres uniform morphology having anatase phase and good structural stability. • TiO{sub 2} hybrid carbon spheres with dopant concentration of 2.0% (La) and 1.5% (Mo) showed the highest photocatalytic activity as compared to the other dopant concentrations for the degradation of all the dyes under investigation. - Abstract: La and Mo-doped TiO{sub 2} coated carbon spheres have been synthesized using the hydrothermal method. The prepared materials were characterized by standard analytical techniques, X-ray diffraction (XRD), UV–Vis spectrophotometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The XRD and Raman spectroscopic analysis showed that the particles are in anatase phase. The EDX and SEM images showed that La/Mo-doped TiO{sub 2} are present on the surface of the carbon spheres. The photocatalytic activity of the synthesized particles were tested by studying the degradation of three different chromophoric dyes, i.e., Acid Yellow 29 (azo dye), Coomassie Brilliant Blue G250 (triphenylmethane dye) and Acid Green 25 (anthraquinone dye) as a function of time on irradiation in aqueous suspension. TiO{sub 2} particle with dopant concentration of 2.0% La and 1.5% Mo showed the highest photocatalytic activity as compared to the other dopant concentrations for the degradation of all the dyes under investigation.

  5. Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO₂ Modified with OMS-2.

    Science.gov (United States)

    Hassan, Mohamed Elfatih; Chen, Jing; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-12-12

    In this study, CN-TiO₂ was modified with cryptomelane octahedral molecular sieves (OMS-2) by the sol-gel method based on the self-assembly technique to enhance its photocatalytic activity under the daylight irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and porosimeter analysis. The results showed that the addition of OMS-2 in the sol lead to higher Brunauer-Emmett-Teller (BET) surface area, pore volume, porosity of particle after heat treatment and the specific surface area, porosity, crystallite size and pore size distribution could be controlled by adjusting the calcination temperature. Compared to the CN-TiO₂-400 sample, CN-TiO₂/OMS-2-400 exhibited greater red shift in absorption edge of samples in visible region due to the OMS-2 coated. The enhancement of photocatalytic activity of CN-TiO₂/OMS-2 composite photocatalyst was subsequently evaluated for the degradation of the methyl orange dye under the daylight irradiation in water. The results showed that the methyl orange dye degradation rate reach to 37.8% for the CN-TiO₂/OMS-2-400 sample under the daylight irradiation for 5 h, which was higher than that of reference sample. The enhancement in daylight photocatalytic activities of the CN-TiO₂/OMS samples could be attributed to the synergistic effects of OMS-2 coated, larger surface area and red shift in adsorption edge of the prepared sample.

  6. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions

    International Nuclear Information System (INIS)

    Yang Huaming; Zhang Ke; Shi Rongrong; Li Xianwei; Dong Xiaodan; Yu Yongmei

    2006-01-01

    Anatase TiO 2 nanoparticles of about 16 nm in crystal size have been successfully synthesized via a sol-gel method. Thermal treatment of the precursor at 500-600 deg. C results in the formation of different TiO 2 phase compositions. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Effects of the pH value of the solution, H 2 O 2 addition, TiO 2 phase composition and recycled TiO 2 on the photocatalytic degradation of methyl orange (MeO) in TiO 2 suspensions under ultraviolet (UV) illumination were primarily investigated. The results indicate that a low pH value, proper amount of H 2 O 2 and pure anatase TiO 2 will facilitate the photocatalytic oxidation of the MeO solution. The photodegradation degree decreases with increasing the pH value of the solution and varies with different amounts of H 2 O 2 . Pure anatase TiO 2 shows better photocatalytic activity for MeO decolorization than biphase TiO 2 . The photocatalytic mechanism of the as-synthesized TiO 2 nanoparticles was discussed

  7. Enhanced photocatalytic degradation activity over TiO{sub 2} nanotubes co-sensitized by reduced graphene oxide and copper(II) meso-tetra(4-carboxyphenyl)porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Meng; Wan, Junmin, E-mail: wwjm2001@126.com; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2016-07-30

    Highlights: • CuTCPP/rGO-TNT photocatalysts are synthesized. • CuTCPP and rGO are helpful to induce interfacial charge transfer at surface junction. • CuTCPP and rGO are favorable for enhancing co-photocatalytic activity. • A deeper insight into the co-photocatalytic mechanism is put forward. • The photocatalyst are proven to be effective and chemically-stable catalysts. - Abstract: In this paper, TiO{sub 2} nanotubes (TNT) co-sensitized with copper(II) meso-tetra(4-carboxyphenyl)porphyrin (CuTCPP) and reduced graphene oxide nanosheets (rGO), which was fabricated through two-step improved hydrothermal method and heating reflux process. The effect of rGO and CuTCPP on the co-photocatalytic behavior of TNT for the degradation of Methylene Blue (MB) were measured under visible light irradiation. The photocatalysts have been characterized and analyzed by high-resolution transmission electron microscopy (TEM), selected area electronic diffraction (SAED), elemental mapping by energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and electron paramagnetic resonance (EPR). The results provide a deeper insight into the co-photocatalytic mechanism of CuTCPP/rGO-TNT nanocomposites. The degradation results showed a purification of more than 95% MB in wastewater, which is about 5 times higher than that of the pure TNT. The results also confirm the prepared CuTCPP/rGO-TNT nanocomposites possess superior co-photocatalytic activities.

  8. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films

    International Nuclear Information System (INIS)

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  9. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    Science.gov (United States)

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-03-01

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  10. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    International Nuclear Information System (INIS)

    Xu, L.J.; Chu, W.; Graham, Nigel

    2014-01-01

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H 2 O 2 decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US and USUV

  11. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J., E-mail: xulijie827@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W., E-mail: cewchu@polyu.edu.hk [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Graham, Nigel, E-mail: n.graham@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-06-30

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H{sub 2}O{sub 2} decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US

  12. Preparation and photocatalytic performance of Fe (III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yongchun, E-mail: dye@tjpu.edu.cn [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002 (China); Han, Zhenbang [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Chunyan [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002 (China); Du, Fang [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)

    2010-04-15

    Polyacrylonitrile (PAN) fiber was modified with hydroxylamine hydrochloride to introduce amidoxime groups onto the fiber surface. These amidoxime groups were used to react with Fe (III) ions to prepare Fe (III)-amidoximated PAN fiber complex, which was characterized using SEM, XRD, FTIR, XPS, DMA, and DRS respectively. Then the photocatalytic activity of Fe-AO-PAN was evaluated in the degradation of a typical azo dye, C. I. Reactive Red 195 in the presence of H{sub 2}O{sub 2} under visible light irradiation. Moreover, the effect of the Fe content of Fe-AO-PAN on dye degradation was also investigated. The results indicated that Fe (III) ions can crosslink between the modified PAN fiber chains by the coordination of Fe (III) ions with the amino nitrogen atoms and hydroxyl oxygen atoms of the amidoximation groups to form Fe (III)-amidoximated PAN fiber complex, and the Fe content of which is mainly determined by Fe (III) ions and amidoximation groups. Fe (III)-amidoximated PAN fiber complex is found to be activated in the visible light region. Moreover, Fe (III)-amidoximated PAN fiber complex shows the catalytic activity for dye degradation by H{sub 2}O{sub 2} at pH = 6.0 in the dark, and can be significantly enhanced by increasing light irradiation and Fe content, therefore, it can be used as a new heterogeneous Fenton photocatalyst for the effective decomposition of the dye in water. In addition, ESR spectra confirm that Fe (III)-amidoximated PAN fiber complex can generate more {center_dot}OH radicals from H{sub 2}O{sub 2} under visible light irradiation, leading to dye degradation. A possible mechanism of photocatalysis is proposed.

  13. Efficient photocatalytic degradation of perfluorooctanoic acid by a wide band gap p-block metal oxyhydroxide InOOH

    Science.gov (United States)

    Xu, Jingjing; Wu, Miaomiao; Yang, Jingwen; Wang, Zhengmei; Chen, Mindong; Teng, Fei

    2017-09-01

    In this work, we prepared a new wide band gap semiconductor, p-block metal oxyhydroxide InOOH, which exhibits efficient activity for perfluorooctanoic acid (PFOA) degradation under mild conditions and UV light irradiation. The apparent rate constant for PFOA degradation by InOOH is 27.6 times higher than that for P25 titania. Results show that ionized PFOA (C7F15COO-) can be adsorbed much more efficiently on the surface of InOOH than P25. Then, the adsorbed C7F15COO- can be decomposed directly by photo-generated holes to form C7F15COOrad radicals. This process is the key step for the photocalytic degradation of PFOA. Major degradation intermediates, fluoride ions and perfluorinated carboxylic acids (PFCAs) with shorter chain lengths were detected during PFOA degradation. A possible pathway for photocatalytic degradation of PFOA is proposed based on the experimental results. Therefore, this studies indicates a potential new material and method for the efficient treatment of PFCA pollutants under mild conditions.

  14. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  15. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D Reduced Graphene Oxide(RGO/Ni Foam

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2018-06-01

    Full Text Available A hybrid of ZnO nanorods grown onto three-dimensional (3D reduced graphene oxide (RGO@Ni foam (ZnO/RGO@NF is synthesized by a facile hydrothermal method. The as-prepared hybrid material is physically characterized by SEM, XRD, Raman, and X-ray photoelectron spectroscopy (XPS. When the as-prepared 3D hybrid is investigated as a photocatalyst, it demonstrates significant high photocatalytic activity for the degradation of methylene blue (MB, rhodamine (RhB, and mixed MB/RhB as organic dye pollutants. In addition, the practical application and the durability of the as-prepared catalyst to degradation of malachite green (MG in seawater are firstly assessed in a continuous flow system. The catalyst shows a high degradation efficiency and stable photocatalytic activity for 5 h continuous operation, which should be a promising catalyst for the degradation of organic dyes in seawater.

  16. TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid.

    Science.gov (United States)

    Ribao, Paula; Rivero, Maria J; Ortiz, Inmaculada

    2017-05-01

    Noble metals have been used to improve the photocatalytic activity of TiO 2 . Noble metal nanoparticles prevent charge recombination, facilitating electron transport due to the equilibration of the Fermi levels. Furthermore, noble metal nanoparticles show an absorption band in the visible region due to a high localized surface plasmon resonance (LSPR) effect, which contributes to additional electron movements. Moreover, systems based on graphene, titanium dioxide, and noble metals have been used, considering that graphene sheets can carry charges, thereby reducing electron-hole recombination, and can be used as substrates of atomic thickness. In this work, TiO 2 -based nanocomposites were prepared by blending TiO 2 with noble metals (Pt and Ag) and/or graphene oxide (GO). The nanocomposites were mainly characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), Raman spectroscopy, and photocurrent analysis. Here, the photocatalytic performance of the composites was analyzed via oxidizing dichloroacetic acid (DCA) model solutions. The influence of the noble metal load on the composite and the ability of the graphene sheets to improve the photocatalytic activity were studied, and the composites doped with different noble metals were compared. The results indicated that the platinum structures show the best photocatalytic degradation, and, although the presence of graphene oxide in the composites is supposed to enhance their photocatalytic performance, graphene oxide does not always improve the photocatalytic process. Graphical abstract It is a schematic diagram. Where NM is Noble Metal and LSPR means Localized Surface Plasmon Resonance.

  17. X-ray photoelectron spectroscopy characterization of composite TiO{sub 2}-poly(vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Losito, I.; Amorisco, A.; Palmisano, F.; Zambonin, P.G

    2005-02-15

    X-ray photoelectron spectroscopy (XPS) was adopted for the analytical characterization of composite titanium dioxide-poly(vinylidenefluoride) (TiO{sub 2}-PVDF) films developed for applications in the photocatalytic degradation of pollutants. The composites were deposited on glass substrates by casting or spin coating from TiO{sub 2}-PVDF suspensions in dimethylformamide (DMF). XPS data on the TiO{sub 2}-PVDF surface composition were used to optimize preparation conditions (composition of the TiO{sub 2}/PVDF suspension, deposition technique) in terms of titanium dioxide surface amount and film stability. The use of spin-coating deposition and the increase of TiO{sub 2} amount in the DMF suspensions were found to improve the titanium surface content, although high TiO{sub 2}/PVDF ratios led to film instability. PVDF-TiO{sub 2} films were also used in preliminary photocatalytic degradation tests on isoproturon, a phenylurea herbicide, under solar UV irradiation; the results were compared to direct photolysis to evaluate the catalytic efficiency of immobilized TiO{sub 2} and the role played by the PVDF film during the degradation process.

  18. The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO{sub 4}/BiOBr p-n heterojunction composites

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xuejun [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Dong, Yuying, E-mail: dongy@dlnu.edu.cn [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Cui, Yubo; Ou, Xiaoxia [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Qi, Xiaohui [College of Life Science, Dalian Nationalities University, Dalian, 116600 (China)

    2017-01-01

    Highlights: • Like-flowers BiPO{sub 4}/BiOBr was fabricated by mixing in solvent method. • o-Dichlorobenzene removal efficiency was 53.6% using BiPO{sub 4}/BiOBr. • The p–n junction improved o-dichlorobenzene degradation activity. - Abstract: In this paper, in order to enhance photo-induced electron-hole pairs separation of BiOBr, flowers-like BiPO{sub 4}/BiOBr p-n heterojunction composites was fabricated by a mixing in solvent method. The as-prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV–vis absorption spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and N{sub 2} adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of gaseous o-dichlorobenzene under visible light irradiation. Due to its strong adsorption capacity and the formation of p-n heterojunction, compared with BiPO{sub 4} and BiOBr, the BiPO{sub 4}/BiOBr composites showed higher photocatalytic activity in the degradation of gaseous o-DCB under visible light. Among them, 2% BiPO{sub 4}/BiOBr showed the maximum value of the activity, whose degradation rate was about 2.6 times as great as the pure BiOBr. Furthermore, the OH· was confirmed the main active species during the photocatalytic process by the trapping experiments. The outstanding performance indicated that the photocatalysts could be applied to air purification for chlorinated volatile organic compound.

  19. Photocatalytic Degradation of Rhodamine B Dye over Novel Porous TiO2-SnO2 Nanocomposites Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2014-01-01

    Full Text Available The photocatalytic degradation of Rhodamine B dye was successfully carried out under UV irradiation over porous TiO2-SnO2 nanocomposites with various molar ratios of Ti/Sn (4–12 synthesized by hydrothermal method using polystyrene microspheres as template. The combination of TiO2 with SnO2 can obtain high quantum yield of TiO2, and then achieve the high photocatalytic activity. And its porous structure can provide large surface area, leading to more adsorption and fast transfer of dye pollutant. Structural and textural features of the samples were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, and N2 sorption techniques. Both adsorption and UV irradiation contribute to decolorization of about 100% of Rhodamine B dye over the sample TiSn10 after 30 min of the photocatalytic reaction, while the decomposition of Rhodamine B dye is only 62% over pure titania (Degussa P25.

  20. Graphene quantum dots /LaCoO3/attapulgite heterojunction photocatalysts with improved photocatalytic activity

    International Nuclear Information System (INIS)

    Zhu, Wei; Li, Xiazhang

    2017-01-01

    A new nanocomposite of graphene quantum dots/LaCoO 3 /attapulgite (GQDs/LaCoO 3 /ATP) was prepared by a facile impregnation method and was applied to degradation of the organic pollutants as photocatalyst under visible light irradiation. Multiple techniques were used to characterize the structures, morphologies and photocatalytic activities of samples. The photocatalytic activity of the GQDs/LaCoO 3 /ATP nanocomposites was effectively evaluated using Methylene blue (MB), antibiotic agent chlortetracycline (CHL) and tetracycline hydrochloride (TC). The as-synthesized GQDs/LaCoO 3 /ATP nanocomposites exhibited higher photocatalytic activities than LaCoO 3 /ATP, which showed a broad spectrum of photocatalytic degradation activity. The results of ESR and free radicals trapping experiments indicated that circle OH and h + were the main species for the photocatalytic degradation. GQDs played a significant role in the photocatalytic activity improvement of LaCoO 3 /ATP, increasing the visible light absorption, slowing the recombination and improving the charge transfer. (orig.)

  1. Graphene quantum dots /LaCoO3/attapulgite heterojunction photocatalysts with improved photocatalytic activity

    Science.gov (United States)

    Zhu, Wei; Li, Xiazhang

    2017-04-01

    A new nanocomposite of graphene quantum dots/LaCoO3/attapulgite (GQDs/LaCoO3/ATP) was prepared by a facile impregnation method and was applied to degradation of the organic pollutants as photocatalyst under visible light irradiation. Multiple techniques were used to characterize the structures, morphologies and photocatalytic activities of samples. The photocatalytic activity of the GQDs/LaCoO3/ATP nanocomposites was effectively evaluated using Methylene blue (MB), antibiotic agent chlortetracycline (CHL) and tetracycline hydrochloride (TC). The as-synthesized GQDs/LaCoO3/ATP nanocomposites exhibited higher photocatalytic activities than LaCoO3/ATP, which showed a broad spectrum of photocatalytic degradation activity. The results of ESR and free radicals trapping experiments indicated that • OH and h+ were the main species for the photocatalytic degradation. GQDs played a significant role in the photocatalytic activity improvement of LaCoO3/ATP, increasing the visible light absorption, slowing the recombination and improving the charge transfer.

  2. Fe{sub 2}O{sub 3}-loaded activated carbon fiber/polymer materials and their photocatalytic activity for methylene blue mineralization by combined heterogeneous-homogeneous photocatalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    Kadirova, Zukhra C., E-mail: zuhra_kadirova@yahoo.com [Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, Mirzo Ulugbek Street 77a, Tashkent 100170 (Uzbekistan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Hojamberdiev, Mirabbos, E-mail: hmirabbos@hotmail.com [Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Kichik Halqa Yo’li 17, Tashkent 100095 (Uzbekistan); Katsumata, Ken-Ichi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Isobe, Toshihiro [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Nakajima, Akira [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Okada, Kiyoshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan)

    2017-04-30

    Highlights: • Fe{sub 2}O{sub 3}-activated carbon felts was prepared for adsorption-photodegradation of dyes. • Simultaneous mineralization of MB and oxalic acid occurred under UV-irradiation. • Methylene blue adsorption was better fitted to the Langmuir model. • Increasing amount of Fe{sub 2}O{sub 3} decreased the S{sub BET} and methylene blue adsorption capacity. • Photodegraded amount of MB was increased with increasing the Fe{sub 2}O{sub 3} content. - Abstract: Fe{sub 2}O{sub 3}-supported activated carbon felts (Fe-ACFTs) were prepared by impregnating the felts consisted of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) or polyethylene pulp (PE-W15) in Fe(III) nitrate solution and calcination at 250 °C for 1 h. The prepared Fe-ACFTs with 31–35 wt% Fe were characterized by N{sub 2}-adsorption, scanning electron microscopy, and X-ray diffraction. The Fe-ACFT(PS-A20) samples with 5–31 wt% Fe were microporous with specific surface areas (S{sub BET}) ranging from 750 to 150 m{sup 2}/g, whereas the Fe-ACFT(PE-W15) samples with 2–35 wt% Fe were mesoporous with S{sub BET} ranging from 830 to 320 m{sup 2}/g. The deposition of iron oxide resulted in a decrease in the S{sub BET} and methylene blue (MB) adsorption capacity while increasing the photodegradation of MB. The optimum MB degradation conditions included 0.98 mM oxalic acid, pH = 3, 0.02–0.05 mM MB, and 100 mg/L photocatalyst. The negative impact of MB desorption during the photodegradation reaction was more pronounced for mesoporous PE-W15 samples and can be neglected by adding oxalic acid in cyclic experiments. Almost complete and simultaneous mineralization of oxalate and MB was achieved by the combined heterogeneous-homogeneous photocatalytic processes. The leached Fe ions in aqueous solution [Fe{sup 3+}]{sub f} were measured after 60 min for every cycle and found to be about 2 ppm in all four successive cycles. The developed photocatalytic materials have shown good

  3. Synthesis of nano-TiO{sub 2}/diatomite composite and its photocatalytic degradation of gaseous formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangxin; Sun, Zhiming, E-mail: zhimingsun@cumtb.edu.cn; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin, E-mail: shuilinzheng8@gmail.com

    2017-08-01

    Highlights: • TiO{sub 2}/diatomite composite was synthesized by hydrolysis deposition method. • The composite displayed higher photocatalytic performance for formaldehyde. • The dispersion effect of diatomite was a key factor for high photoactivity. • The composite is a promising photocatalyst for the indoor air purification. - Abstract: The TiO{sub 2}/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N{sub 2} adsorption–desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO{sub 2} nanopartilces anchored on the surface of diatomite with Ti–O–Si bonds between diatomite and TiO{sub 2}. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO{sub 2}/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO{sub 2}/diatomite composite exhibited better photocatalytic activity than pure TiO{sub 2}, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO{sub 2}/diatomite composite shows great promising application foreground in formaldehyde degradation.

  4. Utilization of visible to NIR light energy by Yb{sup +3}, Er{sup +3} and Tm{sup +3} doped BiVO{sub 4} for the photocatalytic degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Regmi, Chhabilal [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kshetri, Yuwaraj K. [Department of Advanced Materials Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Ray, Schindra Kumar [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of); Pandey, Ramesh Prasad [Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Lee, Soo Wohn, E-mail: swlee@sunmoon.ac.kr [Research Center for Eco-Multifunctional Nanomaterials, Sun Moon University, Chungnam 31460 (Korea, Republic of)

    2017-01-15

    Highlights: • Lanthanide doped BiVO{sub 4} as highly efficient upconversion and photocatalytic material. • Well defined beads like morphology for better photocatalytic activity. • Effective utilization of NIR and visible light for efficient photocatalytic degradation of methylene blue. • Nontoxic to human cells, potential for application in biological fields. - Abstract: Lanthanide-doped BiVO{sub 4} semiconductors with efficient photocatalytic activities over a broad range of the solar light spectrum have been synthesized by the microwave hydrothermal method using ethylenediaminetetraacetic acid (EDTA). The structural, morphological, and optical properties of the as-synthesized samples were evaluated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS). The toxicity of the samples was measured using Mus musculus skin melanoma cells (B16-F10 (ATCC{sup ®} CRL-6475™)) and were found to be nontoxic for human cells. The photocatalytic efficiency of the prepared samples was evaluated by methylene blue (MB) degradation. The best photocatalytic activity was shown by BiVO{sub 4} with 6:3:3 mol percentage of Yb{sup +3}:Er{sup +3}:Tm{sup +3} in all solar light spectrum. The synthesized samples possess low band gap energy and a hollow structure suitable for the better photocatalytic activity. The observed NIR photoactivity supports that the upconversion mechanism is involved in the overall photocatalytic process. Therefore, this approach provides a better alternative upconversion material for integral solar light absorption.

  5. Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles

    International Nuclear Information System (INIS)

    Shaterian, Maryam; Enhessari, Morteza; Rabbani, Davarkhah; Asghari, Morteza; Salavati-Niasari, Masoud

    2014-01-01

    Highlights: • Visible-light sensitive LaMnO3 nanoparticles were synthesized via sol–gel process. • Structural and optical properties of photocatalysts have been investigated. • The photocatalytic activity was evaluated by the degradation of methyl orange as a model of pollutant. • The prepared nanocrystals showed good visible-light photocatalytic activity for the degradation of methyl orange. - Abstract: Visible-light sensitive LaMnO 3 nanoparticles were synthesized via sol–gel process using stearic acid as complexing reagent. Characterizations of the resulting powders were carried out by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic activity of LaMnO 3 was evaluated by degradation of methyl orange in aqueous solution under visible-light irradiation. The prepared nanoparticles showed excellent visible-light photocatalytic ability for the degradation of methyl orange so that, 60 ppm of nanoparticles can decolorizes the methyl orange solution (6 ppm) up to 98% in 90 min

  6. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    Directory of Open Access Journals (Sweden)

    Nabil Jallouli

    2017-05-01

    Full Text Available In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nylacetamide, an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetamol. pH 9.0 is found to be the optimum for the photodegradation of paracetamol. HPLC detected hydroquinone, benzoquinone, p-nitrophenol, and 1,2,4-trihydroxybenzene during the TiO2-assisted photodegradation of paracetamol among which some pathway products are disclosed for the first time. The results showed that TiO2 suspension/UV system is more efficient than the TiO2/cellulosic fiber mode combined to solar light for the photocatalytic degradation of paracetamol. Nerveless the immobilization of TiO2 showed many advantages over slurry system because it can enhance adsorption properties while allowing easy separation of the photocatalyst from the treated solution with improved reusable performance.

