WorldWideScience

Sample records for heterogeneous photocatalytic degradation

  1. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    Science.gov (United States)

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  2. In situ FTIR Investigation of Magnetic Field Effect on Heterogeneous Photocatalytic Degradation of Benzene over Pt/TiO2

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In situ FTIR spectroscopy was utlized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.

  3. Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO2 particles.

    Science.gov (United States)

    Zhang, Yanlin; Wong, J W C; Liu, Peihong; Yuan, Min

    2011-07-15

    Photocatalytic degradation of phenanthrene (PHE) over TiO(2) in aqueous solution containing nonionic surfactant micelles was investigated. All photocatalytic experiments were conducted using a 253.7 nm mercury monochromatic ultraviolet lamp in a photocatalytic reactor. The surfactant micelles could provide a nonaqueous "cage" to result in a higher degradation rate of PHE than in an aqueous solution, but the higher Triton X-100 concentration (more than 2 g/L) lowered the degradation ratio of PHE because the additional surfactant micelles hindered the movement of micelles containing PHE so as to reduce their adsorption onto titania. Pseudo-second-order kinetics was observed for the photocatalytic degradation of PHE. Alkaline solution environment was beneficial to the photocatalytic degradation of PHE. PHE degradation could mainly be attributed to the formation of hydroxyl radicals as evident from the comparison of degradation efficiencies when O(2), H(2)O(2) and tert-butyl alcohol (TBA) were applied as oxidants or hydroxyl radical scavenger. Based on the GC/MS analysis of the intermediates, the possible pathways of the photocatalytic degradation of PHE were proposed.

  4. Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin, E-mail: zhangyl@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, J.W.C. [Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Liu Peihong [School of Chemistry and Environment, South China Normal University, Guangzhou (China); Yuan Min [Research Resources Center, South China Normal University, Guangzhou (China)

    2011-07-15

    Highlights: {yields} Degradation of phenanthrene in surfactant solution and the role of surfactant have been elucidated. {yields} Possible pathway of phenanthrene degradation in surfactant solution is proposed. {yields} The degradation of phenanthrene follows pseudo-second-order kinetics. {yields} It is proved that applying the surfactants as solubilizing agents to remove contaminants from soils followed by photocatalytic degradation is a promising strategy for soil remediation. - Abstract: Photocatalytic degradation of phenanthrene (PHE) over TiO{sub 2} in aqueous solution containing nonionic surfactant micelles was investigated. All photocatalytic experiments were conducted using a 253.7 nm mercury monochromatic ultraviolet lamp in a photocatalytic reactor. The surfactant micelles could provide a nonaqueous 'cage' to result in a higher degradation rate of PHE than in an aqueous solution, but the higher Triton X-100 concentration (more than 2 g/L) lowered the degradation ratio of PHE because the additional surfactant micelles hindered the movement of micelles containing PHE so as to reduce their adsorption onto titania. Pseudo-second-order kinetics was observed for the photocatalytic degradation of PHE. Alkaline solution environment was beneficial to the photocatalytic degradation of PHE. PHE degradation could mainly be attributed to the formation of hydroxyl radicals as evident from the comparison of degradation efficiencies when O{sub 2}, H{sub 2}O{sub 2} and tert-butyl alcohol (TBA) were applied as oxidants or hydroxyl radical scavenger. Based on the GC/MS analysis of the intermediates, the possible pathways of the photocatalytic degradation of PHE were proposed.

  5. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Sanjay P. [Environmental Materials Unit, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 400020 (India); Sawant, Sudhir B. [Chemical Engineering Department, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai 400019 (India); Pangarkar, Vishwas G. [Chemical Engineering Department, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai 400019 (India)]. E-mail: vgp@udct.org

    2007-02-09

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation.

  6. Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Kemary, Maged, E-mail: elkemary@yahoo.co [Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt); Abdel-Moneam, Yasser; Madkour, Metwally [Chemistry Department, Faculty of Science, El-Menoufia University, Shebin El-Kom (Egypt); El-Mehasseb, Ibrahim [Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt)

    2011-04-15

    Nanostructure titanium dioxide (TiO{sub 2}) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO{sub 2} nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO{sub 2} and Ag-TiO{sub 2} particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO{sub 2} nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO{sub 2}. The positive effect of silver on the photocatalytic activity of TiO{sub 2} may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO{sub 2} surface and therefore enhances the photocatalytic activity of the synthesized TiO{sub 2} nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO{sub 2} and 96% for Ag-TiO{sub 2}. - Research highlights: {yields} Ag-TiO{sub 2} nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO{sub 2}. {yields} Dye photodegradation follows pseudo-first-order kinetics. {yields} Observed maximum degradation efficiency of SO is about 60% for TiO{sub 2} and 96% for Ag-TiO{sub 2}.

  7. Heterogeneous photocatalytic degradation of nile blue dye in aqueous BiOCl suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Sarwan, Bhawna, E-mail: sarbhawna@gmail.com [Laboratory of Photocatalysis, Department of Chemistry, Madhav Science Post Graduate College, Vikram University, Ujjain 456010, Madhya Pradesh (India); Pare, B. [Laboratory of Photocatalysis, Department of Chemistry, Madhav Science Post Graduate College, Vikram University, Ujjain 456010, Madhya Pradesh (India); Acharya, A.D. [School of Studies in Physics, Vikram University, Ujjain 456010, Madhya Pradesh (India)

    2014-05-01

    Graphical abstract: - Highlights: • Photocatalytic degradation of NB dye was carried out by using synthesized BiOCl. • Hydrolysis method was presented. • Formation of {sup •} OH verified by fluorescence technology. • BiOCl possessed highly adsorption capacity for organic dye. • The intermediates and the final products of degradation were detected. • Mineralization of NB confirmed by TOC and nitrate anions production. - Abstract: Bismuth oxychloride (BiOCl) was synthesized by hydrolysis method. Several analytical tools such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) surface area, X-ray photoelectron spectroscopic, and energy-dispersive spectroscopic techniques were used to characterize the sample. The prepared material had average pore diameter of about 7–10 nm and the BET surface area of BiOCl was 40 m{sup 2} g{sup −1}. The analysis of hydroxyl radicals ({sup •} OH) formation was performed by fluorescence technique. The intermediates and the final products of degradation were detected by high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry (HPLC–ESI-DAD-MS) technology. The degradation of nile blue (NB) dye was mainly attributed to the destruction of the conjugated structure, and after that the intermediates were transformed into small molecules mainly phenol, aniline, etc., which were mineralized to water and carbon dioxide. During three recycles, the catalyst did not exhibit any significant loss of photocatalytic activity, confirming that the photocatalyst is essentially stable. The NB oxidation was evaluated by the decrease in total organic carbon (TOC) content. The formation of NO{sub 3}{sup −} and the evolution of CO{sub 2} revealed complete mineralization of aqueous NB during the photocatalytic process by this photocatalyst.

  8. Chemical absorption process for degradation of VOC gas using heterogeneous gas-liquid photocatalytic oxidation: toluene degradation by photo-Fenton reaction.

    Science.gov (United States)

    Tokumura, Masahiro; Nakajima, Rina; Znad, Hussein Tawfeek; Kawase, Yoshinori

    2008-10-01

    A novel process for degradation of toluene in the gas-phase using heterogeneous gas-liquid photocatalytic oxidation has been developed. The degradation of toluene gas by photo-Fenton reaction in the liquid-phase has experimentally examined. The photo-Fenton reaction in the liquid-phase could improve the overall toluene absorption rate by increasing the driving force for mass transfer and as a result enhance the removal of toluene in the exhaust gas. The toluene concentrations in the inlet gas were varied in the range from 0.0968 to 8.69 g m(-3) with initial hydrogen peroxide concentration of 400 mg l(-1) and Fe dose of 5.0 mg l(-1). It was found that toluene in the inlet gas was almost completely dissolved into water and degraded in the liquid-phase for the inlet toluene gas concentration of less than 0.42 g m(-3). The dynamic process of toluene gas degradation by the photo-Fenton reaction providing information for reaction kinetics and mass transfer rate was examined. Toluene removal kinetic analysis indicated that photo-Fenton degradation was significantly affected by H(2)O(2) concentration. The experimental results were satisfactorily described by the predictions simulated using the simplified tanks-in-series model combined with toluene removal kinetic analysis. The present results showed that the proposed chemical absorption process using the photo-Fenton heterogeneous gas-liquid photocatalytic oxidation is very effective for degradation of volatile organic gases.

  9. Heterogeneous photocatalytic degradation of nile blue dye in aqueous BiOCl suspensions

    Science.gov (United States)

    Sarwan, Bhawna; Pare, B.; Acharya, A. D.

    2014-05-01

    Bismuth oxychloride (BiOCl) was synthesized by hydrolysis method. Several analytical tools such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopic, and energy-dispersive spectroscopic techniques were used to characterize the sample. The prepared material had average pore diameter of about 7-10 nm and the BET surface area of BiOCl was 40 m2 g-1. The analysis of hydroxyl radicals (•OH) formation was performed by fluorescence technique. The intermediates and the final products of degradation were detected by high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (HPLC-ESI-DAD-MS) technology. The degradation of nile blue (NB) dye was mainly attributed to the destruction of the conjugated structure, and after that the intermediates were transformed into small molecules mainly phenol, aniline, etc., which were mineralized to water and carbon dioxide. During three recycles, the catalyst did not exhibit any significant loss of photocatalytic activity, confirming that the photocatalyst is essentially stable. The NB oxidation was evaluated by the decrease in total organic carbon (TOC) content. The formation of NO3- and the evolution of CO2 revealed complete mineralization of aqueous NB during the photocatalytic process by this photocatalyst.

  10. TiO2-BASED HETEROGENEOUS PHOTOCATALYTIC TREATMENT COMBINED WITH OZONATION FOR CARBENDAZIM DEGRADATION

    Directory of Open Access Journals (Sweden)

    R. Rajeswari ، S. Kanmani

    2009-04-01

    Full Text Available The degradation of pesticide Carbendazim was investigated by combination of TiO2-based photocatalysis and ozonation. A batch annular photoreactor has been used for carrying out the combined process and the influence of TiO2 concentration, ozone dose and pH were investigated. The results showed that the removal rate increased with increase in ozone dosage upto 0.48 g/h and decreased above 1g/L of TiO2. At optimum pH=6, with 1g/L TiO2 and with 0.48g/h ozone dose, 88% COD removal was achieved in 3 hours by the combined photocatalytic ozonation process, where as 54% and 67% COD removal was observed with each photocatalysis and ozonation process, respectively. BOD5/COD ratio was enhanced to 0.38 and TOC removal was 80% in 180 min of combined treatment. Carbendazim was quickly degraded by the combined photocatalytic ozonation process and followed pseudo-first order kinetics. The kinetic study showed that degradation rate constant of Carbendazim with TiO2/UV/O3 to be 1.5 times higher than that & O3 with the same ozone dose and 2.2 times higher than that of TiO2/UV. A mechanism involving the formation of an ozonide radical previous to the generation of hydroxyl radicals is suggested to explain the synergistic effect between ozone and TiO2 under illumination. The laboratory study has also demonstrated that a combination of TiO2-based photocatalysis and ozonation will overcome the disadvantage of the selectivity of ozonation and the lower efficiency of TiO2 photocatalysis.

  11. VISIBLE LIGHT INDUCED PHOTOCATALYTIC DEGRADATION OF ...

    African Journals Online (AJOL)

    a

    Photocatalytic degradation of eosin and erythrosin-B (xanthene dyes) has ... Recently, heterogeneous photochemical processes using semiconductor as ..... Zollinger, H. (Ed.) Color Chemistry, Synthesis, Properties and Applications of Organic.

  12. Heterogeneous Photocatalytic Degradation Kinetic of Gaseous Ammonia Over Nano-TiO2 Supported on Latex Paint Film

    Institute of Scientific and Technical Information of China (English)

    QI-JIN GENG; XI-KUI WANG; SHAN-FANG TANG

    2008-01-01

    Objective To investigate the photoeatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photocatalyst supported on latex paint film under UV-irradiation.Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface.Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry,respectively.Results On the one hand,TiO2 catalyst was excellent for degradation of ammonia,and the crystal phase of TiO2,anatase or rutile,had little effect on degradation of ammonia,but the conversion of ammonia grew with the increase of catalyst content.On the other hand,apparent rate constant and conversion of anmaoma decreased with the increase of initial concentration of ammonia,and the photocatalytic degradation reaction followed a pseudo-first-order expression due to the evidence of linear correlation between-lnC/Co vs.irradiation time t, but the relationship between initial concentration and the degradation products Was not linear in low initial concentration.Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.

  13. Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation.

    Science.gov (United States)

    Farré, Maria José; Franch, Maria Isabel; Malato, Sixto; Ayllón, José Antonio; Peral, José; Doménech, Xavier

    2005-02-01

    Photo-Fenton/ozone (PhFO) and TiO2-photocatalysis/ozone (PhCO) coupled systems are used as advanced oxidation processes for the degradation of the following biorecalcitrant pesticides: alachlor, atrazine, chlorfenvinfos, diuron, isoproturon and pentachlorophenol. These organic compounds are considered Priority Hazardous Substances by the Water Framework Directive of the European Commission. The degradation process of the different pesticides, that occurs through oxidation of the organic molecules by means of their reaction with generated OH radical, follows a first and zero-order kinetics, when PhFO and PhCO are applied, respectively. These two Advanced Oxidation Processes, together with the traditional ozone+UV, have been used to investigate TOC reduction of the different pesticide aqueous solutions. The best results of pesticide mineralization are obtained when PhFO is applied; with the use of this advanced oxidation process the aqueous pesticide solutions become detoxyfied except in the case of atrazine and alachlor aqueous solutions for which no detoxification is achieved at the experimental conditions used in the work, at least after 2 and 3 h of treatment, respectively.

  14. Heterogeneous photocatalytic degradation of the endocrine-disrupting chemical Benzophenone-3: Parameters optimization and by-products identification.

    Science.gov (United States)

    Zúñiga-Benítez, Henry; Aristizábal-Ciro, Carolina; Peñuela, Gustavo A

    2016-02-01

    Benzophenone-3 (BP3) is one of the most used UV filters. Its disruptive effect on the endocrine system of different living beings has been demonstrated by several research groups. Present work addresses on a photocatalytic degradation of BP3 using particles of titanium dioxide in aqueous solutions considering the effect of operating parameters such as pH, catalyst and pollutant initial concentrations, and the presence of hydrogen peroxide, acetonitrile and isopropanol in the solution. In this way, a face centered, central composite design was carried out for the identification of significant factors or interactions that allow the determination of the conditions under which the pollutant suffers the highest rates of degradation. A solution initial pH of 9.0, a TiO2 concentration of 1.184 g L(-1) and an H2O2 concentration of 128.069 mg L(-1) were established as the optimal conditions for the substrate removal. In aqueous solutions and low concentrations of the pollutant (photocatalytic degradation followed a pseudo-first order kinetics. After 300 min of treatment, ∼67% of the dissolved organic carbon was removed, which together with a reduction in toxicity and an increase in biodegradability confirmed that photocatalysis with TiO2 is a potential method to remove BP3 from water. Additionally, tests using acetonitrile as solvent and isopropanol as hydroxyl radical (OH(.)) scavenger suggested that, OH(.) was the main agent responsible of substrate degradation. Finally, ten process by-products were identified and a degradation route was proposed.

  15. HETEROGENEOUS PHOTOCATALYTIC DEGRADATION OF PHENOL IN AQUEOUS SUSPENSION OF PERIWINKLE SHELL ASH CATALYST IN THE PRESENCE OF UV FROM SUNLIGHT

    Directory of Open Access Journals (Sweden)

    OSARUMWENSE, J. O.

    2015-12-01

    Full Text Available The batch photocatalytic degradation of phenol in aqueous solution wasinvestigated using periwinkle shell ash (PSA as photocatalyst. Chemical characterisation of the PSA revealed that the major oxides present were calcium oxide (CaO, silica (SiO2 and aluminium oxide (Al2O3 which accounted for 41.3, 33.2 and 9.2% of the weight of PSA characterised. The major elements in PSA were iron (19.2% and zinc (16.5%. FTIR results revealed absorption peaks of 3626.59 cm−1, 1797.58 cm−1, 1561.43 cm−1 and 1374.34 cm−1 in the infrared spectrum of PSA corresponding to O–H, C= O, C= C and C–H bonds respectively. Increasing the initial phenol concentration resulted in a decrease in the degradation efficiency of PSA. Lower catalyst loadings favoured the degradation process. Maximum degradation efficiency was obtained when the initial phenol concentration and catalyst loading were set as 50 g/L and 5 g/L respectively. The kinetics of the degradation process was well described by the pseudo first order equation while the diffusion mechanism was well represented by the intra particle diffusion model (R2>0.90. The adsorption equilibrium data fitted well to the Langmuir isotherm equation with an R2 value of 0.997.

  16. TUNGSTOPHOSPHORIC ACID HETEROGENIZED ONTO NH4ZSM5 AS AN EFFICIENT AND RECYCLABLE CATALYST FOR THE PHOTOCATALYTIC DEGRADATION OF DYES

    Directory of Open Access Journals (Sweden)

    Candelaria Leal Marchena

    2015-05-01

    Full Text Available Materials based on tungstophosphoric acid (TPA immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH43PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.

  17. Photocatalytic degradation investigation of dicofol

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Photocatalytic degradation of dicofol was investigated on TiO2 nano particles(TiO2-NPs)under UV light irradiation.It was shown that dicofol could be completely degraded into inorganic chloride ion under the condition of 0.25 mg/mL TiO2-NPs,2 h irradiation of 400 W high pressure mercury lamp with a wavelength of 365 nm and air at a rate of 100 mL/min.The effects of the experimental conditions,including the amount of TiO2-NPs,irradiation time and the intensity of light,were studied.The apparent photodegradation rate constant was 0.167/min under the optimal condition.The photocatalytic degradation mechanism of dicofol was also discussed.

  18. Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts

    OpenAIRE

    Kansal SushilKumar; Kaur Navjeet; Singh Sukhmehar

    2009-01-01

    Abstract This study involves the photocatalytic degradation of Reactive Black 5 (RB5) and Reactive Orange 4 (RO4) dyes, employing heterogeneous photocatalytic process. Photocatalytic activity of different semiconductors such as titanium dioxide (TiO2) and zinc oxide (ZnO) has been investigated. An attempt has been made to study the effect of process parameters through amount of catalyst, concentration of dye, and pH on photocatalytic degradation of RB5 and RO4. The experiments were carried ou...

  19. Photocatalytic Degradation of Organic Contaminants in Water

    Science.gov (United States)

    Photocatalytic treatment of organics, including regulated and contaminants of emerging concern, has been an important area of this field. Details are provided on the mechanism of degradation, reaction intermediates, kinetics, and nanointerfacial adsorption phenomena. The degradat...

  20. Photocatalytic degradation of synthetic dye under sunlight

    Directory of Open Access Journals (Sweden)

    Mijin Dušan

    2007-01-01

    Full Text Available Synthetic dyes are widely used in the textile industry. Dye pollutants from the textile industry are an important source of environmental contamination. The majority of these dyes are toxic, mostly non-biodegradable and also resistant to decomposition by physico-chemical methods. Among new oxidation methods or "advanced oxidation processes", heterogeneous photocatalysis appears as an emerging destructive technology leading to the total mineralization of many organic pollutants. CI Basic Yellow 28 (BY28, commonly used as a textile dye, could be photocatalytically degraded using TiU2 as catalyst under sunlight. The effect of some parameters such as the initial catalyst concentration, initial dye concentration, initial NaCl and Na2CO3 concentrations, pH, H2O2 and type of catalyst on the degradation rate of BY28 was examined in details. The presence of NaCl and Na2CO3 led to inhibition of the photodegradation process. The highest photodegradation rate was observed at high pH, while the rate was the lowest at low pH. Increase of the initial H2O2 concentration increased the initial BY28 photodegradation efficiency. ZnO was a better catalyst than TiO2 at low dye concentrations.

  1. Heterogeneous photocatalytic degradation of recalcitrant pollutants over CdS-TiO{sub 2} nanotubes: Boosting effect of TiO{sub 2} nanoparticles at nanotube-CdS interface

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Winn; Manivannan, A; Subramanian, Vaidyanathan Ravi

    2012-10-28

    The heterogeneous photocatalytic degradation of a textile dye, over TiO{sub 2} nanotubes (T_NT) containing nanocrystals of cadmium sulfide (CdS) and an interfacial layer of TiO{sub 2} nanoparticles (T_NP) is presented. T_NT is prepared by anodization of Ti mesh. A TiCl{sub 4} treatment is implemented to deposit T_NP on T_NT when applicable. CdS nanocrystals are prepared using a successive ionic layer adsorption and reaction approach. Methyl orange (MO) and phenol conversion on the different photocatalysts follows the trend: T_NT/T_NP/CdS > T_NT/CdS > T_NT with the actual values of fractional conversion of MO being 0.94, 0.64, and 0.04 respectively. The role of Na{sub 2}S in MO photodegradation and CdS stabilization is examined in detail. The addition of a limited amount of Na{sub 2}S (up to a concentration of 0.02 M) with MO has multiple benefits including (i) improvement in electron separation and transport, (ii) stabilization of the CdS, and (iii) enhancement of the photocatalytic degradation of MO by 35%.

  2. Photocatalytic degradation of prions using the photo-Fenton reagent.

    Science.gov (United States)

    Paspaltsis, I; Berberidou, C; Poulios, I; Sklaviadis, T

    2009-02-01

    Prions are proteinaceous infectious agents postulated to be the causative agents of a group of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). A known iatrogenic transmission route of TSEs to humans occurs via prion-contaminated surgical instruments or biological materials. Prions, unlike most common pathogens, exhibit an extraordinary resistance to conventional decontamination procedures. We have recently demonstrated that the application of TiO(2)-based heterogeneous photocatalytic oxidation is able to significantly reduce prion infectivity. The present study investigates the potential of a homogeneous photocatalytic method, based on the photo-Fenton reagent, to degrade prion proteins. We show that the photo-Fenton reagent efficiently degrades not only recombinant prion proteins, but also the total protein amount from brain preparations of naturally or experimentally infected species and PrP(Sc) (PrP scrapie) contained in sheep scrapie brain homogenates.

  3. Photocatalytic Degradation of Aniline Using TiO2 Nanoparticles in a Vertical Circulating Photocatalytic Reactor

    Directory of Open Access Journals (Sweden)

    F. Shahrezaei

    2012-01-01

    Full Text Available Photocatalytic degradation of aniline in the presence of titanium dioxide (TiO2 and ultraviolet (UV illumination was performed in a vertical circulating photocatalytic reactor. The effects of catalyst concentration (0–80 mg/L, initial pH (2–12, temperature (293–323 K, and irradiation time (0–120 min on aniline photodegradation were investigated in order to obtain the optimum operational conditions. The results reveal that the aniline degradation efficiency can be effectively improved by increasing pH from 2 to 12 and temperature from 313 to 323 K. Besides, the effect of temperature on aniline photo degradation was found to be unremarkable in the range of 293–313 K. The optimum catalyst concentration was about 60 mg/L. The Langmuir Hinshelwood kinetic model could successfully elucidate the effects of the catalyst concentration, pH, and temperature on the rate of heterogeneous photooxidation of aniline. The data obtained by applying the Langmuir Hinshelwood treatment are consistent with the available kinetic parameters. The activated energy for the photocatalytic degradation of aniline is 20.337 kj/mol. The possibility of the reactor use in the treatment of a real petroleum refinery wastewater was also investigated. The results of the experiments indicated that it can therefore be potentially applied for the treatment of wastewater contaminated by different organic pollutants.

  4. Photocatalytic degradation of pollutants from Elcogas IGCC power station effluents.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; García-Peña, F; Coca, P

    2007-06-01

    The aim of this work is to improve the quality of water effluents coming from Elcogas IGCC power station (Puertollano, Spain) with the purpose of fulfilling future more demanding normative, using heterogeneous photocatalytic oxidation processes (UV/H(2)O(2)/TiO(2) or ZnO). The efficiency of photocatalytic degradation for the different catalysts (TiO(2) and ZnO) was determined from the analysis of the following parameters: cyanides, formates and ammonia content. In a first stage, the influence of two parameters (initial concentration of H(2)O(2) and amount of catalyst) on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. pH was always kept in a value >9.5 to avoid gaseous HCN formation. The degradation of cyanides and formates was found to follow pseudo-first order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The mathematical model reproduces experimental data within 90% of confidence and allows the simulation of the process for any value of parameters in the experimental range studied. Moreover, a measure of the saliency of the input variables was made based upon the connection weights of the neural networks, allowing the analysis of the relative relevance of each variable with respect to the others. Results showed that the photocatalytic process was effective, being the degradation rate of cyanides about five times higher when compared to removal of formates. Finally, the effect of lowering pH on the degradation of formates was evaluated after complete cyanides destruction was reached (10 min of reaction). Under the optimum conditions (pH 5.2, [H(2)O(2)]=40 g/l; [TiO(2)]=2g/l), 100% of cyanides and 92% of initial NH(3) concentration are degraded after 10 min, whereas 35 min are needed to degrade 98% of formates.

  5. Heterogeneous photocatalytic reactions of sulfur aromatic compounds.

    Science.gov (United States)

    Samokhvalov, Alexander

    2011-11-18

    Sulfur aromatic compounds, such as mono-, di-, tri-, and tetraalkyl-substituted thiophene, benzothiophenes, dibenzothiophenes, are the molecular components of many fossils (petroleum, oil shale, tar sands, bitumen). Structural units of natural, cross-linked heteroaromatic polymers present in brown coals, turf, and soil are similar to those of sulfur aromatic compounds. Many sulfur aromatic compounds are found in the streams of petroleum refining and upgrading (naphthas, gas oils) and in the consumer products (gasoline, diesel, jet fuels, heating fuels). Besides fossils, the structural fragments of sulfur aromatic compounds are present in molecules of certain organic semiconductors, pesticides, small molecule drugs, and in certain biomolecules present in human body (pheomelanin pigments). Photocatalysis is the frontier area of physical chemistry that studies chemical reactions initiated by absorption of photons by photocatalysts, that is, upon electronic rather than thermal activation, under "green" ambient conditions. This review provides systematization and critical review of the fundamental chemical and physicochemical information on heterogeneous photocatalysis of sulfur aromatic compounds accumulated in the last 20-30 years. Specifically, the following topics are covered: physicochemical properties of sulfur aromatic compounds, major classes of heterogeneous photocatalysts, mechanisms and reactive intermediates of photocatalytic reactions of sulfur aromatic compounds, and the selectivity of these reactions. Quantum chemical calculations of properties and structures of sulfur aromatic compounds, their reactive intermediates, and the structure of adsorption complexes formed on the surface of the photocatalysts are also discussed.

  6. Degradation of aqueous solutions of camphor by heterogeneous photocatalysis.

    Science.gov (United States)

    Sirtori, Carla; Altvater, Priscila K; de Freitas, Adriane M; Peralta-Zamora, Patricio G

    2006-02-28

    In this study the photocatalytic degradation of aqueous solutions of camphor was investigated by using TiO2 and ZnO photocatalysts. In the presence of artificial UV-light the highly photosensitive camphor was almost totally degraded after reaction times of 60 min. However, under these conditions the mineralization degree was lower than 25%. In the presence of semiconductors the degradation was complete after a treatment time of about 30 min. Moreover, the mineralization was considerably greater, mainly with the use of TiO2 (> 80% at reaction time of 60 min). Heterogeneous photocatalytic processes applied in the presence of solar radiation show a promising degradation capability. TiO2-based processes afforded mineralization degrees of about 90% after a reaction time of 120 min, when the system was assisted by aeration.

  7. [Characteristics and selectivity of photocatalytic-degradation of tetracycline hydrochloride].

    Science.gov (United States)

    Song, Chen-Yi; Yin, Da-Qiang

    2014-02-01

    The photocatalytic-degradation behavior of tetracycline hydrochloride (TTC) was studied. The catalyst used was photosensitive semiconductor titanium dioxide (TiO2). The results showed that the photocatalytic degradation of TTC was well fitted to first order reaction kinetics model, and the adsorption was the control step of the whole photocatalytic-degradation process, indicating that the main degradation path was the photocatalytic reaction of TTC adsorbed on the surface of TiO2. Besides, through photocatalytic-degradation of the mixed solution of TTC and sulfamethoxazole or amoxicillin, the degradation of the two antibiotics showed obvious selectivity when the pH, TiO2 dosage and other conditions were changed.

  8. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures

    Directory of Open Access Journals (Sweden)

    John Wilman Rodriguez-Acosta

    2014-01-01

    Full Text Available Mixing rules coupled to a semipredictive kinetic model of the Langmuir-Hinshelwood type were proposed to determine the behavior of the heterogeneous solar photodegradation with TiO2-P25 of multicomponent mixtures at pilot scale. The kinetic expressions were expressed in terms of the effective concentration of total organic carbon (xTOC. An expression was obtained in a generalized form which is a function of the mixing rules as a product of a global contribution of the reaction rate constant k′ and a mixing function fC. Kinetic parameters of the model were obtained using the Nelder and Mead (N-M algorithm. The kinetic model was validated with experimental data obtained from the degradation of binary mixtures of chlorinated compounds (DCA: dichloroacetic acid and 4-CP: 4-chlorophenol at different initial global concentration, using a CPC reactor at pilot scale. A simplex-lattice {2,3} design experiment was adopted to perform the runs.

  9. Investigation into adsorption and photocatalytic degradation of gaseous benzene in an annular fluidized bed photocatalytic reactor.

    Science.gov (United States)

    Geng, Qijin; Tang, Shankang; Wang, Lintong; Zhang, Yunchen

    2015-01-01

    The adsorption and photocatalytic degradation of gaseous benzene were investigated considering the operating variables and kinetic mechanism using nano-titania agglomerates in an annular fluidized bed photocatalytic reactor (AFBPR) designed. The special adsorption equilibrium constant, adsorption active sites, and apparent reaction rate coefficient of benzene were determined by linear regression analysis at various gas velocities and relative humidities (RH). Based on a series of photocatalytic degradation kinetic equations, the influences of operating variables on degradation efficiency, apparent reaction rate coefficient and half-life were explored. The findings indicated that the operating variables have obviously influenced the adsorption/photocatalytic degradation and corresponding kinetic parameters. In the photocatalytic degradation process, the relationship between photocatalytic degradation efficiency and RH indicated that water molecules have a dual-function which was related to the structure characteristics of benzene. The optimal operating conditions for photocatalytic degradation of gaseous benzene in AFBPR were determined as the fluidization number at 1.9 and RH required related to benzene concentration. This investigation highlights the importance of controlling RH and benzene concentration in order to obtain the desired synergy effect in photocatalytic degradation processes.

  10. Photocatalytic degradation of molinate in aqueous solutions.

    Science.gov (United States)

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.

  11. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Directory of Open Access Journals (Sweden)

    Nurhidayatullaili Muhd Julkapli

    2014-01-01

    Full Text Available During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag and organic matter (C, N, Cl, and F showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.

  12. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes.

    Science.gov (United States)

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.

  13. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes

    Science.gov (United States)

    Muhd Julkapli, Nurhidayatullaili; Bagheri, Samira; Bee Abd Hamid, Sharifah

    2014-01-01

    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes. PMID:25054183

  14. Photocatalytic degradation kinetics in Rhodamine B dye degradation with poriferous TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-ping; JIAO Cai-shan; CHEN Xing-juan

    2006-01-01

    A type of poriferous TiO2 material was prepared using cetyl trimethyl ammonium bromide as a template agent and butyl tetra titanate as a precursor. Through studying the photocatalytic kinetic activity of Rhodamine B photocatalytic degradation reaction with a UV-1601 PC ultraviolet-visible spectrophotometer, the photocatalytic degradation process of Rhodamine B was found to not correspond to the firstorder kinetic process completely. According to the reaction phenomenon, the photocatalytic degradation process of Rhodamine B with poriferous TiO2 involved two irreversible reactions. The kinetic model was tested using experimental data.

  15. 半导体多相光催化降解反应的外场效应%External Field Effect on Heterogeneous Photocatalytic Degradation over TiO2 Semiconductors

    Institute of Scientific and Technical Information of China (English)

    张雯; 王绪绪; 李旦振; 付贤智

    2005-01-01

      在简述光催化降解反应机理的基础上,综述了热场、电场、微波场、超声波场、磁场等外场对TiO2光催化降解反应的影响,着重探讨了外场的耦合效应对提高光催化量子效率的作用机理。%  The influence of external field, including thermal field, electronic field, microwave radiation, ultrasonic and magnetic field, on the photocatalytic degradation over TiO2 is reviewed. Special interest is taken in describing the mechanism of the synergic effect on the development of quantum efficiency of photocatalytic degradation.

  16. Photolytic and photocatalytic degradation of 6-chloronicotinic acid.

    Science.gov (United States)

    Zabar, Romina; Dolenc, Darko; Jerman, Tina; Franko, Mladen; Trebše, Polonca

    2011-10-01

    This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental matrices. Photolytic experiments were performed with three UVA (ultraviolet A) polychromatic fluorescent lamps with broad maximum at 355 nm, while photocatalytic experiments were performed using immobilised titanium dioxide (TiO₂) on six glass slides in the spinning basket inside a photocatalytic quartz cell under similar irradiation conditions. Photolytic degradation revealed no change in concentration of 6CNA within 120 min of irradiation, while the photocatalytic degradation within 120 min, obeyed first-order kinetics. The observed disappearance rate constant was k=0.011 ± 0.001 min⁻¹ and t½ was 63.1 ± 5.5 min. Mineralisation rate was estimated through total organic carbon (TOC) and measurements revealed no carbon removal in case of photolysis after 120 min of exposure. However in photocatalytic experiments 46 ± 7% mineralisation was achieved within 120 min of irradiation. Nevertheless, the removal of total nitrogen (TN) was not observed across all experiments. Ion chromatographic analyses indicated transformation of chlorine atoms to chloride and increase of nitrate(V) ions only via photocatalytic experiments. Efficiency of selected advanced oxidation process (AOP) was investigated through toxicity assessment with Vibrio fischeri luminescent bacteria and revealed higher adverse effects of treated samples on bacteria following photocatalytic degradation in spite of the fact that higher mineralisation was achieved. New hydroxylated product generated in photocatalytic experiments with TiO₂, was confirmed with liquid chromatography-electro spray ionisation mass spectrometry (LC-ESI-MS/MS) analyses, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic

  17. Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts

    Directory of Open Access Journals (Sweden)

    Kansal SushilKumar

    2009-01-01

    Full Text Available Abstract This study involves the photocatalytic degradation of Reactive Black 5 (RB5 and Reactive Orange 4 (RO4 dyes, employing heterogeneous photocatalytic process. Photocatalytic activity of different semiconductors such as titanium dioxide (TiO2 and zinc oxide (ZnO has been investigated. An attempt has been made to study the effect of process parameters through amount of catalyst, concentration of dye, and pH on photocatalytic degradation of RB5 and RO4. The experiments were carried out by varying pH (3–11, amount of catalyst (0.25–1.5 g/L, and initial concentration of dye (10–100 mg/L. The optimum catalyst dose was found to be 1.25 and 1 g/L for RB5 and RO4, respectively. In the case of RB5, maximum rate of decolorization was observed in acidic medium at pH 4, whereas the decolorization of RO4 reached maximum in basic region at pH 11. The performance of photocatalytic system employing ZnO/UV light was observed to be better than TiO2/UV system. The complete decolorization of RB5 was observed after 7 min with ZnO, whereas with TiO2, only 75% dye degraded in 7 min. In the case of RO4, 92 and 62% decolorization was noticed in the same duration.

  18. Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts

    Science.gov (United States)

    Kansal, Sushil Kumar; Kaur, Navjeet; Singh, Sukhmehar

    2009-07-01

    This study involves the photocatalytic degradation of Reactive Black 5 (RB5) and Reactive Orange 4 (RO4) dyes, employing heterogeneous photocatalytic process. Photocatalytic activity of different semiconductors such as titanium dioxide (TiO2) and zinc oxide (ZnO) has been investigated. An attempt has been made to study the effect of process parameters through amount of catalyst, concentration of dye, and pH on photocatalytic degradation of RB5 and RO4. The experiments were carried out by varying pH (3-11), amount of catalyst (0.25-1.5 g/L), and initial concentration of dye (10-100 mg/L). The optimum catalyst dose was found to be 1.25 and 1 g/L for RB5 and RO4, respectively. In the case of RB5, maximum rate of decolorization was observed in acidic medium at pH 4, whereas the decolorization of RO4 reached maximum in basic region at pH 11. The performance of photocatalytic system employing ZnO/UV light was observed to be better than TiO2/UV system. The complete decolorization of RB5 was observed after 7 min with ZnO, whereas with TiO2, only 75% dye degraded in 7 min. In the case of RO4, 92 and 62% decolorization was noticed in the same duration.

  19. Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO(2) aqueous solution.

    Science.gov (United States)

    Cao, Hua; Lin, Xiulian; Zhan, Haiying; Zhang, Hong; Lin, Jingxin

    2013-01-01

    5-Ethyl-5-phenylpyrimidine-2,4,6(1H, 3H, 5H)-trione is an anti-convulsant used to treat disorders of movement, e.g. tremors. This work deals with the transformation of phenobarbital by UV/TiO(2) heterogeneous photocatalysis, to assess the decomposition of the pharmaceutical compound, to identify intermediates, as well as to elucidate some mechanistic details of the degradation. The photocatalytic removal efficiency of 100 μm phenobarbital is about 80% within 60 min, while the degradation efficiency of phenobarbital was better in alkaline solution. The study on contribution of reactive oxidative species (ROSs) has shown that ()OH is responsible for the major degradation of phenobarbital, while the photohole, photoelectrons and the other ROSs have the minor contribution to the degradation. Finally, based on the identification of degradation intermediates, two main photocatalytic degradation pathways have been tentatively proposed, including the hydroxylation and cleavage of pyrimidine ring in the phenobarbital molecule respectively. Certainly, the phenobarbital can be mineralized when the photocatalytic reaction time prolongs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Photocatalytic degradation of 2,4,6-trinitrotoluene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Pt/TiO2 photocatalyst was used in the photocatalytic degradation of 2,4,6-trinitrotoluene (TNT) under the irradiation of the simulated sunlight. The results show that the destruction of TNT is faster and more complete with the photocatalyst. The photocatalytic degradation of TNT follows first order kinet-ics. The transformation of nitryl groups of TNT molecules into nitrite and nitrate ions may be acceler-ated in the presence of the Pt/TiO2 photocatalyst. Compared with that without the catalyst, the concentration of nitrate ions was improved 32.3 times within 2.5 h.

  1. Photocatalytic degradation of 2,4,6-trinitrotoluene

    Institute of Scientific and Technical Information of China (English)

    LIU XiuHua; FU YiBei; WANG HeYi; ZHONG ZhiJing; XU YunShu

    2008-01-01

    A Pt/TiO2 photocatalyst was used in the photocatalytic degradation of 2,4,6-trinitrotoluene (TNT) under the irradiation of the simulated sunlight. The results show that the destruction of TNT is faster and more complete with the photocatalyst. The photocatalytic degradation of TNT follows first order kinetics. The transformation of nitryl groups of TNT molecules into nitrite and nitrate ions may be accelerated in the presence of the Pt/TiO2 photocatalyst. Compared with that without the catalyst, the concentration of nitrate ions was improved 32.3 times within 2.5 h.

  2. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.

    Science.gov (United States)

    Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin

    2015-02-01

    Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation.

  3. Direct photolysis and photocatalytic degradation of 2-amino-5-chloropyridine

    Directory of Open Access Journals (Sweden)

    BILJANA F. ABRAMOVIC

    2003-12-01

    Full Text Available The direct photolysis and photocatalytic degradation of a pyridine pesticide analogue, 2-amino-5-chloropyridine, were investigated employing different analytical techniques – potentiometry, for monitoring the pH and chloride generation, spectrophotometry, for studying the degradation of the pyridine moiety, ion chromatography, for monitoring nitrate formation, and total organic carbon analysis for investigating the efficiency of the process. The photocatalytic degradation was studied in aqueous suspensions of titanium dioxide under illumination by UV light. It was found that chloride evolution was a zero-order reaction which takes place by direct photolysis, in that way differing from the degradation of the pyridine moiety, which takes place in the presence of titanium dioxide. Changes in pH during degradation indicate the formation of acidic intermediates and nitrate in addition to chloride. The effect of the initial substrate concentration was also investigated by monitoring the reaction of chloride generation as well as the degradation reaction of the pyridine moiety. It was found that degradation of the parent compound (2.5 mmol/dm3 by direct photolysis is completed in about 20 minutes, and of the pyridine moety by photocatalytic degradation in about nine hours. Based on the obtained data a possible reaction mechanism is proposed.

  4. Photocatalytic degradation of metoprolol by TiO

    NARCIS (Netherlands)

    Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H.H.M.

    2018-01-01

    The aim of this study was to evaluate the use of self-organized TiO2 nanotube arrays (TNAs) as immobilized catalyst and UV-LED as light source (UV-LED/TNAs) for photocatalytic degradation of the β-blocker metoprolol (MTP) from aqueous solution. Firstly we employed electrochemical anodization to

  5. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe{sub 2}O{sub 4}/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kahtani, Abdullah A. [Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451 (Saudi Arabia); Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Alkharj 11942 (Saudi Arabia); Abou Taleb, Manal F., E-mail: abutalib_m@yahoo.com [Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Alkharj 11942 (Saudi Arabia); Polymer Department National Center for Radiation Research and Technology, Nasr city, Cairo (Egypt)

    2016-05-15

    Highlights: • CS/CF/GONCs were synthesized via γ-irradiation and used as a heterogeneous photo-Fenton catalyst. • It can degrade Maxilon C.I. basic dye under sunlight irradiation. • A possible degradation pathway of Maxilon C.I. Basic was proposed. • The degradation of Maxilon follows pseudo-first-order kinetics. • The catalyst can be separated by an external magnetic field. • Cyclic degradation tests show the catalyst is highly active, stable and recoverable. - Abstract: CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H{sub 2}O{sub 2} concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10 mM H{sub 2}O{sub 2} at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal.

  6. Photochemical degradation of triazine herbicides - comparison of homogeneous and heterogeneous photocatalysis.

    Science.gov (United States)

    Klementova, Sarka; Zlamal, Martin

    2013-04-01

    Photochemical degradation of atrazine under different conditions was studied and compared, namely degradation via photocatalysis on TiO2, UV C photolysis, and homogeneous photocatalysis in the presence of added ferric ions. The reaction rate constants in heterogeneous photocatalytic reactions on TiO2 and of photolytic degradation by means of UV C light are similar, 0.018 min(-1) and 0.020 min(-1), respectively. The reaction rate constants in homogeneous photocatalytic reactions with Fe(III) added depend strongly on the Fe(III) concentration, 0.0017 min(-1) for 1.6 × 10(-6) mol l(-1) Fe(III) to 0.105 min(-1) for 3.3 × 10(-4) mol l(-1) Fe(III). In all types of reactions, dechlorination was observed; in homogeneous photocatalytic reactions and in UV C (250-300 nm) photolysis, dechlorination proceeds with a 1 : 1 stoichiometry to atrazine degradation, in photocatalytic reactions on TiO2, dechlorination measured as chloride ion release reaches only 1/5 of the substrate degradation. In photocatalytic reactions on TiO2, mineralisation of 40% carbon was observed.

  7. Heterogeneous Photocatalytic Oxidation of Atmospheric Trace Contaminants

    Science.gov (United States)

    Ollis, David F.

    1996-01-01

    Heterogeneous photocatalysis involves the use of a light-activated catalyst at room temperature in order to carry out a desired reaction. In the presence of molecular oxygen, illumination of the n-type semiconductor oxide titanium dioxide (TiO2) provides for production of highly active forms of oxygen, such as hydroxyl radicals, which are able to carry out the complete oxidative destruction of simple hydrocarbons such as methane, ethane, ethylene, propylene, and carbon monoxide. This broad oxidation potential, coupled with the ability with sufficient residence time to achieve complete oxidation of simple hydrocarbon contaminants to carbon dioxide and water, indicated that heterogeneous photocatalysis should be examined for its potential for purification of spacecraft air. If a successful catalyst and photoreactor could be demonstrated at the laboratory level, such results would allow consideration of photocatalysts as a partial or complete replacement of adsorption systems, thereby allowing for reduction in lift-off weight of a portion of the life support system for the spacecraft, or other related application such as a space station or a conventional commercial aircraft. The present research was undertaken to explore this potential through achievement of the following plan of work: (a) ascertain the intrinsic kinetics of conversion of pollutants of interest in spacecraft, (b) ascertain the expected lifetime of catalysts through examination of most likely routes of catalyst deactivation and regeneration (c) model and explore experimentally the low pressure drop catalytic monolith, a commercial configuration for automotive exhaust control (d) examine the kinetics of multicomponent conversions. In the recent course of this work, we have also discovered how to increase catalyst activity via halide promotion which has allowed us to achieve approximately 100% conversion of an aromatic contaminant (toluene) in a very short residence time of 5-6 milliseconds.

  8. Photocatalytic Degradation of Diethyl Phthalate with Surfactant Addition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tianyong; HU Juan; ZHANG Youlan; LI Bin; FEI Xuening

    2006-01-01

    This paper studies the adsorption of diethyl phthalate (DEP,an environmental hormone) on the surface of nanoscale TiO2, effects of pH value of solutions, initial concentrations of DEP and additive surfactant on photocatalytic degradation and dynamics of DEP. Under ultra violet illumination, the interaction between DEP and surfactants including DBS (sodium dodecylbenzenesulfonate), CTAB (cetyltrimethylammonium bromide), and OP-10 (nonylphenol polyoxyethylene ether)was exploited from the perspective of degradation speed calculated by the data of high pressure liquid chromatography (HPLC) and UV-Vis spectra, respectively. Photocatalytic degradation of DEP followed pseudo first-order reaction kinetics. DEP as substrate degraded fast when its initial concentration was 130 mg/L. TiO2 had certain adsorption ability of DEP. TiO2 could adsorb the most DEP at the approximately neutral pH of 6.91. Degradation of DEP was not affected obviously by ad ditives OP-10 and JBS. Degradation rate of DEP was not enhanced greatly in the presence of surfactants, but degradation of DBS was sped up. Degradation rate of DEP was depressed in the presence of additive CTAB. The more CTAB was added, the less DEP was degraded. Degradation rate of CTAB became slow with the increase of initial CTAB concentration. The possible adsorption models among TiO2, DEP and surfactants were given.

  9. Photocatalytic and photoelectrocatalytic degradation of the antibacterial agent ciprofloxacin.

    Science.gov (United States)

    Tantis, Iosif; Bousiakou, Leda; Karikas, George-Albert; Lianos, Panagiotis

    2015-03-01

    Photocatalytic and photoelectrocatalytic degradation of the antibacterial fluoroquinolone drug, ciprofloxacin, has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent electrodes. The degradation has been examined either in pure water or in the presence of NaOH or NaCl. Titania films can photocatalytically or photoelectrocatalytically degrade ciprofloxacin. In the presence of NaOH, the degradation rate was lower than in pure water and this is explained by the fact that at high pH values attraction of ciprofloxacin to the titania surface is discouraged. In the presence of NaCl, the degradation rate was the highest, thanks to Cl-based radicals which can be photocatalytically created by interacting with photogenerated holes. Application of a forward (anodic) bias increased the photodegradation rate in the presence of both electrolytes while a reverse (cathodic) bias decreased the photodegradation rate. Electrocatalytic effects, i.e. degradation of ciprofloxacin in the dark or in the absence of a photocatalyst under an applied bias of up to ±1.0 V vs. Ag/AgCl, were not detected in the case of NaOH and were of limited importance in the case of NaCl.

  10. Photocatalytic efficiency of iron oxides: Degradation of 4-chlorophenol

    Science.gov (United States)

    Bakardjieva, Snejana; Stengl, Vaclav; Subrt, Jan; Houskova, Vendula; Kalenda, Petr

    2007-05-01

    The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200 1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.

  11. Study on Photocatalytic Degradation of Endocrine Disrupting Compound

    Science.gov (United States)

    Pralhad Parihar, Bhagwan; Gupta, Smita; Chakraborty, Mousumi

    2017-07-01

    Propylparaben (PP) is catagorized as endocrine disrupting compounds and is found to be present in urban wastewater comparatively at high concentrations. In the present work, propylparaben was degraded photo-catalytically by optimizing different process parameters such as initial concentration of propylparaben (25mgL-1 to 100 mgL-1), pH of the feed phase and concentration of photocatalyst TiO2 (50 mgL-1 to 200 mgL-1). Finally PP degraded and converted to CO2 and H2O and the degradation was found to follow the first order kinetics.

  12. Photoassisted and photocatalytic degradation of sulfur mustard using TiO2 nanoparticles and polyoxometalates.

    Science.gov (United States)

    Naseri, Mohammad Taghi; Sarabadani, Mansour; Ashrafi, Davood; Saeidian, Hamdollah; Babri, Mehran

    2013-02-01

    The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO(2) nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33 ± 2 °C). Degradation products during the treatment were identified by gas chromatography-mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min(-1)), the highest degradation rate is obtained in the presence of TiO(2) nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO(2), in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO(2) nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination.

  13. Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tiele Caprioli, E-mail: tiele@enq.ufrgs.br [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil); Pizzolato, Tânia Mara [Chemical Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Arenzon, Alexandre [Ecology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Segalin, Jeferson [Biotechnology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Lansarin, Marla Azário [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil)

    2015-01-01

    Photocatalytic degradation of rosuvastatin, which is a drug that has been used to reduce blood cholesterol levels, was studied in this work employing ZnO as catalyst. The experiments were carried out in a temperature-controlled batch reactor that was irradiated with UV light. Preliminary the effects of the photocatalyst loading, the initial pH and the initial rosuvastatin concentration were evaluated. The experimental results showed that rosuvastatin degradation is primarily a photocatalytic process, with pseudo-first order kinetics. The byproducts that were generated during the oxidative process were identified using nano-ultra performance liquid chromatography tandem mass spectrometry (nano-UPLC–MS/MS) and acute toxicity tests using Daphnia magna were done to evaluate the toxicity of the untreated rosuvastatin solution and the reactor effluent. - Highlights: • The photocatalytic degradation of rosuvastatin was studied under UV irradiation. • Commercial catalyst ZnO was used. • Initial rosuvastatin concentration, photocatalyst loading and pH were evaluated. • The byproducts generated during the oxidative process were detected and identified. • Acute toxicity tests using Daphnia magna were carried out.

  14. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites.

    Science.gov (United States)

    Joo, Jin Chul; Ahn, Chang Hyuk; Jang, Dae Gyu; Yoon, Young Han; Kim, Jong Kyu; Campos, Luiza; Ahn, Hosang

    2013-12-15

    The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO2 to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO2 powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources.

  15. [Photocatalytic degradation of acetamiprid by TiO2 and Xe lamp: kinetics and degradation intermediates].

    Science.gov (United States)

    Zhou, Wen-Chang; Yang, Hai; Hu, Zhi-Bin; Lan, Shi-Lin

    2014-12-01

    Photocatalytic degradation kinetics of acetamiprid was studied by both of single-variable-at-a-time (SVAT) and central composite design (CCD) experiments based on four factors, such as catalyst dosages, substrate concentration, temperature and pH values. The results indicated that degradation of acetamiprid followed pseudo first-order kinetics by Langmuir-Hinshelwood model, increased with the increasing of temperature and the decreasing of substrate concentration. The photocatalytic degradation kinetic rate of acetamiprid was low in acid solutions, while high in weak acidic and alkaline solutions. After studying the synergistic effects of these four classic parameters, the optimal experiment conditions for photocatalytic degradation of acetamiprid were obtained as follows: TiO2 at 2.30 g x L(-1), initial acetamiprid concentration of 90.0 μmol x L(-1), temperature of 37.5 degrees C and pH value at 5.0. Lastly, 7 degradation intermediates of acetamiprid were detected during photocatalytic process by HPLC, and 6 of them exhibited more polar than the parent molecule.

  16. Photocatalytic degradation kinetics of Rhodamine B cata-lyzed by nanosized TiO2 film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A fixed bed photocatalytic reactor was designed, and dynamic fast scan of UV-Vis adsorption spectrum was adopted to study the photocatalytic degradation dynamic behavior of Rhodamine B, a kind of dye generally recognized as to be degraded difficultly, on the surface of nanosized TiO2 thin film. The results indicate that the photocatalytic degradation process of Rhodamine B does not comply with the first-order reaction kinetic process. As a result, a kinetic model of Rhodamine B photocatalytic degradation reaction is brought forward, and the model is proved by the theoretical deduction and experiment.

  17. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Brahiti, N., E-mail: dihiabrahiti@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique (CRTSE), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 Merveilles, Alger (Algeria); Université Mouloud MAMMERI de TiziOuzou, Département de Physique, Bastos (Algeria); Hadjersi, T., E-mail: hadjersi@gmx.com [Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique (CRTSE), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 Merveilles, Alger (Algeria); Menari, H. [Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique (CRTSE), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 Merveilles, Alger (Algeria); Amirouche, S.; El Kechai, O. [Université Mouloud MAMMERI de TiziOuzou, Département de Physique, Bastos (Algeria)

    2015-02-15

    Highlights: • SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. • Yield of photodegardation increases with UV irradiation time. • SiNWs modified with Pd nanoparticles show the best photocatalytic activity. • A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect of metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue.

  18. Photocatalytic degradation of the vinasse under solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Veronice S.; Fernandes Machado, Nadia R.C. [Departamento de Engenharia Quimica, Universidade Estadual de Maringa, Av. Colombo 5790, Bloco D-90, CEP 87020-900, Maringa, Parana (Brazil)

    2008-04-15

    The objective of this work was to evaluate the efficiency of the photocatalytic process in the vinasse treatment using solar radiation. The degradation tests were carried out during 5 days consecutive with solar irradiation from 8:00 a.m. to 17:00 p.m. TiO{sub 2}, Nb{sub 2}O{sub 5}-TiO{sub 2} and immobilized TiO{sub 2} in glass beads (TiO{sub 2}/beads) were used as photocatalysts. The characterization results showed that the catalysts presented distinct textural, structural and morphologic properties, conferring distinct photocatalytic behavior to them. The degradation results showed that photolysis was not efficient in the vinasse mineralization and that Nb{sub 2}O{sub 5}-TiO{sub 2} was the most photoactive material. TiO{sub 2}/beads presented activity higher than the suspended TiO{sub 2}, indicating a positive interaction between TiO{sub 2} and glass beads. The vinasse toxicity was evaluated using bioassays with Artemia saline and it verified significant reduction in the vinasse toxicity after photocatalytic treatment, mainly with Nb{sub 2}O{sub 5}-TiO{sub 2} and TiO{sub 2}/beads. Evidencing that photocatalysis under sunlight was efficient in the vinasse treatment and that the Nb{sub 2}O{sub 5}-TiO{sub 2} is an excellent option as photocatalyst. (author)

  19. Degradation of atrazine in soil through induced photocatalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    Pelizzetti, E. (Univ. di Parma (Italy)); Carlin, V.; Maurino, V.; Minero, C.; Dolci, M. (Univ. di Torino (Italy)); Marchesini, A. (Istituto Sperimentale per la Nutrizione delle Piante, Torino (Italy))

    1990-08-01

    The authors observed photocatalytic degradation of atrazine in the presence of semiconductor metal oxide particulates (TiO{sub 2}, ZnO) suspended in aqueous solution under simulated sunlight irradiation. The half-life for the process is ca. 5 and 80 min for TiO{sub 2} and ZnO, respectively (at an initial atrazine concentration of 25 mg/liter with 0.5 g of semiconductor per liter and with a photon flux of 3 {times} 10{sup {minus}5} einstein/min, and over a cell cross section of 4 cm{sup 2}). The authors investigated the catalytic activity of different soils. The weak photocatalytic activity of the soils (2 g/liter) is dramatically increased by the addition of 0.5 g of the semiconductor per liter. Half-lives are 10 to 40 minutes, depending on the nature of the soil.

