WorldWideScience

Sample records for heterogeneous nucleation activities

  1. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    Science.gov (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  2. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  3. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.

    Science.gov (United States)

    Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W

    2016-09-20

    Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of

  4. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  5. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  6. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  7. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  8. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  9. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.

    Science.gov (United States)

    Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J

    2018-05-07

    Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where

  10. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  11. Duplex Heterogeneous Nucleation Behavior of Precipitates in C-Mn Steel Containing Sn

    Science.gov (United States)

    Sun, Guilin; Tao, Sufen

    2018-04-01

    The two successive heterogeneous nucleation behaviors of FeSn2-MnS-Al2O3 complex precipitates in ultrahigh Sn-bearing steel were investigated. First, Al2O3 was the nucleation site of the MnS at the end of solidification. Then, FeSn2 nucleated heterogeneously on the MnS particles that nucleated on the Al2O3 particles. The formation sequence of the precipitated phase caused the duplex heterogeneous nucleation to occur consecutively at most twice.

  12. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  13. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  14. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2008-10-01

    Full Text Available The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at −5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about −11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between −7 and −11°C with an ice nucleation (IN active fraction of the order of 10−4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around −8°C.

  15. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water

    Science.gov (United States)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas

    2014-05-01

    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989

  16. Modelling heterogeneous ice nucleation on mineral dust and soot with parameterizations based on laboratory experiments

    Science.gov (United States)

    Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.

    2016-12-01

    Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.

  17. Investigating heterogeneous nucleation in peritectic materials via the phase-field method

    International Nuclear Information System (INIS)

    Emmerich, Heike; Siquieri, Ricardo

    2006-01-01

    Here we propose a phase-field approach to investigate the influence of convection on peritectic growth as well as the heterogeneous nucleation kinetics of peritectic systems. For this purpose we derive a phase-field model for peritectic growth taking into account fluid flow in the melt, which is convergent to the underlying sharp interface problem in the thin interface limit (Karma and Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-field model to study the heterogeneous nucleation kinetics of peritectic material systems. Our approach is based on a similar approach towards homogeneous nucleation in Granasy et al (2003 Interface and Transport Dynamics (Springer Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich et al (Berlin: Springer) p 190). We applied our model successfully to extend the nucleation rate predicted by classical nucleation theory for an additional morphological term relevant for peritectic growth. Further applications to understand the mechanisms and consequences of heterogeneous nucleation kinetics in more detail are discussed

  18. Heterogeneous ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A. [Helsinki Univ. (Finland). Dept. of Physics

    1994-12-31

    The classical theory of heterogenous ice nucleation is reviewed in detail. The modelling of ice nucleation in the adsorbed water films on natural particles by analogous ice nucleation in adsorbed water films on the walls of porous media is discussed. Ice nucleation in adsorbed films of purewater and the HNO{sub 3}/H{sub 2}0 binary system on the surface of porous aerosol (SiO{sub 2}) was investigated using the method of NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The character of the ice phase formation tends to approach that of bulk liquid with increasing adsorbed film thickness. Under the given conditions the thickness of the adsorbed films decreases with an increasing amount of adsorbed nitric acid molecules The molar concentration of nitric acid in the adsorbed films is very small (of the order of 10{sup -}3 10{sup -}2 (M/l)). Nitric acid molecules tend to adsorb on the surface of aerosol to a greater extent than in subsequent layers. The concentration is greatest in layers situated close to the surface and sharply decreases with the distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the median freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. (orig.)

  19. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.

    Science.gov (United States)

    Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit

    2015-11-28

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  20. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2010-08-01

    Full Text Available The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario

  1. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  2. Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents.

    Directory of Open Access Journals (Sweden)

    Anil S Thakur

    2007-10-01

    Full Text Available Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed.We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other.Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens.

  3. FOREWORD: Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach Heterogenous nucleation and microstructure formation—a scale- and system-bridging approach

    Science.gov (United States)

    Emmerich, H.

    2009-11-01

    Scope and aim of this volume. Nucleation and initial microstructure formation play an important role in almost all aspects of materials science [1-5]. The relevance of the prediction and control of nucleation and the subsequent microstructure formation is fully accepted across many areas of modern surface and materials science and technology. One reason is that a large range of material properties, from mechanical ones such as ductility and hardness to electrical and magnetic ones such as electric conductivity and magnetic hardness, depend largely on the specific crystalline structure that forms in nucleation and the subsequent initial microstructure growth. A very demonstrative example for the latter is the so called bamboo structure of an integrated circuit, for which resistance against electromigration [6] , a parallel alignment of grain boundaries vertical to the direction of electricity, is most favorable. Despite the large relevance of predicting and controlling nucleation and the subsequent microstructure formation, and despite significant progress in the experimental analysis of the later stages of crystal growth in line with new theoretical computer simulation concepts [7], details about the initial stages of solidification are still far from being satisfactorily understood. This is in particular true when the nucleation event occurs as heterogenous nucleation. The Priority Program SPP 1296 'Heterogenous Nucleation and Microstructure Formation—a Scale- and System-Bridging Approach' [8] sponsored by the German Research Foundation, DFG, intends to contribute to this open issue via a six year research program that enables approximately twenty research groups in Germany to work interdisciplinarily together following this goal. Moreover, it enables the participants to embed themselves in the international community which focuses on this issue via internationally open joint workshops, conferences and summer schools. An outline of such activities can be found

  4. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.

    Science.gov (United States)

    Glatz, Brittany; Sarupria, Sapna

    2018-01-23

    Ice is ubiquitous in nature, and heterogeneous ice nucleation is the most common pathway of ice formation. How surface properties affect the propensity to observe ice nucleation on that surface remains an open question. We present results of molecular dynamics studies of heterogeneous ice nucleation on model surfaces. The models surfaces considered emulate the chemistry of kaolinite, an abundant component of mineral dust. We investigate the interplay of surface lattice and hydrogen bonding properties in affecting ice nucleation. We find that lattice matching and hydrogen bonding are necessary but not sufficient conditions for observing ice nucleation at these surfaces. We correlate this behavior to the orientations sampled by the metastable supercooled water in contact with the surfaces. We find that ice is observed in cases where water molecules not only sample orientations favorable for bilayer formation but also do not sample unfavorable orientations. This distribution depends on both surface-water and water-water interactions and can change with subtle modifications to the surface properties. Our results provide insights into the diverse behavior of ice nucleation observed at different surfaces and highlight the complexity in elucidating heterogeneous ice nucleation.

  5. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  6. Interaction Heterogeneity can Favorably Impact Colloidal Crystal Nucleation

    Science.gov (United States)

    Jenkins, Ian C.; Crocker, John C.; Sinno, Talid

    2017-10-01

    Colloidal particles with short-ranged attractions, e.g., micron-scale spheres functionalized with single-stranded DNA oligomers, are susceptible to becoming trapped in disordered configurations even when a crystalline arrangement is the ground state. Moreover, for reasons that are not well understood, seemingly minor variations in the particle formulation can lead to dramatic changes in the crystallization outcome. We demonstrate, using a combination of equilibrium and nonequilibrium computer simulations, that interaction heterogeneity—variations in the energetic interactions among different particle pairs in the population—may favorably impact crystal nucleation. Specifically, interaction heterogeneity is found to lower the free energy barrier to nucleation via the formation of clusters comprised preferentially of strong-binding particle pairs. Moreover, gelation is inhibited by "spreading out over time" the nucleation process, resulting in a reduced density of stable nuclei, allowing each to grow unhindered and larger. Our results suggest a simple and robust approach for enhancing colloidal crystallization near the "sticky sphere" limit, and support the notion that differing extents of interaction heterogeneity arising from various particle functionalization protocols may contribute to the otherwise unexplained variations in crystallization outcomes reported in the literature.

  7. Kinetics of heterogeneous nucleation on intrinsic nucleants in pure fcc transition metals

    International Nuclear Information System (INIS)

    Wilde, G; Bokeloh, J; Santhaweesuk, C; Perepezko, J H; Sebright, J L

    2009-01-01

    Nucleation during solidification is heterogeneous in nature in an overwhelmingly large fraction of all solidification events. Yet, most often the identity of the heterogeneous nucleants that initiate nucleation remains a matter of speculation. In fact, a series of dedicated experiments needs to be designed in order to verify if nucleation of the material under study is based on one type of heterogeneous nucleant and if the potency of that nucleant is constant, e.g. for a population of individual droplets, or stays constant over time, e.g. throughout repeated melting/solidification cycles. In this work it is demonstrated that one way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single-droplet experiments. The application of proper statistics analyses based upon a non-homogeneous Poisson process is shown to yield nucleation rates that are independent of a specific nucleation model. Based upon this approach nucleation undercooling measurements on pure Au, Cu and Ni as model materials have confirmed that the experimental strategy and analysis method are valid. The results are comparable to those obtained by classical nucleation theory applied to experimental data that has been verified to comply with the assertions that are necessary for applying this model framework. However, the results reveal also other complex nucleant-sample interactions such as an initial transient undercooling behavior and impurity removal during repeated cycling treatments. The transient undercooling behavior has been analyzed by a nucleant refining model to provide new insight on the operation of melt fluxing treatments.

  8. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    Science.gov (United States)

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  9. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  10. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.

    Science.gov (United States)

    Kobayashi, Atsuko; Horikawa, Masamoto; Kirschvink, Joseph L; Golash, Harry N

    2018-05-22

    In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe 3 O 4 ) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect. Copyright © 2018 the Author(s). Published by PNAS.

  11. Kinetics of heterogeneous nucleation of gas-atomized Sn-5 mass%Pb droplets

    International Nuclear Information System (INIS)

    Li Shu; Wu Ping; Zhou Wei; Ando, Teiichi

    2008-01-01

    A method for predicting the nucleation kinetics of gas-atomized droplets has been developed by combining models predicting the nucleation temperature of cooling droplets with a model simulating the droplet motion and cooling in gas atomization. Application to a Sn-5 mass%Pb alloy has yielded continuous-cooling transformation (CCT) diagrams for the heterogeneous droplet nucleation in helium gas atomization. Both internal nucleation caused by a catalyst present in the melt and surface nucleation caused by oxidation are considered. Droplets atomized at a high atomizing gas velocity get around surface oxidation and nucleate internally at high supercoolings. Low atomization gas velocities promote oxidation-catalyzed nucleation which leads to lower supercoolings. The developed method enables improved screening of atomized powders for critical applications where stringent control of powder microstructure is required

  12. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  13. Availability analysis for heterogeneous nucleation in a uniform electric field

    CERN Document Server

    Saidi, M H

    2003-01-01

    Industrial demands for more compact heat exchangers are a motivation to find new technology features. Electrohydrodynamics (EHD) is introduced as a promising phenomenon for heat transfer enhancement mechanisms. Similar to any new technology, EHD has not been understood completely yet and require more fundamental studies. In boiling phase change phenomena, nucleation is the dominant mechanism in heat transfer. Because of higher performance in heat transfer, nucleate boiling is considered as the main regime in thermal components. Hence, bubble dynamic investigation is a means to evaluate heat transfer. This study investigate bubble formation, including homogeneous and heterogeneous nucleation, from a thermodynamic point of view. Change in availability due to bubble embryo nucleation is discussed. Stability criteria for these systems are theoretically studied and results are discussed considering experimental data. In addition, a conceptual discussion on entropy generation in a thermodynamic system under electri...

  14. An heterogeneous nucleation model for the irradiation coloring of alkali halides

    International Nuclear Information System (INIS)

    Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1980-01-01

    An heterogeneous nucleation model for the radiation-induced coloring of alkali halides is presented. The model assumes a primary mechanism producing F and H pairs, followed by secondary thermally activated reactions including F-H recombination as well interstitial capture. The existence of a very unstable interstitial aggregate is explicitely considered. The model is able to account for the three-stages structure of the F-coloring curve and the inhibition in the occurrence of the late-stage by lowering dose-rate or by impurity doping

  15. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R [Forschungszentrum Karlsruhe, Institute for Meteorology and Climate Research, 76021 Karlsruhe (Germany); Schneider, J; Walter, S [Max Planck Institute for Chemistry, 55128 Mainz (Germany); Ebert, V; Wagner, S [University of Heidelberg, Institute for Physical Chemistry, 69120 Heidelberg (Germany)], E-mail: Ottmar.Moehler@imk.fzk.de

    2008-04-15

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m{sup 3} aerosol vessel and either directly transferred into the 84 m{sup 3} cloud simulation chamber or coated before with the semi-volatile products from the reaction of {alpha}-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 {mu}m acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics.