  7. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO2 and Polydopamine for Degradation of Tetracycline under Visible Light.

    Science.gov (United States)

    Wang, Chen; Wu, Yilin; Lu, Jian; Zhao, Juan; Cui, Jiuyun; Wu, Xiuling; Yan, Yongsheng; Huo, Pengwei

    2017-07-19

    A bioinspired photocatalytic nanocomposite membrane was successfully prepared via polydopamine (pDA)-coated poly(vinylidene fluoride) (PVDF) membrane, as a secondary platform for vacuum-filtrated Au-TiO 2 nanocomposites, with enhanced photocatalytic activity. The degradation efficiency of Au-TiO 2 /pDA/PVDF membranes reached 92% when exposed to visible light for 120 min, and the degradation efficiency of Au-TiO 2 /pDA/PVDF membranes increased by 26% compared to that of Au-TiO 2 powder and increased by 51% compared to that of TiO 2 /pDA/PVDF nanocomposite membranes. The degradation efficiency remained about 90% after five cycle experiments, and the Au-TiO 2 /pDA/PVDF nanocomposite membranes showed good stability, regeneration performance, and easy recycling. The pDA coating not only served as a bioadhesion interface to improve the bonding force between the catalyst and the membrane substrate but also acted as a photosensitizer to broaden the wavelength response range of TiO 2 , and the structure of Au-TiO 2 /pDA/PVDF also improves the transfer rate of photogenerated electrons; the surface plasmon resonance effect of Au also played a positive role in improving the activity of the catalyst. Therefore, we believe that this study opens up a new strategy in preparing the bioinspired photocatalytic nanocomposite membrane for potential wastewater purification, catalysis, and as a membrane separation field.

  8. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation

    OpenAIRE

    Jallouli, Nabil; Elghniji, Kais; Trabelsi, Hassen; Ksibi, Mohamed

    2014-01-01

    In the present study, photocatalytic degradation of acetaminophen ((N-(4-hydroxyphe-nyl)acetamide)), an analgesic drug has been investigated in a batch reactor using TiO2 P25 as a photocatalyst in slurry and under UV light. Using TiO2 P25 nanoparticles, much faster photodegradation of paracetamol and effective mineralization occurred, more than 90% of 2.65 × 10−4 M paracetamol was degraded under UV irradiation. Changes in pH values affected the adsorption and the photodegradation of paracetam...

  9. Synthesized TiO{sub 2}/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kefu; Hu, Xin-Yan [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chen, Bor-Yann; Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan, Taiwan (China); Zhang, Qian [Department of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wang, Jiajie; Lin, Yu-Jung [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chang, Chang-Tang, E-mail: ctchang73222@gmail.com [Department of Environmental Engineering, National I-Lan University, I-Lan, Taiwan (China)

    2016-10-15

    Highlights: • The major photo-catalytic degradation pathway of azo-dye was elaborated according to the identification of by-products from GC–MS and IC analysis. • Comparative assessment on characteristics of abiotic and biotic dye decolorization was analyzed. • EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to determine the main active oxidative species in the system. • The toxicity effects of degradation intermediates of Reactive Black 5 (RB5) on the cellular respiratory activity were assessed. - Abstract: In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO{sub 2})/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO{sub 2}/ZSM-5 composites with TiO{sub 2} contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography–mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO{sub 2} production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system

  10. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    International Nuclear Information System (INIS)

    Li, Tingting; Luo, Shenglian; Yang, Lixia

    2013-01-01

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C 16 mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area, strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O 2 · − , Br 0 and photogenerated h + play key roles in the photocatalytic degradation process

  11. TiO₂ (rutile) embedded inulin--A versatile bio-nanocomposite for photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Jayanthi Kalaivani, G; Suja, S K

    2016-06-05

    Inulin, a water soluble carbohydrate polymer, was extracted from Allium sativum L. by hot water diffusion method. A novel bio-nanocomposite was prepared by embedding TiO2 (rutile) onto the inulin matrix. The extracted inulin and the prepared bio-nanocomposite were characterized using UV-vis, FT-IR, XRD, SEM, TEM and TGA techniques. The photocatalytic activity of the bio-nanocomposite for the degradation of methylene blue was studied under UV illumination in batch mode experiment and was found to be twice as high as that of pristine TiO2. The kapp for inulin-TiO2 (0.0449 min(-1)) was higher than that for TiO2 (0.0325 min(-1)) which may be due to the synergistic action of inulin and TiO2. The stabilization of photo excited electron suppressed the electron-hole pair recombination thereby inducing the electrons and the holes to participate in the photo reduction and oxidation processes, respectively and enhancing the photocatalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride

    Science.gov (United States)

    Xiao, Peng; Jiang, Deli; Ju, Lixin; Jing, Junjie; Chen, Min

    2018-03-01

    Although RGO shows great advantage in promoting charge separation and transfer of semiconductor, construction of an efficient RGO-incorporated photocatalyst is still challenging. Herein, RGO was employed to construct novel RGO/CdIn2S4/g-C3N4 (donated as RGO/CIS/CN) ternary photocatalyst by a facile hydrothermal method for the degradation of tetracycline hydrochloride (TC). The RGO/CIS/CN ternary photocatalyst showed significantly enhanced photocatalytic activity towards the degradation of TC as compared to the binary CIS/CN, CIS/CN, and CN/RGO. The photoluminescence and photocurrent response results indicate that this enhanced photocatalytic activity can be mainly ascribed to the improved charge separation and transfer efficiency. Based on the radical trapping and electron spin resonance results, the superoxide radicals and holes are proposed to play an important role in the degradation of TC over RGO/CIS/CN ternary photocatalyst. This work paves new opportunities for the synthesis of RGO-incorporated ternary photocatalyst as an efficient photocatalyst for the degradation of organic contaminant.

  13. Photocatalytic degradation of aqueous ammonia by using TiO{sub 2}−ZnO/LECA hybrid photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Zahra; Sharifnia, Shahram, E-mail: sharif@razi.ac.ir; Shavisi, Yaser

    2016-12-01

    A novel hybrid structure of TiO{sub 2}−ZnO photocatalyst which immobilized on light expanded clay aggregate (LECA) support was applied for efficient removal of ammonia from synthetic wastewater. This photocatalyst was successfully prepared by a simple method and characterized by FESEM, FTIR, UV–vis, and PL techniques. LECA granules were used as support due to their low weight and high porosity surface. Compared with the pure TiO{sub 2} and ZnO, the hybrid photocatalyst had a significant effect on its properties such as photoluminescence and UV visible absorption. The coupled Ti:Zn photocatalyst with molar ratio of 1:2 exhibited the lowest photoluminescence emission intensity and maximum photocatalytic degradation of ammonia in aqueous solution. For evaluating performance of the hybrid photocatalyst, the effect of various parameters such as initial feed concentration, pH of solution, and photocatalyst dosage on the ammonia photodegradation rate were systematically investigated. The optimal pH, catalyst loading, and initial concentration of ammonia were obtained to be ≈ 11, 25 g/L, and 400 mg/L, respectively. Also, in the optimal conditions, 95.2% ammonia removal was achieved during 3 h of UV irradiation. The discussions were based on the mobility and lifetime of the charge carriers generated in the TiO{sub 2}−ZnO composite. - Highlights: • A hybrid structure of TiO{sub 2}−ZnO/LECA was applied for photocatalytic removal of ammonia. • Hybrid photocatalyst had a significant effect on photoluminescence and UV–vis absorption. • Coupled Ti:Zn photocatalyst (molar ratio = 1:2) exhibited max. photocatalytic degradation. • Optimal conditions: pH ≈ 11, catalyst loading = 25 g/L, and initial concentration = 400 mg/L. • In optimal conditions 95.2% ammonia removal was achieved during 3 h of UV irradiation.

  14. The optical properties and photocatalytic activity of CdS-ZnS-TiO{sub 2}/Graphite for isopropanol degradation under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Fitria, E-mail: fitria@mipa.uns.ac.id; Wulandari, Rini, E-mail: riniwulandari55@yahoo.com; Murni, Irvinna M., E-mail: irvinna-mutiara@yahoo.com; Mudjijono, E-mail: mbahparto@yahoo.com [Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta, 57126 (Indonesia)

    2016-02-08

    This research prepared a photocatalyst tablet of CdS-ZnS-TiO{sub 2} on a graphite substrate. The synthesis was conducted through chemical bath deposition method. The graphite substrate used was a waste graphite rod from primary batteries. The aims of this research are studying the crystal structure, the optical properties and the photocatalytic activity of the prepared material. The photocatalytic activity was determined through isopropanol degradation. The result shows that the TiO{sub 2}/Graphite provide direct transition gap energy at 2.91 eV and an indirect transition gap energy at 3.21 eV. Deposition of CdS-ZnS changed the direct transition gap energy to 3.01 eV and the indirect transition gap energy to 3.22 eV. Isopropanol degradation with the prepared catalyst produced new peaks at 223-224 nm and 265-266 nm confirming the production of acetone. The degradation follows first order with rate constant of 2.4 × 10{sup −2} min{sup −1}.

  15. ß-Ga2O3 nanorod synthesis with a one-step microwave irradiation hydrothermal method and its efficient photocatalytic degradation for perfluorooctanoic acid.

    Science.gov (United States)

    Zhao, Baoxiu; Li, Xiang; Yang, Long; Wang, Fen; Li, Jincheng; Xia, Wenxiang; Li, Weijiang; Zhou, Li; Zhao, Colin

    2015-01-01

    ß-Ga2O3 nanorod was first directly prepared by the microwave irradiation hydrothermal way without any subsequent heat treatments, and its characterizations were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflection spectroscopy techniques, and also its photocatalytic degradation for perfluorooctanoic acid (PFOA) was investigated. XRD patterns revealed that ß-Ga2O3 crystallization increased with the enhancement of microwave power and the adding of active carbon (AC). PFOA, as an environmental and persistent pollutant, is hard decomposed by hydroxyl radicals (HO·); however, it is facilely destroyed by ß-Ga2O3 photocatalytic reaction in an anaerobic atmosphere. The important factors such as pH, ß-Ga2O3 dosage and bubbling atmosphere were researched, and the degradation and defluorination was 98.8% and 56.2%, respectively. Reductive atmosphere reveals that photoinduced electron may be the major reactant for PFOA. Furthermore, the degradation kinetics for PFOA was simulated and constant and half-life was calculated, respectively. © 2014 The American Society of Photobiology.

  16. Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Carlos Antonio Pineda [Posgrado en Ingenieria y Ciencias Aplicadas, FCQI-CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); Martinez, Susana Silva [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 (Mexico)

    2010-02-15

    Results of voltammetry and spectrophotometry analyses revealed that upon sunlight exposure, the conversion of ferricyanide to ferrocyanide, and the reverse reaction, in the absence and in the presence of TiO{sub 2} catalyst depends strongly on pH. Thus, the pH of the solution dictates whether the redox reactions will proceed under illumination. In addition, the extent of the heterogeneous photocatalytic degradation of ferricyanide was influenced by pH. The initial concentration of ferricyanide did not affect its degradation. (author)

  17. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light

    Science.gov (United States)

    Ni, Jie; Xue, Jinjuan; Shen, Jing; He, Guangyu; Chen, Haiqun

    2018-05-01

    The ZnAl mixed metal-oxides (MMOs)/graphene nanocomposites were successfully fabricated by a facile hydrothermal method combined with a calcination process. The thermal treatment enables simultaneously the formation of ZnO/ZnAl2O4 heterogeneous structure, which are uniformly decorated on the surface of graphene, accompanying with the reduction of graphene oxide. The as-prepared heterostructure photocatalysts were well characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) to conduct investigations into the phase structures, microstructure and optical capability. The ZnAl MMO/RGO20 composite displayed favorable adsorption property and photo-degradation efficiency for Ciprofloxacin (CIP) aqueous solution under visible light. The photo-degradation efficiency of the as-prepared ZnAl MMO/RGO20 was 3.0 and even 4.6 times higher than that of ZnAl MMO and pure ZnAl LDH, respectively. The improvement of photocatalytic performance is ascribed to the synergistic effect of heterogeneous structure coupled with graphene, which realizes efficient charge separation efficiency, enlarged visible light adsorption range, and chemical stability of hybrid nanocomposite. The results of EIS, PL and photocurrent response also explained the best performance of ZnAl MMO/RGO20 nanocomposite. Besides, the mechanism of ZnAl MMO/RGO20 photocatalytic system was proposed and analyzed in detail.

  18. Visible light photocatalytic activities of ZnFe_2O_4/ZnO nanoparticles for the degradation of organic pollutants

    International Nuclear Information System (INIS)

    Rameshbabu, R.; Kumar, Niraj; Karthigeyan, A.; Neppolian, B.

    2016-01-01

    ZnFe_2O_4/ZnO nanoparticles have been synthesized by co-precipitation method using polyvinyl alcohol (PVA) as surfactant. The phase formation of synthesized products was systematically investigated from powder X-ray diffraction. Cubic ZnFe_2O_4 and hexagonal ZnO were identified in accordance with different molar concentrations of Fe"3"+ ions. The morphology and functionality were analyzed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The optical properties and change in the band gap from UV to visible region upon increasing molar concentration of Fe"3"+ ions were analyzed from diffuse reflectance spectra (DRS). Superparamagnetic property was observed for synthesized ZnFe_2O_4/ZnO nanoparticles using vibrating sample magnetometer (VSM). The methylene blue and methyl orange were taken as model dyes to illustrate the photocatalytic activity of synthesized products under visible light irradiation. Maximum degradation of 99% for methyl orange (MO) was achieved by the use of 13 nm sized ZnFe_2O_4/ZnO nanoparticles as catalyst and a minutely less activity was observed for the methylene blue (MB) degradation (98%), when the photocatalytic processes were carried out for 5 h and 6 h, respectively. - Highlights: • Co-precipitation method is proposed to synthesize magnetic nanoparticles. • Modifications in the molar concentration lead to the shift in absorption edge. • Superparamagnetic property is demonstrated for the nanoparticles. • Two dye pollutants are utilized to demonstrate the photocatalytic activity.

  19. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    Science.gov (United States)

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  20. Sunlight impelled photocatalytic pursuance of Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites on rhodamine B degradation

    Science.gov (United States)

    Alamelu, K.; Ali, B. M. Jaffar

    2018-04-01

    We demonstrate a hydrothermal method combined with polyol reduction process for the synthesis of an Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites in which the Ag, Pt and TiO2 nanoparticles are dispersed on the Sulfonated graphene oxide nanosheets. The structural and optical properties of obtained nanocomposites were characterized by XRD, UV-DRS, Raman, FTIR and Photoluminescence spectroscopy. The nanocomposites shows increased light absorption ability in the visible region due to surface plasmon resonance effect of noble metal. The rate of electron-hole pair recombination was significating reduced for nanocomposites system compare to pure. Also, their Performance for the photocatalytic degradation of Rhodamine B as a model organic pollutant is explored. The results showed that Ag-TiO2-SGO and Pt-TiO2-SGO nanocomposites could degrade 95% of the dye within 90 min, under natural sunlight irradiation. The reaction kinetics of ternary nanocomposites exhibit more than 2.2 fold increased photocatalytic activity compared to pristine TiO2. Sulfonated graphene based ternary photocatalyst are potential candidates for wastewater treatment in real time application, due to this ability degrade cationic and anionic dyes.

  1. Photocatalytic behaviour of CdS/ZnS nanocomposite for dye degradation in presence of visible light

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B. N. [Department of Physics, Shri Datta Meghe Polytechnic, Nagpur, M.S. (India); Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rastrasant Tukdoji Maharaj Nagpur University, Nagpur-440033 (India)

    2016-05-06

    In the present work ZnS-CdS composite was prepared by hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD) to confirm formation of nano particles, Scanning electron microscopy (SEM) images exhibit nanoscale dimensions of as synthesized individual phases. UV/VIS spectra were recorded for evaluation of photophysical properties. The composite was explored as photocatalysts to study dye degradation using methylene blue in aqueous slurry under irradiation of 663 nm wavelength and congo red under irradiation of 493 nm wavelength. Under the same conditions the photocatalytic activity of the individual phases ZnS and CdS were also examined. The ZnS-CdS composite is found in enhancing the rate of photo degradation of toxic dyes as compare to ZnS and CdS individually in presence of visible light. This ZnS based metal sulphide/oxide semiconductor nanocomposites are high potential material for Photo-degradation of toxic dyes, and act as good photocatalyst in visible light.

  2. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles.

    Science.gov (United States)

    Veisi, Farzaneh; Zazouli, Mohammad Ali; Ebrahimzadeh, Mohammad Ali; Charati, Jamshid Yazdani; Dezfoli, Amin Shiralizadeh

    2016-11-01

    The photocatalytic degradation of furfural in aqueous solution was investigated using N-doped titanium dioxide nanoparticles under sunlight and ultraviolet radiation (N-TiO 2 /Sun and N-TiO 2 /UV) in a lab-scale batch photoreactor. The N-TiO 2 nanoparticles prepared using a sol-gel method were characterized using XRD, X-ray photoelectron spectroscopy (XPS), and SEM analyses. Using HPLC to monitor the furfural concentration, the effect of catalyst dosage, contact time, initial solution pH, initial furfural concentration, and sunlight or ultraviolet radiation on the degradation efficiency was studied. The efficiency of furfural removal was found to increase with increased reaction time, nanoparticle loading, and pH for both processes, whereas the efficiency decreased with increased furfural concentration. The maximum removal efficiencies for the N-TiO 2 /UV and N-TiO 2 /Sun processes were 97 and 78 %, respectively, whereas the mean removal efficiencies were 80.71 ± 2.08 % and 62.85 ± 2.41 %, respectively. In general, the degradation and elimination rate of furfural using the N-TiO 2 /UV process was higher than that using the N-TiO 2 /Sun process.

  3. Synthesis, characterization and photocatalytic activity of LaMnO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shaterian, Maryam, E-mail: shaterian@znu.ac.ir [Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran (Iran, Islamic Republic of); Enhessari, Morteza [Department of Chemistry, Islamic Azad University, Naragh Branch, Naragh, Islamic Republic of Iran (Iran, Islamic Republic of); Rabbani, Davarkhah [Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Asghari, Morteza [Separation Processes Research Group (SPRG), Department of Engineering, University of Kashan, Kashan, PO Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, PO Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-11-01

    Highlights: • Visible-light sensitive LaMnO3 nanoparticles were synthesized via sol–gel process. • Structural and optical properties of photocatalysts have been investigated. • The photocatalytic activity was evaluated by the degradation of methyl orange as a model of pollutant. • The prepared nanocrystals showed good visible-light photocatalytic activity for the degradation of methyl orange. - Abstract: Visible-light sensitive LaMnO{sub 3} nanoparticles were synthesized via sol–gel process using stearic acid as complexing reagent. Characterizations of the resulting powders were carried out by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic activity of LaMnO{sub 3} was evaluated by degradation of methyl orange in aqueous solution under visible-light irradiation. The prepared nanoparticles showed excellent visible-light photocatalytic ability for the degradation of methyl orange so that, 60 ppm of nanoparticles can decolorizes the methyl orange solution (6 ppm) up to 98% in 90 min.

  4. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye

    Science.gov (United States)

    Sirdeshpande, Karthikey Devadatta; Sridhar, Anushka; Cholkar, Kedar Mohan; Selvaraj, Raja

    2018-03-01

    A simple method for the synthesis of magnetite nanoparticles using the leaf extract of Calliandra haematocephala has been developed. UV-Vis spectrum showed a characteristic strong absorption band. SEM image revealed the bead-like spherical nanoparticles. EDS showed the prominent peaks for elemental iron and oxygen. PXRD patterns confirmed the crystalline nature and the average crystallite size of 7.45 nm. In addition, the lattice parameter value was calculated to be 8.413 Å, close to Fe3O4 nanoparticles. BET analysis disclosed the total specific surface area of the nanoparticles as 63.89 m2/g and the mesoporous structure of the nanoparticles with a pore radius of 34.18 Å. FTIR studies showed the specific bands at 599.82 and 472.53 cm-1, typical for Fe3O4 nanoparticles. The photocatalytic efficacy of the nanoparticles was demonstrated against the degradation of malachite green dye under sunlight irradiation and the photocatalytic degradation constant was calculated as 0.0621 min-1.

  5. Magnetically separable CuFe{sub 2}O{sub 4}/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yalei; Lin, Cuiping; Bi, Huijie; Liu, Yonggang; Yan, Qishe, E-mail: Qisheyanzzu@163.com

    2017-01-15

    Highlights: • CuFe{sub 2}O{sub 4}/AgBr composites were prepared by a facile sol-gel and hydrothermal method. • Visible-light response and high photocatalytic performance. • Excellent magnetic properties. • Different reactive species had different effects on degradation different pollutants. - Abstract: The CuFe{sub 2}O{sub 4} and CuFe{sub 2}O{sub 4}/AgBr composites with different CuFe{sub 2}O{sub 4} contents were prepared by a facile sol-gel and hydrothermal method, respectively. The as-synthesized photocatalysts were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectrum (UV–vis DRS). Their magnetic properties, photocatalytic degradation activities on methyl orange (MO) and tetracycline hydrochloride (TC) solution and photocatalytic mechanism were investigated in detail. The results revealed that the CuFe{sub 2}O{sub 4}/AgBr composites exhibited significantly higher photocatalytic activities than the pure CuFe{sub 2}O{sub 4}. The enhanced photocatalytic activity could be attributed to the matched band structure of two components and more effective charge transportation and separations. In addition, the quenching investigation of different scavengers demonstrated that h{sup +}, ·OH, ·O{sub 2}{sup −} reactive species played different roles in the decolorization of MO and degradation of TC.

  6. Preparation and Photocatalytic Performance of Bamboo-Charcoal-Supported Nano-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yunlong ZHOU

    2018-02-01

    Full Text Available Nano-ZnO/bamboo charcoal composites were prepared by precipitation with bamboo charcoal as support. Nano-ZnO/bamboo charcoal composites were characterized by XRD, SEM and EDS. Photocatalytic degradation processes of methyl orange were studied. The results indicate that the structure of nano-ZnO is of the wurtzite type and the grain size is about 19-54 nm. The best preparation temperature for these composites is 500℃. The composites have better photocatalytic degradation ability than pure ZnO under UV irradiation. Photocatalytic degradation of methyl orange with the composites obeys first-order kinetics, and the composites can be recycled.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17397

  7. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe_2O_4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Al-Kahtani, Abdullah A.; Abou Taleb, Manal F.

    2016-01-01

    Highlights: • CS/CF/GONCs were synthesized via γ-irradiation and used as a heterogeneous photo-Fenton catalyst. • It can degrade Maxilon C.I. basic dye under sunlight irradiation. • A possible degradation pathway of Maxilon C.I. Basic was proposed. • The degradation of Maxilon follows pseudo-first-order kinetics. • The catalyst can be separated by an external magnetic field. • Cyclic degradation tests show the catalyst is highly active, stable and recoverable. - Abstract: CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H_2O_2 concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10 mM H_2O_2 at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal.

  8. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2.

    Science.gov (United States)

    Fotiou, Theodora; Triantis, Theodoros M; Kaloudis, Triantafyllos; O'Shea, Kevin E; Dionysiou, Dionysios D; Hiskia, Anastasia

    2016-03-01

    Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation

  9. Reusability Performance of Zinc Oxide Nanoparticles for Photocatalytic Degradation of POME

    Science.gov (United States)

    Zarifah Zainuri, Nur; Hanis Hayati Hairom, Nur; Abu Bakar Sidik, Dilaelyana; Misdan, Nurasyikin; Yusof, Norhaniza; Wahab Mohammad, Abdul

    2018-03-01

    Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.

  10. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron.