  20. Unveiling New Degradation Intermediates/Pathways from the Photocatalytic Degradation of Microcystin-LR

    Science.gov (United States)

    This study focuses on the identification of reaction intermediates formed during the photocatalytic degradation of the cyanotoxin microcystin-LR with immobilized TiO2 Tphotocatalysts at neutral pH. To differentiate between impurities already existing in the MC-LR stand...

  1. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review

    Directory of Open Access Journals (Sweden)

    A. Gnanaprakasam

    2015-01-01

    Full Text Available This paper aims to review the recent works on the photocatalytic degradation of organic pollutants in the presence of nanophotocatalyst. In this regard the effects of operation parameters which could influence the photocatalytic degradation of organic pollutants (such as catalyst preparation method, initial concentration of organic pollutants, presence of doping, catalyst loading, calcinations temperature, pH, presence of oxidants, UV intensity, temperature, and presence of supports are discussed. Recent research suggests that the parameters mentioned above have great influence on the photocatalytic activity of prepared nanocatalyst. Also, the general mechanism of photocatalytic degradation and some recent synthesis methods are discussed here.

  2. Photocatalytic degradation and reactor modeling of 17α-ethynylestradiol employing titanium dioxide-incorporated foam concrete.

    Science.gov (United States)

    Wang, Yuming; Li, Yi; Zhang, Wenlong; Wang, Qing; Wang, Dawei

    2015-03-01

    Photocatalytic degradation of 17α-ethynylestradiol (EE2) using TiO2 photocatalysts incorporated with foam concrete (TiO2/FC) was investigated for the first time. Scanning electron microscopy (SEM) study of the samples revealed a narrow air void size distribution on the surface of FC cubes on with 5 wt% addition of P25 TiO2, and TiO2 particles were distributed heterogeneously on the surface of TiO2/FC samples. The sorption and photocatalytic degradation of EE2 with UV-light irradiation by TiO2/FC cubes were investigated. Adsorption capacity of EE2 by the TiO2/FC and blank foam concrete (FC) samples were similar, while the degradation rates showed a great difference. More than 50 % of EE2 was removed by TiO2/FC within 3.5 h, compared with 5 % by blank FC. The EE2 removal process was then studied in a photoreactor modified from ultraviolet disinfection pool and constructed with TiO2/FC materials. An integrated model including a plate adsorption-scattering model and a modified flow diffusion model was established to simulate the photocatalytic degradation process with different radiation fields, contaminant load, and flow velocity. A satisfactory agreement was observed between the model simulations and experimental results, showing a potential for the design and scale-up of the modified photocatalytic reactor.

  3. Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways.

    Science.gov (United States)

    Xia, Shengjie; Zhang, Lianyang; Pan, Guoxiang; Qian, Pingping; Ni, Zheming

    2015-02-21

    Three different composites, including a calcined FeOOH supported ZnAl layered double hydroxide (FeOOH-LDO), a calcined ZnAl layered double hydroxide (ZnAl-LDO) and a calcined ZnFeAl layered double hydroxide (ZnFeAl-LDO), were synthesized via a sol-gel method, and their activity for the visible light photocatalytic degradation of methylene blue (MB) was studied. The composites were characterized by PXRD, SEM, and BET techniques, confirming the formation of highly crystalline structures. The activity performance of MB degradation was in the following order: FeOOH-LDO (∼95%) > ZnFeAl-LDO (∼60%) > ZnAl-LDO (∼23%). In addition, a possible photocatalytic degradation reaction mechanism for MB was also proposed. Moreover, the frontier electron densities on the atoms of MB were calculated, which were in satisfactory agreement with the postulated mechanism.

  4. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Guerra, J; García-Peña, F; Coca, P

    2008-03-01

    The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.

  5. [BiOBr promoted the photocatalytic degradation of beta-cypermethrin under visible light].

    Science.gov (United States)

    Peng, Yi-Zhu; Zhao, Xiao-Rong; Jia, Man-Ke; Zhou, Wei; Huang, Ying-Ping

    2014-05-01

    As a visible light photocatalyst, bismuth oxide bromide (BiOBr) was used to catalyze the degradation of beta-cypermethrin (beta-CP). The photocatalytic degradation of beta-CP was studied with gas chromatography. The effects of pH and catalyst dose on the photocatalytic degradation efficiency were discussed. The oxidization and mineralization of beta-CP were detected by chemical oxygen demand (COD) analyzer. The results showed that beta-CP could be effectively degraded under visible light irradiation using BiOBr as the catalyst. At given experimental conditions, the degradation rate of beta-CP reached 94. 68% after 10 h and the COD removal rate reached 67. 99% after 36 h. With the increase of catalyst dose and pH value, the degradation rate was improved. The photocatalytic oxidation species was determined by peroxidase method and terephthalic acid fluorescence method. These results suggested that the photocatalytic degradation process mainly referred to hydroxyl radical ( OH) mechanism.

  6. UV/TiO2 photocatalytic degradation of xanthene dyes.

    Science.gov (United States)

    Pereira, Luciana; Pereira, Raquel; Oliveira, Catarina S; Apostol, Laura; Gavrilescu, Mariana; Pons, Marie-Noëlle; Zahraa, Orfan; Alves, Maria Madalena

    2013-01-01

    UV/titanium dioxide (TiO(2)) degradation of two xanthene dyes, erythrosine B (Ery) and eosin Y (Eos), was studied in a photocatalytic reactor. Photocatalysis was able to degrade 98% of Ery and 73% of Eos and led to 65% of chemical oxygen demand removal. Experiments in buffered solutions at different initial pH values reveal the pH dependence of the process, with better results obtained under acidic conditions due to the electrostatic attraction caused by the opposite charges of TiO(2) (positive) and of anionic dyes (negative). Batch activity tests under methanogenic conditions showed the high toxicity exerted by the dyes even at low concentrations (~85% with initial concentration of 0.3 mmol L(-1)), but the end products of photocatalytic treatment were much less toxic toward methanogenic bacteria, as detoxification of 85 ± 5% for Eos and 64 ± 7% for Ery were obtained. In contrast, the dyes had no inhibitory effect on the biogenic-carbon biodegradation activity of aerobic biomass, obtained by respirometry. The results demonstrate that photocatalysis combining UV/TiO(2) as a pretreatment followed by an anaerobic biological process may be promising for the treatment of wastewaters produced by many industries.

  7. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jin Chul; Ahn, Chang Hyuk; Jang, Dae Gyu; Yoon, Young Han [Korea Institute of Construction Technology, Water Resource and Environment Research Department (Korea, Republic of); Kim, Jong Kyu; Campos, Luiza [University College London, Department of Civil, Environmental, and Geomatic Engineering (United Kingdom); Ahn, Hosang, E-mail: hahn@kict.re.kr [Korea Institute of Construction Technology, Water Resource and Environment Research Department (Korea, Republic of)

    2013-12-15

    Highlights: • Stable nano-ZnO/Laponite composites (NZLc) as an alternative to TiO{sub 2} were produced. • Nanoscale ZnO complexed with NZLc was found to be an effective photocatalyst. • TCE removal efficiency of NZLc was greater than that of bare nanoscale ZnO. • Nanoscale ZnO-mediated photodegradation varied with experimental conditions. • Developed NZLc overcame drawbacks (e.g., filtration and recovery of photocatalysts). -- Abstract: The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO{sub 2} to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO{sub 2} powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources.

  8. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    Science.gov (United States)

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time.

  9. Solar photocatalytic degradation and detoxification of EU priority substances

    Energy Technology Data Exchange (ETDEWEB)

    Hincapie, M. [Facultad de Ingeniera Ambiental, Universidad de Medellin, Carrera 87 No. 30-65, P.O. Box 1983, Medellin (Colombia); Maldonado, M.I.; Oller, I.; Gernjak, W.; Malato, S. [Plataforma Solar de Almeria-CIEMAT, Carretera Senes km4, 04200 Tabernas (Almeria) (Spain); Sanchez-Perez, J.A.; Ballesteros, M.M. [Departamento de Ingenieria Quimica, Universidad de Almeria Crta de Sacramento s/n, 04120 Almeria (Spain)

    2005-04-15

    Several different pesticides (alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol) considered PS (priority substances) by the European Commission and dissolved in water at 50mg/L (or at maximum water solubility) have been degraded at pilot-plant scale using photo-Fenton and TiO{sub 2} photocatalysis driven by solar energy. Two different iron concentrations (2 and 55mg/L) and TiO{sub 2} at 200mg/L have been tested and discussed, using mainly TOC mineralisation for comparison of treatment effectiveness. Vibrio fischeri (Microtox{sup (}R)) toxicity assays were also employed for evaluating the photocatalytic treatments, and comparison between these results and parent compound disappearance, TOC evolution and anion (or ammonia) release were discussed. Almost complete mineralisation and total detoxification were always attained. It has been demonstrated that evolution of chloride could be a key-parameter for predicting toxicity of chlorinated compounds.

  10. Photocatalytic degradation of bacteriophages evidenced by atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Emrecan Soylemez

    Full Text Available Methods to supply fresh water are becoming increasingly critical as the world population continues to grow. Small-diameter hazardous microbes such as viruses (20-100 nm diameter can be filtered by size exclusion, but in this approach the filters are fouled. Thus, in our research, we are investigating an approach in which filters will be reusable. When exposed to ultraviolet (UV illumination, titanate materials photocatalytically evolve (•OH and O2(•- radicals, which attack biological materials. In the proposed approach, titanate nanosheets are deposited on a substrate. Viruses adsorb on these nanosheets and degrade when exposed to UV light. Using atomic force microscopy (AFM, we image adsorbed viruses and demonstrate that they are removed by UV illumination in the presence of the nanosheets, but not in their absence.

  11. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Wan-Kuen Jo; Rajesh J.Tayade

    2014-01-01

    Light emitting diodes (LEDs) are gaining recognition as a convenient and energy-efficient light source for photocatalytic application. This review focuses on recent progress in the research and development of the degradation of dyes in water under LED light irradiation and provides a brief overview of photocatalysis, details of the LEDs commonly employed, a discussion of the advantages of LEDs over traditional ultraviolet sources and their application to photocatalytic dye degradation. We also discuss the experimental conditions used, the reported mechanisms of dye degradation and the various photocatalytic reactor designs and pay attention to the different types of LEDs used, and their power consumption. Based on a literature survey, the feasibility, benefits, limitations, and future prospects of LEDs for use in photocatalytic dye degradation are discussed in detail.

  12. PHOTOCATALYTIC DEGRADATION OF WASTE WATER ON. THIN FILMS OF TiO2

    Institute of Scientific and Technical Information of China (English)

    Wu Zhenghuang

    2001-01-01

    The degradation of organic phosphorous pesticide waste water using thin films of TiO2, which was prepared in an atmospheric vertical chemical vapor deposition system, was studied. The results show that the wafer material for coating TiO2, the photocatalytic time, the TiO2 crystal phase, the pH value and the concentration of pesticides in waste water influence the degradation rate. These facts indicate some potential for photocatalytic treatment of waste water by utilizing sunlight.

  13. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange

    OpenAIRE

    Basahel, Sulaiman N; Ali, Tarek T; Mokhtar, Mohamed; Narasimharao, Katabathini

    2015-01-01

    Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light ...

  14. Photocatalytic Degradation of Methylene Blue using ZnO Nano-Particles

    OpenAIRE

    Rezaee, A.; H Masombaigi; Nasiri, A

    2009-01-01

    "nBackgrounds and Objectives: Textile industrial wastewaters are one of the important sources of environmental contaminants. In the recent years, use of advanced oxidation processes, by producing highly active and reactive components such as hydroxyl radicals has been proposed. The aim of this research is photocatalytic degradation of methylene blue dye using the ZnO-nanoparticle with UVA irradiation. "nMaterials and Methods: photocatalytic degradation of methylene blue color using the ZnO- n...

  15. Surface modification of nanometer size TiO{sub 2} with salicylic acid for photocatalytic degradation of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunxing [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China) and State Key Lab for Marine Environment, Xiamen University, Xiamen 361005 (China)]. E-mail: lishunxing@fjzs.edu.cn; Zheng Fengying [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); Cai Wenlian [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); Han Aiqin [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); Xie Yukune [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); State Key Lab for Marine Environment, Xiamen University, Xiamen 361005 (China)

    2006-07-31

    The efficiency of photocatalytic reactions was limited by the wide band-gap of TiO{sub 2} and the high degree of electron-hole recombination inherent in photocatalytic process, as well as by the limited adsorption capability of photocatalysts. In order to increase the overall efficiency, the surface of nanometer size TiO{sub 2} was simply and fast modified by chemical adsorption in saturated solution of salicylic acid. A stable, light yellow surface complex was formed quickly, which has obvious absorption in the region from 320 to 420 nm. Through surface modification, the adsorption efficiency of 4-nitrophenol by TiO{sub 2} was enhanced from 42 to 84%. The photocatalytic efficiency was tested on the degradation of 4-nitrophenol. The influences of catalyst and its dosage, pH value, and 4-nitrophenol concentration on the degradation were investigated. Under such photodegradation conditions as initial pH 4.0, 4-nitrophenol 5 mg l{sup -1}, catalyst 100 mg, and irradiation time 160 min with 160 W high-pressure mercury lamp, the degradation efficiency of 4-nitrophenol by TiO{sub 2} was increased from 39.5 to 79.3% after surface modification, and furthermore, the degradation efficiency could be enhanced to 91.1% if the concentration of 4-nitrophenol was not more than 1 mg l{sup -1}. Compared with the pure TiO{sub 2}, surface modification led not only to improve the surface coverage of 4-nitrophenol, but also to increase the light utilization. Both of these factors were crucial for the photocatalytic activity of heterogeneous photocatalysis, especially for photodegradation of aromatic pollutants.

  16. [Degradation of BPA in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation].

    Science.gov (United States)

    Li, Cong; Gao, Nai-Yun; Zhang, Ke-Jia

    2009-03-15

    The degradation of bispehnol A (BPA) in aqueous suspension by interaction of photocatalytic oxidation and ferrate (VI) oxidation was investigated under different conditions. The results indicate that the formation of Fe (V) and Fe (IV) is in the photoreduction of Fe (VI) by electron (e(cb)-) on the surface of TiO2. The oxidation efficiency of the photocatalytic oxidation in the presence of Fe (VI) is much greater than that without Fe (VI). In addition, the decomposition of Fe (VI) under different conditions was also investigated. The results indicate that the Fe (VI) reduction is enhanced by photocatalytic oxidation and the adsorption capacity of Fe (VI) at TiO2 surface decreases with pH increase. When the photocatalytic oxidation is used to degrade BPA, Fe (VI) could increase the degradation rate about 2.5 times.

  17. Photocatalytic Degradation of Phenol Using a Nanocatalyst: The Mechanism and Kinetics

    Directory of Open Access Journals (Sweden)

    Y. Tao

    2013-01-01

    Full Text Available The study of photocatalytic degradation of phenol was exploited with nano-ZnO as immobilized photocatalysts in a laboratory scale photocatalytic reactor. The photocatalytic degradation mechanism and kinetics of phenol in water were studied using the solid-phase microextraction (SPME technique. Based on optimized headspace SPME conditions, phenol in water was first extracted by the fibre, which was subsequently inserted into an aqueous system with immobilized photocatalysts (nano-ZnO exposed to an irradiation source (i.e., ultraviolet A (UVA lamps. After different irradiation times (5–80 min, four main intermediates of photocatalytic degradation generated on the fibre were determined by GC-MS.

  18. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  19. Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation.

    Science.gov (United States)

    Al-Kahtani, Abdullah A; Abou Taleb, Manal F

    2016-05-15

    CS/CF/GONCs were synthesized via gamma irradiation cross-linking method with the aid of sonication. The nanocomposites exhibited a photo-Fenton catalytic feature for the degradation of Maxilon C.I. basic dye in aqueous medium using sunlight. The effects of pH, H2O2 concentration, and dosage of the catalyst, on the degradation rates of the dyes were examined. The optimal degradation rate was reached with 10mM H2O2 at pH 9.5. It was verified that the Maxilon C.I. basic dye degradation rate fits a pseudo-first-order kinetics for different initial concentrations of Maxilon C.I. dye. Fourth cyclic tests for Maxilon C.I. degradation showed that the magnetic catalyst was very stable, recoverable, highly active, and easy to separate using an external magnet. Hence, this magnetic catalyst has potential use in organic pollutant removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate.

    Science.gov (United States)

    Fukuzumi, Shunichi; Jung, Jieun; Yamada, Yusuke; Kojima, Takahiko; Nam, Wonwoo

    2016-04-20

    Photocatalytic water oxidation by persulfate (Na2 S2 O8 ) with [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a photocatalyst provides a standard protocol to study the catalytic reactivity of water oxidation catalysts. The yield of evolved oxygen per persulfate is regarded as a good index for the catalytic reactivity because the oxidation of bpy of [Ru(bpy)3 ](2+) and organic ligands of catalysts competes with the catalytic water oxidation. A variety of metal complexes act as catalysts in the photocatalytic water oxidation by persulfate with [Ru(bpy)3 ](2+) as a photocatalyst. Herein, the catalytic mechanisms are discussed for homogeneous water oxidation catalysis. Some metal complexes are converted to metal oxide or hydroxide nanoparticles during the photocatalytic water oxidation by persulfate, acting as precursors for the actual catalysts. The catalytic reactivity of various metal oxides is compared based on the yield of evolved oxygen and turnover frequency. A heteropolynuclear cyanide complex is the best catalyst reported so far for the photocatalytic water oxidation by persulfate and [Ru(bpy)3 ](2+) , affording 100 % yield of O2 per persulfate.

  1. Photocatalytic degradation of benzenesulfonate on colloidal titanium dioxide.

    Science.gov (United States)

    Szabó-Bárdos, Erzsébet; Markovics, Otília; Horváth, Ottó; Töro, Norbert; Kiss, Gyula

    2011-02-01

    Titanium dioxide-mediated photocatalyzed degradation of benzenesulfonate (BS) was investigated by monitoring chemical oxygen demand (COD), total organic carbon (TOC) content, sulfate concentration, pH as well as the absorption and emission spectral changes in both argon-saturated and aerated systems. Liquid chromatography-mass spectrometry analysis was utilized for the detection of intermediates formed during the irradiation in the UVA range (λ(max) = 350 nm). The results obtained by these analytical techniques indicate that the initial step of degradation is hydroxylation of the starting surfactant, resulting in the production of hydroxy- and dihydroxybenzenesulfonates. These reactions were accompanied by desulfonation, which increases [H(+)] in both argon-saturated and aerated systems. In accordance with our previous theoretical calculations, the formation of ortho- and meta-hydroxylated derivatives is favored in the first step. The main product of the further oxygenation of these derivatives was 2,5-dihydroxy-benzesulfonate. No decay of the hydroxy species occurred during the 8-h irradiation in the absence of dissolved oxygen. In the aerated system much more efficient desulfonation and hydroxylation, moreover, a significant decrease of TOC took place at the initial stage. Further hydroxylation led to cleavage of the aromatic system, due to the formation of polyhydroxy derivatives, followed by ring fission, resulting in the production of aldehydes and carboxylic acids. Total mineralization was achieved by the end of the 8-h photocatalysis. It has been proved that in this photocatalytic procedure the presence of dissolved oxygen is necessary for the cleavage of the aromatic ring because hydroxyl radicals photochemically formed in the deaerated system too alone are not able to break the C-C bonds.

  2. Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water: Multifactorial determination of significant factors.

    Science.gov (United States)

    Leshuk, Tim; de Oliveira Livera, Diogo; Peru, Kerry M; Headley, John V; Vijayaraghavan, Sucharita; Wong, Timothy; Gu, Frank

    2016-12-01

    Oil sands process-affected water (OSPW) is generated as a byproduct of bitumen extraction in Canada's oil sands. Due to the water's toxicity, associated with dissolved acid extractable organics (AEO), especially naphthenic acids (NAs), along with base-neutral organics, OSPW may require treatment to enable safe discharge to the environment. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, predicting treatment efficacy can be challenging due to the unique water chemistry of OSPW from different tailings ponds. The objective of this work was to study various factors affecting the kinetics of photocatalytic AEO degradation in OSPW. The rate of photocatalytic treatment varied significantly in two different OSPW sources, which could not be accounted for by differences in AEO composition, as studied by high resolution mass spectrometry (HRMS). The effects of inorganic water constituents were investigated using factorial and response surface experiments, which revealed that hydroxyl (HO) radical scavenging by iron (Fe(3+)) and bicarbonate (HCO3(-)) inhibited the NA degradation rate. The effects of NA concentration and temperature on the treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood and Arrhenius models; pH and temperature were identified as weak factors, while dissolved oxygen (DO) was critical to the photo-oxidation reaction. Accounting for all of these variables, a general empirical kinetic expression is proposed, enabling prediction of photocatalytic treatment performance in diverse sources of OSPW.

  3. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    OpenAIRE

    I. Abdul Rahman; Ayob, M. T. M.; Radiman, S.

    2014-01-01

    ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation ...

  4. The Comparison of Photocatalytic Degradation and Decolorization Processes of Dyeing Effluents

    Directory of Open Access Journals (Sweden)

    Ewa Adamek

    2013-01-01

    Full Text Available Treatment of dye effluents resulting from the industrial scale dyeing of cotton, polyacrylic fibres, leather, and flax fabrics by photocatalytic methods was investigated. Photocatalytic processes were initiated by UV-a light (λmax 366 nm and were conducted in the presence of TiO2, TiO2/FeCl3, or FeCl3 as photocatalysts. It was found that the photocatalytic process carried out with TiO2 and TiO2/FeCl3 was the most effective method for decolorization of textile dyeing effluents and degradation of dyes, except for effluents containing very high concentrations of stable azo dyes. During the photocatalytic degradation of anionic dyes, a mixture of TiO2/FeCl3 was more effective, while in the case of cationic dyes, more suitable seems to be TiO2 alone.

  5. Adsorption and photocatalytic degradation of phenol over TiO2/ACF

    Institute of Scientific and Technical Information of China (English)

    樊彩梅; 闵延琴; 郝晓刚; 孙彦平; 李新军; 李芳柏

    2003-01-01

    The adsorption and photocatalytic degradation of phenol in water were investigated in a cylindrical borosilicon glass photoreactor with a cooling water jacket using TiO2/ACF as photocatalyst. A 15W UV lamp(254nm) was used as central light source. The effects of the temperature and initial concentration of phenol solution on adsorption and photocatalytic process were studied, and the comparison of adsorption, photolysis and photocatalysis was conducted. The results show that the classical model of Langmuir gives a good description of the adsorption of phenol on TiO2/ACF and low temperature can improve the adsorption of phenol on photocatalyst; increasing temperature can increase the photocatalytic degradation rate of phenol; and the adsorption enhances the photocatalytic removal of phenol.

  6. Optimized photocatalytic degradation of pefloxacin by TiO2/UV process

    Science.gov (United States)

    Zhang, C.-L.; Cui, S.-J.; Wang, Y.

    2016-11-01

    The photocatalytic degradation of pefloxacin was studied using modified TiO2 as a photocatalyst. The effect of various parameters such as the amount of the photocatalyst, the initial concentration of pefloxacin, initial pH value on the process were investigated, and the optimal conditions were determined. The optimal amount of the photocatalyst is 0.3 g/L. The photodegradation rate of pefloxacin decreases with the increase of initial concentration. Alkaline medium is favorable for the photocatalytic degradation process. The primary photo-degradation products were analyzed by HPLC-ESI-MS/MS and thus the process mechanism was discussed.

  7. Preparation of bismuth titanate/calcium alginate composite bead and its photocatalytic degradation of dye pollutants

    Science.gov (United States)

    Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia

    2017-08-01

    In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.

  8. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    Science.gov (United States)

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO2) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO2 to AE was higher than that of pure TiO2, and the optimal V dopant content of TiO2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO2 to NOx and HC were higher than those to CO2 and CO in AE because of the reversible reaction between CO2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO2 to each component in AE were also increased under visible light irradiation. The V-doped TiO2 also showed higher degradation efficiencies to NOx and HC than those to CO2 and CO under visible light irradiation. The V doped TiO2 presented higher photocatalytic activity to CO2 than that to CO, but the reversible reaction between CO and CO2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO2 to AE for air purification, developing a sustainable environmental purification technology based on TiO2 materials.

  9. Anatase TiO{sub 2} hierarchical nanospheres with enhanced photocatalytic activity for degrading methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Liqin; Xu, Wence [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Zhu, Shengli, E-mail: slzhu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072 (China); Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072 (China); Inoue, Akihisa [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); International Institute of Green Materials, Josai International University, Togane, 283-8555 (Japan)

    2016-02-15

    Anatase TiO{sub 2} hierarchical nanospheres were synthesized through a simple way combining dealloying and hydrothermal methods. The photocatalytic activity of the obtained products and Degussa P25 were evaluated by the degradation of methyl orange (MO) aqueous solution at different initial pH values and concentrations. The anatase TiO{sub 2} hierarchical nanospheres exhibited excellent photocatalytic activity for the degradation of methyl orange under ultraviolet–visible light irradiation. The photocatalytic efficiency of the anatase TiO{sub 2} increased with the decrease of pH at first then decreased and it also decreased with the increase of MO concentration. The superior photocatalytic performance of anatase TiO{sub 2} hierarchical nanospheres is attributed to its crystal phase, microstructure, and particularly surface acidity. The enhancement of surface acidity reduces the electron–hole pair recombination, and further increases the photocatalytic efficiency. - Highlights: • Anatase TiO{sub 2} nanospheres was prepared by chemical dealloying method. • The anatase TiO{sub 2} nanospheres exhibited good photocatalytic activity. • Sulfate ions adsorbed on TiO{sub 2} was beneficial for the photocatalytic performance.

  10. Photocatalytic degradation of hexazinone and its determination in water via UPLC-MS/MS.

    Science.gov (United States)

    Mei, Mei; Du, Zhenxia; Xu, Ruifen; Chen, Yun; Zhang, Haojie; Qu, Shuping

    2012-06-30

    Degradation of hexazinone has been investigated by means of photocatalysis of mixed-phase crystal nano-TiO(2). Influences of adsorption, amount of nano-TiO(2), pH and irradiation time on the photocatalytic process are studied. Results show that hexazinone is totally degraded within 40min of irradiation under pH neutral conditions. This compares favorably with Degussa P25 TiO(2) when conducted under the same experimental conditions. Preliminary photocatalytic kinetic information for hexazinone degradation is proposed. First order kinetics is obtained for the adsorption and photocatalytic degradation reactions, which fit the Langmuir-Hinshelwood model. A rapid, sensitive and accurate UPLC-MS/MS technique is developed and utilized to determine the level of hexazinone in water in support of the degradation kinetics study. The results indicate a limit of detection (LOD) at 0.05μg/l and the recoveries between 90.2 and 98.5% with relative standard deviations (RSD) lower than 12%. A LC-MS/MS technique is used to trace the degradation process. Complete degradation is achieved into final products including nontoxic water, carbon dioxide and urea. A probable pathway for the total photocatalytic degradation of hexazinone is proposed.

  11. Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B

    NARCIS (Netherlands)

    Rasalingam, S; Kibombo, H.S.; Wu, C.M.; Budhi, S.; Peng, R.; Baltrusaitis, J.; Koodali, R.T.

    2013-01-01

    The influence of Ti–O–Si hetero-linkages in the degradation of Rhodamine B (RhB) dye over TiO2–SiO2 xerogels is exemplified by XPS analysis. We demonstrate a relationship between the percentage surface content of Ti–O–Si and the rate of photocatalytic degradation of RhB. Our detailed surface investi

  12. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping [Research Center of Combustion and Environmental Technology, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Liu, Zhenyan [Research Center of Combustion and Environmental Technology, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)]. E-mail: yanglp@sjtu.edu.cn

    2007-03-15

    The light intensity, one of the most important factors for photocatalysis, directly influences the photocatalytic reaction rate and the utilization ratio of energy. Its rational selection has vital significance for saving energy. In the present paper, light energy losses in the heterogeneous photocatalysis process were analyzed. A method was presented to determine appropriate light intensities for the photocatalytic degradation of indoor gaseous volatile organic compounds (VOCs) based on the degradation mechanism. For simplifying the method, an excess coefficient of light intensity was defined based on the assumption of complete utilization of excited electron-hole pairs. The excess coefficients and the appropriate light intensities for degrading formaldehyde were determined according to the data from a titania-coated glass plate reactor and a titania-coated reticular foam nickel reactor. The results showed that the derived light intensities according to our method were appropriate. Good degradation performance and high utilization ratio of light energy can be attained simultaneously when the excess coefficient was 1.3-1.5 for formaldehyde with the concentration from 20.45 {mu}mol/m{sup 3} (0.5 ppm) to 81.8 {mu}mol/m{sup 3} (2 ppm), which is the concentration range of formaldehyde in 'sick buildings'.

  13. Photocatalytic degradation of pentachlorophenol by visible light Ν-F-TiO₂ in the presence of oxalate ions: optimization, modeling, and scavenging studies.

    Science.gov (United States)

    Antonopoulou, M; Konstantinou, I

    2015-06-01

    The efficiency of heterogeneous photocatalysis using N-F-TiO2 as photocatalyst to degrade a priority pollutant, pentachlorophenol (PCP), in the presence of oxalates (OA) was investigated in detail. Response surface methodology was used to optimize the effect of three variables (catalyst concentration, OA/PCP ratio, and pH) on the photocatalytic degradation of pentachlorophenol. A quadratic model was established as a functional relationship between three independent variables and the degradation efficiency of PCP. The results of model fitting and statistical analysis demonstrated that the pH played a key role in the degradation of PCP. Within the studied experimental ranges, the optimum conditions for maximum PCP degradation efficiency (97.5 %) were: catalyst concentration 600 mg L(-1), OA/PCP ratio 2, and pH 10. The contribution of HO(·), O2 (·-), and e(-) produced during the photocatalytic treatment was investigated with the addition of scavengers. The photocatalytic degradation was essentially proceeded through an oxidative mechanism at both acid and alkaline pH values by HO(.) and O2 (·-) radicals attack. It was found that O2 (·-) were the major reactive species involved in PCP degradation in pH 4 and HO(·) in pH 10.

  14. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Patsoura, Alexia; Kondarides, Dimitris I.; Verykios, Xenophon E. [Department of Chemical Engineering, University of Patras, GR-26504 Patras (Greece)

    2007-06-30

    The photocatalytic degradation of a number of organic compounds in solution, including alcohols and organic acids, has been investigated under unaerated conditions with the use of Pt/TiO{sub 2} photocatalyst and solar or UV irradiation. It has been found that production of CO{sub 2} is in all cases accompanied by evolution of hydrogen, the production rate of which is significantly enhanced, compared with that obtained in the absence of organic additives in solution. Results are explained by considering that organic compounds act as sacrificial electron donors, which become progressively oxidized toward CO{sub 2} by consuming photogenerated holes and/or oxygen. This results in decreased rates of electron-hole recombination and oxygen-hydrogen back reaction and, concomitantly, in increased H{sub 2}-production rates. The rate of photoinduced hydrogen production depends strongly on the concentration of the sacrificial agent employed and to a lesser extent on solution pH and temperature. When complete mineralization of the sacrificial agent is achieved, photogenerated oxygen can no longer be removed from the photocatalyst surface and the H{sub 2}-production rate drops to steady-state values, comparable to those obtained in the absence of the organic compound in solution. The amounts of carbon dioxide and 'additional' hydrogen produced depend on the nature of the organic additive and are directly proportional to its initial concentration in solution. Quantification of results shows that the overall process may be described as 'photoinduced reforming of organic compounds at room temperature'. It is concluded that mineralization of organic pollutants such as alcohols and organic acids, which are common waste products of biomass processing industries, can be achieved with simultaneous production of H{sub 2} fuel. The process may provide an efficient and cost effective method for cleaning up waste streams. (author)

  15. Photocatalytic degradation of polystyrene plastic under fluorescent light.

    Science.gov (United States)

    Shang, Jing; Chai, Ming; Zhu, Yongfa

    2003-10-01

    Plastic is used widely all over the world, due to the fact that it is low cost, is easily processable, and has lightweight properties. However, the hazard of discarding waste plastic, so-called "white pollution", is becoming more and more severe. In this paper, solid-phase photocatalytic degradation of polystyrene (PS) plastic, one of the most common commercial plastics, over copper phthalocyanine (CuPc) sensitized TiO2 photocatalyst (TiO2/CuPc) has been investigated under fluorescent light irradiation in the air. UV-vis spectra show that TiO2/CuPc extends its photoresponse range to visible light, contrasting to only UV light absorption of pure TiO2. The PS photodegradation experiments exhibit that higher PS weight loss rate, lower PS average molecular weight, less amount of volatile organic compounds, and more CO2 can be obtained in the system of PS-(TiO2/CuPc), in comparison with the PS-TiO2 system. Therefore, PS photodegradation over TiO2 CuPc composite is more complete and efficient than over pure TiO2, suggesting the potential application of dye-sensitized TiO2 catalyst in the thorough photodegradation of PS plastic under fluorescent light. During the photodegradation of PS plastic, the reactive oxygen species generated on TiO2 or TiO2/CuPc particle surfaces play important roles in chain scission. The present study demonstrates that the combination of polymer plastic with dye-sensitized TiO2 catalyst in the form of thin film is a practical and useful way to photodegrade plastic contaminants in the sunlight.

  16. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.

    Science.gov (United States)

    Liu, Xianhua; Yang, Yulou; Shi, Xiaoxuan; Li, Kexun

    2015-01-01

    This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation.

    Science.gov (United States)

    Sojić, Daniela V; Despotović, Vesna N; Abazović, Nadica D; Comor, Mirjana I; Abramović, Biljana F

    2010-07-15

    The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light (lambda > or = 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO(2) (rutile/anatase) and of the most frequently used TiO(2) Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results. The results indicate that the efficiency of photocatalytic degradation is greatly influenced by the molecular structure of the compound. Lowering of the band gap of titanium dioxide by doping is not always favorable for increasing photocatalytic efficiency of degradation.

  18. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sojic, Daniela V., E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Despotovic, Vesna N., E-mail: vesna.despotovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Abazovic, Nadica D., E-mail: kiki@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Comor, Mirjana I., E-mail: mirjanac@vinca.rs [Vinca Institute of Nuclear Sciences, 11001 Beograd, PO Box 522 (Serbia); Abramovic, Biljana F., E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2010-07-15

    The aim of this work was to study the efficiency of Fe- and N-doped titania suspensions in the photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop, MCPP), (4-chloro-2-methylphenoxy)acetic acid (MCPA), and 3,6-dichloropyridine-2-carboxylic acid (clopyralid, CP) under the visible light ({lambda} {>=} 400 nm) irradiation. The obtained results were compared with those of the corresponding undoped TiO{sub 2} (rutile/anatase) and of the most frequently used TiO{sub 2} Degussa P25. Computational modeling procedures were used to optimize geometry and molecular electrostatic potentials of MCPP, MCPA and CP and discuss the obtained results. The results indicate that the efficiency of photocatalytic degradation is greatly influenced by the molecular structure of the compound. Lowering of the band gap of titanium dioxide by doping is not always favorable for increasing photocatalytic efficiency of degradation.

  19. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianhua, E-mail: lxh@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072 (China); Yang, Yulou; Shi, Xiaoxuan [School of Environmental Science and Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072 (China); Li, Kexun, E-mail: likx@nankai.edu.cn [School of Environmental Science and Engineering, Nankai University, Tianjin 300074 (China)

    2015-02-11

    Highlights: • Photocatalytic oxidation of methylene blue was studied under laser light irradiation. • Fast removal of methylene blue from aqueous solution was achieved. • The photocatalyst Ag/AgCl is efficient and stable under 443 nm laser light irritation. • Diode laser is a good light source for photocatalytic degradation of dyes. - Abstract: This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles)

  20. UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics.

    Science.gov (United States)

    Basha, Shaik; Keane, David; Nolan, Kieran; Oelgemöller, Michael; Lawler, Jenny; Tobin, John M; Morrissey, Anne

    2015-02-01

    Nanostructured titania supported on activated carbon (AC), termed as integrated photocatalytic adsorbents (IPCAs), were prepared by ultrasonication and investigated for the photocatalytic degradation of acetaminophen (AMP), a common analgesic and antipyretic drug. The IPCAs showed high affinity towards AMP (in dark adsorption studies), with the amount adsorbed proportional to the TiO2 content; the highest adsorption was at 10 wt% TiO2. Equilibrium isotherm studies showed that the adsorption followed the Langmuir model, indicating the dependence of the reaction on an initial adsorption step, with maximum adsorption capacity of 28.4 mg/g for 10 % TiO2 IPCA. The effects of initial pH, catalyst amount and initial AMP concentration on the photocatalytic degradation rates were studied. Generally, the AMP photodegradation activity of the IPCAs was better than that of bare TiO2. Kinetic studies on the photocatalytic degradation of AMP under UV suggest that the degradation followed Langmuir-Hinshelwood (L-H) kinetics, with an adsorption rate constant (K) that was considerably higher than the photocatalytic rate constant (k r), indicating that the photocatalysis of AMP is the rate-determining step during the adsorption/photocatalysis process.

  1. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products.

    Science.gov (United States)

    Abramović, Biljana F; Despotović, Vesna N; Šojić, Daniela V; Orčić, Dejan Z; Csanádi, János J; Četojević-Simin, Dragana D

    2013-09-01

    The photocatalytic degradation of the herbicide clomazone (0.05mM) in aqueous suspensions of TiO2 Degussa P25 was examined as a function of the different operational parameters. The optimum concentration of the catalyst was found to be 0.50mgmL(-1) under UV light at the pH 10.3. In the first stage of the reaction, the photocatalytic degradation of clomazone followed the pseudo-first order kinetics, with and the heterogeneous catalysis proceeding via OH radicals. The results also showed that the disappearance of clomazone led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred after about 55min. Tentative photodegradation pathways were proposed and discussed. A comparison of the evolution of toxicity that was evaluated in vitro in rat hepatoma (H-4-II-E) and human fetal lung (MRC-5) cell lines with the degradation kinetics indicates that the irradiation contributed to the decrease of the toxicity of the mixture that is no longer dominated by the parent compound. The study also encompassed the effect of the quality of natural water on the rate of removal of clomazone.

  2. The effect of operational parameters on the photocatalytic degradation of pesticide.

    Science.gov (United States)

    Choi, Euiso; Cho, Il-Hyoung; Park, Jaehong

    2004-01-01

    The photocatalytic degradation of Cartap Hydrochloride, a synthetic pesticide. has been investigated over coated TiO2 photocatalysts irradiated with a ultraviolet (UV) light. The effect of operational parameters, i.e., Cartap Hydrochloride concentration, reaction time, light intensity and additive on the degradation rate of aqueous solution of Cartap Hydrochloride has been examined. Results show that the employment of efficient photocatalysts and the selection of optimal operational parameters may lead to degradation of Cartap Hydrochloride solutions.

  3. Photocatalytic Degradation of Methylene Blue using ZnO Nano-Particles

    Directory of Open Access Journals (Sweden)

    A Rezaee

    2009-11-01

    Full Text Available "nBackgrounds and Objectives: Textile industrial wastewaters are one of the important sources of environmental contaminants. In the recent years, use of advanced oxidation processes, by producing highly active and reactive components such as hydroxyl radicals has been proposed. The aim of this research is photocatalytic degradation of methylene blue dye using the ZnO-nanoparticle with UVA irradiation. "nMaterials and Methods: photocatalytic degradation of methylene blue color using the ZnO- nanoparticles excited with UVA irradiation. In this research, photocatalytic degradation of methylene blue dye was study using different concentration of ZnO-nanoparticles under UVA irradiation in a batch reactor. "nResults: The results of this research show that removal of methylene blue dye has direct correlation with UVA intensity. The best results of dye degradation were reported in concentration of 150 mg/L ZnO nano-particles and the radiation intensity of 240 µW/cm2. Rate of dye removal was decrease with increasing of color concentration. Subsequent of color degradation, the initial COD were decresed by %60. "nConclusion: The photocatalytic degradation process using ZnO nano-particles under UVA irradiation could be remove the methylene blue dye and 60% of COD.

  4. Selective photocatalytic degradation of aquatic pollutants by titania encapsulated into FAU-type zeolites.

    Science.gov (United States)

    Zhang, Guan; Choi, Wonyong; Kim, Seok Han; Hong, Suk Bong

    2011-04-15

    The selective photocatalytic degradation of charged pollutants in water was achieved on titania encapsulated into FAU-type zeolites. The electrostatic attraction of cationic substrates and repulsion of anionic substrates by the negatively charged zeolite framework facilitated the selective photocatalytic degradation of charged substrates. The hybrid zeolite-titania photocatalysts were prepared through the ion-exchange method. The titania clusters were mainly well distributed within the cavities of FAU-type zeolites whereas no TiO(2) nanoparticles aggregates were observed on the external surface of zeolite crystals. The hybrid zeolite-titania photocatalysts were characterized by diffuse reflectance UV-visible spectroscopy, transmission electron microscopy, energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The selective degradation of charged pollutants was investigated by employing three pairs of oppositely charged substrates. The comparison between the cationic and anionic substrates clearly showed that the degradation rates for the cationic substrates on the hybrid photocatalysts are markedly higher than those for the anionic substrates. Among the cationic substrates, the smaller cations such as tetramethylammoniums were preferentially degraded. This enabled the selective removal of cationic substrates among the mixture. Such a selective photocatalytic degradation of water pollutants may provide a useful strategy for the development of economical photocatalytic process by targeting only the most recalcitrant pollutant.

  5. Photocatalytic Degradation of Methylene Blue by Fe/ZnO/SiO2 Nanoparticles under Visiblelight

    OpenAIRE

    R. M. Mohamed; Mkhalid, I. A.; Baeissa, E. S.; M. A. Al-Rayyani

    2012-01-01

    The photocatalytic activity of Fe/ZnO/SiO2 catalysts under visible-light irradiation for the degradation of methylene blue was evaluated. The effect of pH, illumination time, amount of catalyst loaded, and initial dye concentration on the degradation efficiency of methylene blue was investigated. The results reveal that the optimum photocatalytic oxidation conditions of methylene blue are as follows: pH=4 and illumination time is 30 min, the amount of catalyst loading is 0.075 g/L and 50 ppm ...

  6. Intensified photocatalytic degradation of nitrobenzene by Pickering emulsion of ZnO nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Wei Wu; Shuang Gao; Weixia Tu; Jianfeng Chen; Pengyuan Zhang

    2010-01-01

    In this paper,zinc oxide nanoparticles were first prepared and surface-modified.A Picketing emulsion was then prepared,consisting of nitrobenzene(oil phase),water(water phase)and the modified zinc oxide nanoparticles located on the water-oil interface.The effects of different emulsions on the removal rate of nitrobenzene by photocatalytic degradation were studied.The results proved that use of a Pick-eting emulsion stabilized by surface-modified ZnO nanoparticles provides an effective and novel way to intensify the photocatalytic degradation of the organic contaminant.

  7. Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation.

    Science.gov (United States)

    Dalida, Maria Lourdes P; Amer, Kristine Marfe S; Su, Chia-Chi; Lu, Ming-Chun

    2014-01-01

    This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol-gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95% removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.

  8. Photocatalytic Degradation of Nox Under Visible Light Irradiation Using Fe-Doped Titanium Dioxide

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method.The crystal phase of TiO2 was not changed after calcination process. Analysis by both X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicated that Fe atoms were incorporated in TiO2 as Ti-O-Fe linkages. One significant shift of the absorption edge to a Iower energy and a higher absorption in the visible light region were observed. The Fe-doped TiO2 powder exhibited photocatalytic activity for the degradation of NOx under visible light irradiation. The sample mixed with 0.2 at% Fe3+ and calcined at 600 ℃ showed the best photocatalytic activity.

  9. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites

    Institute of Scientific and Technical Information of China (English)

    Ming GE; Changsheng GUO; Xingwang ZHU; Lili MA; Zhefian HAN; Wei HU; Yuqiu WANG

    2009-01-01

    ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composi-tion and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.

  10. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    LI Yun-cang; ZOU Lin-da; Eric Hu

    2004-01-01

    Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2(i. e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

  11. Photocatalytic Degradation of Nitro and Chlorophenols Using Doped and Undoped Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hassan Ilyas

    2011-01-01

    Full Text Available Pure and Ag-TiO2 nanoparticles were synthesized, with the metallic doping being done using the Liquid Impregnation (LI method. The resulting nanoparticles were characterized by analytical methods such as scanning electron micrographs (SEMs, Energy Dispersive Spectroscopy (EDS, and X-ray diffraction (XRD. XRD analysis indicated that the crystallite size of TiO2 was 27 nm to 42 nm while the crystallite size of Ag-TiO2 was 11.27 nm to 42.52 nm. The photocatalytic activity of pure TiO2 and silver doped TiO2 was tested by photocatalytic degradation of p-nitrophenol as a model compound. Ag-TiO2 nanoparticles exhibited better results (98% degradation as compared to pure TiO2 nanoparticles (83% degradation in 1 hour for the degradation of p-nitrophenol. Ag-TiO2 was further used for the photocatalytic degradation of 2,4-dichlorphenol (99% degradation, 2,5-dichlorophenol (98% degradation, and 2,4,6-trichlorophenol (96% degradation in 1 hour. The degree of mineralization was tested by TOC experiment indicating that 2,4-DCP was completely mineralized, while 2,5-DCP was mineralized upto 95 percent and 2,4,6-TCP upto 86 percent within a period of 2 hours.

  12. Photocatalytic behavior of phosphonate-based hybrid materials on dyes and phenols degradation

    OpenAIRE

    Bazaga-García, Montse; Colodrero, Rosario M.P.; Olivera-Pastor, Pascual; SANTACRUZ, ISABEL; Aranda, Miguel A. G.

    2013-01-01

    There is increasing interest in using heterogeneous catalysis for mineralization of organic pollutants. Within Advanced Oxidation Processes (AOPs), Photo-Fenton reaction is one of the most efficient methodologies. To date, most of heterogeneous iron catalysts studied was based on oxides or hydroxides. We extend here our previous studies on phenol photodegradation [1] by exploring the photocatalytic activity of various hybrid MII phosphonates (MII = Mn, Fe, Cu) for several organ...

  13. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst.

    Science.gov (United States)

    Długosz, Maciej; Żmudzki, Paweł; Kwiecień, Anna; Szczubiałka, Krzysztof; Krzek, Jan; Nowakowska, Maria

    2015-11-15

    Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO2-expanded perlite photocatalyst (EP-TiO2-773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir-Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained.

  14. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  15. Factorial design application in photocatalytic wastewater degradation from TNT industry-red water.

    Science.gov (United States)

    Guz, Ricardo; de Moura, Cristiane; da Cunha, Mário Antônio Alves; Rodrigues, Marcio Barreto

    2017-03-01

    In trinitrotoluene (TNT) purification process, realized in industries, there are two washes carried out at the end of the procedure. The first is performed with vaporized water, from which the first effluent, called yellow water, is originated. Then, a second wash is performed using sodium sulfite, generating the red water effluent. The objective of this work was to get the best conditions for photocatalytic degradation of the second effluent, red water, in order to reduce toxicity and adjust legal parameters according to regulatory agencies for dumping these effluents into waterways. It has used a statistical evaluation for factor interaction (pH, concentration) that affects heterogeneous photocatalysis with titanium dioxide (TiO2). Thus, the treatment applied in the factorial experimental design consisted of using a volume equal to 500 mL of the effluent to 0.1 % by batch treatment, which has changed TiO2 pH and concentration, according to the design, with 20 min time for evaluation, where it was used as response to the reduction of UV-Vis absorption. According to the design responses, it has obtained optimum values for the parameters evaluated: pH = 6.5 and concentration of 100 mg/L of TiO2 were shown to be efficient when applied to red water effluent, obtaining approximately 91 % of discoloration.

  16. Heterogeneous photo-catalysis system for the degradation of azo dye Reactive Black 5 (RB5).

    Science.gov (United States)

    Huang, Yao-Hui; Wei, Hau-Cheng; Chen, Hung-Ta

    2012-01-01

    This study investigated a heterogeneous photo-catalysis system by introducing a novel brick supported iron oxide (denoted as B1) for the heterogeneous photoassisted degradation of Reactive Black 5 (RB5) at pH value from 3 to 7 in a three-phase (gas-liquid-solid) fluidized bed reactor (3P-FBR). Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption were used to characterize the B1 catalyst. The in situ formation of hydrogen peroxide and the depletion of oxalic acid by photochemical cycle of Fe(III)-oxalate complex under UVA light (λ = 365 nm) were studied. The effects of the solution pH and the concentration of oxalic acid on the degradation of RB5 are elucidated. About 90% decolourization was measured and 80% of the total organic carbon (TOC) was eliminated at pH 5.0 after 120 min for 20 mg/L RB5 in presence of 10 g/L B1 catalyst, 30 mg/L oxalic acid under 15 W UVA light. A mechanism for the photocatalytic degradation of RB5 over B1 catalyst is proposed.

  17. Photocatalytic Degradation of Congored on Silica Supported Ag Impregnated TiO2.

    Science.gov (United States)

    Thiripuranthagan, Sivakumar; Raj, Danny; Kannan, Kathiravan

    2015-06-01

    Advanced oxidation process using nano sized silver impregnated titania-silica composite catalysts for the degradation of carcinogenic dye has been investigated. x% Silver/y% Titania/Silica. (x = 1%, 4%, 7% and 10%; and y = 10%, 15%, 20% and 25%), composite photocatalysts were synthesized by a three step process and characterized by using various physicochemical analytical techniques and evaluated for their photocatalytic activities towards decolourization/degradation of Congo red. The photodecolourisation and the photodegradation were monitored by using UV-Visible spectrophotometer and Total Organic Carbon analyzer respectively. The effects of various operating variables such as percentage loading of titania and silver on the decolourization/degradation of Congo red dye were studied, optimized and compared. Impregnation of silver increased the photocatalytic activity. 1% Silver/Titania/Silica composite catalyst showed better photocatalytic activity than titania-silica composite catalysts. However further increase of silver to 4%, 7% and 10% did not show any significant improvement in photocatalytic activity. Among the catalysts synthesized 1% silver/25% titania/silica composite catalyst was found to show the best decolourization and degradation of Congo red.

  18. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    Science.gov (United States)

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  19. Preparation and photocatalytic degradation performance of Ag3PO4 with a two-step approach

    Science.gov (United States)

    Li, Jiwen; Ji, Xiaojing; Li, Xian; Hu, Xianghua; Sun, Yanfang; Ma, Jingjun; Qiao, Gaowei

    2016-05-01

    Ag3PO4 photocatalysts were prepared via two and one-step through a facile ion-exchange route. The photocatalysts were then characterized through powder X-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated on the basis of the photocatalytic degradation of methyl orange (MO) and methylene blue (MB) under solar irradiation. The MO degradation rate of the Photocatalyst synthesized by the two-step ion-exchange route was 89.18% in 60 min. This value was four times that of the Photocatalyst synthesized by the one-step approach.The MB degradation rate was 97% in 40 min. After six cycling runs were completed, the MO degradation rate was 73%

  20. TiO2 BEADS FOR PHOTOCATALYTIC DEGRADATION OF HUMIC ACID IN PEAT WATER

    Directory of Open Access Journals (Sweden)

    Winarti Andayani

    2011-12-01

    Full Text Available Degradation of humic acid in aqueous solution containing TiO2 coated on ceramics beads under irradiation of 254 nm UV light has been conducted in batch reactor. The aim of this experiment was to study photocatalytic degradation of humic acid in peat water. The irradiation of the humic acid in aqueous solution was conducted in various conditions i.e solely uv, in the presence of TiO2-slurry and TiO2 beads. The color intensity, humic acid residue, conductivity and COD (chemical oxygen demand of the solution were analyzed before and after irradiation.  The compounds produced during photodegradation were identified using HPLC. The results showed that after photocatalytic degradation, the color intensity and the COD value of the solution decreased, while the conductivity of water increased indicating mineralization of the peat water occurred. In addition, oxalic acid as the product of degradation was observed.

  1. Photocatalytic performance of crystalline titania polymorphs in the degradation of hazardous pharmaceuticals and dyes

    Science.gov (United States)

    Thuong Huyen Tran, Thi; Kosslick, Hendrik; Schulz, Axel; Liem Nguyen, Quang

    2017-03-01

    In the present work, nano-sized TiO2 polymorphs (anatase, brookite, and rutile) were synthesized via hydrothermal treatment of an amorphous titania. Three polymorphs were characterized by XRD, Raman spectroscopy, SEM, UV–Vis DRS, and N2-sorption measurements. The photocatalytic degradation experiments were performed with low catalyst concentration, high organic loading under a 60 W UV–Vis solarium lamp irradiation. The photocatalytic degradation was monitored by UV–Vis spectroscopy and TOC measurements. Cinnamic acid, ibuprofen, phenol, diatrizoic acid and the dyes rhodamine B and rose bengal were used as model pollutants. The formation of intermediates was studied by ESI-TOF-MS measurements. The presence of active species was checked by quenching the activity by addition of scavengers. The photocatalytic activity decreased in the order: anatase  ⩾  brookite  >  rutile, with growing recalcitrance of organic compounds. The differences in the activity are more pronounced in the degree of mineralization. The valence band holes and superoxide radicals were the major active species in the photocatalytic treatment with anatase and brookite, whereas hydroxyl radicals and superoxide radicals contributed mainly in the treatment with rutile explaining the lower activity of rutile. The complementary use of UV–Vis spectroscopy and TOC measurements was required to obtain a comprehensive realistic assessment on the photocatalytic performance of catalyst. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  2. Inactivation of titanium dioxide by sulphur. Photocatalytic degradation of Vapam{sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, A. [CIEMAT/DER, Avda. Complutense 22, 28040 Madrid (Spain); Martin Luengo, M.A. [Instituto de Materiales, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2001-07-02

    Photocatalytic processes in the presence of titanium dioxide provide an interesting route to destroy hazardous organic contaminants, being operational in the UV-A domain with a potential use of solar radiation. Numerous photocatalytic reactions have been tested showing that organic contaminants in water can be completely mineralized (i.e. converted into CO{sub 2}, H{sub 2}O, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, etc.) by irradiation in the presence of TiO{sub 2}. In this paper, the photocatalytic degradation of a monoalkyl dithiocarbamate (Vapam{sup registered}) by TiO{sub 2} illuminated suspensions has been investigated at bench scale. The determination of the effects of various kinetic factors on the photocatalytic degradation and the determination of the nature of the principal intermediates form part of the focus of this study. This research also involves the characterisation of the titanium dioxide surface by X-ray photoelectron spectroscopy to obtain information about the composition and chemical state of the catalyst surface. Preliminary field tests have shown that this pesticide can not be completely mineralized when treating diluted industrial wastes from manufacturing industries. The experimental results presented suggest that inactivation of titanium dioxide by sulphur occurs. These results have significant implications to commercialise solar photocatalytic detoxification technology since the catalyst cost has a major impact on the wastewater cost.