  16. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    International Nuclear Information System (INIS)

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R; Schneider, J; Walter, S; Ebert, V; Wagner, S

    2008-01-01

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m 3 aerosol vessel and either directly transferred into the 84 m 3 cloud simulation chamber or coated before with the semi-volatile products from the reaction of α-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 μm acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics

  17. submitter Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    CERN Document Server

    Ignatius, Karoliina; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M; Gallagher, Martin W; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-01-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 ◦C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fraction...

  18. Nucleation in Synoptically Forced Cirrostratus

    Science.gov (United States)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  19. Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.

    Science.gov (United States)

    Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi

    2017-10-10

    The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.

  20. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    Science.gov (United States)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  1. First-principles study on ferrite/TiC heterogeneous nucleation interface

    International Nuclear Information System (INIS)

    Yang, Jian; Zhang, Pengfei; Zhou, Yefei; Guo, Jing; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2013-01-01

    Highlights: ► Interface stability of ferrite (1 0 0)/TiC (1 0 0) was studied. ► The effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. ► Ti-termination and C-termination are the two binding modes for ferrite/TiC interface. ► Interfacial energy of the Ti-termination is larger than that of the C-termination. ► On C-termination, ability of TiC promotes ferrite heterogeneous nucleation is strong. -- Abstract: Interface atomic structure, bonding character, cohesive energy and interfacial energy of ferrite (1 0 0)/TiC (1 0 0) were studied using a first-principles density functional plane-wave ultrasoft pseudopotential method. Meanwhile, the effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. The results indicated that, TiC bonding is dominated by the C-2p, C-2s and Ti-3d electrons, which exhibits high covalency. With increase of the atomic layers, the interfacial energies of ferrite and TiC are both declined rapidly and stabilized gradually. There are two binding modes for TiC as the heterogeneous nuclei of ferrite, which are Fe atoms above the Ti atoms (Ti-termination) and Fe atoms above the C atoms (C-termination). Interfacial energy of the Ti-termination is larger than that of the C-termination, which means that for Fe atoms above the C atoms, the ability of TiC promotes ferrite heterogeneous nucleation on its surface is larger than that for Fe atoms above the Ti atoms

  2. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-05-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

  3. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  4. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2010-01-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.

  5. Truncated Dual-Cap Nucleation Site Development

    Science.gov (United States)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  6. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    Directory of Open Access Journals (Sweden)

    C. Budke

    2015-02-01

    Full Text Available A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY ice nucleation can be studied simultaneously in 36 droplets at temperatures down to −40 °C (233 K and at cooling rates between 0.1 and 10 K min−1. The droplets are separated from each other in individual compartments, thus preventing a Wegener–Bergeron–Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL−1 to 1 mg mL−1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  7. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    Science.gov (United States)

    Budke, C.; Koop, T.

    2015-02-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to -40 °C (233 K) and at cooling rates between 0.1 and 10 K min-1. The droplets are separated from each other in individual compartments, thus preventing a Wegener-Bergeron-Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL-1 to 1 mg mL-1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs) contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  8. Structural match of heterogeneously nucleated Mn(OH)_2(s) nanoparticles on quartz under various pH conditions

    International Nuclear Information System (INIS)

    Jung, Haesung; Lee, Byeongdu; Jun, Young-Shin

    2016-01-01

    The early nucleation stage of Mn (hydr)oxide on mineral surfaces is crucial to understand its occurrence and the cycling of nutrients in environmental systems. However, there are only limited studies on the heterogeneous nucleation of Mn(OH)_2(s) as the initial stage of Mn (hydr)oxide precipitation. Here, we investigated the effect of pH on the initial nucleation of Mn(OH)_2(s) on quartz. Under various pH conditions of 9.8, 9.9, and 10.1, we analyzed the structural matches between quartz and heterogeneously nucleated Mn(OH)_2(s). The structural matches were calculated by measuring lateral and vertical dimensions using grazing incidence small angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), respectively. We found that a poorer structural match occurred at a higher pH than at a lower pH. The faster nucleation at a higher pH condition accounted for the observed poorer structural match. By fitting the structural match using classical nucleation theory, we also calculated the interfacial energy between Mn(OH)_2(s) and water (γ_n_f = 71 ± 7 mJ/m"2). The calculated m values and γ_n_f provided the variance of interfacial energy between quartz and Mn(OH)_2(s): γ_s_n = 262–272 mJ/m"2. As a result, this study provides new qualitative and quantitative information about heterogeneous nucleation on environmentally an abundant mineral surface, quartz, and it offers important underpinnings for understanding the fate and transport of trace ions in environmental systems.

  9. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    Science.gov (United States)

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  10. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    Science.gov (United States)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the

  11. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  12. A novel optical freezing array for the examination of cooling rate dependence in heterogeneous ice nucleation

    Science.gov (United States)

    Budke, Carsten; Dreischmeier, Katharina; Koop, Thomas

    2014-05-01

    Homogeneous ice nucleation is a stochastic process, implying that it is not only temperature but also time dependent. For heterogeneous ice nucleation it is still under debate whether there is a significant time dependence or not. In case of minor time dependence it is probably sufficient to use a singular or slightly modified singular approach, which mainly supposes temperature dependence and just small stochastic variations. We contribute to this discussion using a novel optical freezing array termed BINARY (Bielefeld Ice Nucleation ARraY). The setup consists of an array of microliter-sized droplets on a Peltier cooling stage. The droplets are separated from each other with a polydimethylsiloxane (PDMS) spacer to prevent a Bergeron-Findeisen process, in which the first freezing droplets grow at the expense of the remaining liquid ones due to their vapor pressure differences. An automatic detection of nucleation events is realized optically by the change in brightness during freezing. Different types of ice nucleating agents were tested with the presented setup, e. g. pollen and clay mineral dust. Exemplarily, cooling rate dependent measurements are shown for the heterogeneous ice nucleation induced by Snomax®. The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples.

  13. Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank

    2016-04-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice

  14. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    Science.gov (United States)

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density

  15. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H., E-mail: xuehuma@dlut.edu.cn [Liaoning Provincial Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation

  16. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Numerical Investigation of Earthquake Nucleation on a Laboratory-Scale Heterogeneous Fault with Rate-and-State Friction

    Science.gov (United States)

    Higgins, N.; Lapusta, N.

    2014-12-01

    Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have

  18. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.

    Science.gov (United States)

    Koehler, Kirsten A; DeMott, Paul J; Kreidenweis, Sonia M; Popovicheva, Olga B; Petters, Markus D; Carrico, Christian M; Kireeva, Elena D; Khokhlova, Tatiana D; Shonija, Natalia K

    2009-09-28

    Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperaturesnucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In contrast, GTS, TS, and TC1 required relative humidity well in excess of water saturation at -40 degrees C for ice formation. GTS particles required water supersaturation conditions for ice activation even at -51 degrees C. At -51 to -57 degrees C, ice formation in particles with electrical mobility diameter of 200 nm occurred in up to 1 in 1000 TS and TC1 particles, and 1 in 100 TOS particles, at relative humidities below those required for homogeneous freezing in aqueous solutions. Our results suggest that heterogeneous ice nucleation is favored in cirrus conditions on oxidized hydrophilic soot of intermediate polarity. Simple considerations suggest that the impact of hydrophilic soot particles on cirrus cloud formation would be most likely in regions of elevated atmospheric soot number concentrations. The ice formation properties of AEC soot are reasonably consistent with present understanding of the conditions required for aircraft contrail formation and the proportion of soot expected to nucleate under such conditions.

  19. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2016-02-01

    Full Text Available In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270–271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  20. On the reproducibility of heterogeneous nucleation in amorphous Al{sub 85}Ni{sub 10}Ce{sub 5} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, P. [Oxford Univ. (United Kingdom). Dept. of Materials; Greer, A.L. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    1997-06-15

    Amorphous aluminium alloys can be successfully used as a matrix in which to study heterogeneous nucleation of {alpha}-Al on embedded conventional grain-refiner particles. The nucleation potency of a particle can be estimated from the extent of Al crystal growth on the particle during the glass-forming quench. The extent of growth is, of course, also dependent on the exact quenching conditions. However, the devitrification behaviour of the amorphous matrix can be used as an indicator of the quenching conditions, thereby permitting a comparative study of the nucleation potency. (orig.)

  1. Temperature Dependence in Heterogeneous Nucleation with Application to the Direct Determination of Cluster Energy on Nearly Molecular Scale.

    Science.gov (United States)

    McGraw, Robert L; Winkler, Paul M; Wagner, Paul E

    2017-12-04

    A re-examination of measurements of heterogeneous nucleation of water vapor on silver nanoparticles is presented here using a model-free framework that derives the energy of critical cluster formation directly from measurements of nucleation probability. Temperature dependence is correlated with cluster stabilization by the nanoparticle seed and previously found cases of unusual increasing nucleation onset saturation ratio with increasing temperature are explained. A necessary condition for the unusual positive temperature dependence is identified, namely that the critical cluster be more stable, on a per molecule basis, than the bulk liquid to exhibit the effect. Temperature dependence is next examined in the classical Fletcher model, modified here to make the energy of cluster formation explicit in the model.  The contact angle used in the Fletcher model is identified as the microscopic contact angle, which can be directly obtained from heterogeneous nucleation experimental data by a recently developed analysis method. Here an equivalent condition, increasing contact angle with temperature, is found necessary for occurrence of unusual temperature dependence. Our findings have immediate applications to atmospheric particle formation and nanoparticle detection in condensation particle counters (CPCs).

  2. Polyol Synthesis of Silver Nanowires by Heterogeneous Nucleation and Mechanistic Aspects Influencing its Length and Diameter

    Science.gov (United States)

    Schuette, Waynie Mark

    Various additives are employed in the polyol synthesis of silver nanowires (Ag NWs), which are typically halide salts such as NaCl. A variety of mechanistic roles have been suggested for these additives. My research showed that the early addition of NaCl in the polyol synthesis of Ag NWs from AgNO3 in ethylene glycol results in the rapid formation of AgCl nanocubes, which induce the heterogeneous nucleation of metallic Ag upon their surfaces. Ag NWs subsequently grow from these nucleation sites. The conclusions are supported by studies using ex-situ generated AgCl nanocubes. Additionally, the final mean silver nanowire diameter is found to be independent of the size of the heterogeneous nucleant, showing that the diameter is not significantly influenced by the nucleation event. Kinetics studies determine that nanowire diameter, length, and aspect ratio grow in parallel to one another and with the extent of the Ag+ reduction reaction, demonstrating that growth is reduction-rate limited. The results are interpreted to support nanowire growth by a surface-catalyzed reduction process occurring on all nanowire surfaces, and to exclude nanoparticle aggregation or Ostwald ripening as primary components of the growth mechanism.

  3. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  4. Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S

    2018-03-21

    Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.

  5. Freezing on a Chip—A New Approach to Determine Heterogeneous Ice Nucleation of Micrometer-Sized Water Droplets

    Directory of Open Access Journals (Sweden)

    Thomas Häusler

    2018-04-01

    Full Text Available We are presenting a new approach to analyze the freezing behavior of aqueous droplets containing ice nucleating particles. The freezing chip consists of an etched and sputtered (15 × 15 × 1 mm gold-plated silicon or pure gold chip, enabling the formation of droplets with defined diameters between 20 and 80 µm. Several applications like an automated process control and an automated image evaluation were implemented to improve the quality of heterogeneous freezing experiments. To show the functionality of the setup, we compared freezing temperatures of aqueous droplets containing ice nucleating particles (i.e., microcline, birch pollen washing water, juniper pollen, and Snomax® solution measured with our setup, with literature data. The ice nucleation active surface/mass site density (ns/m of microcline, juniper pollen, and birch pollen washing water are shown to be in good agreement with literature data. Minor variations can be explained by slight differences in composition and droplet generation technique. The nm values of Snomax® differ by up to one order of magnitude at higher subzero temperatures when compared with fresh samples but are in agreement when compared with reported data of aged Snomax® samples.