    Science.gov (United States)

    Foura, Ghania; Soualah, Ahcène; Robert, Didier

    2017-01-01

    In the present study, three compositions of W-doped titania nano-photocatalyst are synthesized via the sol-gel method. The powders obtained were characterized by X-ray diffraction, Raman spectroscopy and UV-visible diffuse reflectance spectroscopy. The photocatalytic performances of the different photocatalysts are tested with respect to the degradation of Diuron in water solutions under simulated solar light and visible light irradiation. The W 0.03 Ti 0.97 O 2 catalyst exhibits better photoactivity than the pure TiO 2 even under simulated solar light and visible light. This improvement in activity was attributed to photoelectron/hole separation efficiency.

  12. Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis

    International Nuclear Information System (INIS)

    Herring, Natalie P.; Almahoudi, Serial H.; Olson, Chelsea R.; El-Shall, M. Samy

    2012-01-01

    This work reports a simple one-step synthesis of ZnO nanopyramids supported on reduced graphene oxide (RGO) nanosheets using microwave irradiation (MWI) of zinc acetate and GO in the presence of a mixture of oleic acid and oleylamine. The rapid decomposition of zinc acetate by MWI in the presence of the mixture of oleic acid and oleylamine results in the formation of hexagonal ZnO nanopyramids. GO has a high affinity for absorbing MWI, which results in a high local heating effect around the GO nanosheets and facilitates the reduction of GO by the oleylamine. The RGO nanosheets act as heterogeneous surface sites for the nucleation and growth of the ZnO nanopyramids. Using ligand exchange, the ZnO–RGO nanocomposites can be dispersed in an aqueous medium, thus allowing their use as photocatalysts for the degradation of the malachite green dye in water. The ZnO–RGO nanocomposites show enhanced photocatalytic activity for the degradation of the dye over the unsupported ZnO nanopyramids. The enhanced activity is attributed to efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. This enhances the oxidative pathway of the holes generated in the valence band of ZnO which can effectively lead to the degradation and mineralization of the malachite green. The ZnO nanopyramids supported on RGO could have improved performance in other photocatalytic reactions and also in solar energy conversion.

  13. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    Science.gov (United States)

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  14. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, A., E-mail: alejandro.lqi@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Hernández-Uresti, D.B., E-mail: ing.dianahdz@gmail.com [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Obregón, S. [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico)

    2016-11-15

    Highlights: • CdS photocatalyst was prepared by electrophoretic deposition. • The CdS coating was used in the photodegradation of antibiotics. • O{sub 2}{sup −} and ·OH radicals were responsible for the degradation of tetracycline. - Abstract: The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV–vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  15. Graphene quantum dots /LaCoO{sub 3}/attapulgite heterojunction photocatalysts with improved photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei; Li, Xiazhang [Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou (China); Chinese Academy of Science, R and D Center of Xuyi Attapulgite Applied Technology, Xuyi (China)

    2017-04-15

    A new nanocomposite of graphene quantum dots/LaCoO{sub 3}/attapulgite (GQDs/LaCoO{sub 3}/ATP) was prepared by a facile impregnation method and was applied to degradation of the organic pollutants as photocatalyst under visible light irradiation. Multiple techniques were used to characterize the structures, morphologies and photocatalytic activities of samples. The photocatalytic activity of the GQDs/LaCoO{sub 3}/ATP nanocomposites was effectively evaluated using Methylene blue (MB), antibiotic agent chlortetracycline (CHL) and tetracycline hydrochloride (TC). The as-synthesized GQDs/LaCoO{sub 3}/ATP nanocomposites exhibited higher photocatalytic activities than LaCoO{sub 3}/ATP, which showed a broad spectrum of photocatalytic degradation activity. The results of ESR and free radicals trapping experiments indicated that {sup circle} OH and h {sup +} were the main species for the photocatalytic degradation. GQDs played a significant role in the photocatalytic activity improvement of LaCoO{sub 3}/ATP, increasing the visible light absorption, slowing the recombination and improving the charge transfer. (orig.)

  16. Preparation of TiO₂/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B.

    Science.gov (United States)

    Huang, Yanzhen; Chen, Dongping; Hu, Xinling; Qian, Yingjiang; Li, Dongxu

    2018-06-13

    In this report, ternary titanium dioxide (TiO₂)/carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composites were fabricated by a facile and environmentally friendly one-pot solvethermal method for the removal of Rhodamine B (RhB). Its structures were represented by X-ray powder diffraction (XRD), Raman spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance was tested by the degradation efficiency of RhB under UV-vis light irradiation. The experimental results indicated that photocatalytic activity improved as the ratio of CNTs:TiO₂ ranged from 0.5% to 3% but reduced when the content increased to 5% and 10%, and the TiO₂/CNTs/rGO-3% composites showed superior photocatalytic activity compared with the binary ones (i.e., TiO₂/CNTs, TiO₂/rGO) and pristine TiO₂. The rate constant k of the pseudo first-order reaction was about 1.5 times that of TiO₂. The improved photocatalytic activity can be attributed to the addition of rGO and CNTs, which reduced the recombination of photo-induced electron-hole pairs, and the fact that CNTs and rGO, with a high specific surface area and high adsorption ability to efficiently adsorb O₂, H₂O and organics, can increase the hydroxyl content of the photocatalyst surface.

  17. Photocatalytic Degradation of Bisphenol A from Aqueous Solutions using TiO2 Nanoparticles and UV Illumination

    Directory of Open Access Journals (Sweden)

    Ramzan ali Dianati

    2014-12-01

    Full Text Available Background and Purpose: Bisphenol A (BPA is used to make certain plastics and epoxy resins. It is a non-biodegradable compound, and poses health risks to both humans and animals. The purpose of this study was to evaluate decomposition efficiency of BPA from aqueous solutions using UV irradiation. Materials and Methods: In this study, the photodegradation of BPA in water were carried out in a reactor equipped 6 W UV lamp. In order to obtain the optimum operational conditions, parameters such as BPA concentration (1-50 mg/l, TiO2 dosage (0.025-2 g/l, and pH (3-11 were evaluated. BPA concentration was measured by high-performance liquid chromatography. Results: The highest degradation was 90% and achieved in 60 min. BPA degradation efficiency can be effectively improved by increasing pH, decreasing the initial concentration and increasing TiO2 dosage. The optimal dose of TiO2 was measured at 0.5 g/l. The degradation decreases with increasing TiO2 dosage. Conclusion: Photocatalytic degradation by using TiO2 and low power UV lamp is applicable.

  18. Biosynthesis of Ag nanoparticles using pedicellamide and its photocatalytic activity: an eco-friendly approach.

    Science.gov (United States)

    Tamuly, Chandan; Hazarika, Moushumi; Bordoloi, Manobjyoti; Bhattacharyya, Pradip Kr; Kar, Rahul

    2014-11-11

    The synthesis of silver (Ag) nanoparticles using by pedicellamide (A), isolated from Piper pedicellatum C.DC leaf is demonstrated here. TEM analysis revealed that the Ag nanoparticles predominantly form spherical in shape. The compound 'A' act as a reducing, stabilizing and capping agent. The reaction mechanism was established by using density functional theory (DFT). Photocatalytic property of the Ag nanoparticles is investigated by degradation of Methyl Red (MR) dye under UV light. The kinetic, reaction mechanism and rate constant of photocatalytic degradation of MR was evaluated. The results show that Ag nanoparticles have suitable photocatalytic activity for the degradation of MR dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synthesis and Photocatalytic Performance of RGO/ZnO Nanorod Composites

    Directory of Open Access Journals (Sweden)

    LU Jia

    2016-12-01

    Full Text Available ZnO nanorods and RGO/ZnO nanorods composites were prepared by hydrothermal method. The influence of RGO content on the photocatalytic activity of RGO/ZnO nanorods composites was studied. ZnO nanorods and RGO/ZnO nanocomposites were characterized by X-ray diffraction (XRD, field emission electron microscopy (FESEM, X-ray photoelectron spectroscopy (XPS and diffuse reflectance UV-visible absorption spectroscopy techniques. The results show that RGO/ZnO samples are synthesized successfully. With different additions of GO, the RGO/ZnO samples obtained exhibit different absorption characteristics in visible light region. The photocatalytic results of using methyl orange (MO as the simulated pollutant show that RGO/ZnO nanorods composites exhibit high degradation efficiency under UV-Vis light illumination. The highest photocatalytic performance is obtained for RGO/ZnO composites when the mass ratio of RGO to ZnO is 3%. MO is almost completely degraded in 120min. RGO/ZnO also shows the visible-light-driven photocatalytic activity under visible light illumination (λ>400nm, and the maximum MO degradation efficiency in 180min can reach 26.2%, meanwhile, RGO/ZnO samples exhibit good photostability.

  20. Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties

    International Nuclear Information System (INIS)

    Yi, Shasha; Cui, Jiabao; Li, Shuo; Zhang, Lijing; Wang, Dejun; Lin, Yanhong

    2014-01-01

    Highlights: • ZnO and Fe/ZnO nanoflowers were synthesized via a hydrothermal process. • Fe/ZnO nanoflowers show improved photocatalytic activity under the irradiation of visible light. • In the Fe/ZnO system, Fe 3+ and Fe 2+ coexistences in the ZnO host. • The detailed photocatalytic mechanism and the role of Fe in the photodegradation system are discussed. - Abstract: Zinc oxide (ZnO) and iron doped zinc oxide (Fe/ZnO) nanoflowers were successfully synthesized via a simple hydrothermal process. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman scattering, ultraviolet–visible (UV–vis) diffuse spectroscopy and scanning electron microscopy (SEM), and it was found that the dopant ions replaced some of the crystal lattice zinc ions, and furthermore, Fe 3+ and Fe 2+ ions coexist. Photocatalytic activities of the catalysts were assessed based on the degradation of rhodamine B (RhB) in aqueous solution under both UV and visible light irradiation (λ > 420 nm), respectively. All Fe/ZnO samples showed enhanced photocatalytic activity under the irradiation of visible light. On the contrary, Fe/ZnO products displayed poorer performance than that of pure ZnO in the presence of UV light. This phenomenon can be attributed to the coexistence of Fe 3+ and Fe 2+ in the ZnO host. The photophysical mechanism of the UV and visible photocatalytic activity was investigated with the help of surface photovoltage (SPV) and PL measurements, respectively. The results indicated the influence of coexistence of Fe 3+ and Fe 2+ in ZnO host on the separation and transfer behavior of the photogenerated charges in the UV and visible regions, which are distinctly different: under the irradiation of UV light, the recombination of the photogenerated electrons and holes was promoted, whereas the separation and transfer of photogenerated electrons and holes was facilitated under the visible light irradiation. The detailed photocatalytic

  1. Mn2O3 decorated graphene nanosheet: An advanced material for the photocatalytic degradation of organic dyes

    International Nuclear Information System (INIS)

    Chandra, Sourov; Das, Pradip; Bag, Sourav; Bhar, Radhaballabh; Pramanik, Panchanan

    2012-01-01

    Graphical abstract: A facile and economical route has been developed for the synthesis of graphene–Mn 2 O 3 nanocomposite in which Mn 2 O 3 nanoparticles are uniformly distributed throughout the surface of the graphene nanosheet with their average sizes ranging from 8 to 10 nm. It shows a brilliant catalytic activity during the photodegradation of several organic dyes as compare to both of the bare manganese oxide and graphene too. Highlights: ► One step sonochemical synthesis of graphene–Mn 2 O 3 nanocomposite. ► Growth of such nanoparticles over graphene is accelerated by the simultaneous reduction with KMnO 4 . ► The composite can effectively use as heterogeneous catalyst during the photodegradation of organic dyes. ► It exhibits ∼84%, ∼80% and ∼60% degradation of MB, eosin and RB respectively within a few minutes. - Abstract: A one step sonochemical route has been developed to prepare graphene–Mn 2 O 3 nanocomposite with uniform distribution of Mn 2 O 3 nanoparticles throughout the surface of graphene nanosheet. Growth of such nanoparticles over this two dimensional carbon network is simply accelerated by the simultaneous reduction of potassium permanganate along with graphene oxide, in which metal ions are first anchored through binding with oxy-functional groups of graphene oxide and finally reduced by hydrazine. The final product ensure a new platform for the photodegradation of organic dyes, as it can store electrons and circulate them towards dye molecules through the formation of hydroxyl radical under the exposure of UV-light. Almost 80% photocatalytic degradation of eosin, methylene blue and rhodamine B have been observed within few minutes, which has not been obtained by using bare manganese oxide itself.

  2. Photocatalytic mineralisation of aniline derivatives in aquatic systems using semiconductor oxides.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Khaledisardashti, Mohammad; Montazerozohori, Morteza

    2004-01-01

    Photocatalytic degradation of aqueous solution of aniline derivatives such as ortho-nitroaniline (ONA), meta-nitroaniline (MNA), para-nitroaniline (PNA), 4-bromoaniline (4-BrA) and 2-chloroaniline (2-ClA) were carried out over ZnO or TiO2 (anatase and rutile) in a photocatalytic reactor. The observed results revealed that the order of photocatalytic activity for degradation of selected compound was ZnO > TiO2 (rutile) > TiO2 (anatase) with the ratio of the rate constants to the surface area of 3.2 x 10(-3), 1.9 x 10(-3) and 1.0 x 10(-3) respectively. The effect of some physical and chemical parameters such as amount of photocatalyst, pH, time of irradiation and solvent were studied. Degradation kinetic was according to Longmuir behaviour. Spectrophotometric methods and TOC analysis supported that aniline derivatives almost completely mineralized.

  3. Activity of nanosized titania synthesized from thermal decomposition of titanium (IV n-butoxide for the photocatalytic degradation of diuron

    Directory of Open Access Journals (Sweden)

    Jitlada Klongdee, Wansiri Petchkroh, Kosin Phuempoonsathaporn, Piyasan Praserthdam, Alisa S. Vangnai and Varong Pavarajarn

    2005-01-01

    Full Text Available Nanoparticles of anatase titania were synthesized by the thermal decomposition of titanium (IV n-butoxide in 1,4-butanediol. The powder obtained was characterized by various characterization techniques, such as XRD, BET, SEM and TEM, to confirm that it was a collection of single crystal anatase with particle size smaller than 15 nm. The synthesized titania was employed as catalyst for the photodegradation of diuron, a herbicide belonging to the phenylurea family, which has been considered as a biologically active pollutant in soil and water. Although diuron is chemically stable, degradation of diuron by photocatalyzed oxidation was found possible. The conversions achieved by titania prepared were in the range of 70–80% within 6 h of reaction, using standard UV lamps, while over 99% conversion was achieved under solar irradiation. The photocatalytic activity was compared with that of the Japanese Reference Catalyst (JRC-TIO-1 titania from the Catalysis Society of Japan. The synthesized titania exhibited higher rate and efficiency in diuron degradation than reference catalyst. The results from the investigations by controlling various reaction parameters, such as oxygen dissolved in the solution, diuron concentration, as well as light source, suggested that the enhanced photocatalytic activity was the result from higher crystallinity of the synthesized titania.

  4. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    Science.gov (United States)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  5. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes

    Science.gov (United States)

    Zhao, Yang; Ma, Lin; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Qi, Xiaoxia; Li, Zenghe

    2018-06-01

    Gaseous N,N-dimethylformamide (DMF), typical volatile organic compound exhausted from manufacturing factories, may damage the health of workers under long-term exposure even at low levels. The defined geometry, porous surface and highly ordered channels make the free-standing anodic TiO2 nanotube (TiNT) arrays particularly suitable for applications of practical air purification by flow-through photocatalysis. In the present work, crystallized doubly open-ended Ag/TiNT array membranes were designed and prepared by employing a lift-off process based on an anodization-annealing-anodization-etching sequence, followed by uniform Ag nanoparticles decoration. For the photocatalytic degradation of gaseous DMF at low concentration levels close to that found in realistic pollutant air, an analytical methodology for the monitoring and determination of degradation process was developed based on the coupling of headspace sampling with gas chromatography mass spectrometry (HS-GC-MS). The doubly open-ended Ag/TiNT arrays exhibited higher removal efficiency of gaseous DMF from air compared with conventional bottom-closed Ag/TiNT arrays and pure bottomless TiNT arrays. These results indicated that the photocatalytic properties of TiNT arrays were improved with the open-bottom morphology and the Ag nanoparticles decoration. Based on the analysis with GC-MS and high performance ion chromatography (HPIC), it was found that demethylation is the main pathway of DMF degradation in photocatalytic reactions. Furthermore, decontamination of actual polluted tannery waste gas collected in leather factory proved that the photocatalysis on doubly open-ended Ag/TiNT array membrane is an efficient way and a promising application to treat air contaminated by DMF despite the complexity of various volatile organic compounds.

  6. Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Haithem Bel Hadjltaief

    2018-06-01

    Full Text Available This paper describes a simple and low-cost process for the degradation of 4-Chlorophenol (4-CP from aqueous solution, using natural Tunisian Hematite (M1 and Siderite (M2. Two natural samples were collected in the outcroppings of the Djerissa mining site (Kef district, northwestern Tunisia. Both Hematite and Siderite ferrous samples were characterized using several techniques, including X-Ray Diffraction (XRD, Nitrogen Physisorption (BET, Infrared Spectroscopy (FTIR, H2-Temperature Programmed Reduction (H2-TPR, Scanning Electronic Microscopy (SEM linked with Energy Dispersive X-ray (EDS and High-Resolution Transmission Electron Microscopy (HRTEM. Textural, structural and chemical characterization confirmed the presence of Hematite and Siderite phases with a high amount of iron on the both surface materials. Their activity was evaluated in the oxidation of 4-CP in aqueous medium under heterogeneous photo-Fenton process. Siderite exhibited higher photocatalytic oxidation activity than Hematite at pH 3. The experimental results also showed that 100% conversion of 4-CP and 54% TOC removal can be achieved using Siderite as catalyst. Negligible metal leaching and catalyst reutilization without any loss of activity point towards an excellent catalytic stability for both natural catalysts.

  7. In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination

    International Nuclear Information System (INIS)

    Tsai, Chien-Cheng; Chen, Liang-Che; Yeh, Te-Fu; Teng, Hsisheng

    2013-01-01

    Highlights: ► Sn 2+ ions sensitize titanate nanotubes for photocatalysis under visible-light illumination. ► The Sn 5s orbital replaces the O 2p orbital as the top level of the valence band of titanates. ► The presence of Sn 2+ lifts the valence band of titanate nanotubes by approximately 0.9 eV. ► The doped Sn 2+ sites are active in donating photo-induced charges to dye degradation. - Abstract: Sn 2+ -incorporated titanate nanotubes, prepared by washing a layered sodium titanate with a SnCl 2 solution for tube formation, exhibit noticeable photocatalytic activity under visible light irradiation. This in situ synthesis results in a Sn/Ti ratio of approximately 0.6. Because of the introduction of Sn 2+ ions, the Sn 5s orbital replaces the O 2p orbital as the top level of the valence band of titanate nanotubes. Optical absorption analysis shows that Sn doping reduces the bandgap of titanate nanotubes from 3.5 to 2.6 eV. Oxidation of the Sn 2+ -incorporated titanate nanotubes leads to oxidation of Sn 2+ to Sn 4+ , hence, widening the bandgap. Under visible light irradiation, Sn 2+ -incorporated titanate nanotubes effectively degrade methylene blue in an aqueous solution, whereas the bare titanate nanotubes exhibit substantially lower photocatalytic activity. Photoluminescence analysis demonstrates that the induced charges from excitation of the Sn 2+ ions tend to be relaxed through chemical interactions, rather than irradiative recombination.

  8. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde

    Science.gov (United States)

    Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin

    2017-08-01

    The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.

  9. Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection

    Directory of Open Access Journals (Sweden)

    Ayla Ahmad

    2016-01-01

    Full Text Available Photocatalytic degradation is a promising alternative to traditional wastewater treatment methods. Recently developed visible light-responsive photocatalyst, BiOBr, has attracted extensive attentions. Hereby, a detailed investigation of application of BiOBr to bacterial inactivation and organic pollutants degradation is reported. Hydrothermal catalyst was prepared using template-free method. While, for solvothermal synthesis, CTAB was used as a template. Results indicate a higher photocatalytic activity by the solvothermally prepared catalyst. Solvothermally prepared BiOBr exhibited high photocatalytic activities in both water detoxification and disinfection.

  10. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    Science.gov (United States)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway.

    Science.gov (United States)

    Zhang, Chao; Zhou, Minghua; Ren, Gengbo; Yu, Xinmin; Ma, Liang; Yang, Jie; Yu, Fangke

    2015-03-01

    Modified iron-carbon with polytetrafluoroethylene (PTFE) was firstly investigated as heterogeneous electro-Fenton (EF) catalyst for 2,4-dichlorophenol (2,4-DCP) degradation in near neutral pH condition. The catalyst was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the effects of some important operating parameters such as current intensity and pH on the 2,4-DCP degradation were investigated. After the catalyst modification with 20% PTFE, the degradation performance maintained well with much lower iron leaching, and at current intensity 100 mA, initial pH 6.7, catalyst loading 6 g/L, the degradation efficiency of 2,4-DCP could exceed 95% within 120 min treatment. Two-stage pseudo first-order kinetics of 2,4-DCP degradation was observed, including a slow anodic oxidation stage (first-stage) and much faster heterogeneous EF oxidation (second-stage), in which the automatic drop of pH in the first-stage initiated the Fe(2+) release from micro-electrolysis and thus benefited to the subsequent EF reaction. Aromatic intermediates such as 3,5-dichlorocatechol, 4,6-dichlororesorcinol and 2-chlorohydroquinone were detected by GC-MS. Oxalic acid, acetic acid, formic acid and Cl(-) were quantified by ion chromatograph. Based on these analysis as well as the detection of H₂O₂ and OH, a possible mechanism and degradation pathway for 2,4-DCP were proposed. This work demonstrated that such a heterogeneous EF using cheap modified Fe-C catalyst was promising for organic wastewater treatment in initial neutral pH condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fangjun [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Li, Xin [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Institute of New Energy and New Materials, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642 (China); Liu, Wei, E-mail: wlscau@163.com [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Zhang, Shuting [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China)

    2017-05-31

    Highlights: • The indirect Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} photocatalysts were successfully fabricated. • A 3.2-fold activity enhancement was achieved by inserting RGO into g-C{sub 3}N{sub 4}- TiO{sub 2}. • The indirect Z-scheme mechanism was verified by PL spectra and radical trapping. • The multi-functional roles of RGO in enhancing photodegradation were revealed. - Abstract: In the present research work, the ternary indirect all-solid-state Z-scheme nanoheterojunctions, graphitic-C{sub 3}N{sub 4}/reduced graphene oxide/anatase TiO{sub 2} (g-C{sub 3}N{sub 4}-RGO-TiO{sub 2}) with highly enhanced photocatalytic performance were successfully prepared via a simple liquid-precipitation strategy. The photocatalytic activities of indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions were evaluated by the degradation of methylene blue (MB). The results showed that the introduction of RGO as an interfacial mediator into direct Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} nanocomposites can remarkably enhance their photocatalytic activities. The as-obtained indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions, with the optimal loading amount of 10 wt% RGO, exhibited the highest rate towards the photocatalytic degradation of MB under simulated solar light irradiation. The degradation kinetics of MB can be described by the apparent first-order kinetics model. The highest degradation rate constant of 0.0137 min{sup −1} is about 4.7 and 3.2 times greater than those of the pure g-C{sub 3}N{sub 4} (0.0029 min{sup −1}) and direct Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} (0.0043 min{sup −1}), respectively. An indirect all-solid-state Z-scheme charge-separation mechanism was proposed based on the photoluminescence spectra and the trapping experiment procedure of the photo-generated active species. It was believed that the indirect all-solid-state Z-scheme charge separation mechanism in g-C{sub 3}N

  13. Visible light photocatalytic activities of ZnFe{sub 2}O{sub 4}/ZnO nanoparticles for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Rameshbabu, R. [SRM Research Institute, SRM University, Kattankulathur, Kanchipuram 603203, Tamil Nadu (India); Kumar, Niraj [SRM Research Institute, SRM University, Kattankulathur, Kanchipuram 603203, Tamil Nadu (India); Centre for Materials Science and Nano Devices, Department of Physics and Nanotechnology, SRM University Kattankulathur, Kanchipuram 603203, Tamil Nadu (India); Karthigeyan, A., E-mail: karthigeyan.a@ktr.srmuniv.ac.in [Centre for Materials Science and Nano Devices, Department of Physics and Nanotechnology, SRM University Kattankulathur, Kanchipuram 603203, Tamil Nadu (India); Neppolian, B., E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur, Kanchipuram 603203, Tamil Nadu (India)

    2016-09-15

    ZnFe{sub 2}O{sub 4}/ZnO nanoparticles have been synthesized by co-precipitation method using polyvinyl alcohol (PVA) as surfactant. The phase formation of synthesized products was systematically investigated from powder X-ray diffraction. Cubic ZnFe{sub 2}O{sub 4} and hexagonal ZnO were identified in accordance with different molar concentrations of Fe{sup 3+} ions. The morphology and functionality were analyzed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The optical properties and change in the band gap from UV to visible region upon increasing molar concentration of Fe{sup 3+} ions were analyzed from diffuse reflectance spectra (DRS). Superparamagnetic property was observed for synthesized ZnFe{sub 2}O{sub 4}/ZnO nanoparticles using vibrating sample magnetometer (VSM). The methylene blue and methyl orange were taken as model dyes to illustrate the photocatalytic activity of synthesized products under visible light irradiation. Maximum degradation of 99% for methyl orange (MO) was achieved by the use of 13 nm sized ZnFe{sub 2}O{sub 4}/ZnO nanoparticles as catalyst and a minutely less activity was observed for the methylene blue (MB) degradation (98%), when the photocatalytic processes were carried out for 5 h and 6 h, respectively. - Highlights: • Co-precipitation method is proposed to synthesize magnetic nanoparticles. • Modifications in the molar concentration lead to the shift in absorption edge. • Superparamagnetic property is demonstrated for the nanoparticles. • Two dye pollutants are utilized to demonstrate the photocatalytic activity.