  3. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.

    Science.gov (United States)

    Zhang, Maolin; An, Taicheng; Fu, Jiamo; Sheng, Guoying; Wang, Xinming; Hu, Xiaohong; Ding, Xuejun

    2006-06-01

    An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.

  4. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.

    Science.gov (United States)

    Abou-Gamra, Z M; Ahmed, M A

    2016-07-01

    Herein, we demonstrate a facile route for synthesis a new photocatalyst based on TiO2-curcumin nanoparticles for photodegradation of methylene blue dye under UV and visible light irradiation. The photocatalyst was prepared by sol-gel method using chitosan as biodegradable polymer. The crystalline and the nanostructure were characteristic X-ray diffraction [XRD], adsorption-desorption isotherm and high resolution transmission electron microscopy [HRTEM]. However, the optical features of the samples were investigated by a UV-visible spectrophotometer. It is obvious to notice the removal of the majority of methylene blue dye on a pure titania surface via adsorption mechanism owing to the high surface area and to the organized mesoporous nature of the solid sample. Incorporation of curcumin on titania surface changes the removal direction from adsorption to the photocatalytic pathway. Various photocatalytic experiments were performed to investigate the influence of initial dye concentration, weight of catalyst, stirring and light intensity on the photocatalytic degradation of methylene blue as primary pollutant model. Chemical oxygen demand [COD] test confirms the complete degradation of methylene blue dye. The exceptional photocatalytic reactivity of titania-curcumin nanoparticles is referred to reduction in band gap energy and to the facility of electron transfer from II* curcumin energy level to titania conduction band which increases the concentration of reactive oxygen superoxide radicals which in turn prevents the electron-hole recombination. The effect of various scavengers on the methylene blue dye degradation was investigated using ethanol, ascorbic acid and methyl viologen. The results have pointed out that O2(-) and HO(.) are considered the main active species in the degradation process. A plausible pathway and mechanism for the photocatalytic degradation of methylene blue by titania-curcumin nanoparticles were illustrated. Copyright © 2016 Elsevier B

  5. Adsorption and Photocatalytic Degradation of Methylene Blue Using Potassium Polytitanate and Solar Simulator.

    Science.gov (United States)

    Shahid, Mohammad; El Saliby, Ibrahim; McDonagh, Andrew; Chekli, Laura; Tijing, Leonard D; Kim, Jong-Ho; Shon, Ho Kyong

    2016-05-01

    Solar photocatalytic degradation of organic water pollutants can be used to degrade toxic organic pollutants in water. In this study, potassium titanate nanofibres were synthesized by an aqueous peroxide route at high pH and examined as photocatalysts for photodegradation of methylene blue (MB) using a solar simulator. Initially, MB was adsorbed on the surface of potassium polytitanates to achieve adsorption equilibrium before the photocatalysts were illuminated using solar simulator. The results showed that potassium polytitanate nanofibres were effective adsorbents of MB and also facilitated its photocatalytic degradation. Sulphate ion evolution during photocatalysis confirmed that some mineralisation occurred and hence photo-oxidative degradation of MB took place. The optimum operational conditions for the photocatalytic degradation of MB were found at 0.05 g/L of photocatalyst load, 10 mg/L MB and pH 7. The stability and regeneration of the photocatalyst specimen was also studied for 3 degradation cycles using adsorption/photocatalysis model. Morphological structure analysis of potassium titanate showed nanocrystallines structure of longitudinally-oriented isolated fibre with a length up to several micrometres with diameters ranging from 10 to 20 nanometres.

  6. SYNTHESIS OF HYDROPHILIC ZnS NANOCRYSTALS AND THEIR APPLICATION IN PHOTOCATALYTIC DEGRADATION OF DYE POLLUTANTS

    Institute of Scientific and Technical Information of China (English)

    Junping Li; Yao Xu; Yong Liu; Dong Wu; Yuhan Sun

    2004-01-01

    Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipitation using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis spectrum. UV-Vis spectra showed that ZnS nanocrystals exhibited strong quantum-confined effect with a blue shift in the band gap of light absorbance. The photocatalytic activity of these nanocrystals was also investigated for the liquid phase photocatalytic degradation of Basic Violet 5BN (BV5) dye under UV irradiation. It was found that the ZnS nanocrystals had good catalytic activity for photodegradation of BV5.

  7. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract

    Science.gov (United States)

    Mankamna Kumari, R.; Thapa, Nikita; Gupta, Nidhi; Kumar, Ajeet; Nimesh, Surendra

    2016-12-01

    The present study focuses on the biosynthesis of silver nanoparticles (AgNPs) along with its antibacterial and photocatalytic activity. The AgNPs were synthesized using Cordia dichotoma leaf extract and were characterized using UV-vis spectroscopy to determine the formation of AgNPs. FTIR was done to discern biomolecules responsible for reduction and capping of the synthesized nanoparticles. Further, DLS technique was performed to examine its hydrodynamic diameter, followed by SEM, TEM and XRD to determine its size, morphology and crystalline structure. Later, these AgNPs were studied for their potential role in antibacterial activity and photocatalytic degradation of azo dyes such as methylene blue and Congo red.

  8. Iron-Doped Titania Nanoparticles for the Photocatalytic Oxidative Degradation of Nitrite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0. 5 %. The increase in photoactivity is probably due to the higher adsorption and the inhibition of electron-hole recombination. The photocatalytic oxidation reaction of nitrite over the Fe-doped TiO2 catalyst follows zero-order kinetics, which is different from that over pure TiO2. The reaction rate decreases linearly with the increase of the pH of the solution.

  9. Fe2O3-loaded activated carbon fiber/polymer materials and their photocatalytic activity for methylene blue mineralization by combined heterogeneous-homogeneous photocatalytic processes

    Science.gov (United States)

    Kadirova, Zukhra C.; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2017-04-01

    Fe2O3-supported activated carbon felts (Fe-ACFTs) were prepared by impregnating the felts consisted of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) or polyethylene pulp (PE-W15) in Fe(III) nitrate solution and calcination at 250 °C for 1 h. The prepared Fe-ACFTs with 31-35 wt% Fe were characterized by N2-adsorption, scanning electron microscopy, and X-ray diffraction. The Fe-ACFT(PS-A20) samples with 5-31 wt% Fe were microporous with specific surface areas (SBET) ranging from 750 to 150 m2/g, whereas the Fe-ACFT(PE-W15) samples with 2-35 wt% Fe were mesoporous with SBET ranging from 830 to 320 m2/g. The deposition of iron oxide resulted in a decrease in the SBET and methylene blue (MB) adsorption capacity while increasing the photodegradation of MB. The optimum MB degradation conditions included 0.98 mM oxalic acid, pH = 3, 0.02-0.05 mM MB, and 100 mg/L photocatalyst. The negative impact of MB desorption during the photodegradation reaction was more pronounced for mesoporous PE-W15 samples and can be neglected by adding oxalic acid in cyclic experiments. Almost complete and simultaneous mineralization of oxalate and MB was achieved by the combined heterogeneous-homogeneous photocatalytic processes. The leached Fe ions in aqueous solution [Fe3+]f were measured after 60 min for every cycle and found to be about 2 ppm in all four successive cycles. The developed photocatalytic materials have shown good performance even at low content of iron oxide (2-5 wt% Fe-ACFT). Moreover, it is easy to re-impregnate the ACF when the content of iron oxide is reduced during the cyclic process. Thus, low leaching of Fe ions and possibility of cyclic usage are the advantages of the photocatalytic materials developed in this study.

  10. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange

    Science.gov (United States)

    Basahel, Sulaiman N.; Ali, Tarek T.; Mokhtar, Mohamed; Narasimharao, Katabathini

    2015-02-01

    Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

  11. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange.

    Science.gov (United States)

    Basahel, Sulaiman N; Ali, Tarek T; Mokhtar, Mohamed; Narasimharao, Katabathini

    2015-01-01

    Nanosized ZrO2 powders with near pure monoclinic, tetragonal, and cubic structures synthesized by various methods were used as catalysts for photocatalytic degradation of methyl orange. The structural and textural properties of the samples were analyzed by X-ray diffraction, Raman spectroscopy, TEM, UV-vis, X-ray photoelectron spectroscopy (XPS), and N2 adsorption measurements. The performance of synthesized ZrO2 nanoparticles in the photocatalytic degradation of methyl orange under UV light irradiation was evaluated. The photocatalytic activity of the pure monoclinic ZrO2 sample is higher than that of the tetragonal and cubic ZrO2 samples under optimum identical conditions. The characterization results revealed that monoclinic ZrO2 nanoparticles possessed high crystallinity and mesopores with diameter of 100 Å. The higher activity of the monoclinic ZrO2 sample for the photocatalytic degradation of methyl orange can be attributed to the combining effects of factors including the presence of small amount of oxygen-deficient zirconium oxide phase, high crystallinity, large pores, and high density of surface hydroxyl groups.

  12. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Zhaohui, E-mail: zhaohuiwang@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jianshe, E-mail: liujianshe@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Sequential photocatalytic reduction-oxidation degradation of TBBPA was firstly examined. Black-Right-Pointing-Pointer Different atmospheres were found to have significant effect on debromination reaction. Black-Right-Pointing-Pointer A possible sequential photocatalytic reduction-oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N{sub 2}-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO{sub 2} system by changing the reaction atmospheres.

  13. Photocatalytic degradation of textile dyestuffs using TiO{sub 2} nanotubes prepared by sonoelectrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Derya, E-mail: deryatekin@atauni.edu.tr

    2014-11-01

    Highlights: • TiO{sub 2} nanotubes prepared by electrochemical and sonoelectrochemical method. • More regular TiO{sub 2} nanotubes diameters prepared by sonoelectrochemical method. • Obtained nanotubes were used in the photocatalytic degradation of Orange G dye. • TiO{sub 2} nanotubes prepared by sonoelectrochemical method showed 10% faster degradation of Orange G dye compared with the one by electrochemical method. - Abstract: TiO{sub 2} nanotubes were prepared by anodization of Ti plates by conventional electrochemical technique as well as by an emerging sonoelectrochemical technique. Scanning electron miscroscope (SEM) analysis showed that ultrasound assisted anodization yielded more ordered and controllable TiO{sub 2} tube banks with higher tube diameter. The photocatalytical activities of TiO{sub 2} nanotubes were tested in the photocatalytical degradation of Orange G dye. The results showed that sonoelectrochemically prepared TiO{sub 2} tubes exhibited 10% higher photocatalytic performance than the electrochemical prepared ones, and more than 18% higher activity than the other TiO{sub 2} samples.

  14. The effect of surface modification by nitrogen plasma on photocatalytic degradation of polyvinyl chloride films

    Science.gov (United States)

    Xiao-jing, L.; Guan-jun, Q.; Jie-rong, C.

    2008-08-01

    The solid-phase photocatalytic degradation of poly(vinyl chloride) (PVC) films was investigated under the ambient air in order to assess the feasibility of developing photodegradable polymers. Nitrogen plasma was used to modify PVC films to enhance the photocatalytic degradation of PVC with nano-sized anatase TiO 2. The plasma parameter varied in this study is discharge power from 30 to 120 W for a constant treatment time of 60 s and a constant gas pressure of 10 Pa. The photodegradation of the plasma-treated PVC-TiO 2 films was compared with that of pure PVC films and PVC-TiO 2 films performing weight loss monitoring, scanning electron microscopy (SEM) analysis, contact angle measurements, electron spin resonance (ESR), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The wettability of the plasma-treated PVC is improved significantly. ESR revealed that the signal of radicals on the surface of the plasma-treated PVC film was enhanced after the treatment. Furthermore, the weight loss indicated that TiO 2 speeds up the photocatalytic degradation of PVC chains. The SEM image of the plasma-treated PVC-TiO 2 film showed a lot of crack on the film surface after irradiation. XPS indicated that the C and Cl atomic concentration reached minimum values on the surface of plasma-treated PVC-TiO 2 under identical photocatalytic condition. The experimental results reveal that plasma treatment can obviously enhance the photocatalytic degradation of PVC.

  15. Visible light assisted photocatalytic degradation of methyl orange using Ag/N-TiO₂ photocatalysts.

    Science.gov (United States)

    Wu, Deyong; Long, Mingce

    2012-01-01

    For the sake of efficient utilization of sunlight, Ag nanoparticles loaded N-doped TiO₂ photocatalysts (Ag/N-TiO₂) were successfully fabricated via a two-step method to make the best use of the respective advantages of noble metal loading and nonmetal doping. Ag/N-TiO₂ was characterized using XRD, XPS and UV-Vis DRS. Compared to TiO₂, the dramatic enhancement of the visible-light-induced photocatalytic degradation efficiency of Ag/N-TiO₂ obtained for the degradation of methyl orange should be attributed to the synergistic effect of N-doping and Ag-loading, including the good visible light absorption and the effective electron-hole separations. This demonstrates Ag/N-TiO₂ is a promising photocatalytic material for organic pollutant degradation under visible light irradiation.

  16. Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    DONG Lin; CAO Guo-xi; MA Ying; JIA Xiao-lin; YE Guo-tian; GUAN Shao-kang

    2009-01-01

    Nitrogen-doped TiO_2 nanotubes array were synthesized to improve the photocatalytic efficiency by annealing the anodized titania nanotubes with ammonia at 500 ℃.Detailed structural analysis revealed that the nitrogen-doped titania nanotubes are of highly ordered structure,and exhibit a decreased phase transformation temperature compared with those that are not doped,as evidenced by the decrease in full width at half maximum (FWHM) of the (110) peak of rutile phase and the occurrence of the typical Raman peaks of rutile phase at 196,235,442,610 cm~(-1).According to the photocatalytic degradation of methyl orange under visible light irradiation,the nitrogen-doped TiO_2 nanotubes exhibit enhanced photocatalytic efficiency compared with their non-doped nanotubes,which might be a result of either the nitrogen doping induced band gap narrowing or the synergistic effect produced by both nitrogen and fluorine dopants.

  17. Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol-gel methods.

    Science.gov (United States)

    Shen, Wenzhong; Li, Zhijie; Wang, Hui; Liu, Yihong; Guo, Qingjie; Zhang, Yuanli

    2008-03-21

    Zinc oxide nanoparticle was obtained by zinc hydrate deposited on the silica nanoparticle surface and zinc hydrate was dispersed in starch gel. The structure of zinc oxide particle was characterized by nitrogen adsorption-desorption and XRD, the morphology was observed by TEM. The result showed that the zinc oxide nanoparticle deposited on the silica nanoparticle surface was well-dispersed and less than 50nm, displayed higher photocatalytic activity for methylene blue degradation. However, the zinc oxide nanoparticle in a size of 60nm was derived from starch gel and showed poorer photocatalytic activity. It provided a simple and effective route to prepare zinc oxide nanoparticle with higher photocatalytic activity through depositing zinc oxide on the silica particle surface, moreover, the catalyst is easier to recover due to its higher density.

  18. Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2

    Institute of Scientific and Technical Information of China (English)

    KASHIF Naeem; OUYANG Feng

    2009-01-01

    In this study, photocatalytic degradation of phenol selected as model compound of organic pollutant had been investigated in aqueous titanium dioxide (TiO2) dispersion under UV irradiation. The effects of various parameters such as pH, catalyst concentration, phenol concentration, anions, metal ions, electron acceptors, and surfactants on the photocatalytic degradation of phenol were investigated. The degradation kinetics was determined by the change in phenol concentration employing UV-Vis spectrometry as a function of irradiation time. The degradation kinetics of phenol follows pseudo first-order kinetics. The results showed a significant dependence of the photocatalytic degradation of phenol on the functional parameters. The probable promising roles of the additives on the degradation process were discussed.

  19. Photocatalytic degradation of 2-phenethyl-2-chloroethyl sulfide in liquid and gas phases.

    Science.gov (United States)

    Vorontsov, Alexandre V; Panchenko, Alexander A; Savinov, Evgueni N; Lion, Claude; Smirniotis, Panagiotis G

    2002-12-01

    This work explores the ability of photocatalysis to decontaminate water and air from chemical warfare agent mustard using its simulant 2-phenethyl 2-chloroethyl sulfide (PECES). PECES like mustard slowly dissolves in water with hydrolysis, forming 2-phenethyl 2-hydroxyethyl sulfide (PEHES). Irradiation of TiO2 suspension containing PECES with the unfiltered light of a mercury lamp (lambda > or = 254 nm) decomposed all PECES mostly via photolysis. Reaction under filtered light (lambda > 300 nm) proceeds mainly photocatalytically and requires longer time. Sulfur from starting PECES is completely transformed into sulfuric acid at the end of the reaction. Detected volatile, nonvolatile, surface products, and the suggested scheme of degradation are reported. The main volatile products are styrene and benzaldehyde, nonvolatile--hydroxylated PEHES, surface--2-phenethyl disulfide. Photolysis of PECES produced the same set of volatile products as photocatalysis. Photocatalytic degradation of gaseous PECES in air results in its mineralization but is accompanied by TiO2 deactivation. The highest rate of mineralization with minimum deactivation was observed at about room temperature and a water concentration of 27,500 ppm. No gaseous products except CO2 were detected. The main extracted surface product was styrene. It was concluded that PECES photocatalytic degradation proceeds mainly via C-S bond cleavage and further oxidation of the products. Hydrolysis of the C-S bond was detected only in gas-phase photocatalytic degradation. The quantum efficiency of gas-phase degradation (0.28%) was much higher than that of liquid-phase degradation (0.008%). The results demonstrate the ability of photocatalysis to decontaminate an aqueous and especially an air environment

  20. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    Science.gov (United States)

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    Science.gov (United States)

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  2. Study of the photocatalytic effect of the Ti-doped hydroxyapatite in the degradation of methylene blue solution

    Directory of Open Access Journals (Sweden)

    Anas Salhi

    2015-03-01

    Full Text Available Organic dyes and colouring textile agents are persistent pollutant materials that are difficult to decompose by microbiological treatment processes. Their oxidation through photocatalysis is an alternative way to prevent contamination of the environment. In this work, calcium deficient hydroxyapatite (HAP was synthesized and doped with different amounts of titanium. The performance capability of prepared catalyst to degrade methylene blue dye (MB in aqueous heterogeneous solutions has been demonstrated. The main parameters which govern the photocatalytic treatment efficiency, such as titanium amount in HAP, initial concentration of MB, amount of the catalyst added to solution, UV-irradiation period and bubbling oxygen have been investigated. Photodegradation of  MB is found to be effective with HAP/Ti 11% in oxygenated medium. However, pH has no significant effect on the yield of discoloration. 

  3. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.

    Science.gov (United States)

    Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho

    2012-12-05

    Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.

    Science.gov (United States)

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2015-10-14

    Copper doped ZnO nanostructures have been synthesized by a facile wet chemical method. Structural properties of as-synthesized nanomaterials have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, while UV-visible absorption spectroscopy and Raman spectroscopy have been used to study their optical properties. Sunlight driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water was used to evaluate the photocatalytic activities of Cu doped ZnO nanostructures using UV-visible absorption spectroscopy. The results showed that there is an optimum Cu doping level which leads to the highly enhanced photocatalytic activity of Cu doped ZnO nanostructures, as compared to pure ZnO nanostructures. A mechanism for the enhanced photocatalytic activity of Cu-ZnO nanostructures is tentatively proposed. The enhanced photocatalytic activity of Cu-ZnO nanostructures is attributed to the combined effects of improved separation of photogenerated charge carriers due to optimal Cu doping in ZnO nanostructures and the formation of ZnO-CuO nanoheterojunctions.

  5. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Li, Jinliang; Liu, Junying [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Zhang, Jing; Li, Ping; Chen, Chen [Shanghai Nanotechnlogy Promotion Center, Shanghai 200237 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-11-15

    Graphical abstract: F-doped TiO2 is synthesized using a modified sol–gel method for visible photocatalytic degradation of MB with a high degradation rate of 91%. - Highlights: • F-doped TiO{sub 2} are synthesized using a modified sol–gel method. • The photocatalytic degradation of methylene blue by F-doped TiO{sub 2} is investigated. • A high methylene blue degradation rate of 91% is achieved under visible light irradiation. - Abstract: F-doped TiO{sub 2} (F-TiO{sub 2}) were successfully synthesized using a modified sol–gel method. The morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, and electrochemical impedance spectra, respectively. The results show that F-TiO{sub 2} exhibits an enhanced photocatalytic performance in the degradation of MB with a maximum degradation rate of 91% under visible light irradiation as compared with pure TiO{sub 2} (32%). The excellent photocatalytic activity is due to the contribution from the increased visible light absorption, promoted separation of photo-generated electrons and holes as well as enhanced photocatalytic oxidizing species with the doping of F in TiO{sub 2}.

  6. Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO{sub 2} photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiangdong; Fang, Guodong; Fan, Jianxin [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Graduate School of Chinese Academy of Sciences, Beijing (China); Zhou, Dongmei; Wang, Yujun; Cang, Long [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation

    2012-10-15

    An efficient method was developed for treating polychlorinated biphenyl (PCB)-contaminated soil by soil washing and subsequent TiO{sub 2} photocatalytic degradation, and the photocatalytic degradation mechanism of PCBs was explored. Hydroxypropyl-{beta}-cyclodextrin (HP{Beta}CD) and polyoxyethylene lauryl ether (Brij35) were used to extract PCBs from contaminated soil at first, and then the degradation of PCBs in the soil extracts was performed by TiO{sub 2} photocatalysis under UV irradiation. Washing conditions including washing time, the concentration of HP{Beta}CD/Brij35, and the ratio of soil mass to solution volume for extracting 2,4,4'-trichlorobiphenyl (PCB28) from a PCB28-spiked soil were investigated at first. The results indicated that both HP{Beta}CD and Brij35 exhibited good performance. The intermediates of photocatalytic degradation of PCB28 were from its dechlorination and hydroxylation in the HPCD and aqueous solutions, respectively. A field PCB-contaminated soil from e-waste recycling sites was treated by this method. The results showed that the extracting percentage was significantly affected by the chlorination degree of PCBs, and HP{Beta}CD slowed down the photocatalytic degradation efficiency of overall PCBs. Soil washing and subsequent TiO{sub 2} photocatalytic degradation was successfully applied for treating PCB-contaminated soil, and HP{Beta}CD strongly altered the pathways of the photocatalytic degradation of PCBs.

  7. Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst

    Directory of Open Access Journals (Sweden)

    Gunvant H. Sonawane

    2016-09-01

    Full Text Available The ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 accompanied by Nb2O5 nano catalysts were studied. The structure and morphology of synthesized Nb2O5 nano catalyst was investigated using scanning election microscopy (SEM, Electron dispersive X-ray spectroscopy (EDS and X-ray diffraction (XRD.The effects of various experimental parameters such as the Basic Red-2 concentration, catalyst dose, pH and addition of H2O2 on the ultrasonic, photocatalytic and sonophotocatalytic degradation were investigated. Photocatalytic and sonophotocatalytic degradation of Basic Red-2 was strongly affected by initial dye concentration, catalyst dose, H2O2 addition and pH. Basic pH (pH-10 was favored for the ultrasonic (US, photocatalytic (UV + Nb2O5 and sonophotocatalytic (US + UV + Nb2O5 degradation of Basic Red-2 by using Nb2O5 nano catalyst. The ultrasonic degradation of Basic Red-2 was enhanced by the addition of photocatalyst. Then, the effect of Nb2O5 dose on photocatalytic and sonophotocatalytic degradation were studied, and it was found that increase in catalyst dose increase in the percentage degradation of Basic Red-2. In addition, the effects of H2O2 on ultrasonic, photolytic, photocatalytic and sonophotocatalytic degradation was also investigated, and it was found that H2O2 enhances the % degradation of Basic Red-2. The possible mechanism of ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 reported by LC-MS shows generation of different degradation products

  8. One-Dimensional Nanostructured TiO2 for Photocatalytic Degradation of Organic Pollutants in Wastewater

    Directory of Open Access Journals (Sweden)

    Ting Feng

    2014-01-01

    Full Text Available The present paper reviews the progress in the synthesis of one-dimensional (1D TiO2 nanostructures and their environmental applications in the removal of organic pollutants. According to the shape, 1D TiO2 nanostructures can be divided into nanorods, nanotubes, nanowires/nanofibers, and nanobelts. Each of them can be synthesized via different technologies, such as sol-gel template method, chemical vapor deposition, and hydrothermal method. These methods are discussed in this paper, and the recent development of the synthesis technologies is also presented. Furthermore, the organic pollutants, degradation using the synthesized 1D TiO2 nanostructures is studied as an important application of photocatalytic oxidation (PCO. The 1D nanostructured TiO2 exhibited excellent photocatalytic activity in a PCO process, and the mechanism of photocatalytic degradation of organic pollutants is also discussed. Moreover, the modification of 1D TiO2 nanostructures using metal ions, metal oxide, or inorganic element can further enhance the photocatalytic activity of the photocatalyst. This phenomenon can be explained by the suppression of e−-h+ pairs recombination rate, increased specific surface area, and reduction of band gap. In addition, 1D nanostructured TiO2 can be further constructed as a film or membrane, which may extend its practical applications.

  9. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles

    Science.gov (United States)

    Saleh, Rosari; Djaja, Nadia Febiana

    2014-10-01

    Iron doped wurtzite ZnO nanoparticles were synthesized and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, electron spin resonance and vibrating sample magnetometer techniques. The photocatalytic activities were also evaluated for the degradation of methyl orange and methylene blue under UV irradiation. The effects of various parameters, such as pH, dopant concentrations and photocatalytic dosage, were studied. The ESR results indicate the presence of Fe in both the Fe2+ and Fe3+ valence states. As the dopant concentrations increased, the number of spins due to Fe2+ ions increased and the number of spins due to Fe3+ ions decreased resulting in an increase in magnetization. The catalysts with the highest number of spins due to Fe2+ ions exhibited the optimum photocatalytic activity for the degradation of methyl orange and methylene blue. In addition, the role of photoactive species was investigated using a radical scavenger technique. The results indicated that the doping concentration is the most important factor in photocatalytic performance.

  10. Synthesis of Hydroxide-TiO2 Compounds with Photocatalytic Activity for Degradation of Phenol

    Science.gov (United States)

    Contreras-Ruiz, J. C.; Martínez-Gallegos, S.; Ordoñez, E.; González-Juárez, J. C.; García-Rivas, J. L.

    2017-03-01

    Photocatalytic degradation of phenol using titanium dioxide (TiO2), either alone or in combination with other materials, has been tested. Mg/Al hydrotalcites prepared by two methods using inorganic (HC) or organic (HS) chemical reagents, along with mixed oxides produced by calcination of these products (HCC and HSC), were mixed with titanium isopropoxide to obtain hydroxide-TiO2 compounds (HCC-TiO2 and HSC-TiO2) and their photocatalytic activity tested in solutions of 10 mg/L phenol at 120 min under illumination at λ UV = 254 nm with power of 4 W or 8 W. The obtained materials were characterized by various techniques, revealing that TiO2 was incorporated into the mixed oxides of the calcined hydrotalcite to form the above-mentioned compounds. The photocatalytic test results indicate that the activity of HCC-TiO2 can be attributed to increased phenol adsorption by hydrotalcite for transfer to the active photocatalytic phase of the impregnated TiO2 particles, while the better results obtained for HSC-TiO2 are due to greater catalyst impregnation on the surface of the calcined hydrotalcite, reducing the screening phenomenon and achieving HSC-TiO2 degradation of up to 21.0% at 8 W. Reuse of both compounds indicated tight combination of HCC or HSC with TiO2, since in four successive separation cycles there was little reduction of activity, being associated primarily with material loss during recovery.

  11. Kinetics of Photocatalytic Degradation of Methylene Blue by TiO₂-Graphene Nanocomposites.

    Science.gov (United States)

    Loryuenyong, Vorrada; Charoensuk, Jaruwan; Charupongtawitch, Rachaya; Usakulwattana, Amika; Buasri, Achanai

    2016-01-01

    Reduced graphene oxide (RGO)/TiO₂ nanocomposite was successfully prepared by UV-assisted photocatalytic reduction of graphene oxide (XGO) by TiO₂ nanoparticles in ethanol. The effects of XGO and RGO addition in TiO₂were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), diffuse reflectance UV-vis spectrophotometer (UV-vis), fourier-transform infrared spectroscopy (FTIR), photoluminescence (PL), and Brunauer-Emmett-Teller (BET) and Barrett-Joiner-Halenda (BJH) porosity analysis. The photocatalytic activity of prepared nanocomposites was evaluated from the kinetics of the photocatalytic degradation of cationic methylene blue dye under UV irradiation. Bandgap, the electron-hole recombination, specific surface area, surface functional groups, and adsorption capacity of nanocomposites were found to play a significant role in the degradation. The results revealed that RGO/TiO₂ and XGO/TiO₂ nanocomposites exhibited efficient charge separation and enhanced photocatalytic activity, compared to pristine TiO₂. Nearly 500% improvement was observed in this work.

  12. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater.

    Science.gov (United States)

    Chang, Sujie; Yang, Xiaoqiu; Sang, Yuanhua; Liu, Hong

    2016-09-06

    One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous-flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous-flow photocatalytic reactors. Therefore, a high-performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well-designed photocatalytic device is another important component for continuous-flow photocatalysis and determines the efficiency of photocatalysis in practical water treatment. This review describes the basic design principles and synthesis of photocatalysts with excellent performance and special morphologies suitable for a filtering photocatalysis process. Certain promising continuous photodegradation reactors are also categorized and summarized. Additionally, selected scientific and technical problems that must be urgently solved are suggested. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound.

    Science.gov (United States)

    Soltani, T; Entezari, M H

    2013-09-01

    In this paper, the photocatalytic degradation of Reactive Black 5 (RB5) was investigated with ferrite bismuth synthesized via ultrasound under direct sunlight irradiation. The intensity of absorption peaks of RB5 gradually decreased by increasing the irradiation time and finally vanished in 50 min in acidic medium. The formation of new intermediate was observed in basic medium. The relative concentration of RB5 in solution and on the surface of ferrite bismuth (BiFeO3) nanoparticles was considered during the experiment in acidic and basic media. The effects of various parameters such as amount of catalyst, concentration of dye, and pH of the solution have been studied on the dye degradation. The adsorption isotherm and the kinetic of photocatalytic degradation of RB5 were investigated. The adsorption constants in the dark and in the presence of sunlight irradiation were compared. The photocatalytic degradation mechanism of RB5 has been evaluated through the addition of some scavengers to the solution. In addition, the stability and reusability of the catalyst were examined in this work.

  14. Efficient photocatalytic degradation of phenol in aqueous solution by SnO{sub 2}:Sb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M., E-mail: Abdullah.Al.Hamdi@lut.fi [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Chemistry Department, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Dutta, Joydeep [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Functional Materials Division, ICT, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 KistaStockholm (Sweden)

    2016-05-01

    Highlights: • Sb doped SnO{sub 2} nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO{sub 2}:Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO{sub 2}) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO{sub 2}. In this study antimony (Sb) doped tin dioxide (SnO{sub 2}) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO{sub 2}:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO{sub 2} nanoparticles with 10 mg L{sup −1} phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  15. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; WANG Lian-jun; PENG Pan-ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount ofphotocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 × 10-3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%.The catalyst was reused 6 times and its degradation efficiency hardly changed.

  16. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles.

    Science.gov (United States)

    Fowsiya, J; Madhumitha, G; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan

    2016-09-01

    The use of plant extract to synthesize nanoparticle has been considered as one of the eco-friendly method. Additionally, it is a strong alternate for conventional methods which includes chemical and physical approach. In this study, microwave assisted extraction of Carissa edulis (C. edulis) at 70°C and 400W was used to extract the secondary metabolites. Further, the metabolites were used as capping agent and Zn (NO3)2 as the metal precursor to synthesize ZnO nanoparticles (ZnO NPs). UV-Vis spectroscopy, FT-IR, XRD, SEM and HR-TEM were used for the characterization of nanoparticles. The Surface Plasmon Resonance around 358nm from the UV-Vis spectroscopy result represents the ZnO NPs formation. The FT-IR confirms the presence of functional groups that acts as the capping agent for the synthesis of ZnO NPs. The crystalline structure of nanoparticles is revealed in the XRD result, morphology showed by SEM results and the size of the ZnO NPs were predicted by HR-TEM. We have carried out the photocatalytic degradation of Congo red at 365nm in photo reactor using ZnO NPs. The result from the photocatalytic degradation Congo red showed rate constant is (-k) 0.4947 with 97% of degradation. This is our first attempt on the C. edulis extract on ZnO NPs preparation and Congo red dye degradation revels that ZnO NPs exhibit good photocatalytic property.

  17. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin

    Science.gov (United States)

    Wang, Huiqin; Li, Jinze; Ma, Changchang; Guan, Qingfeng; Lu, Ziyang; Huo, Pengwei; Yan, Yongsheng

    2015-02-01

    The graphitic carbon nitride (g-C3N4), as one photocatalyst which possess the suitable band gap, is better for modified TiO2 and enhanced photocatalytic degradation of organic pollutants. In this work, the g-C3N4/TiO2 were successfully prepared via directly calcined the mixture of melamine and P25. The as-prepared g-C3N4/TiO2 photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution electron microscopy (HRTEM), Raman and Fourier transform-infrared spectroscopy (FT-IR). The photocatalytic performances of g-C3N4/TiO2 composites were investigated by degradation of ciprofloxacin. The results showed that the g-C3N4 and P25 were successfully composited, and the bond of C-N was well formed, the calcined temperature for as-prepared photocatalysts and the ratio of melamine and P25 were important to the degradation rate of ciprofloxacin. When the mixture of melamine and P25 with 1:2, and calcined temperature at 600 °C, the degradation rate of ciprofloxacin could reach 95% in 60 min. The enhanced photocatalytic performances could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. Finally, the possible transferred processes of photoelectrons and photoholes were proposed.

  18. Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenquan, E-mail: wkcui@163.com; An, Weijia; Liu, Li; Hu, Jinshan; Liang, Yinghua, E-mail: liangyh@heuu.edu.cn

    2014-11-15

    Graphical abstract: - Highlights: • CdS particles modified BiOBr was successfully synthesized by a facile precipitation method. • CdS greatly increased visible light absorption for BiOBr. • The photocatalyst exhibited high activities for organics degradation. • The mechanisms of charge separation in the CdS/BiOBr composites were proposed. - Abstract: CdS/BiOBr composite photocatalysts were successfully prepared by a facile precipitation method and characterized by XRD, SEM, TEM, EDS, UV–vis and PL. The photocatalytic activities of the samples were evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The effects of CdS content, catalyst dosage, and initial concentration of RhB solution on the photocatalytic degradation were investigated. The results indicated that the CdS/BiOBr composite photocatalysts exhibited strong absorption in the visible light region and possessed excellent photocatalytic activity and stability for RhB degradation. The 40%-loaded CdS/BiOBr composite photocatalyst was found to degrade 97% of RhB under visible light irradiation and showed no apparent decrease in activity after five cycles. The enhancement in both activity and stability were attributed to the enhanced light absorption and effective separation and transfer of photogenerated charges, originating from the well-matched overlapping band-structures and closely contacted interfaces. Experiments using radical scavengers indicated that ·O{sub 2}{sup −} and h{sup +} were the main reactive species present in the photosystem. On the basis of the experimental results and estimated energy band positions, the mechanism for the enhanced photocatalytic activity was proposed.

  19. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    Science.gov (United States)

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-05

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all.

  20. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  1. Degradation of 17α-ethinylestradiol in water by heterogeneous photocatalysis

    Directory of Open Access Journals (Sweden)

    Wilton Silva Lopes

    2015-11-01

    Full Text Available We investigated the degradation of 17α-ethynylestradiol in an aqueous solution using a batch heterogeneous photocatalytic (HPC reactor with ultraviolet (UV light and TiO2 catalyst. In order to determine appropriate operating conditions, a 23 factorial experiment was conducted with initial an substrate concentration of 15 or 30 mg L-1, TiO2 concentration of 0.02 or 0.05%, pH of 5.0 or 9.0 and total reaction time 240 min. Degradation profiles and kinetic parameters were determined with an initial substrate concentration of 15 or 30 mg L-1, 0.02% TiO2 and pH 7.0.With17α-ethynylestradiol at 15 mg L-1, degradation efficiency was 100% after 120 min independent of TiO2 concentration and pH. However, less than 50% of the substrate was degraded when the initial concentration was 30 mg L-1 (0.05% TiO2 and pH 5.0. Initial substrate concentration was a limiting factor for HPC, although the reaction was also strongly influenced by TiO2 concentration and the interaction between initial substrate concentration and TiO2 concentration. All degradations followed first-order kinetics. With 17α-ethynylestradiol at 15 mg L-1, the half-life time (t½ was 64.16 min and the rate constant was 0.108 min-1, while at 30 mg L-1, substrate degradation proceeded in two stages, the t½ values of which were 44.71 and 433.12 min.

  2. Rapid Photocatalytic Degradation of Methylene Blue under High Photon Flux UV Irradiation: Characteristics and Comparison with Routine Low Photon Flux

    OpenAIRE

    2012-01-01

    This study examined the photocatalytic degradation efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV photon flux was 1 . 7 1 × 1 0 − 6 − 3 . 1 3 × 1 0 − 6 einstein c m − 2   s − 1 made by a super high-intensity UV apparatus. A comparative study between high photon flux photocatalytic process and routine low photon flux photocatalytic process for methylene blue degradation has been made in aqueous solution. The experimental results showed...

  3. Photocatalytic degradation of benzothiophene and dibenzothiophene using supported gold nanoparticle

    Directory of Open Access Journals (Sweden)

    Suzan Khayyat

    2017-03-01

    Full Text Available Photocatalytic oxidation of benzothiophene (BT and dibenzothiophene (DBT was studied over Au nanoparticles (NPs incorporated titania (Au/TiO2 catalyst under UV radiation using H2O2 as oxidant. The reaction parameters such as, catalyst weight, Au loading, calcination of Au/TiO2 catalysts and [H2O2]:[DBT] mole ratio are studied. The Au/TiO2 catalyst was synthesised by deposition–precipitation method. The catalysts were characterized by ICPAES, XRD and TEM analysis. ICP-AES analysis demonstrate that with a nominal amount of 1, 1.5, 2, 2.5 and 3 at.% of Au in a solution at pH 7, the amount of gold deposited on the TiO2 was 0.78, 1.42, 1.92, 2.45 and 2.87 at.% respectively. The average particle size of Au in the 2 at.% Au/TiO2 sample after drying was 3 nm and in the sample after calcination at 573 K was 5 nm. The XPS spectra of Au/TiO2 sample demonstrate that the sample dried at 373 K contains Au0 and Au3+ and the sample after calcination at 573 K contains Au0 and negligible amount of Au3+. The photocatalysis studies show that the Au nanoparticles (NPs incorporated titania showed higher activity for the removal of DBT compared to pure titania. The optimum Au loading in Au/TiO2 for the photocatalytic removal of DBT was found to be 1.5 at.% Au. The Au NPs act as electron sink to enhance e/h+ charge separation and produce number of oxidizing species, thereby increase the reaction rate. The calcined catalyst sample showed higher activity toward DBT removal compared to the uncalcined sample. This is due to the presence of metallic gold in the calcined sample, which can effectively involve in the charge separation. The optimum catalyst weight for DBT removal was found to be 0.3 g of Au/TiO2 for 200 ml of DBT in isooctane (200 ppm S. The optimum [H2O2]:[DBT] molar ratio was found to be 3. Comparison of photocatalytic removal of DBT and BT showed that the removal of DBT is faster than the BT.

  4. Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Suprabha T

    2008-01-01

    Full Text Available Abstract TiO2nanostructures with fascinating morphologies like cubes, spheres, and rods were synthesized by a simple microwave irradiation technique. Tuning of different morphologies was achieved by changing the pH and the nature of the medium or the precipitating agent. As-synthesized titania nanostructures were characterized by X-ray diffraction (XRD, UV–visible spectroscopy, infrared spectroscopy (IR, BET surface area, photoluminescence (PL, scanning electron microscopy (SEM and transmission electron microscopy (TEM, and atomic force microscopy (AFM techniques. Photocatalytic dye degradation studies were conducted using methylene blue under ultraviolet light irradiation. Dye degradation ability for nanocubes was found to be superior to the spheres and the rods and can be attributed to the observed high surface area of nanocubes. As-synthesized titania nanostructures have shown higher photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2.

  5. A novel sensor for the detection of acetamiprid in vegetables based on its photocatalytic degradation compound.

    Science.gov (United States)

    Jin, Dangqin; Xu, Qin; Yu, Liangyun; Mao, Airong; Hu, Xiaoya

    2016-03-01

    An electrochemical method for the indirect determination of acetamiprid was studied, using titanium dioxide photocatalysts coupled with a carbon paste electrode. The cyclic voltammetric results indicated that the photocatalytic degradation compound of acetamiprid had electroactivity in neutral solutions. The amount of acetamiprid was further indirectly determined by differential pulse anodic stripping voltammetric analysis as a sensitive detection technique. The experimental parameters were optimized with regard to the photocatalytic degradation time, pH of buffer solution, accumulation potential and accumulation time. Under optimal conditions, the proposed electrochemical method could detect acetamiprid concentrations ranging from 0.01 to 2.0μM, with a detection limit (3S/N) of 0.2nM. Moreover, the proposed method displays excellent selectivity, good reproducibility, and acceptable operational stability and can be successfully applied to acetamiprid determination in vegetable samples with satisfying results.

  6. SiO2-TiO2 materials for diuron photocatalytic degradation

    OpenAIRE

    Bernardes, Arthur Alaim; Bulhosa, Maria Carolina Salum; Gonçalves, Fábio Ferreira; D'Oca, Marcelo Gonçalves Montes; Wolke, Silvana Inês; Santos, João Henrique Zimnoch dos

    2011-01-01

    SiO2-TiO2 materials prepared by sol-gel method were evaluated in the photocatalytic degradation of diuron. The materials were prepared with and without surfactant cetyltrimethylammonium chloride at different temperatures (25, 50 and 100 oC). The samples were characterized by N2 adsorptiondesorption measurements, scanning electron microscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy and infrared diffuse reflectance spectroscopy. The results showed tha...

  7. Optimization of fipronil degradation by heterogeneous photocatalysis: Identification of transformation products and toxicity assessment.

    Science.gov (United States)

    Gomes Júnior, Oswaldo; Borges Neto, Waldomiro; Machado, Antonio E H; Daniel, Daniela; Trovó, Alam G

    2017-03-01

    In this work it was studied the degradation of the insecticide fipronil (FIP) by heterogeneous photocatalysis induced by TiO2 P25. Using chemometric methods (Factorial Design and Response Surface Methodology), it was possible to evaluate the role of interaction between pH of the reaction medium, the reaction time and concentration of TiO2, optimizing the conditions for degradation using artificial radiation. Under the optimized conditions (79.4 mg L(-1) TiO2 and 66.3 min of reaction time for 1.1 mg L(-1) of FIP, at pH 5.6-5.8 (natural pH of the irradiated suspension)), 90.9% of FIP degradation was achieved at a degradation rate of 1.54 × 10(-2) m(2) kJ(-1) in terms of accumulated UVA radiation, corresponding to a pseudo-first order rate constant of 1.34 × 10(-2) min(-1) and a half-life of 51.7 min. Under the same conditions, these assays were extended to the use of solar radiation, when the degradation rate was 14% higher, with half-life of 45 min, suggesting that in both cases FIP degradation was successful. Four by-products of FIP photocatalytic degradation could be separated, identified, and their formation and consumption followed by UHPLC-Q-TOF. Although the same intermediates have been obtained using both irradiation sources, a faster degradation of the transformation products (TPs) was observed under solar irradiation due to its expressive photonic flux covering the UVA and UVB. It is noteworthy that both the untreated effluent and the identified compounds have low toxicity with respect to V. fischeri, suggesting that the heterogeneous photocatalysis may be a good alternative for treatment of wastewaters containing FIP and its TPs, mainly when solar radiation is the source of radiation, since under this condition the power consumption during the treatment can be significantly reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures.

    Science.gov (United States)

    Xie, Shunji; Zhang, Qinghong; Liu, Guodong; Wang, Ye

    2016-01-01

    The development of efficient artificial photocatalysts and photoelectrocatalysts for the reduction of CO2 with H2O to fuels and chemicals has attracted much attention in recent years. Although the state-of-the-art for the production of fuels or chemicals from CO2 using solar energy is still far from practical consideration, rich knowledge has been accumulated to understand the key factors that determine the catalytic performances. This Feature article highlights recent advances in the photocatalytic and photoelectrocatalytic reduction of CO2 with H2O using heterogeneous semiconductor-based catalysts. The effects of structural aspects of semiconductors, such as crystalline phases, particle sizes, morphologies, exposed facets and heterojunctions, on their catalytic behaviours are discussed. The roles of different types of cocatalysts and the impact of their nanostructures on surface CO2 chemisorption and reduction are also analysed. The present article aims to provide insights into the rational design of efficient heterogeneous catalysts with controlled nanostructures for the photocatalytic and photoelectrocatalytic reduction of CO2 with H2O.

  9. Photocatalytic performance of graphene/TiO{sub 2}-Ag composites on amaranth dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Roşu, Marcela-Corina, E-mail: marcela.rosu@itim-cj.ro; Socaci, Crina; Floare-Avram, Veronica; Borodi, Gheorghe; Pogăcean, Florina; Coroş, Maria; Măgeruşan, Lidia; Pruneanu, Stela

    2016-08-15

    Ternary nanocomposites containing TiO{sub 2}, silver and graphene with different reduction levels were prepared and used as photocatalysts for amaranth azo dye degradation, under UV and natural light exposure. The obtained materials were characterized by TEM, XRD, FTIR and UV-Vis spectroscopy, confirming the successful formation of the nanocomposites. HPLC analysis along with UV-Vis spectroscopy were employed to quantify the concentration of non-degraded dye in solution. The graphene/TiO{sub 2}-Ag nanocomposites proved to have remarkable photocatalytic activities for amaranth degradation under UV and solar irradiation (85.3–98% of dye has disappeared in the first 2 h). Also, significant removal efficiencies (between 40.5 and 71.8%) of photocatalysts, in day light conditions, were demonstrated. The best result for amaranth dye degradation was obtained with the reduced graphene/TiO{sub 2}-Ag catalyst (up to 99.9%). Based on the degradation products analysis, a photodegradation pathway of amaranth dye was also proposed. - Highlights: • Graphene/TiO{sub 2}-Ag composites were prepared by a combined chemical-thermal method. • The composites showed improved light-absorption characteristics. • A significant degradation performance of amaranth was obtained with these composites under UV and natural light exposure. • Graphene/TiO{sub 2}-Ag composites offer a high potential for various photocatalytic applications in pollutant removal processes.

  10. Effective photocatalytic degradation of atrazine over titania-coated carbon nanotubes (CNTs) coupled with microwave energy.

    Science.gov (United States)

    Chen, Hongzhe; Yang, Shaogui; Yu, Kai; Ju, Yongming; Sun, Cheng

    2011-04-14

    Microwave-assisted photocatalytic (MAPC) degradation of atrazine over nanotitania coated multiwalled carbon nanotubes (TiO(2)/MWCNTs) was investigated in this study. As a result, degradation efficiency of atrazine over TiO(2)/CNTs prepared by hydrothermal method was about 30% and 20% higher than that of titania P25 and anatase prepared hydrothermally in given time. The TiO(2)/CNTs composite samples were characterized by TGA-DSC, TEM, UV-vis DRS, XRD and BET, to explain the reason for efficient degradation and adsorption process of atrazine. Microwave thermal effect in this process was also investigated. Intermediates of degradation both in MAPC process and microwave-assisted photodegradation (MAPD) process were identified by LC/MS. It suggests that MWCNTs have special effects on atrazine degradation during MAPC process, like strong microwave absorption capability.

  11. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    Science.gov (United States)

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively.

  12. Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Junfeng Niu; Lifeng Yin; Wenlong Wang; Yueping Bao; Jing Chen; Yanpei Duan

    2011-01-01

    The micron grade multi-metal oxide bismuth silicate (Bi12SiO20,BSO) was prepared by the chemical solution decomposition technique.Photocatalytic degradation of pentachlorophenol (PCP) was investigated in the presence of BSO under xenon lamp irradiation.The reaction kinetics followed pseudo first-order and the degradation ratio achieved 99.1% after 120 min at an initial PCP concentration of 2.0 mg/L.The pH decreased from 6.2 to 4.6 and the dechlorination ratio was 68.4% after 120 min at an initial PCP concentration of 8.0 mg/L.The results of electron spin resonance showed that superoxide radical (O2-) was largely responsible for the photocatalytic degradation of PCP.Interestingly,this result was different from that of previous photocatalytic reactions where valence band holes or hydroxyl radicals played the role of major oxidants.Some aromatic compounds and aliphatic carboxylic acids were determined by GC/MS as the reaction intermediates,which indicated that O2- can attack the bond between the carbon and chlorine atoms to form less chlorinated aromatic compounds.The aromatic compounds were further oxidized by O2- to generate aliphatic carboxylic acids which can be finally mineralized to CO2 and H2O.

  13. Photocatalytic degradation of methyl orange by PbXO4 (X=Mo, W).

    Science.gov (United States)

    Zhiyong, Yu; Chaonan, Dong; Ruiying, Qiu; Lijin, Xu; Aihua, Zheng

    2015-01-15

    PbMoO4 and PbWO4 are prepared by the simple precipitation method in this work, they show the photocatalytic activities for the degradation of methyl orange in water under the UV light illumination. In the above photocatalytic degradation processes, methyl orange concentration decreases quickly, the total organic carbon (TOC) decreases slowly; inorganic ions (SO4(2-), NO3(-), NO2(-), NH4(+)) can be formed and measured by the ion chromatograph; the pH value in the systems decreases gradually; a small quantity of HO˙(-)·can be generated and measured by the terephthalic acid (TA) indirectly. In order to estimate the roles of active species during the above photocatalytic degradation processes, isopropanol, (NH4)2C2O4, and 1,4-benzoquinone as the scavengers for HO˙, h(+), O2˙(-) are introduced into the systems, respectively. Isopropanol and (NH4)2C2O4 are effective scavengers for active species HO˙ and h(+) respectively, but 1,4-benzoquinone is not a satisfactory scavenger in all cases to capture O2˙(-), at least in this work. At last, PbMoO4 and PbWO4 are characterized by nitrogen sorption, DRS, SEM, TEM and XRD.

  14. Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2.

    Science.gov (United States)

    Zhao, Donglin; Yang, Xin; Chen, Changlun; Wang, Xiangke

    2013-05-15

    A visible-light photocatalyst of multiwalled carbon nanotubes decorated with TiO2 nanoparticles (MWCNT/TiO2) was synthesized by a two-step method, in which TiO2 was first mounted on MWCNT surfaces by hydrolysis of tetrabutyl titanate and further crystallized into anatase nanocrystal in a vacuum furnace at 500°C. The photocatalytic degradation of methylene blue over the ultraviolet (UV) and visible-light spectrum regions was investigated. The MWCNT/TiO2 was able to absorb a high amount of photo energy in the visible-light region, driving effectively photochemical degradation reactions. There were more OH radicals produced by the MWCNT/TiO2 (1:3) than by pure TiO2 under UV and visible-light irradiation. In the photodegradation of methylene blue, as a model reaction, a signification enhancement in the reaction rate was observed with the MWCNT/TiO2 (1:3), compared to bare TiO2 and the physical mixture of MWCNTs and TiO2. MWCNTs can improve the photocatalytic activity of TiO2 in two aspects, namely e(-) transportation and adsorption. This work provides new insight into the fabrication of MWCNT/TiO2 as a high performance visible-light photocatalyst and facilitates its application in photocatalytic degradation of organic compounds.

  15. Kinetics of Photocatalytic Degradation of Methylene Blue Over CaTiO3

    Institute of Scientific and Technical Information of China (English)

    HAN Chong; YANG He; XUE Xiangxin

    2015-01-01

    Kinetics of photocatalytic degradation of methylene blue (MB) over CaTiO3 was studied. Effects of the solution pH, the MB concentration, the CaTiO3 dosage, and the type of light source on photocatalytic degradation rate of MB over CaTiO3 were investigated in detail. The results show that photocatalytic degradation of MB over CaTiO3 followed the first-order reaction. The apparent rate constant (kobs) of MB signiifcantly increased with increasing solution pH while it greatly decreased with increasing MB concentration. Thekobs of MB increased with increasing CaTiO3 dosage from 0.05 to 0.1 g, whereas it slightly decreased with increasing CaTiO3 dosage in the range of 0.1-0.4 g. Thekobs of MB under UV-visible light irradiation was larger by factors of 2.2 than that under visible light irradiation. Thekobs of MB was (4.8±0.3)×10-1 h-1 under optimal conditions with the solution pH of 11, the MB concentration of 1 ppm, the CaTiO3 dosage of 0.1 g, and UV-visible light irradiation.

  16. TiO2 photocatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment.

    Science.gov (United States)

    Lai, Webber Wei-Po; Lin, Hank Hui-Hsiang; Lin, Angela Yu-Chen

    2015-04-28

    This study investigated the TiO2 photocatalytic degradation and transformation of the oxazaphosphorines ifosfamide (IFO), cyclophosphamide (CP) and trofosfamide (TRO). Under the optimum conditions of TiO2=100mg/L, IFO=100μg/L and solution pH=5.5, IFO was completely removed within 10min (k=0.433min(-1)). The results indicated that OHfree radicals generated by valence holes in the bulk solution were the predominant species for the degradation of IFO. At higher initial concentrations of oxazaphosphorines (20mg/L), >50% of TOC remained after 6h of reaction time, indicating that parent compounds were transformed to byproducts, which exhibit higher Microtox acute toxicities; chlorinated byproducts were likely the source of toxicity. Photocatalytic degradation pathways of the three oxazaphosphorines were proposed. IFO, CP and TRO follow very similar pathways and bond-breaking processes: ketonization and breaking of the CCl bond, the PN bond and the CN bond (N-dechloroethylation). Chloride (Cl(-)) release is likely the first and primary step in the decomposition process. Several of the identified byproducts were also metabolites, which implies that photocatalytic oxidation proceeds through pathways that are similar to metabolic pathways.