  6. 7YSZ coating prepared by PS-PVD based on heterogeneous nucleation

    Directory of Open Access Journals (Sweden)

    Ziqian DENG

    2018-04-01

    Full Text Available Plasma spray-physical vapor deposition (PS-PVD as a novel coating process based on low-pressure plasma spray (LPPS has been significantly used for thermal barrier coatings (TBCs. A coating can be deposited from liquid splats, nano-sized clusters, and the vapor phase forming different structured coatings, which shows obvious advantages in contrast to conventional technologies like atmospheric plasma spray (APS and electron beam-physical vapor deposition (EB-PVD. In addition, it can be used to produce thin, dense, and porous ceramic coatings for special applications because of its special characteristics, such as high power, very low pressure, etc. These provide new opportunities to obtain different advanced microstructures, thus to meet the growing requirements of modern functional coatings. In this work, focusing on exploiting the potential of gas-phase deposition from PS-PVD, a series of 7YSZ coating experiments with various process conditions was performed in order to better understand the deposition process in PS-PVD, where coatings were deposited on different substrates including graphite and zirconia. Meanwhile, various substrate temperatures were investigated for the same substrate. As a result, a deposition mechanism of heterogeneous nucleation has been presented showing that surface energy is an important influencing factor for coating structures. Besides, undercooling of the interface between substrate and vapor phase plays an important role in coating structures. Keywords: 7YSZ, Deposition mechanism, Heterogeneous nucleation, PS-PVD, TBC

  7. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  8. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    Science.gov (United States)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-04-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  9. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    Science.gov (United States)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-06-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  10. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  11. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  12. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  13. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al–Cu–Ni alloys

    International Nuclear Information System (INIS)

    Kundin, Julia; Pogorelov, Evgeny; Emmerich, Heike

    2015-01-01

    We have investigated the microstructure evolution during the isothermal and non-isothermal solidification of ternary Al–Cu–Ni alloys by means of a general multi-phase-field model for an arbitrary number of phases. The stability requirements for the model functions on every dual interface guarantee the absence of “ghost” phases. The aim was to generate a realistic microstructure by coupling the thermodynamic parameters of the phases and the thermodynamically consistent phase-field evolution equations. It is shown that the specially constructed thermal noise terms disturb the stability on the dual interfaces and can produce heterogeneous nucleation of product phases at energetically favorable points. Similar behavior can be observed in triple junctions where the heterogeneous nucleation of a fourth phase is more favorable. Finally, the model predicts the growth of a combined eutectic-like and peritectic-like structure that is comparable to the observed experimental microstructure in various alloys

  14. Heterogeneous nucleation of ice in the atmosphere

    International Nuclear Information System (INIS)

    Nicosia, A; Piazza, M; Santachiara, G; Belosi, F

    2017-01-01

    The occurrence of ice-nucleating aerosols in the atmosphere has a profound impact on the properties of clouds, and in turn, influences our understanding on weather and climate. Research on this topic has grown constantly over the last decades, driven by advances in online and offline instruments capable of measuring the characteristics of these cloud-modifying aerosol particles. This article presents different aspects to the understanding of how aerosol particles can trigger the nucleation of ice in clouds. In addition, we present some experimental results obtained with the Dynamic Filter Processing Chamber, an off-line instrument that has been applied extensively in the last years and that circumvents some of the problems related to the measurement of Ice Nucleating Particles properties. (paper)

  15. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    Science.gov (United States)

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  16. Review: The nucleation of disorder

    International Nuclear Information System (INIS)

    Cahn, R.W.; Johnson, W.L.

    1986-01-01

    Four types of phase transformation that involve the conversion of crystalline phases into more disordered forms are reviewed: melting, disordering of superlattices, amorphization by diffusion between crystalline phases, and irradation amorphization. In the review emphasis is placed on evidence for the heterogeneous nucleation of the product phases; in this connection, the role of surfaces, antiphase domain boundaries, dislocations, vacancies, and grain boundaries is specifically discussed. All of these features have been either observed, or hypothesized, to play a role as heterogeneous nucleation sites in one or more of the four transformations. An attempt is made to draw parallels between nucleation mechanisms in the various processes

  17. Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.

    Science.gov (United States)

    Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego

    2017-12-04

    We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

  18. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    OpenAIRE

    R. Wagner; O. Möhler; H. Saathoff; M. Schnaiter; T. Leisner

    2010-01-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to ...

  19. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    International Nuclear Information System (INIS)

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  20. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    International Nuclear Information System (INIS)

    Li, J H; Schumacher, P; Albu, M; Hofer, F; Ludwig, T H; Arnberg, L

    2016-01-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting. (paper)

  1. The Stress-Dependent Activation Parameters for Dislocation Nucleation in Molybdenum Nanoparticles.

    Science.gov (United States)

    Chachamovitz, Doron; Mordehai, Dan

    2018-03-02

    Many specimens at the nanoscale are pristine of dislocations, line defects which are the main carriers of plasticity. As a result, they exhibit extremely high strengths which are dislocation-nucleation controlled. Since nucleation is a thermally activated process, it is essential to quantify the stress-dependent activation parameters for dislocation nucleation in order to study the strength of specimens at the nanoscale and its distribution. In this work, we calculate the strength of Mo nanoparticles in molecular dynamics simulations and we propose a method to extract the activation free-energy barrier for dislocation nucleation from the distribution of the results. We show that by deforming the nanoparticles at a constant strain rate, their strength distribution can be approximated by a normal distribution, from which the activation volumes at different stresses and temperatures are calculated directly. We found that the activation energy dependency on the stress near spontaneous nucleation conditions obeys a power-law with a critical exponent of approximately 3/2, which is in accordance with critical exponents found in other thermally activated processes but never for dislocation nucleation. Additionally, significant activation entropies were calculated. Finally, we generalize the approach to calculate the activation parameters for other driving-force dependent thermally activated processes.

  2. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  3. Understanding Cirrus Ice Crystal Number Variability for Different Heterogeneous Ice Nucleation Spectra

    Science.gov (United States)

    Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios

    2016-01-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  4. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  5. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    Science.gov (United States)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  6. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  7. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  8. A theory-based parameterization for heterogeneous ice nucleation and implications for the simulation of ice processes in atmospheric models

    Science.gov (United States)

    Savre, J.; Ekman, A. M. L.

    2015-05-01

    A new parameterization for heterogeneous ice nucleation constrained by laboratory data and based on classical nucleation theory is introduced. Key features of the parameterization include the following: a consistent and modular modeling framework for treating condensation/immersion and deposition freezing, the possibility to consider various potential ice nucleating particle types (e.g., dust, black carbon, and bacteria), and the possibility to account for an aerosol size distribution. The ice nucleating ability of each aerosol type is described using a contact angle (θ) probability density function (PDF). A new modeling strategy is described to allow the θ PDF to evolve in time so that the most efficient ice nuclei (associated with the lowest θ values) are progressively removed as they nucleate ice. A computationally efficient quasi Monte Carlo method is used to integrate the computed ice nucleation rates over both size and contact angle distributions. The parameterization is employed in a parcel model, forced by an ensemble of Lagrangian trajectories extracted from a three-dimensional simulation of a springtime low-level Arctic mixed-phase cloud, in order to evaluate the accuracy and convergence of the method using different settings. The same model setup is then employed to examine the importance of various parameters for the simulated ice production. Modeling the time evolution of the θ PDF is found to be particularly crucial; assuming a time-independent θ PDF significantly overestimates the ice nucleation rates. It is stressed that the capacity of black carbon (BC) to form ice in the condensation/immersion freezing mode is highly uncertain, in particular at temperatures warmer than -20°C. In its current version, the parameterization most likely overestimates ice initiation by BC.

  9. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  10. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    Science.gov (United States)

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  11. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes

    Science.gov (United States)

    Habchi, Johnny; Chia, Sean; Galvagnion, Céline; Michaels, Thomas C. T.; Bellaiche, Mathias M. J.; Ruggeri, Francesco Simone; Sanguanini, Michele; Idini, Ilaria; Kumita, Janet R.; Sparr, Emma; Linse, Sara; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2018-06-01

    Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.

  12. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  13. Phase nucleation and evolution mechanisms in heterogeneous solids

    Science.gov (United States)

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  14. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.

    Science.gov (United States)

    Kawasaki, Takeshi; Tanaka, Hajime

    2010-06-16

    The physical understanding of glass transition remains a major challenge of physics and materials science. Among various glass-forming liquids, a colloidal liquid interacting with hard-core repulsion is now regarded as one of the most ideal model systems. Here we study the structure and dynamics of three-dimensional polydisperse colloidal liquids by Brownian dynamics simulations. We reveal that medium-range crystalline bond orientational order of the hexagonal close packed structure grows in size and lifetime with increasing packing fraction. We show that dynamic heterogeneity may be a direct consequence of this transient structural ordering, which suggests its origin is thermodynamic rather than kinetic. We also reveal that nucleation of crystals preferentially occurs in regions of high medium-range order, reflecting the low crystal-liquid interfacial energy there. These findings may shed new light not only on the fundamental nature of the glass transition, but also the mechanism of crystal nucleation.

  15. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis, metallogra......Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  16. Nucleation reactions during deformation and crystallization of metallic glass

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Imhoff, S.D.; Chen, M.W.; Gonzalez, S.; Inoue, A.

    2012-01-01

    Highlights: ► New approach to the examination and analysis of shear band nucleation. ► Discovery of multiple shear band nucleation sites. ► Identification of a method of using transient kinetic behavior to provide a more realistic evaluation of the diffusivity that is relevant to nucleation. - Abstract: Nucleation reactions play a central role in the synthesis of both bulk metallic glasses and nanostructured materials. For nanostructured materials it is necessary to promote a high nucleation density without significant growth or coarsening. Beyond crystallization reactions nucleation of shear bands is critical for promoting a homogeneous flow and useful ductility for structural applications of bulk metallic glass. The study and analysis of nucleation reactions for these different situations requires a consideration of the stochastic nature of nucleation, the influence of heterogeneous sites, and the controlling transport properties. For shear band nucleation, the stochastic nature can be effectively probed by instrumented nanoindentation tests. The analysis of a statistically significant number of measurements of the first pop-in shear band nucleation events reveals at least two main nucleation sites. In nanostructured composites, the initial nucleation stage is influenced by transient effects as reflected in the delay time prior to steady state nucleation and by heterogeneous nucleation sites that are related to medium range order regions in Al-base amorphous alloys. Moreover, the early growth characteristics are linked to the maximum achievable particle density. The new developments and insight on the fundamental understanding of nanostructure reaction mechanisms offer valuable guidance for control of nanoscale microstructures and for promoting ductile deformation behavior.

  17. Heterogeneous primary nucleation of ice in water and aqueous solutions

    NARCIS (Netherlands)

    Thijssen, H.A.C.; Vorstman, M.A.G.; Roels, J.A.

    1968-01-01

    The effect of the volume of the liquid sample, the degree of turbulence in the liquid, and the rate of cooling upon the probability of nucleation has been studied for water and aqueous solutions. Nucleation rates were measured for droplets nearly instantaneously cooled to a predetermined

  18. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  19. Two types of amorphous protein particles facilitate crystal nucleation.

    Science.gov (United States)

    Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G; Furukawa, Erika; Shirai, Manabu; Matsumoto, Hiroaki; Van Driessche, Alexander E S; Tsukamoto, Katsuo

    2017-02-28

    Nucleation, the primary step in crystallization, dictates the number of crystals, the distribution of their sizes, the polymorph selection, and other crucial properties of the crystal population. We used time-resolved liquid-cell transmission electron microscopy (TEM) to perform an in situ examination of the nucleation of lysozyme crystals. Our TEM images revealed that mesoscopic clusters, which are similar to those previously assumed to consist of a dense liquid and serve as nucleation precursors, are actually amorphous solid particles (ASPs) and act only as heterogeneous nucleation sites. Crystalline phases never form inside them. We demonstrate that a crystal appears within a noncrystalline particle assembling lysozyme on an ASP or a container wall, highlighting the role of heterogeneous nucleation. These findings represent a significant departure from the existing formulation of the two-step nucleation mechanism while reaffirming the role of noncrystalline particles. The insights gained may have significant implications in areas that rely on the production of protein crystals, such as structural biology, pharmacy, and biophysics, and for the fundamental understanding of crystallization mechanisms.