  14. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of organic dye in the presence of ternary Fe{sub 3}O{sub 4}/ZnO/CuO magnetic heteregenous nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Taufik, Ardiansyah; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id [Departemen Fisika, Fakultas MIPA-Universitas Indonesia, 16424 Depok (Indonesia); Integrated Laboratory of Energy and Environment, Fakultas MIPA-Universitas Indonesia, 16424 Depok (Indonesia)

    2016-04-19

    The Fe{sub 3}O{sub 4}/ZnO/CuO nanocatalyst with various CuO loading were synthesized by sol-gel method and were characterized by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-Vis spectroscopy, and vibrating sample magnetometry. The findings demonstrate that all samples exhibit ferromagnetic behavior at room temperatureand containa well-crystalline ternary oxide nanocatalyst. Methylene blue was taken as the model of organic dye to evaluate its photocatalytic and sonocatalytic degradation in the presence of Fe{sub 3}O{sub 4}/ZnO/CuO nanocatalyst. The observed degradation activity indicate that the order of degradation of methylene blue issonocatalysis> photocatalysis. Fe{sub 3}O{sub 4}/ZnO/CuO nanocatalyst with the lowest CuO loading exhibit the highest rate of degradation of methylene blue during the sono- and photocatalytic processes. The experimental data shows that holes are the predominant oxidative species involved in the sono- and photodegradation of methylene blue.

  15. Study on the Visible-Light Photocatalytic Performance and Degradation Mechanism of Diclofenac Sodium under the System of Hetero-Structural CuBi2O4/Ag3PO4 with H2O2

    Directory of Open Access Journals (Sweden)

    Xiaojuan Chen

    2018-03-01

    Full Text Available Two kinds of CuBi2O4/Ag3PO4 with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate, and their characteristics were systematically resolved by X-ray Diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray Photoelectron Spectroscopy (XPS, Scanning Electron Microscope (SEM/ High-resolution Transmission Electron Microscopy (HRTEM, UV-vis Diffuse Reflectance Spectra (DRS and Photoluminescence (PL. Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi2O4/Ag3PO4 exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi2O4 or Ag3PO4. Moreover, the catalytic activity of CuBi2O4/Ag3PO4 can be further enhanced by adding H2O2. The free radical capture experiments show that in the pure CuBi2O4/Ag3PO4 photocatalytic system, the OH• and O2•− are the main species participating in DS degradation; however, in the CuBi2O4/Ag3PO4 photocatalytic system with H2O2, all OH•, h+, and O2•− take part in the DS degradation, and the contribution order is OH• > h+ > O2•−. Accordingly, the photocatalytic mechanism of CuBi2O4/Ag3PO4 could be explained by the Z-Scheme theory, while the catalysis of CuBi2O4/Ag3PO4 with H2O2 follows the heterojunction energy band theory.

  16. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao Jun, E-mail: zhangyaojun@xauat.edu.cn; Kang, Le; Liu, Li Cai; Si, Hai Xiao; Zhang, Ji Fang

    2015-03-15

    Highlights: • A novel type of AMSNC is firstly synthesized by three-step reactions. • Magnesium slag-based nanomaterial is applied for degradation of wastewater. • Photocatalytic activities depend on the absorption edges of nanomaterials. • A photocatalytic degradation mechanism was proposed. - Abstract: A novel type of alkali-activated magnesium slag-based nanostructural composite (AMSNC) co-loaded bimetallic oxide semiconductors of NiO and CuO were synthesized by alkaline activation, ion exchange and wet co-impregnation methods, and then firstly employed as a photocatalyst for the degradation of indigo carmine dye. The XRD, TEM and HRTEM results revealed that CuO in the form of tenorite with mean particle size of about 15 nm and NiO in amorphous phase dispersed on the surface of AMSNC support. The decrease of photoluminescence with increasing amount of NiO and CuO demonstrated that the recombination of photogenerated electrons–holes pairs was prevented when the photogenerated electrons transferred from the metal oxide semiconductor to the AMSNC matrix. The 10(NiO + CuO)/AMSNC specimen showed that the photocatalytic degradation efficiency was up to 100% under UV irradiation for 1 h due to the synergistic effect between the AMSNC and active species of NiO and CuO. The mesoporous structures of specimens acted as critical role for the adsorption of dye molecules, and the photocatalytic degradation of indigo carmine dye obeyed first-order reaction kinetics. A degradation mechanism of photocatalytic oxidation was proposed in the paper.

  17. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  18. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: xjx@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: lhm@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)

    2015-03-15

    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  19. Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation.

    Science.gov (United States)

    Silva, Cláudia Gomes; Faria, Joaquim Luís

    2009-05-01

    Titanium dioxide (TiO(2)) powder, a semiconductor material typically used as a photocatalyst, is prepared following an acid-catalyzed sol-gel method starting from titanium isopropoxide. The xerogel calcination temperature is used to control surface and morphological properties of the material. Materials are extensively characterized by spectroscopic, micrographic and calorimetric techniques. The different TiO(2) catalysts are used in the visible-light-driven photocatalytic degradation of clofibric acid, a lipid regulator drug. The photoefficiency of TiO(2) catalysts, quantified in terms of kinetic rate constant, total organic carbon removal and initial quantum yield, increases with calcination temperature up to 673 K. A further increase in the calcination temperature leads to a decline in the photoefficiency of the catalysts, which is associated with the phase transformation from anatase to rutile concomitant with an increase in crystallite dimensions. The photochemical and photocatalytic oxidation of clofibric acid follows a pseudo-first order kinetic rate law. 4-Chlorophenol, isobutyric acid, hydroquinone, benzoquinone and 4-chlorocatechol are detected as main intermediates.

  20. Synthesis of BiVO4-GO-PVDF nanocomposite: An excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies

    Science.gov (United States)

    Biswas, Md Rokon Ud Dowla; Oh, Won-Chun

    2018-06-01

    BiVO4-GO-PVDF (PVDF = Polyvinylidene Difluoride) photocatalyst is successfully synthesized by ultrasonication method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Morphology of BiVO4-GO-PVDF looks like a human embryo embedded inside an amniotic sac. Photocatalytic performance of BiVO4-GO-PVDF for decolorization of methylene blue is investigated. BiVO4-GO-PVDF system reveals enhanced photocatalytic activity degradation of methylene blue (MB), Rhodamine B (RhB) & Safranin-O (SO) in water under visible light irradiation as compared to the pure BiVO4 catalyst, BiVO4 & PTFE decorated on the graphene sheet. The experimental result reveals that the covering of graphene sheets in this composite catalyst enhances photocatalytic performance under visible light. This enhanced activity is mainly attributed to effective quenching of the photogenerated electron-hole pairs confirmed by photoluminescence spectra. Trapping experiments of radicals and holes were conducted to detect reactive species generated in the photocatalytic system, experimental results revealed that direct hole oxidation reaction is obviously dominant during photocatalytic reactions on the BiVO4-GO-PVDF system.

  1. Facile hydrothermal synthesis of ultrasmall W{sub 18}O{sub 49} nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, Bishal; Paul, Bappi [Department of Chemistry, National Institute of Technology, Silchar, Silchar, 788010, Assam (India); Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com [Department of Chemistry, National Institute of Technology, Silchar, Silchar, 788010, Assam (India); Vadivel, Sethumathavan [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641004 (India)

    2017-02-15

    Uniformly dispersed ultrasmall tungsten oxide nanoparticles (W{sub 18}O{sub 49}) of sizes around 5–7 nm were synthesized using tungsten hexachloride as tungsten precursor and octadecylamine (ODA) as surfactant and as well as reducing agent. The as-synthesized nanoparticles (NPs) were characterized thoroughly by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and N{sub 2} adsorption desorption isotherm (BET). From the XRD patterns, formation of monoclinic primitive phase of W{sub 18}O{sub 49} was observed while TEM images showed well dispersed particles of sizes 5–7 nm. The surface area of the W{sub 18}O{sub 49} NPs was found to be 27.17 m{sup 2} g{sup −1}. These ultrasmall W{sub 18}O{sub 49} NPs have been studied as photocatalysts for the first time in the degradation of methylene blue (MB). The photocatalytic activity was evaluated in oxidative degradation of MB with H{sub 2}O{sub 2} under solar irradiation. The particles exhibited pronounced activity in degradation of MB as well as efficient recyclability. The small band gap energy of W{sub 18}O{sub 49} NPs and their large surface area helps in the production of higher electron (e{sup −}) and hole (h{sup +}) pairs which in a way also prevents the e{sup −} and h{sup +} pairs from recombination within the nanoparticles. This greatly improves and enhances the photocatalytic activity of our synthesized nanoparticles. - Highlights: • Ultrasmall W{sub 18}O{sub 49} NPs were synthesized by a facile hydrothermal route. • Octadecylamine was used as both capping and reducing agent. • The XRD patterns revealed formation of monoclinic primitive phase of W{sub 18}O{sub 49}. • The TEM images showed that the material were well dispersed with sizes from 5 to 7 nm. • The synthesized NPs exhibited pronounced photocatalytic activity towards MB degradation.

  2. Photocatalytic degradation of methylene blue dye using Fe{sub 2}O{sub 3}/TiO{sub 2} nanoparticles prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: abdelhay71@hotmail.com [Chemistry Department, Faculty of Science, Ain-Shams University (Egypt); El-Katori, Emad E.; Gharni, Zarha H. [Chemistry Department, Faculty of Science, King Khaled University (Saudi Arabia)

    2013-03-15

    Graphical abstract: Photocatalytic degradation of methylene blue dye was successfully carried over Fe{sub 2}O{sub 3}/TiO{sub 2} nanorods embedded various proportion of Fe{sub 2}O{sub 3} (0–20) wt.%. Highlights: ► Fe{sub 2}O{sub 3}/TiO{sub 2} nano mixed oxide samples were successfully synthesized by sol–gel method. ► Manipulation of particle size and structure were achieved by micelle template approach. ► Both adsorption and photocatalytic reactivity are the main reasons for exceptional decolorization of methylene blue dye. ► A new mechanism for electronic transition between TiO{sub 2} and Fe{sub 2}O{sub 3} was proposed. -- Abstract: The photocatalytic degradation of methylene blue dye was successfully carried under UV irradiation over Fe{sub 2}O{sub 3}/TiO{sub 2} nanoparticles embedded various composition of Fe{sub 2}O{sub 3} (0–20) wt.% synthesized by sol–gel process. Structural and textural features of the mixed oxide samples were investigated by X-ray diffraction [XRD], Fourier transformer infra-red [FTIR], Energy dispersive X-ray [EDX], Field emission electron microscope [FESEM] and transmission electron microscope [TEM]. However, the optical features were estimated using UV–Vis spectrophotometer. The results reveal that the incorporation of various Fe{sub 2}O{sub 3} up to 7% is associated by remarkable increase in surface area, reduction of particle size, stabilization of anatase phase, shifting the photoexcitation response of the sample to visible region and exceptional degradation of methylene blue dye. On the other hand, increasing Fe{sub 2}O{sub 3} contents up to 20 wt.% is associated by anatase–rutile transformation, increasing in particle size and remarkable decrease in surface area which are prime factors in reducing the degradation process. The experimental results indicate that Fe{sub 2}O{sub 3}/TiO{sub 2} nanoparticles having both the advantages of photodegradation–adsorption process which considered a promising new

  3. Preparation of reduced graphene oxide/meso-TiO_2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    International Nuclear Information System (INIS)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-01-01

    Graphical abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under a hydrothermal condition. The RGO/meso-TiO_2/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO_2/AuNPs were obtained by addition of graphene oxide to meso-TiO_2/AuNPs. • Au NPs in the mesopores of meso-TiO_2 reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO_2 enhance the adsorption of MB. • RGO/meso-TiO_2/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO_2/AuNPs (RGO/meso-TiO_2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO_2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO_2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO_2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO_2 and meso-TiO_2/AuNPs.

  4. Hierarchical La{sub 0.7}Ce{sub 0.3}FeO{sub 3}/halloysite nanocomposite for photocatalytic degradation of antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiazhang; Yao, Chao [Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou (China); Chinese Academy of Science, R and D Center of Xuyi Attapulgite Applied Technology, Xuyi (China); Zhu, Wei; Yan, Xiangyu [Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou (China); Lu, Xiaowang [Chinese Academy of Science, R and D Center of Xuyi Attapulgite Applied Technology, Xuyi (China); Ni, Chaoying [University of Delaware, Center for Advanced Microscopy and Microanalysis, Newark, DE (United States)

    2016-08-15

    The hierarchical La{sub 0.7}Ce{sub 0.3}FeO{sub 3}/halloysite nanotubes (HNTs) composites have been successfully prepared via sol-gel method. XRD and TEM characterizations indicated that the sheet-like La{sub 0.7}Ce{sub 0.3}FeO{sub 3} coupled with the co-precipitated CeO{sub 2} were evenly deposited onto the surface of halloysite. The photocatalytic degradation of chlortetracycline under visible light irradiation using La{sub 0.7}Ce{sub 0.3}FeO{sub 3}/HNTs as catalyst was evaluated by high-performance liquid chromatography, which exhibited remarkable photocatalytic activity with the removal rate up to 99 % in 90 min, due to the formation of ''solid solution/co-precipitation'' heterostructure as well as the excellent adsorptive capability of halloysite for antibiotics. (orig.)

  5. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  6. The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater.

    Science.gov (United States)

    Noeiaghaei, T; Yun, J-H; Nam, S W; Zoh, K D; Gomes, V G; Kim, J O; Chae, S R

    2015-01-01

    The effects of geometrical characteristics such as surface area (SA) and porosity of TiO2 nanotube arrays (TNAs) on its photocatalytic activity were investigated by applying variable voltages and reaction times for the anodization of Ti substrates. While larger SA of nanotubes was observed under higher applied potential, the porosity of TNAs decreased by increasing anodizing voltage. Under applied potential of 80 V, the SA of TNAs increased from 0.164 to 0.471 m2/g as anodization time increased from 1 to 5 hours, respectively. However, no significant effect on the porosity of TNAs was observed. On the other hand, both SA and porosity of TNAs, synthesized at 60 V, increased by augmenting the anodization time from 1 to 3 hours. But further increasing of anodization time to 5 hours resulted in a decreased SA of TNAs with no effect on their porosity. Accordingly, the TNAs with SA of 0.368 m2/g and porosity of 47% showed the highest photocatalytic activity for degradation of 4-chlorobenzoic acid (4CBA). Finally, the degradation of refractory model compounds such as carbamazepine and bisphenol-A was tested and more than 50% of both compounds could be degraded under UV-A irradiation (λmax=365 nm).

  7. Correlation of lattice distortion with photocatalytic activity of titanium dioxide

    International Nuclear Information System (INIS)

    Wang Xia; Shui Miao; Li Rongsheng; Song Yue

    2008-01-01

    The photocatalytic activity of titanium dioxide dispersions on X-3B pigment degradation has been investigated. A variety of factors that would influence the photocatalytic activity such as crystallite size, lattice distortion, and anatase content are discussed in detail. It is found that lattice distortion is the most important one among these factors and is expected to inhibit the hole and electron pair recombination. It determines, to some extent, the photocatalytic efficiency of titanium dioxide dispersions

  8. (0 0 1) Facet-exposed anatase-phase TiO{sub 2} nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xun [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Shi, Tiejun, E-mail: stjhfut@163.com [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Wu, Jing [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Zhou, Haiou [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); School of Materials and Chemical Engineering of Anhui University of Architecture, Hefei 230901 (China)

    2013-12-15

    Reduced graphene oxide (RGO) and TiO{sub 2} nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO{sub 2} powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by C-Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO{sub 2} powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  9. A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation.

    Science.gov (United States)

    Yang, Libin; Sang, Qinqin; Du, Juan; Yang, Ming; Li, Xiuling; Shen, Yu; Han, Xiaoxia; Jiang, Xin; Zhao, Bing

    2018-06-06

    Ag simultaneously deposited and doped TiO2 (Ag-TiO2) hybrid nanoparticles (NPs) were prepared via a sol-hydrothermal method, as both a sensitive surface-enhanced Raman scattering (SERS) substrate and a superior photocatalyst for the first time. Ag-TiO2 hybrid NPs exhibit excellent SERS performance for several probe molecules and the enhancement factor is calculated to be 1.86 × 105. The detection limit of the 4-mercaptobenzoic acid (4-MBA) probe on the Ag-TiO2 substrate is 1 × 10-9 mol L-1, which is four orders of magnitude lower than that on pure TiO2 as a consequence of the synergistic effects of TiO2 and Ag. This is the highest SERS sensitivity among the reported semiconductor substrates and even comparable to noble metal substrates, and a SERS enhancement mechanism from the synergistic contribution of the semiconductor and noble metal was proposed. And importantly, the Ag-TiO2 hybrid shows excellent photocatalytic degradation activity for the detected species under UV light irradiation at lower concentration conditions, even for the hard to degrade 4-MBA molecule. This makes the Ag-TiO2 hybrid promising as a dual-function platform for both highly sensitive SERS detection and photocatalytic degradation of a pollutant system. Moreover, it also proves that the Ag-TiO2 hybrid can serve as a promising recyclable SERS-active substrate by virtue of its photocatalytic self-cleaning properties for some specific applications, for instance comparative studies of different species on the same SERS platform, in addition to the economic benefit.

  10. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Chalbi, Manel [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2015-08-30

    Graphical abstract: - Highlights: • A series of Ag-doped ZnO were synthesized via hydrothermal method. • Effect of doping with silver on the textural, structural optical properties of ZnO. • The photocatalytic activity has been tested using bisphenol A and nonylphenol. • The highest degradation efficiency was obtained with 1% Ag. • Ag doping enhances the photocatalytic and antibacterial activities of ZnO. - Abstract: Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV–-Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (S{sub BET}) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H{sub 2}O{sub 2}) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  11. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    International Nuclear Information System (INIS)

    Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami

    2015-01-01

    Graphical abstract: - Highlights: • A series of Ag-doped ZnO were synthesized via hydrothermal method. • Effect of doping with silver on the textural, structural optical properties of ZnO. • The photocatalytic activity has been tested using bisphenol A and nonylphenol. • The highest degradation efficiency was obtained with 1% Ag. • Ag doping enhances the photocatalytic and antibacterial activities of ZnO. - Abstract: Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV–-Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (S BET ) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H 2 O 2 ) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO

  12. Preparation of H3PW12O40/MCM-48 and its photocatalytic degradation of pesticides.

    Science.gov (United States)

    Liu, Xia; Li, Yan-zhou; Gan, Qiang; Feng, Chang-gen

    2014-08-01

    A composite catalyst H3PW12O40/MCM-48 was prepared by loading photocatalyst phosphotungstic acid H3PW12O40 (HPW) to molecular sieve MCM-48 by impregnation method, and its structure was characterized by Fourier transform infrared (FT-IR) spectra, small angle X-ray diffraction (XRD) patterns, nitrogen adsorption analysis and High-resolution transmission electron microscopy (HRTEM) analysis. Photocatalytic degradation activities of HPW/MCM-48 against pesticides imidacloprid and paraquat were evaluated under UV radiation (365 nm). The results show that HPW/MCM-48 maintains the mesoprous molecular sieve structure of MCM-48 and the Keggin structure of HPW, while the BET surface area is 793.35 m2 x g(-1), pore volume is 1.46 cm3 x g(-1), average pore diameter is 2.76 nm, suggesting loading HPW on MCM-48 is a considerable way to improve its surface area. After 14 h UV irradiation (365 nm), 57.38% imidacloprid and 63.79% paraquat were degraded by 20 mg HPW/MCM-48 catalyst, while HPW and blank group degraded the two pesticides at the degradation rate of about 25% and 5%, respectively. Implying loading on MCM-48 could greaterly improve the degradation activity of HPW. The reslut of degradation kinetics show that, the degradation process of HPW/MCM-48 fits first order kinetics equation. The rate constant Ka of HPW/MCM-48 toward imidacloprid and paraquat are 0.089 h and 0.117 h, with the half-life t(1/2) of 7.8 h and 5.9 h, respectively.

  13. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    Science.gov (United States)

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  14. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe{sub 2}O{sub 4}/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kahtani, Abdullah A. [Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451 (Saudi Arabia); Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Alkharj 11942 (Saudi Arabia); Abou Taleb, Manal F., E-mail: abutalib_m@yahoo.com [Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Alkharj 11942 (Saudi Arabia); Polymer Department National Center for Radiation Research and Technology, Nasr city, Cairo (Egypt)

    2016-05-15

    Highlights: • CS/CF/GONCs were synthesized via γ-irradiation and used as a heterogeneous photo-Fenton catalyst. • It can degrade Maxilon C.I. basic dye under sunlight irradiation. • A possible degradation pathway of Maxilon C.I. Basic was proposed. • The degradation of Maxilon follows pseudo-first-order kinetics. • The catalyst can be separated by an external magnetic field. • Cyclic degradation tests show the catalyst is highly active, stable and recoverable. - Abstract: CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H{sub 2}O{sub 2} concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10 mM H{sub 2}O{sub 2} at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal.