  17. Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: intermediates and degradation pathways.

    Science.gov (United States)

    Fenoll, José; Sabater, Paula; Navarro, Gines; Pérez-Lucas, Gabriel; Navarro, Simón

    2013-01-15

    The photocatalytic degradation of sixteen substituted phenylurea herbicides (PUHs) in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO(2)) as photocatalyst under artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the oxidant (Na(2)S(2)O(8)) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO(2) alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such herbicides in optimal conditions and at constant volumetric rate of photon absorption in the photoreactor. Thus, the complete disappearance of all the studied compounds was achieved after 20 min of illumination in the ZnO/Na(2)S(2)O(8) system. The main photocatalytic intermediates detected during the degradation of PUHs were identified. The probable photodegradation pathways were proposed and discussed. The main steps involved: N-demethylation of the N,N-dimethylurea-substituted compounds followed of N-demethylation and N-demethoxylation of the N-methoxy-N-methyl-substituted ureas and hydroxylation of aromatic rings and their aliphatic side-chains of both, parent compounds and intermediates.

  18. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO{sub 2}-expanded perlite photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Długosz, Maciej [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Żmudzki, Paweł; Kwiecień, Anna [Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków (Poland); Szczubiałka, Krzysztof, E-mail: szczubia@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Krzek, Jan [Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków (Poland); Nowakowska, Maria, E-mail: nowakows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-15

    Highlights: • Sulfamethoxazole was degraded using a floating photocatalyst under UV irradiation. • The photocatalyst was obtained by supporting TiO{sub 2} onto expanded perlite. • The mechanism of sulfamethoxazole photodegradation in water was proposed. • The photodegradation rate of sulfamethoxazole is greater at higher pH. - Abstract: Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO{sub 2}-expanded perlite photocatalyst (EP-TiO{sub 2}-773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir–Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained.

  19. Transition metal oxide loaded MCM catalysts for photocatalytic degradation of dyes

    Indian Academy of Sciences (India)

    Divya Jyothi; Parag A Deshpande; B R Venugopal; Srinivasan Chandrasekaran; Giridhar Madras

    2012-03-01

    Transition metal oxide (TiO2, Fe2O3, CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

  20. TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation

    Directory of Open Access Journals (Sweden)

    Alberto Strini

    2016-06-01

    Full Text Available This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin, composite systems (siloxane-hybrid, foamed hybrid, and curing temperatures (room temperature and 60 °C were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste. The geopolymer matrices were previously designed for different applications, ranging from insulating (foam to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM and energy dispersive X-ray (EDS analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

  1. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  2. Photocatalytic degradation of atrazine by porphyrin and phthalocyanine complexes.

    Science.gov (United States)

    Héquet, V; Le Cloirec, P; Gonzalez, C; Meunier, B

    2000-08-01

    This study principally focused on a new kind of photochemical reaction catalyst: porphyrin and phthalocyanine complexes. In a first step, the preparation of the catalysts was optimized. A resin has been chosen to be the support of the complexes. Efficiency of catalytic activity is performed on the degradation of a pesticide: atrazine. The best atrazine degradation occurs with 4.6% of complexes versus substrate. The role of the surface has also been shown to be important. Then, their performances were demonstrated in terms of kinetics and degradation routes, compared to a classical catalyst: titanium dioxide. This study seeks to assess the efficiency of these systems both in a mercury lamp reactor and under solar irradiation which reduces energy costs. The best atrazine degradation half-life found for the complexes is about 200 min with the iron phthalocyanine. These catalysts exhibit particular oxidation activities. Indeed, the degradation routes have been found different between the semi-conductor and the metallic complexes. These complexes are able to cleave the triazinic ring more efficiently than the titanium dioxide.

  3. Photocatalytic degradation of sunscreen active ingredients mediated by nanostructured materials

    Science.gov (United States)

    Soto-Vazquez, Loraine

    Water scarcity and pollution are environmental issues with terrible consequences. In recent years several pharmaceutical and personal care products, such as sunscreen active ingredients, have been detected in different water matrices. Its recalcitrant behavior in the environment has caused controversies and generated countless questions about its safety. During this research, we employed an advanced oxidation process (photocatalysis) to degrade sunscreen active ingredients. For this study, we used a 3x3 system, evaluating three photocatalysts and three different contaminants. From the three catalysts employed, two of them were synthesized. ZnO nanoparticles were obtained using zinc acetate dihydrated as the precursor, and TiO2 nanowires were synthesized from titanium tetrachloride precursor. The third catalyst employed (namely, P25) was obtained commercially. The synthesized photocatalysts were characterized in terms of the morphology, elemental composition, crystalline structure, elemental oxidation states, vibrational modes and surface area, using SEM-EDS, XRD, XPS, Raman spectroscopy and BET measurements, respectively. The photocatalysts were employed during the study of the degradation of p-aminobenzoic acid, phenylbenzimidazole sulfonic acid, and benzophenone-4. In all the cases, at least 50% degradation was achieved. P25 showed degradation efficiencies above 90%, and from the nine systems, 7 of them degraded at least 86%.

  4. Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products

    Science.gov (United States)

    Zhou, Kefu; Xie, Xiao-Dan; Chang, Chang-Tang

    2017-09-01

    Ti-doped MCM-41 with different Si/Ti molar ratios was prepared at room temperature to degrade tetracycline antibiotics in aqueous solution. The Ti was doped into the skeleton structure of MCM-41. The photocatalytic activity of Ti-doped MCM-41 was investigated. The optimal catalyst had Si/Ti molar ratio of 25 and over 99% removal of oxytetracycline in 150 min, and the removal could maintain 98% after 5 reuses. Ions and soluble organic matters in natural water affected the degradation reaction when Ti-doped MCM-41 was used to treat simulated wastewater of chicken farms. The degradation products of oxytetracycline, tetracycline and chlortetracycline were detected by Escherichia coli DH5α and HPLC-MS/MS. No intermediate product with higher toxicity was detected.

  5. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ming, Hai; Zhang, Hengchao; Li, Haitao; Pan, Keming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Wang, Fang; Gong, Jingjing [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-11-15

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: Black-Right-Pointing-Pointer The composites that Au nanoparticles supported on ZnO nanowires were synthesized. Black-Right-Pointing-Pointer Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. Black-Right-Pointing-Pointer Two operating mechanisms were proposed depending on excitation wavelength.

  6. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    I. Abdul Rahman

    2014-01-01

    Full Text Available ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.

  7. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  8. Photocatalytic Degradation of Methylene Blue with Side-glowing Optical Fiber Deliverying Visible Light

    Institute of Scientific and Technical Information of China (English)

    储金宇; 仲蕾

    2012-01-01

    The side-glowing optical fibers (SOFs) were chosen as the conducting medium of endogenous light; and 20 mg·L-1 methylene blue was chosen as the target to be degraded. The SOF is made up of quartz core with a silicon cladding, which can emit light through side surface more uniformly and transmit light for longer distance to avoid attenuation of light by liquid medium. The filament lamp was chosen as visible light source. Different reaction conditions, such as the presence of optical fiber or not, the quantity of SOF, light irradiation intensity were tested by measuring the methylene blue degradation of methylene blue. The results show that suitable reaction conditions were 1.167 g·L-1 Ag + /TiO 2 with 7% (by mass) of Ag + doped in TiO 2 , and 500 roots of SOF (30 cm length in solution). The photocatalytic degradation efficiency under 300W lamp irradiation for 8h was about 97%. And the photocatalytic degradation efficiency of methylene blue degradation was proportional to SOF quantity, light irradiation intensity and catalytic dosage within a certain range. Compared with general UV and visible light SOFs could save a huge amount of energy and cost, in the potential applications in dealing with organic pollutants on a large scale.

  9. Photocatalytic degradation of eleven microcystin variants and nodularin by TiO2 coated glass microspheres.

    Science.gov (United States)

    Pestana, Carlos J; Edwards, Christine; Prabhu, Radhakrishna; Robertson, Peter K J; Lawton, Linda A

    2015-12-30

    Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate powder from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 min or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 min) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.

  10. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang, E-mail: luwy@zstu.edu.cn; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing, E-mail: wxchen@zstu.edu.cn

    2016-11-05

    Highlights: • A facile synthetic strategy to prepare visible-light responsive electrospun nanofibers. • Self-floating nanofiber photocatalyts for the effective utilization of solar. • Possible degradation pathway of RhB and CBZ under visible light and solar irradiation. • Present a method for removing highly hazardous contaminants. - Abstract: The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C{sub 3}N{sub 4}/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C{sub 3}N{sub 4}/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C{sub 3}N{sub 4}/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules.

  11. Magnetic LaMnO3/Fe3O4 as reusable catalyst for photocatalytic degradation of methylene blue

    Science.gov (United States)

    Susanti, Y. D.; Afifah, N.; Saleh, R.

    2017-07-01

    In the present work, LaMnO3/Fe3O4 nanocomposites with different molar ratios (1:1, 1:0.5, 1:0.3, 1:0.1, and 1:0.05) have been successfully synthesized using the co-precipitation method. The prepared nanocomposites were characterized using X-ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM). The photocatalytic activity was evaluated using visible light irradiation. Methylene blue (MB) was used as a model of organic pollutant. The obtained nanocomposites exhibited much higher photocatalytic activity and stability than pure LaMnO3 under visible light irradiation. The result showed that LaMnO3/Fe3O4 with the molar ratio of 1:0.5 showed superior photocatalytic activity than others. The active species on photocatalytic activity was investigated by measuring the photocatalytic degradation in the presence of scavenger.

  12. Sunlight-driven photocatalytic degradation of non-steroidal anti-inflammatory drug based on TiO₂ quantum dots.

    Science.gov (United States)

    Kaur, Amandeep; Umar, Ahmad; Kansal, Sushil Kumar

    2015-12-01

    This paper reports the facile synthesis, characterization and solar-light driven photocatalytic degradation of TiO2 quantum dots (QDs). The TiO2 QDs were synthesized by a facile ultrasonic-assisted hydrothermal process and characterized in terms of their structural, morphological, optical and photocatalytic properties. The detailed studies confirmed that the prepared QDs are well-crystalline, grown in high density and exhibiting good optical properties. Further, the prepared QDs were efficiently used as effective photocatalyst for the sun-light driven photocatalytic degradation of ketorolac tromethamine, a well-known non-steroidal anti-inflammatory drug (NSAID). To optimize the photocatalytic degradation conditions, various dose-dependent, pH-dependent, and initial drug-concentration dependent experiments were performed. The detailed solar-light driven photocatalytic experiments revealed that ∼99% photodegradation of ketorolac tromethamine drug solution (10 mg L(-1)) was observed with optimized amount of TiO2 QDs and pH (0.5 g L(-1) and 4.4, respectively) under solar-light irradiations. The observed results demonstrate that simply synthesized TiO2 QDs can efficiently be used for the solar-light driven photocatalytic degradation of harmful drugs and chemicals.

  13. Preparation and Photocatalytic Performance of MWCNTs/TiO2 Nanocomposites for Degradation of Aqueous Substrate

    Directory of Open Access Journals (Sweden)

    Qiannan Duan

    2016-01-01

    Full Text Available In this study, multiwalled carbon nanotubes (MWCNTs/TiO2 nanocomposites were obtained by constant volumetric wet impregnation processes. The prepared catalysts were characterized by scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The effect of reaction conditions on photocatalytic performance of the catalysts was investigated by the degradation of methyl orange (MO under UV irradiation, in a new type of reactor with unique structure. The results showed that the prepared nanocomposite exhibited higher MO degradation efficiency than that of pure nano-TiO2. Besides, in batch experiments of influencing factors, including ionic strength, oxidant amount, and response times, the presence of H2O2 would contribute to increasing the MO degradation rate of MWCNTs/TiO2 samples. Ionic concentration and long reaction times are adverse to the MO degradation in the processes.

  14. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization.

    Science.gov (United States)

    Zhang, Yongming; Sun, Xia; Chen, Lujun; Rittmann, Bruce E

    2012-02-01

    An integrated photocatalytic-biological reactor (IPBR) was used for accelerated degradation and mineralization of 2,4,6-trichlorophenol (TCP) through simultaneous, intimate coupling of photocatalysis and biodegradation in one reactor. Intimate coupling was realized by circulating the IPBR's liquid contents between a TiO(2) film on mat glass illuminated by UV light and honeycomb ceramics as biofilm carriers. Three protocols-photocatalysis alone (P), biodegradation alone (B), and integrated photocatalysis and biodegradation (photobiodegradation, P&B)-were used for degradation of different initial TCP concentrations. Intimately coupled P&B also was compared with sequential P and B. TCP removal by intimately coupled P&B was faster than that by P and B alone or sequentially coupled P and B. Because photocatalysis relieved TCP inhibition to biodegradation by decreasing its concentration, TCP biodegradation could become more important over the full batch P&B experiments. When phenol, an easy biodegradable compounds, was added to TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand. Cl(-) was only partially released during P experiments (24%), and this corresponded to its poor mineralization in P experiments (32%). Thus, intimately coupled P&B in the IPBR made it possible obtain the best features of each: rapid photocatalytic transformation in parallel with mineralization of photocatalytic products.

  15. Photocatalytic degradation of methyl orange over ITO/CdS/ZnO interface composite films

    Institute of Scientific and Technical Information of China (English)

    WEI Shouqiang; SHAO Zhongcai; LU Xudong; LIU Ying; CAO Linlin; HE Yan

    2009-01-01

    ITO/CdS/ZnO interface composite films were successfully prepared by subsequent electrodeposition of CdS and ZnO onto indium tin oxide (ITO) glass substrates. The obtained ITO/CdS/ZnO composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The photocatalytic activity of ITO/CdS/ZnO composite films were investigated using methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including initial concentration of MO, pH value of solution, and inorganic anion species over the composite films were examined. A blue shift of absorption threshold was observed for the ITO/CdS/ZnO film in comparison with ITO/ZnO film. ITO/CdS/ZnO composite films prepared under specific conditions showed a higher photocatalytic activity than that of ITO/ZnO films. It was also found that the photocatalytic degradation of MO on the composite filing followed pseudo-first order kinetics.

  16. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    Science.gov (United States)

    Chai, Bo; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Phosphorus doped graphitic carbon nitride (g-C3N4) was easily synthesized using ammonium hexafluorophosphate (NH4PF6) as phosphorus source, and ammonium thiocyanate (NH4SCN) as g-C3N4 precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C3N4 was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV-vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C3N4 samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C3N4 had a superior photocatalytic activity than that of pristine g-C3N4, attributing to the phosphorus atoms substituting carbon atoms of g-C3N4 frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C3N4. Moreover, the tests of radical scavengers demonstrated that the holes (h+) and superoxide radicals (rad O2-) were the main active species for the degradation of RhB.

  17. Photocatalytic degradation of methyl orange over ITO/Cds/ZnO interface composite films.

    Science.gov (United States)

    Wei, Shouqiang; Shao, Zhongcai; Lu, Xudong; Liu, Ying; Cao, Linlin; He, Yan

    2009-01-01

    ITO/CdS/ZnO interface composite films were successfully prepared by subsequent electrodeposition of CdS and ZnO onto indium tin oxide (ITO) glass substrates. The obtained ITO/CdS/ZnO composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The photocatalytic activity of ITO/CdS/ZnO composite films were investigated using methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including initial concentration of MO, pH value of solution, and inorganic anion species over the composite films were examined. A blue shift of absorption threshold was observed for the ITO/CdS/ZnO film in comparison with ITO/ZnO film. ITO/CdS/ZnO composite films prepared under specific conditions showed a higher photocatalytic activity than that of ITO/ZnO films. It was also found that the photocatalytic degradation of MO on the composite films followed pseudo-first order kinetics.

  18. Hydraulic performance of a proposed in situ photocatalytic reactor for degradation of MTBE in water.

    Science.gov (United States)

    Lim, Leonard Lik Pueh; Lynch, Rod

    2011-01-01

    Methyl tert-butyl ether (MTBE) groundwater remediation projects often require a combination of technologies resulting in increasing the project costs. A cost-effective in situ photocatalytic reactor design, Honeycomb II, is proposed and tested for its efficiency in MTBE degradation at various flows. This study is an intermediate phase of the research in developing an in situ photocatalytic reactor for groundwater remediation. It examines the effect of the operating variables: air and water flow and double passages through Honeycomb II, on the MTBE removal. MTBE vaporisation is affected by not only temperature, Henry's law constant and air flow to volume ratio but also reactor geometry. The column reactor achieved more than 84% MTBE removal after 8 h at flows equivalent to horizontal groundwater velocities slower than 21.2 cm d⁻¹. Despite the contrasting properties between a photocatalytic indicator methylene blue and MTBE, the reactor efficiency in degrading both compounds showed similar responses towards flow (equivalent groundwater velocity and hydraulic residence time (HRT)). The critical HRT for both compounds was approximately 1 d, which corresponded to a velocity of 21.2 cm d⁻¹. A double pass through both new and used catalysts achieved more than 95% MTBE removal after two passes in 48 h. It also verified that the removal efficiency can be estimated via the sequential order of the removal efficiency of one pass obtained in the laboratory. This study reinforces the potential of this reactor design for in situ groundwater remediation.

  19. Magnetic and photocatalytic response of Ag-doped ZnFeO nano-composites for photocatalytic degradation of reactive dyes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Asif, E-mail: ahayat@ksu.edu.sa [College of Engineering, Department of Chemical Engineering, King Saud University, Riyadh (Saudi Arabia); Ramay, Shahid Mahmood [College of Science, Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Al-Zaghayer, Yousef S. [College of Engineering, Department of Chemical Engineering, King Saud University, Riyadh (Saudi Arabia); Industrial Catalysts Research Chair, King Saud University, Riyadh 11421 (Saudi Arabia); Imran, Muhammad [College of Engineering, Department of Chemical Engineering, King Saud University, Riyadh (Saudi Arabia); Atiq, Shahid [Centre of Excellence in Solid State Physics, University of the Punjab, New Campus, Lahore 54590 (Pakistan); Al-Johani, Meshal S. [Energy Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442 (Saudi Arabia)

    2014-11-25

    Highlights: • Self-consistent sol–gel based auto-combustion route was used. • Photocatalytic degradation of reactive dyes in aqueous solution was investigated. • Due to Ag doping, band gap reduced. • Activity of Ag-doped samples was higher than that of un-doped ones. - Abstract: To investigate the photocatalytic degradation of reactive dyes in aqueous solution, pure ZnO and Fe/Ag-doped magnetic photocatalysts having nominal compositions of Zn{sub 0.95−x}Fe{sub 0.05}Ag{sub x}O (x = 0.0, 0.05 and 0.1) have been synthesized via self-consistent sol–gel based auto-combustion route. Thermally stable samples were subsequently confirmed to exhibit wurtzite type hexagonal structure, characteristic of ZnO. The nature of chemical bonding was elaborated by Fourier transform analysis. Electron microscopic techniques were employed to investigate the structural morphology and to evaluate the particle size. Ferromagnetic nature of the Fe/Ag doped samples was revealed by vibrating sample magnetometry, enabling the photocatalytic samples to be re-collected magnetically for repeated usage. The enhanced photocatalytic activity in the degradation of methylene blue under UV light irradiation with 5 and 10 wt.% Ag/ZnFeO has been observed validating the potential applications of these materials in the field of photo-degradation of organic pollutants.

  20. Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(III)-SiO(2) catalyst.

    Science.gov (United States)

    Liu, Ting; You, Hong; Chen, Qiwei

    2009-03-15

    This article presents preparation, characterization and evaluation of heterogeneous Fe(III)-SiO(2) catalysts for the photo-Fenton degradation of polyacrylamide (PAM) in aqueous solution. Fe(III)-SiO(2) catalysts are prepared by impregnation method with two iron salts as precursors, namely Fe(NO(3))(3) and FeSO(4), and are characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. The irradiated Fe(III)-SiO(2) is complexed with 1,10-phenanthroline, then is measured by UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS) and XPS to confirm the oxidation state of Fe in solid state. By investigating the photo-Fenton degradation of PAM in aqueous solution, the results indicate that Fe(III)-SiO(2) catalysts exhibit an excellent photocatalytic activity in the degradation of PAM. Moreover, the precursor species and the OH(-)/Fe mole ratio affect the photocatalytic activity of Fe(III)-SiO(2) catalysts to a certain extent. Finally, the amount of Fe ions leaching from the Fe(III)-SiO(2) catalysts is much low.

  1. Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(III)-SiO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ting [Department of Environmental Science and Engineering, Harbin Institute of Technology, P.O. Box 2606, 202 Haihe Road, Harbin 150090 (China); You Hong [Department of Environmental Science and Engineering, Harbin Institute of Technology, P.O. Box 2606, 202 Haihe Road, Harbin 150090 (China)], E-mail: youhong@hit.edu.cn; Chen Qiwei [Department of Environmental Science and Engineering, Harbin Institute of Technology, P.O. Box 2606, 202 Haihe Road, Harbin 150090 (China)

    2009-03-15

    This article presents preparation, characterization and evaluation of heterogeneous Fe(III)-SiO{sub 2} catalysts for the photo-Fenton degradation of polyacrylamide (PAM) in aqueous solution. Fe(III)-SiO{sub 2} catalysts are prepared by impregnation method with two iron salts as precursors, namely Fe(NO{sub 3}){sub 3} and FeSO{sub 4}, and are characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. The irradiated Fe(III)-SiO{sub 2} is complexed with 1,10-phenanthroline, then is measured by UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS) and XPS to confirm the oxidation state of Fe in solid state. By investigating the photo-Fenton degradation of PAM in aqueous solution, the results indicate that Fe(III)-SiO{sub 2} catalysts exhibit an excellent photocatalytic activity in the degradation of PAM. Moreover, the precursor species and the OH{sup -}/Fe mole ratio affect the photocatalytic activity of Fe(III)-SiO{sub 2} catalysts to a certain extent. Finally, the amount of Fe ions leaching from the Fe(III)-SiO{sub 2} catalysts is much low.

  2. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqin [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Jinze; Ma, Changchang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Lu, Ziyang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-02-28

    Highlights: • We demonstrated the as-prepared photocatalyst of g-C{sub 3}N{sub 4}-TiO{sub 2} with the commercial TiO{sub 2} (P25) composited melamine under ball milling and calcined. • The enhanced photocatalytic performance could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. • The possible photocatalytic mechanism of g-C{sub 3}N{sub 4}/P25 under visible light irradiation is proposed. - Abstract: The graphitic carbon nitride (g-C{sub 3}N{sub 4}), as one photocatalyst which possess the suitable band gap, is better for modified TiO{sub 2} and enhanced photocatalytic degradation of organic pollutants. In this work, the g-C{sub 3}N{sub 4}/TiO{sub 2} were successfully prepared via directly calcined the mixture of melamine and P25. The as-prepared g-C{sub 3}N{sub 4}/TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution electron microscopy (HRTEM), Raman and Fourier transform-infrared spectroscopy (FT-IR). The photocatalytic performances of g-C{sub 3}N{sub 4}/TiO{sub 2} composites were investigated by degradation of ciprofloxacin. The results showed that the g-C{sub 3}N{sub 4} and P25 were successfully composited, and the bond of C–N was well formed, the calcined temperature for as-prepared photocatalysts and the ratio of melamine and P25 were important to the degradation rate of ciprofloxacin. When the mixture of melamine and P25 with 1:2, and calcined temperature at 600 °C, the degradation rate of ciprofloxacin could reach 95% in 60 min. The enhanced photocatalytic performances could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. Finally, the possible transferred processes of photoelectrons and photoholes were proposed.

  3. Highly efficient photocatalytic degradation of methylene blue by PoPD/TiO2 nanocomposite.

    Science.gov (United States)

    Yang, Chuanxi; Zhang, Ming; Dong, Wenping; Cui, Guanwei; Ren, Zongming; Wang, Weiliang

    2017-01-01

    The poly-o-phenylenediamine (PoPD)/TiO2 nanocomposite was successfully synthesized via 'in situ' oxidative polymerization method. The modified photocatalysts were characterized by BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrarad spectra (FT-IR), thermogravimrtic analysis (TGA), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible diffuse reflectance spectrum (UV-Vis DRS) and Photocurrent Test. The results showed that the PoPD exists on the surface of TiO2, the presence of PoPD does not impact on the lattice structure and grain size of TiO2, and the presence of PoPD enhances the visible response and photoelectric property. The photocatalytic degradation of methylene blue (MB) was chosen as a model reaction to evaluate the photocatalytic activities of TiO2 and PoPD/TiO2. The optimal preparation condition was the molar ratio of oPD to TiO2 = 3:1, HCl concentration = 1.2 mol/L, the molar ratio of APS to oPD = 1:1. The apparent first-order rate constant kapp of PoPD/TiO2 nanocomposite was 0.0098 min-1, which is 6 times higher than TiO2 (0.0016 min-1). Meanwhile, the PoPD/TiO2 nanocomposites showed excellent photocatalytic stability, and the photocatalytic stability was depended on the stability of structure. At last, the photocatalytic mechanism of POPD/TiO2 nanocomposites was also proposed based on the synergetic effect between TiO2 and PoPD.

  4. BiOBr microspheres for photocatalytic degradation of an anionic dye

    Science.gov (United States)

    Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.

    2017-03-01

    BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.

  5. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires.

    Science.gov (United States)

    Kar, Archana; Smith, York R; Subramanian, Vaidyanathan

    2009-05-01

    Titanium dioxide (TiO2) nanotubes formed by anodization over titanium wires show a significant improvement in photocatalytic activity compared to the nanotubes formed over foils. This is evident when the fractional conversion of a textile dye, methyl orange, increased from 19% over a foil to 40% over wires in the presence of nanotubes of identical dimensions illuminated over the same geometrical area. Higher degradation rates with Pt-TiO2 nanotubes over foils are matched by the Pt-free TiO2 nanotubes over the wires. The higher photocatalytic activity over the anodized wires can be attributed to the efficient capture of reflected and refracted light by the radially outward oriented TiO2 nanotubes formed over the circumference of the titanium wire. The formation of TiO2 nanotubes over wires can be considered as an effective alternate to improve photodegradation rates by avoiding expensive additives.

  6. Formaldehyde degradation by photocatalytic Ag-doped TiO2 film of glass fiber roving.

    Science.gov (United States)

    Ubolchonlakate, Kornkanok; Sikong, Lek; Tontai, Tienchai

    2010-11-01

    The photocatalytic Ag doped TiO2 porous films were prepared by sol-gel method and dip coated on glass fiber roving. The sol composed of titanium (IV) isopropoxide, triethanolamine, ethanol and nitric acid followed by calcination of the film at 500 degrees C for 1 hour with a heating rate of 3 degrees C/min. The surface morphology and properties of synthesized TiO2 films were characterized by X-ray diffraction, atomic forced microscope and scanning electron microscope. A laboratory photocatalytic reactor was set up to carry out photoactivity of the prepared catalysts. The results show that TiO2-Ag and TiO2-Ag-TEA porous films give highest rate of formaldehyde gas degradation. It can be noted that triethanolamine exhibits two effects on TiO2 composite films; one is its effect on porous film structure and second is a reverse effect of hindrance of anatase growth.

  7. Facile Synthesis and High Photocatalytic Degradation Performance of ZnO-SnO2 Hollow Spheres

    Science.gov (United States)

    Jin, Changqing; Ge, Chenghai; Jian, Zengyun; Wei, Yongxing

    2016-11-01

    ZnO-SnO2 hollow spheres were successfully synthesized through a hydrothermal method-combined carbon sphere template. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The average diameter of hollow spheres is about 150 nm. The photocatalytic activity of the as-prepared samples was investigated by photodegrading Rhodamine B. The results indicated that the photocatalytic activities of ZnO-SnO2 hollow spheres are higher than ZnO hollow spheres. The degradation efficiency of the hollow spheres could reach 99.85% within 40 min, while the ZnO hollow spheres need 50 min.

  8. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    Science.gov (United States)

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Photocatalytic Degradation of Water-Soluble Dyes by LaCoO3

    Institute of Scientific and Technical Information of China (English)

    傅希贤; 杨秋华; 王俊珍; 白树林; 桑丽霞

    2003-01-01

    Perovskite-type oxides LaCoO3 was prepared by citrate method in granula of 20~30 nm. Using a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water-soluble dyes were carried out in the suspension system of LaCoO3. The results show that the perovskite-type oxide LaCoO3 has good photocatalytic activity. With the study of X-ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is mainly related with the factors such as the d-electron structure of ion Co3+, Co-O binding energy and adsorbed oxygen on the surface etc.

  10. Photocatalytic Degradation of Methyl Thionine Chloride in Aqueous Solution over Nanometer ( CdS/TiO2 )/MCM-41

    Institute of Scientific and Technical Information of China (English)

    XUE Hanling; LI Jianwei; GE Lingmei

    2006-01-01

    ( CdS / TiO2 )/MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocatalyst. The experimental results show that the optimum concentration of CdS over TiO2 was 3% ( molar ratio ), the photocatalytic activity was enhanced when making TiO2 the anatase phase with a rise of the roasting temperature, and the carrier, mesoporous molecular sieve MCM- 41, was beneficial to improving the photocatalytic activity of TiO2 for photocatalytic degradation of methyl thionine chloride. The morphology and the crystalline phase of the photocatalyst were discussed by means of XRD and SEM techniques, and the reaction mechanism of catalytic properties was also discussed.

  11. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation.

    Science.gov (United States)

    Badawy, M I; El Gohary, F; Ghaly, M Y; Ali, M E M

    2009-09-30

    Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO(2), ZrO(2) and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO(2) were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD(5)/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

  12. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, M.I.; Gohary, F.El. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt); Ghaly, M.Y., E-mail: ghalynrc@yahoo.com [Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), Dokki, Cairo (Egypt); Ali, M.E.M. [Water Pollution Research Department, National Research Centre (NRC), Dokki, Cairo 11312 (Egypt)

    2009-09-30

    Olive mills wastewater (OMW) is characterized by its high organic content and refractory compounds. In this study, an advanced technology for the treatment of the recalcitrant contaminants of OMW has been investigated. The technique used was either photo-Fenton as homogeneous photocatalytic oxidation or UV/semi-conductor catalyst (such as TiO{sub 2}, ZrO{sub 2} and FAZA) as heterogeneous photocatalytic oxidation for treatment of OMW. For both the processes, the effect of irradiation time, amounts of photocatalysts and semi-conductors, and initial concentration of hydrogen peroxide has been studied. At the optimum conditions, photo-Fenton process achieved COD, TOC, lignin (total phenolic compounds) and total suspended solids (TSSs) removal values of 87%, 84%, 97.44% and 98.31%, respectively. The corresponding values for UV/TiO{sub 2} were 68.8%, 67.3%, 40.19% and 48.9%, respectively, after 80 min irradiation time. The biodegradability expressed by BOD{sub 5}/COD ratio for treated wastewater was ranged from 0.66 to 0.8 compared to 0.19 for raw wastewater indicating enhancement of biodegradation.

  13. Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants.

    Science.gov (United States)

    Xu, Tiefeng; Ni, Dongjing; Chen, Xia; Wu, Fei; Ge, Pengfei; Lu, Wangyang; Hu, Hongguang; Zhu, ZheXin; Chen, Wenxing

    2016-11-05

    The effective elimination of micropollutants by an environmentally friendly method has received extensive attention recently. In this study, a photocatalyst based on polyacrylonitrile (PAN)-supported graphitic carbon nitride coupled with zinc phthalocyanine nanofibers (g-C3N4/ZnTcPc/PAN nanofibers) was successfully prepared, where g-C3N4/ZnTcPc was introduced as the catalytic entity and the PAN nanofibers were employed as support to overcome the defects of easy aggregation and difficult recycling. Herein, rhodamine B (RhB), 4-chlorophenol and carbamazepine (CBZ) were selected as the model pollutants. Compared with the typical hydroxyl radical-dominated catalytic system, g-C3N4/ZnTcPc/PAN nanofibers displayed the targeted adsorption and degradation of contaminants under visible light or solar irradiation in the presence of high additive concentrations. According to the results of the radical scavenging techniques and the electron paramagnetic resonance technology, the degradation of target substrates was achieved by the attack of active species, including photogenerated hole, singlet oxygen, superoxide radicals and hydroxyl radicals. Based on the results of ultra-performance liquid chromatography and mass spectrometry, the role of free radicals on the photocatalytic degradation intermediates was identified and the final photocatalytic degradation products of both RhB and CBZ were some biodegradable small molecules.

  14. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics.

    Science.gov (United States)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-05

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  15. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    Science.gov (United States)

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  16. Synthesis of TiO2 /CNT Composites and its Photocatalytic Activity Toward Sudan (I) Degradation.

    Science.gov (United States)

    Miribangul, Amat; Ma, Xiaoli; Zeng, Chen; Zou, Huan; Wu, Yahui; Fan, Tengpeng; Su, Zhi

    2016-07-01

    Semiconductor photocatalysis has the potential for achieving sustainable energy generation and degrading organic contaminants. In TiO2 , the addition of carbonaceous nanomaterials has attracted extensive attention as a means to increase its photocatalytic activity. In this study, composites of TiO2 and carbon nanotubes (CNT) in various proportions were synthesized by the hydrothermal method. The crystalline structures, morphologies, and light absorption properties of the TiO2 /CNT photocatalysts were characterized by PXRD, TEM and UV-Vis absorption spectra. The photocatalytic efficiency of the composites was evaluated by the degradation of Sudan (I) in UV-Vis light. Introducing 0.1-0.5 wt% CNT was shown to substantially improve the photoactivity of TiO2 . The composite with 0.3 wt% CNT showed the best catalytic activity, and its reaction activation energy was calculated as 39.57 kJ mol(-1) from experimental rates. The degradation products of Sudan (I) with different irradiation durations were characterized by Fourier transform infrared spectroscopy, and a degradation reaction process was proposed. © 2016 The American Society of Photobiology.

  17. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics

    Science.gov (United States)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10 nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  18. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    Science.gov (United States)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  19. Photocatalytic Degradation of Rhodamine B Dye with High Purity Anatase Nano-TiO2 Synthesized by a Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    SHI Xiaoliang; YANG Xingyong; WANG Shuwei; WANG Sheng; ZHANG Qiaoxin; WANG Yufu

    2011-01-01

    High purity anatase nano-TiO2 powders with high photocatalytic activity were prepared by a hydrothermal synthesis method.X-ray diffraction(XRD),field emission transmission electron microscopy (FETEM),ultraviolet-visible(UV-Vis)light absorption spectrum and photoluminescence(PL)spectrum were adopted to characterize the catalyst.Effects of temperature,time and sol concentration of hydrothermal synthesis on particle size and phases were investigated.Photocatalytic activities in the degradation of Rhodamine B Dye were studied.The experimental results indicated that photocatalytic activity of the nano-TiO2 powers was much higher than that of P25(Degussa).

  20. Kinetic Modeling of Photocatalytic Degradation of Alachlor using Tio2 (Degussa P25 in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thanikachallam Pushpa Malini

    2016-12-01

    Full Text Available A kinetic model was developed to simulate the solar photocatalytic degradation of alachlor (organo chlorine herbicide in aqueous solution using TiO2 (Degussa P25 catalyst. The effect of temperature, pH, radiant flux, TiO2 loading, presence of various cations, anions, surfactants on the photocatalytic degradation of alachlor were studied and determined the optimum condition under which the degradation rate was maximum. The solar irradiated samples were analyzed by a validated HPLC method. The photoproducts were determined by using LC/MS/MS technique. Rapid dissipation of herbicide was observed by using 0.5g/l of TiO2 (Degussa P-25 catalyst. The rate of degradation was found to increase with the increase in the temperature from 40°C to 70°C. The influence of cations on the degradation rate was in the order Fe2+, Cu2+ >Zn2+>Ni2+ >Mn2+ > Co2+ and for anions Cl-, HClo3- > CO32-, So42-. The rate was decreased as the pH was increased from 4.0 to 8.0. But at very high alkaline condition (pH 10.0 the rate was found to be the maximum. Among the three surfactants used (Cetyltrimethylammonium bromide (CTAB, Sodium dodecyl sulphate (SDS and Polyethylene (23 dodecanol (Brij-35 Sodium dodecyl sulphate showed much influence and when the study was conducted at three different radiant flux (109 Lux, 655 x 101 Lux, 601 x 102 to 1074 x 102Lux it was observed that the rate was faster under the day light flux 601 x 102 to 1074 x 102Lux. The degradation rate of alachlor was found to follow the first order kinetics. Finally the optimized conditions or the kinetic model which showed maximum degradation rate was then applied for treating effluent and ground water.

  1. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Salma, Alaa [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Thoröe-Boveleth, Sven [University Hospital Aachen, Institute for Hygiene and Environmental Medicine, Pauwelsstraße 30, 52074 Aachen (Germany); Schmidt, Torsten C. [University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, 45141 Essen (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany); Tuerk, Jochen, E-mail: tuerk@iuta.de [Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Straße 58-60, 47229 Duisburg (Germany); Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstraße 2, 45141 Essen (Germany)

    2016-08-05

    Highlights: • Identification of transformation products using an isotopically labeled surrogate. • 4 of 18 detected transformation products have been identified for the first time. • Revision of 2 molecular structures of previously reported transformation products. • PH dependence of photolytic and photocatalytic degradation of ciprofloxacin. - Abstract: Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO{sub 2}/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  2. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2.

    Science.gov (United States)

    Kim, Jaesung; Kim, Jungwon

    2014-11-18

    The effect of As(III) on the photocatalytic degradation of phenolic pollutants such as 4-chlorophenol (4-CP) and bisphenol A (BPA) in a suspension of platinized TiO2 (Pt/TiO2) was investigated. In the presence of As(III), the photocatalytic degradation of 4-CP and BPA was significantly enhanced, and the simultaneous oxidation of As(III) to As(V) was also achieved. This positive effect of As(III) on the degradation of phenolic pollutants is attributed to the adsorption of As(V) (generated from As(III) oxidation) on the surface of Pt/TiO2, which facilitates the production of free OH radicals ((•)OHf) that are more reactive than surface-bound OH radicals ((•)OHs) toward phenolic pollutants. The generation of (•)OHf was indirectly verified by using coumarin as an OH radical trapper and comparing the yields of coumarin--OH adduct (i.e., 7-hydroxycoumarin) formed in the absence and presence of As(V). In repeated cycles of 4-CP degradation, the degradation efficiency of 4-CP gradually decreased in the absence of As(III), whereas it was mostly maintained in the presence of As(III), which was either initially present or repeatedly injected at the beginning of each cycle. The positive effect of As(III) on 4-CP degradation was observed over a wide range of As(III) concentrations (up to mM levels) with Pt/TiO2. However, a high concentration of As(III) (hundreds of μM) inhibited the degradation of 4-CP with bare TiO2. Therefore, Pt/TiO2 can be proposed as a practical photocatalyst for the simultaneous oxidation of phenolic pollutants and As(III) in industrial wastewaters.

  3. The kinetics of photocatalytic degradation of aliphatic carboxylic acids in an UV/TiO2 suspension system.

    Science.gov (United States)

    Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y

    2009-10-01

    Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.

  4. Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: Intermediates and degradation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Fenoll, José, E-mail: jose.fenoll@carm.es [Departamento de Calidad y Garantía Alimentaria, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor s/n, La Alberca, 30150 Murcia (Spain); Sabater, Paula [Departamento de Calidad y Garantía Alimentaria, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor s/n, La Alberca, 30150 Murcia (Spain); Navarro, Gines; Pérez-Lucas, Gabriel; Navarro, Simón [Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia (Spain)

    2013-01-15

    Highlights: ► Photocatalytic oxidation of phenylurea herbicides (PUHs) in water. ► The study was performed using ZnO and TiO{sub 2} under artificial light irradiation. ► PUHs were totally degraded using ZnO/Na{sub 2}S{sub 2}O{sub 8}, ZnO, TiO{sub 2}/Na{sub 2}S{sub 2}O{sub 8} and TiO{sub 2}. ► ZnO is the most efficient photocatalyst for the removal of these herbicides. ► 13 intermediates were identified and a mechanism of degradation has been proposed. -- Abstract: The photocatalytic degradation of sixteen substituted phenylurea herbicides (PUHs) in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}) as photocatalyst under artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the oxidant (Na{sub 2}S{sub 2}O{sub 8}) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO{sub 2} alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such herbicides in optimal conditions and at constant volumetric rate of photon absorption in the photoreactor. Thus, the complete disappearance of all the studied compounds was achieved after 20 min of illumination in the ZnO/Na{sub 2}S{sub 2}O{sub 8} system. The main photocatalytic intermediates detected during the degradation of PUHs were identified. The probable photodegradation pathways were proposed and discussed. The main steps involved: N-demethylation of the N,N-dimethylurea-substituted compounds followed of N-demethylation and N-demethoxylation of the N-methoxy-N-methyl-substituted ureas and hydroxylation of aromatic rings and their aliphatic side-chains of both, parent compounds and intermediates.

  5. Surface Properties of Photocatalytic Nano-Crystalline Titania Films and Reactor for Photocatalytic Degradation of Chloroform

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob; Jensen, Henrik

    2006-01-01

    In this work two immobilizations techniques of TiO2 onto glass were investigated; deposition of previously made titania powder (PMTP) and a sol-gel method. The titania powder used in this work was Degussa P25, Hombikat UV100 and a powder prepared in our laboratory SC134. The prepared TiO2 films w......, as it was observed that the position of the coated lamp in the reactor yield different degradation rates....

  6. Photocatalytic Degradation of Anthracene in Closed System Reactor

    Directory of Open Access Journals (Sweden)

    Faiq F. Karam

    2014-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs represent a large class of persistent organic pollutants in an environment of special concern because they have carcinogenic and mutagenic activity. In this paper, we focus on and discuss the effect of different parameters, for instance, initial concentration of Anthracene, temperature, and light intensity, on the degradation rate. These parameters were adjusted at pH 6.8 in the presence of the semiconductor materials (TiO2 as photocatalysts over UV light. The main product of Anthracene photodegradation is 9,10-Anthraquinone which isidentified and compared with the standard compound by GC-MS. Our results indicate that the optimum conditions for the best rate of degradation are 25 ppm concentration of Anthracene, regulating the reaction vessel at 308.15 K and 2.5 mW/cm2 of light intensity at 175 mg/100 mL of titanium dioxide (P25.

  7. Photocatalytic degradation of gaseous toluene over bcc-In2O3 hollow microspheres

    Science.gov (United States)

    Zhang, Qianzhe; Li, Xinyong; Zhao, Qidong; Shi, Yong; Zhang, Fei; Liu, Baojun; Ke, Jun; Wang, Lianzhou

    2015-05-01

    In this work, the body-centered cubic indium oxide (bcc-In2O3) hollow microspheres were prepared via a P123-assisted solvothermal process. The structural properties of samples were investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV-visible diffusive reflectance spectroscopy, and nitrogen adsorption-desorption isotherms. The photocatalytic effects of degrading gaseous toluene were evaluated by gas chromatography and in situ Fourier transform infrared (FTIR) spectra under a irradiation of a 500 W high pressure xenon lamp. The results indicated that the as-prepared bcc-In2O3 hollow microspheres exhibited a high degradation efficiency towards toluene within a short reaction time. Besides, the preliminary mechanism therein was inferred with the aid of in situ FTIR and electron spin-paramagnetic resonance techniques to understand the degradation process.

  8. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite

    Science.gov (United States)

    Khodadoust, Saeid; Sheini, Azarmidokht; Armand, Nezam

    2012-06-01

    The use of titanium dioxide (TiO2) as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. In this investigation photocatalytic degradation of monoethanolamine (MEA) using TiO2 (in form of anatase) loaded on surface of clinoptilolite (CP) (TiO2-CP) in wastewater was studied. The surface interaction between TiO2 and CP was investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), IR and X-ray diffraction (XRD). Then the effects of some parameters such as pH, amount of photocatalyst, and initial concentration of MEA on degradation percentage of MEA were examined. The obtained results show that the TiO2-CP is an active photocatalyst as compared with TiO2 nanopowders. All these results indicated that this proposed method can be useful for the development of wastewater treatment applications.

  9. Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light.

    Science.gov (United States)

    Gupta, Vinod Kumar; Pathania, Deepak; Agarwal, Shilpi; Singh, Pardeep

    2012-12-01

    This study describes the effect of adsorption on methylene blue degradation using pectin-CuS nanocomposite (PCSNC). The nanocomposite was synthesized using co-precipitation methods followed by direct encapsulation with pectin. The synthesized nanocomposite was characterized by SEM, TEM, XRD, FTIR and UV-vis spectral technique. The adsorption and photocatalytic efficiencies of PCSNC were compared with copper sulphide nanoparticle (CSNP). The dye removal was studied under different reaction conditions. The adsorption capacity of pectin based nanocomposite was higher due to other free functional group on pectin surface after connecting to nanoparticles. The simultaneous adsorption and photodegradation process (A+P) was the most efficient process due to rapid destruction of adsorbed dye molecules. The complete COD removal was attained in 10h using PCSNC/A+P process. On comparing with CSNP, pectin-CuS nano composite showed more degradation efficiency and reusability for MB degradation.

  10. Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon

    Indian Academy of Sciences (India)

    A K Subramani; K Byrappa; S Ananda; K M Lokanatha Rai; C Ranganathaiah; M Yoshimura

    2007-02-01

    The photocatalytic degradation of indigo carmine dye was studied using hydrothermally prepared TiO2 impregnated activated carbon (TiO2 : AC). A comparison between the degradation of the indigo carmine dye using commercial TiO2 and TiO2 : AC revealed the efficiency of the title compound. The degradation reaction was optimized with respect to the dye concentration and catalyst amount. The reduction in the chemical oxygen demand (COD) revealed the mineralization of dye along with colour removal. The active compound like TiO2 was impregnated onto the activated carbon surface under mild hydrothermal conditions (< 250°C, P ∼ 40 bars). The impregnated activated carbon samples were characterized using powder X-ray diffraction (XRD) and scanning electron microscope (SEM).

  11. Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light.

    Science.gov (United States)

    Li, Fuhua; Kang, Yapu; Chen, Min; Liu, Guoguang; Lv, Wenying; Yao, Kun; Chen, Ping; Huang, Haoping

    2016-05-01

    Characterized as by X-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectra techniques, BiVO4 photocatalyst was hydrothermally synthesized. The photocatalytic degradation mechanisms of ibuprofen (IBP) were evaluated in aqueous media via BiVO4. Results demonstrated that the prepared photocatalyst corresponded to phase-pure monoclinic scheelite BiVO4. The synthesized BiVO4 showed superior photocatalytic properties under the irradiation of visible-light. The photocatalytic degradation rate of IBP decreased with an increase in the initial IBP concentration. The degradation process followed first-order kinetics model. At an IBP concentration of 10 mg L(-1), while a BiVO4 concentration of 5.0 g L(-1) with pH value of 4.5, the rate of IBP degradation was obtained as 90% after 25 min. The photocatalytic degradation of IBP was primarily accomplished via the generation of superoxide radical (O2(•-)) and hydroxyl radicals ((•)OH). During the process of degradation, part of the (•)OH was converted from the O2(•-). The direct oxidation of holes (h(+)) made a minimal contribution to the degradation of IBP.

  12. Titamium oxide (TiO2) assisted photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Madhu, G M; Raj, M A Lourdu Antony; Pai, K Vasantha Kumar

    2009-03-01

    The aqueous solution of methylene blue (MB) has been subjected to Photocatalytic degradation by UV radiation in presence of TiO2 photo-catalyst containing different concentrations of H2O2. The experiments conducted at different dye concentrations (12 and 20 ppm), catalyst loading, pH and H2O2 dosage (1-10 ml l(-1)), revealed that the degradation rate is strongly influenced by respective experimental parameters. However the influence of catalyst alone is not predominant in degradation. The decolorization of dye proceed to near completeness when H2O2 is used. The best degradation results are observed at 0.1 wt% of catalyst loading at pH 2 for TiO2/UV system. It has been found that the optimum concentration of H2O2 for 12 ppm and 20 ppm amount of the dye was 2 ml l(-1) for UV/H2O2 system. The kinetic of degradation of the dye followed the pseudo first order rate. The degradation studies using TiO2/UV/H2O2 system, indicates enhancement in the degradation rate of the dye compared to that of UV/H2O2 system alone.

  13. Photocatalytic Active Coatings for Lignin Degradation in a Continuous Packed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Colin Awungacha Lekelefac

    2014-01-01

    Full Text Available The synthesis of immobilized catalyst on porous glass support material via the sol-gel route is reported. TiO2-P25-SiO2 + Pt, TiO2-P25-SiO2, TiOSO4_30.6 wt%, and ZnO + TiO2-P25-SiO2 catalysts were synthesized and a comparative study is done regarding morphology of coatings, degradation rates, reaction rates, dissolved carbon (DC, formation of peaks, and fluorescence of products formed from the photocatalytic degradation of lignin sulfonate obtained from a local paper plant. Through simultaneous reaction-extraction pathways applying dialysis filtration and highly porous polystyrene divinylbenzene adsorbent resin (HR-P for solid phase extraction (SPE, an attempt has been made to isolate smaller molecules produced from photocatalytic degradation. Moreover relatively high lignin sulfonate (0.5 g/L concentrations are used in the reactions. UV-Vis spectroscopy revealed a faster reduction in the concentration values for the aliphatic moiety compared to the aromatic moiety. Peaks were observed by both fluorescence spectroscopy and HPLC suggesting the production of new substances and fluorophores.

  14. Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3.

    Science.gov (United States)

    Hayat, K; Gondal, M A; Khaled, M M; Yamani, Z H; Ahmed, S

    2011-02-28

    The photocatalytic degradation of Safranin-O (known as Basic Red 2) in water using locally synthesized nanocrystalline WO(3) as a photocatalyst was investigated under UV laser irradiation. The photo-oxidation removal of the dye was monitored by UV-vis spectrophotometer. The blank experiments for either laser irradiated only Safranin-O solution or the suspension containing WO(3) and Safranin-O in the dark showed that both laser illumination and the photocatalyst were essential for the removal of Safranin-O. The effect of experimental parameters including laser energy, catalyst loading, solution pH and the initial dye concentration on photocatalytic degradation of Basic Red 2 were also investigated. Results indicate that the rate of reaction is strongly influenced by the adsorption of an azo dye into the surface of the photocatalyst materials and suggests an optimum catalyst loading and dye concentration for the degradation reaction. It was investigated that the adsorption of the dye decreases at higher alkaline pH because both catalyst and substrate are negatively charged, developing repulsive forces between them. Kinetic data obtained reveals that the rate of the reaction obeys the first-order kinetics.

  15. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El-Kemary, Maged, E-mail: elkemary@yahoo.co [Photo- and Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt); El-Shamy, Hany; El-Mehasseb, Ibrahim [Photo- and Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh (Egypt)

    2010-12-15

    We report the synthesis of nanostructure ZnO semiconductor with {approx}2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV-vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at {approx}334 nm corresponding to band gap of {approx}3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at {approx}410 nm and a green emission peak at {approx}525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency ({approx}50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.

  16. Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial

    Indian Academy of Sciences (India)

    S MEENA; DIPTI VAYA; B K DAS

    2016-12-01

    In this article we report a chemical sol–gel approach to synthesize zinc oxide nanomaterials capped with ethylene diamine tetra acetic acid (EDTA), citric acid and oleic acid, and to study the effect of the surface modification on their photocatalytic activity and the kinetics for the degradation of Malachite Green (MG) dye. The structural, optical and chemical features were systematically characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared and UV–vis absorption spectroscopy. The objective of using the capping agents was to confine the size and control the growth and morphology of the nanomaterial. The smallest crystallite size was recorded as 29 nm for EDTA-capped rod-shaped ZnO. A comparison study of the effect of thethree different capping surfactants on ZnO nanomaterial for photocatalytic degradation ofMGdye under solar light showed that EDTA with higher denticity coordinated efficiently with the surface of ZnO nanocrystalline catalystsand hence demonstrated better decolouration of the dye under solar light. The dye degradation followed the psuedofirst-order kinetics. EDTA proved to be the best capping agent among all the three for ZnO nanomaterial.

  17. Photocatalytic degradation of the dye sulforhodamine-B: A comparative study of different light sources

    Institute of Scientific and Technical Information of China (English)

    FANG Yan-fen; HUANG Ying-ping; LIU De-fu; HUANG Yang; GUO Wei; DAVID Johnson

    2007-01-01

    The photocatalytic degradation of dye pollutant sulforhodamine-B (SRB) in aqueous TiO2 dispersions was examined under three lighting regimes: UV light (330 nm<λ<380 nm), sunlight, and visible light (λ>450 nm), all investigated at pH = 2.5. Total organic carbon (TOC) and chemical oxygen demand (CODCr) assays show that the degradation rate of SRB is much higher when irradiated with UV and sunlight compared with visible light. The temporal concentration changes of SRB illustrated a first-order reaction and the rate constant, k, is 0.197 min-1, 0.152 min-1, 0.027 min-1, respectively, under the three lighting conditions. The final mineralized products were amine compounds identified by infrared spectrophotometry. When irradiated with visible light, the photocatalytic degradation rate could be improved by lowering the H2O2 concentration and inhibited by increasing the H2O2 concentration, but results contrary to the above were obtained when UV light was used for irradiation.

  18. Visible light active photocatalytic degradation of bisphenol-A using nitrogen doped TiO2.

    Science.gov (United States)

    Venkatachalam, N; Vinu, A; Anandan, S; Arabindoo, Banumathi; Murugesan, V

    2006-08-01

    Nitrogen doped titania was prepared by low temperature sol-gel method using titanium precursor and nitrogen containing bases like triethylamine and tetramethyl ammonium hydroxide compounds. The materials were characterized by XRD, BET, SEM, XPS, DRS-UV, and FT-IR techniques. DRS-UV study substantially indicates shift of the absorption edge of TiO2 to lower energy region. The phase composition, crystallinity, specific surface area, and visible light activity of nitrogen doped titania depend upon the preparation conditions. Photocatalytic degradation of bisphenol-A in aqueous medium was investigated by TiO2 and nitrogen doped TiO2 under visible light irradiation in a batch photocatalytic reactor. The results indicate higher visible light activity for nitrogen doped TiO2 than commercial TiO2 (Degussa P25) for bisphenol-A degradation. The influence of various parameters such as initial concentration of bisphenol-A, catalyst loading and pH was examined for maximum degradation efficiency.

  19. Photocatalytic Degradation of Safranine by ZnO-Bentonite: Photodegradation versus Adsorbability

    Science.gov (United States)

    Sonawane, Gunvant H.; Patil, Sandip P.; Shrivastava, V. S.