  20. Nucleation in As2Se3 glass studied by DSC

    International Nuclear Information System (INIS)

    Svoboda, Roman; Málek, Jiří

    2014-01-01

    Highlights: • Nucleation behavior of As 2 Se 3 glass was studied by DSC in dependence on particle size. • Correlation between the enthalpies of fusion and crystallization were confirmed. • Apart from classical heterogeneous nucleation a second nucleation mechanism was found. • Rapid formation of crystallization centers from a damaged glassy structure occurs. • Mechanical defects seem to partially suppress the CNT nucleation process. - Abstract: Differential scanning calorimetry was used to study nucleation behavior in As 2 Se 3 glass, dependent on particle size. The nucleation process was examined for a series of different coarse powders; the nucleation rate was estimated from the proportion of the crystalline material fraction. The enthalpy of fusion was utilized in this respect, and a correlation between ΔH m and ΔH c was confirmed. Two mechanisms of nucleus formation were found: classical heterogeneous nucleation (following CNT) and so-called “activation” of mechanically-induced defects. The latter appears to represent rapid formation of crystallization centers from a damaged glassy structure, where complete saturation occurs for fine powders in the range of 195–235 °C. A high amount of mechanical defects, on the other hand, was found to partially suppress the CNT nucleation process

  1. A dynamical theory of nucleation

    Science.gov (United States)

    Lutsko, James F.

    2013-05-01

    A dynamical theory of nucleation based on fluctuating hydrodynamics is described. It is developed in detail for the case of diffusion-limited nucleation appropriate to colloids and macro-molecules in solution. By incorporating fluctuations, realistic fluid-transport and realistic free energy models the theory is able to give a unified treatment of both the pre-critical development of fluctuations leading to a critical cluster as well as of post-critical growth. Standard results from classical nucleation theory are shown to follow in the weak noise limit while the generality of the theory allows for many extensions including the description of very high supersaturations (small clusters), multiple order parameters and strong-noise effects to name a few. The theory is applied to homogeneous and heterogeneous nucleation of a model globular protein in a confined volume and it is found that nucleation depends critically on the existence of long-wavelength, small-amplitude density fluctuations.

  2. Heterogeneous nucleation of Mg2Si on Sr11Sb10 nucleus in Mg–x(3.5, 5 wt.%)Si–1Al alloys

    International Nuclear Information System (INIS)

    Wang, Hui-Yuan; Chen, Lei; Liu, Bo; Li, Xiao-Ran; Wang, Jin-Guo; Jiang, Qi-Chuan

    2012-01-01

    After combined additions of Sr and Sb, most primary Mg 2 Si crystals in Mg–3.5Si–1Al and Mg–5Si–1Al alloys transformed from equiaxed-dendritic shapes to octahedral morphologies; while eutectic phases also changed from Chinese script to short rod-shapes. The mechanisms of complex modification of Sr and Sb were attributed to the heterogeneous nucleation of primary Mg 2 Si on Sr 11 Sb 10 nucleus, together with change in growth manners caused by incorporation of Sb in Mg 2 Si crystals. -- Highlights: ► The Sr 11 Sb 10 is the heterogeneous nucleation of primary Mg 2 Si in Mg–3.5Si–1Al alloys. ► Some Sb atoms were incorporated by substituting Si which changed growth manners of primary Mg 2 Si. ► Primary Mg 2 Si transformed from equiaxed-dendritic to octahedral after modification. ► Eutectic phases changed from Chinese script to short rod-shapes after modification.

  3. Heterogeneous nucleation helps the search for initial crystallization conditions of γ-glutamyl transpeptidase from Bacillus licheniformis

    International Nuclear Information System (INIS)

    Lin, Long-Liu; Merlino, Antonello

    2013-01-01

    An additional example in which heterogeneous nucleation has helped in the search for crystallization conditions of a protein is reported. Optimization of the crystallization conditions led to the formation of single crystals of γ-glutamyl transpeptidase from B. licheniformis that diffracted to about 3.0 Å resolution. Here, the crystallization and preliminary X-ray diffraction studies of Bacillus licheniformis γ-glutamyl transpeptidase (BlGT) are reported. The serendipitous finding of heterogeneous nucleants in the initial experiments provided the first crystallization conditions for the protein. Crystals were grown by hanging-drop vapour diffusion using a precipitant solution consisting of 20%(w/v) PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M Tris–HCl pH 8.2. The protein crystallized in the orthorhombic space group P2 1 2 1 2 1 , with one heterodimer per asymmetric unit and unit-cell parameters a = 60.90, b = 61.97, c = 148.24 Å. The BlGT crystals diffracted to 2.95 Å resolution

  4. Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2009-08-01

    Full Text Available This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from observations. The parameterization reproduces the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. The formulation presented is fast and free from requirements of numerical integration.

  5. Nucleation and arrest of slow slip earthquakes: mechanisms and nonlinear simulations using realistic fault geometries and heterogeneous medium properties

    Science.gov (United States)

    Alves da Silva Junior, J.; Frank, W.; Campillo, M.; Juanes, R.

    2017-12-01

    Current models for slow slip earthquakes (SSE) assume a simplified fault embedded on a homogeneous half-space. In these models SSE events nucleate on the transition from velocity strengthening (VS) to velocity weakening (VW) down dip from the trench and propagate towards the base of the seismogenic zone, where high normal effective stress is assumed to arrest slip. Here, we investigate SSE nucleation and arrest using quasi-static finite element simulations, with rate and state friction, on a domain with heterogeneous properties and realistic fault geometry. We use the fault geometry of the Guerrero Gap in the Cocos subduction zone, where SSE events occurs every 4 years, as a proxy for subduction zone. Our model is calibrated using surface displacements from GPS observations. We apply boundary conditions according to the plate convergence rate and impose a depth-dependent pore pressure on the fault. Our simulations indicate that the fault geometry and elastic properties of the medium play a key role in the arrest of SSE events at the base of the seismogenic zone. SSE arrest occurs due to aseismic deformations of the domain that result in areas with elevated effective stress. SSE nucleation occurs in the transition from VS to VW and propagates as a crack-like expansion with increased nucleation length prior to dynamic instability. Our simulations encompassing multiple seismic cycles indicate SSE interval times between 1 and 10 years and, importantly, a systematic increase of rupture area prior to dynamic instability, followed by a hiatus in the SSE occurrence. We hypothesize that these SSE characteristics, if confirmed by GPS observations in different subduction zones, can add to the understanding of nucleation of large earthquakes in the seismogenic zone.

  6. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  7. Nucleation and cavitation in parahydrogen

    International Nuclear Information System (INIS)

    Pi, Martí; Barranco, Manuel; Navarro, Jesús; Ancilotto, Francesco

    2012-01-01

    Highlights: ► We have constructed a density functional (DF) for parahydrogen between 14 and 32 K. ► The experimental equation of state and the surface tension are well reproduced. ► We have investigated nucleation and cavitations processes in the metastable phase. ► We have obtained the electron bubble explosion within the capillary model. - Abstract: We have used a density functional approach to investigate thermal homogeneous nucleation and cavitation in parahydrogen. The effect of electrons as seeds of heterogeneous cavitation in liquid parahydrogen is also discussed within the capillary model.

  8. Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud

    Directory of Open Access Journals (Sweden)

    K. Diehl

    2018-03-01

    Full Text Available In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s−1. At such altitudes with corresponding temperatures below −40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1 additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2 contact and deposition freezing in comparison to immersion freezing, and (3 small fractions of biological ice nucleating particles (INPs in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at

  9. Nucleation mechanisms in high energy ion beam induced dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Michael; Garmatter, Daniel; Ferhati, Redi; Amirthapandian, Sankarakumar; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany)

    2011-07-01

    Solid coatings, when heated above their melting points, often break up by forming small round holes, which then grow, coalesce and finally turn the initially contiguous film into a pattern of isolated droplets. Such dewetting has been intensively studied using thin polymer films on Si. Three different hole nucleation mechanisms were discovered: homogeneous (spontaneous) nucleation, heterogeneous nucleation at defects, and spinodal dewetting by self-amplifying capillary waves. We have recently found that swift heavy ion (SHI) irradiation of thin oxide films on Si results in similar dewetting patterns, even though the films were kept far below their melting points. Using our new in-situ SEM at the UNILAC accelerator of GSI, we were now able to identify the mechanisms behind this SHI induced dewetting phenomenon. By varying the film thickness and introducing defects at the interface, we can directly address the hole nucleation processes. Besides homogeneous and heterogeneous nucleation, we also found a process, which very much resembles the spinodal mechanism found for liquid polymers, although in the present case the instable wavy surface is not generated by capillary waves, but by ion beam induced stresses.

  10. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Science.gov (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  11. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case

    Science.gov (United States)

    Trobo, Marta L.; Albano, Ezequiel V.; Binder, Kurt

    2018-03-01

    Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hbbaseline length of the circle-cut sphere droplet would exceed b. For Hbc r i tbaseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θeff in the regime θc energy barrier for the "depinning" of the droplet (i.e., growth of θeff to π - θc) vanishes when θeff approaches π/2, in practice only angles θeff up to about θef f m a x≃70 ° were observed. For larger fields (Hb>Hb*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τG∝Hb-1, the nucleation time τN scales as ln τN∝Hb-1. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θc is used.

  12. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality.

    Science.gov (United States)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius

    2017-11-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of

  13. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  14. Heterogeneous nucleation for synthesis of sub-20nm ZnO nanopods and their application to optical humidity sensing.

    Science.gov (United States)

    Majithia, R; Ritter, S; Meissner, K E

    2014-02-17

    We present a novel method for colloidal synthesis of one-dimensional ZnO nanopods by heterogeneous nucleation on zero-dimensional ZnO nanoparticle 'seeds'. Ultra-small ZnO nanopods, multi-legged structures with sub-20 nm individual leg diameters, can be synthesized by hydrolysis of a Zn2+ precursor growth solution in presence of ∼4 nm ZnO seeds under hydrothermal conditions via microwave-assisted heating in as little as 20 min of reaction time. One-dimensional ZnO nanorods are initially generated in the reaction mixture by heterogeneous nucleation and growth along the [0001] direction of the ZnO crystal. Growth of one-dimensional nanorods subsequently yields to an 'attachment' and size-focusing phase where individual nanorods fuse together to form multi-legged nanopods having diameters ∼15 nm. ZnO nanopods exhibit broad orange-red defect-related photoluminescence in addition to a near-band edge emission at 373 nm when excited above the band-gap at 350 nm. The defect-related photoluminescence of the ZnO nanopods has been applied towards reversible optical humidity sensing at room temperature. The sensors demonstrated a linear response between 22% and 70% relative humidity with a 0.4% increase in optical intensity per % change in relative humidity. Due to their ultra-small dimensions, ZnO nanopods exhibit a large dynamic range and enhanced sensitivity to changes in ambient humidity, thus showcasing their ability as a platform for optical environmental sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    International Nuclear Information System (INIS)

    Binder, Kurt; Virnau, Peter

    2016-01-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  16. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  17. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  18. Janus effect of antifreeze proteins on ice nucleation.

    Science.gov (United States)

    Liu, Kai; Wang, Chunlei; Ma, Ji; Shi, Guosheng; Yao, Xi; Fang, Haiping; Song, Yanlin; Wang, Jianjun

    2016-12-20

    The mechanism of ice nucleation at the molecular level remains largely unknown. Nature endows antifreeze proteins (AFPs) with the unique capability of controlling ice formation. However, the effect of AFPs on ice nucleation has been under debate. Here we report the observation of both depression and promotion effects of AFPs on ice nucleation via selectively binding the ice-binding face (IBF) and the non-ice-binding face (NIBF) of AFPs to solid substrates. Freezing temperature and delay time assays show that ice nucleation is depressed with the NIBF exposed to liquid water, whereas ice nucleation is facilitated with the IBF exposed to liquid water. The generality of this Janus effect is verified by investigating three representative AFPs. Molecular dynamics simulation analysis shows that the Janus effect can be established by the distinct structures of the hydration layer around IBF and NIBF. Our work greatly enhances the understanding of the mechanism of AFPs at the molecular level and brings insights to the fundamentals of heterogeneous ice nucleation.

  19. Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi.

    Science.gov (United States)

    Sanders, Anna A W M; Chang, Kevin; Zhu, Xiaodong; Thoppil, Roslin J; Holmes, William R; Kaverina, Irina

    2017-11-07

    Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites. © 2017 Sanders et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    Directory of Open Access Journals (Sweden)

    T P Mangan

    Full Text Available Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  1. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    Science.gov (United States)

    Mangan, T P; Atkinson, J D; Neuberg, J W; O'Sullivan, D; Wilson, T W; Whale, T F; Neve, L; Umo, N S; Malkin, T L; Murray, B J

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  2. Comparative study of ice nucleating efficiency of K-feldspar in immersion and deposition freezing modes

    Science.gov (United States)

    Hiron, T.; Hoffmann, N.; Peckhaus, A.; Kiselev, A. A.; Leisner, T.; Flossmann, A. I.