  15. Fabrication of efficient visible light activated Cu–P25–graphene ternary composite for photocatalytic degradation of methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zheng [Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Duan, Wubiao, E-mail: wbduan@bjtu.edu.cn [Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Liu, Bo; Chen, Xidong [Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Yang, Feihua; Guo, Jianping [State Key Laboratory of Solid Wastes Resource Utilization and Energy Saving Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041 (China)

    2015-11-30

    Graphical abstract: This enhanced photocatalytic activity of multi-doped P25 arises due to the synergistic effect of dopants contribution to improve visible light absorption and increase of the lifetime of photo-generated charge carriers. Plausible mechanism for the photocatalytic degradation of MB on CPG nanocomposite is illustrated in the figure above. Graphene incooperated with TiO{sub 2} promotes the formation of Ti−C or Ti−O−C bonds that introduced an additional energy level above the valence band of TiO{sub 2}. Furthermore, copper and graphene serve as an inhibitor of recombination by trapping electrons to promote charge separation. Simultaneously, doping Cu{sup 2+} ions into TiO{sub 2} could also induce more oxygen vacancies, which can produce more hydroxyl groups. Finally, the enhanced adsorptivity of π–π interaction between MB and the composite catalyst was as well significant for photocatalytic activity. - Highlights: • Hydrothermal method was proposed to fabricate Cu–P25–graphene ternary composite at relative low temperature. • Degradation efficiency and hydrogen evolution rate of CPG-4 was up to 98% and 1.90 mmol g{sup −1} respectively. • The efficiency of MB removal by CPG-4 was sustainable and consistent. • The particles-on-a-sheet structure and synergistic effects of Cu{sup 2+} ions and GO lead to the improved photocatalytic activity. • The effects of pH values of methyl blue solution for photocatalysts was investigated. - Abstract: Cu–P25–graphene nanocomposite was fabricated through hydrothermal method at relatively low temperature. The technique used is P25–graphene (PG) binary composite was firstly prepared by P25 and graphite oxide (GO), and then Cu{sup 2+} ions were impregnated into PG composite. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance

  16. Effect of the Mg/Al Ratio on Activated Sol-Gel Hydrotalcites for Photocatalytic Degradation of 2,4,6-Trichlorophenol

    Directory of Open Access Journals (Sweden)

    Esthela Ramos-Ramírez

    2017-01-01

    Full Text Available Currently, interest has grown in finding effective solutions for the treatment of water pollution by toxic compounds. Some of the latter that have acquired importance are phenols and chlorophenols, due to their employment in the manufacture of pesticides, insecticides, cords of wood, paper industry, among others. The problem is rooted in that these compounds are very persistent in the environment because they are partially biodegradable and cannot be photodegraded directly by sunlight. Chlorophenols are extremely toxic, especially 2,4,6-trichlorophenol, which is potentially carcinogenic. In this work, Mg/Al-mixed oxide catalysts were obtained from the thermal treatment of hydrotalcite-type materials, synthesized by sol-gel method with different Mg/Al ratios. Hydrotalcites and Mg/Al-mixed oxides were physicochemically characterized by X-ray diffraction, thermal analysis (DTA and TGA, and N2 physisorption. The results were obtained on having proven the photocatalytic degradation of 2,4,6-trichlorophenol as a pollutant model by water. The catalysts obtained present the hydrotalcite phase with thermal evolution until achieving Mg/Al-mixed oxides at 500°C. The catalysts are of mesoporous materials and exhibiting large surface areas. The catalysts demonstrated good photocatalytic activity with good efficiency, reaching degradation percentages with Mg/Al = 1, 2, 4, 5, and 7 ratios of 94.2, 92.5, 86.2, 84.2, and 63.9%, respectively, until achieving mineralization.

  17. Design of micro-reactors and solar photocatalytic prototypes; Diseno de micro-reactores y prototipos fotocataliticos solares

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Hernandez H, M.; Perusquia del Cueto, M.R.; Bonifacio M, J.; Jimenez B, J.; Ortiz O, H.B.; Castaneda J, G.; Lugo H, M. [ININ, Km. 36.5 Carr. Mexico-Toluca, 52750 La Marquesa, Ocoyoacac (Mexico)]. e-mail: rmfe@nuclear.inin.mx

    2007-07-01

    In the ININ is carried out research in heterogeneous photocatalysis using artificial light for to degrade organic compounds. In this context, it is sought to use the solar radiation as energy source to knock down costs. Of equal form it requires to link the basic and applied research. For it, a methodology that allows to design and to build micro-reactors and plants pilot has been developed, like previous step, to request external supports and to a future commercialization. The beginning of these works gave place to the partial construction of a prototype of photocatalytic reactor of the cylinder-parabolic composed type (CPC)

  18. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    Science.gov (United States)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  19. Influence of ZnO concentration on the optical and photocatalytic ...

    Indian Academy of Sciences (India)

    Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, 2028 ... used to degrade the dye on the basis of influence of factors such as solution temperature, .... The photocatalytic degradation potential of the synthesized.

  20. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il

    2013-01-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  1. Strategies to reduce mass and photons transfer limitations in heterogeneous photocatalytic processes: Hexavalent chromium reduction studies.

    Science.gov (United States)

    Marinho, Belisa A; Cristóvão, Raquel O; Djellabi, Ridha; Caseiro, Ana; Miranda, Sandra M; Loureiro, José M; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P

    2018-07-01

    The current work presents different approaches to overcome mass and photon transfer limitations in heterogeneous photocatalytic processes applied to the reduction of hexavalent chromium to its trivalent form in the presence of a sacrificial agent. Two reactor designs were tested, a monolithic tubular photoreactor (MTP) and a micro-meso-structured photoreactor (NETmix), both presenting a high catalyst surface area per reaction liquid volume. In order to reduce photon transfer limitations, the tubular photoreactor was packed with transparent cellulose acetate monolithic structures (CAM) coated with the catalyst by a dip-coating method. For the NETmix reactor, a thin film of photocatalyst was uniformly deposited on the front glass slab (GS) or on the network of channels and chambers imprinted in the back stainless steel slab (SSS) using a spray system. The reaction rate for the NETmix photoreactor was evaluated for two illumination sources, solar light or UVA-LEDs, using the NETmix with the front glass slab or/and back stainless steel slab coated with TiO 2 -P25. The reusability of the photocatalytic films on the NETmix walls was also evaluated for three consecutive cycles using fresh Cr(VI) solutions. The catalyst reactivity in combination with the NETmix-SSS photoreactor is almost 70 times superior to one obtained with the MTP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Shi Xiong Min; Fang Wang; Lei Feng; Yong Chun Tong; Zi Rong Yang

    2008-01-01

    A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ=190-800nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃>300℃>340℃>220℃>180℃.

  3. Effect of pH on the microstructure of β-Ga2O3 and its enhanced photocatalytic activity for antibiotic degradation.

    Science.gov (United States)

    Liu, Jin; Lu, Wei; Zhong, Qian; Wu, Hongzhang; Li, Yunlin; Li, Lili; Wang, Zhenling

    2018-06-01

    Semiconductor photocatalysis has become the focus of recent research on antibiotic treatment because it is a green and efficient technology. In this study, α-GaOOH with several novel microstructures has been synthesized at a low temperature and its subsequent thermal transformation. The influence of pH on the synthesis of α-GaOOH is studied, and the results indicate that pH played an important role in the microstructures of α-GaOOH and β-Ga 2 O 3 . All Ga 2 O 3 samples possess macro-mesoporous network structures and exhibits a remarkable photocatalytic activity for antibiotic degradation. The photoelectron chemical tests show that the separation efficiency of photogenerated charge carriers of Ga 2 O 3 -7.0 is higher than that of other Ga 2 O 3 . The enhanced photocatalytic activity of Ga 2 O 3 -7.0 is mainly ascribed to its morphology and oxygen vacancy. The active species trapping and photoluminescence measurement experiments indicate that OH and O 2 - are the major active species contributing to the photocatalytic process. This study will bring about the potential application in treatment of the antibiotic pollutants. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    International Nuclear Information System (INIS)

    Saien, J.; Nejati, H.

    2007-01-01

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO 2 added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L -1 , 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C 10 ) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants

  5. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saien, J. [Department of Applied Chemistry, University of Bu-Ali Sina, Hamadan 65174 (Iran, Islamic Republic of)], E-mail: saien@basu.ac.ir; Nejati, H. [Department of Applied Chemistry, University of Bu-Ali Sina, Hamadan 65174 (Iran, Islamic Republic of)

    2007-09-05

    A circulating photocatalytic reactor was used for removing aliphatic and aromatic organic pollutants in refinery wastewater. The TiO{sub 2} added wastewater samples, while saturating with air, were irradiated with an immersed mercury UV lamp (400 W, 200-550 nm). Optimal catalyst concentration, fluid pH and temperature were obtained at amounts of near 100 mg L{sup -1}, 3 and 318 K, respectively. A maximum reduction in chemical oxygen demand of more than 90% was achieved after about 4 h irradiation and hence, 73% after about only 90 min; significant pollutant removal was also achievable in the other conditions. The identification of the organic pollutants, provided by means of a GC/MS and a GC analysis systems, equipped with headspace injection technique, showed that the major compounds were different fractions of petroleum aliphatic hydrocarbons (up to C{sub 10}) and the well-known aromatic compounds such as benzene, toluene and ethylbenzene. The results showed a high efficiency degradation of all of these pollutants.

  6. The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study.

    Science.gov (United States)

    Boucheloukh, H; Remache, W; Parrino, F; Sehili, T; Mechakra, H

    2017-05-17

    The photocatalytic degradation of isoproturon, a persistent toxic herbicide, was investigated in the presence of natural iron oxide and oxalic acid and under UV irradiation. The influence of the relevant parameters such as the pH and the iron oxide and oxalic acid concentrations has been studied. The presence of natural iron oxide and oxalic acid in the system effectively allow the degradation of isoproturon, whereas the presence of t-butyl alcohol adversely affects the phototransformation of the target pollutant, thus indicating that an OH radical initiated the degradation mechanism. The degradation mechanism of isoproturon was investigated by means of GC-MS analysis. Oxidation of both the terminal N-(CH 3 ) 2 and isopropyl groups is the initial process leading to N-monodemethylated (NHCH 3 ), N-formyl (N(CH 3 )CHO), and CHCH 3 OH as the main intermediates. The substitution of the isopropyl group by an OH group is also observed as a side process.

  7. A short review on photocatalytic degradation of formaldehyde

    NARCIS (Netherlands)

    Tasbihi, M.; Bendyna, J.K.; Notten, P.H.L.; Hintzen, H.T.J.M.

    2015-01-01

    Nowadays, it is a great challenge to eliminate toxic and harmful organic pollutants from air and water. This paper reviews the role of TiO2 as a photocatalyst, light source and photoreactor in the particular case of removal of formaldehyde using the photocatalytic reaction by titanium dioxide (TiO2

  8. Facile Synthesis of Indium Sulfide/Flexible Electrospun Carbon Nanofiber for Enhanced Photocatalytic Efficiency and Its Application

    Directory of Open Access Journals (Sweden)

    Liu Han

    2017-01-01

    Full Text Available Heterojunction system has been proved as one of the best architectures for photocatalyst owing to extending specific surface area, expanding spectral response range, and increasing photoinduced charges generation, separation, and transmission, which can provide better light absorption range and higher reaction site. In this paper, Indium Sulfide/Flexible Electrospun Carbon Nanofiber (In2S3/CNF heterogeneous systems were synthesized by a facile one-pot hydrothermal method. The results from characterizations of SEM, TEM, XRD, Raman, and UV-visible diffuse reflectance spectroscopy displayed that flower-like In2S3 was deposited on the hair-like CNF template, forming a one-dimensional nanofibrous network heterojunction photocatalyst. And the newly prepared In2S3/CNF photocatalysts exhibit greatly enhanced photocatalytic activity compared to pure In2S3. In addition, the formation mechanism of the one-dimensional heterojunction In2S3/CNF photocatalyst is discussed and a promising approach to degrade Rhodamine B (RB in the photocatalytic process is processed.

  9. Size-Controlled TiO{sub 2} nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wen-Yuan; Zhou, Qi [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Xing, E-mail: xingchen@iim.ac.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nanomaterials and Environmental Detection, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Yong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Huang, Xing-Jiu [Laboratory of Nanomaterials and Environmental Detection, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China)

    2016-08-15

    Highlights: • N-RGO/TiO{sub 2} nanocomposites were prepared via one-step hydrothermal method. • Facets of TiO{sub 2} nanocrystals were modulated with addition of HF. • Sizes of TiO{sub 2} nanocrystals were controlled by the contents of RGO-NH{sub 2.} • Obtained N-RGO/TiO{sub 2} nanocomposites exhibited excellent photocatalytic activity and stability. - Abstract: Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO{sub 2}/graphene nanocomposites (N-RGO/TiO{sub 2}) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO{sub 2} nanocrystals and graphene, but also the nitrogen dopant for TiO{sub 2} nanocrystals and graphene. During the hydrothermal process, facets of TiO{sub 2} nanocrystals were modulated with addition of HF, and sizes of TiO{sub 2} nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH{sub 2}). The obtained N-RGO/TiO{sub 2} nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO{sub 2} samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO{sub 2} catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO{sub 2}-N/F (61%) in 3 h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

  10. Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-10-01

    Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.

  11. Solar CPC pilot plant photocatalytic degradation of bisphenol A in waters and wastewaters using suspended and supported-TiO2. Influence of photogenerated species.

    Science.gov (United States)

    Saggioro, Enrico Mendes; Oliveira, Anabela Sousa; Pavesi, Thelma; Tototzintle, Margarita Jiménez; Maldonado, Manuel Ignacio; Correia, Fábio Verissimo; Moreira, Josino Costa

    2014-11-01

    Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L(-1)) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol-gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L(-1)). The influence of OH·, O2 (·-), and h (+) on the BPA degradation were evaluated. The radicals OH· and O2 (·-) were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L(-1). According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7 × 10(-2) mg cm(-2). The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.

  12. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material.

    Science.gov (United States)

    Andriantsiferana, C; Mohamed, E F; Delmas, H

    2014-01-01

    A sequential adsorption/photocatalytic regeneration process to remove tartrazine, an azo-dye in aqueous solution, has been investigated. The aim ofthis work was to compare the effectiveness of an adsorbent/photocatalyst composite-TiO2 deposited onto activated carbon (AC) - and a simple mixture of powders of TiO2 and AC in same proportion. The composite was an innovative material as the photocatalyst, TiO2, was deposited on the porous surface ofa microporous-AC using metal-organic chemical vapour deposition in fluidized bed. The sequential process was composed of two-batch step cycles: every cycle alternated a step of adsorption and a step of photocatalytic oxidation under ultra-violet (365 nm), at 25 degreeC and atmospheric pressure. Both steps, adsorption and photocatalytic oxidation, have been investigated during four cycles. For both materials, the cumulated amounts adsorbed during four cycles corresponded to nearly twice the maximum adsorption capacities qmax proving the photocatalytic oxidation to regenerate the adsorbent. Concerning photocatalytic oxidation, the degree of mineralization was higher with the TiO2/AC composite: for each cycle, the value of the total organic carbon removal was 25% higher than that obtained with the mixture powder. These better photocatalytic performances involved better regeneration than higher adsorbed amounts for cycles 2, 3 and 4. Better performances with this promising material - TiO2 deposited onto AC - compared with TiO2 powder could be explained by the vicinity of photocatalytic and AC adsorption sites.

  13. Preparation and photocatalytic activity of chemically-bonded phosphate ceramics containing TiO2

    Science.gov (United States)

    Martins, Monize Aparecida; de Lima, Bruna de Oliveira; Ferreira, Leticia Patrício; Colonetti, Emerson; Feltrin, Jucilene; De Noni, Agenor

    2017-05-01

    Titanium dioxide was incorporated into chemically-bonded phosphate ceramic for use as photocatalytic inorganic coating. The coatings obtained were applied to unglazed ceramic tiles and cured at 350 °C. The surfaces were characterized by photocatalytic activity, determined in aqueous medium, based on the degradation of methylene blue dye. The effects of the percentage of TiO2 and the thickness of the layer on the photocatalytic efficiency were evaluated. The influence of the incorporation of TiO2 on the consolidation of the phosphate matrix coating was investigated using the wear resistance test. The crystalline phases of the coatings obtained were determined by XRD. The microstructure of the surfaces was analyzed by SEM. The thermal curing treatment did not cause a phase transition from anatase to rutile. An increase in the photocatalytic activity of the coating was observed with an increase in the TiO2 content. The dye degradation indices ranged from 14.9 to 44.0%. The photocatalytic efficiency was not correlated with the thickness of the coating layer deposited. The resistance to wear decreased with an increase in the TiO2 content. Comparison with a commercial photocatalytic ceramic coating indicated that there is a range of values for the TiO2 contents which offer potential for photocatalytic applications.

  14. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  15. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity

    Science.gov (United States)

    Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie

    2017-12-01

    In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.

  16. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  17. Photocatalytic efficiency of titania photocatalysts in saline waters

    Directory of Open Access Journals (Sweden)

    Albrbar Asma Juma

    2014-01-01

    Full Text Available The photocatalytic efficiency of the recently synthesized TiO2 powder, named P160, of the degradation of dye Dye C.I. Reactive orange 16 in natural and artificial seawater was investigated in comparison to its efficiency in deionized water and the efficiency of a standard TiO2 powder Degusa P25. It was shown that the photocatalytic efficiency of P160 was slightly higher than that of P25, probably due to slightly higher specific surface area, higher pore volume and larger pores of the powder P160. The efficiency of both photocatalysts in natural and artificial seawater was significantly lower than that in deionized water. The overall rate of dye degradation for both types of photocatalysts is litle higher in artificial seawater than in natural seawater, which shows the influence of organic compounds naturally present in seawater on the photocatalysts activity. A saturation Langmuir-type relationship between the initial degradation rate and the initial dye concentration indicates that the adsorption plays a role in the photocatalytic reaction. The photodegradation rate constant k, which represents the maximum reaction rate, has similar values for P25 and P160 in all types of water due to the similar properties of the photocatalysts. [Projekat Ministarstva nauke Republike Srbije, br III 45019

  18. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    International Nuclear Information System (INIS)

    Li Jinhuan; Yang Xia; Yu Xiaodan; Xu, Leilei; Kang Wanli; Yan Wenhua; Gao Hongfeng; Liu Zhonghe; Guo Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+ /TiO 2 , where RE = Eu 3+ , Pr 3+ , Gd 3+ , Nd 3+ , and Y 3+ ) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+ , Pr 3+ )/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+ /TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  19. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  20. Enhanced visible light photocatalytic degradation of eriochrome black T and eosin blue shade in water using tridoped titania decorated on SWCNTs and MWCNTs: Effect of the type of carbon nanotube incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Mamba, G.; Mbianda, X.Y. [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein, 2028 Johannesburg (South Africa); DST-NRF Centre of Excellence in Strong Materials, School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050 Johannesburg (South Africa); Mishra, A.K., E-mail: amishra@uj.ac.za [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein, 2028 Johannesburg (South Africa); DST-NRF Centre of Excellence in Strong Materials, School of Physics, University of the Witwatersrand, Private Bag 3, WITS 2050 Johannesburg (South Africa)

    2015-01-15

    Oxidised single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were each incorporated into a neodymium, nitrogen and sulphur tridoped TiO{sub 2} (Nd,N,S–TiO{sub 2}) to form composite photocatalysts: SWCNT/Nd,N,S–TiO{sub 2} and MWCNT/Nd,N,S–TiO{sub 2}. The fabricated composite photocatalysts were exploited for the photocatalytic degradation of eriochrome black T (EBT) and eosin blue shade (EBS) from single and mixed dye solutions. Incorporation of the carbon nanotubes significantly improved visible light response and the photocatalytic activity of the composites compared to MWCNT/TiO{sub 2}, SWCNT/TiO{sub 2} and tridoped TiO{sub 2}. The SWCNTs incorporating photocatalyst displayed superior photocatalytic activity over its MWCNTs incorporating counterpart. From single dye solutions degradation studies, the SWCNT/Nd,N,S–TiO{sub 2} reached maximum degradation efficiencies of 96.9% and 89.2% for EBS and EBT, respectively. Similarly, maximum degradation efficiencies of 61.4% and 54.1% were recorded from mixed dye solutions using SWCNT/Nd,N,S–TiO{sub 2}, for EBS and EBT, respectively. First order kinetics studies revealed that EBS is degraded faster than EBT both from single and mixed dye solutions. Total organic carbon (TOC) analyses suggest a relatively high degree of complete mineralisation of both EBS (73.6% TOC removal) and EBT (66.2% TOC removal). The SWCNT/Nd,N,S–TiO{sub 2} composite photocatalyst displayed sufficient stability (88.8% EBS removal) after being reused for five times. - Highlights: • SWCNT/Nd,N,S–TiO{sub 2} and MWCNT/Nd,N,S–TiO{sub 2} were prepared via sol–gel method. • EBS and EBT degradation was studied in single and mixed dye solution. • SWCNT/Nd,N,S–TiO{sub 2} displayed higher photocatalytic activity than MWCNT/Nd,N,S–TiO{sub 2}. • Relatively high TOC removal for EBS and EBT by SWCNT/Nd,N,S–TiO{sub 2}. • SWCNT/Nd,N,S–TiO{sub 2} displayed good stability for reuse.

  1. Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Baicheng, E-mail: baichengweng@gmail.com; Xu, Fenghua; Xu, Jianguang [Yancheng Institute of Technology, Materials Engineering Department (China)

    2014-12-15

    A hierarchical structure (CNTs/CFs-NSs) of BiOX (X = Cl, I) nanosheets (NSs) on carbon fibers (CFs) embedded with aligned carbon nanotubes (CNTs) with improved photocatalytic activities has been developed on a large scale. In the CNTs/CFs obtained by centrifugal spinning, CNTs align along the axis of the CFs, form π–π stacking interactions with CFs and strength the electrical conductivity of CFs, which favors the electron collection and transportation. Cross-flake BiOX NSs were uniformly grown on the surface of CNTs/CFs through a successive ionic layer adsorption and reaction process. The as-prepared BiOX NSs are less than 20 nm in thickness with dominant reactive (001) facets that are almost fully exposed, promoting the photocatalytic properties. The hierarchical CNTs/CFs-NSs show 3- and 2-fold improved photocatalytic activities for degradation of methyl orange for BiOCl and BiOI compared to corresponding neat NSs, respectively, given the synergistic effects of CNTs/CFs and NSs. Moreover, these novel hierarchical structures with stable performance enhance the recycled ability for the photocatalyst.

  2. Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Weng, Baicheng; Xu, Fenghua; Xu, Jianguang

    2014-01-01

    A hierarchical structure (CNTs/CFs-NSs) of BiOX (X = Cl, I) nanosheets (NSs) on carbon fibers (CFs) embedded with aligned carbon nanotubes (CNTs) with improved photocatalytic activities has been developed on a large scale. In the CNTs/CFs obtained by centrifugal spinning, CNTs align along the axis of the CFs, form π–π stacking interactions with CFs and strength the electrical conductivity of CFs, which favors the electron collection and transportation. Cross-flake BiOX NSs were uniformly grown on the surface of CNTs/CFs through a successive ionic layer adsorption and reaction process. The as-prepared BiOX NSs are less than 20 nm in thickness with dominant reactive (001) facets that are almost fully exposed, promoting the photocatalytic properties. The hierarchical CNTs/CFs-NSs show 3- and 2-fold improved photocatalytic activities for degradation of methyl orange for BiOCl and BiOI compared to corresponding neat NSs, respectively, given the synergistic effects of CNTs/CFs and NSs. Moreover, these novel hierarchical structures with stable performance enhance the recycled ability for the photocatalyst

  3. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: identification of transformation products and pathways.

    Science.gov (United States)

    Pareja, Lucía; Pérez-Parada, Andrés; Agüera, Ana; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-05-01

    Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO(2) photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m(-2), respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO(2) photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water. Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Cheng Jiushan

    2017-01-01

    Full Text Available In this paper, the composite ZnS/MoS2 was obtained via two steps including solvothermal methods. The as-synthesized sample was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and UV-Vis. diffuse reflectance spectra (DRS. The photocatalytic activity of the product was evaluated through photocatalytic degradation of Rhodamine B (Rh B under UV-Vis. light irradiation; the electrical conductivity of ZnS/MoS2 composites was significantly improved compared to ZnS, MoS2, respectively. The results showed that the ZnS/MoS2 composite photocatalyst possesses better photocatalytic activity in degrading Rh B than the single ZnS or the single MoS2. The better photocatalytic properties may be due to the synergetic effect of two semiconductors, because of which electrons and holes were separated effectively. And its specific microstructure played an active role in evaluating photocatalytic performance.

  5. Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine

    International Nuclear Information System (INIS)

    Darwish, Maher; Mohammadi, Ali; Assi, Navid

    2016-01-01

    Highlights: • PVP-stabilized CdS nanoparticles have been fabricated by a polyol-microwave method. • CdS nanoparticles were characterized and the size was approximately 48 ± 10 nm. • Catalytic activity of our nanoparticles was examined for tartrazine degradation. • Remarkable results were obtained under both UV and visible light irradiations. - Abstract: Polyvinylpyrrolidone capped cadmium sulfide nanoparticles have been successfully synthesized by a facile polyol method with ethylene glycol. Microwave irradiation and calcination were used to control the size and shape of nanoparticles. Characterization with scanning electron microscopy revealed a restricted nanoparticles growth comparing with the uncapped product, hexagonal phase and 48 nm average particle size were confirmed by X-ray diffraction, and finally mechanism of passivation was suggested depending on Fourier transform infrared spectra. The efficiency of nanoparticles was evaluated by the photocatalytic degradation of tartrazine in aqueous solution under UVC and visible light irradiation. Complete degradation of the dye was observed after 90 min of UVC irradiation under optimized conditions. Kinetic of reaction fitted well to the pseudo-first-order kinetic and Langmuir–Hinshelwood models. Furthermore, 85% degradation of the dye in 9 h under visible light suggests that cadmium sulfide is a promising tool to work under visible light for environmental remediation.