    2016-11-01

    ZnO-bentonite nanocomposite was obtained by incorporation of bentonite clay with ZnO. The effects of pH, contact time, initial dye concentration and photocatalyst dose on the rate of degradation of dye solution were studied. It was observed that working conditions strongly influence the dye removal process. Contact time 70 min and pH 4 was optimized for photocatalytic degradation of Safranine. Adsorption kinetics for 20-80 mg/l dye concentration was found to follow pseudo-second-order kinetics. Adsorption of dye was described by Langmuir and Freundlich isotherm. In adsorption isotherm, Langmuir isotherm was found to fit well with experimental data than Freundlich isotherm. The monolayer adsorption capacity was found to be 50 mg/g. The amount of dye adsorbed (q t ) increases from 17.31 to 159.62 mg/g as dye concentration increases from 20 to 80 mg/l for 0.4 g/l photocatalyst dose. The photocatalytic degradation of Safranine by ZnO-bentonite takes place by advanced oxidation process.

  20. Photocatalytic Degradation of Safranine by ZnO-Bentonite: Photodegradation versus Adsorbability

    Science.gov (United States)

    Sonawane, Gunvant H.; Patil, Sandip P.; Shrivastava, V. S.

    2017-06-01

    ZnO-bentonite nanocomposite was obtained by incorporation of bentonite clay with ZnO. The effects of pH, contact time, initial dye concentration and photocatalyst dose on the rate of degradation of dye solution were studied. It was observed that working conditions strongly influence the dye removal process. Contact time 70 min and pH 4 was optimized for photocatalytic degradation of Safranine. Adsorption kinetics for 20-80 mg/l dye concentration was found to follow pseudo-second-order kinetics. Adsorption of dye was described by Langmuir and Freundlich isotherm. In adsorption isotherm, Langmuir isotherm was found to fit well with experimental data than Freundlich isotherm. The monolayer adsorption capacity was found to be 50 mg/g. The amount of dye adsorbed ( q t ) increases from 17.31 to 159.62 mg/g as dye concentration increases from 20 to 80 mg/l for 0.4 g/l photocatalyst dose. The photocatalytic degradation of Safranine by ZnO-bentonite takes place by advanced oxidation process.

  1. Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca.

    Science.gov (United States)

    Kumar, P; Govindaraju, M; Senthamilselvi, S; Premkumar, K

    2013-03-01

    In this paper, we report on biosynthesis of silver nanoparticles using Ulva lactuca (seaweed) at room temperature along with photocatalytic degradation of methyl orange dye. UV spectral analysis showed peak at 430 nm with special reference to the excitation of surfaces plasmon vibration by silver nanoparticles. FT-IR studies reveal the presence of bioactive functional groups such as phenolic compounds, amines and aromatic ring are found to be the capping and stabilizing agents of nanoparticles. The morphology of silver nanoparticles was found to be spherical and ranges about 48.59 nm as confirmed by HR-SEM. Negative zeta potential value of -34 mV suggests that the nanoparticles are highly stable in colloidal solution. XRD patterns also suggest the occurrence of spherical shaped particles due to the presence of silver ions. Further, photocatalytic degradation of methyl orange was measured spectrophotometrically by using silver as nanocatalyst under visible light illumination. The results revealed that biosynthesized silver nanoparticles using U. lactuca was found to be impressive in degrading methyl orange.

  2. Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO

    Indian Academy of Sciences (India)

    K Byrappa; A K Subramani; S Ananda; K M Lokanatha Rai; R Dinesh; M Yoshimura

    2006-10-01

    The sunlight mediated photocatalytic degradation of rhodamine B (RB) dye was studied using hydrothermally prepared ZnO ( = 150°C and ∼ 20–30 bars). Zinc chloride was used as the starting material along with sodium hydroxide as a solvent in the hydrothermal synthesis of ZnO. Different durations were tried to obtain pure ZnO phase, which was later confirmed through powder X-ray diffraction. The photocatalytic behaviour of the prepared ZnO was tested through the degradation of RB. The disappearance of organic molecules follows first-order kinetics. The effect of various parameters such as initial dye concentration, catalyst loading, pH of the medium, temperature of the dye solution, on the photo degradation of RB were investigated. The thermodynamic parameters of the photodegradation of RB, like energy of activation, enthalpy of activation, entropy of activation and free energy of activation revealed the efficiency of the process. An actual textile effluent containing RB as a major constituent along with other dyes and dyeing auxiliaries was treated using hydrothermally synthesized ZnO and the reduction in the chemical oxygen demand (COD) of the treated effluent revealed a complete destruction of the organic molecules along with colour removal.

  3. Fe-doped cryptomelane synthesized by refluxing at atmosphere: Structure, properties and photocatalytic degradation of phenol.

    Science.gov (United States)

    Yin, Hui; Dai, Xiaoxue; Zhu, Mengqiang; Li, Feihu; Feng, Xionghan; Liu, Fan

    2015-10-15

    Fe-doped cryptomelanes were synthesized by refluxing at ambient pressure, followed by characterization with multiple techniques and test in photocatalytic degradation of phenol. The introduction of Fe(III) into the structure of cryptomelane results in a decrease in particle size and the contents of Mn and K(+), and an increase in the Mn average oxidation state (AOS), specific surface area and UV-vis light absorption ability. Mn and Fe K-edge extended X-ray absorption fine structure spectroscopy analysis indicates that some Fe(III) is incorporated into the framework of cryptomelane by replacing Mn(III) while the remaining Fe(3+) is adsorbed in the tunnel cavity. These Fe-doped cryptomelanes have significantly improved the photocatalytic degradation rate of phenol, with the sample of ∼3.04 wt.% Fe doping being the most reactive and achieving a degradation rate of 36% higher than that of the un-doped one. The enhanced reactivity can be ascribed to the increase in the coherent scattering domain size of the crystals, Mn AOS and light absorption, as well as the presence of sufficient K(+) in the tunnel. The results imply that metal doping is an effective way to improve the performance of cryptomelane in pollutants removal and has the potential for modification of Mn oxide materials.

  4. Photocatalytic degradation of five sulfonylurea herbicides in aqueous semiconductor suspensions under natural sunlight.

    Science.gov (United States)

    Fenoll, José; Hellín, Pilar; Flores, Pilar; Martínez, Carmen María; Navarro, Simón

    2012-05-01

    In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO(3)), tin (IV) oxide (SnO(2)) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na(2)S(2)O(8)) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t(½)) ranged from 8 to 27 min (t(30W)=0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na(2)S(2)O(8) system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L(-1)).

  5. Supported TiO2 on Borosilicate Glass Plates for Efficient Photocatalytic Degradation of Fenamiphos

    Directory of Open Access Journals (Sweden)

    A. El Yadini

    2014-01-01

    Full Text Available Supported titanium dioxide (TiO2 was investigated for the photodegradation of the insecticide fenamiphos in water. The photocatalyst was immobilised on borosilicate glass plates and the kinetics of degradation were studied in a stirred tank reactor under UV irradiation. Two types of TiO2, for example, Millennium PC500 (100% anatase and Degussa P25 (80% anatase, 20% rutile, were used. Their activities have been based on the rates of insecticide disappearance. Experiments were investigated to evaluate the effect of pH and initial concentrations of fenamiphos as well as catalyst doses on the photocatalytic degradation of fenamiphos. Kinetic parameters were experimentally determined and an apparent first-order kinetic was observed. For photolysis process of fenamiphos, two photoproducts were identified and characterized using high performance liquid chromatography/mass spectrometry (HPLC/MS. The plausible mechanism of photolysis involved is the oxidation of sulfonamide group. In presence of photocatalyst TiO2, photodegradation was observed. Under identical conditions, Degussa P25 shows higher photocatalytic activity in regard to PC500 Millennium and complete degradation was observed after 180 min.

  6. Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation.

    Science.gov (United States)

    Chithambararaj, A; Sanjini, N S; Velmathi, S; Bose, A Chandra

    2013-09-21

    A detailed study on visible light photocatalytic degradation of methylene blue (MB) has been investigated in aqueous heterogeneous media containing hexagonal phase molybdenum oxide (h-MoO3) nanocrystals (NCs) which was identified as a new material for visible light driven photocatalysis. A simple and template-free solution based chemical precipitation method was employed to synthesize h-MoO3 NCs by reacting ammonium heptamolybdate tetrahydrate (AHM) with nitric acid. The formation and growth mechanism of h-MoO3 microstructures was explained. In addition, by annealing the h-MoO3 sample, the phase stability of hexagonal was retained up to 410 °C and showed an irreversible phase transition from hexagonal (h-MoO3) to highly stable orthorhombic phase (α-MoO3). Finally, the photocatalytic activities of h-MoO3 and α-MoO3 samples were evaluated using the degradation of MB, representing an organic pollutant of dye wastewater. The effects of various experimental parameters such as catalyst loading, initial dye concentration, light intensity, and operating temperature were analyzed for the degradation of MB. The results demonstrated that the efficiency of visible light assisted MB degradation using h-MoO3 NCs can be effectively enhanced by catalyst loading, light intensity, and operating temperature. However, the efficiency declined with the increase in initial dye concentration. Optimum conditions for higher photocatalytic performance were recognized as a catalyst loading of 100 mg L(-1), a dye concentration of 12 mg L(-1), a light intensity of 350 mW cm(-2), and an operating temperature of 45 °C.

  7. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO{sub 2}-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Abramovic, Biljana, E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Kler, Sanja, E-mail: sanja.kler@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Sojic, Daniela, E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Lausevic, Mila, E-mail: milal@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Radovic, Tanja, E-mail: tradovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Vione, Davide, E-mail: davide.vione@unito.it [Dipartimento di Chimica Analitica, Universita di Torino, Via Pietro Giuria 5, 10125 Torino (Italy)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Kinetics and efficiency of photocatalytic degradation of the {beta}{sub 1}-blocker metoprolol tartrate (MET). Black-Right-Pointing-Pointer Two TiO{sub 2} specimens employed. Black-Right-Pointing-Pointer Faster degradation of MET, but slower mineralization, obtained with the TiO{sub 2} specimen having lower surface area. Black-Right-Pointing-Pointer Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used {beta}{sub 1}-blocker, in TiO{sub 2} suspensions of Wackherr's 'Oxyde de titane standard' and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO{sub 2} Wackherr induced a significantly faster MET degradation compared to TiO{sub 2} Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals ({center_dot}OH), it was shown that the reaction with {center_dot}OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO{sub 2} and H{sub 2}O, while the nitrogen was predominantly present as NH{sub 4}{sup +}. Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO{sub 2} specimen.

  8. The Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants

    Directory of Open Access Journals (Sweden)

    Terry A. Egerton

    2013-03-01

    Full Text Available Practical photocatalysis for degradation of organic pollutants must take into account the influence of other chemicals. Significant Al deposition on titania can occur at naturally occurring concentrations of dissolved Al. This paper reviews the author’s work on the influence of deliberately deposited hydrous oxides of aluminium on the behavior of a ~130 m2 g−1 rutile TiO2, and then compares the behavior of deposited alumina with that of deposited silica. On rutile some adsorbed nitrogen is infrared-active. Alumina and silica deposited on the rutile reduce, and ultimately eliminate, this infrared-active species. They also reduce photocatalytic oxidation of both propan-2-ol and dichloroacetate ion and the photocatalytic reduction of diphenyl picryl hydrazine. The surface oxides suppress charge transfer and may also reduce reactant adsorption. Quantitative measurement of TiO2 photogreying shows that the adsorbed inorganics also reduce photogreying, attributed to the capture of photogenerated conduction band electrons by Ti4+ to form Ti3+. The influence of adsorbed phosphate on photocatalysis is briefly considered, since phosphate reduces photocatalytic disinfection. In the context of classical colloid studies, it is concluded that inorganic species in water can significantly reduce photoactivity from the levels that measured in pure water.

  9. Photocatalytic Degradation of Isopropanol Over PbSnO3Nanostructures Under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Chen Di

    2009-01-01

    Full Text Available Abstract Nanostructured PbSnO3photocatalysts with particulate and tubular morphologies have been synthesized from a simple hydrothermal process. As-prepared samples were characterized by X-ray diffraction, Brunauer–Emmet–Teller surface area, transmission electron microscopy, and diffraction spectroscopy. The photoactivities of the PbSnO3nanostructures for isopropanol (IPA degradation under visible light irradiation were investigated systematically, and the results revealed that these nanostructures show much higher photocatalytic properties than bulk PbSnO3material. The possible growth mechanism of tubular PbSnO3catalyst was also investigated briefly.

  10. A study of the photocatalytic degradation of methomyl by UV light

    Directory of Open Access Journals (Sweden)

    A. Tomašević

    2009-01-01

    Full Text Available The photocatalytic degradation of insecticide methomyl in water, using TiO2 and ZnO (Merck, under UV (366 nm was studied. The influence of the catalyst concentration and pH was investigated. The optimal concentration of the catalyst was found to be 2.0 g/l. It was found that ZnO is a better catalyst than TiO2 under the same reaction conditions. Also, the influence of NaCl was studied. The presence of Cl− significantly affects the photodegradation of the pollutant.

  11. Photocatalytic Degradation of Persistent and Toxic Organic Pollutants and its Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jincai; Jimmy Yu; TAO Shen; WANG Wanhong; CHEN Chuncheng

    2007-01-01

    @@ Persistent and toxic organic pollutants are serious environmental concerns in many parts of the world. These pollutants are often difficult to deal with using conventional treatment processes. Photocatalysis is an emerging technology which uses environmentally-friendly oxidants (oxygen, hydrogen peroxide, ozone),photocatalysts (titanium dioxide, ferrous ions or its complexes) and ultraviolet (UV) radiation to degrade and mineralize the toxic organic pollutants. The major drawback is that photocatalytic processes need to be activated by ultraviolet light, which accounts for only about 4% of the incoming solar energy; the overall reaction efficiency is still very low.

  12. High-efficiency photocatalytic degradation of methylene blue using electrospun ZnO nanofibers as catalyst.

    Science.gov (United States)

    Du, P F; Song, L X; Xiong, J; Xi, Z Q; Chen, J J; Gao, L H; Wang, N Y

    2011-09-01

    In this work, ZnO nanofibers (ZNFs) were successfully prepared via a simple electrospinning technique using polyvinylpyrrolidone (PVP) and zinc acetate dihydrate (Zn(CH3COO)2 2H2O) as precursors. The obtained ZNFs have an average diameter of ca. 95 nm and are composed of crystalline wurtzite phase. Methylene blue (MB) dye was used to investigate the photocatalytic performance of pure ZNFs. The study confirms that ZNFs have favorable catalytic activity, and the best degradation efficiency of MB can exceed 90% under UV light irradiation for 3 hours. In addition, we propose a possible photodegradation mechanism.

  13. Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation

    OpenAIRE

    2010-01-01

    TiO2 sol was prepared for the degradation of methylene blue (MB) solution under ultraviolet (UV) irradiation. The absorption spectra of MB indicated that the maximum wavelength, 663 nm, almost kept the same. The performance of 92.3% for color removal was reached after 160 min. The particle size of TiO2 sol was about 22.5 nm. X-ray diffraction showed that TiO2 consisted of a single anatase phase. The small size and anatase phase probably resulted in high photocatalytic activity of TiO2 sol. Th...

  14. Photocatalytic Activity of TiO2 Coating on Natural Feather Zeolite in Degradation of Orthomonochlorphenol

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; ZHANG Zhi-xiang; CHEN Dong-hui

    2006-01-01

    TiO2 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionized water or dehydrated ethanol as a dispersant. During degradation of orthomonochlorphenol solutions by ultraviolet, the strong adsorption capability of the zeolite results in increased concentration of substrate on its surface. The TiO2 film coated on feather zeolite further enhances the photocatalytic activity. The TiO2 film on the zeolite prepared by the Sol-gel method is found more effective as a catalyst than that by two powder coating methods.

  15. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  16. A Hyper-cross-linked Polynaphthalene Semiconductor with Excellent Visible-Light Photocatalytic Performance in the Degradation of Organic Dyes.

    Science.gov (United States)

    Zhang, Lei; Huang, Xin-Hua; Hu, Jin-Song; Song, Jian; Kim, Il

    2017-02-28

    Hyper-cross-linked polynaphthalene nanoparticles (PNNs) capable of catalyzing the degradation of organic pollutants upon exposure to visible light have been developed. The nascent and metal-free PNNs with a porous structure, high specific surface area, and narrow bandgap are chemically and thermally stable in the catalytic system, which make it promising as a kind of excellent photocatalytic material compared to conventional photocatalysts. The photocatalytic activity of the as-obtained PNNs exhibits remarkable photocatalytic performance for the degradation of rhodamine B (RhB) and methyl blue (MB) under the irradiation of visible light. The easy preparation, high catalytic activity, and recyclability of the PNNs open new opportunities in the visible-light-promoted degradation of organic pollutants.

  17. Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism.

    Science.gov (United States)

    Guo, Sheng; Zhang, Gaoke; Wang, Jiquan

    2014-11-01

    An efficient Fe2O3-Kaolin was synthesized as a heterogeneous catalyst for photo-Fenton degradation of organic contaminants. X-ray photoelectron spectroscopy analysis and high-resolution transmission electron microscope analysis confirmed the existence of Fe2O3 nanoparticles in the Fe2O3-Kaolin composite. The specific surface area of the Fe2O3-Kaolin catalyst increased from 19.47 to 39.32m(2)/g compared to kaolin. The catalytic activity of the Fe2O3-Kaolin catalyst was evaluated by the photo-Fenton degradation of rhodamine B (RhB) under visible light irradiation and the results showed that the catalyst was highly effective for the degradation of RhB in a wide pH range of 2.21-10.13. At optimal conditions, 98% discoloration and 66% mineralization of RhB were achieved in 120min. The catalyst was efficient for the degradation of methylene blue as well. Leaching test indicated that the leached iron from the catalyst was negligible and the catalyst still showed high photocatalytic activity after five reaction cycles, which all showed that the Fe2O3-Kaolin catalyst is a promising heterogeneous photocatalyst for the degradation of various dyes in wastewater. Finally, a possible photocatalytic mechanism was proposed based on photoluminescence measurements and a series of operating conditions.

  18. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water.

    Science.gov (United States)

    Pastrana-Martínez, Luisa M; Morales-Torres, Sergio; Figueiredo, José L; Faria, Joaquim L; Silva, Adrián M T

    2015-06-15

    Flat sheet ultrafiltration (UF) membranes with photocatalytic properties were prepared with lab-made TiO2 and graphene oxide-TiO2 (GOT), and also with a reference TiO2 photocatalyst from Evonik (P25). These membranes were tested in continuous operation mode for the degradation and mineralization of a pharmaceutical compound, diphenhydramine (DP), and an organic dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation. The effect of NaCl was investigated considering simulated brackish water (NaCl 0.5 g L(-1)) and simulated seawater (NaCl 35 g L(-1)). The results indicated that the membranes prepared with the GOT composite (M-GOT) exhibited the highest photocatalytic activity, outperforming those prepared with bare TiO2 (M-TiO2) and P25 (M-P25), both inactive under visible light illumination. The best performance of M-GOT may be due to the lower band-gap energy (2.9 eV) of GOT. In general, the permeate flux was also higher for M-GOT probably due to a combined effect of its highest photocatalytic activity, highest hydrophilicity (contact angles of 11°, 17° and 18° for M-GOT, M-TiO2 and M-P25, respectively) and higher porosity (71%). The presence of NaCl had a detrimental effect on the efficiency of the membranes, since chloride anions can act as hole and hydroxyl radical scavengers, but it did not affect the catalytic stability of these membranes. A hierarchically ordered membrane was also prepared by intercalating a freestanding GO membrane in the structure of the M-GOT membrane (M-GO/GOT). The results showed considerably higher pollutant removal in darkness and good photocatalytic activity under near-UV/Vis and visible light irradiation in continuous mode experiments.

  19. Novel activated alumina-supported iron oxide-composite as a heterogeneous catalyst for photooxidative degradation of reactive black 5

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, C.L. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Huang, Y.H. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Chen, C.Y. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China)]. E-mail: ccy7@ccmail.ncku.edu.tw

    2006-02-28

    A novel activated alumina-supported iron oxide-composite (denoted as FeAA-500) was prepared by so-called fluidized-bed reactor (FBR) crystallization. X-ray powder diffraction (XRD), N{sub 2} adsorption/desorption, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the FeAA-500. The photo-catalytic activity of the FeAA-500 was evaluated in the photooxidative degradation of 0.1 mM azo-dye reactive black 5 (RB5) in the presence of H{sub 2}O{sub 2} and UVA light ({lambda} = 365 nm) in a solution with a pH of 2.5. Complete decolorization of the model pollutant RB5 was achieved; the total organic carbon (TOC) removal ratio was 95%, and a trace amount of leached ferric ion was detected following 75 min of reaction when 2.0 g/L FeAA-500 was used as a catalyst. FeAA-500 has high photo-catalytic activity; it is therefore a promising heterogeneous photocatalysis of the degradation of organic compounds.

  20. VUV-Photocatalytic Degradation of Bezafibrate by Hydrothermally Synthesized Enhanced {001} Facets TiO2/Ti Film.

    Science.gov (United States)

    Sayed, Murtaza; Fu, Pingfeng; Shah, Luqman Ali; Khan, Hasan M; Nisar, Jan; Ismail, M; Zhang, Pengyi

    2016-01-14

    In the present study, a novel TiO2/Ti film with enhanced {001} facets was synthesized by the hydrothermal technique followed by calcination for studying the removal of bezafibrate (BZF), from an aqueous environment. The synthesized photocatalyst was characterized by FE-SEM, XRD, HR-TEM, and PL-technique. The second-order rate constant of (•)OH with BZF was found to be 5.66 × 10(9) M(-1) s(-1). The steady state [(•)OH] was measured as 1.16 × 10(-11) M, on the basis of oxidation of terephthalic acid. The photocatalytic degradation of BZF followed pseudo-first-order kinetics according to the Langmuir-Hinshelwood model (k1 = 2.617 mg L(-1) min(-1) and k2 = 0.0796 (mg L(-1))(-1)). The effects of concentration and the nature of various additives including inorganic anions (NO3(-), NO2(-), HCO3(-), CO3(2-), Cl(-)) and organic species (fulvic acid) and initial solution pHs (2, 4, 6, 9) on photocatalytic degradation of BZF were investigated. It was found that the nature and concentration of studied additives significantly affected the photocatalytic degradation of BZF. The efficiency of the photocatalytic degradation process in terms of electrical energy per order was estimated. Degradation schemes were proposed on the basis of the identified degradation byproducts by ultraperformance liquid chromatography.

  1. Determination of early warning signs for photocatalytic degradation of titanium white oil paints by means of surface analysis

    Science.gov (United States)

    van Driel, B. A.; Wezendonk, T. A.; van den Berg, K. J.; Kooyman, P. J.; Gascon, J.; Dik, J.

    2017-02-01

    Titanium white (TiO2) has been widely used as a pigment in the 20th century. However, its most photocatalytic form (anatase) can cause severe degradation of the oil paint in which it is contained. UV light initiates TiO2-photocatalyzed processes in the paint film, degrading the oil binder into volatile components resulting in chalking of the paint. This will eventually lead to severe changes in the appearance of a painting. To date, limited examples of degraded works of art containing titanium white are known due to the relatively short existence of the paintings in question and the slow progress of the degradation process. However, UV light will inevitably cause degradation of paint in works of art containing photocatalytic titanium white. In this work, a method to detect early warning signs of photocatalytic degradation of unvarnished oil paint is proposed, using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Consequently, a four-stage degradation model was developed through in-depth study of TiO2-containing paint films in various stages of degradation. The XPS surface analysis proved very valuable for detecting early warning signs of paint degradation, whereas the AFM results provide additional confirmation and are in good agreement with bulk gloss reduction.

  2. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment.

    Science.gov (United States)

    Nerger, Bryan A; Peiris, Ramila H; Moresoli, Christine

    2015-10-01

    This study examined the photocatalytic oxidation of natural organic matter (NOM) as a method to mitigate membrane fouling in drinking water treatment. ZnO and TiO2 photocatalysts were tested in concentrations ranging from 0.05 g L(-1) to 0.5 g L(-1). Fluorescence peaks were used as the primary method to characterize the degradation of three specific NOM components - fulvic acid-like humic substances, humic acid-like humic substances, and protein-like substances during photocatalytic oxidation. Fluorescence peaks and Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis indicated that higher NOM degradation was obtained by photocatalytic oxidation with ZnO than with TiO2. Treatment of the feed water by ZnO photocatalytic oxidation was successful in reducing considerably the extent of hydraulically reversible and irreversible membrane fouling during ultrafiltration (UF) compared to feed water treatment with TiO2. Fouling during UF of water subjected to photocatalytic oxidation appeared to be caused by low molecular weight constituents of NOM generated during photocatalytic oxidation.

  3. Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products.

    Science.gov (United States)

    Gupta, Himanshu; Gupta, Bina

    2015-11-01

    Photocatalytic decay profiles of polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (B[a]P) have been investigated on various synthesized iron oxides and on soil surfaces under a set of diverse conditions. Samples were analysed using the developed HPLC procedure. Results of the present study demonstrate fastest photodisintegration of B[a]P on goethite followed by haematite, magnetite, akaganeite and maghemite, respectively. The effect of soil pH, irradiation wavelength and iron oxide and oxalic acid dose on the degradation of B[a]P was evaluated. The studies revealed enhancement in photodegradation in the presence of oxalic acid due to the occurrence of fenton like reaction. The results showed faster B[a]P degradation under short wavelength UV radiation. Rate constants in acidic, neutral and alkaline soils under optimum dissipation conditions were 1.11×10(-2), 7.69×10(-3) and 9.97×10(-3) h(-1), respectively. The study indicates that iron oxides along with oxalic acid are effective photocatalyst for the remediation of benzo[a]pyrene contaminated soil surfaces. The degradation products of B[a]P in the soils of different pH in presence of goethite were identified and degradation pathways proposed. Peaks due to toxic metabolites such as diones, diols and epoxides disappear after 120 h in all the three soils.

  4. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    Science.gov (United States)

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-05

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  5. Citric Acid Fuctionalized Magnetic Ferrite Nanoparticles for Photocatalytic Degradation of Azo Dye.

    Science.gov (United States)

    Mahto, Triveni Kumar; Roy, Anurag; Sahoo, Banalata; Sahu, Sumanta Kumar

    2015-01-01

    In this study different magnetic ferrite nanoparticles (MFe2O4, where M = Fe, Mn, Zn) were synthesized through an aqueous coprecipitation method and then functionalized with citric acid for the degradation of azo dye present in industrial waste water. Here we evaluated the role of citric acid for photocatalytic application. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and the catalytic activity in degradation of methyl orange (MO) was evaluated. The rate of MO degradation in different magnetic systems was determined by UV-Vis spectroscopy. The effect of active parameters (pH, initial MO concentration and effect of sunlight) on degradation performance was investigated. For the first time, citric acid chemistry is successfully exploited to develop a photocatalyst that can successfully degrade the dyes. This citric acid functionalized magnetic ferrite nanoparticles are very much effective for photocalytic degradation of dye and also these can be recollected with the help of permanent magnet for successive uses.

  6. Enhanced heterogeneous ferrioxalate photo-fenton degradation of reactive orange 4 by solar light

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, K.; Muruganandham, M.; Swaminathan, M. [Department of Chemistry, Annamalai University, Annamalai Nagar-608 002 (India)

    2005-10-14

    A combined homogeneous and heterogeneous photocatalytic decolourisation and degradation of a chlorotriazine Reactive azo dye Reactive Orange 4 (RO4) have been carried out using ferrous sulphate/ ferrioxalate with H{sub 2}O{sub 2} and TiO{sub 2}-P25 particles. Solar/ferrous/H{sub 2}O{sub 2}/TiO{sub 2}-P25 and solar/ferrioxalate/H{sub 2}O{sub 2}/TiO{sub 2}-P25 processes are found to be more efficient than the individual photo-Fenton and solar/TiO{sub 2}-P25 processes. A comparison of these two processes with UV/ferrous/H{sub 2}O{sub 2}/TiO{sub 2}-P25 and UV/ferrioxalate/H{sub 2}O{sub 2}/TiO{sub 2}-P25 reveals that ferrioxalate is more efficient in solar light whereas ferrous ion is more efficient in UV light. The experimental parameters such as pH, initial H{sub 2}O{sub 2}, Fe{sup 2+}, ferrioxalate and TiO{sub 2}-P25 concentration strongly influenced the dye removal rate in solar processes. The optimum operating conditions of these two combined processes are reported.

  7. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2.

    Science.gov (United States)

    Chang Chien, S W; Chang, C H; Chen, S H; Wang, M C; Madhava Rao, M; Satya Veni, S

    2011-09-01

    The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO(2) in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO(2) was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO(2)) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO(2) and the photooxidation (without TiO(2)) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO(2)-enhanced photocatalytic pyrene degradation and in photooxidation (without TiO(2)) of pyrene. The percentages of photocatalytic pyrene degradation by TiO(2) in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO(2)-enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand>red soil>alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO(2)-enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO(2)) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO(2)-enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated.

  8. Photocatalytic degradation of acid orange 7 in aqueous solution with La3+-doped TiO2 photocatalysts

    Institute of Scientific and Technical Information of China (English)

    XIA Changbin; ZHOU Yi; LI Xun; ZENG Jing; XU Ruiyin

    2005-01-01

    Nanocrystalline La3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La3+content plays an essential role in affecting the photocatalytic activity of the La3+-doped TiO2 and the optimum content of La3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La3+-doped TiO2 with 1.0% La3+.

  9. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Science.gov (United States)

    Luo, Lei; Zhang, Anfeng; Janik, Michael J.; Li, Keyan; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N2 physical adsorption, XRD, FT-IR, XPS, UV-vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C3N4, ordered mesoporous g-C3N4 exhibits a larger specific surface area of 279.3 m2/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV-Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min-1 which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved SBET, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C3N4 is a practical candidate for further modification.

  10. Kinetic Study of Photocatalytic Degradation of Tolonium Chloride Under High Pressure Irradiation in Aquatic Buffer Systems

    Directory of Open Access Journals (Sweden)

    M. Montazerozohori

    2011-01-01

    Full Text Available Anatase titanium dioxide catalyzed photodegradation of tolonium chloride at various bufferic pH of 2, 7, 9 and 12 in aqueous solution is presented. The effect of some physicochemical parameters such as initial concentration of dye, catalyst amount and reaction time on photocatalytic degradation has been investigated in a photo-reactor cell containing high pressure mercury lamp to obtain the optimum conditions in each bufferic pH at constant temperature. A complete spectrophotometric kinetic study of tolonium chloride under high pressure irradiation at buffer media was performed. The photocatalytic degradation observed rate constants (kobs were found to be 2.90×10-3, 3.30×10-3, 3.20×10-3 and 5.20×10-3 min-1 for buffer pH of 2-12 respectively. It was found that a pseudo-first-order kinetic model based on Langmuir-Hinshelwood one is usable to photodegradation of this compound at all considered buffer pH. In addition to these, the Langmuir-Hinshelwood rate constants, kr for the titled compound at various pH are reported.

  11. Preparation of C60 Nanowhiskers-SnO2 Nanocomposites and Photocatalytic Degradation of Organic Dyes.

    Science.gov (United States)

    Park, Hae Soo; Ko, Weon Bae

    2015-10-01

    C60 nanowhiskers were prepared using a liquid-liquid interfacial precipitation (LLIP) method. Tin oxide (SnO2) nanoparticles were synthesized by a reaction of tin (IV) chloride pentahydrate with ammonium nitrate in an electric furnace. The C60 nanowhiskers-SnO2 nanocomposites were calcined in an electric furnace at 700 °C under an inert argon gas atmosphere for 2 h. The crystallinity, morphology and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and UV-vis spectrophotometry. The photocatalytic activity of the C60 nanowhiskers-SnO2 nanocomposites in the degradation of the organic dyes, such as methylene blue, methyl orange, rhodamine B, and brilliant green, under ultraviolet light at 254 nm by UV-vis spectrophotometry was evaluated and compared with that of C60 nanowhiskers and SnO2 nanoparticles. The experimental results showed that C60 nanowhiskers-SnO2 nanocomposites exhibited remarkably higher photocatalytic degradation of organic dyes compared to C60 nanowhiskers and SnO2 nanoparticles.

  12. Preparation of ZnS-graphene nanocomposites under electric furnace and photocatalytic degradation of organic dyes.

    Science.gov (United States)

    Park, Hae Soo; Ko, Weon Bae

    2014-11-01

    Zinc sulfide (ZnS) nanoparticles were synthesized from zinc nitrate hexahydrate and thiourea under microwave irradiation. The ZnS-graphene nanocomposites were calcined in an electric furnace at 700 degrees C under an inert argon gas atmosphere for 2 hr. The heated ZnS-graphene nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-vis spectrophotometry. After heat treatment, ZnS-graphene nanocomposites had a more porous and larger surface area, than the unheated ZnS-graphene nanocomposites. The photocatalytic activity of the heated ZnS-graphene nanocomposites in the degradation of organic dyes, such as methylene blue, methyl orange, and rhodamine B, under ultraviolet light at 254 nm by UV- vis spectrophotometer was evaluated and compared with that of the unheated ZnS nanoparticles, heated ZnS nanoparticles, unheated ZnS-graphene nanocomposites. Among the our experimental results as a photocatalyst, the heated ZnS-graphene nanocomposites exhibited remarkably higher photocatalytic degradation of organic dyes as compared to other nanomaterials such as unheated ZnS nanoparticles and heated ZnS-graphene nanocomposites.

  13. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates.

    Science.gov (United States)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-11-30

    C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N(2)-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO(2) system by changing the reaction atmospheres.

  14. Photocatalytic degradation of Rhodamine B by microwave-assisted hydrothermal synthesized N-doped titanate nanotubes.

    Science.gov (United States)

    Yan, Caiyun; Chen, Ku-Fan; Lai, Chia-Hsiang; Lai, Shiau-Wu; Chang, Qing; Peng, Yen-Ping

    2014-07-01

    Microwave-induced nitrogen-doped titanate nanotubes (NTNTs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Zeta potential analysis, specific surface area (SBET), and UV-Visible spectroscopy. TEM results indicate that NTNTs retain a tubular structure with a crystalline multiwall and have a length of several hundred nanometers after nitrogen doping. XRD findings demonstrate that the crystalline structure of NTNTs was dominated by anatase, which is favored for photocatalytic application. The Ti-O-N linkage observed in the XPS N 1s spectrum is mainly responsible for narrowing the band gap and eventually enhancing the visible light photoactivity. FT-IR results demonstrated the existence of H₃O⁺, which could be excited by photo-generated holes to form hydroxyl radicals and degrade environmental pollutants. After sintering at 350°C, the UV-Vis absorbance edges of NTNTs significantly shift to the visible-light region, which indicates N atom doping into the nanotubes. Photocatalytic degradation of Rhodamine B (RhB) via NTNTs show good efficiency, with pseudo first-order kinetic model rate constants of 3.7 × 10⁻³, 2.4 × 10⁻³ and 8.0 × 10⁻⁴ sec⁻¹ at pH3, 7, and 11, respectively.

  15. [Research on enhanced photocatalytic degradation of medical PVC by plasma-initiated free radicals].

    Science.gov (United States)

    Li, Xiao-jing; Qiao, Guan-jun; Chen, Jie-rong

    2007-05-01

    Effects of plasma-initiated free radicals on photocatalytic degradation of medical PVC with anatase TiO2 were studied. Surface properties of PVC were characterized by the contact angle, surface tension, X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR). The results indicate that the surface free energy and wettability of plasma-treated PVC increase greatly. The contact angles of distilled water, glycerin and dihydroxyethylsulfide for the plasma-treated PVC decrease. ESR reveals radicals on the surface of the plasma-treated PVC film nearly increase ten times. Moreover, the photodegradation of the PVC-TiO2 was compared with that of plasma-treated PVC-TiO2 through performing weight loss monitoring, scanning electron microscopic (SEM) analysis. Weight-loss rate of the plasma-treated PVC-TiO2 increases 27.4% in comparison with that of PVC-TiO2 under UV irradiation for 60 hours. SEM of the plasma-treated PVC-TiO2 film shows a lot of crack on the surface after photodegradation. Plasma treatments aggravate the photocatalytic degradation of medical PVC.

  16. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.

    Science.gov (United States)

    Yang, Yawei; Que, Wenxiu; Zhang, Xinyu; Xing, Yonglei; Yin, Xingtian; Du, Yaping

    2016-11-05

    Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS2 quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS2 heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS2 film with the deposition duration of 80min showed the highest degradation rate and photocurrent density (0.95mA/cm(2)), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS2 QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS2 loading and well-maintained one-dimensional nanostructure.

  17. Photocatalytic activity of Ce-modified SBA-15 for the degradation of isoproturon

    Indian Academy of Sciences (India)

    Anil Kumar Reddy Police; Srinivas Basavaraju; Durgakumari Valluri; Subrahmanyam Machiraju

    2015-02-01

    Cerium (Ce)-modified SBA-15 and Al-grafted SBA-15 are prepared and compared their photocatalytic activity for isoproturon degradation. The Al-SBA-15 is prepared by postsynthetic grafting method and cerium-modified samples are prepared by the impregnation technique. All the samples are characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption analysis. The samples show well-ordered mesoporous structure and it is confirmed by XRD. The UV–vis DRS of Cemodified sample shows a red shift compared to SBA-15 and the cerium species are stabilized in +3 oxidation state at lower cerium contents. The presence of Ce3+ species is also substantiated by XPS analysis. The higher amount of Ce3+ species are accompanied by oxygen vacancies which are formed due to the contact of ceria with the support. The N2 adsorption/desorption analysis of the samples show type-IV isotherms characteristic of mesoporous materials. Photocatalytic activity evaluation studies are made on all the samples for the degradation of isoproturon. Among them, 0.3 (wt%) Ce-modified Al-SBA-15 catalyst has shown a maximum activity in comparison with Ce-modified SBA-15. The better activity is attributed to the synergistic effect of mesoporosity and the presence of Ce3+ species along with oxygen vacancies.

  18. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles.

    Science.gov (United States)

    Mariselvam, R; Ranjitsingh, A J A; Mosae Selvakumar, P; Alarfaj, Abdullah A; Munusamy, Murugan A

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as P(H), temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process.

  19. Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites.

    Science.gov (United States)

    Jiang, Jingjing; Wang, Hongtao; Chen, Xiaodong; Li, Shuo; Xie, Tengfeng; Wang, Dejun; Lin, Yanhong

    2017-05-15

    In this paper, a series of BiOI/ZnO photocatalysts containing various BiOI contents were prepared by a facile two-step synthetic method. The structure and crystal phase, morphology, surface element analysis, optical property of as-prepared samples are measured by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectrometry (DRS). BiOI/ZnO photocatalytic activities of the prepared photocatalysts were evaluated by photocatalytic degradation of phenol under simulated light irradiation. The phenol degradation rate reached 99.9% within 2h under simulated solar light irradiation. The probable photocatalytic mechanism of composites photocatalysts is discussed by active species trapping experiments, the surface photovoltage (SPV), the transient photovoltage (TPV) and photoluminescence (PL) measurements. The results manifest that the superior photocatalytic activity of BiOI/ZnO composites is derived from the strong internal electric field between BiOI and ZnO, which is beneficial for the effective separation and transfer of photogenerated charges in ZnO. Moreover, the loading of BiOI on the surface of ZnO inhibited the recombination of photogenerated charge carriers in ZnO, resulting in excellent photocatalytic activity. On the contrary, the effect of an extension of the light absorption range induced by the introduction of BiOI on the phenol degradation activity is not significant.

  20. The dopant dependent photocatalytic activity of polyaniline towards the degradation of Rose Bengal dye

    Science.gov (United States)

    Chatterjee, Mukulika Jana; Banerjee, Dipali; Ghosh, Amrita; Mondal, Anup

    2016-05-01

    Polyaniline (PANI) with two different dopants, hydrochloric acid (HCl) and bismuth nitrate (Bi (NO3)3), were synthesized to investigate the effect of dopant on photocatalytic degradation of Rose Bengal, an organic dye, in presence of sunlight. PANI, synthesized by in situ polymerization was characterized by FESEM images, FTIR and UV-Vis spectra. FESEM images show rod like structures obtained for both the dopants. FTIR spectra confirms the formation of conducting PANI with the presence of C=N, C=C stretching modes in quinoid and benzenoid units. Band gap of PANI has been obtained from UV-Vis spectrum. Doped polyaniline exhibited a fast degradation of dye by 98.62 % & 98.12 % within 5 min & 8 min under visible light illumination for the dopant HCl & Bi (NO3)3 respectively.

  1. Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Jyun-Jen Chen

    2009-10-01

    Full Text Available Silver nanoparticles doped on titanium oxide (TiO2 were produced by laser-liquid interaction of silver nitrate (AgNO3 in isopropanol. Characteristics of Ag/TiO2 (Ag doped TiO2 nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO2 photocatalysts was improved (additional absorption at longer wavelength in visible light region obviously. The photocatalytic efficiency of Ag/TiO2 was tested by the degradation of methylene blue (MB in aqueous solution. A maximum of 82.3% MB degradation is achieved by 2.0 wt% Ag/TiO2 photocatalyst under 2 h illumination with a halogen lamp.

  2. Microwave-assisted synthesis of ZnO and its photocatalytic activity in degradation of CTAB

    Science.gov (United States)

    Song, Hua; Zhu, Kenan; Liu, Yanxiu; Zhai, Xiaoqing

    2017-01-01

    Nanosized zinc oxide (nano-ZnO) was prepared by a microwave irradiation method using zinc nitrate and triethanolamine as starting materials and distilled water as a solvent. The as-prepared powder was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic degradation of cetyltrimethylammonium bromide (CTAB) using the prepared material under UV irradiation was studied.The effects of ZnO dosage and initial pH on the photodegradation of CTAB were investigated. As the ZnO load increased, the CTAB degradation first increased and then decreased. The optimum ZnO dosage was 3 g L-1. Photodegradation of CTAB is more efficient in slightly alkaline media (pH 9).

  3. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Whang, Thou-Jen; Huang, Hsien-Yu; Hsieh, Mu-Tao; Chen, Jyun-Jen

    2009-10-29

    Silver nanoparticles doped on titanium oxide (TiO(2)) were produced by laser-liquid interaction of silver nitrate (AgNO(3)) in isopropanol. Characteristics of Ag/TiO(2) (Ag doped TiO(2)) nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO(2) photocatalysts was improved (additional absorption at longer wavelength in visible light region) obviously. The photocatalytic efficiency of Ag/TiO(2) was tested by the degradation of methylene blue (MB) in aqueous solution. A maximum of 82.3% MB degradation is achieved by 2.0 wt% Ag/TiO(2) photocatalyst under 2 h illumination with a halogen lamp.

  4. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light

    Directory of Open Access Journals (Sweden)

    Radwa A. Elsalamony

    2017-02-01

    Full Text Available Ru doped titania was prepared by the impregnation method and examined for the photocatalytic degradation of 2-chlorophenol at ambient conditions. Ru/TiO2 photocatalysts with metal loadings of 0.2, 0.4, 0.6 and 0.8 wt% were prepared and characterized using TEM, XRD, FTIR, SBET and EDX analyses. The degradation of 2-chlorophenol (2-CP in the aqueous phase was investigated under irradiation at 254 nm, employing either photodegradation in the presence of titania, Ru doped titania or photolysis, to compare the efficiency of these photoinduced advanced oxidation techniques. Photocatalysis under visible irradiation was also investigated. The removal efficiency arrived at 50% using 0.2% Ru/TiO2 catalyst.

  5. TiO2 Nanotubes Supported Cu Nanoparticles for Improving Photocatalytic Degradation of Simazine under UV Illumination

    Directory of Open Access Journals (Sweden)

    Syazwan Hanani Meriam Suhaimy

    2016-10-01

    Full Text Available Nano size Copper (Cu incorporated TiO2 nanotubes was successfully synthesized via the anodic oxidation technique in ethylene glycol (EG containing 0.5 wt % NH4F and 1.6 wt % KOH for the photocatalytic degradation of Simazine (2-chloro-4, 6-diethylamino-1,3,5-triazine under Ultraviolet (UV illumination. In the present study, the influence of different loading Cu concentrations on the formation of Cu-TiO2 nanotubes film towards the photocatalytic degradation of Simazine is reported. Based on our study, it was found that the optimum Cu loading concentration was about 0.45 wt % on TiO2 nanotubes film for approximately 64% photocatalytic degradation of Simazine after 4 h under UV illumination. This finding was mainly attributed to the uniform surface covering of the Cu loaded TiO2NTs which acted as electron traps, preventing the recombination of electron hole pairs, eventually leading to higher photocatalytic activity of our photocatalyst in degrading the targeted organic pollutant, Simazine. Moreover, an increased kinetic rate of the degradation to 0.0135 h−1 was observed in the presence of Cu in TiO2NTs.

  6. Photocatalytic degradation kinetics, mechanism and ecotoxicity assessment of tramadol metabolites in aqueous TiO{sub 2} suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulou, U. [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Hela, D. [Department of Business Administration of Food and Agricultural Products, University of Patras, Agrinio 30100 (Greece); Konstantinou, I., E-mail: iokonst@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Patras, 30100 Agrinio (Greece); Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2016-03-01

    This study investigated for the first time the photocatalytic degradation of three well-known transformation products (TPs) of pharmaceutical Tramadol, N-desmethyl-(N-DES), N,N-bidesmethyl (N,N-Bi-DES) and N-oxide-tramadol (N-OX-TRA) in two different aquatic matrices, ultrapure water and secondary treated wastewater, with high (10 mg L{sup −1}) and low (50 μg L{sup −1}) initial concentrations, respectively. Total disappearance of the parent compounds was attained in all experiments. For initial concentration of 10 mg L{sup −1}, the target compounds were degraded within 30–40 min and a mineralization degree of more than 80% was achieved after 240 min of irradiation, while the contained organic nitrogen was released mainly as NH{sub 4}{sup +} for N-DES, N,N-Bi-DES and NO{sub 3}{sup −} for N-OX-TRA. The degradation rates of all the studied compounds were considerably decreased in the wastewater due to the presence of inorganic and organic constituents typically found in effluents and environmental matrices which may act as scavengers of the HO{sup •}. The effect of pH (4, 6.7, 10) in the degradation rates was studied and for N-DES-TRA and N,N-Bi-DES-TRA, the optimum pH value was 6.7. In contrast, N-OX-TRA showed an increasing trend in the photocatalytic degradation kinetic in alkaline solutions (pH 10). The major transformation products were identified by high resolution accurate mass spectrometry coupled with liquid chromatography (HR-LC–MS). Scavenging experiments indicated for all studied compounds the important role of HO{sup •} in the photocatalytic degradation pathways that included mainly hydroxylation and further oxidation of the parent compounds. In addition, Microtox bioassay (Vibrio fischeri) was employed for evaluating the ecotoxicity of photocatalytically treated solutions. Results clearly demonstrate the progressive decrease of the toxicity and the efficiency of the photocatalytic process in the detoxification of the irradiated solutions

  7. Facile Fabrication of ZnO/TiO2 Heterogeneous Nanofibres and Their Photocatalytic Behaviour and Mechanism towards Rhodamine B

    OpenAIRE

    JiaDong Chen; WeiSha Liao; Ying Jiang; DanNi Yu; MeiLing Zou; Han Zhu; Ming Zhang; MingLiang Du

    2016-01-01

    In this study, novel titanium dioxide (TiO2) and zinc oxide (ZnO) hybrid photocatalysts in the form of nanofibres were fabricated by a facile method using electrospinning followed by a calcination process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to investigate the morphology and structure of the heterogeneous nanofi‐ bres. The photocatalytic performances were evaluated via the ...

  8. Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasundaram, Subramaniyan; Yoo, Ha Na; Song, Kyung Guen; Lee, Jaesang [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Kyoung Jin [School of Mechanical and Material Science Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Hong, Seok Won, E-mail: swhong@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2013-08-15

    Highlights: • A photocatalytic metal filter was fabricated with electrospun nanofibrous TiO{sub 2}. • PVDF layer effectively acted as a binder between TiO{sub 2} nanofibers and metal filter. • The photocatalytic efficacy of P-SSF was evaluated against pharmaceuticals. • The photocatalytic efficacy was highly dependent on water flux thru P-SSF. •Almost 90% of cimetidine was removed at a flux of 10 L/m{sup 2} h and 0.1–0.2 kPa TMP. -- Abstract: A photocatalytically active stainless steel filter (P-SSF) was prepared by integrating electrospun TiO{sub 2} nanofibers on SSF surface through a hot-press process where a poly(vinylidene fluoride) (PVDF) nanofibers interlayer acted as a binder. By quantifying the photocatalytic oxidation of cimetidine under ultraviolet radiation and assessing the stability of TiO{sub 2} nanofibers integrated on the P-SSF against sonication, the optimum thickness of the TiO{sub 2} and PVDF layer was found to be 29 and 42 μm, respectively. At 10 L/m{sup 2} h flux, 40–90% of cimetidine was oxidized when the thickness of TiO{sub 2} layer increased from 10 to 29 μm; however, no further increase of cimetidine oxidation was observed as its thickness increased to 84 μm, maybe due to limited light penetration. At flux conditions of 10, 20, and 50 L/m{sup 2} h, the oxidation efficiencies for cimetidine were found to be 89, 64, and 47%, respectively. This was attributed to reduced contact time of cimetidine within the TiO{sub 2} layer. Further, the degradation efficacy of cimetidine was stably maintained for 72 h at a flux of 10 L/m{sup 2} h and a trans-filter pressure of 0.1–0.2 kPa. Overall, our results showed that it can potentially be employed in the treatment of effluents containing organic micropollutants.

  9. Study of the influential factors in the simultaneous photocatalytic degradation process of three textile dyes.

    Science.gov (United States)

    Fernández, Cristina; Larrechi, M Soledad; Callao, M Pilar

    2009-10-15

    The influence of several factors in the simultaneous photocatalytic degradation of three textile dyes - Acid Red 97, Acid Orange 61 and Acid Brown 425 - has been studied using a fractional factorial design 2(5-1). The considered factors were: the initial concentration of each dye, the catalyst concentration (TiO(2)) and pH. First, we developed a rapid analytical methodology based on recording UV-visible spectra during the degradation process and a data treatment using multivariate curve resolution with alternating least squares (MCR-ALS), which enabled the three dyes to be quantified simultaneously despite the overlap of their spectra. The kinetic constant of degradation for each dye in all the experiments was evaluated. In all cases the degradation followed a first order kinetics. For a significance level of 5%, the most important factor in the photodegradation of each dye is the concentration of Acid Red 97, the degradation is more effective at higher pHs and, in the studied range, the concentration of the catalyst is not important.

  10. Photolytic and thin TiO₂ film assisted photocatalytic degradation of sulfamethazine in aqueous solution.

    Science.gov (United States)

    Babić, Sandra; Zrnčić, Mirta; Ljubas, Davor; Ćurković, Lidija; Škorić, Irena

    2015-08-01

    This paper deals with the photolytic and the photocatalytic degradation of sulfonamide antibiotic sulfamethazine (SMT) dissolved in Milli-Q water and in synthetic wastewater. Besides the direct photolysis, oxidation processes including UV/H2O2, UV/TiO2, and UV/TiO2/H2O2 using UV-A and UV-C radiation were investigated. Pseudo-first-order kinetics was observed for the degradation of SMT in all investigated processes. Additions of an electron acceptor (H2O2) and a catalyst (TiO2 film) accelerated the photolytic degradation of SMT for both the UV-A- and the UV-C-based processes. The most efficient process was UV-C/TiO2/H2O2 with complete degradation of SMT obtained in 10 min. The UV-A-based processes have been less efficient in terms of irradiation time required to totally degrade SMT than the UV-C-based processes. It was also confirmed that different wastewater components can significantly reduce the degradation rate of SMT. An almost ninefold reduction in the rate constant of SMT was observed for the specific synthetic wastewater. Although UV-A radiation experiments need more time and energy (2.7 times more electrical energy was consumed per gram of demineralized SMT) than UV-C experiments, they have a potential for practical use since natural UV-A solar radiation could be used here, which lowers the overall cost of the treatment. Five degradation products were detected during the degradation processes, and their structural formulae are presented. The structural formulae were elucidated based on mass spectra fragmentation pattern obtained using the tandem mass spectrometry (MS/MS) and NMR analysis.

  11. Photocatalytic degradation of dimethoate using LbL fabricated TiO2/polymer hybrid films.

    Science.gov (United States)

    Priya, D Neela; Modak, Jayant M; Trebše, Polonca; Zabar, Romina; Raichur, Ashok M

    2011-11-15

    Degradation of dimethoate under UV irradiation using TiO(2)/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO(2) optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides.

  12. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.

    Science.gov (United States)

    Saravanan, R; Karthikeyan, S; Gupta, V K; Sekaran, G; Narayanan, V; Stephen, A

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV-visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail.

  13. Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation

    Institute of Scientific and Technical Information of China (English)

    XIAO Xinyan; LIAO Dongliang; ZHANG Huiping; CHEN Huanqin

    2007-01-01

    TiO2 nano-particles were synthesized by sol-gel technique and characterized by X-ray diffractometer (XRD)and transmission electron microscope (TEM).Their photocatalytic activities for formaldehyde (FA) and methyl orange (MO) degradation were tested using degradation rate (η) as an evaluation index.Based on the orthogonal test results,the optimal condition for TiO2 preparation was obtained.Results showed that particle sizes were in the range of 10-40 nm,and that prepared TiO2 had better photocatalytic activity than P25.A simplified model was developed to evaluate the apparent quantum efficiency (Φapp) of this photocatalytic reaction system.

  14. The effect of microwave-assisted for photo-catalytic degradation of rhodamine B in aqueous nano TiO2 particles dispersions.

    Science.gov (United States)

    Shin, Hyun-Chung; Park, Sung Hoon; Ahn, Ho-Geun; Chung, Minchul; Kim, Byung Whan; Kim, Sun-Jae; Seo, Seong-Gyu; Jung, Sang-Chul

    2011-02-01

    The photo-catalytic decomposition of rhodamine B was examined in aqueous nano TiO2 particles dispersions to assess effects of the microwave radiation assisted photo-catalytic process driven by UV radiation. The results of photo-catalytic degradation of rhodamine B showed that the decomposition rate increased with the microwave intensity, UV intensity, TiO2 particle dosages and the circulating fluid velocity. Addition of oxygen gas in the photo-catalytic degradation of rhodamine B increased the reaction rate. The effect of addition of H2O2 was not significant when photo-catalysis was used without additional microwave radiation or when microwave was irradiated without the use of photo-catalysts. When H2O2 was added under simultaneous use of photo-catalysis and microwave irradiation, however, considerably higher degradation reaction rates were observed. This study demonstrates that the microwave irradiation can play a very important role in photo-catalytic degradation.

  15. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10(-3) and 12.4 × 10(-3) min(-1), respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  16. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    Science.gov (United States)

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model.