    2016-12-01

    One of the main challenges in understanding the evolution of Earth's climate resides in the understanding the role of ice nucleation on the development of tropospheric clouds as well as its initiation. K-feldspar is known to be a very active ice nucleating particle and this study focuses on the characterization of its activity in two heterogeneous nucleation modes, immersion and deposition freezing.We use a newly built humidity-controlled cold stage allowing the simultaneous observation of up to 2000 identical 0.6-nanoliter droplets containing suspension of mineral dust particles. The droplets are first cooled down to observe immersion freezing, the obtained ice crystals are then evaporated and finally, the residual particles are exposed to the water vapor supersaturated with respect to ice.The ice nucleation abilities for the individual residual particles are then compared for the different freezing modes and correlation between immersion ice nuclei and deposition ice nuclei is investigated.Based on the electron microscopy analysis of the residual particles, we discuss the possible relationship between the ice nucleation properties of feldspar and its microstructure. Finally, we discuss the atmospheric implications of our experimental results, using DESCAM, a 1.5D bin-resolved microphysics model.

  3. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  4. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Archuleta

    2005-01-01

    Full Text Available This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.

  5. Effect of wetting on nucleation and growth of D2 in confinement

    Science.gov (United States)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Shin, S. J.; Kozioziemski, B. J.; Chernov, A. A.

    2018-04-01

    We have performed a computational study to determine how the wetting of liquid deuterium to the walls of the material influences nucleation. We present the development of a pair-wise interatomic potential that includes zero-point motion of molecular deuterium. Deuterium is used in this study because of its importance to inertial confinement fusion and the potential to generate a superfluid state if the solidification can be suppressed. Our simulations show that wetting dominates undercooling compared to the pore geometries. We observe a transition from heterogeneous nucleation at the confining wall to homogeneous nucleation at the bulk of the liquid (and intermediate cases) as the interaction with the confining wall changes from perfect wetting to non-wetting. When nucleation is heterogeneous, the temperature needed for solidification changes by 4 K with decreasing deuterium-wall interaction, but it remains independent (and equal to the one from bulk samples) when homogeneous nucleation dominates. We find that growth and quality of the resulting microstructure also depends on the magnitude of liquid deuterium-wall interaction strength.

  6. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.

    Science.gov (United States)

    Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita

    2017-11-01

    Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.

  7. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.

    Science.gov (United States)

    Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D

    2017-02-13

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  8. Thermally activated vapor bubble nucleation: The Landau-Lifshitz-Van der Waals approach

    Science.gov (United States)

    Gallo, Mirko; Magaletti, Francesco; Casciola, Carlo Massimo

    2018-05-01

    Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at an atomistic level of detail. In this work a powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid embedded with thermal fluctuations (fluctuating hydrodynamics), is exploited to study the nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and following the long-term dynamics of the metastable system, up to the bubble coalescence and expansion stages. In comparison with more classical approaches, this methodology allows us on the one hand to deal with much larger systems observed for a much longer time than possible with even the most advanced atomistic models. On the other, it extends continuum formulations to thermally activated processes, impossible to deal with in a purely determinist setting.

  9. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Directory of Open Access Journals (Sweden)

    A. J. Patton

    2015-01-01

    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  10. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  11. Mechanisms of nucleation in flashing flows

    International Nuclear Information System (INIS)

    Yan, F.; Giot, M.

    1989-01-01

    The mechanisms of nucleation have been analysed. Starting from the assumption that the activation of micro-cavities in the wall surfaces is the most probable nucleation mechanism in practical flashing system, the authors study in detail the nucleation in a micro-cavity. A three step nucleation criterion is proposed, namely: trapping cavity, activable cavity and active cavity. Then, a new nucleation model is presented. The output of the model is the prediction of the bubble departure frequency versus the thermodynamic state of the liquid and the geometry of the cavity. The model can also predict the nucleation site density if the nature of the wall and the surface roughness are know. The prediction have been successfully compared with some preliminary experimental results. By combining the present model with Jones'theory, the flashing inception is correctly predicted. The use of this nucleation model for the complete modelling of a flashing non-equilibrium flow is in progress

  12. Ice Nucleation of Soot Particles in the Cirrus Regime: Is Pore Condensation and Freezing Relevant for Soot?

    Science.gov (United States)

    Kanji, Z. A.; Mahrt, F.; David, R.; Marcolli, C.; Lohmann, U.; Fahrni, J.; Brühwiler, D.

    2017-12-01

    Heterogeneous ice nucleation (HIN) onto soot particles from previous studies have produced inconsistent results of temperature and relative humidity conditions required for freezing depending on the source of soot particle investigated. The ability of soot to act as HIN depended on the type of soot and size of particle. Often homogenous freezing conditions or water saturation conditions were required to freeze soot particles, rendering HIN irrelevant. Using synthesised mesoporous silica particles, we show pore condensation and freezing works with experiments performed in the Zurich Ice Nucleation Chamber (ZINC). By testing a variety of soot particles in parallel in the Horizontal Ice Nucleation Chamber (HINC), we suggest that previously observed HIN on soot particles is not the responsible mechanism for ice formation. Laboratory generated CAST brown and black soot, commercially available soot and acid treated soot were investigated for their ice nucleation abilities in the mixed-phase and cirrus cloud temperature regimes. No heterogeneous ice nucleation activity is inferred at T > -38 °C (mixed-phase cloud regime), however depending on particle size and soot type, HIN was observed for T nucleation of ice in the pores or cavities that are ubiquitous in soot particles between the primary spherules. The ability of some particles to freeze at lower relative humidity compared to others demonstrates why hydrophobicity plays a role in ice nucleation, i.e. controlling the conditions at which these cavities fill with water. Thus for more hydrophobic particles pore filling occurs at higher relative humidity, and therefore freezing of pore water and ice crystal growth. Future work focusses on testing the cloud processing ability of soot particles and water adsorption isotherms of the different soot samples to support the hydrophobicity inferences from the ice nucleation results.

  13. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a

  14. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    emissions. Collected particles will be re-suspended and aerosolized using an atomizer (TSI, model 3076) and dried by a diffusion drier prior to ice nucleation experiments. A Particle Phase Discriminator (PPD) coupled to HINC will allow discrimination of size-resolved liquid and ice hydrometeors formed on the atmospheric soot particles injected into the CFDC. This will allow to more precisely quantify the microphysical properties of these particles in cloud processes for the conditions tested. To our knowledge this is the first time such a coupling is done for atmospheric soot particles. Results show different activation behavior of the soot over the temperature range investigated. While CAST-brown soot needs conditions above water saturation to show any freezing, some of the commercial soot samples show heterogeneous ice nucleation well below water saturation for the cirrus conditions. For the mixed-phase cloud conditions all soot types show droplet activation for high water supersaturation.

  15. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces.

    Science.gov (United States)

    Davis, Ryan D; Tolbert, Margaret A

    2017-07-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

  16. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.

    Science.gov (United States)

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L

    2017-12-01

    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  17. Modelling of cirrus clouds – Part 2: Competition of different nucleation mechanisms

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2009-04-01

    Full Text Available We study the competition of two different freezing mechanisms (homogeneous and heterogeneous freezing in the same environment for cold cirrus clouds. To this goal we use the recently developed and validated ice microphysics scheme (Spichtinger and Gierens, 2009a which distinguishes between ice classes according to their formation process. We investigate cases with purely homogeneous ice formation and compare them with cases where background ice nuclei in varying concentration heterogeneously form ice prior to homogeneous nucleation. We perform additionally a couple of sensitivity studies regarding threshold humidity for heterogeneous freezing, uplift speed, and ambient temperature, and we study the influence of random motions induced by temperature fluctuations in the clouds. We find three types of cloud evolution, homogeneously dominated, heterogeneously dominated, and a mixed type where neither nucleation process dominates. The latter case is prone to long–lasting in–cloud ice supersaturation of the order 30% and more.

  18. Vapor nucleation paths in lyophobic nanopores.

    Science.gov (United States)

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo

    2018-04-19

    In recent years, technologies revolving around the use of lyophobic nanopores gained considerable attention in both fundamental and applied research. Owing to the enormous internal surface area, heterogeneous lyophobic systems (HLS), constituted by a nanoporous lyophobic material and a non-wetting liquid, are promising candidates for the efficient storage or dissipation of mechanical energy. These diverse applications both rely on the forced intrusion and extrusion of the non-wetting liquid inside the pores; the behavior of HLS for storage or dissipation depends on the hysteresis between these two processes, which, in turn, are determined by the microscopic details of the system. It is easy to understand that molecular simulations provide an unmatched tool for understanding phenomena at these scales. In this contribution we use advanced atomistic simulation techniques in order to study the nucleation of vapor bubbles inside lyophobic mesopores. The use of the string method in collective variables allows us to overcome the computational challenges associated with the activated nature of the phenomenon, rendering a detailed picture of nucleation in confinement. In particular, this rare event method efficiently searches for the most probable nucleation path(s) in otherwise intractable, high-dimensional free-energy landscapes. Results reveal the existence of several independent nucleation paths associated with different free-energy barriers. In particular, there is a family of asymmetric transition paths, in which a bubble forms at one of the walls; the other family involves the formation of axisymmetric bubbles with an annulus shape. The computed free-energy profiles reveal that the asymmetric path is significantly more probable than the symmetric one, while the exact position where the asymmetric bubble forms is less relevant for the free energetics of the process. A comparison of the atomistic results with continuum models is also presented, showing how, for simple

  19. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  20. The effect of stirring on the heterogeneous nucleation of water and of clathrates of tetrahydrofuran/water mixtures

    Directory of Open Access Journals (Sweden)

    P.W. Wilson

    2016-03-01

    Full Text Available The statistics of liquid-to-crystal nucleation are measured for both water and for clathrate-forming mixtures of tetrahydrofuran (THF and water using an automatic lag time apparatus (ALTA. We measure the nucleation temperature using this apparatus in which a single sample is repeatedly cooled, nucleated and thawed. The effect of stirring on nucleation has been evaluated numerically and is discussed. We find that stirring of the solution makes no difference to the nucleation temperature of a given solution in a given tube.

  1. Crystal nucleation in metallic alloys using x-ray radiography and machine learning

    Science.gov (United States)

    Arteta, Carlos; Lempitsky, Victor

    2018-01-01

    The crystallization of solidifying Al-Cu alloys over a wide range of conditions was studied in situ by synchrotron x-ray radiography, and the data were analyzed using a computer vision algorithm trained using machine learning. The effect of cooling rate and solute concentration on nucleation undercooling, crystal formation rate, and crystal growth rate was measured automatically for thousands of separate crystals, which was impossible to achieve manually. Nucleation undercooling distributions confirmed the efficiency of extrinsic grain refiners and gave support to the widely assumed free growth model of heterogeneous nucleation. We show that crystallization occurred in temporal and spatial bursts associated with a solute-suppressed nucleation zone. PMID:29662954

  2. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  3. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark

    Science.gov (United States)

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S.; Ishikawa, Masaya

    2014-01-01

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (−1 to −4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142

  4. Sensitivity of ice-nucleating bacteria to ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Hitoshi; Tanahashi, Shinji; Kawahara, Hidehisa (Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering)

    1992-01-01

    The effect of ultraviolet (UV) irradiation on the ice-nucleating activity of the ice-nucleating bacteria was examined. Bacterial suspension was irradiated with UV (254 nm, 6Wx2) for 5 min at a distance of 20 cm from UV source. Although no viable cells were detected, the ice-nucreating activity of the cells was not affected. Furthermore, after UV irradiation for 3 hr, the ice-nucleating activity of Pseudomonas fluorescens and P. syringae was only slightly decreased, although that of P. viridiflava and Erwinia herbicola was significantly lowered. We succeeded in killing the ice-nucleating bacteria, while retaining their ice-nucleating activity with UV irradiation. (author).