  6. Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Maher, E-mail: m-darwish@razi.tums.ac.ir [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Ali, E-mail: alimohammadi@tums.ac.ir [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Assi, Navid, E-mail: navid_a30@yahoo.com [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • PVP-stabilized CdS nanoparticles have been fabricated by a polyol-microwave method. • CdS nanoparticles were characterized and the size was approximately 48 ± 10 nm. • Catalytic activity of our nanoparticles was examined for tartrazine degradation. • Remarkable results were obtained under both UV and visible light irradiations. - Abstract: Polyvinylpyrrolidone capped cadmium sulfide nanoparticles have been successfully synthesized by a facile polyol method with ethylene glycol. Microwave irradiation and calcination were used to control the size and shape of nanoparticles. Characterization with scanning electron microscopy revealed a restricted nanoparticles growth comparing with the uncapped product, hexagonal phase and 48 nm average particle size were confirmed by X-ray diffraction, and finally mechanism of passivation was suggested depending on Fourier transform infrared spectra. The efficiency of nanoparticles was evaluated by the photocatalytic degradation of tartrazine in aqueous solution under UVC and visible light irradiation. Complete degradation of the dye was observed after 90 min of UVC irradiation under optimized conditions. Kinetic of reaction fitted well to the pseudo-first-order kinetic and Langmuir–Hinshelwood models. Furthermore, 85% degradation of the dye in 9 h under visible light suggests that cadmium sulfide is a promising tool to work under visible light for environmental remediation.

  7. Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure

    International Nuclear Information System (INIS)

    Sarma, Bikash; Deb, Sujit Kumar; Sarma, Bimal K.

    2016-01-01

    Present article focuses on the photocatalytic activities of ZnO nanorods and Ag/ZnO heterostructure deposited on polyethylene terephthalate (PET) substrate. ZnO nanorods are synthesized by thermal decomposition technique and Ag nanoparticles deposition is done by photo-deposition technique using UV light. X-ray diffraction studies reveal that the ZnO nanorods are of hexagonal wurtzite structure. Further, as-prepared samples are characterized by Scanning Electron Microscopy (SEM), Photoluminescence (PL) spectroscopy and UV-Vis spectroscopy. The surface plasmon resonance response of Ag/ZnO is found at 420 nm. The photocatalytic activities of the samples are evaluated by photocatalytic decolorization of methyl orange (MO) dye with UV irradiation. The degradation rate of MO increases with increase in irradiation time. The degradation of MO follows the first order kinetics. The photocatalytic activity of Ag/ZnO heterostructure is found to be more than that of ZnO nanorods. The PL intensity of ZnO nanorods is stronger than that of the Ag/ZnO heterostructure. The strong PL intensity indicates high recombination rate of photoinduced charge carriers which lowers the photocatalytic activity of ZnO nanorods. The charge carrier recombination is effectively suppressed by introducing Ag nanoparticles on the surface of the ZnO nanorods. This study demonstrates a strong relationship between PL intensity and photocatalytic activity. (paper)

  8. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO{sub 3}/g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Jin, Ailing; Jia, Yushuai, E-mail: ysjia@jxnu.edu.cn; Xia, Tonglin; Deng, Chenxin; Zhu, Meihua; Chen, Changfeng; Chen, Xiangshu, E-mail: cxs66cn@jxnu.edu.cn

    2017-05-31

    Highlights: • We designed and fabricated a novel WO{sub 3}/g-C{sub 3}N{sub 4} bifunctional Z-scheme photocatalyst. • Synergistic effect between adsorption and photocatalytic elimination for MB. • The integrated removal efficiency is governed by WO{sub 3} content in the composite. • Adsorption kinetics and isotherm for MB over the photocatalyst were investigated. • A novel Z-scheme photocatalytic mechanism is proposed. - Abstract: A novel bifunctional Z-scheme heterojunction possessing high adsorption and photocatalytic activity, WO{sub 3}/g-C{sub 3}N{sub 4} with well-defined morphology has been successfully synthesized by in-situ liquid phase process and characterized by various analytical techniques. The degradation experiments demonstrate that the Z-scheme photocatalyst shows a synergistic effect between adsorption and photocatalysis for the removal of methylene blue (MB) under visible-light irradiation, with the optimum adsorption and photocatalytic activity both found at 30 wt% WO{sub 3}/g-C{sub 3}N{sub 4}. Under illumination, the photodegradation performance of 30 wt% WO{sub 3}/g-C{sub 3}N{sub 4} is improved to 2.5 and 2.7 times that of pure g-C{sub 3}N{sub 4} and pure WO{sub 3}, respectively. The possible mechanism for the photocatalytic activity enhancement could be attributed to the formation of a Z-scheme heterojunction system based on the active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process can be well described by pseudo-second-order kinetic model, and the adsorption capacity of 30 wt% WO{sub 3}/g-C{sub 3}N{sub 4} is enhanced to 4 times that of pure WO{sub 3}, with a maximum of 97.00 mg g{sup −1} determined by Langmuir isotherm. As evidenced by N{sub 2} physisorption, zeta potential and time-resolved photoluminescence measurements, the significant enhancement of the integrated adsorption and photocatalytic degradation efficiency is mainly due to the

  9. Mn{sub 2}O{sub 3} decorated graphene nanosheet: An advanced material for the photocatalytic degradation of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sourov, E-mail: sourov.chem@gmail.com [Nanomaterials Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur (India); Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Das, Pradip; Bag, Sourav [Nanomaterials Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur (India); Bhar, Radhaballabh, E-mail: rbusicju32@yahoo.co.in [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [Nanomaterials Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur (India)

    2012-06-25

    Graphical abstract: A facile and economical route has been developed for the synthesis of graphene-Mn{sub 2}O{sub 3} nanocomposite in which Mn{sub 2}O{sub 3} nanoparticles are uniformly distributed throughout the surface of the graphene nanosheet with their average sizes ranging from 8 to 10 nm. It shows a brilliant catalytic activity during the photodegradation of several organic dyes as compare to both of the bare manganese oxide and graphene too. Highlights: Black-Right-Pointing-Pointer One step sonochemical synthesis of graphene-Mn{sub 2}O{sub 3} nanocomposite. Black-Right-Pointing-Pointer Growth of such nanoparticles over graphene is accelerated by the simultaneous reduction with KMnO{sub 4}. Black-Right-Pointing-Pointer The composite can effectively use as heterogeneous catalyst during the photodegradation of organic dyes. Black-Right-Pointing-Pointer It exhibits {approx}84%, {approx}80% and {approx}60% degradation of MB, eosin and RB respectively within a few minutes. - Abstract: A one step sonochemical route has been developed to prepare graphene-Mn{sub 2}O{sub 3} nanocomposite with uniform distribution of Mn{sub 2}O{sub 3} nanoparticles throughout the surface of graphene nanosheet. Growth of such nanoparticles over this two dimensional carbon network is simply accelerated by the simultaneous reduction of potassium permanganate along with graphene oxide, in which metal ions are first anchored through binding with oxy-functional groups of graphene oxide and finally reduced by hydrazine. The final product ensure a new platform for the photodegradation of organic dyes, as it can store electrons and circulate them towards dye molecules through the formation of hydroxyl radical under the exposure of UV-light. Almost 80% photocatalytic degradation of eosin, methylene blue and rhodamine B have been observed within few minutes, which has not been obtained by using bare manganese oxide itself.

  10. Preparation, Characterization, and Photocatalytic Activity of TiO2/ZnO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Liqin Wang

    2013-01-01

    Full Text Available Nanoparticles of the TiO2/ZnO composite photocatalysts were prepared via sol-gel process. The crystalline structure, morphology, thermal stability, and pore structure properties of the composite photocatalysts were characterized by XRD, FE-SEM, TG-DTA, and N2 physical adsorption measurements. The photocatalytic activity of the composite catalysts was evaluated by photocatalytic degradation reaction of methyl orange (MO in aqueous solution. The best preparation parameters for the composite photocatalysts were obtained through systematical experiments. Furthermore, the photocatalytic degradation reaction of aqueous MO solution followed the first-order reaction kinetics; the relative equation can be described as ln(C0/C=0.5689t, and the calculated correlation constant (R2 is 0.9937 for the calibration curve.

  11. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    Directory of Open Access Journals (Sweden)

    Zatil Amali Che Ramli

    2014-01-01

    Full Text Available This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC, TiO2/carbon (C, and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, thermogravimetric analysis (TG-DTA, Brunauer-Emmet-Teller (BET, and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1. The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  12. Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Sonik, E-mail: sonikbhatia@gmail.com [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Verma, Neha [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Bedi, R.K. [Satyam Institute of Engineering and Technology, Amritsar, 143107, Punjab (India)

    2017-06-15

    sensitivity and photocatalytic activity. The sensing performance showed 5% volume of ethanol and acetone and gases could be detected with sensitivity of 86.80% and 84.40% respectively. The mechanism for the improvement in the sensing properties can be explained with the surface adsorption theory. Sn–ZnO was used as photocatalyst for degradation of DR-31 dye. Optimum concentration of prepared nanoparticles (2.0 at. wt%) exhibits complete degradation of dye only in 60 min under UV irradiation.

  13. Effect of starting pH and stabilizer/metal ion ratio on the photocatalytic activity of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Devi, L. Meerabai; Negi, Devendra P.S., E-mail: dpsnegi@nehu.ac.in

    2013-09-16

    ZnS nanoparticles have been synthesized using the amino acid histidine as a stabilizing agent. The syntheses were carried out by varying the starting pH and histidine/Zn{sup 2+} ratio. The as-prepared ZnS nanoparticles were characterized by various analytical techniques. The photocatalytic activity of the ZnS nanoparticles was determined by studying the degradation of methyl orange. The ZnS nanoparticles synthesized with 1:1 histidine/Zn{sup 2+} ratio and starting pH of 10.3 were found to exhibit the highest photocatalytic activity. Nearly 95% of methyl orange was degraded in 30 min of irradiation using the photocatalyst. Particle size was not the main factor in determining the photocatalytic activity of the ZnS nanoparticles. Fluorescence lifetime measurements indicated that photocatalytic activity of the ZnS nanoparticles was enhanced with increase in their fluorescence lifetime. - Graphical abstract: Display Omitted - Highlights: • Photocatalytic activity of ZnS nanoparticles dependent on synthesis parameters. • About 95% of methyl orange degraded in 30 min of irradiation using optimal ZnS nanoparticles. • Particle size is not the main factor in determining the photocatalytic activity of ZnS. • Photocatalytic activity of ZnS was enhanced with increase in fluorescence lifetime.

  14. Heterogeneous Photocatalysis: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Alex Omo Ibhadon

    2013-03-01

    Full Text Available Semiconductor heterogeneous photocatalysis, the subject of this review, is a versatile, low-cost and environmentally benign treatment technology for a host of pollutants. These may be of biological, organic and inorganic in origin within water and air. The efficient and successful application of photocatalysis demands that the pollutant, the catalyst and source of illumination are in close proximity or contact with each other. The ability of advanced oxidation technology to remove low levels of persistent organic pollutants as well as microorganisms in water has been widely demonstrated and, progressively, the technology is now being commercialized in many areas of the world including developing nations. This review considers recent developments in the research and application of heterogeneous semiconductor photocatalysis for the treatment of low-level concentrations of pollutants in water and air using titanium dioxide as a “model” semiconductor. The review considers charge transport characteristics on the semiconductor surface, photocatalyst reactor design and organic degradation mechanistic pathways. The effects of photoreactor operating parameters on the photocatalytic process are discussed in addition to mineralization and disinfection kinetics.

  15. Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye

    International Nuclear Information System (INIS)

    Chen, P.K.; Lee, G.J.; Davies, S.H.; Masten, S.J.; Amutha, R.; Wu, J.J.

    2013-01-01

    Highlights: ► Coral-like Au/ZnO was successfully prepared using green synthetic method. ► Gold nanoparticles were deposited on the ZnO structure using NaBH 4 and β-D-glucose. ► Coral-like Au/ZnO exhibited superior photocatalytic activity to degrade Orange II. - Abstract: A porous coral-like zinc oxide (c-ZnO) photocatalyst was synthesized by the hydrothermal method. The coral-like structure was obtained by precipitating Zn 4 (CO 3 )(OH) 6 ·H 2 O (ZnCH), which forms nanosheets that aggregate together to form microspheres with the coral-like structure. X-ray diffraction (XRD) studies indicate that after heating at 550 °C the ZnCH microspheres can be converted to ZnO microspheres with a morphology similar to that of ZnCH microspheres. Thermogravimetric analysis (TGA) shows this conversion takes place at approximately 260 °C. A simple electrostatic self-assembly method has been employed to uniformly disperse Au nanoparticles (1 wt.%) on the ZnO surface. In this procedure β-D-glucose was used to stabilize the Au nanoparticles. Scanning electron microscope images indicate that the diameter of coral-like ZnO microspheres (c-ZnO) is about 8 μm. X-ray diffraction reveals that the ZnO is highly crystalline with a wurtzite structure and the Au metallic particles have an average size of about 13 nm. X-ray photoelectron spectroscopic (XPS) studies have confirmed the presence of ZnO and also showed that the Au is present in the metallic state. The photocatalytic degradation of Orange II dye, with either ultraviolet or visible light, is faster on Au/c-ZnO than on c-ZnO

  16. Hierarchical Bi{sub 2}WO{sub 6} architectures decorated with Pd nanoparticles for enhanced visible-light-driven photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinniu; Chen, Tianhua [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Lu, Hongbing, E-mail: hblu@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Yang, Zhibo; Yin, Feng; Gao, Jianzhi; Liu, Qianru [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062 (China); Tu, Yafang [Department of Physics, Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056 (China)

    2017-05-15

    Highlights: • A new kind of Pd decorated Bi{sub 2}WO{sub 6} hierarchical microarchitecture was synthesized. • Pd nanoparticles remarkably improved the photocatalytic activity of Bi{sub 2}WO{sub 6}. • The photo-generated holes and ·O{sub 2}{sup −} played a crucial role in the degradation of RhB. • The photocatalytic enhancement mechanism of the Pd-Bi{sub 2}WO{sub 6} composites was proposed. - Abstract: A new kind of hierarchical Pd-Bi{sub 2}WO{sub 6} architecture decorated with different molar ratios of Pd to Bi, has been fabricated by a hydrothermal process, followed by a chemical deposition method. The photocatalytic activities of the pure Bi{sub 2}WO{sub 6} and Pd-Bi{sub 2}WO{sub 6} nanocatalyst were examined in the degradation of Rhodamine B (RhB) dyes and phenol under visible light. The photocatalytic results showed that the Pd-Bi{sub 2}WO{sub 6} nanocomposites possessed observably enhanced photocatalytic activities. Particularly, the 2.0% Pd loaded Bi{sub 2}WO{sub 6} had the highest photocatalytic activity, exhibiting a nearly complete degradation of 30 mg/L RhB and 10 mg/L phenol within only 50 and 60 min, respectively. In addition, the trapping experiment results indicated that the photo-generated holes (h{sup +}) and ·O{sub 2}{sup −} played a crucial role in the degradation of RhB. According to the experimental results, the photocatalytic degradation mechanism of Pd-Bi{sub 2}WO{sub 6} was also proposed. The enhanced photocatalytic activities were ascribed to the combined effects of the highly efficient separation of electrons and holes, improved visible light utilization and increased BET specific surface areas of the Pd-Bi{sub 2}WO{sub 6} nanocomposites.

  17. Comparing the photocatalytic activity of TiO2 at macro- and microscopic scales

    DEFF Research Database (Denmark)

    Torras-Rosell, Antoni; Johannsen, Sabrina Rostgaard; Dirscherl, Kai

    2016-01-01

    . The photocatalytic properties of TiO2 at macro- and microscopic scales are investigated by comparing photocatalytic degradation of acetone and electrochemical experiments to Kelvin probe force microscopy. The good agreement between the macro- and microscopic experiments suggests that Kelvin probe force microscopy...

  18. Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanlin, E-mail: zhangyl@scnu.edu.cn; Xie, Churu; Gu, Feng Long, E-mail: Gu@scnu.edu.cn; Wu, Honghai; Guo, Qiang

    2016-09-05

    Highlights: • The Ag{sub 3}PO{sub 4}/NG/P3HT composites were synthesized via a facile method. • The Ag{sub 3}PO{sub 4}/NG/P3HT composites exhibit excellent photocatalytic activity for RhB degradation. • The kinetic constant of Ag{sub 3}PO{sub 4}/NG/P3HT is more than 6 times of pristine Ag{sub 3}PO{sub 4}. • The composites show better recyclability and stability than pristine Ag{sub 3}PO{sub 4}. - Abstract: Organic pollutants as typical water contaminants are potentially harmful to human health. In this study, we suggested that the novel Ag{sub 3}PO{sub 4}/N-doped graphene (NG)/Poly(3-hexylthiophene) (P3HT) composites can remove the organic dye Rhodamine B (RhB) from water. This Ag{sub 3}PO{sub 4}-based photocatalyst was synthesized via a facile method and subsequently characterized by XRD, SEM, TEM, XPS, Raman spectroscopy, PL spectroscopy, and UV–vis DRS. The photocatalytic activity of Ag{sub 3}PO{sub 4}/NG/P3HT composites is significantly higher than that of pristine Ag{sub 3}PO{sub 4}, Ag{sub 3}PO{sub 4}/NG, and Ag{sub 3}PO{sub 4}/P3HT for RhB degradation under visible light irradiation, especially the kinetic constant of Ag{sub 3}PO{sub 4}/NG/P3HT is more than 6 times of pristine Ag{sub 3}PO{sub 4}. The reactive oxygen species trapping experiments indicate that the degradation of RhB over the Ag{sub 3}PO{sub 4}/NG/P3HT composites mainly results from the holes oxidation and superoxide radical reduction. Besides, Ag{sub 3}PO{sub 4}/NG/P3HT composites exhibit better recyclability and stability than pristine Ag{sub 3}PO{sub 4}. Furthermore, the photocatalytic mechanism of Ag{sub 3}PO{sub 4}/NG/P3HT composites for RhB degradation under visible light was proposed as the synergistic effect of irradiated Ag{sub 3}PO{sub 4}, P3HT and NG sheets on the effective separation of photogenerated electron-hole pairs, and the enhancement of visible light absorbance.

  19. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)]. E-mail: cht12mm@amu.ac.in

    2005-04-11

    Heterogeneous photocatalysed degradation of two selected pesticide derivatives such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, types of TiO{sub 2,} substrate and catalyst concentration, and in the presence of electron acceptor such as hydrogen peroxide (H{sub 2}O{sub 2}) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytics. The pesticide derivative, indole-3-acetic acid was found to degrade slightly faster than indole-3-butyric acid.

  20. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application

    International Nuclear Information System (INIS)

    Bai, Xue; Zhang, Xiaoyuan; Hua, Zulin; Ma, Wenqiang; Dai, Zhangyan; Huang, Xin; Gu, Haixin

    2014-01-01

    Highlights: • Uniform distributed TiO 2 nanoparticles on graphene by a modified method. • Reduced recombination rate of photogenerated electron–hole pairs. • Effective charge transfer from TiO 2 to graphene. • Better photocatalytic activity upon UV and visible irradiation. • A mechanism of bisphenol A degradation process is proposed. - Abstract: Graphene (GR)/TiO 2 nanocomposites are successfully synthesized using a simple and efficient hydrothermal method. Even-sized anatase TiO 2 nanoparticles are uniformly distributed on GR. The GR/TiO 2 nanocomposites exhibit an extended light absorption range and decreased electron–hole recombination rates. The photocatalytic activity of the as-prepared GR/TiO 2 nanocomposites for bisphenol A (BPA) degradation is investigated under UV (λ = 365 nm) and visible (λ ⩾ 400 nm) light irradiation. The results show that GR/TiO 2 nanocomposites have significantly higher photocatalytic activity than P25 (pure TiO 2 ). The large increase in photocatalytic activity is mostly attributed to effective charge transfer from TiO 2 nanoparticles to GR, which suppresses charge recombination during the photocatalytic process. After five successive cycles, the photodegradation activity of the GR/TiO 2 nanocomposites shows no significant decrease, which indicates that the nanocomposites are stable under UV and visible light. X-ray photoelectron spectroscopy (XPS) is used to investigate the chemical bonds of GR/TiO 2 nanocomposites before and after degradation to determine the degradation intermediate products of BPA under irradiation. A proposed degradation reaction pathway of BPA is also established. This study provides new insights into the fabrication and practical application of high-performance photocatalysts in wastewater treatment

  1. Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle.

    Science.gov (United States)

    Shi, Xiaoguo; Tian, Ang; You, Junhua; Yang, He; Wang, Yuzheng; Xue, Xiangxin

    2018-07-05

    The heterogeneous Fenton system has become the hotspot in the decontamination field due to its effective degradation performance with a wide pH range. Based on the unstable chemical properties of pyrite, in this article, Fe 2 GeS 4 nanoparticles with better thermodynamic stability were prepared by vacuum sintering and high energy ball milling and its potential as Fenton reagent was investigated for the first time. Three determinants of the heterogeneous Fenton system including the iron source, hydrogen peroxide, pH and the degradation mechanism were investigated. The catalyst dosage of 0.3 g/L, initial H 2 O 2 concentration in the Fenton system of 50 m mol/L and pH of 7 were chosen as the best operational conditions. An almost complete degradation was achieved within 5 min for methylene blue and rhodamine b while 10 min for methyl orange. The total organic carbon removal efficiencies of Fe 2 GeS 4 heterogeneous Fenton system for methylene blue, methyl orange and rhodamine b in 10 min were 56.3%, 66.2% and 74.2%, respectively. It's found that the degradation ability could be attributed to a heterogeneous catalysis occurring at the Fe 2 GeS 4 surface together with a homogeneous catalysis in the aqueous phase by the dissolved iron ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Preparation of reduced graphene oxide/meso-TiO{sub 2}/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Wang, Hefang, E-mail: whf0618@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Fu, Nian, E-mail: funian3678@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); College of Physics Science and Technology of Hebei University, Baoding 071002 (China)

    2016-04-30

    Graphical abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under a hydrothermal condition. The RGO/meso-TiO{sub 2}/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO{sub 2}/AuNPs were obtained by addition of graphene oxide to meso-TiO{sub 2}/AuNPs. • Au NPs in the mesopores of meso-TiO{sub 2} reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO{sub 2} enhance the adsorption of MB. • RGO/meso-TiO{sub 2}/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO{sub 2}/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO{sub 2}/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO{sub 2} and meso-TiO{sub 2}/AuNPs.

  3. Photocatalytic Degradation of Alkyle Benzene Solfunate (LAS from Aqueous Solution Using TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ramin Nabi Zadeh

    2013-03-01

    Full Text Available The Anionic detergents are synthetic organic chemicals used in high volumes in household cleaning products. Alkyle benzene Solfunate (LAS detergent is one of the most widely used anionic surfactants due to excellent cleaning properties. LAS can be toxic to aquatic organisms and bio-accumulated in some fish,and eventually spread through ecosystems using food chain. Thus it should be removed from wastewater before discharge direct to the environment. Photocatalyst degradation process is one the advanced technologies in removal of organic materials from water and wastewater.The aim of this study was the applicability of photodegradations of anionic detergent by use of TiO2 nanoparticles and their change in to the nontoxic materials such as H2O and CO2 in a slurry reactor. LAS solution (10mg/L was prepared and in separated stages was exposed to UV and TiO2 and a combination of them. Also the effect of initial LAS concentration, TiO2 loading, pH and various type of UV irradiation on degradation rate were studied. Maximum degradation was obtained at acidic pH, 50 mg/l of TiO2 and 30 min irradiation time, It was also found 99.5% of LAS was degradated in optimal conditions. Kinetics analysis indicated that photocatalytic degradation rates of LAS can be approximated by pseudo-first order model. The mineralization of LAS was reported by measuring the initial and final COD of illuminated solution. Based on the results, UV/TiO2 process may be effectively applied in LAS removal in low concentration but for high concentration not recommended due to economic reasons.