  17. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao Jun, E-mail: yaojzhang@yahoo.com.cn [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long [College of Material Science and Engineering, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer A novel Ni,Ca-cementitious material is synthesized by a two-step reaction. Black-Right-Pointing-Pointer Ni,Ca-geopolymer is firstly used for the photocatalytic degradation of MB. Black-Right-Pointing-Pointer Absorption bands in the UV and NIR regions are reported for the first time. Black-Right-Pointing-Pointer A reaction mechanism of photocatalytic degradation was proposed. - Abstract: A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na{sup +} ions in the matrix of Na,Ca-cementitious material were replaced by Ni{sup 2+} ions at room temperature. The new hydrated products of metahalloysite (Si{sub 2}Al{sub 2}O{sub 5}(OH){sub 4}) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni{sup 2+} and negative charge of [AlO{sub 4}]{sup 5-} tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni{sup 2+} ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca{sub 2}Fe{sub 2}O{sub 5}) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  18. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2

    Directory of Open Access Journals (Sweden)

    Rajesh J. Tayade et al

    2007-01-01

    Full Text Available Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD, diffuse reflectance spectroscopy (DRS, Fourier-transform infrared absorption spectrophotometry (FT-IR and N2 adsorption (BET at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst.

  19. Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yangsi; Han Jie; Qiu Wei [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Gao Wei, E-mail: w.gao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} generated by ZnO nanorod arrays during UV irradiation was detected. Black-Right-Pointing-Pointer ZnO nanorod arrays were synthesized via a facile hydrothermal technique. Black-Right-Pointing-Pointer The microstructure can be controlled by varying reactants' concentration. Black-Right-Pointing-Pointer Photocatalytic degradation of estrone by ZnO nanorod arrays was studied. Black-Right-Pointing-Pointer Microstructures' effect on photocatalysis and H{sub 2}O{sub 2} generation was discussed. - Abstract: The strong oxidant, hydrogen peroxide (H{sub 2}O{sub 2}), generated by ZnO nanorod arrays under UV light irradiation was monitored by fluorescence analysis. The ZnO nanorod arrays were synthesized via a low temperature hydrothermal method and their dimensions, i.e., diameter and height, can be controlled by adjusting the concentration of zinc nitrate (Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O) and hexamethylenetetramine (HMT). The morphology, nanostructure, surface roughness and optical property were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmittance spectra, respectively. The ZnO nanorod arrays were applied in the degradation of estrone, which is an emerging steroid estrogen contaminant. The results revealed that the ZnO nanorod array produced from 25 mM Zn{sup 2+} and HMT had the highest aspect ratio, the largest surface roughness and the lowest band gap energy, which was beneficial to the efficiency of UV light utilization, photocatalytic degradation of estrone and H{sub 2}O{sub 2} generation.

  20. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  1. Photocatalytic Degradation of Dichlorvos in Visible Light by Mg2+-TiO2 Nanocatalyst

    Directory of Open Access Journals (Sweden)

    T. Siva Rao

    2012-01-01

    Full Text Available Photocatalytic activity of TiO2 was studied by doping with magnesium (Mg2+-TiO2 with varying magnesium weight percentages ranging from 0.75–1.5 wt%. The doped and undoped samples were synthesized by sol-gel method and characterized by X-ray diffraction (XRD, N2 adsorption-desorption (BET, X-ray photoelectron spectroscopy (XPS, UV-visible diffuse reflectance spectroscopy (DRS, and scanning electron microscopy (SEM. The XRD data has shown that anatase crystalline phase in Mg2+-TiO2 catalysts, indicating that Mg2+ ions did not influence the crystal patterns of TiO2. The presence of magnesium ions in TiO2 matrix has been determined by XPS spectra. DRS spectra showed that there is a significant absorption shift towards the visible region for doped TiO2. The SEM images and BET results showed that doped catalyst has smaller particle size and highest surface area than undoped TiO2. The photocatalytic efficiency of the synthesized catalysts was investigated by the photocatalytic degradation of aqueous dichlorvos (DDVP under visible light irradiation, and it was found that the Mg2+-doped catalysts have better catalytic activity than undoped TiO2. This can be attributed that there is a more efficient electron-hole creation in Mg2+-TiO2 in visible light, contrary to undoped TiO2 which can be excited only in UV irradiation. The effect of dopant concentration, pH of solution, dosage of catalysts, and initial pesticide concentration has been studied.

  2. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    Science.gov (United States)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2015-12-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  3. Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2010-01-01

    Full Text Available TiO2 sol was prepared for the degradation of methylene blue (MB solution under ultraviolet (UV irradiation. The absorption spectra of MB indicated that the maximum wavelength, 663 nm, almost kept the same. The performance of 92.3% for color removal was reached after 160 min. The particle size of TiO2 sol was about 22.5 nm. X-ray diffraction showed that TiO2 consisted of a single anatase phase. The small size and anatase phase probably resulted in high photocatalytic activity of TiO2 sol. The degradation ratio decreased as the initial concentration of MB increased. The photodegradation efficiency decreased in the order of pH 2>pH 9>pH 7. Regarding catalyst load, the degradation increased with the mass of catalyst up to an amount of 1.5 g⋅L−1 then decreased as the mass continued to increase. The addition of H2O2 to TiO2 sol resulted in an increase on the degradation ratio.

  4. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    Science.gov (United States)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2017-07-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  5. Mechanism and Kinetics Study for Photocatalytic Oxidation Degradation: A Case Study for Phenoxyacetic Acid Organic Pollutant

    Directory of Open Access Journals (Sweden)

    Kian Mun Lee

    2015-01-01

    Full Text Available Photocatalysis is a rapidly expanding technology for wastewater treatment, including a wide range of organic pollutants. Thus, understanding the kinetics and mechanism of the photocatalytic oxidation (PCO for degradation of phenoxyacetic acid (PAA is an indispensable component of risk assessment. In this study, we demonstrated that the central composite design (CCD coupled with response surface methodology (RSM was successfully employed to probe the kinetics and mechanism of PCO degradation for PAA using an efficient zinc oxide (ZnO photocatalyst. In our current case study, four independent factors such as ZnO dosage, initial concentration of PAA, solution pH, and reaction time on the PCO degradation for PAA were examined in detail. Based on our results obtained from RSM analyses, an efficient pathway leading to the high degradation rate (>90% was applying 0.4 g/L of ZnO dosage with 16 mg/L of concentration of PAA at pH 6.73 for 40 minutes. The experimental results were fitted well with the derived response model with R2 = 0.9922. This study offers a cost-effective way for probing our global environmental water pollution issue.

  6. Solar photocatalytic degradation of chlorophenols mixture (4-CP and 2,4-DCP): Mechanism and kinetic modelling.

    Science.gov (United States)

    Abeish, Abdulbasit M; Ang, Ha Ming; Znad, Hussein

    2015-01-01

    The solar-photocatalytic degradation mechanisms and kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) using TiO2 have been investigated both individually and combined. The individual solar-photocatalytic degradation of both phenolic compounds showed that the reaction rates follow pseudo-first-order reaction. During the individual photocatalytic degradation of both 4-CP and 2,4-DCP under the same condition of TiO2 (0.5 g L(-1)) and light intensities (1000 mW cm(-2)) different intermediates were detected, three compounds associated with 4-CP (hydroquinone (HQ), phenol (Ph) and 4-chlorocatechol (4-cCat)) and two compounds associated with 2,4-DCP (4-CP and Ph). The photocatalytic degradation of the combined mixture (4-CP and 2,4-DCP) was also investigated at the same conditions and different 2,4-DCP initial concentrations. The results showed that the degradation rate of 4-CP decreases when the 2,4-DCP concentration increases. Furthermore, the intermediates detected were similar to that found in the individual degradation but with high Ph concentration. Therefore, a possible reaction mechanism for degradation of this combined mixture was proposed. Moreover, a modified Langmuir-Hinshelwood (L-H) kinetic model considering all detected intermediates was developed. A good agreement between experimental and estimated results was achieved. This model can be useful for scaling-up purposes more accurately as its considering the intermediates formed, which has a significant effect on degrading the main pollutants (4-CP and 2,4-DCP).

  7. Potential of multisyringe chromatography for the on-line monitoring of the photocatalytic degradation of antituberculosis drugs in aqueous solution.

    Science.gov (United States)

    Guevara-Almaraz, E; Hinojosa-Reyes, L; Caballero-Quintero, A; Ruiz-Ruiz, E; Hernández-Ramírez, A; Guzmán-Mar, J L

    2015-02-01

    In this study, a multisyringe chromatography system (MSC) using a C18 monolithic column was proposed for the on-line monitoring of the photocatalytic degradation of isoniazid (INH, 10 mg L(-1)) and pyrazinamide (PYRA, 5mgL(-1)) mixtures in aqueous solution using a small sample volume (200 μL) with an on-line filtration device in a fully automated approach. During the photocatalytic oxidation using TiO2 or ZnO semiconductor materials, total organic carbon (TOC) and the formed intermediates were analyzed off-line using ion chromatography, ion exclusion HPLC, and ESI-MS/MS. The results showed that TiO2 exhibits a better photocatalytic activity than ZnO under UV irradiation (365 nm) for the degradation of INH and PYRA mixtures, generating 97% and 92% degradation, respectively. The optimal oxidation conditions were identified as pH 7 and 1.0 g L(-1) of TiO2 as catalyst. The mineralization of the initial organic compounds was confirmed by the regular decrease in TOC, which indicated 63% mineralization, and the quantitative release of nitrate and nitrite ions, which represent 33% of the nitrogen in these compounds. The major intermediates of INH degradation included isonicotinamide, isonicotinic acid, and pyridine, while the ESI-MS/MS analysis of PYRA aqueous solution after photocatalytic treatment showed the formation of pyrazin-2-ylmethanol, pyrazin-2-ol, and pyrazine. Three low-molecular weight compounds, acetamide, acetic acid and formic acid, were detected during INH and PYRA decomposition. PYRA was more resistant to photocatalytic degradation due to the presence of the pyrazine ring, which provides greater stability against OH attack.

  8. Insight into photocatalytic degradation of dissolved organic matter in UVA/TiO₂ systems revealed by fluorescence EEM-PARAFAC.

    Science.gov (United States)

    Phong, Diep Dinh; Hur, Jin

    2015-12-15

    Photocatalytic degradation of dissolved organic matter (DOM) using TiO2 as a catalyst and UVA as a light source was examined under various experimental settings with different TiO2 doses, solution pH, and the light intensities. The changes in UV absorbance and fluorescence with the irradiation time followed a pseudo-first order model much better than those of dissolved organic carbon. In general, the degradation rates were increased by higher TiO2 doses and light intensities. However, the exact photocatalytic responses of DOM to the irradiation were affected by many other factors such as aggregation of TiO2, light scattering, hydroxyl radicals produced, and DOM sorption on TiO2. Fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) revealed that the DOM changes in fluorescence could be described by the combinations of four dissimilar components including one protein-like, two humic-like, and one terrestrial humic-like components, each of which followed well the pseudo-first order model. The photocatalytic degradation rates were higher for protein-like versus humic-like component, whereas the opposite order was displayed for the degradation rates in the absence of TiO2, suggesting different dominant mechanisms operating between the systems with and without TiO2. Our results based on EEM-PARAFAC provided new insights into the underlying mechanisms associated with the photocatalytic degradation of DOM as well as the potential environmental impact of the treated water. This study demonstrated a successful application of EEM-PARAFAC for photocatalytic systems via directly comparing the kinetic rates of the individual DOM components with different compositions.

  9. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  10. Photocatalytic degradation of phenol in aqueous solution using TiO2/Ti thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    樊彩梅; 孙彦平; 闵延琴; 郝晓刚; 李新军; 李芳柏

    2003-01-01

    In order to clarify the respective role of the UV light, catalyst, external bias as well as their combined effects on the photodegradation process and to clarify the photocatalytic mechanism under different experimental conditions, a series of experiments were conducted in a shallow pond photoreactor with an effective volume of 100 mL using TiO2/Ti thin film prepared by anodization as photocatalyst. A 300W UV lamp(Emax=365 nm)was used as side light source. The effect of light intensity on photocatalysis was also conducted. The results show that photocatalytic oxidation is an effective method for phenol removal from waters. The degradation rate can be improved by applying an anodic bias to the TiO2/Ti film electrode, phenol can not be decomposed under only 365 nm UV light irradiation even in the presence of hydrogen peroxide. In the range of our research, the phenol removal rate can be described in terms of pseudo-first order kinetics.

  11. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    Directory of Open Access Journals (Sweden)

    Zatil Amali Che Ramli

    2014-01-01

    Full Text Available This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC, TiO2/carbon (C, and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, thermogravimetric analysis (TG-DTA, Brunauer-Emmet-Teller (BET, and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1. The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  12. Use of pectin-thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Gupta, Vinod Kumar; Agarwal, Shilpi; Pathania, Deepak; Kothiyal, N C; Sharma, Gaurav

    2013-07-01

    Pectin-thorium (IV) tungstomolybdate (Pc/TWM) nanocomposite was prepared by mixing biopolymer pectin with its inorganic counterpart thorium (IV) tungstomolybdate (TWM) using the sol-gel method. The nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Distribution coefficient, thermal stability, pH titrations, elution and concentration behaviour were investigated to explore the ion exchange behaviour of nanocomposite material. Pc/TWM exhibited higher ion exchange capacity (1.10 mequiv/g) than its inorganic counterpart (0.62 mequiv/g). The Pc/TWM nanocomposite ion exchanger was thermally stable as it retained 59% of its ion exchange capacity upto 400°C. The pH titrations study revealed the bifunctional nature of Pc/TWM. In order to explore the environmental applicability of the Pc/TWM nanocomposite material, its antibacterial and photocatalytic activities was investigated. 76% of methylene blue dye was photocatalytically degraded after five hours exposure. It also totally inhibited Escherichia coli at 400 μg/ml concentration of Pc/TWM nanocomposite.

  13. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2.

    Science.gov (United States)

    Ramli, Zatil Amali Che; Asim, Nilofar; Isahak, Wan N R W; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M Ambar; Sopian, K

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m(2) g(-1)). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  14. Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol

    Science.gov (United States)

    Han, Zhenwei; Wang, Nan; Fan, Hai; Ai, Shiyun

    2017-03-01

    Highly efficient photocatalyst of visible-light-driven Ag nanoparticles loaded on porous graphitic carbon nitride (g-C3N4) was prepared by the reduction of Ag ions on porous g-C3N4. The obtained Ag/porous g-C3N4 composite products were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectra (DRS), thermal gravimetric analysis (TGA). The results demonstrated that a homogeneous distribution of Ag NPs of 10 nm was attached onto the surface of the porous g-C3N4. The prepared Ag/porous g-C3N4 samples were applied for catalyzing the degradation of phenol in water under visible light irradiation. Porous g-C3N4 demonstrated an excellent support for the formation and dispersion of small uniform Ag NPs. When the weight percentage of Ag reaches 5%, the nanohybrid exhibits superior photocatalytic activities compared to bulk g-C3N4, porous g-C3N4, and 2% Ag/porous g-C3N4 hybrids. The enhanced photocatalytic performance is due to the synergic effect between Ag and porous g-C3N4, which suppressed the recombination of photogenerated electron-hole pairs.

  15. Enhanced photocatalytic activity of TiO₂-C hybrid aerogels for methylene blue degradation.

    Science.gov (United States)

    Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng

    2013-10-22

    Carbon-based TiO₂ composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO₂ with carbon. We synthesized a novel type of anatase-type TiO₂-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl₄ and resorcinol-furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8-9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance.

  16. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite

    Directory of Open Access Journals (Sweden)

    Atul B. Lavand

    2015-09-01

    Full Text Available C/ZnO/CdS nanocomposite was synthesized using the microemulsion method. Nanocomposite synthesized in the present work was characterized using X-ray diffractometer (XRD, scanning electron microscope (SEM, energy dispersive X-ray spectroscopy (EDX transmission electron microscope (TEM, diffuse reflectance and photoluminescence (PL spectroscopy. TEM study shows that CdS nanoparticles are successfully anchored on the surface of C doped ZnO nanorods. UV–visible spectrum of C/ZnO/CdS nanocomposite shows a red shift. CdS nanoparticles work as photo sensitizers to expand the photo-response of C doped ZnO to the visible region. Photoluminescence (PL spectroscopy reveals evidence for interaction between C/ZnO and CdS. PL quenching observed for C/ZnO/CdS nanocomposite is attributed to improved charge separation properties, which increases its photocatalytic efficiency. C/ZnO/CdS nanocomposite exhibits exceptionally high photocatalytic activity for degradation of 4-chlorophenol (CP via Z-scheme mechanism. C/ZnO/CdS nanocomposite is a highly stable and reusable photocatalyst.

  17. Integrated photocatalytic and sequencing batch reactor (SBR) treatment system for degradation of phenol

    Science.gov (United States)

    Yusoff, Nik Noor Athirah Nik; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Khalik, Wan Fadhilah Wan Mohd; Lee, Sin-Li

    2017-04-01

    This study will examine the efficiency of the simultaneous photocatalytic and biodegradation process in the same treatment reactor. The sequencing batch reactor or also known as SBR is an effective wastewater treatment method that has been applied widely. SBR system has become an alternative method for industrial wastewater treatment with high concentration of chemical oxygen demand (COD), and phenolic compound. In order for the photocatalytic process to occur, ZnO nanoparticles immobilized onto sponge were introduced to the reactor. It was observed that the COD value were decreased, indicated that the simultaneous biodegradation and photodegradation process in functional. The effect of ZnO nanoparticles on the production and composition of extracellular polymeric substances (EPS) and the physiochemical stability of activated sludge in hybrid growth type SBR were monitored. The percentages of removal are varied with different concentration of ZnO nanoparticles. The highest COD removal recorded is 31.5% with concentration of ZnO 0.6 mg/L. With the present of the ZnO nanoparticles, the degradation of phenol was relatively better than combination of biological of photlysis and biological.

  18. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    OpenAIRE

    2013-01-01

    Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC) with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents o...

  19. Photocatalytic Degradation of Rhodamine B Dye with MWCNT/TiO2/C60 Composites by a Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    SHI Xiaoliang; YANG Xingyong; WANG Shuwei; WANG Sheng; ZHANG Qiaoxin; WANG Yufu

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2/C60 composite catalysts were prepared by hydrothermal method. TiO2 was deposited on the MWCNT surface. Their photocatalytic activities for degradation of Rhodamine B dye were studied. X-ray diffraction, field emission transmission electron microscopy, ultraviolet-visible light absorption spectrum and photoluminescence spectrum were carried out to characterize the composite catalysts. The results indicated that MWCNTs and C6o could greatly enhance the photocatalytic activity of TiO2.

  20. Enhancement of Photocatalytic Activity of ZnO/SiO2 by Nanosized Pt for Photocatalytic Degradation of Phenol in Wastewater

    Directory of Open Access Journals (Sweden)

    R. M. Mohamed

    2012-01-01

    Full Text Available ZnO-SiO2 nanoparticles were synthesized by a sol-gel technique from Zn(NO32⋅6H2O and tetraethyl orthosilicate (TEOS. The synthesized samples were further modified by nanosized Pt from H2PtCl6 solution through photoassisted deposition (PAD and impregnation (Img routes. The obtained samples were characterized by a series of techniques including X-ray diffraction (XRD, UV-Vis diffuse reflectance spectroscopy, N2 adsorption, extended X-ray absorption fine structure (EXAFS, and transmission electron microscopy (TEM. The photocatalytic activity of the Pt-ZnO/SiO2 was evaluated by photocatalytic degradation of phenol in synthetic wastewater under UV-irradiation. Results obtained revealed that the surface area and the photocatalytic activity of the prepared samples were increased in the order ZnO/SiO2 < PAD: Pt-ZnO/SiO2 < img: Pt-ZnO/SiO2. The surface area decreased from 480 to 460 and 450 m2/g, while the efficiency of the phenol degradation increased from 80 to 85 and 100%, with the ZnO/SiO2, Img: Pt-ZnO-SiO2, and PAD: Pt-ZnO-SiO2 samples, respectively.

  1. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2.

    Science.gov (United States)

    Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem

    2015-08-01

    The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts.

  2. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn

  3. Photocatalytic degradation of an organophosphorus pesticide from agricultural waste by immobilized TiO2 under solar radiation

    Directory of Open Access Journals (Sweden)

    Marcia Regina Assalin

    2016-11-01

    Full Text Available This paper describes solar heterogeneous photocatalysis using immobilized TiO2 applied in the treatment of agricultural waste resulting from the application of commercial formulations of methyl parathion. The disappearance of the insecticide, as well as the formation of its metabolite, was monitored by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS, while mineralization efficiency was monitored by measurements of total organic carbon (TOC. Toxicity studies were performed using the microcrustacean Artemia salina. The TOC removal efficiency by photocatalytic process was 48.5%. After 45 minutes of treatment, the removal efficiency of methyl parathion was 90%, being completely mineralized at the end of treatment. The formation and removal of the metabolite methyl paraoxon was observed during the photocatalytic process. The photocatalytic treatment resulted in increased microcrustacean mobility, indicating a reduction of acute toxicity.

  4. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

    Science.gov (United States)

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-08-30

    Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  5. Enhanced UV-visible response of bismuth subcarbonate nanowires for degradation of xanthate and photocatalytic reaction mechanism.

    Science.gov (United States)

    Cui, Kuixin; He, Yuehui; Jin, Shengming

    2016-04-01

    (BiO)2CO3 nanowires were prepared by simple hydrothermal treatment of commercial Bi2O3 powders and characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of (BiO)2CO3 nanowires was studied through degradation of sodium isopropyl xanthate. Photocatalytic experimental results indicated that the as-prepared (BiO)2CO3 nanowires show high photocatalytic efficiency. Photocatalytic activity increased after two cycles. Time-dependent UV-vis spectra demonstrated that the final degradation products included isopropyl alcohol and carbon disulfide. UV-vis diffuse reflection spectra showed that the band gap of the as-prepared (BiO)2CO3 nanowires and recycled (BiO)2CO3 nanowires were 2.75 eV and 1.15 eV, respectively. XPS results indicated that formation of Bi2S3@(BiO)2CO3 core-shell nanowires occurred after recycled photodegradation of isopropyl xanthate owing to existence of two types of Bi configurations in the recycled (BiO)2CO3 nanowires. A probable degradation mechanism of isopropyl xanthate was also proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Solar photocatalytic degradation of water and air pollutants: challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Blanco, J.; Sanchez, B.; Vidal, A.; Malato, S.; Cardona, A.I.; Garcia, E. [CIEMAT, Madrid (Spain)

    1999-06-01

    Solar photocatalytic oxidation processes (PCO) for degradation of water and air pollutants have recently received increasing attention. Some field-scale experiments have demonstrated the feasibility of using a semiconductor (TiO{sub 2}) in solar collectors and concentrators to completely mineralize organic contaminants in water and air. Although successful pre-industrial solar tests have been carried out, there are still discrepancies and doubt concerning process fundamentals such as the roles of active components, appropriate modelling of reaction kinetics or quantification of photoefficiency. Challenges to development are catalyst deactivation, slow kinetics, low photoefficiency and unpredictable mechanisms. The development of specific non-concentrating collectors for detoxification and the use of additives such as peroxydisulfate have made competitive use of solar PCO possible. The challenges and perspectives of solar driven PCO as illustrated in the literature and our own results in large solar field loops at the Plataforma Solar de Almeria and CIEMAT laboratories are described. (author)

  7. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Pardeshi, S.K. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India)], E-mail: skpar@chem.unipune.ernet.in; Patil, A.B. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India)

    2009-04-15

    Photocatalytic degradation (PCD) of resorcinol a potent endocrine disrupting chemical in aqueous medium was investigated by ZnO under sunlight irradiation in a batch photoreactor. The influence of various parameters such as photocatalyst amount, initial concentration of resorcinol and pH was examined for maximum PCD of resorcinol. A considerable influence of pH upon the chemical oxygen demand (COD) disappearance was observed. In general, neutral or basic pH is favorable for COD removal of resorcinol. PCD intermediates were identified using FTIR and GC/MS. Two of the initial oxidation intermediates detected were 1,2,4-trihydroxy-benzene and 1,2,3-trihydroxy-benzene. FTIR studies revealed 1,2,4-trihydroxy-benzene as the major PCD intermediate. A working photodegradation mechanism is also suggested for PCD of resorcinol. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of resorcinol from waste water.

  8. Improved visible light photocatalytic activity of WO3 through CuWO4 for phenol degradation

    Science.gov (United States)

    Chen, Haihang; Xiong, Xianqiang; Hao, Linlin; Zhang, Xiao; Xu, Yiming

    2016-12-01

    Development of a visible light photocatalyst is challenging. Herein, we report a significant activity enhancement of WO3 upon addition of CuWO4. Reaction was carried out under visible light for phenol degradation in aqueous suspension in the presence of H2O2. A maximum reaction rate was observed at 1.0 wt% CuWO4, which was 2.1 and 4.3 times those measured with WO3 and CuWO4, respectively. Similar results were also obtained from the photocatalytic formation of OH radicals, and from the electrochemical reduction of O2. A possible mechanism responsible for the improved activity of WO3 is proposed, involving the electron transfer from CuWO4 to WO3, followed by the reduction of H2O2 over WO3.

  9. Photocatalytic Degradation of Imidacloprid by Phospho- tungstic Acid Supported on a Mesoporous Sieve MCM-41

    Institute of Scientific and Technical Information of China (English)

    冯长根; 李彦周; 刘霞

    2012-01-01

    Solid catalysts consisting of polyoxometalates (POM) namely phosphotungstic acid H3PWL2040 (HPW) supported on a mesoporous sieve MCM-41 have been prepared and characterized by FT-IR, X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscope (HRTEM). The HPW/MCM-41 with different HPW loadings from 10 to 60 wt% possess large specific surface area and rather uniform mesopores. Keggin structure of HPW retains on the prepared composite catalysts. The photocatalytic performance of HPW/MCM-41 was examined by degradation of a durable pesticide imidacloprid. It is found that the prepared photocatalysts exhibit high activity under irradiation of 365 nm monochromatic light. For 50 mL of imidacloprid (10 rag/L), conversion of imidacloprid using 20 mg of HPW/MCM-41 with 50 wt% loading level and calcined at 300 ℃ reaches 58.0% after 5 h irradiation.

  10. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    Science.gov (United States)

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  11. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays

    Directory of Open Access Journals (Sweden)

    M. Abdennouri

    2016-09-01

    Full Text Available Titanium dioxide was synthesized by the sol–gel method and titanium pillared purified clay was prepared with two titanium contents: 1.15 and 10.5 mmol of Ti per gram of clay. The composites were synthesized by immobilizing TiO2 onto surfactant-pillared clay via ion exchange reaction between clay with cation surfactant, cetyl-trimethyl ammonium bromide (CTMABr. The composition and texture of the prepared photocatalysts were characterized with X-ray powder diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM and energy-dispersive spectroscopy (EDX. The adsorption performance and photocatalytic activities of the prepared samples were investigated using 2,4-dichlorophenoxyacetic acid (2,4-D and 2,4-dichlorophenoxypropionic acid (2,4-DP as models of organic pollutants. The results were obtained that these photocatalysts can effectively degrade selected pesticides. The removal efficiency increases with the Ti content in the pillared clay.

  12. Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water

    Science.gov (United States)

    Wu, Zhi-Chuan; Zhang, Yong; Tao, Ting-Xian; Zhang, Lifeng; Fong, Hao

    2010-11-01

    Herein we report that a new photo-catalyst of silver nanoparticles attached on the surface of amidoxime fibers was developed and evaluated. The nanoparticles had different sizes from tens to hundreds of nanometers and varied shapes of cube, plate, and sphere; and there were coordination interactions between the nanoparticles and the amidoxime fibers. The developed photo-catalyst demonstrated high activities for degradation of an organic dye of methyl orange, particularly under sunlight; and the catalyst could be re-activated for several times by simple tetrahydrofuran treatment. The results also suggested that the silver nanoparticles initiated and/or mediated the photo-oxidation reaction of methyl orange through localized surface plasmon resonance under sunlight, and the photo-catalytic activities were primarily determined by sizes and/or surface-to-mass ratios instead of shapes of the silver nanoparticles.

  13. Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight.

    Science.gov (United States)

    Seema, Humaira; Christian Kemp, K; Chandra, Vimlesh; Kim, Kwang S

    2012-09-07

    Graphene sheets decorated with SnO(2) nanoparticles (RGO-SnO(2)) were prepared via a redox reaction between graphene oxide (GO) and SnCl(2). Graphene oxide (GO) was reduced to graphene (RGO) and Sn(2+) was oxidized to SnO(2) during the redox reaction, leading to a homogeneous distribution of SnO(2) nanoparticles on RGO sheets. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show uniform distribution of the nanoparticles on the RGO surface and high-resolution transmission electron microscopy (HRTEM) shows an average particle size of 3-5 nm. The RGO-SnO(2) composite showed an enhanced photocatalytic degradation activity for the organic dye methylene blue under sunlight compared to bare SnO(2) nanoparticles. This result leads us to believe that the RGO-SnO(2) composite could be used in catalytic photodegradation of other organic dyes.

  14. Optimization of Nano-TiO Photocatalytic Reactor for Organophosphorus Degradation

    Directory of Open Access Journals (Sweden)

    Ilin Sadeghi

    2012-01-01

    Full Text Available The photocatalytic decontamination of triethyl phosphate (TEP is studied by the UV/nano-TiO2 process. The nano-TiO2 concentration and pH value for the complete oxidation of TEP were investigated in different concentrations of TEP. The kinetic reaction was calculated for TEP as a function of initial concentration of TEP. Results of adsorptions showed that TEP was adsorbed better in alkalinity pH, and the natural pH had the highest reaction rate for complete degradation. Also, the zero-kinetic order with the lag time as a function of initial concentration of TEP and TiO2 was suggested for oxidation of TEP. The optimized concentration of nano-TiO2 was 400 mg/lit which had the best conversion and the lowest lag time in the reaction.

  15. Hydrothermal synthesis of Ni(12)P(5) hollow microspheres, characterization and photocatalytic degradation property.

    Science.gov (United States)

    Li, Jun; Ni, Yonghong; Liao, Kaiming; Hong, Jianming

    2009-04-01

    In this paper, we report the successful synthesis of Ni(12)P(5) hollow spheres via a facile hydrothermal route, employing white phosphorus (WP) and nickel nitrate as the reactants in the presence of hexamethylenetetramine (HMT) and polyethylene glycol 10000 (PEG-10000). The phase and morphology of the product were characterized by means of powder X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). HMT and surfactant (PEG-10000) played important roles in the formation of Ni(12)P(5) hollow microspheres. Furthermore, research also showed that the as-prepared Ni(12)P(5) hollow spheres could photocatalytically degrade some organic dyes such as Safranine T and Pyronine B under irradiation of 365 nm UV light.

  16. Photocatalytic Degradation of E.coli Membrane Cell in the Presence of ZnO Nanowires

    Institute of Scientific and Technical Information of China (English)

    WANG Xuefei; WANG Wei; LIU Peng; WANG ping; ZHANG Lianmeng

    2011-01-01

    The photocatalytic degradation of E. coli membrane cell by ZnO nanowires was studied using field-emission scanning electron microscope(FE-SEM), fluorescence microscopy, and Attenuated total reflection fourier transform infrared(ATR-FTIR). The outer membrane of E.coli was removed completely in the presence of ZnO nanowires under UV irradiation, and the cells became twisted shapes without a mechanically strong network. After ZnO nanowires photocatalysis, the permeability of the treated cells increased to some degree that could be confirmed by quantum dots labeling technique. Structural changes in the cell wall membrane were revealed by the decay of the characteristic groups bands in ATR-FTIR spectra.

  17. Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2.

    Science.gov (United States)

    Sudrajat, Hanggara; Babel, Sandhya; Sakai, Hiroshi; Takizawa, Satoshi

    2016-01-01

    A novel N-doped ZrO2 (N-ZrO2) photocatalyst is synthesized through thermal decomposition of zirconium hydroxide-urea complex and is characterized using various techniques, including XRD, FTIR, TGA, SEM, TEM, UV-DRS, XPS, XANES, and BET. The N-ZrO2 possesses pure monoclinic structure with high crystallinity. By using the proposed facile route of synthesis, both interstitial and substitutional N doping with high dopant stability can be realized. The optical properties of the catalyst are significantly altered after N doping, giving an optical response in the visible and near infrared regions and an additional strong absorption peak in the UVA region. The N-ZrO2 showed a higher photocatalytic activity than pristine ZrO2 for the degradation of amaranth (AM) and methylene blue (MB) under visible or UV light irradiation, which could be attributed to the band gap narrowing, higher specific area, smaller crystalline size, and higher availability of surface hydroxyl groups. Due to its molecular structure and light absorption characteristics, MB is easier to degrade than AM. Overall removal efficiencies, including adsorption and photolysis, for AM and MB by N-ZrO2 at pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and visible light irradiation of 144.7 W/m(2) are 67.2 and 96%, respectively. Using UVA light of only 3.5 W/m(2) under identical experimental conditions, complete removal of MB and AM is obtained. The photocatalytically treated solution of either AM or MB is nontoxic against Bacillus cereus, an agriculturally important soil microorganism.

  18. CONTINUOUS-MODE PHOTOCATALYTIC DEGRADATION OF CHLORINATED PHENOLS AND PESTICIDES IN WATER USING A BENCH-SCALE TIO2 ROTATING DISK REACTOR

    Science.gov (United States)

    Photocatalytic degradation of phenol, chlorinated phenols, and lindane was evaluated in a continuous flow TiOz rotating disk photocatalytic reactor (RDPR). The RDPR operated at a hydraulic residence time of 0.25 day and at a disk angular velocity of 12 rpm. At low molar feed conc...

  19. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  20. Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2

    Institute of Scientific and Technical Information of China (English)

    WANG Yajun; LU Kecheng; FENG Changgen

    2011-01-01

    A series of novel photocatalysts,H3PW12O40-Y-TiO2 nanocomposites with different H3PW12O40 loading levels (10%-40%) were prepared by impregnation method.And the Y-TiO2 support,doped with yttrium,was synthesized via sol-gel technique.The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR),powder X-ray diffraction (XRD),nitrogen adsorption-desorption analysis and scanning electron microscopy (SEM).The processes allowed obtaining Keggin structure and crystallized anatase with large BET surface area as well as uniform distribution.The effects of H3PW12O40 loadings,catalyst dose,initial pH and concentration of dye solution on the degradation kinetics of methyl orange under UV light (λ≥365 nm) were discussed.Kinetics studies showed that the photocatalytic degradation of methyl orange fitted the apparent first-order reaction.Methyl orange was totally degraded in 21 min under optimum conditions:20% loading,0.03 g dose and pH 1.0.The catalyst was stable and easily to be separated from reaction system for recovery.

  1. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water.

    Science.gov (United States)

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T A; Toprak, M S; Muhammed, M; Uheida, A

    2016-02-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles.

  2. Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

    Directory of Open Access Journals (Sweden)

    Ranfang Zuo

    2014-01-01

    Full Text Available Nano-TiO2 showed a good catalytic activity, but it is easy to agglomerate, resulting in the reduction or even complete loss of photocatalytic activity. The dispersion of TiO2 particles on porous materials was a potential solution to this problem. Diatomite has high specific surface and absorbability because of its particular shell structure. Thus, TiO2/diatomite composite, prepared by loading TiO2 on the surface of diatomite, was a good photocatalyst, through absorbing organic compounds with diatomite and degrading them with TiO2. Scanning electron microscopy (SEM, energy dispersive spectrum (EDS, X-ray diffraction (XRD, chemical analysis, and Fourier transform infrared spectrometry (FTIR indicated that TiO2 was impregnated well on the surface of diatomite. Furthermore, TiO2/diatomite was more active than nano-TiO2 for the degradation of methylene blue (MB in solution. MB at concentrations of 15 and 35 ppm can be completely degraded in 20 and 40 min, respectively.

  3. Filter Paper Inspired Zinc Oxide Nanomaterials with High Photocatalytic Activity for Degradation of Methylene Orange

    Directory of Open Access Journals (Sweden)

    Huang Liu

    2016-01-01

    Full Text Available Nanometer-sized zinc oxide (ZnO has been synthesized through sol-gel method with natural cellulose substance (commercial filter paper as template. The structure of zinc oxide nanomaterial was characterized by nitrogen adsorption-desorption and XRD. The morphology was observed by SEM and TEM. The results show that the hexagonal wurtzite phase is actually the only crystal phase in the sample and the product faithfully inherits the hierarchical morphology and the complex network structure of the original filter paper, which is composed of many randomly intersecting zinc oxide microfibers and nanosheets with lots of close stacked particles adsorbed on the surface. Moreover, these zinc oxide nanomaterials possess abundant mesoporous structure with an average pore diameter of ca. 21 nm and a wide pore size distribution (3–30 nm. Due to the strong absorption ability in the UV range, the zinc oxide nanomaterial prepared by this method displays significantly high photocatalytic activity for degrading methyl orange. In a short period of 20 minutes, the zinc oxide nanomaterial has degraded about 50% of the original MO, and the MO dye is fully degraded after UV irradiation for 80 minutes.

  4. Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire

    Science.gov (United States)

    Ganesh, R. Sankar; Durgadevi, E.; Navaneethan, M.; Sharma, Sanjeev K.; Binitha, H. S.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y.

    2017-09-01

    CdS nanowires and nanorods were successfully synthesized by the simple solvothermal method and tested their photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The monodispersed CdS nanowire and nanorods were confirmed from the field emission-scanning electron microscopy (FE-SEM) and high resolution-transmission electron microscopy (HR-TEM) analysis. The prepared photocatalyst demonstrated the superior visible light photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The highest degradation (97%) of MB was achieved within 180 min and 90% towards RhB. Therefore, CdS nanowire has a remarkable towards organic pollutants under the visible light irradiation.

  5. Absorption and Photocatalytic Degradation of Machine Oil by Exfoliated Graphite-Supported Nanometer TiO2 Material

    Institute of Scientific and Technical Information of China (English)

    CAO Hong; MA Enbao; WANG Xuehua; CHEN Jiazang; BIN Xiaobei

    2006-01-01

    By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition for preparing EG-TiO2, the impregnated number of times is the most important factor to influence oil-adsorbing capability, that is, when the impregnated number of times increases,the amount of saturation-adsorbed oil decreases. The study of EG-TiO2 photocatalytic degradation of machine oil based on the weight-loss method and infrared spectrum method indicates that EG-TiO2 has obvious effect of photocatalytic degradation for machine oil. Its performance is superior to pure nanometer TiO2 powder because nanometer TiO2 in EG-TiO2 has three-dimension laminar structure and comparatively high adsorption capability.

  6. Comparative Solid Phase Photocatalytic Degradation of Polythene Films with Doped and Undoped TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wasim Asghar

    2011-01-01

    Full Text Available Comparative photocatalytic degradation of polythene films was investigated with undoped and metal (Fe, Ag, and Fe/Ag mix doped TiO2 nanoparticles under three different conditions such as UV radiation, artificial light, and darkness. Prepared photocatalysts were characterized by XRD, SEM, and EDS techniques. Photocatalytic degradation of the polythene films was determined by monitoring their weight reduction, SEM analysis, and FTIR spectroscopy. Weight of PE films steadily decreased and led to maximum of 14.34% reduction under UV irradiation with Fe/Ag mix doped TiO2 nanoparticles and maximum of 14.28% reduction under artificial light with Ag doped TiO2 nanoparticles in 300 hrs. No weight reduction was observed under darkness. Results reveal that polythene-TiO2 compositing with metal doping has the potential to degrade the polythene waste under irradiation without any pollution.

  7. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  8. Foam-structured Activated Carbon-ceramic as TiO2 Supports for Photocatalytic Degradation of Phenol

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-min

    2013-01-01

    An activated foam-structured carbon-ceramic(AFCC) was prepared and investigated as TiO2 support for the photocatalytic degradation of phenol.AFCC and TiO2/AFCC catalysts were characterized by N2 adsorptiondesorption and X-ray diffraction(XRD).The effects of AFCC on the photocatalytic activity and the crystallinity of TiO2 were studied.The results show that the crystallinity and anatase/rutile ratio of TiO2 loaded on AFCC could be significantly influenced by the calcination temperature.The degradation rate of phenol benefited from the synergistic effects of the adsorption of activated carbon(AC) and the photocatalysis of TiO2,which suggests that a high surface area of AC is essential to achieve high degradation rates and efficiencies.It was found that the larger mean cell size of AFCC increased the light transmission within the foam.

  9. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes

    Science.gov (United States)

    Khan, Sadaf Bashir; Hou, Mengjing; Shuang, Shuang; Zhang, Zhengjun

    2017-04-01

    Hierarchical nanostructures have drawn significant attention and incredible performance in photodriven chemical conversion area due to its unique physicochemical properties. Herein, we study the morphological influence of TiO2 nanostructures on photocatalytic degradation of different organic dyes methyl blue, methyl violet and methyl orange present in industrial wastewater. Nanorod, nanohelics and nanozigzag TiO2 nanofilms were fabricated by using galancing angle deposition technique (GLAD). TiO2 nanofilms were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and raman analysis. BET surface area analysis were carried out by using nitrogen adsorption desorption curves. The results show that TiO2 morphology had great influence on photocatalytic degradation of organic dyes due to difference in specific surface area and pore volume of nanostructures. The photocatalytic degradation experiments were carried out for three hours under UV-vis light irradiation. Catalysis recycling and organic dyes concentration influence were also studied. In case of high concentration of organic dyes, negligible degradation rate is observed. TiO2 nanozigzag films show better degradation performance than nanohelics and nanorod due to presence of large surface area for reaction, higher porosity with dispersion of active sites at different length scales of pores and presence of oxygen vacancies.

  10. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial.

    Science.gov (United States)

    Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli

    2016-04-01

    Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enhanced Photocatalytic Degradation of Salicylic Acid in Water-ethanol Mixtures from Titanium Dioxide Grafted with Hexadecyltrichlorosilane

    Science.gov (United States)

    Kassir, Mounir; Roques-Carmes, Thibault; Assaker, Karine; Hamieh, Tayssir; Razafitianamaharavo, Angelina; Toufaily, Joumana; Villiéras, Frédéric

    The aim of this paper is to study the effect of the chemical modification on the photocatalytic properties of TiO2. The TiO2 Degussa-P25 nanoparticles are chemically modified using the hydrophobic organosilane hexadecyltrichlorosilane (HTS). The samples are employed as catalysts for salicylic acid photocatalytic oxidation in water-ethanol mixtures. The kinetics of salicylic acid photodegradation is investigated as a function of ethanol content in water-ethanol mixtures and initial HTS concentrations. The results indicate that the HTS groups are not degraded during the photocatalytic process. The TiO2 grafted by HTS is more efficient than bare TiO2 for the photodegradation process in presence of ethanol. The photodegradation process follows first order kinetics and the apparent rate constant increases linearly with the initial HTS concentration (amount of HTS grafted).

  12. Efficient photocatalytic degradation of acid orange 7 on metal oxide p-n junction composites under visible light

    Science.gov (United States)

    Suk Jang, Jum; Gyu Kim, Hyun; Lee, Se-Hee

    2012-11-01

    MO(=CuO, Co3O4, NiO)/BiVO4 p-n junction composites were synthesized by urea-precipitation and wet impregnation method. The physicochemical and optical properties of the as-prepared materials were investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra. The photocatalytic performance of the as-prepared materials was investigated for decomposition of azo dye, acid orange 7. The CuO/BiVO4 and Co3O4/BiVO4 p-n junction composite photocatalysts exhibited the higher photocatalytic degradation of acid orange 7 than those of BiVO4 and NiO/BiVO4 as-prepared samples under visible light irradiation. We also discussed the mechanism of enhanced photocatalytic activity of p-n junctioned composites based on their energy band structures.

  13. Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue.

    Science.gov (United States)

    Cao, Yan-Qiang; Chen, Jun; Zhou, Hang; Zhu, Lin; Li, Xin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-01-16

    ZnO ultrathin films with varied thicknesses of 7-70 nm were prepared at 200 °C on Si and fused quartz substrates by atomic layer deposition (ALD). The impact of film thickness and annealing temperature on the crystallinity, morphology, optical bandgap, and photocatalytic properties of ZnO in the degradation of methylene blue (MB) dye under UV light irradiation (λ = 365 nm) has been investigated deeply. The as-deposited 28 nm thick ZnO ultrathin film exhibits highest photocatalytic activity, ascribed to the smallest band gap of 3.21 eV and proper thickness. The photocorrosion effect of ALD ZnO ultrathin films during photocatalytic process is observed. The presence of MB significantly accelerates the dissolution of ZnO ultrathin films. The possible photoetching mechanism of ZnO in MB solution is proposed.

  14. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, R.; Kothari, D. C. [Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400 098 (India); Patel, N.; Miotello, A. [Dipartimento di Fisica, Universita degli Studi di Trento, I-38123 Povo ( Trento) (Italy)

    2013-02-05

    Vanadium and Nitrogen were codoped in TiO{sub 2} photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO{sub 2}, N-TiO{sub 2} and codoped V-N-TiO{sub 2} samples in comparison with undoped TiO{sub 2}, with smallest band gap obtained with codoped-TiO{sub 2}. The photocatalytic activities for all TiO{sub 2} photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO{sub 2} exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  15. Photocatalytic activity of porous multiwalled carbon nanotube-TiO{sub 2} composite layers for pollutant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zouzelka, Radek [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, University of Chemistry and Technology Prague, 16628 Prague (Czech Republic); Kusumawati, Yuly [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Remzova, Monika [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Department of Physical Chemistry, University of Chemistry and Technology Prague, 16628 Prague (Czech Republic); Rathousky, Jiri [J. Heyrovsky Institute of Physical Chemistry, v.i.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8 (Czech Republic); Pauporté, Thierry, E-mail: thierry.pauporte@chimie-paristech.fr [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-05

    Highlights: • A simple method for TiO{sub 2}/graphene nanocomposite layer preparation. • Stable coatings on glass substrate. • Mesoporous nanocomposite films with high internal surface area. • High photoactivity for 4-chlorophenol degradation. • Analysis of photocatalysis enhancement mechanism. - Abstract: TiO{sub 2} nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily

  16. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  17. Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature.

    Science.gov (United States)

    Zhang, Shicheng; Zheng, Zhijian; Wang, Jinhe; Chen, Jianmin

    2006-12-01

    Lanthanum-doped anatase TiO2 thin films on glass prepared via a sol-gel process have been shown to have much higher photocatalytic activity for the degradation of gaseous benzene than pure anatase TiO2 thin film. The photodecomposition of benzene on both types of TiO2 films follows the first-order kinetics while the CO(2) and CO formation followed the zero-order kinetics. GC/MS identification of the intermediates produced during the photodegradation of benzene revealed that doping lanthanum into TiO2 thin film favors a cleavage of benzene ring. An optimal lanthanum amount with respect to photocatalytic activity was about 2.5 wt% (La2O3/TiO2).

  18. A three-dimensional graphene-TiO{sub 2} nanotube nanocomposite with exceptional photocatalytic activity for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fenghuan [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China); Dong, Bohua, E-mail: dongbohua@ouc.edu.cn [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China); Gao, Rongjie; Su, Ge; Liu, Wei [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China); Shi, Liang [College of Chemistry and Chemical Engineering, Ocean University of China, 266000 Qingdao (China); Xia, Chenghui [Debye Institute, Utrecht University, Princetonplein 1, 3584 CC Utrecht (Netherlands); Cao, Lixin, E-mail: caolixin@ouc.edu.cn [Institute of Material Science and Engineering, Ocean University of China, 266000 Qingdao (China)

    2015-10-01

    Highlights: • A new kind of three-dimensional graphene/TiO{sub 2} nanotube composites were fabricated by facile hydrothermal method. • The graphene with optimized amount has a great influence on the photocatalytic activity of TiO{sub 2}. • The special and well-structured composites nanomaterials have outstanding photocatalytic activity. - Abstract: Three dimensional nanocomposites made up of TiO{sub 2} nanotubes (TNTs) and conducting reduced graphene oxide nanosheets (RGO) were fabricated successfully via hydrothermal method. These graphene/TNTs nanocomposites (GTNCs) with unique nanostructure not only provided sufficient active sites but supplied electron-transport path, Which gave big rise to their photocatalytic activity. In addition, the graphene amount and calcination temperature were intensively optimized. A series of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. The photocatalytic activity of as-prepared GTNCs was investigated through the degradation of methyl orange (MO) under UV-light irradiation. The results show that these GTNCs are well-structured with outstanding photocatalytic activity which is much better than that of traditional TiO{sub 2} nanotubes.

  19. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water.

    Science.gov (United States)

    Huang, Jianhui; Ding, Kaining; Hou, Yidong; Wang, Xinchen; Fu, Xianzhi

    2008-01-01

    Zn(2)GeO(4) nanorods were prepared by a surfactant-assisted hydrothermal method and used as photocatalysts for the decomposition of organic pollutants in water. The physicochemical properties of the Zn(2)GeO(4) photocatalysts were characterized by several techniques, and their photocatalytic activity was evaluated by the decomposition of methyl orange, salicylic acid, and 4-chlorophenol in aqueous solution. The results revealed that the Zn(2)GeO(4) nanorods have a much higher photocatalytic activity for decomposing organic pollutants in aqueous solution than both Zn(2)GeO(4) prepared by a conventional solid-state reaction and widely used TiO(2) (Degussa P25). There is no obvious deactivation of Zn(2)GeO(4) nanorods in the photocatalytic reactions. The intermediates of the photocatalytic reactions were monitored by LC-MS, and possible photocatalytic reaction pathways as to how Zn(2)GeO(4) nanorods degrade organic dyes were proposed.

  20. Hydrogenated TiO{sub 2} nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jian [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Leng, Yanhua [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Cui, Hongzhi, E-mail: cuihongzhi1965@163.com [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Liu, Hong, E-mail: hongliu@sdu.edu.cn [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-12-15

    Highlights: • A facile synthesis of hydrogenated TiO{sub 2} nanobelts is reported. • Utilizing UV and visible light in photocatalytic degradation and H{sub 2} production. • The improved photocatalytic property is owe to Ti{sup 3+} ions and oxygen vacancies. - Abstract: TiO{sub 2} nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO{sub 2} (H-TiO{sub 2}) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti{sup 3+} ions and oxygen vacancies in TiO{sub 2} nanobelts created by hydrogenation. Ti{sup 3+} ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron–hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source.

  1. Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films

    Directory of Open Access Journals (Sweden)

    Iis Sopyan

    2007-01-01

    Full Text Available The characteristics of the UV illumination-assisted degradation of gaseous acetaldehyde, hydrogen sulfide, and ammonia on highly active nanostructured-anatase and rutile films were investigated. It was found that the anatase film showed a higher photocatalytic activity than the counterpart did, however, the magnitude of difference in the photocatalytic activity of both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide. To elucidate the reasons for the observation, the adsorption characteristics and the kinetics of photocatalytic degradation of the three reactants on both films were analyzed. The adsorption analysis examined using a simple Langmuir isotherm, showed that adsorbability on both films decreased in the order ammonia>acetaldehyde>hydrogen sulfide, which can be explained in terms of the decreasing electron-donor capacity. Acetaldehyde and ammonia adsorbed more strongly and with higher coverage on anatase film (1.2 and 5.6 molecules/nm2, respectively than on rutile (0.6 and 4.7 molecules/nm2, respectively. Conversely, hydrogen sulfide molecules adsorbed more strongly on rutile film (0.7 molecules/nm2 than on anatase (0.4 molecules/nm2. Exposure to UV light illumination brought about the photocatalytic oxidation of the three gases in contact with both TiO2 films, and the decrease in concentration were measured, and their kinetics are analyzed in terms of the Langmuir–Hinshelwood kinetic model. From the kinetic analysis, it was found that the anatase film showed the photocatalytic activities that were factors of ~8 and ~5 higher than the rutile film for the degradation of gaseous ammonia and acetaldehyde, respectively. However, the activity was only a factor of ~1.5 higher for the photodegradation of hydrogen sulfide. These observations are systematically explained by the charge separation efficiency and the adsorption characteristics of each catalyst as well as by the physical and electrochemical properties of each

  2. Visible-light-induced photocatalytic performances of ZnO-CuO nanocomposites for degradation of 2,4-dichlorophenol

    Institute of Scientific and Technical Information of China (English)

    E. D. Sherly; J. Judith Vijaya; L.John Kennedy

    2015-01-01

    Nanostructured ZnO and CuO, and coupled oxides, i.e., ZnCu, Zn2Cu, and ZnCu2, with ZnO:CuO molar ratios of 1:1, 2:1, and 1:2, respectively, were successfully prepared through a simple, one-step, mi-crowave-assisted urea–nitrate combustion synthesis, without the use of organic solvents or surfac-tants. The prepared samples were characterized using X-ray diffraction, X-ray photoelectron spec-troscopy, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, diffuse reflectance spectroscopy, and photo-luminescence spectroscopy. The optical absorption of ZnO extended into the visible region after CuO loading. The photocatalytic activities of ZnO, CuO, and the coupled oxides were evaluated based on photodegradation of 2,4-dichlorophenol under visible-light irradiation. The coupled metal oxide Zn2Cu showed the best photocatalytic activity;this was mainly attributed to the extended photore-sponsive range and the increased charge separation rate in the nanocomposite. The photocatalytic degradation process obeyed pseudo-first-order kinetics. The results suggest that the coupled metal oxide Zn2Cu has potential applications as an efficient catalytic material with high efficiency and recyclability for the photocatalytic degradation of organic pollutants in aqueous solution under visible-light irradiation.

  3. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters.

    Science.gov (United States)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-06-05

    Commercial α-Al2O3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO2 films are in the form of anatase with 78-84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3-0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    Directory of Open Access Journals (Sweden)

    Mi-Hwa Baek

    2013-01-01

    Full Text Available Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents of 0.4, 0.6, and 0.8 wt% exhibited higher photocatalytic activity than 0 wt% Fe-TiO2/SAC in the wavelength range of 315~400 nm compared to that of 100~280 nm. The optimum Fe content was 0.6 wt% for maximum photocatalytic degradation of humic acid. Moreover, Fe-TiO2/SAC does not require an additional process step for separation of photocatalyst from treated water after photocatalysis.

  5. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. [Materials science centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Karthikeyan, S. [Environmental technology division, Central Leather Research Institute, Adyar, Chennai 600 020 (India); Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India); King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Sekaran, G. [Environmental technology division, Central Leather Research Institute, Adyar, Chennai 600 020 (India); Narayanan, V. [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025 (India); Stephen, A., E-mail: stephen_arum@hotmail.com [Materials science centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV-visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Highlights: Black-Right-Pointing-Pointer Visible light active photocatalyst Black-Right-Pointing-Pointer Degradation of methylene blue and methyl orange Black-Right-Pointing-Pointer Preparation of composite materials is a simple, fast and cost effective method. Black-Right-Pointing-Pointer Nano composite materials Black-Right-Pointing-Pointer Degradation of textile waste water.