  5. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions - Part 1: The K-feldspar microcline

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Luo, Beiping; Peter, Thomas

    2018-05-01

    Potassium-containing feldspars (K-feldspars) have been considered as key mineral dusts for ice nucleation (IN) in mixed-phase clouds. To investigate the effect of solutes on their IN efficiency, we performed immersion freezing experiments with the K-feldspar microcline, which is highly IN active. Freezing of emulsified droplets with microcline suspended in aqueous solutions of NH3, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl, with solute concentrations corresponding to water activities aw = 0.9-1.0, were investigated by means of a differential scanning calorimeter (DSC). The measured heterogeneous IN onset temperatures, Thet(aw), deviate strongly from ThetΔawhet(aw), the values calculated from the water-activity-based approach (where ThetΔawhet(aw) = Tmelt(aw + Δawhet) with a constant offset Δawhet with respect to the ice melting point curve). Surprisingly, for very dilute solutions of NH3 and NH4+ salts (molalities ≲1 mol kg-1 corresponding to aw ≳ 0.96), we find IN temperatures raised by up to 4.5 K above the onset freezing temperature of microcline in pure water (Thet(aw = 1)) and 5.5 K above ThetΔawhet(aw), revealing NH3 and NH4+ to significantly enhance the IN of the microcline surface. Conversely, more concentrated NH3 and NH4+ solutions show a depression of the onset temperature below ThetΔawhet(aw) by as much as 13.5 K caused by a decline in IN ability accompanied with a reduction in the volume fraction of water frozen heterogeneously. All salt solutions not containing NH4+ as cation exhibit nucleation temperatures Thet(aw) NH4+). However, the presence of a similar increase in IN efficiency in dilute ammonia solutions indicates that the cation exchange cannot explain the increase in IN temperatures. Instead, we hypothesize that NH3 molecules hydrogen bonded on the microcline surface form an ice-like overlayer, which provides hydrogen bonding favorable for ice to nucleate on, thus enhancing both the freezing temperatures and the

  6. Basic Study for Active Nucleation Site Density Evaluation in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Chu, In Cheol; Song, Chul Hwa

    2008-01-01

    Numerous studies have been performed on a active nucleation site density (ANSD) due to its governing influence on a heat transfer. However, most of the studies were focused on pool boiling conditions. Kocamustafaogullari and Ishii developed an ANSD correlation from a parametric study of the existing pool boiling data. Also, they extended the correlation to a convective flow boiling condition by adopting the nucleation suppression factor of Chen's heat transfer correlation. However, the appropriateness of applying the Chen's suppression factor to an ANSD correlation was not fully validated because there was not enough experimental data on ANSD in the forced convective flow boiling. Basu et al. performed forced convective boiling experiments and proposed a correlation of ANSD which is the only correlation based on experimental data for a forced convective boiling. They concluded that the ANSD is only dependent on the static contact angle and the wall superheat, and is independent of the flow rate and the subcooling, which contradict the general acceptance of the nucleation suppression in the forced convective boiling. It seems that no reliable ANSD correlation or model is available for a forced convective boiling. In the present study, the effect of the flow velocity on the suppression of the nucleation site was examined, and the effectiveness of a Brewster reflection technique for the identification of the nucleation site was also examined

  7. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 1: The K-feldspar microcline

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2018-05-01

    Full Text Available Potassium-containing feldspars (K-feldspars have been considered as key mineral dusts for ice nucleation (IN in mixed-phase clouds. To investigate the effect of solutes on their IN efficiency, we performed immersion freezing experiments with the K-feldspar microcline, which is highly IN active. Freezing of emulsified droplets with microcline suspended in aqueous solutions of NH3, (NH42SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl, with solute concentrations corresponding to water activities aw  =  0.9–1.0, were investigated by means of a differential scanning calorimeter (DSC. The measured heterogeneous IN onset temperatures, Thet(aw, deviate strongly from ThetΔawhet(aw, the values calculated from the water-activity-based approach (where ThetΔawhet(aw = Tmelt(aw + Δawhet with a constant offset Δawhet with respect to the ice melting point curve. Surprisingly, for very dilute solutions of NH3 and NH4+ salts (molalities ≲1 mol kg−1 corresponding to aw ≳ 0.96, we find IN temperatures raised by up to 4.5 K above the onset freezing temperature of microcline in pure water (Thet(aw = 1 and 5.5 K above ThetΔawhet(aw, revealing NH3 and NH4+ to significantly enhance the IN of the microcline surface. Conversely, more concentrated NH3 and NH4+ solutions show a depression of the onset temperature below ThetΔawhet(aw by as much as 13.5 K caused by a decline in IN ability accompanied with a reduction in the volume fraction of water frozen heterogeneously. All salt solutions not containing NH4+ as cation exhibit nucleation temperatures Thet(aw < ThetΔawhet(aw even at very small solute concentrations. In all these cases, the heterogeneous freezing peak displays a decrease as solute concentration increases. This deviation from Δawhet  =  const. indicates specific chemical interactions between particular solutes and the microcline surface not captured by the water-activity-based approach. One

  8. Effect of cholesterol nucleation-promoting activity on cholesterol solubilization in model bile

    NARCIS (Netherlands)

    Groen, A. K.; Ottenhoff, R.; Jansen, P. L.; van Marle, J.; Tytgat, G. N.

    1989-01-01

    Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human

  9. Freezing nucleation apparatus puts new slant on study of biological ice nucleators in precipitation

    Science.gov (United States)

    Stopelli, E.; Conen, F.; Zimmermann, L.; Alewell, C.; Morris, C. E.

    2014-01-01

    For decades, drop-freezing instruments have contributed to a better understanding of biological ice nucleation and its likely implications for cloud and precipitation development. Yet, current instruments have limitations. Drops analysed on a cold stage are subject to evaporation and potential contamination. The use of closed tubes provides a partial solution to these problems, but freezing events are still difficult to be clearly detected. Here, we present a new apparatus where freezing in closed tubes is detected automatically by a change in light transmission upon ice development, caused by the formation of air bubbles and crystal facets that scatter light. Risks of contamination and introduction of biases linked to detecting the freezing temperature of a sample are then minimized. To illustrate the performance of the new apparatus we show initial results of two assays with snow samples. In one, we repeatedly analysed the sample (208 tubes) over the course of a month with storage at +4 °C, during which evidence for biological ice nucleation activity emerged through an increase in the number of ice nucleators active around -4 °C. In the second assay, we indicate the possibility of increasingly isolating a single ice nucleator from a precipitation sample, potentially determining the nature of a particle responsible for a nucleation activity measured directly in the sample. These two seminal approaches highlight the relevance of this handy apparatus for providing new points of view in biological ice nucleation research.

  10. On the usage of classical nucleation theory in predicting the impact of bacteria on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Woetmann Nielsen, Niels; Havskov Sørensen, Jens; Finster, Kai; Bay Gosewinkel Karlson, Ulrich; Šantl-Temkiv, Tina; Smith Korsholm, Ulrik

    2014-05-01

    Bacteria, e.g. Pseudomonas syringae, have previously been found efficient in nucleating ice heterogeneously at temperatures close to -2°C in laboratory tests. Therefore, ice nucleation active (INA) bacteria may be involved in the formation of precipitation in mixed phase clouds, and could potentially influence weather and climate. Investigations into the impact of INA bacteria on climate have shown that emissions were too low to significantly impact the climate (Hoose et al., 2010). The goal of this study is to clarify the reason for finding the marginal impact on climate when INA bacteria were considered, by investigating the usability of ice nucleation rate parameterization based on classical nucleation theory (CNT). For this purpose, two parameterizations of heterogeneous ice nucleation were compared. Both parameterizations were implemented and tested in a 1-d version of the operational weather model (HIRLAM) (Lynch et al., 2000; Unden et al., 2002) in two different meteorological cases. The first parameterization is based on CNT and denoted CH08 (Chen et al., 2008). This parameterization is a function of temperature and the size of the IN. The second parameterization, denoted HAR13, was derived from nucleation measurements of SnomaxTM (Hartmann et al., 2013). It is a function of temperature and the number of protein complexes on the outer membranes of the cell. The fraction of cloud droplets containing each type of IN as percentage in the cloud droplets population were used and the sensitivity of cloud ice production in each parameterization was compared. In this study, HAR13 produces more cloud ice and precipitation than CH08 when the bacteria fraction increases. In CH08, the increase of the bacteria fraction leads to decreasing the cloud ice mixing ratio. The ice production using HAR13 was found to be more sensitive to the change of the bacterial fraction than CH08 which did not show a similar sensitivity. As a result, this may explain the marginal impact of

  11. An aerosol chamber investigation of the heterogeneous ice nucleating potential of refractory nanoparticles

    Directory of Open Access Journals (Sweden)

    R. W. Saunders

    2010-02-01

    Full Text Available Nanoparticles of iron oxide (crystalline and amorphous, silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180–250 K, using the AIDA chamber in Karlsruhe, Germany.

    All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHithresh ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHithresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns(190 K=10(3.33×sice+8.16] for the variation in ice-active surface site density (ns:m−2 with ice saturation (sice for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4° respectively for the SiO2 and MgO particle samples at the higher temperature.

    These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice

  12. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich

  13. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  14. Interaction of the nucleation phenomena at adjacent sites in nucleate boiling

    International Nuclear Information System (INIS)

    Sultan, M.; Judd, R.L.

    1983-01-01

    The present investigation is an original study in nucleate pool boiling heat transfer combining theory and experiment in which water boiling at atmospheric pressure on a single copper surface at two different levels of heat and different levels of subcooling was studied. Cross spectral analysis of the signals generated by the emission of bubbles at adjacent nucleation sites was used to determine the relationship of the time elapsed between the start of bubble growth at the two neighbouring active sites with the distance separating them. The experimental results obtained indicated that for the lower level of heat flux at three different levels of subcooling, the elapsed time and distance were directly related. Theoretical predictions of a temperature disturbance propagating through the heating surface in the radial direction gave good agreement with the experimental findings, suggesting that this is the mechanism responsible for the activation of the surrounding nucleation sites

  15. Chlorine-containing salts as water ice nucleating particles on Mars

    Science.gov (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  16. Nucleation in an ultra low ionization environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar...... activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms...... for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground...

  17. Nucleation and adhesion of diamond films on Co cemented tungsten carbide

    Energy Technology Data Exchange (ETDEWEB)

    Polini, R.; Santarelli, M.; Traversa, E.

    1999-12-01

    Diamond deposits were grown using hot filament chemical vapor deposition (CVD) on pretreated Co cemented tungsten carbide (WC-Co) substrates with an average grain size of 6 {micro}m. Depositions were performed with 0.5 or 1.0% methane concentration and with substrate temperatures ranging from 750 to 1,000 C. Diamond nucleation densities were measured by scanning electron microscopy. Scratched and bias-enhanced nucleation pretreated substrates showed the larger nucleation densities. Etching of the WC performed by Murakami's reagent, followed by surface-Co dissolution (MP pretreatment), led to a roughened but scarcely nucleating surface. The performance of a scratching prior to the MP pretreatment allowed one to increase the nucleation density, due scratching-induced defects, confined in the outermost layer of WC grains, which act as nucleation sites. Smaller nucleation densities were observed with increasing the substrate temperature and reducing the methane concentration, confirming that diamond nucleates via a heterogeneous process. The adhesion of continuous films was evaluated by the reciprocal of the slope of crack radius-indentation load functions. The substrate pretreatments mainly affected the film adhesion, while the influence of CVD process conditions was minor. The two main factors that improve the diamond film adhesion are the coating-substrate contact area and the surface-Co removal.

  18. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    Science.gov (United States)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  19. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  20. Heterogeneous Active Matter

    Science.gov (United States)

    Kolb, Thomas; Klotsa, Daphne

    Active systems are composed of self-propelled (active) particles that locally convert energy into motion and exhibit emergent collective behaviors, such as fish schooling and bird flocking. Most works so far have focused on monodisperse, one-component active systems. However, real systems are heterogeneous, and consist of several active components. We perform molecular dynamics simulations of multi-component active matter systems and report on their emergent behavior. We discuss the phase diagram of dynamic states as well as parameters where we see mixing versus segregation.

  1. The mechanisms of transitions from natural convection and nucleate boiling to nucleate boiling or film boiling caused by rapid depressurization in highly subcooled water

    International Nuclear Information System (INIS)

    Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya

    1999-01-01

    The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)

  2. Theory and Simulation of Nucleation

    NARCIS (Netherlands)

    Kuipers, J.|info:eu-repo/dai/nl/304832049

    2009-01-01

    Nucleation is the process where a stable nucleus spontaneously emerges in a metastable environment. Examples of nucleation abound, for instance the formation of droplets in undercooled gasses and of crystals in undercooled liquids. The process is thermally activated and is key to understanding

  3. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  4. A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model

    Science.gov (United States)

    Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank

    2014-01-01

    In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.