  4. Enhanced photocatalytic activity of Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang; Yu, Wei [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Zhu, Guang [Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou 234000 (China); Niu, Lengyuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Sun, Chang Q. [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-08-30

    Graphical abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were fabricated for visible light photocatalytic degradation of phenol with a high degradation rate of 92% for 60 min. - Highlights: • Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were synthesized via a co-precipitation method. • The photocatalytic activity for the degradation of phenol is investigated. • A high degradation rate of 92% for 60 min is achieved under visible light irradiation. - Abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts were successfully synthesized via a co-precipitation method. The morphology, structure and photocatalytic performance in the degradation of phenol were characterized by using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrochemical impedance spectra and UV–vis absorption spectroscopy, respectively. The results show that Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts exhibit enhanced photocatalytic performance in the degradation of phenol with a maximum degradation rate of 92% for 60 min under visible light irradiation compared with pure Bi{sub 2}O{sub 3} (57%), which is ascribed to the increase in light adsorption and the reduction in electron–hole pair recombination with the introduction of Ag{sub 2}O.

  5. Factorial design of a solar photocatalytic process to treatment of wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: adriana.francisco@agr.unicamp.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (CESET/UNICAMP), Limeira, SP (Brazil). Centro Superior de Educacao Tecnologica

    2008-07-01

    Advanced treatments are attributed to improving the quality of various types of waste such as the sanitary wastewater. The heterogeneous photocatalysis is an alternative that allows to improve the effluents conditions. This is possible because many chemical compounds of environmental concern can be degraded using UV radiation on a semiconductor. However, to enable the efficiency of the process photocatalytic is necessary to conduct a study of optimization to establish favorable conditions between selected variables. The aim of this work was a reactor solar photocatalytic optimization using factorial design 2{sup k}, depending on variables: mass (TiO{sub 2}), time (min) and flow of air (L min{sup -1}), using as analytical response the removal of color. The experiment was conducted at the Faculty of Agricultural Engineering (FEAGRI) and it was used the sanitary wastewater of there. The results indicated that there were significant efficiency using combinations mass = 1000 mg L{sup -1}, time = 360 min and flow of air = 5 L min{sup -1}. In the calculations of factorial design, the time showed a marked positive effect of 7.76, while the flow of air, when in excess, had an inhibitor behavior, even getting positive effect. (author)

  6. Degradation of ethylenethiourea pesticide metabolite from water by photocatalytic processes.

    Science.gov (United States)

    Bottrel, Sue Ellen C; Amorim, Camila C; Leão, Mônica M D; Costa, Elizângela P; Lacerda, Igor A

    2014-01-01

    In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.

  7. Modified Fe3O4- hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems

    International Nuclear Information System (INIS)

    Valizadeh, S.; Rasoulifard, M.H.; Dorraji, M.S. Seyed

    2014-01-01

    Graphical abstract: - Highlights: • Photocatalytic degradation of dye by Ag modified HAP under visible light. • Study of Fenton like degradation of dye by transition metal ions modified HAP. • Comparison of catalytic systems according to Langmuir-Hinshelwood kinetic expression. - Abstract: The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag 3 PO 4 formation. Apparent reaction rate constant (K app ) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H 2 O 2 , Co-M-HAP(II)/H 2 O 2 and M-HAP (I)/UV systems, respectively

  8. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwichian, Saranyoo [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Kangwansupamonkon, Wiyong [National Nanotechnology Center, Thailand Science Park, Phahonyotin Road, Klong 1, Klong Luang, Phathumthani 12120 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand)

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  9. Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    Hussain, Muhammad; Sun, Hongyu; Karim, Shafqat; Nisar, Amjad; Khan, Maaz; Ul Haq, Anwar; Iqbal, Munawar; Ahmad, Mashkoor

    2016-01-01

    Flower-like hierarchical Zinc oxide nanostructures synthesized by co-precipitation method have been hydrothermally functionalized with 8 nm Au NPs and 15 nm Ag nanoparticles. The photocatalytic and electrochemical performance of these structures are investigated. XPS studies show that the composite exhibits a strong interaction between noble metal nanoparticles (NPs) and Zinc oxide nanoflowers. The PL spectra exhibit UV emission arising due to near band edge transition and show that the reduced PL intensities of Au–ZnO and Ag–ZnO composites are responsible for improved photocatalytic activity arising due to increase in defects. Moreover, the presence of Au NPs on ZnO surface remarkably enhances photocatalytic activity as compared to Ag–ZnO and pure ZnO due to the higher catalytic activity and stability of Au NPs. On the other hand, Ag–ZnO-modified glassy carbon electrode shows good amperometric response to hydrogen peroxide (H_2O_2), with linear range from 1 to 20 µM, and detection limit of 2.5 µM (S/N = 3). The sensor shows high and reproducible sensitivity of 50.8 μA cm"−"2 μM"−"1 with a fast response less than 3 s and good stability as compared to pure ZnO and Au–ZnO-based sensors. All these results show that noble metal NPs-functionalized ZnO base nanocomposites exhibit great prospects for developing efficient non-enzymatic biosensor and environmental remediators.Graphical abstractZnO nanoflowers functionalized with noble metal nanoparticles enhance photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide.

  10. Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Muhammad [PINSTECH, Nanomaterials Research Group, Physics Division (Pakistan); Sun, Hongyu [Tsinghua University, Laboratory of Advanced Materials and The State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering Beijing, National Center for Electron Microscopy (China); Karim, Shafqat; Nisar, Amjad; Khan, Maaz [PINSTECH, Nanomaterials Research Group, Physics Division (Pakistan); Ul Haq, Anwar [PINSTECH, Non-destructive testing Group (Pakistan); Iqbal, Munawar [University of the Punjab, Centre for High Energy Physics (Pakistan); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [PINSTECH, Nanomaterials Research Group, Physics Division (Pakistan)

    2016-04-15

    Flower-like hierarchical Zinc oxide nanostructures synthesized by co-precipitation method have been hydrothermally functionalized with 8 nm Au NPs and 15 nm Ag nanoparticles. The photocatalytic and electrochemical performance of these structures are investigated. XPS studies show that the composite exhibits a strong interaction between noble metal nanoparticles (NPs) and Zinc oxide nanoflowers. The PL spectra exhibit UV emission arising due to near band edge transition and show that the reduced PL intensities of Au–ZnO and Ag–ZnO composites are responsible for improved photocatalytic activity arising due to increase in defects. Moreover, the presence of Au NPs on ZnO surface remarkably enhances photocatalytic activity as compared to Ag–ZnO and pure ZnO due to the higher catalytic activity and stability of Au NPs. On the other hand, Ag–ZnO-modified glassy carbon electrode shows good amperometric response to hydrogen peroxide (H{sub 2}O{sub 2}), with linear range from 1 to 20 µM, and detection limit of 2.5 µM (S/N = 3). The sensor shows high and reproducible sensitivity of 50.8 μA cm{sup −2} μM{sup −1} with a fast response less than 3 s and good stability as compared to pure ZnO and Au–ZnO-based sensors. All these results show that noble metal NPs-functionalized ZnO base nanocomposites exhibit great prospects for developing efficient non-enzymatic biosensor and environmental remediators.Graphical abstractZnO nanoflowers functionalized with noble metal nanoparticles enhance photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide.

  11. Degradation of phenolic compounds by using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Hincapie, M. [Dept. de Ingenieria Sanitaria y Ambiental, Univ. de Antioquia, Medellin (Colombia); Curco, D.; Contreras, S.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica, Facultad de Quimica, Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    A new empirical kinetic equation [r = k{sub 1}c - k{sub 2} (c{sub 0} - c)] is proposed for the photocatalytic degradation of phenolic compounds. This equation considers the influence of the intermediates in the degradation of the pollutant. The correct formulation of the contaminant mass balance in the experimental device that operates in recycle mode was done. The proposed empirical kinetic equation fitted quite well with the experimental results obtained in the TiO{sub 2}-photocatalytic degradation of phenol. (orig.)

  12. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    Science.gov (United States)

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  13. Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes

    Science.gov (United States)

    Alamelu, K.; Raja, V.; Shiamala, L.; Jaffar Ali, B. M.

    2018-02-01

    We present characterization of biphasic TiO2 nanoparticles and its graphene nanocomposite synthesized by cost effective, hydrothermal method. The structural properties and morphology of the samples were characterized by series of spectroscopic and microscopic techniques. Introducing high surface area graphene could suppress the electron hole pair recombination rate in the nanocomposite. Further, the nanocomposite shows red-shift of the absorption edge and contract of the band gap from 2.98 eV to 2.85 eV. We have characterized its photocatalytic activity under natural sunlight and UV filtered sunlight irradiation. Data reveal graphene-TiO2 composite exhibit about 15 and 3.5 folds increase in degradability of Congo red and Methylene Blue dyes, respectively, comparison to pristine TiO2. This underscores the marginal effect of UV component of sunlight on the degradation ability of composite, implying its increased efficiency in harnessing visible region of solar spectrum. We have thus developed a visible light active graphene composite catalyst that can degrade both cationic and anionic dyes and making it potentially useful in environmental remediation and water splitting applications, under direct sunlight.

  14. Synthesis, characterization and visible light photocatalytic activity of Cr 3+ , Ce 3+ and N co-doped TiO 2 for the degradation of humic acid

    KAUST Repository

    Rashid, S. G.; Gondal, M. A.; Hameed, A.; Aslam, M.; Dastageer, M. A.; Yamani, Z. H.; Anjum, Dalaver H.

    2015-01-01

    The synthesis, characterization and photocatalytic activity of Cr3+ and Ce3+ co-doped TiON (N-doped TiO2) for the degradation of humic acid with exposure to visible light is reported. The synthesized bimetal (Cr3+ + Ce3+) modified TiON (Cr-Ce/TiON), with an evaluated bandgap of 2.1 eV, exhibited an enhanced spectral response in the visible region as compared to pure and Ce3+ doped TiON (Ce/TiON). The XRD analysis revealed the insertion of Cr3+ and Ce3+ in the crystal lattice along with Ti4+ and N that resulted in the formation of a strained TiON anatase structure with an average crystallite size of ∼10 nm. Raman analysis also supported the formation of stressed rigid structures after bimetal doping. HRTEM confirmed the homogeneous distribution of both the doped metallic components in the crystal lattice of TiON without the formation of surface oxides of either Cr3+ or Ce3+. Electron energy loss spectroscopy (EELS) analysis revealed no change in the oxidation of either Cr or Ce during the synthesis. The synthesized Cr-Ce/TiON catalyst exhibited appreciable photocatalytic activity for the degradation of humic acid on exposure to visible light. Additionally, a noticeable mineralization of carbon rich humic acid was also witnessed. The photocatalytic activity of the synthesized catalyst was compared with pristine and Ce3+ doped TiON. © The Royal Society of Chemistry 2015.

  15. Template-Directed Fabrication of Anatase TiO2 Hollow Nanoparticles and Their Application in Photocatalytic Degradation of Methyl Orange

    Institute of Scientific and Technical Information of China (English)

    Jie Chang; Wenjian Zhang; Chunyan Hong

    2017-01-01

    Polymerization-induced self-assembly (PISA) was used to fabricate polymeric nanoparticles via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) using diblock copolymer poly(glycerol monomethacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PGMMA-PDMAEMA-CTA) as the macro RAFT agent.The dispersion of polymeric nanoparticles with a final concentration of about 210 mg/g (solid content of 21%) was obtained via this efficient method (PISA).The resultant polymeric nanoparticles consisting of corona-shell-core three layers with weak polyelectrolyte PDMAEMA as the shell were used as sacrificial template to fabricate TiO2 hollow nanoparticles.The negatively charged titanium precursor was absorbed into the PDMAEMA shell via the electrostatic interaction,and hydrolyzed to form polymer/TiO2 hybrid nanoparticles.Anatase TiO2 hollow nanoparticles were formed after removing the polymeric templates by calcination at 550 ℃.The experiments of photocatalytic degradation of methyl orange showed that the resultant anatase TiO2 hollow nanoparticles had high photocatalytic activity and good reusability.

  16. Ferrocene-functionalized graphitic carbon nitride as an enhanced heterogeneous catalyst of Fenton reaction for degradation of Rhodamine B under visible light irradiation.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Lin, Jyun-Ting

    2017-09-01

    To enhance degradation of Rhodamine B (RhB), a toxic xanthene dye, an iron-doped graphitic carbon nitride (CN) is prepared by establishing a covalent bond (-CN-) bridging ferrocene (Fc) and CN via a Schiff base reaction. The π-conjugation between the aromatic Fc and CN can be much enhanced by the covalent bond, thereby facilitating the bulk-to-surface charge transfer and separation as well as reversible photo-redox reactions during photocatalytic reactions. Thus, the resulting Fc-CN exhibits a much higher catalytic activity than CN to activate hydrogen peroxide (HP) for RhB degradation, because the photocatalytically generated electrons from CN can activate HP and effectively maintain the bivalence state of Fe in Fc, which also induces the activation of HP. The RhB degradation by the Fc-CN activated HP process (Fc-CN-HP) is validated to involve OH • by examining the effect of radical probe agent as well as electron paramagnetic resonance (EPR) spectroscopic analysis. Fc-CN is also proven to activate HP for RhB degradation over multiple times without loss of catalytic activity. Through determining the degradation intermediates, RhB is indeed fully decomposed by Fc-CN-HP into much lower-molecular-weight organic compounds. These features indicate that Fc-functionalization can be an advantageous technique to enhance the catalytic activity of CN for activating HP. The results obtained in this study are essential to further design and utilize Fc-functionalized CN for Fenton-like reactions. The findings shown here, especially the degradation mechanism and pathway, are also quite important for treating xanthene dyes in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yingxian Zhong

    2018-03-01

    Full Text Available HIGHLIGHTSA facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge.Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  18. Synthesis of C@Bi{sub 2}MoO{sub 6} nanocomposites with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuying; Wu, Juan; Ma, Tianjin; Wang, Pengchao; Cui, Chunyue; Ma, Dong, E-mail: madong8088@126.com

    2017-05-01

    Highlights: • C@BM composites were obtained by two–step hydrothermal method. • The properties of Bi{sub 2}MoO{sub 6} were deeply influenced by carbon layer. • Carbon could reduce recombination of electrons and holes in C@BM composites. • The holes and ·O{sub 2}{sup −} are the two main reactive species for Rh B degradation. - Abstract: Carbon–coated Bi{sub 2}MoO{sub 6} (C@BM) composites have been successfully synthesized via two–step hydrothermal method. The morphology, structure and photocatalytic performance of the composites in the degradation of Rhodamine B (Rh B) are characterized. The results show that the C@BM composites exhibit enhanced photocatalytic performance in the degradation of Rh B with maximum degradation rates of 90% (210 min) under visible light irradiation. 1.0%C@BM sample shows the highest photocatalytic activity, and the improved photocatalytic performance is mainly ascribed to the formation of Mo−O−C and Bi−O−C bonds. The bonds could promote electron transfer from Bi{sub 2}MoO{sub 6} to carbon layer and inhibit the recombination of electron–hole pairs with the presence of carbon layer in the composites. Moreover, the carbon layer on Bi{sub 2}MoO{sub 6} could enhance the absorption in the visible light region. In the photocatalytic degradation process, ·O{sub 2}{sup −}and holes are the predominant active species for the decomposition of Rh B.

  19. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    Science.gov (United States)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  20. Immobilized TiO2 for Phenol Degradation in a Pilot-Scale Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    Sylwia Mozia

    2012-01-01

    Full Text Available Phenol degradation was carried out in a photocatalytic pilot plant reactor equipped with a UV/vis mercury lamp. The total volume of treated water was equal to 1.35 m3. TiO2 P25 was used as a photocatalyst and it was immobilized on two different supports: (i a steel mesh and (ii a fiberglass cloth. Moreover, the performance of commercially available Photospheres-40 was examined. In addition, an experiment in the absence of a photocatalyst was conducted. The commercially available Photospheres-40 were found to be inadequate for the presented application due to their fragility, which in connection with vigorous mixing and pumping led to their mechanical destruction and loss of floating abilities. The highest effectiveness of phenol decomposition and mineralization was observed in the presence of TiO2 supported on the fiberglass cloth. After 15 h of the process, phenol and total organic carbon concentrations decreased by ca. 80% and 50%, respectively.

  1. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Wohn Lee, Soo

    2018-02-01

    An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min-1 and 0.023 min-1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.

  2. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  3. TiO{sub 2} modified with Ag nanoparticles synthesized via ultrasonic atomization-UV reduction and the use of kinetic models to determine the acetic acid photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yingcao, E-mail: xuyingcao@aliyun.com [State Key Laboratory of Urban Water Resource, Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Applied Chemistry Department, School of Science, Northeast Agriculture University, Harbin 150030 (China); You, Hong, E-mail: youhong@hit.edu.cn [State Key Laboratory of Urban Water Resource, Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2014-12-01

    Highlights: • The first use of ultrasonic atomization-UV reduction for modifying Ag on TiO{sub 2}. • The first use of kinetics models for the establishment of the photocatalytic degradation of acetic acid using a hyperbolic mathematical model and introducing the concentration factor (α) in the dynamic model. • Photocatalytic experiment design using double-sided TiO{sub 2} and a double-light source. - Abstract: TiO{sub 2} surfaces modified with noble metal nanoparticles have been found to effectively reduce the photogenerated carrier recombination rate and significantly extend the light absorption properties of TiO{sub 2}, thereby greatly increasing its photocatalytic activity. In this paper, highly ordered, double-sided TiO{sub 2} nanotube arrays were prepared using an anodic oxidation method in a home-made reactor using glycerol/water (volume ratio 2:1) and NH{sub 4}F (0.25 mol/L) as the electrolyte, titanium plates (10 cm × 2 cm × 0.5 mm) as the anode and graphite as the cathode at a constant voltage of 25 V. After a 2-h reaction, anatase TiO{sub 2} nanotubes were obtained upon calcination at 450 °C for 4 h. The Ag nanoparticles on the surfaces of the TiO{sub 2} were prepared via ultrasonic atomization-ultraviolet light reduction. First, a silver nitrate solution was sputtered into small droplets under ultrasonication. Then, the Ag{sup +} droplets were reduced to Ag nanoparticles. The surface morphologies, structures and elemental compositions were characterized using SEM, EDS, XRD and XPS. The photocatalytic activities were determined in acetic acid solutions (40–200 mg/L), and a mathematical model for catalytic degradation was established based on a hyperbolic model. The SEM results showed that the diameters of the as-prepared Ag/TiO{sub 2} are approximately 100 nm and that the lengths are approximately 1.8 μm. The XRD crystal structure analysis shows that the anatase phase of the TiO{sub 2} does not change during the Ag modification, and there was

  4. Solar photocatalytic mineralization of isoproturon over TiO{sub 2}/HY composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mangalampalli V. Phanikrishna; Lalitha, Kannekanti; Durgakumari, Valluri; Subrahmanyam, Machiraju [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007 (India)

    2008-03-15

    The present investigation covers immobilization of titanium dioxide over HY support for the treatment of isoproturon pesticide. Catalysts are characterized by XRD, SEM-EDAX, TEM, BET surface area and UV-vis DRS. A detailed photocatalytic degradation study under solar light in aqueous suspensions with parameters like loading of TiO{sub 2} over HY, amount of the catalyst, concentration of substrate, pH effect, durability of the catalyst and comparison between suspended TiO{sub 2} and supported systems are reported. Mineralization of isoproturon is monitored by total organic carbon, chemical oxygen demand and a plausible mechanism is proposed for photocatalytic degradation based on degradation products. (author)

  5. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  6. TiO2/beads as a photocatalyst for the degradation of X3B azo dye

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The feasibility of photocatalytic degradation of X3B azo dye by TiO2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO2/beads, airflow, as well as the concentrations of H2O2, Fe3+, Mg2+ and Na+ on the photocatalytic degradation of X3B azo dye were also studied. The results showed that 25 mg/dm3 X3B azo dye can be photocatalytically degraded completely by 30 min illumination with a 375W medium pressure mercury lamp. Adding a small amount of H2O2 or Fe3+, the efficiencies of photocatalytic degradation of X3B azo dye were increased rapidly. The mechanisms of the reaction and the role of the additives were also investigated. After 120 hours TiO2/beads showed no significant loss of the photocatalytic activity.

  7. Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China); Zhou, Mingjun; Tang, Yanfeng [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Liu, Xinlin [School of Energy & Power Engineering Jiangsu University Zhenjiang, 212013 (China); Ma, Changchang; Yu, Longbao [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Yan, Yongsheng, E-mail: yys@mail.ujs.edu.cn [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China)

    2016-06-15

    N–ZnO/CdS/Graphene oxide (GO) composite photocatalysts have been successfully synthesized by hydrothermal method. The as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy(SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectra (UV–vis DRS), thermogravimetry (TG) and photoluminescence (PL). The as-prepared photocatalysts exhibited strong visible light photocatalytic activity toward to degradation of antibiotics under ambient conditions. Particularly, the N–ZnO/CdS/GO composite photocatalysts showed the higher photocatalytic degradation rate (86%) of ciprofloxacin CIP under visible light irradiation than the pure photocatalysts. Compared with degradation of different antibiotics (tetracycline (TC), oxytetracycline hydrochloride (OTC-HCl) and levofloxacin (LEV)), the N–ZnO/CdS/GO composite photocatalysts also exhibited high photocatalytic activities. According to the experiments, the role of GO in the composite photocatalysts acted as an electron conductor, and also enhanced the separation rate of electrons and holes which greatly improved the photocatalytic activity. Lastly, the mechanism of enhanced photocatalytic degradation of CIP was also discussed. - Highlights: • N–ZnO/CdS/GO composite was synthesized by the hydrothermal processes. • N–ZnO/CdS composites prevent pure CdS or ZnO from photocorrosion. • N–ZnO/CdS/GO shows the remarkable photocatalytic activity and stability.

  8. In situ XANES studies of TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, T.-F.; Hsiung, T.-L. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, James [Department of Biomedical Engineering, University of Southern California, Los Angeles 90007 (United States); Huang, C.-H. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environmental Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2010-07-21

    Mainly anatase and Fe{sub 3}O{sub 4} in the magnetic photocatalysts (TiO{sub 2} on Fe{sub 3}O{sub 4}-C core-shell nanoparticles (TiO{sub 2}/Fe{sub 3}O{sub 4}-C)) are observed by X-ray powder diffraction (XRD) spectroscopy. The Ti K-edge least-square fitted XANES spectra of the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalyst indicate that the main titanium species are nanosize TiO{sub 2} (9 nm) (77%) and bulky TiO{sub 2} (23%). Speciation of titanium in the TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of 100 ppm of trichloroethylene (TCE) has also been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. TiO{sub 2} is not perturbed during the course of photocatalysis. However, it is worth to note that during photocatalytic degradation of TCE, about 33% of FeO and 67% of Fe{sub 3}O{sub 4} are observed in the photocatalyst. It seems that the carbon layer on the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalysts can reduce the possibility for photoexcited electron-hole recombination as usually found on the relatively narrow bandgap of ferric oxide during photocatalysis.

  9. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Parisa Vaziri

    2012-09-01

    Full Text Available ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.

  10. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor

  11. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  12. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants.

    Science.gov (United States)

    Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika; Fenyvesi, Éva

    2016-01-01

    Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO 2 ) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO 2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO 2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO 2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO 2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO 2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO 2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the

  13. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants

    Directory of Open Access Journals (Sweden)

    Tamás Zoltán Agócs

    2016-12-01

    Full Text Available Advanced oxidation processes (AOPs are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO2 applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P for stabilization of nanoTiO2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water has been studied using nanoTiO2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP, was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure

  14. The influence of photocatalytic interior paints on indoor air quality

    Science.gov (United States)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however

  15. N-Doped TiO₂-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities.

    Science.gov (United States)

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A; Grilli, Rossana; Mamane, Hadas

    2017-07-31

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO₂-coated Al₂O₃ photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg 2+ and Ca 2+ ), and Cl - on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO₂-coated Al₂O₃ membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO₃). A negative effect of Ca 2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO₄ or CaHPO₄·2H₂O on the catalyst surface. The presence of Cl - and Mg 2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO₂-coated Al₂O₃ membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning.