  6. Preparation and photocatalytic degradation performance of Ag{sub 3}PO{sub 4} with a two-step approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiwen; Ji, Xiaojing; Li, Xian; Hu, Xianghua; Sun, Yanfang; Ma, Jingjun, E-mail: mjjwjpmartin@sina.com; Qiao, Gaowei

    2016-05-30

    Highlights: • Ag{sub 3}PO{sub 4} photocatalysts were synthesized via one-step and two-step ion-exchange reaction. • Photocatalytic properties of Ag{sub 3}PO{sub 4} photocatalysts was investigated, the result indicated the Ag{sub 3}PO{sub 4} (2) was higher than that of Ag{sub 3}PO{sub 4} (1) under the same experimental condition. • Ag{sub 3}PO{sub 4} (2) particles were larger than Ag{sub 3}PO{sub 4} (1) particles and many polygonal-shaped surfaces could be clearly observed in the Ag{sub 3}PO{sub 4} (2) particles. - Abstract: Ag{sub 3}PO{sub 4} photocatalysts were prepared via two and one-step through a facile ion-exchange route. The photocatalysts were then characterized through powder X-ray diffraction, scanning electron microscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated on the basis of the photocatalytic degradation of methyl orange (MO) and methylene blue (MB) under solar irradiation. The MO degradation rate of the Photocatalyst synthesized by the two-step ion-exchange route was 89.18% in 60 min. This value was four times that of the Photocatalyst synthesized by the one-step approach.The MB degradation rate was 97% in 40 min. After six cycling runs were completed, the MO degradation rate was 73%.

  7. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  8. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water.

    Science.gov (United States)

    Zhang, Yao Jun; Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long

    2012-03-30

    A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na(+) ions in the matrix of Na,Ca-cementitious material were replaced by Ni(2+) ions at room temperature. The new hydrated products of metahalloysite (Si(2)Al(2)O(5)(OH)(4)) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni(2+) and negative charge of [AlO(4)](5-) tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni(2+) ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca(2)Fe(2)O(5)) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  9. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions.

    Science.gov (United States)

    Luo, Zhaohui; Li, Lu; Wei, Chuanlin; Li, Huixin; Chen, Dan

    2015-07-01

    The optimum operating conditions for TiO2 photocatalytic degradation of tetracycline antibiotic (TC) in aqueous solution and the role of active oxidative species (AOS) from UV/TiO2 in its degradation were investigated. Response surface methodology (RSM) and central composite design (CCD) were adopted to optimize three parameters: TiO2 concentration, initial pH and UV irradiation time. Radical scavengers were added to reaction solution to assess the photocatalytic reaction mechanism of TC. The results showed that 93.1% degradation efficiency was obtained under optimum conditions established during experimentation (TiO2 concentration = 2.09 g l(-1), pH = 5.56 and t = 20.95 min). These results agree with the prediction made by the proposed model. Photocatalytic degradation of TC followed a pseudo first-order reaction rate. Photogenerated holes (h+(VB)) with minor participation from superoxide anions (O2*), were responsible for TC oxidation on TiO2, while hydroxyl radicals (*OH) played a negligible role in titania-TC oxidation.

  10. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.

  11. Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye.

    Science.gov (United States)

    Elango, Ganesh; Roopan, Selvaraj Mohana

    2016-02-01

    Maximum pollutants in the industrial and domestic waste water effluents from any sources include pathogens and organic chemicals, which can be removed before discharging into the water bodies. Methylene blue has been considered as one of the major water contaminated pollutants. Such pollutant is dominant in surface water and groundwater. It will cause irreversible hazards to human and aquatic life. Nanotechnology plays a major role in degrading such type of pollutant. In order to fulfill today's requirement, we have decided to handle the green synthesis of nanoparticles and its application by merging important fields like chemistry, environmental science, and biotechnology. Here our work emphasizes on the biological synthesis of SnO2 nanoparticles (SnO2 NPs) using the methanolic extract of Cyphomandra betacea (C.betacea), and it was confirmed by various characterization techniques such as UV-visible spectroscopy, FT-IR, XRD, SEM, particle size analyzer, zeta potential, and TEM. The obtained results stated that the synthesized SnO2 NPs were in rod shape with an average size of 21nm, which resulted in a product of nanobiotechnology. Further, we have utilized the environmental-friendly synthesized SnO2 NPs photocatalytic degradation of environmental concern methylene blue with first-order kinetics. In this paper, we have attempted to prove that secondary metabolite-entrapped SnO2 NPs are non-toxic to the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  13. Photocatalytic degradation of reactive black-5 dye using TiO2 impregnated ZSM-5

    Indian Academy of Sciences (India)

    O K Mahadwad; P A Parikh; R V Jasra; C Patil

    2011-06-01

    In the present study, photocatalytic degradation of reactive black-5 (RB-5) dye was investigated using supported TiO2 photocatalyst based adsorbent as a semiconductor photocatalyst in a batch reactor. The synthesized photocatalyst composition was developed using TiO2 as photoactive component and zeolite (ZSM-5) as the adsorbents. Attempts were also made to optimize the composition of the supported catalyst and to study the reliability of prepared catalyst. The optimum formulation of supported catalyst was found to be (TiO2: ZSM-5 = 0.15:1) which gave the highest efficiency with 98% degradation of 50 mg/L RB-5 solution in 90 min. Effect of different parameters such as initial concentration of dye solution, catalyst amount on the rate of photodegradation was also studied. The reduction in the chemical oxygen demand (COD, 88%) proves the mineralization of the RB-5 dye along with the colour removal. The supported TiO2 was found to be stable for repeated use.

  14. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    Science.gov (United States)

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment.

  15. Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The composite films, XW11O39n-/SiO2, (X refers to Si, Ge or P, respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore, the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250~350 nm. Aqueous formic acid (FA) (0-20 mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.

  16. Photocatalytic degradation of dimethomorph on nanometer titanium dioxide by silver depositing in aqueous suspension

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-hui; HUANG Ke-long; LIU Su-qin; ZENG Heng-zhi

    2005-01-01

    A series of catalysts of nanometer TiO2 were prepared by silver depositing. The photocatalytic degradation of dimethomorph in an aqueous suspensions by silver depositing with nanometer titanium dioxide as catalyst was investigated by radiation of UV-light and sunlight. A pseudo-first-order kinetic model was used to describe the results. The effects of the dosage of catalyst, oxidant, pH and radiation source on degradation were examined. The experimental results show that the decomposed rate of DMM is 94% when the dosage of catalyst is 1.25 g/L and the concentration of DMM is 100 mg/L under the conditions of solution pH of 7, the air flow of 1.5 L/min and shining for 5 h by UV-light. When it is shined by sun-light under the same condition, the decomposed rate of DMM is 48%.The mechanism of decomposition was discussed based on the data by analysis of LC-MS.

  17. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde

    Science.gov (United States)

    Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin

    2017-08-01

    The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.

  18. Degradation of phenol wastewater by a new electromagnetic induction photo-catalytic reactor

    Science.gov (United States)

    Yuan, X. C.; Meng, Q. H.; Sun, J. Y.; Yan, Y.; Li, L.; Li, G. C.; Li, D.

    2016-08-01

    A new inductive photo-catalytic reactor was obtained by the alternative magnetic field and optical coupling, which was driven by AC supply. In the cylinder reactor, UV-LED lights with the wavelength of 375-380nm were evenly distributed, and the phenol solution was used as simulated wastewater. The effects of initial phenol concentration, pH, TiO2, H2O2, alternative magnetic frequency, current, and reaction time on the phenol degradation were investigated under an imposed alternative magnetic field. The optimized conditions and results were as follows: phenol concentrations of 15mg/L, pH of 7, H2O2 of 15μL, TiO2 of 0.18g and alternative magnetic frequency of 12 KHz and current of 2A. With these conditions, the phenol degradation ratio reached 47.1% in 1 h reaction time. The new reactor is very promising for the effective treatment of refractory organic pollutants.

  19. Enhanced photocatalytic degradation of methylene blue on carbon nanotube-TiO{sub 2}-Pd composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Hye; Choi, Hyun Chul [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of)

    2016-11-15

    Semiconductor-based photocatalysis is recognized as a promising technique for addressing energy and environmental issues. Among various semiconductors, the use of titanium dioxide (TiO-2) as a photocatalyst in solar energy conversion and pollutant degradation has been widely investigated because of its high efficiency, photostability, and low toxicity. However, its practical application is restricted by the intrinsic wide band gap of TiO-2 and the rapid recombination of photogenerated electron–hole pairs. Therefore, several remedial methods have been proposed, such as the doping of TiO{sub 2} with metallic or non-metallic elements, increasing its surface area, sensitization with dyes, and the generation of defect structures. We have successfully prepared CNT–TiO{sub 2}–Pd composites with a simple two-step sol–gel method. We characterized the composites with TEM and XRD, and demonstrated that anatase TiO{sub 2} and metallic Pd nanoparticles were deposited onto the surfaces of the CNTs. The average particle size of these nanoparticles was approximately 3.4 nm. The prepared catalyst was found to exhibit a higher activity in MB photodegradation than the reference systems. The synergy of the combination of CNTs and Pd nanoparticles with TiO{sub 2} provides superior MB degradation. More comprehensive studies of the mechanism for this synergy between the metal nanoparticles and TiO{sub 2} that enhances the photocatalytic activity of CNT–TiO{sub 2} are underway in our laboratory.

  20. Keggin-Type Polyoxometalate-Based Metal-Organic Networks for Photocatalytic Dye Degradation.

    Science.gov (United States)

    Hao, Hong-Fang; Zhou, Wen-Zhe; Zang, Hong-Ying; Tan, Hua-Qiao; Qi, Yan-Fei; Wang, Yong-Hui; Li, Yang-Guang

    2015-08-01

    The reaction of Keggin-type polyoxometalate (POM) units, transition-metal (TM) ions, and a rigid bis(imidazole) ligand (1,4-bis(1-imidazolyl)benzene (bimb)) in a hydrothermal environment led to the isolation of four new POM-based metal-organic networks, [H2 L][CuL][SiW12 O40 ]⋅2 H2 O (1), [H2 L]2 [Co(H2 O)3 L][SiW11 CoO39 ]⋅6 H2 O (2), KH[CuL]2 [SiW11 CoO39 (H2 O)]⋅2 H2 O (3), and [CuL]4 [GeW12 O40 ]⋅H2 O (4; L=bimb). All four compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. Compounds 1 and 3 are new 3D networks with 1D channels. Compounds 2 and 4 contain 2D networks, which further stack into 3D supramolecular networks. The contributions of pH value, the negative charge of the POM, and the TM coordination modes to the construction of 3D networks were elucidated by comparing the synthetic conditions and structures of compounds 1-4. The photocatalytic properties of compounds 1-4 were investigated using methylene blue (MB) degradation under UV light. All compounds showed good catalytic activity and structural stability. The possible catalytic mechanism was discussed on the basis of active-species trapping experiments. The different photocatalytic activities of compounds 1-4 were explained by comparison of the band gaps of different POM species and different packing modes of POM units in these hybrid compounds.

  1. Photocatalytic degradation of methyl orange by nano-TiO_2 thin films prepared by RF magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    Fanming Meng; Ling Cao; Xueping Song; Zhaoqi Sun

    2009-01-01

    Nano-TiO_2 thin films are deposited by radio frequency (RF) magnetron sputtering using TiO_2 ceramic target and characterized by X-ray diffractometer,atomic force microscope,and ultraviolet-visible spectrophotometer.The photocatalytic activity is evaluated by light-induced degradation of methyl orange solutions (5,10,and 20 ppm) using a high pressure mercury lamp as the light source.The film is amorphous,and its energy gap is 3.02 Ev.The photocatalytic degradation of methyl orange solution is the first-order reaction and the apparent reaction rate constants are 0.00369,0.0024,and 0.00151 for the methyl orange solution concentrations of 5,10,and 20 ppm,respectively.

  2. Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps.

    Science.gov (United States)

    Hong, Jun; Sun, Cheng; Yang, Shao-Gui; Liu, Ya-Zi

    2006-05-20

    Photocatalytic degradation of methylene blue (MB) in TiO(2) aqueous suspensions using microwave (MW) powered electrodeless discharge lamps (EDLs) was studied. MB of initial concentration 100 mg/l was mainly decomposed in the process of photocatalytic degradation using EDLs (PCD/EDLs) after 15 min of irradiation. The corresponding mineralization efficiency was 45%. The influence of factors as EDLs, solution volume and TiO(2) catalyst dosage on the decomposition of MB in the PCD/EDLs process was also investigated. The optimal decomposition efficiency was observed when EDLs-4 (four 10 mm x 50 mm EDLs), solution volume of 50 ml and TiO(2) catalyst dosage of 1-4 g/l were used in the study. The PCD/EDLs process was promising in treating MB polluted water.

  3. Photocatalytic degradation of coking wastewater by nanocrystalline (Fe,N) co-doped TiO2 powders

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The yellowish nitrogen and iron co-doped nanocrystalline titanium dioxide ((Fe,N) co-doped TiO2) powders have been prepared by hydrothermal method using TiOSO4 and CO(NH2)2 as starting materials.The grain size of the synthesized powders was estimated as 11 nm by Scherrer’s method.The UV-Vis diffuse reflectance spectra indicated that the light absorption edge of the powders was red-shifted up to 605 nm.And the doped TiO2 powders exhibited good photocatalytic activities during the photo-degradation of coking wastewater under sunshine irradiation.The biotreatability of the coking wasterwater after photocatalytic degradation was improved greatly and it is more suitable to be further treated by biochemical method.

  4. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds.

    Science.gov (United States)

    Colmenares, Juan Carlos; Luque, Rafael

    2014-02-07

    Heterogeneous photocatalysis has become a comprehensively studied area of research during the past three decades due to its practical interest in applications including water-air depollution, cancer therapy, sterilization, artificial photosynthesis (CO2 photoreduction), anti-fogging surfaces, heat transfer and heat dissipation, anticorrosion, lithography, photochromism, solar chemicals production and many others. The utilization of solar irradiation to supply energy or to initiate chemical reactions is already an established idea. Excited electron-hole pairs are generated upon light irradiation of a wide-band gap semiconductor which can be applied to solar cells to generate electricity or in chemical processes to create/degrade specific compounds. While the field of heterogeneous photocatalysis for pollutant abatement and mineralisation of contaminants has been extensively investigated, a new research avenue related to the selective valorisation of residues has recently emerged as a promising alternative to utilise solar light for the production of valuable chemicals and fuels. This tutorial review will focus on the potential and applications of solid photonanocatalysts for the selective transformation of biomass-derived substrates.

  5. Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method

    Science.gov (United States)

    Sundararajan, M.; John Kennedy, L.; Nithya, P.; Judith Vijaya, J.; Bououdina, M.

    2017-09-01

    Co1-xMgxFe2O4 (0≤x≤0.5) spinel nanoparticles were synthesized by a simple microwave combustion method. The characterization of the samples were performed using X-ray diffraction (XRD) analysis, scanning electron (SEM) microscopy, energy dispersive X-ray (EDX) analysis, UV-visible and diffuse reflectance (DRS) spectroscopy, photoluminescence (PL) spectroscopy, Fourier transformed infrared (FT-IR) spectroscopy and vibrating sample magnetometry (VSM) analysis. The XRD patterns indicate the formation of cubic inverse spinel structure. The calculated average crystallite size using Debye Scherrer's equation is found to be around 46-38 nm. The morphology of spinel nanoparticles was observed from SEM images and the elemental mapping of magnesium doped cobalt ferrite was obtained by using energy dispersive X-ray technique. Optical studies were carried out for the deeper understanding of the conduction band (CB) and valence band (VB) edges of the synthesized nanoparticles. The intrinsic stretching vibrations of Fe3+-O2- in tetrahedral sites leads to the appearance of IR band at around 573 cm-1. The magnetic properties such as remanence magnetization (Mr), coercivity (Hc) and saturation magnetization (Ms) were calculated from the hysteresis curves. The maximum photocatalytic degradation efficiency for Co0.6Mg0.4Fe2O4 is around (99.5%) when compared to that of CoFe2O4 whose efficiency is around (73.0%). The improvement in photocatalytic degradation efficiency is due to the effective separation and prevention of electron-hole pair recombination. The R2 values for the first order rate kinetics are found to be better than R2 values for the second order rate kinetics and this proves that photocatalytic degradation of RhB dye follows first order kinetics. The probable mechanism for the photocatalytic degradation of RhB dye is proposed.

  6. Photocatalytic degradation of methamphetamine by UV/TiO2 - kinetics, intermediates, and products.

    Science.gov (United States)

    Kuo, Chin-Sheng; Lin, Cheng-Fang; Hong, Pui-Kwan Andy

    2015-05-01

    Methamphetamine (MAT) is a prescription drug and often a substance of abuse. It is found in WWTP influents and effluents as well as surface waters in many regions, elevating concerns about their potential impact. MAT is not effectively removed by conventional processes of domestic wastewater treatment plants (WWTPs). To contemplate advanced treatment, this study evaluates the feasibility of eliminating MAT by UV-illuminated TiO2, a potential retrofit to existing UV disinfection units. The degradation kinetics and mechanism of MAT by TiO2 under low-wattage UV illumination (9 W with maximum output at 365 nm) were investigated. Experimental parameters were varied including the TiO2 loading, MAT concentration, and pH. During treatment, MAT and its intermediates were tracked by HPLC-MS/MS, along with TOC and IC measurements to determine the mineralization extent. In contact with 0.1 g/L of TiO2 under illumination at pH 7, an entire spike amount of 100 μg/L of MAT was removed from deionized water after 3 min and 76 μg/L of MAT was removed from the secondary wastewater effluent after 30 min. The degradation of MAT followed an apparent first-order kinetics. Near complete mineralization of MAT from 10 mg/L was achieved in 180 min with 0.1 g/L of TiO2 at pH 5, by which the organic nitrogen was converted to NH4(+) and NO3(-). Based on identified intermediates, two degradation pathways were deduced that involved cleavage of the side chain as well as hydroxylation of the MAT compound. The photocatalytic UV/TiO2 process shows promise in arresting the release of MAT and its intermediate derivatives into the water environment.

  7. Photocatalytic degradation of 4-tert-octylphenol in a spiral photoreactor system

    Institute of Scientific and Technical Information of China (English)

    Yanlin Wu; Haixia Yuan; Xiaoxuan Jiang; Guanran Wei; Chunlei Li; Wenbo Dong

    2012-01-01

    A spiral photoreactor system (SPS) was developed for the degradation of 4-tert-octylphenol (4-t-OP) in aqueous phase.4-t-OP was previously considered as a endocrine disrupting compound frequently present in water.The direct photodegradation reaction caused by the SPS was found to accord with the characteristic of apparent first-order reaction with reaction rate constant k =4.8 × 10-2 min-1.However,the direct photodegradation reaction could not make the 4-t-OP mineralized.The photodegradation efficiency-increased from 88% to 91.2% in 45 min irradiation period after the internal surface of SPS was sintered with TiO2 thin film as catalyst.Catalyst concentration,number of catalyst coating layers and initial concentration of 4-t-OP were proven to be the factors affecting the photocatalytic degradation performance of the SPS on aqueous 4-t-OP.The degradation mechanism was investigated and the byproducts were analyzed using total organic carbon analyzer (TOC) and LC-MS.The possible chemical structures of the products were suggested.SPS with single layer of TiO2 prepared by sintering 13.6% of TiO2 precursor was proven to be more efficient than most of previous systems for removal of 4-t-OP from aqueous phase.28.3% of the 4-t-OP was mineralized in 45 min according to the decreased amount of TOC value.

  8. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    Science.gov (United States)

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.

  9. Enhanced Photocatalytic Degradation of Methylene Blue Using ZnFe2O4/MWCNT Composite Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Sonal Singhal

    2013-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using arc discharge method at a magnetic field of 430 G and purified using HNO3/H2O2. Transmission electron micrographs revealed that MWCNTs had inner and outer diameter of ~2 nm and ~4 nm, respectively. Raman spectroscopy confirmed formation of MWCNTs showing G-band at 1577 cm−1. ZnFe2O4 and ZnFe2O4/MWCNT were produced using one step hydrothermal method. Powder X-ray diffraction (XRD confirmed the formation of cubic spinel ZnFe2O4 as well as incorporation of MWCNT into ZnFe2O4. Visible light photocatalytic degradation of methylene blue (MB was studied using pure ZnFe2O4 and ZnFe2O4/MWCNT. The results showed that ZnFe2O4/MWCNT composite had higher photocatalytic activity as compared to pure ZnFe2O4. After irradiation for 5 hours in the visible light, MB was almost 84% degraded in the presence of ZnFe2O4 photocatalyst, while 99% degradation was observed in case of ZnFe2O4/MWCNT composite. This enhancement in the photocatalytic activity of composite may be attributed to the inhibition of recombination of photogenerated charge carriers.

  10. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension.

    Science.gov (United States)

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2012-08-01

    Thin films of N-doped ZnO are synthesized via spray pyrolysis technique in aqueous medium using zinc acetate and ammonium acetate as precursors. Influence of N doping onto photochemical, structural, morphological, optical and thermal properties have been investigated. Structural analysis depicts hexagonal (wurtzite) crystal structure. The effect of N doping on the photocatalytic activity of N-doped ZnO in the degradation of toluene is studied and results are compared with pure ZnO. The results show that the rate of degradation of toluene over N-doped ZnO is higher as compared to that of pure ZnO and increases with increasing N doping up to 10 at.% and then decreases. The enhancement of photocatalytic activity of N-doped ZnO thin films is mainly due to their capability for reducing the electron hole pair recombination. The photocatalytic mineralization of toluene in aqueous solution has been studied by measuring COD and TOC. Possible reaction mechanism pathways during toluene degradation over N-doped ZnO has been proposed.

  11. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    Science.gov (United States)

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance.

  12. Photocatalytic degradation of methylene blue and inactivation of pathogenic bacteria using silver nanoparticles modified titanium dioxide thin films.

    Science.gov (United States)

    Ibrahim, Haytham M M

    2015-07-01

    Titanium dioxide (TiO2) is a well-studied photocatalyst that is known to break down organic molecules upon ultraviolet irradiation. TiO2 thin films were fabricated on glass substrates using the doctor-blade procedure, the film surface was modified with silver nanoparticles to increase its visible light response. The Ag-TiO2 films were characterized by transmission electron microscopy, scanning electron microscopy equipped with energy dispersive spectrometry and X-ray diffraction. The photocatalytic degradation of methylene blue (MB) and inactivation of Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus were studied. The modified films presented enhanced photocatalytic efficiency and can decompose MB solution two-times faster than the unmodified TiO2 films, under illumination of sunlight. A nominal degradation (15 %) was observed in control MB under sunlight. The degradation efficiency of Ag-TiO2 films slightly decreased after five consecutive experiments. Ag-TiO2 films revealed very effective bactericidal activity against both E. coli and S. aureus. The photocatalytic inactivation toward E. coli and S. aureus showed a similar trend with much higher effectiveness toward E. coli under the same experimental conditions. The inactivation efficiency was maximized and reached 95 % for S. aureus and 97 % for E. coli, after 180 min incubation. These results demonstrate the potential of application of Ag-TiO2 photocatalysis as a method for treatment of diluted waste waters in textile industries.

  13. Fabrication of Ag-Decorated CaTiO₃ Nanoparticles and Their Enhanced Photocatalytic Activity for Dye Degradation.

    Science.gov (United States)

    Xian, T; Yang, H; Huo, Y S; Ma, J Y; Zhang, H M; Su, J Y; Feng, W J

    2016-01-01

    CaTiO₃nanoparticles of 30-40 nm in size were synthesized via a polyacrylamide gel route. Ag nanoparticles with size of 8-16 nm were deposited onto CaTiO₃particles by a photochemical reduction method to yield CaTiO₃@Ag composites. The photocatalytic activity of prepared samples was evaluated by degrading methyl orange under ultraviolet irradiation. It is demonstrated that Ag-decorated CaTiO₃ particles exhibit an enhanced photocatalytic activity compared to bare CaTiO₃ particles. After 60 min of photocatalysis, the degradation percentage of MO increases from 54% for bare CaTiO₃particles to 72% for CaTiO₃@Ag composites. This can be explained by the fact that photogenerated electrons are captured by Ag nanoparticles and photogenerated holes are therefore increasingly available to react with OH⁻/H₂O to generate hydroxyl (·OH) radicals. ·OH radicals were detected by fluorimetry using terephthalic acid as a probe molecule, revealing an enhanced yield on the irradiated CaTiO₃@Ag composites. In addition, it is found that the addition of ethanol, which acts as an ·OH scavenger, leads to a quenching of ·OH radicals and simultaneous decrease in the photocatalytic efficiency. This suggests that ·OH radicals are the dominant active species responsible for the dye degradation.

  14. Anomalous behavior of visible light active TiO2 for the photocatalytic degradation of different Reactive dyes.

    Science.gov (United States)

    Kaur, Navneet; Shahi, Satwant Kaur; Singh, Vasundhara

    2015-11-01

    Nanocrystalline undoped, N-doped, N and metal codoped titania with different particle size, surface area, anatase phase content, crystallinity, band gap and zeta potential were synthesized by the sol-gel method. The photocatalytic activities of the synthesized TiO2 powders were compared by employing four different Reactive dyes. The order of photocatalytic activity observed for Reactive Red 198 dye (RR 198) was undoped = N,Cu codoped = N-doped > N,Fe codoped TiO2, Reactive Blue 4 dye (RB 4) was N,Cu codoped > N,Fe codoped > N-doped > undoped TiO2, Reactive Black 5 dye (RB 5) was N,Cu codoped* > undoped > N-doped > N,Fe codoped TiO2 and negligible degradation was observed for Reactive Orange 16 dye (RO 16). In this paper, the anomalous trend of the photocatalytic activity of various photocatalysts for the degradation of a particular class of dyes has been observed and accounted for based upon three parameters: mechanism of degradation, physicochemical properties of the catalyst and adsorption behavior based on the zeta potential. It was concluded that apart from these parameters, the substrate-specificity of the catalyst is also of equal importance in developing new catalysts for the photodegradation of dyes present in textile effluents.

  15. Solid-phase photocatalytic degradation of polystyrene plastic with goethite modified by boron under UV-vis light irradiation

    Science.gov (United States)

    Liu, Guanglong; Zhu, Duanwei; Zhou, Wenbing; Liao, Shuijiao; Cui, Jingzhen; Wu, Kang; Hamilton, David

    2010-02-01

    A novel photodegradable polyethylene-boron-goethite (PE-B-goethite) composite film was prepared by embedding the boron-doped goethite into the commercial polyethylene. The goethite catalyst was modified by boron in order to improve its photocatalytic efficiency under the ultraviolet and visible light irradiation. Solid-phase photocatalytic degradation of the PE-B-goethite composite film was carried out in an ambient air at room temperature under ultraviolet and visible light irradiation. The properties of composite films were compared with those of the pure PE films and the PE-goethite composite films through performing weight loss monitoring, scanning electron microscope (SEM) analysis, FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The photo-induced degradation of PE-B-goethite composite films was higher than that of the pure PE films and the PE-goethite composite films under the UV-irradiation, while there has been little change under the visible light irradiation. The weight loss of the PE-B-goethite (0.4 wt.%) composite film reached 12.6% under the UV-irradiation for 300 h. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  16. Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspension

    Directory of Open Access Journals (Sweden)

    N. Barka

    2014-11-01

    Full Text Available Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of oxalic acid in a batch photo-reactor using TiO2 aqueous suspension. The important parameters which affect the removal efficiency of oxalic acid such as agitation, initial concentration, volume of the solution and TiO2 dosage were investigated. The parameters were coded as X1, X2, X3 and X4, consecutively, and were investigated at two levels (−1 and +1. The effects of individual variables and their interaction effects for dependent variables, namely, photocatalytic degradation efficiency (% were determined. From the statistical analysis, the most effective parameters in the photocatalytic degradation efficiency were initial concentration and volume of solution. The interaction between initial concentration, volume of solution and TiO2 dosage was the most influencing interaction. However, the interaction between agitation, initial concentration and volume of solution was the least influencing parameter.

  17. Photocatalytic degradation kinetics, mechanism and ecotoxicity assessment of tramadol metabolites in aqueous TiO2 suspensions.

    Science.gov (United States)

    Αntonopoulou, Μ; Hela, D; Konstantinou, I

    2016-03-01

    This study investigated for the first time the photocatalytic degradation of three well-known transformation products (TPs) of pharmaceutical Tramadol, N-desmethyl-(N-DES), N,N-bidesmethyl (N,N-Bi-DES) and N-oxide-tramadol (N-OX-TRA) in two different aquatic matrices, ultrapure water and secondary treated wastewater, with high (10 mg L(-1)) and low (50 μg L(-1)) initial concentrations, respectively. Total disappearance of the parent compounds was attained in all experiments. For initial concentration of 10 mg L(-1), the target compounds were degraded within 30-40 min and a mineralization degree of more than 80% was achieved after 240 min of irradiation, while the contained organic nitrogen was released mainly as NH4(+) for N-DES, N,N-Bi-DES and NO3(-) for N-OX-TRA. The degradation rates of all the studied compounds were considerably decreased in the wastewater due to the presence of inorganic and organic constituents typically found in effluents and environmental matrices which may act as scavengers of the HO(•). The effect of pH (4, 6.7, 10) in the degradation rates was studied and for N-DES-TRA and N,N-Bi-DES-TRA, the optimum pH value was 6.7. In contrast, N-OX-TRA showed an increasing trend in the photocatalytic degradation kinetic in alkaline solutions (pH 10). The major transformation products were identified by high resolution accurate mass spectrometry coupled with liquid chromatography (HR-LC-MS). Scavenging experiments indicated for all studied compounds the important role of HO(•) in the photocatalytic degradation pathways that included mainly hydroxylation and further oxidation of the parent compounds. In addition, Microtox bioassay (Vibrio fischeri) was employed for evaluating the ecotoxicity of photocatalytically treated solutions. Results clearly demonstrate the progressive decrease of the toxicity and the efficiency of the photocatalytic process in the detoxification of the irradiated solutions.

  18. Photocatalytic degradation of carbofuran in TiO2 aqueous solution: kinetics using design of experiments and mechanism by HPLC/MS/MS.

    Science.gov (United States)

    Yang, Hai; Zhou, Shuolin; Liu, Huajie; Yan, Weiwei; Yang, Liping; Yij, Bing

    2013-08-01

    The photocatalytic degradation kinetics of carbofuran was optimized by central composite design based on response surface methodology for the first time. Three variables, TiO2 concentration, initial pH value and the concentration of carbofuran, were selected to determine the dependence of degradation efficiencies on independent variables. Response surface methodology modeling results indicated that the degradation efficiency of carbofuran was highly affected by the initial pH value and the concentration of carbofuran. Then nine degradation intermediates were detected by HPLC/MS/MS. The Frontier Electron Densities of carbofuran were calculated to predict the active sites on carbofuran attacked by hydroxyl radicals and photoholes. Point charges were used to elucidate the chemisorption pattern on TiO2 catalysts during the photocatalytic process. By combining the experimental results and calculation data, the photocatalytic degradation pathways of carbofuran were proposed, including the addition of hydroxyl radicals and the cleavage of the carbamate side chain.

  19. Photocatalytic activity of the binary composite CeO{sub 2}/SiO{sub 2} for degradation of dye

    Energy Technology Data Exchange (ETDEWEB)

    Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Nakaruk, Auppatham [Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Centre of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok 65000 (Thailand); Channei, Duangdao, E-mail: duangdaoc@nu.ac.th [Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Research Center for Academic Excellence in Petroleum, Petrochemicals and Advanced Materials, Naresuan University, Phitsanulok 65000 (Thailand)

    2016-11-30

    Highlights: • The enhanced photocatalytic activity of the CeO{sub 2}/SiO{sub 2} composite can be explained by the presence of the SiO{sub 2} adsorbent, which effectively increased the surface area of the CeO{sub 2}. • The increased surface area of CeO{sub 2} should be helpful to facilitate more effective adsorption sites, which enhances the photocatalytic degradation of organic pollutant significantly. • SiO{sub 2} modification is effective in separating the photogenerated electrons and holes, which is of great importance for photocatalytic activity. • SiO{sub 2} acted as a carrier for CeO{sub 2} attachment and avoided the agglomeration of CeO{sub 2} particles. - Abstract: In this study, CeO{sub 2} photocatalyst was modified by composite with SiO{sub 2} to increase efficiency and improve photocatalytic activity. The as-prepared SiO{sub 2} particles have been incorporated into the precursor mixture of CeO{sub 2} by homogeneous precipitation and subsequent calcination process. The phase compositions of CeO{sub 2} before and after compositing with SiO{sub 2} were identified by X-ray diffraction (XRD). The morphology and particle size of CeO{sub 2}/SiO{sub 2} composite was analyzed by high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The results showed SiO{sub 2} spheres with the particle size approximately 100–120 nm, and a uniform layer of CeO{sub 2} nanoparticles with a diameter of about 5–7 nm that were fully composite to the surfaces of SiO{sub 2}. The X-ray photoelectron spectroscopy (XPS) technique was carried out in order to characterize the change in valence state and composite characteristic by shifted peaks of binding energies. The photocatalytic activity was studied through the degradation of Rhodamine B in aqueous solution under visible light exposure. The highest photocatalytic efficiency of CeO{sub 2}/SiO{sub 2} composite was also obtained. To explain the high photocatalytic

  20. Enhanced photocatalytic-electrolytic degradation of Reactive Brilliant Red X-3B in the presence of water jet cavitation.

    Science.gov (United States)

    Wang, Xiaoning; Jia, Jinping; Wang, Yalin

    2015-03-01

    Photocatalysis, electrolysis, water jet cavitation (WJC), alone and in combinations were applied to degrade an azo dye, Reactive Brilliant Red X-3B (X-3B). Experiments were conducted in a 4.0 L aqueous solution with different initial dye concentrations, TiO₂ dose, and solution pH. WJC substantially increased the photocatalytic, electrolytic and photocatalytic-electrolytic rates of the dye removal. The observed first-order rate of X-3B decolorization in the process of combined photocatalysis and electrolysis coupled with WJC was 1.6-2.9 times of that in the process of combined photocatalysis and electrolysis coupled with mechanical stirring. The rate enhancements may be attributed primarily to the reduced diffusion layer thickness on the electrodes and the deagglomeration of photocatalyst particles due to the chemical and physical effects of WJC. Under the conditions of 80 mg/L X-3B solution, 100 mg/L TiO₂ dose and solution pH 6.3, 97% and 71% of color and chemical oxygen demand (CODCr) were removed, respectively, within 90-min photocatalytic-electrolytic treatment coupled with WJC. During this process, azo groups and naphthalene, benzene and triazine structures of the dye can be destroyed. Industrial textile effluent was also investigated, and a positive synergistic effect between photocatalytic-electrolytic system and WJC was observed considering color removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G

    Science.gov (United States)

    Zhang, Chao; Zhang, Jing; Su, Yanjie; Xu, Minghan; Yang, Zhi; Zhang, Yafei

    2014-02-01

    We have demonstrated a facile and low-cost approach to synthesize ZnO nanowire (NW)/reduced graphene oxide (RGO) nanocomposites, in which ZnO NWs and graphene oxide (GO) were produced in large scale separately and then hybridized into ZnO NW/RGO nanocomposites by mechanical mixing and low-temperature thermal reduction. Rhodamine 6G (Rh6G) was used as a model dye to evaluate the photocatalytic properties of ZnO NW/RGO nanocomposites. The obtained nanocomposites show significantly enhanced photocatalytic performance, which took only 10 min to decompose over 98% Rh6G. Finally the mechanism of the great enhancement about photocatalytic activity of ZnO NW/RGO nanocomposites is studied. It is mainly attributed to that RGO nanosheets can transfer the electrons of ZnO NWs excited by ultraviolet (UV) irradiation, increase electron migration efficiency, and then longer the lifetime of the holes in ZnO NWs. The high charge separation efficiency of photo-generated electron-hole pairs directly leads to the lower recombination rate of ZnO NW/RGO nanocomposites, makes more effective electrons and holes to participate the radical reactions with Rh6G, thus significantly improving the photocatalytic properties. The high degradation efficiency makes the ZnO NW/RGO nanocomposites promising candidates in the application of environmental pollutant and wastewater treatment.

  2. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    Science.gov (United States)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  3. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    Science.gov (United States)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  4. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  5. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hbeta zeolite-supported TiO2.

    Science.gov (United States)

    Mahalakshmi, M; Vishnu Priya, S; Arabindoo, Banumathi; Palanichamy, M; Murugesan, V

    2009-01-15

    Photocatalytic activity of TiO2 and zeolites supported TiO2 were investigated using propoxur as a model pollutant. Hbeta, HY and H-ZSM-5 zeolites were examined as supports for TiO2. Hbeta was chosen as the TiO2 support based on the adsorption capacity of propoxur on these zeolites (Hbeta>HY=H-ZSM-5). TiO2/Hbeta photocatalysts with different wt.% were prepared and characterized by XRD, FT-IR and BET surface area. The progress of photocatalytic degradation of aqueous propoxur solution using TiO2 (Degussa P-25) and TiO2 supported on Hbeta zeolite was monitored using TOC analyzer, HPLC and UV-vis spectrophotometer. The degradation of propoxur was systematically studied by varying the experimental parameters in order to achieve maximum degradation efficiency. The initial rate of degradation with TiO2/Hbeta was higher than with bare TiO2. TOC results revealed that TiO2 requires 600min for complete mineralization of propoxur whereas TiO2/Hbeta requires only 480min. TiO2/Hbeta showed enhanced photodegradation due to its high adsorption capacity on which the pollutant molecules are pooled closely and hence degraded effectively.

  6. Facile one pot synthesis of zinc oxide nanorods and statistical evaluation for photocatalytic degradation of a diazo dye.

    Science.gov (United States)

    Dutta, Suvanka; Ghosh, Ananya; Kabir, Humayun; Saha, Rajnarayan

    In the present work zinc oxide nanorods (ZNRs) have been synthesized to estimate its photocatalytic degradation potential on an industrially used diazo dye and optimization of the total treatment process has been designed. Response surface methodology (RSM) has been used to model the operational parameters for this photocatalytic degradation. The crystallite size (101 plane) of the synthesized ZNR has been found to be 20.99 nm having a band gap energy of 3.45 eV. At elevated pH, the rate of degradation of the photocatalyst was found to be higher than that of acidic pH. The independent variables of the model are time (9.6-122 min), pH (2-12.2), catalyst dose (0.2-0.4 g/L) and dye concentration (88-512 mg/L). It was seen that the degradation efficiency was significantly affected by the initial dye concentration and the pH, the optimal values of the parameters being a pH of 10.67, an initial concentration of 150 mg/L and ZnO dose of 0.37 g/L, the time taken being 88.52 min. The actual degradation efficiency of the dye reached 96.9% at optimized condition, which is quite close to the predicted value of 98.07%.

  7. Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Bechambi, Olfa [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Jlaiel, Lobna [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia); Najjar, Wahiba, E-mail: najjarwahiba2014@gmail.com [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie des Matériaux et Catalyse, 2092, Tunis (Tunisia); Sayadi, Sami [Laboratoire de Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, B.P. 1177, 3018 Sfax (Tunisia)

    2016-04-15

    Ce–ZnO (2 mol %) and undoped ZnO catalysts have been synthesized through hydrothermal method and characterized by X-ray diffraction (XRD), Nitrogen physisorption at 77 K; Fourier transformed infrared spectroscopy (FTIR), UV–Visible spectroscopy, Photoluminescence spectra (PL), and Raman spectroscopy. Ce-doping reduces the average crystallite size, increases the BET surface area, shifts the absorption edge, reduces the electron–hole recombination and consequently improves photodegradation efficiency of Bisphenol A (BPA) in the presence of UV irradiation and hydrogen peroxide. The photocatalytic optimum conditions were established by studying the influence of various operational parameters including catalyst concentration, initial BPA concentration, H{sub 2}O{sub 2} concentration and initial pH. Under optimum conditions, Ce–ZnO (2%) achieved 100% BPA degradation and 61% BPA mineralization after 24 h of UV irradiation. BPA degradation reaction followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. Based on the identified intermediate products, the possible mechanism for BPA photodegradation is proposed. Toxicity under the optimum condition was also evaluated. - Graphical abstract: Proposed photocatalytic degradation pathway of BPA in the presence of Ce– ZnO (2%)/UV/H{sub 2}O{sub 2} system. - Highlights: • Influence of different parameters on the degradation and mineralization of BPA. • Identification of possible degradation products. • Toxicity tests conducted with Vibrio fischeri. • Simple and direct photodegradation mechanism of BPA is proposed.

  8. ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye

    Science.gov (United States)

    Qin, Jiaqian; Zhang, Xinyu; Yang, Chengwu; Cao, Meng; Ma, Mingzhen; Liu, Riping

    2017-01-01

    In this work, ZnO microspheres-reduced graphene oxide (rGO) nanocomposites were synthesized via a simple solution method and used for the photodegradation of methylene blue (MB) dye from water under UV light. The SEM and TEM observations demonstrate that the microsphere morphologies of the ZnO microspheres-rGO nanocomposite is composed of ZnO microspheres anchored on rGO sheets, confirming the formation of ZnO microspheres-rGO composites. Raman spectra and X-ray photoelectron spectroscopy reveal that both of the reduction of GO tight contact between ZnO and rGO are achieved during the high temperature calcination process. During the photocatalytic test, in comparison with ZnO microspheres and P25 TiO2, the ZnO microspheres-rGO nanocomposite shows improved photodegradation of MB dye, because the rGO sheets could reduce the charge recombination in electron-transfer processes. According to the scavenger experiments, the possible MB degradation mechanism is contributed mainly to the generation of active species induced by the photogenerated holes (h+) and superoxide radicals (rad O2-).

  9. Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide.

    Science.gov (United States)

    Xu, Zhonghou; Jing, Chuanyong; Li, Fasheng; Meng, Xiaoguang

    2008-04-01

    Photodegradation mechanisms of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) with nanocrystalline titanium dioxide under UV irradiation were investigated. In the presence of UV irradiation and 0.02 g/L TiO2, 93% MMA (initial concentration is 10 mg-As/L) was transformed into inorganic arsenate, [As(V)], after 72 h of a batch reaction. The mineralization of DMA to As(V) occurred in two steps with MMA as an intermediate product. The photodegradation rate of MMA and DMA could be described using first-order kinetics, where the apparent rate constant is 0.033/h and 0.013/h for MMA and DMA, respectively. Radical scavengers, including superoxide dimutase (SOD), sodium bicarbonate, tert-butanol, and sodium azide, were used to study the photodegradation mechanisms of MMA and DMA. The results showed that hydroxyl radicals (HO*) was the primary reactive oxygen species for the photodegradation of MMA and DMA. The methyl groups in MMA and DMAweretransformed into organic carbon, including formic acid and possibly methanol, also through photochemical reactions. The results showed that nanocrystalline TiO2 can be used for the photocatalytical degradation of MMA and DMA and subsequent removal of the converted As(V), since the high adsorption capacity of the material for inorganic arsenic species has been demonstrated in previous studies.

  10. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation.

    Science.gov (United States)

    Rioja, N; Benguria, P; Peñas, F J; Zorita, S

    2014-10-01

    This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO2 was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water.

  11. Bismuth Modified Porous Silica Preparation, Characterization and Photocatalytic Activity Evaluation for Degradation of Isoproturon

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar Reddy Police; Srinivas Basavaraju; Durga Kumari Valluri; Subrahmanyam Machiraju

    2013-01-01

    Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Sio5 species containing surface.The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD),X-ray photoelectron spectroscopy (XPS),UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS),scanning electron microscopy (SEM),energy dispersive analysis of X-ray (EDAX),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques.EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2Sio5,which is substantiated by XRD.The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica.FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework.SEM and TEM show the spherical morphology,whereas N2 adsorption/desorption study confirms the porosity of the prepared materials.The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa Tio2.

  12. The effect of TiO2 nanoparticles and UV irradiation on photocatalytic degradation of Imidaclopride.

    Science.gov (United States)

    Ahmari, Hadi; Zeinali Heris, Saeed; Hassanzadeh Khayyat, Mohammad

    2017-03-13

    Imidaclopride is an insecticide widely used for pest control in agriculture around the world. It acts on the central nervous system of insects, while posing lower toxicity to mammals. This is an organic material made of Pyridinium, Dihydroimidazol and Nitramide. This structure poses a threat to the environment and humans. Until now, different types of methods have been used for elimination of this organic pollution. Recently, advance oxidation processes (AOPs) is presented as a proposed method to remove this organic pollution. Photocatalytic degradation is also used as an efficient method for destruction of organic structures. In this study, the effect of TiO2 nanoparticle as a photocatalyst activated by UV irradiation is investigated. The new design of the reactor was prepared with coaxial cylinders in which the inner cylinder rotated at constant speed. The reactor worked in two batch and continuous modes. The results show that the UV irradiation is more effective than activated TiO2 nanoparticle, as the designed reactor with UV irradiation eliminated Imidaclopride in less than 2 hours.

  13. Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation.

    Science.gov (United States)

    El-Sharkawy, E A; Soliman, Afaf Y; Al-Amer, Kawthr M

    2007-06-15

    Physically and chemically activated carbons were prepared from date pits and olive stones. Titania and WO(x)-TiO(2)/MCM-41 were prepared as photoactive catalysts. Surface characterizations were investigated from ash content, pH, base neutralization capacities and FT-IR techniques. The textural characteristics, namely specific surface area (S(BET)) and pore texture, were determined from low temperature adsorption of N(2) at 77 K. The decolorization of aqueous solution of methylene blue was performed by means of two alternative methods. Steam-activated carbons own higher surface area compared with ZnCl(2)-activated carbons, and the micropore surface area represents the major contribution of the total area. Steam-activated carbons were the most efficient decolorizing adsorbents owing to its higher surface area, total pore volume and the basic nature of the surface. The calculated values of DeltaG(0), DeltaH(0) and DeltaS(0) indicate the spontaneous behavior of adsorption. The photocatalytic degradation is more convenient method in decolorizing of methylene blue compared with the adsorption process onto activated carbons.

  14. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts.

    Science.gov (United States)

    Ahmad, M; Ahmed, E; Hong, Z L; Ahmed, W; Elhissi, A; Khalid, N R

    2014-03-01

    A series of ZnO nanoparticles decorated on multi-walled carbon nanotubes (ZnO/CNTs composites) was synthesized using a facile sol method. The intrinsic characteristics of as-prepared nanocomposites were studied using a variety of techniques including powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET) surface area analyzer and X-ray photoelectron spectroscopy (XPS). Optical properties studied using UV-Vis diffuse reflectance spectroscopy confirmed that the absorbance of ZnO increased in the visible-light region with the incorporation of CNTs. In this study, degradation of Rhodamine B (RhB) as a dye pollutant was investigated in the presence of pristine ZnO nanoparticles and ZnO/CNTs composites using photocatalysis and sonocatalysis systems separately and simultaneously. The adsorption was found to be an essential factor in the degradation of the dye. The linear transform of the Langmuir isotherm curve was further used to determine the characteristic parameters for ZnO and ZCC-5 samples which were: maximum absorbable dye quantity and adsorption equilibrium constant. The natural sunlight and low power ultrasound were used as an irradiation source. The experimental kinetic data followed the pseudo-first order model in photocatalytic, sonocatalytic and sonophotocatalytic processes but the rate constant of sonophotocatalysis is higher than the sum of it at photocatalysis and sonocatalysis process. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of ZnO/CNTs photocatalyst. Chemical oxygen demand (COD) of textile wastewater was measured at regular intervals to evaluate the mineralization of wastewater.

  15. Photocatalytic degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution

    Science.gov (United States)

    Fui, Mark Lee Wun; Hang, Ng Kim; Arifin, Khuzaimah; Minggu, Lorna Jeffery; Kassim, Mohammad Bin

    2016-11-01

    Ru(II) bipyridyl photocatalyst with the formula, [Ru(bpy)2(o-CH3-bzpypz)](PF6)2] (Ru01) and [Ru(bpy)2(o-Cl-bzpypz)](PF6)2] (Ru02), where bpy = 2,2'-bipyridyl, o-CH3-bzpypz = (3-(pyridin-2-yl)-1H-pyrazol-1-yl)(o-tolyl)methanone and o-Cl-bzpypz = (2-chlorophenyl)(3-(pyridin-2-yl)-1H-pyrazol-1-yl)methanone, has been successfully synthesized and characterized on the basis of C, H, N elemental analysis, IR, UV-Vis and NMR spectroscopy. Both Ru(II) complexes showed Infrared stretching frequencies at 1742-1736 cm-1 v(C=O), 1605 cm-1 v(C=N) and 842-837 cm-1 v(PF). Full geometry optimization of the complex structures were carried out using DFT method with B3LYP exchange-correlation functional and 6-31G (d,p) basis-set for H, C, N, O and Cl; and LAN2LDZ basis set as effective core potential for the ruthenium centre. The highest-occupied molecular orbital (HOMO) energy levels of Ru01 and Ru02 are -5.63 and -5.55 eV, respectively. The photocatalytic properties of the Ru(II) complexes were evaluated by studying the degradation of aqueous bromothymol blue (BTB) under light illumination. The mechanisms are presented and discussed to highlight the role of the ruthenium complex in the degradation process.

  16. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rusli Ummi Nadiah

    2016-01-01

    Full Text Available Production of industrial wastewater is increasing as the oil and gas industry grows rapidly over the years. The constituents in the industrial wastewater such as organic and inorganic matters, dispersed and lubricant oil and metals which have high toxicity become the major concern to the environment and ecosystem. There are many technologies are being used for oil removal from industrial wastewater. However, there are still needs to find an effective technology to treat oily wastewater before in can be discharge safely to the environment. Membrane technology is an attractive separation technology to treat oily wastewater. The aim of this study is to fabricate polyvinylidene/titanium dioxide (PVDF/TiO2 composite membrane with further treatment using hot pressed method to enhance the adhesion between TiO2 with the membrane surfaces. In this study the structural and physical properties of fabricated membrane were conducted using X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR respectively. The photocatalytic degradation of oil was measured using UV-Vis Spectroscopy. The FTIR results confirmed that, hot pressed PVDF/TiO2 membrane TiO2 was successfully deposited onto PVDF membranes surface and XRD results shows that the XRD pattern of PVDF//TiO2 found that the crystalline structure was remained unchanged after hot pressed. Clear water was obtained after synthetic oily wastewater was exposed to visible light for at least 6 hours. In conclusion, PVDF/TiO2 composite membrane can be a potential candidate to degrade oil in oily wastewater and suggested to possess an excellent performance if perform simultaneously with membrane separation process.

  17. Photocatalytic degradation of trace-level of Microcystin-LR by nano-film of titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaogang; RONG Fei; FU Degang; YUAN Chunwei; HU Yan

    2006-01-01

    Microcystins, a group of hepatotoxin produced by cyanobacteria in eutrophic freshwater,have proven unreliable to be removed by conventional treatments. In this study, the photocatalytic degradation experiments of Microcystin-LR were conducted using nano-TiO2 thin film, prepared by solgel and dip-coating method, with low UVA intensity irradiation. Analysis results from SPE (solid-phase extraction) combined with HPLC method showed that Microcystin-LR whose initial concentration (μg/L) around that occurs naturally was easily to be re moved by photocatalytic system. The degradation efficiency of toxin was influenced by the pH conditions, initial concentration and UV intensity. The maximum initial rate of photocatalytic degradation occurred at pH 4 and over 95% of 20 μg/L Microcystin-LR was decomposed within 120 min under 400 μW/cm2 UV illumination. The kinetic equations and parameters revealed that degradation reaction of trace level MC-LR, which was depicted by LangmuirHinshelwood kinetics model, was in accordance with pseudo first order kinetics process in appearance well. Under the condition of pH=6.7, irradiation intensity=400 μW/cm2 and initial concentration=20 μg/L, the corresponding pseudo-first-order rate constant k and half-life were determined to be 0.0157 min-1 and 44 min, respectively. During the range of 200-1000μW/cm2, the degradation rate increases with incident intensity to the 0.82 power and the corresponding 10-8 g/J approximately.

  18. Photocatalytic degradating methyl orange in water phase by UV-irradiated CdS carried by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new candidate for photocatalytic degradating organic dyes,CdS carried by car-bon nanotubes(CdS/CNTs) ,is reported. The degradation ratio curves of methyl orange in water phase show that the capability for degradating organic molecules of CdS/CNTs is obviously higher than that of separated CdS. The degradation ca-pability enhances as the increase of the amount of net CdS catalyst,the ratio of carbon nanotubes to CdS,and the area of the template,and is influenced by the pH value and the temperature of aqueous solution. These results suggest that the photocatalyst of CdS/CNTs is very suitable for potential applications in organic waste removal from water.

  19. Photocatalytic degradating methyl orange in water phase by UV-irradiated CdS carried by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; TANG YaPing; KANG BoNan; WANG BinSong; ZHOU Feng; MA Qiang; XIAO Ji; WANG DaZhi; LIANG Ji

    2007-01-01

    A new candidate for photocatalytic degradating organic dyes, CdS carried by carbon nanotubes (CdS/CNTs), is reported. The degradation ratio curves of methyl orange in water phase show that the capability for degradating organic molecules of CdS/CNTs is obviously higher than that of separated CdS. The degradation capability enhances as the increase of the amount of net CdS catalyst, the ratio of carbon nanotubes to CdS, and the area of the template, and is influenced by the pH value and the temperature of aqueous solution. These results suggest that the photocatalyst of CdS/CNTs is very suitable for potential applications in organic waste removal from water.

  20. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation

    Science.gov (United States)

    Chung, Eun Hyuk; Baek, Seong Rim; Yu, Seong Mi; Kim, Jong Pil; Hong, Tae Eun; Kim, Hyun Gyu; Bae, Jong-Seong; Jeong, Euh Duck; Khan, F. Nawaz; Jung, Ok-sang

    2015-04-01

    Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.

  1. Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method.

    Science.gov (United States)

    Liu, Xinjuan; Pan, Likun; Lv, Tian; Sun, Zhuo; Sun, Chang Q

    2013-10-15

    Bi2O3-reduced graphene oxide (RGO) composites were successfully synthesized via microwave-assisted reduction of graphite oxide in Bi2O3 precursor solution using a microwave system. Their morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) and methyl orange (MO) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, UV-vis absorption spectroscopy, and electrochemical impedance spectroscopy, respectively. The results show that the RGO addition can enhance the photocatalytic performance of Bi2O3-RGO composites. Bi2O3-RGO composite with 2 wt.% RGO achieves maximum MO and MB degradation rates of 93% and 96% at 240min under visible light irradiation, respectively, much higher than those for the pure Bi2O3 (78% and 76%). The enhanced photocatalytic performance is ascribed to the increased light adsorption and the reduction in electron-hole pair recombination in Bi2O3 with the introduction of RGO.

  2. Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped TiO2 Photocatalysts

    Directory of Open Access Journals (Sweden)

    Olga Sacco

    2012-01-01

    Full Text Available This study was focused on the application of white and blue light emitting diodes (LEDs as sources for the photocatalytic degradation of organic dyes in liquid phase with visible light. The photocatalytic activity of N-doped titanium dioxide, synthesized by direct hydrolysis of titanium tetraisopropoxide with ammonia, was evaluated by means of a batch photoreactor. The bandgap energy of titanium dioxide was moved in the visible range from 3.3 eV to 2.5 eV. The visible light responsive photocatalysts showed remarkably effective activity in decolorization process and in the removal of total organic carbon. Methylene blue was also used as a model dye to study the influence of several parameters such as catalyst weight and initial concentration. The effect of dye on the photocatalytic performance was verified with methyl orange (MO. The results demonstrated that the right selection of operating conditions allows to effectively degrade different dyes with the N-doped TiO2 photocatalysts irradiated with visible light emitted by LEDs.