  5. Towards establishing a combined rate law of nucleation and crystal growth - The case study of gypsum precipitation

    Science.gov (United States)

    Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar

    2018-03-01

    The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

  6. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng; Khan, Hadayat Ullah; Payne, Marcia M.; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram

    2012-01-01

    -ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions

  7. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils.

    Science.gov (United States)

    Buell, Alexander K

    2017-01-01

    The condensation and aggregation of individual protein molecules into dense insoluble phases is of relevance in such diverse fields as materials science, medicine, structural biology and pharmacology. A common feature of these condensation phenomena is that they usually are nucleated processes, i.e. the first piece of the condensed phase is energetically costly to create and hence forms slowly compared to its subsequent growth. Here we give a compact overview of the differences and similarities of various protein nucleation phenomena, their theoretical description in the framework of colloid and polymer science and their experimental study. Particular emphasis is put on the nucleation of a specific type of filamentous protein aggregates, amyloid fibrils. The current experimentally derived knowledge on amyloid fibril nucleation is critically assessed, and we argue that it is less advanced than is generally believed. This is due to (I) the lack of emphasis that has been put on the distinction between homogeneous and heterogeneous nucleation in experimental studies (II) the use of oversimplifying and/or inappropriate theoretical frameworks for the analysis of kinetic data of amyloid fibril nucleation. A strategy is outlined and advocated of how our understanding of this important class of processes can be improved in the future. © 2017 Elsevier Inc. All rights reserved.

  8. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    Science.gov (United States)

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO 3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO 3(S) ; however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca 2+ onto the cell surface which provides nucleation sites for CaCO 3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO 3(S) . Removal of algae in the presence of Ca 2+ and Mg 2+ required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca 2+ concentration can be optimized for algae removal via coagulation-sedimentation.

  9. Main features of nucleation in model solutions of oral cavity

    Science.gov (United States)

    Golovanova, O. A.; Chikanova, E. S.; Punin, Yu. O.

    2015-05-01

    The regularities of nucleation in model solutions of oral cavity have been investigated, and the induction order and constants have been determined for two systems: saliva and dental plaque fluid (DPF). It is shown that an increase in the initial supersaturation leads to a transition from the heterogeneous nucleation of crystallites to a homogeneous one. Some additives are found to enhance nucleation: HCO{3/-} > C6H12O6 > F-, while others hinder this process: protein (casein) > Mg2+. It is established that crystallization in DPF occurs more rapidly and the DPF composition is favorable for the growth of small (52.6-26.1 μm) crystallites. On the contrary, the conditions implemented in the model saliva solution facilitate the formation of larger (198.4-41.8 μm) crystals.

  10. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  11. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  12. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    Science.gov (United States)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  13. The influence of organic-containing soil dust on ice nucleation and cloud properties

    Science.gov (United States)

    Hummel, Matthias; Grini, Alf; Berntsen, Terje K.; Ekman, Annica

    2017-04-01

    Natural mineral dust from desert regions is known to be the most important contributor to atmospheric ice-nucleating particles (INP) which induce heterogeneous ice nucleation in mixed-phase clouds. Its ability to nucleate ice effectively is shown by various laboratory (Hoose and Möhler 2012) and field results (DeMott et al. 2015) and its abundance in ice crystal residuals has also been shown (Cziczo et al. 2013). Thus it is an important player when representing mixed-phase clouds in climate models. MODIS satellite data indicate that 1 /4 of the global dust emission originates from semi-arid areas rather than from arid deserts (Ginoux et al. 2012). Here, organic components can mix with minerals within the soil and get into the atmosphere. These so-called 'soil dust' particles are ice-nucleating active at high sub-zero temperatures, i.e. at higher temperatures than pure desert dust (Steinke et al. 2016). In this study, soil dust is incorporated into the Norwegian Earth System Model (NorESM, Bentsen et al. 2013) and applied to a modified ice nucleation parameterization (Steinke et al. 2016). Its influence on the cloud ice phase is evaluated by comparing a control run, where only pure desert dust is considered, and a sensitivity experiment, where a fraction of the dust emissions are classified as soil dust. Both simulations are nudged to ERA-interim meteorology and they have the same loading of dust emissions. NorESM gives a lower annual soil dust emission flux compared to Ginoux et al. (2012), but the desert dust flux is similar to the MODIS-retrieved data. Although soil dust concentrations are much lower than desert dust, the NorESM simulations indicate that the annual INP concentrations from soil dust are on average lower by a just a factor of 4 than INP concentrations from pure desert dust. The highest soil dust INP concentrations occur at a lower height than for desert dust, i.e at warmer temperatures inside mixed-phase clouds. Furthermore, soil dust INP

  14. Chiral hide-and-seek: retention of enantiomorphism in laser-induced nucleation of molten sodium chlorate.

    Science.gov (United States)

    Ward, Martin R; Copeland, Gary W; Alexander, Andrew J

    2011-09-21

    We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.

  15. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Klein, William [Boston Univ., MA (United States)

    2016-09-12

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structure of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.

  16. Morphology-dependent crossover effects in heterogeneous nucleation of peritectic materials studied via the phase-field method for Al-Ni

    International Nuclear Information System (INIS)

    Siquieri, R; Emmerich, H

    2009-01-01

    The application of phase-field modeling to nucleation as a phenomenon at the nanoscale is justified, if one takes into account the great success of continuum approaches in nanofluidics as proven by the many comparisons to experiments. Employed in this manner it provides an approach allowing us to account for effects of the physical diffuseness of a nucleus' interface and thereby go beyond classical nucleation theory (Granasy and James 2000 J. Chem. Phys. 113 9810; Emmerich and Siquieri 2006 J. Phys.: Condens. Matter 18 11121). Here we extend the focus of previous work in this field and address the question of how far the phase-field method can also be applied to gain further insight into nucleation statistics, in particular the nucleation prefactor appearing in the nucleation rate. In this context we describe in detail a morphology-dependent crossover effect noticeable for the nucleation rate at small driving forces.

  17. A nucleator arms race: cellular control of actin assembly.

    Science.gov (United States)

    Campellone, Kenneth G; Welch, Matthew D

    2010-04-01

    For over a decade, the actin-related protein 2/3 (ARP2/3) complex, a handful of nucleation-promoting factors and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have seen a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASP and SCAR homologue (WASH), WASP homologue associated with actin, membranes and microtubules (WHAMM), and junction-mediating regulatory protein (JMY), stimulate ARP2/3 activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, cordon-bleu and leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization.

  18. Studies of Heterogeneous and Diffusion-Influenced Nucleation for Improved Processing of Nanostructural Materials

    National Research Council Canada - National Science Library

    Kellon, Kenneth F; Buhro, William E

    2005-01-01

    .... The purpose of this grant was to identify a suitable glass for studies of the nucleation processes leading to nanostructure formation and to investigate the possibility of using TiB2 for enhanced...

  19. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  20. Ursodeoxycholic acid reduces protein levels and nucleation-promoting activity in human gallbladder bile

    NARCIS (Netherlands)

    van Erpecum, K. J.; Portincasa, P.; Eckhardt, E.; Go, P. M.; vanBerge-Henegouwen, G. P.; Groen, A. K.

    1996-01-01

    Background & Aims: Ursodeoxycholic acid prevents gallstone formation in selected patients. The aim of this study was to examine whether decreased concentration and nucleation-promoting activity of various proteins contribute to this beneficial effect. Methods: Gallbladder bile of 13 patients with

  1. Nucleation and dissociation of nano-particles in gas phase; Nucleation et evaporation de nanoparticules en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, P

    2007-09-15

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na{sub n} and heterogeneous Na{sub n}X particles (X = (NaOH){sub 2} or (Na{sub 2}O){sub 2}). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na{sup +}(NaOH){sub p} et Na{sup +}(NaF){sub p} particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na{sup +} Na{sup +} (NaOH){sub p} clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  2. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    Science.gov (United States)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially

  3. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B; Luo, B P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1998-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  4. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Luo, B.P. [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1997-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  5. Thermal interaction effect on nucleation site distribution in subcooled boiling

    International Nuclear Information System (INIS)

    Zou, Ling; Jones, Barclay

    2012-01-01

    An experimental work on subcooled boiling of refrigerant, R134a, to examine nucleation site distributions on both copper and stainless steel heating surfaces was performed. In order to obtain high fidelity active nucleation site density and distribution data, a high-speed digital camera was utilized to record bubble emission images from a view normal to heating surfaces. Statistical analyses on nucleation site data were done and their statistical distributions were obtained. Those experimentally observed nucleation site distributions were compared to the random spatial Poisson distribution. The comparisons showed that, rather than purely random, active nucleation site distributions on boiling surfaces are relatively more uniform. Experimental results also showed that on the copper heating surface, nucleation site distributions are slightly more uniform than on the stainless steel surface. This was concluded as the results of thermal interactions between nucleation sites with different solid thermal conductivities. A two dimensional thermal interaction model was then developed to quantitatively examine the thermal interactions between nucleation sites. The results give a reasonable explanation to the experimental observation on nucleation site distributions.

  6. Metadynamics studies of crystal nucleation

    Science.gov (United States)

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  7. Metadynamics studies of crystal nucleation

    Directory of Open Access Journals (Sweden)

    Federico Giberti

    2015-03-01

    Full Text Available Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation.

  8. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    Science.gov (United States)

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  9. Structural analysis of the role of TPX2 in branching microtubule nucleation

    Science.gov (United States)

    Thawani, Akanksha

    2017-01-01

    The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation. PMID:28264915

  10. Green's Function and Stress Fields in Stochastic Heterogeneous Continua

    Science.gov (United States)

    Negi, Vineet

    Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.

  11. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location – either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25–0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  12. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Science.gov (United States)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location - either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25-0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  13. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  14. Electrocrystallisation of zinc from acidic sulphate baths; A nucleation and crystal growth process

    International Nuclear Information System (INIS)

    Vasilakopoulos, D.; Bouroushian, M.; Spyrellis, N.

    2009-01-01

    The electrochemical nucleation and growth of zinc on low-carbon steel from acidic (pH 2.0-4.5) baths containing ZnSO 4 , NaCl, and H 3 BO 3 , was studied by means of chronoamperometry at various cathodic potentials under a charge-transfer controlled regime. It is shown that at overpotentials in the range 0.30-0.55 V (negative to the Zn 2+ /Zn redox value) the electrodeposition proceeds by instantaneous three-dimensional nucleation, which turns to progressive at higher overpotentials and/or very acidic baths. At low cathodic overpotentials (<0.30 V), a two-dimensional contribution limited by the incorporation of Zn ad-atoms in the developing lattice becomes significant at the early stages of deposition, and is more progressive in type the more acidic is the bath pH. Nucleation rate constants were calculated and correlated analytically with the respective potentials, using the classical theory of heterogeneous nucleation, which though fails to lead to reasonable values for the critical nucleus size

  15. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  16. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2006-01-01

    Full Text Available Newly-formed nanometer-sized particles have been observed at coastal and marine environments world wide. Organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the ultrafine organic tandem differential mobility analyzer method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm at the Mace Head research station. Furthermore, effects of those nucleation events on potential cloud condensation nuclei were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and enhanced biological activity in spring 2002. Additionally, a pulse height analyzer ultrafine condensation particle counter technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity in October 2002. The overall results of the ultrafine organic tandem differential mobility analyzer and the pulse height analyzer ultrafine condensation particle counter measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine coast and open ocean biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation driven by iodine radicals, hydroxyl radicals, acid catalysis, and ozone during efficient solar radiation. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the ultrafine organic tandem differential mobility analyzer

  17. The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds

    International Nuclear Information System (INIS)

    Hoose, C; Lohmann, U; Erdin, R; Tegen, I

    2008-01-01

    Mineral dust is the dominant natural ice nucleating aerosol. Its ice nucleation efficiency depends on the mineralogical composition. We show the first sensitivity studies with a global climate model and a three-dimensional dust mineralogy. Results show that, depending on the dust mineralogical composition, coating with soluble material from anthropogenic sources can lead to quasi-deactivation of natural dust ice nuclei. This effect counteracts the increased cloud glaciation by anthropogenic black carbon particles. The resulting aerosol indirect effect through the glaciation of mixed-phase clouds by black carbon particles is small (+0.1 W m -2 in the shortwave top-of-the-atmosphere radiation in the northern hemisphere)

  18. Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts.