  16. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light

    International Nuclear Information System (INIS)

    Papadimitriou, Vassileios C.; Stefanopoulos, Vassileios G.; Romanias, Manolis N.; Papagiannakopoulos, Panos; Sambani, Kyriaki; Tudose, Valentin; Kiriakidis, George

    2011-01-01

    Titanium dioxide (TiO 2 ) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH 3 CHO) on Mn–TiO 2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (∼ 400 Pa) and synthetic air mixtures (∼ 1.01 × 10 5 Pa total pressure) on un-doped TiO 2 and doped with various levels of Mn (0.1–33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH 3 CHO under the above light sources, and the physical adsorption of CH 3 CHO on Mn–TiO 2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH 3 CHO on un-doped TiO 2 and Mn–TiO 2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO 2 ) was identified as the main photocatalysis product. It was found that 0.1% Mn–TiO 2 samples resulted in the highest photocatalytic loss of CH 3 CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1–33%). The CO 2 yields were the highest for 0.1% Mn–TiO 2 samples under UV irradiation, in agreement with the observed highest CH 3 CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO 2 with Mn results in a significant increase of their photocatalytic activity in the visible

  17. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods

    International Nuclear Information System (INIS)

    Gao, Bin; Fan, Huiqing; Zhang, Xiaojun; Song, Lixun

    2012-01-01

    Highlights: ► ZnWO 4 nanorods with uniform diameter are successfully prepared through a template-free hydrothermal method. ► The crystallinity of the products is influenced by the pH value of initial precursor suspension. ► Photocatalytic activity of the ZnWO 4 nanorods for degradation of methylene blue is evaluated. ► The ZnWO 4 nanorods exhibit good stability of photocatalytic activity. - Abstract: ZnWO 4 nanorods are successfully synthesized by a template-free hydrothermal method, and are characterized in detail by X-ray diffractometer (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results show that the ZnWO 4 nanorods with wolframite structure are well-crystallized single crystallites. The crystallinity of the products is influenced by the pH value of initial precursor suspension. The width and length of the synthesized samples increase with hydrothermal reaction temperature. The photocatalytic efficiency of the ZnWO 4 nanorods for degradation of methylene blue (MB) in aqueous solution under UV light irradiation declines greatly with increasing crystallinity. The ZnWO 4 nanorods prepared at pH of 4 have the best activity in photo-degradation of MB. After six recycles, photocatalytic activity loss of the catalyst is not obvious.

  18. Treatment of landfill leachate using Solar UV facilitated ...

    African Journals Online (AJOL)

    The use of heterogeneous photocatalytic degradation for the treatment of landfill leachate was investigated in this study. The photocatalytic degradation studies were carried out using Zinc oxide (ZnO) as photocatalyst and the process was facilitated by ultra violet radiation (UV) from sunlight. Characterisation of the raw ...

  19. Fabrication of the novel core-shell MCM-41@mTiO{sub 2} composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao-Na; Wang, Hui-Long, E-mail: hlwang@dlut.edu.cn; Li, Zhen-Duo; Huang, Zhi-Qiang; Qi, Hui-Ping; Jiang, Wen-Feng

    2016-05-30

    Graphical abstract: The mesoporous MCM-41@mTiO{sub 2} composite microspheres with core/shell structure, well-crystallized mesoporous TiO{sub 2} layer, high specific surface, large pore volume and excellent photocatalytic activity were synthesized by combining sol-gel and simple hydrothermal treatment. - Highlights: • The mesoporous MCM-41@mTiO{sub 2} composite was synthesized successfully. • The composite was facilely prepared by combining sol-gel and hydrothermal method. • The composite exhibited high photocatalytic degradation activity for DNBP. • The composite photocatalyst has excellent reproducibility. - Abstract: The mesoporous MCM-41@mTiO{sub 2} core-shell composite microspheres were synthesized successfully by combining sol-gel and simple hydrothermal treatment. The morphology and microstructure characteristics of the synthesized materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption measurements, X-ray powder diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis/DRS) and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the composite material possesses obvious core/shell structure, a pure mesoporous and well-crystallized TiO{sub 2} layer (mTiO{sub 2}), high specific surface area (316.8 m{sup 2}/g), large pore volume (0.42 cm{sup 3}/g) and two different pore sizes (2.6 nm and 11.0 nm). The photocatalytic activity of the novel MCM-41@mTiO{sub 2} composite was evaluated by degrading 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous suspension under UV and visible light irradiation. The results were compared with commercial anatase TiO{sub 2} and Degussa P25 and the enhanced degradation were obtained with the synthesized MCM-41@mTiO{sub 2} composite under the same conditions, which meant that this material can serve as an efficient photocatalyst for the degradation of hazardous organic pollutants in wastewaters.

  20. Hydrothermal synthesis of CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Yan, Xu; Liu, Chunbo; Hong, Yuanzhi; Zhu, Lin; Zhou, Mingjun; Shi, Weidong, E-mail: swd1978@ujs.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • The novel CdS/Bi{sub 2}MoO{sub 6} heterojunction were synthesized for the first time via a two-step hydrothermal process. • The CdS/Bi{sub 2}MoO{sub 6} heterojunction exhibited an excellent visible-light-driven photocatalytic activity for RhB degradation. • The photocatalytic activity of this heterojunction also evaluated by TC, MB degradation. • The mechanism of this photocatalysis system was firstly proposed. - Abstract: A novel CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts were successfully prepared via two-step hydrothermal methods. The prepared samples were characterized by various physicochemical techniques, such as XRD, SEM, TEM, HRTEM, XPS, UV–vis and PL. The obtained samples exhibited highly photocatalytic activity toward the degradation of the different kinds of organic dyes and tetracycline in aqueous solution under visible light irradiation (λ > 420 nm). The optimum photocatalytic efficiency of CdS-2 sample for the degradation rhodamine B (RhB) was about 25.3 and 3.7 times higher than that of individual CdS and Bi{sub 2}MoO{sub 6}, respectively. In addition, the possible photocatalytic mechanism was analyzed by different active species trapping experiments. The results indicated that the h{sup +} and ·O{sub 2}{sup −} were the main active species for the photocatalytic degradation of RhB. Moreover, the prepared sample shows good stability and recyclability properties which are beneficial for its practical application.

  1. Obtaining carbon nanotubes/ZnO for use in the photocatalytic organic pollutants

    International Nuclear Information System (INIS)

    Dalt, S. da; Pulcinelli, N.O.; Bergmann, C.P.

    2016-01-01

    This study aims to obtain nanocomposites of carbon nanotubes (CNTs) with nanostructured zinc oxide (ZnO), and characterize the samples as its structure and photocatalytic activity, for their application in the degradation of organic pollutants, in the case organic dye methyl orange. The nanocomposites were obtained from commercial NTC (Baytubes®), commercial ZnO, produced by Merck and ZnO obtained from the synthesis by combustion. The NTC-ZnO nanocomposites were prepared in solution from the physical mixture of materials, and subsequently analyzed structurally and investigated for their photocatalytic activity, employing them as catalysts in degradation of the dye in aqueous solution under ultraviolet radiation. Samples were analyzed by X-ray diffraction and specific surface area (BET). The photocatalytic performance of nanocomposites can be correlated to the phase found and the surface area measured. (author)

  2. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, NikAthirah; Lee, Sin-Li; Yusuf, Sara Yasina

    2017-10-01

    The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their V oc , J sc and P max . The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Kinetic Study of Application of ZnO as a Photocatalyst in Heterogeneous Medium

    Directory of Open Access Journals (Sweden)

    J. J. Vora

    2009-01-01

    Full Text Available The photocatalytic degradation of 2,4-dinitrophenol over ZnO was carried out in the presence of light. Control experiments were carried out. The photocatalytic degradation of 2,4-dinitrophenol was observed spectro-photmerically. The various parameters like concentrations of substrate, pH, amounts and band gaps of semiconductor, impact of light intensity, sensitizers and radical quenchers affected the kinetics of the degradation process. A probable mechanism for this process has been proposed.

  4. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  5. Facile synthesis of spinel CuCr{sub 2}O{sub 4} nanoparticles and studies of their photocatalytic activity in degradation of some selected organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Bhuyan, Bishal [Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, Assam (India); Purkayastha, Debraj Dhar, E-mail: debrajdp@yahoo.com [Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, Assam (India); Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com [Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, Assam (India); Behera, Satyananda [Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha (India)

    2015-11-05

    Copper chromite (CuCr{sub 2}O{sub 4}) spinel nanoparticle catalysts have been successfully synthesized employing urea assisted co-precipitation followed by calcination. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N{sub 2} adsorption-desorption isotherm (BET). The XRD pattern revealed formation of tetragonal body-centered CuCr{sub 2}O{sub 4} and TEM image showed quasi-spherical particles of size 5–35 nm. The photocatalytic activity of CuCr{sub 2}O{sub 4} was evaluated in degradation of some organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB), without and with the assistance of H{sub 2}O{sub 2} under solar irradiation. The CuCr{sub 2}O{sub 4} photocatalysts showed high activity in degradation of RhB (93.6%) and MO (92.3%), but low activity in degradation of MB (80.6%). The catalyst reusability was tested by conducting the degradation of RhB dye with the spent catalyst and it was observed that the catalyst did not show any significant loss in its activity even after five cycles. - Highlights: • CuCr{sub 2}O{sub 4} nanoparticles were synthesized by urea assisted co-precipitation followed by calcination. • The XRD pattern revealed formation of tetragonal body-centered CuCr{sub 2}O{sub 4}. • The TEM images showed the material to be quasi-spherical in shape with sizes 5–35 nm. • CuCr{sub 2}O{sub 4} nanoparticles exhibited pronounced photocatalytic activity.

  6. Synthesis and photocatalytic degradation study of methylene blue dye under visible light irradiation by Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0)

    Science.gov (United States)

    Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.

    2018-05-01

    The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.

  7. Enhanced photocatalytic activity towards degradation and H{sub 2} evolution over one dimensional TiO{sub 2}@MWCNTs heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 (China); Key Laboratory of Luminescence and Optical Information of the Ministry of Education Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China); Cao, Shuang; Wu, Zhijiao [CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 (China); Zhao, Suling, E-mail: slzhao@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information of the Ministry of Education Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China); Piao, Lingyu, E-mail: piaoly@nanoctr.cn [CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2017-04-30

    Highlights: • One dimensional TiO{sub 2}@MWCNTs core-shell photocatalyst constructed. • The TiO{sub 2} nanoparticles are highly dispersed on the MWCNTs. • The layer thickness adjusted for different nanocomposites. • The 1D heterojunction enhancing electron transfers. - Abstract: With the distinct electronic and optical properties, multiwall carbon nanotubes (MWCNTs) are identified as an outstanding catalyst support, which can effectively improve the performance of the TiO{sub 2} photocatalysts. Herein, the unique one dimensional TiO{sub 2}@MWCNTs nanocomposites have been prepared by a facile hydrothermal method. The TiO{sub 2} coating layers are extremely uniform and the thickness is adjustable for different nanocomposites. XPS measurements confirm that intimate electronic interactions are existed between MWCNTs and TiO{sub 2} via interfacial Ti−O−C bond and the photoluminescence intensity of the TiO{sub 2}@MWCNTs nanocomposites are effectively quenched compared with pure TiO{sub 2}, suggesting the fast electron transfer rates. The thickness of TiO{sub 2} coating layers of the TiO{sub 2}@MWCNTs nanocomposites plays a significant role in the photocatalytic degradation of organic pollutants, such as methylene blue (MB) and Rhodamine B (RhB), and photocatalytic H{sub 2} evolution from water. Due to the formation of one dimensional heterojunction of TiO{sub 2}@MWCNTs nanocomposites and the positive synergistic effect between TiO{sub 2} and carbon nanotubes, it is found that the photocatalytic activity of the system is significantly improved.

  8. Arrays of Au-TiO{sub 2} Janus-like nanoparticles fabricated by block copolymer templates and their photocatalytic activity in the degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoning; Liu Jun; Yang Hui; Sun Jiuchuan [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Li Xue, E-mail: lixue0312@yahoo.com [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Zhang Xiaokai [College of Physics and Electronics, Shandong Normal University, 88 Wenhuadong Road, Jinan 250014 (China); Jia Yuxi, E-mail: jia_yuxi@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2011-10-17

    Highlights: {center_dot} Fabrication of an array of Au-titania Janus nanoparticles on silicon substrate. {center_dot} PS-b-PEO block copolymer is used as templates. {center_dot} Au-TiO{sub 2} Janus-like nanoparticles exhibit higher photocatalytic activity. - Abstract: A simple approach towards the fabrication of an array of Au-titania Janus-like nanoparticles is presented. Monolayer organic-inorganic hybrid films are produced by spin coating the mixture of polystyrene-block-poly (ethylene oxide) (PS-b-PEO)/HAuCl{sub 4} solution and titania sol-gel precursor solution. HAuCl{sub 4} and titania are incorporated in the PEO domains. After removing the organic matrix by deep UV irradiation, arrays of Au-TiO{sub 2} Janus-like nanoparticles on the substrate surface are obtained. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are employed to characterize the Janus-like nanoparticles. The photocatalytic degradation of methylene blue (MB) chosen as the test reaction to examine the photocatalytic activity of the Au-TiO{sub 2} Janus-like nanoparticles is shown to be more effective as compared to that of TiO{sub 2} nanoparticles or Au-TiO{sub 2} composite nanoparticles. The increased photocatalytic activity of Au-TiO{sub 2} Janus-like nanoparticles is attributed to the Au-TiO{sub 2} heterointerfaces.

  9. N-TiO2/gamma-Al2O3 granules: preparation, characterization and photocatalytic activity for the degradation of 2,4-dichlorophenol.

    Science.gov (United States)

    Huang, Donggen; Xie, Wenfa; Tu, Zhibin; Zhang, Feng; Quan, Shuiqing; Liu, Lei

    2013-01-01

    Nitrogen doping TiO2 and gamma-Al2O3 composite oxide granules (N-TiO2/gamma-Al2O3) were prepared by co-precipitation/oil-drop/calcination in gaseous NH3 process using titanium sulphate and aluminum nitrate as raw materials. After calcination at 550 degrees C in NH3 atmosphere, the composite granules showed anatase TiO2 and gamma-Al2O3 phases with the granularity of 0.5-1.0 mm. The anatase crystallite size of composite granules was range from 3.5-25 nm calculated from XRD result. The UV-Vis spectra and N 1s XPS spectra indicated that N atoms were incorporated into the TiO2 crystal lattice. The product granules could be used as a photocatalyst in moving bed reactor, and was demonstrated a higher visible-light photocatalytic activity for 2,4-dichlorophenol degradation compared with commercial P25 TiO2. When the mole ratio of TiO2 to Al2O3 equal to 1.0 showed the highest catalytic activity, the degradation percentage of 2,4-chlorophenol could be up to 92.5%, under 60 W fluorescent light irradiation for 9 hours. The high visible-light photocatalytic activity might be a synergetic effect of nitrogen doping and the form of binary metal oxide of TiO2 and gamma-Al2O3.

  10. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta

    2014-01-01

    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  11. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  12. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    Science.gov (United States)

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  13. Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Ding, Chaoying; Tian, Li; Liu, Bo; Liang, Qian; Li, Zhongyu; Xu, Song; Liu, Qiaoli; Lu, Dayong

    2015-01-01

    Highlights: • MWCNT/SnIn 4 S 8 composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn 4 S 8 composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn 4 S 8 composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn 4 S 8 composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn 4 S 8 heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn 4 S 8 composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn 4 S 8 composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn 4 S 8 composites. The superior photocatalytic activity of MWCNT/SnIn 4 S 8 composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn 4 S 8 and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn 4 S 8 under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn 4 S 8 composites was also discussed

  14. Photocatalytic activity of attapulgite-TiO2-Ag3PO4 ternary nanocomposite for degradation of Rhodamine B under simulated solar irradiation

    Science.gov (United States)

    He, Hongcai; Jiang, Zhuolin; He, Zhaoling; Liu, Tao; Li, Enzhu; Li, Bao-Wen

    2018-01-01

    An excellent ternary composite photocatalyst consisting of silver orthophosphate (Ag3PO4), attapulgite (ATP), and TiO2 was synthesized, in which heterojunction was formed between dissimilar semiconductors to promote the separation of photo-generated charges. The ATP/TiO2/Ag3PO4 composite was characterized by SEM, XRD, and UV-vis diffuse reflectance spectroscopy. The co-deposition of Ag3PO4 and TiO2 nanoparticles onto the surface of ATP forms a lath-particle structure. Compared with composite photocatalysts consisting of two phases, ATP/TiO2/Ag3PO4 ternary composite exhibits greatly improved photocatalytic activity for degradation of rhodamine B under simulated solar irradiation. Such ternary composite not only improves the stability of Ag3PO4, but also lowers the cost by reducing application amount of Ag3PO4, which provides guidance for the design of Ag3PO4- and Ag-based composites for photocatalytic applications.

  15. Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study.

    Science.gov (United States)

    Maggos, Th; Bartzis, J G; Liakou, M; Gobin, C

    2007-07-31

    An indoor car park was appropriately equipped in order to test the de-polluting efficiency of a TiO(2)-containing paint in an indoor polluted environment, under real scale configuration. Depollution tests were performed in an artificially closed area of the parking, which was polluted by a car exhaust during the testing period. The ceiling surface of the car park was covered with white acrylic TiO(2)-containing paint (PP), which was developed in the frame of the EU project 'PICADA' (Photocatalytic Innovative Coverings Application for Depollution Assessment). The closed area was fed with car exhaust gases. As soon as the system reached steady state, the UV lamps were turned on for 5h. The difference between the final and the initial steady state concentration indicates the removal of the pollutants due to both the photocatalytic paint and car emission reduction. Results showed a significant photocatalytic oxidation of NO(x) gases. The photocatalytic removal of NO and NO(2) was calculated to 19% and 20%, respectively, while the photocatalytic rate (microgm(-2)s(-1)) ranged between 0.05 and 0.13 for NO and between 0.09 and 0.16 for NO(2).

  16. Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach

    International Nuclear Information System (INIS)

    Hazarika, Deepshikha; Karak, Niranjan

    2016-01-01

    Highlights: • Nitrogen containing carbon dot and carbon dot/TiO 2 nanohybrid (CD@TiO 2 ) are synthesized without any additional doping of passivating agent. • The photocatalytic efficacy of CD@TiO 2 is found to be the best as compared to the bare TiO 2 , CD and nanohybrid of TiO 2 in presence of carbon dot. • Up-conversion luminescence of CD promotes the degradation activity of synthesized CD@TiO 2 under visible light. • The hazardous contaminants like phenol, benzene and pesticide are efficiently degraded by CD@TiO 2 under normal sunlight. - Abstract: In the present study, a novel, simple and green method was developed to synthesize highly luminescent nitrogen containing carbon dot (CD) using carbon resources like bio-based citric acid and glycerol in the presence of cost free cow urine. The as-synthesized CD showed exciting wavelength dependent down- and up-conversion flourescence properties. To utilize the advantage of up-conversion flourescence, a nanohybrid (CD@TiO 2 ) was synthesized from the above carbon resources and titanium butoxide through a facile one pot single step hydrothermal protocol. Nanomaterials like bare TiO 2 and nanohybrid of TiO 2 in presence of CD (CD/TiO 2 ) were also synthesized for comparison purpose. The optical properties and structural characteristics of the prepared CD, bare TiO 2 , CD@TiO 2 and CD/TiO 2 were examined by Fourier transform infrared (FTIR), UV–vis and fluorescence spectroscopic, scanning electron microscopic (SEM), transmission electron microscopic (TEM) and X-ray diffraction (XRD) studies. The elemental compositions of bare CD and CD@TiO 2 nanohybrid were obtained from EDX analyses. The poor crystalline nature and narrow distribution of spherical CD and anatase form of TiO 2 were confirmed from XRD and TEM studies. Amongst the studied nanomaterials, CD@TiO 2 exhibited the most promising photocatalytic degradation of organic pollutants like benzene and phenol as well as an anthrogenic pesticide under sunlight.

  17. THE DEGRADATION OF METHYLENE BLUE OVER M2TiO4 SPINEL PHOTOCATALYST

    Directory of Open Access Journals (Sweden)

    N FODIL CHERIF

    2014-06-01

    Full Text Available Heterogeneous photocatalysis is an advanced oxidation process (AOP which has been widely studied by numerous researchers in the world and is used to degrade or remove a wide range of pollutants in water and air. In this study, the photocatalytic oxidation and mineralization of methylene blue in aqueous catalyst suspensions of coprecipitated cobalt titanium oxide has been carried out in a helical reactor. The photodegradation was investigated using two kinds of irradiation lamps one emitting at 254 nm and the other emitting at 365 nm. Results showed that photodegradation is an effective method for the removal of MB from wastewaters. The efficiency of the process depends strongly on the experimental conditions of synthesis. We observed that 40 % of pollutant was degraded after 3 hours of UV irradiation.

  18. Degrading Endocrine Disrupting Chemicals from Wastewater by TiO Photocatalysis: A Review

    Directory of Open Access Journals (Sweden)

    Jin-Chung Sin

    2012-01-01

    Full Text Available Widespread concerns continue to be raised about the impacts of exposure to chemical compounds with endocrine disrupting activities. To date, the percolation of endocrine disrupting chemical (EDC effluent into the aquatic system remains an intricate challenge abroad the nations. With the innovation of advanced oxidation processes (AOPs, there has been a consistent growing interest in this research field. Hence, the aim of this paper is to focus one such method within the AOPs, namely, heterogeneous photocatalysis and how it is used on the abatement of EDCs, phthalates, bisphenol A and chlorophenols in particular, using TiO2-based catalysts. Degradation mechanisms, pathways, and intermediate products of various EDCs for TiO2 photocatalysis are described in detail. The effect of key operational parameters on TiO2 photocatalytic degradation of various EDCs is then specifically covered. Finally, the future prospects together with the challenges for the TiO2 photocatalysis on EDCs degradation are summarized and discussed.

  19. Modified Fe{sub 3}O{sub 4}- hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, S., E-mail: valizadehsolmaz@yahoo.com; Rasoulifard, M.H., E-mail: m_h_rasoulifard@znu.ac.ir; Dorraji, M.S. Seyed, E-mail: dorraji@znu.ac.ir

    2014-11-15

    Graphical abstract: - Highlights: • Photocatalytic degradation of dye by Ag modified HAP under visible light. • Study of Fenton like degradation of dye by transition metal ions modified HAP. • Comparison of catalytic systems according to Langmuir-Hinshelwood kinetic expression. - Abstract: The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag{sub 3}PO{sub 4} formation. Apparent reaction rate constant (K{sub app}) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H{sub 2}O{sub 2}, Co-M-HAP(II)/H{sub 2}O{sub 2} and M-HAP (I)/UV systems, respectively.

  20. Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon)

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Zhang, Jason

    2011-01-01

    Research highlights: → Dyes were decolorized and degraded using novel immobilized composite photocatalyst. → Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO 2 . → Nitrate, chloride and sulfate anions were detected as the photocatalytic mineralization products of dyes. → Novel immobilized composite photocatalyst is the most effective novel immobilized composite photocatalyst to degrade of textile dyes. - Abstract: An immobilized composite photocatalyst, titania (TiO 2 ) nanoparticle/activated carbon (AC), was prepared and its photocatalytic activity on the degradation of textile dyes was tested. AC was prepared using Canola hull. Basic Red 18 (BR18) and Basic Red 46 (BR46) were used as model dyes. Fourier transform infrared (FTIR), wavelength dispersive X-ray spectroscopy (WDX), scanning electron microscopy (SEM), UV-vis spectrophotometry, chemical oxygen demand (COD) and ion chromatography (IC) analyses were employed. The effects of reaction parameters such as weight percent (wt.%) of activated carbon, pH, dye concentration and anions (NO 3 - , Cl - , SO 4 2- , HCO 3 - and CO 3 2- ) were investigated on dye degradation. Data showed that dyes were decolorized and degraded using novel immobilized composite photocatalyst. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO 2 . Nitrate, chloride and sulfate anions were detected as the photocatalytic mineralization products of dyes. Results show that novel immobilized composite photocatalyst with 2 wt.% of AC is the most effective novel immobilized composite photocatalyst to degrade of textile dyes.