  3. Synthesis and Modification of Zn-doped TiO2 Nanoparticles for the Photocatalytic Degradation of Tetracycline.

    Science.gov (United States)

    Pang, Shuo; Huang, Ji-Guo; Su, Yun; Geng, Bo; Lei, Su-Yuan; Huang, Yu-Ting; Lyu, Cong; Liu, Xing-Juan

    2016-09-01

    The synthesis of Zn-doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2 O2 . The catalyst was characterized by transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, UV-visible reflectance spectra and X-ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn-doped TiO2 . Zn-doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2 O2 modification further enhanced the photocatalytic activity. Zn doping and H2 O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn-doped TiO2 and H2 O2 modified Zn-doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2 O2 modified Zn-doped TiO2 , favoring the adsorption of visible light. Furthermore, Zn-doped TiO2 modified by H2 O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.

  4. Low irradiance photocatalytic degradation of toluene in air by screen-printed titanium dioxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Strini, Alberto, E-mail: alberto.strini@itc.cnr.it [Construction Technologies Institute, National Research Council of Italy (ITC-CNR), Via Lombardia 49, I-20098 San Giuliano Milanese, MI (Italy); Sanson, Alessandra; Mercadelli, Elisa; Sangiorgi, Alex [Institute of Science and Technology for Ceramics, National Research Council of Italy (ISTEC-CNR), Via Granarolo 64, I-48018 Faenza, RA (Italy); Schiavi, Luca [Construction Technologies Institute, National Research Council of Italy (ITC-CNR), Via Lombardia 49, I-20098 San Giuliano Milanese, MI (Italy)

    2013-10-31

    Screen-printed titania photocatalytic layers made from Degussa P25 were studied in order to assess the potential of this deposition technology for the production of catalytic surfaces for airborne pollutant degradation. The deposited catalytic TiO{sub 2} layers were characterized by a low density (about 25% of the titania bulk crystal) typical of very porous films. The study was carried out using toluene at low concentration (12 ppb) as model pollutant and with a low UV-A irradiance level on the sample surface (200 μW cm{sup −2}). The catalyst layers were deposited on alumina and quartz substrates demonstrating a good catalytic depollution activity. The relationship between the layer thickness and the catalytic activity was studied in the 1 to 6.8 μm range indicating an optimal 3–4 μm film thickness. Thicker layers do not show significant increases in the catalytic activity. The optical transmittance was studied using quartz substrate samples, showing a severely reduced photon flux for layers deeper than 5 μm. The effect of post-printing thermal treatment was studied in the 500–900 °C range, demonstrating good catalytic activity for processing temperatures ≤ 700 °C. These results indicate that the screen-printing process can be a promising technology for the realization of high efficiency photocatalytic materials for air depollution applications at low UV-A irradiance. - Highlights: • Screen-printed TiO{sub 2} has a good catalytic activity in toluene air depollution. • The overall density of screen-printed TiO{sub 2} layer is ∼ 25% of the bulk crystal density. • The catalytic activity is demonstrated at low UV-A irradiance (200 µW cm{sup –2}). • The catalytic activity is dependent on the layer thickness until ∼ 4 µm thickness. • The catalytic layer has good activity up to 700 °C post-printing thermal treatment.

  5. Preparation of TiO2/Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation

    Directory of Open Access Journals (Sweden)

    Baolin Xing

    2016-01-01

    Full Text Available Photocatalysts comprising nanosized TiO2 particles on activated carbon (AC were prepared by a sol-gel method. The TiO2/AC composites were characterized by X-ray diffraction (XRD, thermogravimetric (TG analysis, nitrogen adsorption, scanning electron microscope (SEM, transmission electron microscope (TEM, and energy dispersive X-ray (EDX. Their photocatalytic activities were studied through the degradation of Rhodamine B (RhB in photocatalytic reactor at room temperature under ultraviolet (UV light irradiation and the effect of loading cycles of TiO2 on the structural properties and photocatalytic activity of TiO2/AC composites was also investigated. The results indicate that the anatase TiO2 particles with a crystal size of 10–20 nm can be deposited homogeneously on the AC surface under calcination at 500°C. The loading cycle plays an important role in controlling the loading amount of TiO2 and morphological structure and photocatalytic activity of TiO2/AC composites. The porosity parameters of these composite photocatalysts such as specific surface area and total pore volume decrease whereas the loading amount of TiO2 increases. The TiO2/AC composite synthesized at 2 loading cycles exhibits a high photocatalytic activity in terms of the loading amount of TiO2 and as high as 93.2% removal rate for RhB from the 400 mL solution at initial concentration of 2 × 10−5 mol/L under UV light irradiation.

  6. Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation

    Energy Technology Data Exchange (ETDEWEB)

    Divband, B., E-mail: baharakdivband@yahoo.com [Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of); Khatamian, M., E-mail: khatamian@tabrizu.ac.ir [Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, C.P. 51664 Tabriz (Iran, Islamic Republic of); Eslamian, G.R. Kazemi [Food Science and Technology Department, International Aras Campus, University of Tabriz (Iran, Islamic Republic of); Darbandi, M. [Experimental Physics, Faculty of Physics, Lotharstr. 1, University of Duisburg-Essen, Duisburg (Germany)

    2013-11-01

    In this paper, Ag/ZnO photocatalysts with different Ag loadings were prepared by photo reduction, chemical reduction and polyacrylamide-gel methods. The Ag/ZnO photocatalysts were characterized by XRD, SEM, TEM, EDS and DRUV–vis methods. The results of the photocatalytic degradation of 4-NP in aqueous suspensions showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO nanocrystallites. The enhancement of photocatalytic activity is due to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of photogenerated electrons and holes in ZnO, and the improvement of photo stability of ZnO is attributed to a considerable decrease of the surface defect sites of ZnO after the Ag loading. The chemisorptions of molecular oxygen and the chemisorption of atomic oxygen on Ag in the Ag/ZnO photocatalysts were observed. It was found that the metallic Ag in the Ag/ZnO photocatalysts does play a new role of O{sub 2} chemisorption sites except for electron acceptor, by which chemisorbed molecular oxygen reacts with photogenerated electrons to form active oxygen species, and thus facilitates the trapping of photogenerated electrons and further improves the photocatalytic activity of the Ag/ZnO photocatalysts. Also the method of preparation is regarded as important factors for determining photocatalysis. The best photocatalytic performance was exhibited for Ag/ZnO prepared by polyacrylamide gel method in comparison with chemical reduction and photo reduction method and the optimum Ag content was approximately 0.5%.

  7. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J., E-mail: xulijie827@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W., E-mail: cewchu@polyu.edu.hk [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Graham, Nigel, E-mail: n.graham@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-06-30

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H{sub 2}O{sub 2} decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US

  8. Hierarchical La0.7Ce0.3FeO3/halloysite nanocomposite for photocatalytic degradation of antibiotics

    Science.gov (United States)

    Li, Xiazhang; Zhu, Wei; Yan, Xiangyu; Lu, Xiaowang; Yao, Chao; Ni, Chaoying

    2016-08-01

    The hierarchical La0.7Ce0.3FeO3/halloysite nanotubes (HNTs) composites have been successfully prepared via sol-gel method. XRD and TEM characterizations indicated that the sheet-like La0.7Ce0.3FeO3 coupled with the co-precipitated CeO2 were evenly deposited onto the surface of halloysite. The photocatalytic degradation of chlortetracycline under visible light irradiation using La0.7Ce0.3FeO3/HNTs as catalyst was evaluated by high-performance liquid chromatography, which exhibited remarkable photocatalytic activity with the removal rate up to 99 % in 90 min, due to the formation of "solid solution/co-precipitation" heterostructure as well as the excellent adsorptive capability of halloysite for antibiotics.

  9. Preparation of graphene-ZrO2 nanocomposites by heat treatment and photocatalytic degradation of organic dyes.

    Science.gov (United States)

    Cho, Bum Hwi; Ko, Weon Bae

    2013-11-01

    ZrO2 nanoparticles were synthesized by combining a solution containing zinconyl chloride in distilled water with a NH4OH solution under microwave irradiation. Graphene and ZrO2 nanocomposites were synthesized in an electric furnace at 700 degrees C for 2 hours. The heated graphene-ZrO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. In addition, UV-vis spectrophotometry was used to evaluate the heated graphene-ZrO2 nanocomposites as a catalyst in the photocatalytic degradation of organic dyes. The photocatalytic effect of the heated graphene-ZrO2 nanocomposites was compared with that of unheated graphene nanoparticles, heated graphene nanoparticles, and unheated graphene-ZrO2 nanocomposites in organic dyes (methylene blue, methyl orange, and rhodamine B) under ultraviolet light at 254 nm.

  10. Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO 2Br

    Science.gov (United States)

    Shan, Zhichao; Wang, Wendeng; Lin, Xinping; Ding, Hanming; Huang, Fuqiang

    2008-06-01

    The layered compound of lead bismuth oxybromide PbBiO 2Br, prepared by conventional solid-state reaction method, has an optical band gap of 2.3 eV, and possesses a good visible-light-response ability. The references, PbBi 2Nb 2O 9, TiO 2-xN x, BiOBr and BiOI 0.8Cl 0.2, which are excellent visible-light-response photocatalysts, were applied to comparatively understand the activity of PbBiO 2Br. Degradation of methyl orange and methylene blue was used to evaluate photocatalytic activity. The results show that PbBiO 2Br is more photocatalytically active than PbBi 2Nb 2O 9, TiO 2-xN x and BiOBr under visible light.

  11. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania.

    Science.gov (United States)

    Cao, Muhan; Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2016-04-01

    In this study, magnetic graphene oxide-loaded Ce-doped titania (MGO-Ce-TiO2) hybridized composite was prepared by a facile method. The as-prepared samples exhibited good adsorption capacity, high visible-light photoactive and magnetic separability as a novel photocatalyst in the degradation of tetracyclines (TC). The intermediate products and photocatalytic route of TC were proposed based on the analysis results of LC-MS. Moreover, the repeatability of the photoactivity with the use of MGO-Ce-TiO2 was investigated in the multi-round experiments with the assistance of an applied magnetic field. Therefore, the prepared composite photocatalysts were considered as a kind of promising photocatalyst in a suspension reaction system, in which they can offer effectively recovery ability. The effect of MGO content on the photocatalytic performance was also studied, and an optimum content was obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. 2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation

    Science.gov (United States)

    Chen, Ying; Sun, Hongqi; Peng, Wenchao

    2017-01-01

    Photocatalysis have attracted great attention due to their useful applications for sustainable hydrogen evolution and pollutants degradation. Transition metal dichalcogenides (TMDs) such as MoS2 and WS2 have exhibited great potential as cocatalysts to increase the photo-activity of some semiconductors. By combination with graphene (GR), enhanced cocatalysts of TMD/GR hybrids could be synthesized. GR here can act as a conductive electron channel for the transport of the photogenerated electrons, while the TMDs nanosheets in the hybrids can collect electrons and act as active sites for photocatalytic reactions. This mini review will focus on the application of TMD/GR hybrids as cocatalysts for semiconductors in photocatalytic reactions, by which we hope to provide enriched information of TMD/GR as a platform to develop more efficient photocatalysts for solar energy utilization. PMID:28336898

  13. Synthesis of novel cobalt doped zinc oxide/carbon nano composite for the photocatalytic degradation of acid blue 113

    Directory of Open Access Journals (Sweden)

    S. Sunitha

    2015-03-01

    Full Text Available Cobalt doped Zinc Oxide/Carbon nano composite was synthesized by solution combustion method and characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscopy analysis. This composite shows X-ray diffraction pattern that matched with nano particle of ZnO with wurtzite structure and average grain size was found to be 10.53 nm. . Further the presence of the elements like C, Co, Zn and O was confirmed by energy dispersive X-ray spectroscopy analysis. The effect of Co doping on the photocatalytic activity was investigated by photo degradation of the dye, acid blue 113. This nano composite exhibited better photocatalytic activity when compared to nano ZnO and nano ZnO/C composites.

  14. Adsorption and photocatalytic degradation of bisphenol A using TiO2 and its separation by submerged hollowfiber ultrafiltration membrane

    Institute of Scientific and Technical Information of China (English)

    Jae-Wook Lee; Tae-Ouk Kwon; Ramesh Thiruvenkatachari; Il-Shik Moon

    2006-01-01

    This study evaluates the adsorption ability of bisphenol A(BPA) on titanium dioxide(TiO2) and its effect on the photocatalysis by advanced oxidation process using UV radiation and TiO2 photocatalyst. Degradation of BPA was also evaluated for the system without adsorption prior to photocatalytic reaction. The separation of TiO2 from BPA solution treated by pilot-scale photocatalytic reactor (capacity 0.16 m3) was studied using submerged ultrafiltration (UF) membrane. It was found that although adsorption capacity of BPA was not high, adsorption played an important role in improving the efficiency ofphotocatalysis. On the other hand, during the separation of TiO2 particles from aqueous suspension, the permeate flux of the membrane was strongly affected by transmembrane pressure and TiO2 dose. The permeate turbidity was decreased below 1 NTU.

  15. Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V{sub 2}O{sub 5} for the degradation of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, M. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ismail, Iqbal M.I. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Salah, Numan [Centre of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chandrasekaran, S. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qamar, M.Tariq [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Hameed, A., E-mail: afmuhammad@kau.edu.sa [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); National Centre for Physics, Quaid-e-Azam University, Islamabad 44000 (Pakistan)

    2015-04-09

    Highlights: • The interaction of UV photons of sunlight induces defects in V{sub 2}O{sub 5}. • The photon induced defects promotes the trapping and transfer of excited electrons. • The nature of the substituent at 2-position affects the degradation process. • The formation of the intermediates is influenced by the nature of substituents. • The released ions are subjected further transformation. - Abstract: Despite knowing the fact that vanadium pentoxide is slightly soluble in aqueous medium, its photocatalytic activity was evaluated for the degradation of phenol and its derivatives (2-hydroxyphenol, 2-chlorophenol, 2-aminophenol and 2-nitrophenol) in natural sunlight exposure. The prime objective of the study was to differentiate between the homogeneous and heterogeneous photocatalysis incurred by dissolved and undissolved V{sub 2}O{sub 5} in natural sunlight exposure. V{sub 2}O{sub 5} was synthesized by chemical precipitation procedure using Triton X-100 as morphology mediator and characterized by DRS, PLS, Raman, FESEM and XRD. A lower solubility of ∼5% per 100 ml of water at 23 °C was observed after calcination at 600 °C. The study revealed no contribution of the dissolved V{sub 2}O{sub 5} in the photocatalytic process. In sunlight exposure, V{sub 2}O{sub 5} powder exhibited substantial activity for the degradation, however, a low mineralization of phenolic substrates was observed. The initial low activity of V{sub 2}O{sub 5} followed by a sharp increase both in degradation and mineralization in complete spectrum sunlight exposure, was further investigated that revealed the decrease in the bandgap and the reduction in the particle size with the interaction of UV photons (<420 nm) as this effect was not observable in the exposure of visible region of sunlight. The role of the chemically different substituents attached to an aromatic ring at 2-positions and the secondary interaction of released ions during the degradation process with the reactive

  16. High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays

    Science.gov (United States)

    Guo, Xiao; Fu, Yongming; Hong, Deyi; Yu, Binwei; He, Haoxuan; Wang, Qiang; Xing, Lili; Xue, Xinyu

    2016-09-01

    Highly-efficient sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays was achieved. A steel screen was used as the substrate for supporting FeS/ZnO nanoarrays, and the nanoarrays were vertically and uniformly grown on the substrate via a wet-chemical route. Under ultrasonic and solar irradiation, FeS/ZnO nanoarrays have high sono-photocatalytic activity for degrading methylene blue in water. The photogenerated carriers can be separated by a piezoelectric field and a built-in electric field, resulting in a low recombination rate and high photocatalytic efficiency. The piezophototronic and photocatalytic effects were coupled together. The experimental/theoretical data indicate that this novel wastewater treatment can co-use mechanical and solar energy in nature, and so is a promising technology for environment improvement.

  17. Design and synthesis of metal complexes of (2E)-2-[(2E)-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide and their photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Krishna, P Murali; Reddy, N B Gopal; Kottam, Nagaraju; Yallur, B C; Katreddi, Hussain Reddy

    2013-01-01

    The photocatalytic degradation has been considered to be an efficient process for the degradation of organic pollutants, which are present in the effluents released by industries. The photocatalytic bleaching of cationic dye methylene blue was carried out spectrometrically on irradiation of UV light using Cu(II), Ni(II), and Co(II) complexes of (2E)-2-[(2E)-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide (HL). The effects of pH and metal ion were studied on the efficiency of the reaction. Cu(II) complex shows better catalytic activity and the highest percentage degradation (~88.8%) of methylene blue was observed at pH 12. A tentative mechanism has also been proposed for the photocatalytic degradation of methylene blue.

  18. Design and Synthesis of Metal Complexes of (2E-2-[(2E-3-Phenylprop-2-en-1-ylidene]hydrazinecarbothioamide and Their Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2013-01-01

    Full Text Available The photocatalytic degradation has been considered to be an efficient process for the degradation of organic pollutants, which are present in the effluents released by industries. The photocatalytic bleaching of cationic dye methylene blue was carried out spectrometrically on irradiation of UV light using Cu(II, Ni(II, and Co(II complexes of (2E-2-[(2E-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide (HL. The effects of pH and metal ion were studied on the efficiency of the reaction. Cu(II complex shows better catalytic activity and the highest percentage degradation (~88.8% of methylene blue was observed at pH 12. A tentative mechanism has also been proposed for the photocatalytic degradation of methylene blue.

  19. Visible Light Assisted Heterogeneous Fenton-like Degradation of Organic Pollutant via α-FeOOH/Mesoporous Carbon Composites.

    Science.gov (United States)

    Qian, Xufang; Ren, Meng; Zhu, Yao; Yue, Dongting; Han, Yu; Jia, Jinping; Zhao, Yixin

    2017-03-03

    A α-FeOOH/mesoporous carbon (α-FeOOH/MesoC) composite prepared by in situ crystallization of adsorbed ferric ions within carboxyl functionalized mesoporous carbon was developed as a novel visible light assisted heterogeneous Fenton-like catalyst. The visible light active α-FeOOH nanocrystals were encapsulated in the mesoporous frameworks accompanying with surface attached large α-FeOOH microcrystals via C-O-Fe bonding. Assisting with visible light irradiation on α-FeOOH/MesoC, the mineralization efficiency increased owing to the photocatalytic promoted catalyzing H2O2 beyond the photo-thermal effect. The synergistic effect between α-FeOOH and MesoC in α-FeOOH/MesoC composite improved the mineralization efficiency than the mixture catalyst of α-FeOOH and MesoC. The iron leaching is greatly suppressed on the α-FeOOH/MesoC composite. Interestingly, the reused α-FeOOH/MesoC composites showed much higher phenol oxidation and mineralization efficiencies than the fresh catalyst and homogeneous Fenton system (FeSO4/H2O2). The XPS, XRD, FTIR and textural property results reveal that the great enhancement comes from the interfacial emerged oxygen containing groups between α-FeOOH and MesoC after the first heterogeneous Fenton-like reaction. In summary, visible light induced photocatalysis assisted heterogeneous Fenton-like process in the α-FeOOH/MesoC composite system improved the HO• production efficiency and Fe(III)/Fe(II) cycle and further activated the interfacial catalytic sites, which finally realize an extraordinary higher degradation and mineralization efficiency.

  20. Binary metal oxide nanoparticle incorporated composite multilayer thin films for sono-photocatalytic degradation of organic pollutants

    Science.gov (United States)

    Gokul, Paramasivam; Vinoth, Ramalingam; Neppolian, Bernaurdshaw; Anandhakumar, Sundaramurthy

    2017-10-01

    We report reduced graphene oxide (rGO) supported binary metal oxide (CuO-TiO2/rGO) nanoparticle (NP) incorporated multilayer thin films based on Layer-by-Layer (LbL) assembly for enhanced sono-photocatalytic degradation of methyl orange under exposure to UV radiation. Multilayer thin films were fabricated on glass and quartz slides, and investigated using scanning electron microscopy and UV-vis spectroscopy. The loading of catalyst NPs on the film resulted in the change of morphology of the film from smooth to rough with uniformly distributed NPs on the surface. The growth of the control and NP incorporated films followed a linear regime as a function of number of layers. The%degradation of methyl orange as a function of time was investigated by UV-vis spectroscopy and total organic carbon (TOC) measurements. Complete degradation of methyl orange was achieved within 13 h. The amount of NP loading in the film significantly influenced the%degradation of methyl orange. Catalyst reusability studies revealed that the catalyst thin films could be repeatedly used for up to five times without any change in photocatalytic activity of the films. The findings of the present study support that the binary metal oxide catalyst films reported here are very useful for continuous systems, and thus, making it an option for scale up.

  1. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    Science.gov (United States)

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  2. Photocatalytic degradation of gaseous toluene over bcc-In{sub 2}O{sub 3} hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qianzhe [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemicals, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemicals, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, the University of Queensland, St Lucia, Brisbane, Queensland, 4092 (Australia); Zhao, Qidong; Shi, Yong; Zhang, Fei; Liu, Baojun; Ke, Jun [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemicals, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Lianzhou [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, the University of Queensland, St Lucia, Brisbane, Queensland, 4092 (Australia)

    2015-05-15

    Graphical abstract: - Highlights: • The bcc-In{sub 2}O{sub 3} hollow microspheres were synthesized as photocatalyst. • Structural and photocatalytic properties of samples are tested. • Degradation of gaseous toluene over the bcc-In{sub 2}O{sub 3} hollow microspheres. - Abstract: In this work, the body-centered cubic indium oxide (bcc-In{sub 2}O{sub 3}) hollow microspheres were prepared via a P123-assisted solvothermal process. The structural properties of samples were investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV–visible diffusive reflectance spectroscopy, and nitrogen adsorption-desorption isotherms. The photocatalytic effects of degrading gaseous toluene were evaluated by gas chromatography and in situ Fourier transform infrared (FTIR) spectra under a irradiation of a 500 W high pressure xenon lamp. The results indicated that the as-prepared bcc-In{sub 2}O{sub 3} hollow microspheres exhibited a high degradation efficiency towards toluene within a short reaction time. Besides, the preliminary mechanism therein was inferred with the aid of in situ FTIR and electron spin-paramagnetic resonance techniques to understand the degradation process.

  3. Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol–gel TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Ćurković, Lidija, E-mail: lcurkov@fsb.hr [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb (Croatia); Ljubas, Davor [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb (Croatia); Šegota, Suzana [Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia); Bačić, Ivana [Forensic Science Centre Ivan Vučetić, Ministry of the Interior, Ilica 335, Zagreb (Croatia)

    2014-08-01

    Highlights: • Nanostructured photocatalytic TiO{sub 2} films were prepared by sol–gel methods. • The addition of PEG to the TiO{sub 2} film changes the surface morphology and roughness parameters. • The addition of PEG to the initial sols increases photocatalytic properties of TiO{sub 2}. • LGB water solution could be decolourised within 2 h. • The influence of photolysis and adsorption on the LGB removal from the solution is negligible. - Abstract: Nanostructured sol–gel TiO{sub 2} films were prepared on a glass substrate by means of the dip-coating technique with titanium tetraisopropoxide as a precursor. TiO{sub 2} sols were synthesized with and without the addition of polyethylene glycol (PEG) as a structure-directing agent. The synthesized sol–gel TiO{sub 2} were characterized by XRD, AFM, FTIR and Micro-Raman spectroscopy. The photocatalytic activity of the films was evaluated by the photocatalytic degradation of Lissamine Green B (LGB) dye (dissolved in water) as a model pollutant with the predominant irradiation wavelength of 365 nm (UV-A). It was found that the addition of PEG to the initial sol affects the surface morphology and the photocatalytic properties of prepared sol–gel TiO{sub 2} films. AFM analysis confirmed the presence of nanostructured sol–gel titania films on the glass substrate. Roughness parameters (R{sub a}, R{sub q}, and Z{sub max}) of the sol–gel TiO{sub 2} film with the addition of PEG are higher than the parameters of the sol–gel TiO{sub 2} film without the addition of PEG. The TiO{sub 2} film prepared with the addition of PEG has a higher surface density (a larger active surface area) and better photocatalytic activity in the degradation of the LGB dye solution than the TiO{sub 2} film prepared without the addition of PEG.

  4. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

    Science.gov (United States)

    Prabhakar Vattikuti, Surya Veerendra; Byon, Chan; Reddy, Chandragiri Venkata

    2016-10-01

    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

  5. Photocatalytic degradation of alprazolam in water suspension of brookite type TiO{sub 2} nanopowders prepared using hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Tomić, N. [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Grujić-Brojčin, M., E-mail: myramyra@ipb.ac.rs [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Finčur, N.; Abramović, B. [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad (Serbia); Simović, B. [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Krstić, J. [Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, University of Belgrade, Njegoševa 12, 11000 Belgrade (Serbia); Matović, B. [Institute of Nuclear Sciences “Vinča”, University of Belgrade, 11001 Belgrade (Serbia); Šćepanović, M. [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2015-08-01

    Two series of nanocrystalline brookite-type powders have been synthesized by using combined sol–gel–hydrothermal method with titanium tetrachloride (TiCl{sub 4}) as a precursor and hydrothermal temperature and reaction time varied in the range of 120–200 °C and 12–48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of ∼33 nm, has been obtained only in the sample synthesized at 200 °C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 °C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25. - Highlights: • Brookite-type TiO{sub 2} powders synthesized by combined sol–gel–hydrothermal method. • Powders investigated by XRD, SEM, EDS, BET, SE and Raman spectroscopy. • Photocatalytic degradation of alprazolam under UV radiation. • Photocatalytic activity attributed to high content of brookite phase. • High photocatalytic efficiency of pure brookite sample, comparable to Degussa P25.

  6. Photocatalytic degradation of bezacryl yellow in batch reactors--feasibility of the combination of photocatalysis and a biological treatment.

    Science.gov (United States)

    Khenniche, Lamia; Favier, Lidia; Bouzaza, Abdelkrim; Fourcade, Florence; Aissani, Farida; Amrane, Abdeltif

    2015-01-01

    A combined process coupling photocatalysis and a biological treatment was investigated for the removal of Bezacryl yellow (BZY), an industrial-use textile dye. Photocatalytic degradation experiments of BZY were carried out in two stirred reactors, operating in batch mode with internal or external irradiation. Two photocatalysts (TiO2P25 and TiO2PC500) were tested and the dye degradation was studied for different initial pollutant concentrations (10-117 mg L(-1)). A comparative study showed that the photocatalytic degradation led to the highest degradation and mineralization yields in a stirred reactor with internal irradiation in the presence of the P25 catalyst. Regardless of the photocatalyst, discoloration yields up to 99% were obtained for 10 and 20 mg L(-1) dye concentrations in the reactor with internal irradiation. Moreover, the first-order kinetic and Langmuir-Hinshelwood models were examined by using the nonlinear method for different initial concentrations and showed that the two models lead to completely different predicted kinetics suggesting that they were completely different.According to the BOD5/ Chemical oxygen demand (COD) ratio, the non-treated solution (20 mg L(-1) of BZY) was estimated as non-biodegradable. After photocatalytic pretreatment of bezacryl solution containing 20 mg/L of initial dye, the biodegradability test showed a BOD5/COD ratio of 0.5, which is above the limit of biodegradability (0.4). These results were promising regarding the feasibility of combining photocatalysis and biological mineralization for the removal of BZY.

  7. Synthesis of Cu/TiO{sub 2}/organo-attapulgite fiber nanocomposite and its photocatalytic activity for degradation of acetone in air

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn; Wang, He; Guo, Sheng; Wang, Junting; Liu, Jin

    2016-01-30

    Graphical abstract: - Highlights: • A novel Cu/TiO{sub 2}/organo-attapulgite fiber nanocomposite was synthesized successfully. • Micro-mesopore nanocomposite structure was in favor of the degradation of acetone. • CTAB modification improved the adsorption capability of the catalyst. • The photocatalytic degradation mechanism of the acetone by the catalyst was studied. - Abstract: The Cu/TiO{sub 2}/organo-attapulgite fiber (CTOA) nanocomposite was synthesized by a facile method and was used for photocatalytic degradation of acetone in air under UV light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrum (UV–vis DRS), inductively coupled plasma (ICP) spectrometry and N{sub 2} adsorption–desorption measurement. The results showed that the structure of organo-attapulgite (OAT) had no obvious change as compared to unmodified attapulgite (AT) and the attapulgite fibers in the OAT were well-dispersed. Both micropores and mesopores exist in the CTOA catalyst. The CTOA catalysts prepared at the Cu/TiO{sub 2} molar ratio of 0.003 shows an excellent photocatalytic activity for the degradation of acetone in air. The synergistic effect of Cu species and cetyltrimethylammonium bromide modification can be responsible for the enhanced photocatalytic activity of the CTOA catalyst. The mechanism of the photocatalytic degradation of acetone by the CTOA catalyst was discussed.

  8. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  9. Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads.

    Science.gov (United States)

    Li, Dawei; Zhu, Qi; Han, Chengjie; Yang, Yingnan; Jiang, Weizhong; Zhang, Zhenya

    2015-03-21

    A novel cylindrical multi-column photocatalytic reactor (CMCPR) has been developed and successfully applied for the degradation of methyl orange (MO), amoxicillin (AMX) and 3-chlorophenol (3-CP) in water. Due to its higher adsorption capacity and simpler molecular structure, 3-CP compared with MO and AMX obtained the highest photodegradation (100%) and mineralization (78.1%) after 300-min photocatalytic reaction. Electrical energy consumption for photocatalytic degradation of MO, AMX and 3-CP using CMCPR was 5.79×10(4), 7.31×10(4) and 2.52×10(4) kW h m(-3) order(-1), respectively, which were less than one-thousand of those by reported photoreactors. The higher flow rate (15 mL min(-1)), lower initial concentration (5 mg L(-1)) and acidic condition (pH 3) were more favorable for the photocatalytic degradation of MO using CMCPR. Five repetitive operations of CMCPR achieved more than 97.0% photodegradation of MO in each cycle and gave a relative standard deviation of 0.72%. In comparison with reported slurry and thin-film photoreactors, CMCPR exhibited higher photocatalytic efficiency, lower energy consumption and better repetitive operation performance for the degradation of MO, AMX and 3-CP in water. The results demonstrated the feasibility of utilizing CMCPR for the degradation of recalcitrant organic pollutants in water.

  10. Heterogeneous photocatalysts BiOX/NaBiO3 (X = Cl, Br, I): Photo-generated charge carriers transfer property and enhanced photocatalytic activity

    Science.gov (United States)

    Ji, Lei; Wang, Haoren; Yu, Ruimin

    2016-10-01

    BiOX/NaBiO3 (X = Cl, Br, I) heterostructures were synthesized by a simple chemical etching method using haloid acid as etching agents to react with NaBiO3. Several characterization tools including X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS) were employed for structural and composition analyses of the samples. The as-prepared heterogeneous samples exhibited more efficient photocatalytic activities than pure NaBiO3 and BiOX (X = Cl, Br, I) for the degradation of Rhodamine B (RhB) under visible light (or UV light) irradiation, which could be attributed to the formation of the p-n junction between p-BiOX (X = Cl, Br, I) and n-NaBiO3, which effectively suppresses the recombination of photo-generated electron-hole pairs. Terephthalic acid photoluminescence (TA-PL) probing test and trapping agents experiments demonstrated that radOH (or h+) was the dominant reactive species depend on the different band gap structure of the p-n heterojunctions. Possible transfer processes of photo-generated charge carriers were proposed based on the band structures of BiOX/NaBiO3 (X = Cl, Br, I) and the experimental results.

  11. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures.

    Science.gov (United States)

    Dong, Haoran; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Chang; He, Xiaoxiao; He, Yan

    2015-08-01

    The pollutants classified as "persistent organic pollutants (POPs)", are being subject to high concern among the scientific community due to their persistence in the environment. TiO2-based photocatalytic process has shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology to remove POPs in sewage to overcome the shortcomings of the conventional technologies. However, this technology suffers from some main technical barriers that impede its commercialization, i.e., the inefficient exploitation of visible light, low adsorption capacity for hydrophobic contaminants, uniform distribution in aqueous suspension and post-recovery of the TiO2 particles after water treatment. To improve the photocatalytic efficiency of TiO2, many studies have been carried out with the aim of eliminating the limitations mentioned above. This review summarizes the recently developed countermeasures for improving the performance of TiO2-based photocatalytic degradation of organic pollutants with respect to the visible-light photocatalytic activity, adsorption capacity, stability and separability. The performance of various TiO2-based photocatalytic processes for POPs degradation and the underlying mechanisms were summarized and discussed. The future research needs for TiO2-based technology are suggested accordingly. This review will significantly improve our understanding of the process of photocatalytic degradation of POPs by TiO2-based particles and provide useful information to scientists and engineers who work in this field.

  12. Photocatalytic degradation of methyl blue by silver ion-doped titania: Identification of degradation products by GC-MS and IC analysis.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    An anionic triphenyl methane dye, methyl blue ((disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate) was degraded photocatalytically with undoped micro-TiO2- and Ag(+)-doped micro TiO2 in a slurry-type batch reactor under UV irradiation and the efficiency was compared with that obtained using nano-TiO2- and Ag(+)-doped nano-TiO2. The influence of different parameters, i.e., photocatalyst loading, dye concentration, initial pH, temperature, depth of solution, interfering ions and electron acceptors on the dye degradation was investigated. The decolorization and mineralization efficiency was better for Ag(+)-doped micro-TiO2 than undoped micro-TiO2. Nano-TiO2 was more efficient than micro-TiO2, while Ag(+)-doped nano-TiO2 was the most efficient of all. Cost analysis showed degradation using micro-TiO2- and Ag(+)-doped micro-TiO2 are much cheaper than that using nano-TiO2 and Ag(+)-doped nano-TiO2. Therefore Ag(+)-doped micro-TiO2 was used for the detailed study. The degradation products formed were identified using GC-MS analysis after photocatalytic degradation for 180 min with Ag(+) -doped micro TiO2. Ion chromatography analysis was carried out for anions to identify the end products of degradation.

  13. The Heterogeneous Photocatalytic Oxidation of Hydrocarbons on Platinized TiO2 Powders.

    Science.gov (United States)

    1980-08-28

    presence of catalyst. Platinized anatase has a higher efficiency than plain anatase powder (see experiments 2 and 7). The results shown in experiments 3...Measurements. The photocatalytic activities of suspended platinized anatase powders were correlated with the behavior of TiO 2 single crystal electrodes in...photoelectrochemical (PEC) measurements as shown in Figure 1. The current-potential behavior of a rutile single crystal electrode was examined in an

  14. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Ronald; Nunez, Oswaldo [Laboratorio de Fisicoquimica Organica y Quimica Ambiental, Departamento de Procesos y Sistemas, Universidad Simon Bolivar, Apartado Postal 89000, Caracas (Venezuela)

    2010-02-15

    Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changes in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)

  15. Self-Organized TiO₂-MnO₂ Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene.

    Science.gov (United States)

    Nevárez-Martínez, María C; Kobylański, Marek P; Mazierski, Paweł; Wółkiewicz, Jolanta; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana

    2017-03-31

    Vertically oriented, self-organized TiO₂-MnO₂ nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λmax = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 μm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO₂-MnO₂ NTs under visible light was presented, pointing out the importance of MnO₂ species for the generation of e(-) and h⁺.

  16. Facile Fabrication of ZnO/TiO2 Heterogeneous Nanofibres and Their Photocatalytic Behaviour and Mechanism towards Rhodamine B

    Directory of Open Access Journals (Sweden)

    JiaDong Chen

    2016-02-01

    Full Text Available In this study, novel titanium dioxide (TiO2 and zinc oxide (ZnO hybrid photocatalysts in the form of nanofibres were fabricated by a facile method using electrospinning followed by a calcination process. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS were employed to investigate the morphology and structure of the heterogeneous nanofi‐ bres. The photocatalytic performances were evaluated via the photodegradation of Rhodamine B (RhB under irradiation with UV light. Due to the low recombination rate of photo-induced charge carriers, the high utilization efficiency of UV light and the large contact area with the target molecules, the ZnO/TiO2 hybrid nanofibres exhibit‐ ed high catalytic activity towards the Rhodamine B, and the amount of Zn(OAc2 in the precursor of these nanofibres played an important role in determining the photo decom‐ position performance.

  17. Photocatalytic degradation of methylene blue dye under visible light over Cr doped strontium titanate (SrTiO3) nanoparticles.

    Science.gov (United States)

    Qazi, Inamur Rahman; Lee, Woo-Jin; Lee, Hyun-Cheol; Hassan, Mallick Shamshi; Yang, O-Bong

    2010-05-01

    Strontium titanate (SrTiO3) and chromium doped SrTiO3 (Cr/SrTiO3) were prepared by modified sol-gel method with the citric acid as a chelating agent in the ethylene glycol solution for the effective photodegradation of methylene blue dye under visible light irradiation. The synthesized doped and un-doped SrTiO3 nanoparticles were structurally characterized and their photoresponse performances for the efficient degradation of methylene blue dye have been demonstrated. After introducing the Cr on SrTiO3, UV-Vis absorption was appeared the red-shift at 566 nm from 392 nm as compare with bare SrTiO3. The photocatalytic degradation activity of Cr/SrTiO3 was significantly improved to 60% degradation of methylene blue in 3 h under visible light, which is approximately 5 times higher than that of the bare SrTiO3.

  18. Altered Micro-RNA Degradation Promotes Tumor Heterogeneity: A Result from Boolean Network Modeling.

    Science.gov (United States)

    Wu, Yunyi; Krueger, Gerhard R F; Wang, Guanyu

    2016-02-01

    Cancer heterogeneity may reflect differential dynamical outcomes of the regulatory network encompassing biomolecules at both transcriptional and post-transcriptional levels. In other words, differential gene-expression profiles may correspond to different stable steady states of a mathematical model for simulation of biomolecular networks. To test this hypothesis, we simplified a regulatory network that is important for soft-tissue sarcoma metastasis and heterogeneity, comprising of transcription factors, micro-RNAs, and signaling components of the NOTCH pathway. We then used a Boolean network model to simulate the dynamics of this network, and particularly investigated the consequences of differential miRNA degradation modes. We found that efficient miRNA degradation is crucial for sustaining a homogenous and healthy phenotype, while defective miRNA degradation may lead to multiple stable steady states and ultimately to carcinogenesis and heterogeneity. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. BiOCl/TiO2 heterojunction network with high energy facet exposed for highly efficient photocatalytic degradation of benzene

    Science.gov (United States)

    Wang, Xiaoxia; Ni, Qian; Zeng, Dawen; Liao, Guanglan; Wen, Yanwei; Shan, Bin; Xie, Changsheng

    2017-02-01

    Benzene is known for its difficulty of degradation as well as enormous harmful intermediates released during degradation, which arouses urgent demand for highly efficient photocatalysts as solution. In this paper, we fabricated a 3D hierarchical structure of 2D single crystalline BiOCl nanosheets with high energy (001) facets exposed using 1D single-crystalline TiO2 nanorod array as supporting framework and charge transfer tunnel. Compared to releasing various intermediates by the TiO2 nanorod array during photocatalysis, the BiOCl/TiO2 heterojunction network exhibited phenomenal photocatalytic activity for fully degradation of 150 ppm gaseous benzene within 80 min, yielding stoichiometric 900 ppm CO2 with excellent repeat stability. The outstanding photocatalytic performance is ascribed to the charge separation across the BiOCl/TiO2 interface, which is evidenced by density functional theory (DFT) based calculation as well as photoluminescence and photocurrent experiments. Furthermore, the internal electric fields of BiOCl and TiO2 nanorod high-speed transferring tunnel also make contributes to the charge separation. Then the reserved holes at (001) facets of BiOCl, which is believed to be the major actives for gaseous photocatalysis, can migrate to the surface oxygen vacancies for decomposing benzene with oxygen molecules. In addition, the scavenging effect due to oxygen vacancies on (001) facet of BiOCl is also responsible for the excellent and sustainable photocatalytic activity. This work reveals an approach for novel photocatalysts by building band-aligned 3D heterojunction network with high energy facet exposed as active sites.

  20. Visible light photocatalytic degradation of dyes by β-Bi{sub 2}O{sub 3}/graphene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuefu [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Dai, Jianfeng, E-mail: jfdai1963@sohu.com [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Shi, Gaofeng; Li, Lan; Wang, Guoying [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Yang, Hua [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China)

    2015-11-15

    β-Bi{sub 2}O{sub 3} nanoparticles with an average grain size of 100 nm were synthesized by a polyacrylamide sol–gel method. Their bandgap energy is obtained by ultraviolet–visible diffuse reflectance spectroscopy is 2.37 eV. β-Bi{sub 2}O{sub 3}/GR composites were fabricated by mixing β-Bi{sub 2}O{sub 3} nanoparticles and graphene into absolute ethanol solution followed by thermal drying. A transmission electron microscopy observation shows that β-Bi{sub 2}O{sub 3} nanoparticles are well assembled onto GR sheets. The photocatalytic activity of prepared samples was evaluated by degrading methylene blue under the irradiation of visible light. Compared to bare β-Bi{sub 2}O{sub 3} nanoparticles, β-Bi{sub 2}O{sub 3}/GR composites exhibit significantly enhanced photocatalytic activity. Detected by the photoluminescence technique that of using terephthalic acid as a probe molecule, hydroxyl ({sup ·}OH) radicals are found to be produced on the irradiated β-Bi{sub 2}O{sub 3}/GR composites. Based on the experimental results, {sup ·}OH radicals are suggested to be the major active species which is responsible for the degradation reaction. - Highlights: • The β-Bi{sub 2}O{sub 3}/graphene composites were prepared by an ultrasound assisted method. • The visible light activity of β-Bi{sub 2}O{sub 3}/graphene was evaluated by degrading methylene blue. • The β-Bi{sub 2}O{sub 3}/graphene composites exhibit significantly enhanced photocatalytic activity. • The {sup ·}OH radicals are suggested to be the major active species.

  1. Synthesis and characterization of CdS/CuAl2O4 core-shell: application to photocatalytic eosin degradation

    Science.gov (United States)

    Bellal, B.; Trari, M.; Afalfiz, A.

    2015-08-01

    The advantages of the hetero-junction CdS/CuAl2O4 for the photocatalytic eosin degradation are reported. Composite semiconductors are elaborated by co-precipitation of CdS on the spinel CuAl2O4 giving a core-shell structure with a uniform dispersion and intimate contact of the spinel nanoparticles inside the hexagonal CdS. The Mott-Schottky plots ( C -2- V) of both materials show linear behaviors from which flat band potentials are determined. The photoactivity increases with increasing the mass of the sensitizer CdS and the best performance is achieved on CdS/CuAl2O4 (85 %/15 %). The pH has a strong influence on the degradation and the photoactivity peaks at pH 7.78. The dark adsorption eosin is weak (~4 %), hence the change in the eosin concentration is attributed to the photocatalytic process. The degradation follows a zero-order kinetic with a rate constant of 5.2 × 10-8 mol L-1 mn-1 while that of the photolysis is seven times lower (0.75 × 10-8 mol L-1 mn-1).

  2. Immobilized/P25/DSAT and Immobilized/Kronos/DSAT on Photocatalytic Degradation of Reactive Red 4 Under Fluorescent Light

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available In this work, photocatalytic degradation of Reactive Red 4 (RR4 using immobilized P25 and kronos were performed under fluorescent light sources. The photocatalysis activity for both catalysts was investigated under fluorescent lamp source which consist UV and Visible light. The effect of various parameters such as initial concentration, initial pH and strenght of immobilized plate were studied. The result showed that 90% of RR4 dye was degrade in 1 hr using immobilized/kronos/DSAT at 100 mg L-1 of RR4 dye while 81% degradation was achieved by immobilized/P25/DSAT at the same condition. The lowest pH showed the higher photocatalytic activity. Hence, the effect of dye concentration and pH on the photocatalysis study can be related with the behavior of environmental pollution. The low strength showed by immobilized/P25/DSAT where it remain 37 % as compared with strength of immobilized/kronos/DSAT (52 wt.%. For the future work, the polymer binder like Polyvinyl alcohol (PVA, Polyethylene glycol (PEG, and others polymers can be apply in immobilized study to overcome the strength problem.

  3. Enhanced photocatalytic degradation of methyl orange by CdS quantum dots sensitized platelike WO3 photoelectrodes

    Institute of Scientific and Technical Information of China (English)

    文瑾; 刘灿军; 杜勇; 胡传跃; 田修营

    2015-01-01

    CdS quantum dots sensitized platelike WO3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition (CBD) technique. To further improve the stability of the photoelectrodes in alkaline environment, the platelike WO3 films were treated with TiCl4 to form a nano-TiO2 buffer layer on the WO3 plate surface before loading CdS QDs. The resulting electrodes were characterized by using XRD, SEM, HR-TEM and UV-vis spectrum. The photocatalytic activity of the resulting electrodes was investigated by degradation of methyl orange (MO) in aqueous solution. The photoelectrochemical (PEC) property of the resulting electrodes was also characterized by the linear sweep voltammetry. The results of both the degradation of MO and photocurrent tests indicated that the as-prepared CdS QDs sensitized WO3 platelike photoelectrodes exhibit a significant improvement in photocatalytic degradation and PEC activity under visible light irradiation, compared with unsupported CdS QDs electrodes. Significantly, coating the WO3 plates with nano-TiO2 obviously facilitate the charge separation and retards the charge-pair recombination, and results in a highest activity for QDs CdS/TiO2/WO3photoelectrodes.

  4. Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2013-11-01

    Full Text Available In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Förster resonance energy transfer.

  5. Enhanced photocatalytic activity towards degradation and H2 evolution over one dimensional TiO2@MWCNTs heterojunction

    Science.gov (United States)

    Zhang, Xiao; Cao, Shuang; Wu, Zhijiao; Zhao, Suling; Piao, Lingyu

    2017-04-01

    With the distinct electronic and optical properties, multiwall carbon nanotubes (MWCNTs) are identified as an outstanding catalyst support, which can effectively improve the performance of the TiO2 photocatalysts. Herein, the unique one dimensional TiO2@MWCNTs nanocomposites have been prepared by a facile hydrothermal method. The TiO2 coating layers are extremely uniform and the thickness is adjustable for different nanocomposites. XPS measurements confirm that intimate electronic interactions are existed between MWCNTs and TiO2 via interfacial Tisbnd Osbnd C bond and the photoluminescence intensity of the TiO2@MWCNTs nanocomposites are effectively quenched compared with pure TiO2, suggesting the fast electron transfer rates. The thickness of TiO2 coating layers of the TiO2@MWCNTs nanocomposites plays a significant role in the photocatalytic degradation of organic pollutants, such as methylene blue (MB) and Rhodamine B (RhB), and photocatalytic H2 evolution from water. Due to the formation of one dimensional heterojunction of TiO2@MWCNTs nanocomposites and the positive synergistic effect between TiO2 and carbon nanotubes, it is found that the photocatalytic activity of the system is significantly improved.

  6. Photocatalytic degradation of 2,4-D and 2,4-DP herbicides on Pt/TiO2 nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abdennouri

    2015-09-01

    Full Text Available Titanium dioxide was synthesized by the sol–gel method and platinum supported on titanium dioxide were prepared by a wet impregnation chemical process at different platinum contents. The prepared samples were dried over night at 110 °C and then calcined at 500 °C for 4 h. Structural and morphological characterization has been carried out by means of X-ray diffraction (XRD, differential scanning calorimetry–thermogravimetric analysis (DSC–TGA, Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR, Brunauer–Emmett–Teller surface area measurement (BET and transmission electron microscopy coupled to the energy dispersive spectroscopy (TEM/EDX. The adsorption performance and photocatalytic activity of the samples were investigated using two chlorophenoxy herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D and 2-(2,4-dichlorophenoxy propionic acid (2,4-DP as models of organic pollutants in water. The obtained results show that Pt/TiO2 exhibited higher photocatalytic activity than TiO2 particles for the degradation of the two selected herbicides. The photocatalytic activity increases by increasing the platinum yield in the catalyst.

  7. Silver quantum cluster (ag9 )-grafted graphitic carbon nitride nanosheets for photocatalytic hydrogen generation and dye degradation.

    Science.gov (United States)

    Sridharan, Kishore; Jang, Eunyong; Park, Jung Hyun; Kim, Jong-Ho; Lee, Jung-Ho; Park, Tae Joo

    2015-06-15

    We report the visible-light photocatalytic properties of a composite system consisting of silver quantum clusters [Ag9 (H2 MSA)7 ] (H2 MSA=mercaptosuccinic acid) embedded on graphitic carbon nitride nanosheets (AgQCs-GCN). The composites were prepared through a simple chemical route; their structural, chemical, morphological, and optical properties were characterized by using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, transmission electron microscopy, UV/Vis diffuse reflectance spectroscopy, and photoluminescence spectroscopy. Embedment of [Ag9 (H2 MSA)7 ] on graphitic carbon nitride nanosheets (GCN) resulted in extended visible-light absorption through multiple single-electron transitions in Ag quantum clusters and an effective electronic structure for hydroxyl radical generation, which enabled increased activity in the photocatalytic degradation of methylene blue and methyl orange dye molecules compared with pristine GCN and silver nanoparticle-grafted GCN (AgNPs-GCN). Similarly, the amount of hydrogen generated by using AgQCs-GCN was 1.7 times higher than pristine GCN. However, the rate of hydrogen generated using AgQCs-GCN was slightly less than that of AgNPs-GCN because of surface hydroxyl radical formation. The plausible photocatalytic processes are discussed in detail.

  8. Photocatalytic degradation of methylene blue on Fe3+-doped TiO2 nanoparticles under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    SU Bitao; WANG Ke; BAI Jie; MU Hongmei; TONG Yongchun; MIN Shixiong; SHE Shixiong; LEI Ziqiang

    2007-01-01

    Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradia-tion. The influence of doping amount of Fe3+ (ω: 0.00%-3.00%) on photocatalytic activities of TiO2 was investigated.Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorptionspectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation.

  9. Sol-Gel Synthesis and Characterizations of CoMoO4 Nanoparticles: An Efficient Photocatalytic Degradation of 4-Chlorophenol.

    Science.gov (United States)

    Umapathy, V; Neeraja, P

    2016-03-01

    Cobalt molybdate CoMoO4 nanoparticles (NPs) were successfully synthesized using cobalt nitrate, ammonium molybdate, citric acid and ethyl cellulose by a simple sol-gel method. Structural, morphological, optical and magnetic properties of the obtained powder were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, high resolution scanning electron microscope (HR-SEM), energy dispersive X-ray (EDX), UV-Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). XRD results indicated that the resultant powder was pure single phase crystalline with monoclinic structure. FT-IR spectra indicate the type of bonds between metals and oxygen. HR-SEM images shows that the morphology of the powder consist with well defined nanoparticles (NPs) structure. VSM results showed antiferromagnetic behavior. Photo-catalytic activity of CoMoO4 nanoparticles (NPs) was performed. The addition of TiO2 catalyst enhanced the photo-catalytic activity of CoMoO4 nanoparticles (NPs). The catalysts CoMoO4, Ti02 and mixed oxide catalyst CoMoO4-TiO2 nano- composites (NCs) were tested for the photo-catalytic degradation (PCD) of 4-chlorophenol (4-CP). It was found that the PCD efficiency of CoMoO4-TiO2 NCs was higher (97.5%) than that of pure CoMoO4 (88.0%) and TiO2 (94.0%) catalysts.

  10. Atrazine degradation using chemical-free process of USUV: analysis of the micro-heterogeneous environments and the degradation mechanisms.

    Science.gov (United States)

    Xu, L J; Chu, W; Graham, Nigel

    2014-06-30

    The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of "salting out" effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through •OH attack. On the other hand, UV irradiation also could promote radical generation via H2O2 decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US and USUV processes.

  11. Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step.

    Science.gov (United States)

    Mazellier, P; Sulzberger, B

    2001-08-15

    The purpose of this study was to examine the various factors that control the kinetics of diuron degradation in irradiated, aerated suspensions containing goethite (alpha-FeOOH) and oxalate, in the following denoted as heterogeneous photo-Fenton systems. In these systems, attack by hydroxyl radicals (HO.) was the only pathway of diuron degradation. Studies were conducted in systems containing initially 80 or 200 mg L(-1) goethite (corresponding to 0.9 or 2.25 mM total iron) and 20, 50, 75, 100, 200, and 400 microM oxalate at 3 heterogeneous photo-Fenton systems.

  12. Degradation of bisphenol A in water by the heterogeneous photo-Fenton.

    Science.gov (United States)

    Jiang, Chuanrui; Xu, Zhencheng; Guo, Qingwei; Zhuo, Qiongfang

    2014-01-01

    Bisphenol A (BPA) is a kind of a controversial endocrine disruptor, and is ubiquitous in environment. The degradation of BPA with the heterogeneous photo-Fenton system was demonstrated in this study. The Fe-Y molecular sieve catalyst was prepared with the ion exchange method, and it was characterized by X-ray radiation diffraction (XRD). The effects ofpH, initial concentration of H2O2, initial BPA concentration, and irradiation intensity on the degradation of BPA were investigated. The service life and iron solubility of catalyst were also tested. XRD test shows that the major phase of the Fe-Y catalyst was Fe2O3. The method of heterogeneous photo-Fenton with Fe-Y catalyst was superior to photolysis, photo-oxidation with only hydrogen, heterogeneous Fenton, and homogeneous photo-Fenton approaches. pH value had no obvious effects on BPA degradation over the range of 2.2-7.2. The initial concentration of H2O2 had an optimal value of 20 x 10(-4) mol/L. The decrease in initial concentration of BPA was favourable for degradation. The intensity of ultraviolet irradiation has no obvious effect on the BPA removal. The stability tests indicated that the Fe-Y catalyst can be reused and iron solubility concentration ranged from NA to 0.0062 mg/L. Based on the results, the heterogeneous photo-Fenton treatment is the available method for the degradation of BPA.

  13. Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye

    Science.gov (United States)

    Phanichphant, Sukon; Nakaruk, Auppatham; Channei, Duangdao

    2016-11-01

    In this study, CeO2 photocatalyst was modified by composite with SiO2 to increase efficiency and improve photocatalytic activity. The as-prepared SiO2 particles have been incorporated into the precursor mixture of CeO2 by homogeneous precipitation and subsequent calcination process. The phase compositions of CeO2 before and after compositing with SiO2 were identified by X-ray diffraction (XRD). The morphology and particle size of CeO2/SiO2 composite was analyzed by high resolution transmission el