    Science.gov (United States)

    Kassmannhuber, Johannes; Rauscher, Mascha; Schöner, Lea; Witte, Angela; Lubitz, Werner

    2017-09-03

    In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between -5.6 °C and -6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs).

  19. Crystallization behavior and mechanical properties of nano-CaCO3/β-nucleated ethylene-propylene random copolymer composites

    Directory of Open Access Journals (Sweden)

    W. H. Ruan

    2012-09-01

    Full Text Available To provide ethylene-propylene random copolymer (PPR with balanced mechanical properties, β-nucleating agent and CaCO3 nanoparticles are incorporated into PPR matrix by melt blending. It is found that crystallization rate and relative content of β-crystal increase with the addition of β-nucleating agent together with nanoparticles. Size of PPR spherulite is greatly reduced, and a specific morphology appears, in which α-crystal lamella is grown upon the β-nucleus. The results suggest that both β-nucleating agent and nano-CaCO3 have heterogeneous nucleation and synergistic effects on β-nucleation of PPR. Mechanical characterization shows that mechanical properties of PPR can be tuned by incorporation of β-nucleating agent and nano-CaCO3 particles. Under suitable compositions, low temperature impact strength and high temperature creep resistance of PPR, the bottlenecks of application of such material, can be simultaneously improved without sacrificing the Youngs’modulus and tensile strength.

  20. A note on the nucleation with multiple steps: Parallel and series nucleation

    OpenAIRE

    Iwamatsu, Masao

    2012-01-01

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized and the extension to the more complex nucleation process is su...

  1. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.

    Science.gov (United States)

    Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian

    2016-09-29

    In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.

  2. A note on the nucleation with multiple steps: parallel and series nucleation.

    Science.gov (United States)

    Iwamatsu, Masao

    2012-01-28

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested. © 2012 American Institute of Physics

  3. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  4. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  5. How important is biological ice nucleation in clouds on a global scale?

    International Nuclear Information System (INIS)

    Hoose, C; Kristjansson, J E; Burrows, S M

    2010-01-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10 -5 %, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  6. Spores of most common airborne fungi reveal no ice nucleation activity

    Science.gov (United States)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  7. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  8. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    Energy Technology Data Exchange (ETDEWEB)

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  9. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    Science.gov (United States)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice

  10. Nucleation and dissociation of nano-particles in gas phase

    International Nuclear Information System (INIS)

    Feiden, P.

    2007-09-01

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na n and heterogeneous Na n X particles (X = (NaOH) 2 or (Na 2 O) 2 ). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na + (NaOH) p et Na + (NaF) p particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na + Na + (NaOH) p clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  11. Ice nucleation active particles are efficiently removed by precipitating clouds

    OpenAIRE

    Emiliano Stopelli; Franz Conen; Cindy E. Morris; Erik Herrmann; Nicolas Bukowiecki; Christine Alewell

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds ...

  12. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  13. Nucleation in the atmosphere

    International Nuclear Information System (INIS)

    Hegg, D A; Baker, M B

    2009-01-01

    Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous

  14. A parameterization of cloud droplet nucleation

    International Nuclear Information System (INIS)

    Ghan, S.J.; Chuang, C.; Penner, J.E.

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization

  15. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  16. Ion irradiation enhanced crystal nucleation in amorphous Si thin films

    International Nuclear Information System (INIS)

    Im, J.S.; Atwater, H.A.

    1990-01-01

    The nucleation kinetics of the amorphous-to-crystal transition of Si films under 1.5 MeV Xe + irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T=500--580 degree C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting that homogeneous nucleation occurred. Compared to thermal crystallization, a significant enhancement in the nucleation rate during high-energy ion irradiation (five to seven orders of magnitude) was observed with an apparent activation energy of 3.9±0.75 eV

  17. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  18. Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation

    NARCIS (Netherlands)

    Miltner, H.E.; Grossiord, N.; Lu, K.; Loos, J.; Koning, C.E.; Van Mele, B.

    2008-01-01

    During nonisothermal crystallization of highly dispersed polypropylene/carbon nanotube (CNT) composites, considerable heterogeneous nucleation is observed to an extent scaling with the CNT surface area. Saturation occurs at higher loadings, reaching a plateau value for the crystallization onset

  19. Heterogeneous seeding of HET-s(218–289) and the mutability of prion structures

    Energy Technology Data Exchange (ETDEWEB)

    Wan, William; Stubbs, Gerald

    2014-02-18

    One fundamental property of prions is the formation of strains—prions that have distinct biological effects, despite a common amino acid sequence. The strain phenomenon is thought to be caused by the formation of different molecular structures, each encoding for a particular biological activity. While the precise mechanism of the formation of strains is unknown, they tend to arise following environmental changes, such as passage between different species. One possible mechanism discussed here is heterogeneous seeding; the formation of a prion nucleated by a different molecular structure. While heterogeneous seeding is not the only mechanism of prion mutation, it is consistent with some observations on species adaptation and drug resistance. Heterogeneous seeding provides a useful framework to understand how prions can adapt to new environmental conditions and change biological phenotypes.

  20. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  1. Ice Nucleation in the Tropical Tropopause Layer: Implications for Cirrus Occurrence, Cirrus Microphysical Properties, and Dehydration of Air Entering the Stratosphere

    Science.gov (United States)

    Jensen, Eric; Kaercher, Bernd; Ueyama, Rei; Pfister, Leonhard

    2017-01-01

    Recent laboratory experiments have advanced our understanding of the physical properties and ice nucleating abilities of aerosol particles atlow temperatures. In particular, aerosols containing organics will transition to a glassy state at low temperatures, and these glassy aerosols are moderately effective as ice nuclei. These results have implications for ice nucleation in the cold Tropical Tropopause Layer (TTL; 13-19 km). We have developed a detailed cloud microphysical model that includes heterogeneous nucleation on a variety of aerosol types and homogeneous freezing of aqueous aerosols. This model has been incorporated into one-dimensional simulations of cirrus and water vapor driven by meteorological analysis temperature and wind fields. The model includes scavenging of ice nuclei by sedimenting ice crystals. The model is evaluated by comparing the simulated cloud properties and water vapor concentrations with aircraft and satellite measurements. In this presentation, I will discuss the relative importance of homogeneous and heterogeneous ice nucleation, the impact of ice nuclei scavenging as air slowly ascends through the TTL, and the implications for the final dehydration of air parcels crossing the tropical cold-point tropopause and entering the tropical stratosphere.

  2. An investigation of the heterogeneous nucleation of calcite

    International Nuclear Information System (INIS)

    House, W.A.; Tutton, J.A.

    1982-01-01

    The heterogeneous precipitation kinetics of calcite from dilute calcium bicarbonate solutions onto pyrex glass seeds is investigated by using a modified form of the Davies and Jones equation. The rate constant is evaluated from experiments using calcite seeds and it is demonstrated that the growth rate does not increase in proportion to the increase in surface area accompanying precipitation. The number of heteronucleated particles is estimated by assuming a constant density of growth sites on the different calcite surfaces. A comparison is made between the specific surface areas of calcite obtained by the calcium-45 isotopic exchange method and other values. (orig.)

  3. Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism

    Science.gov (United States)

    Li, H. T.; Xia, M.; Jarry, Ph.; Scamans, G. M.; Fan, Z.

    2011-01-01

    Direct chill (DC) cast ingots of wrought Al alloys conventionally require the deliberate addition of a grain refiner to provide a uniform as-cast microstructure for the optimisation of both mechanical properties and processability. Grain refiner additions have been in widespread industrial use for more than half a century. Intensive melt shearing can provide grain refinement without the need for a specific grain refiner addition for both magnesium and aluminium based alloys. In this paper we present experimental evidence of the grain refinement in an experimental wrought aluminium alloy achieved by intensive melt shearing in the liquid state prior to solidification. The mechanisms for high shear induced grain refinement are correlated with the evolution of oxides in alloys. The oxides present in liquid aluminium alloys, normally as oxide films and clusters, can be effectively dispersed by intensive shearing and then provide effective sites for the heterogeneous nucleation of Al 3Ti phase. As a result, Al 3Ti particles with a narrower size distribution and hence improved efficiency as active nucleation sites of α-aluminium grains are responsible for the achieved significant grain refinement. This is termed a multi-step nucleation mechanism.

  4. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  5. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  6. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  7. Experimental investigation of the role of ions in aerosol nucleation

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    The role of ions in producing aerosols in Earth’s atmosphere is an area of very active research. Atmospheric and experimental observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been...... put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation and Ternary Nucleation. Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far removed from those relevant for the lower part of the atmosphere. Recent experimental...... were grown using photochemically produced sulphuric acid and ionization levels were controlled with a Cs-137 gamma-source. An increase in nucleation was observed when the chamber was exposed to the radioactive source. The results were analyzed using a model based on the General Dynamic Equation...

  8. Classical nucleation theory in the phase-field crystal model.

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  9. Classical nucleation theory in the phase-field crystal model

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  10. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  11. Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals

    International Nuclear Information System (INIS)

    Warner, D.H.; Curtin, W.A.

    2009-01-01

    The linking of atomistic simulations of stress-driven processes to experimentally observed mechanical behavior via the computation of activation energy barriers is a topic of intense current research. Using dislocation nucleation from a crack tip as the reaction process, long-time multiscale molecular dynamics simulations show that the activation barrier can exhibit significant temperature dependence. Using an analytic model for the nucleation process and computing the relevant material properties (elastic constants and stacking fault energies), the temperature dependence is shown to arise primarily from the temperature dependence of the material parameters for both Al and Ni. After thermally activated emission of the first partial dislocation, there is then a competition between two other thermally activated processes: twinning and full dislocation emission. Because the activation barriers depend on temperature, this transition is more complex than usually envisioned. Simulations in Al reveal that a transition from twinning to full dislocation emission back to twinning occurs with increasing temperature, which is counter to traditional metallurgical wisdom. Temperature-dependent activation energies are thus essential to accurate understanding and prediction of those phenomena that control fracture and deformation in metals at realistic loading rates.

  12. Large Sample Neutron Activation Analysis of Heterogeneous Samples

    International Nuclear Information System (INIS)

    Stamatelatos, I.E.; Vasilopoulou, T.; Tzika, F.

    2018-01-01

    A Large Sample Neutron Activation Analysis (LSNAA) technique was developed for non-destructive analysis of heterogeneous bulk samples. The technique incorporated collimated scanning and combining experimental measurements and Monte Carlo simulations for the identification of inhomogeneities in large volume samples and the correction of their effect on the interpretation of gamma-spectrometry data. Corrections were applied for the effect of neutron self-shielding, gamma-ray attenuation, geometrical factor and heterogeneous activity distribution within the sample. A benchmark experiment was performed to investigate the effect of heterogeneity on the accuracy of LSNAA. Moreover, a ceramic vase was analyzed as a whole demonstrating the feasibility of the technique. The LSNAA results were compared against results obtained by INAA and a satisfactory agreement between the two methods was observed. This study showed that LSNAA is a technique capable to perform accurate non-destructive, multi-elemental compositional analysis of heterogeneous objects. It also revealed the great potential of the technique for the analysis of precious objects and artefacts that need to be preserved intact and cannot be damaged for sampling purposes. (author)

  13. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  14. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  15. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  16. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    Science.gov (United States)

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  17. Structuring effects in binary nucleation : Molecular dynamics simulatons and coarse-grained nucleation theory

    NARCIS (Netherlands)

    Braun, S.; Kraska, T.; Kalikmanov, V.I.

    2013-01-01

    Binary clusters formed by vapor-liquid nucleation are frequently nonhomogeneous objects in which components are not well mixed. The structure of a cluster plays an important role in nucleation and cluster growth. We demonstrate structuring effects by studying high-pressure nucleation and cluster

  18. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  19. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast.

    Science.gov (United States)

    Flor-Parra, Ignacio; Iglesias-Romero, Ana Belén; Chang, Fred

    2018-06-04

    The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Nucleation and Nanometric Inhomogeneity in Niobiogermanate Glass: In-Situ Inelastic Light Scattering and TEM Studies

    International Nuclear Information System (INIS)

    Takahashi, Y; Ihara, R; Fujiwara, T; Osada, M; Masai, H

    2011-01-01

    We performed in-situ inelastic light scattering measurement in KNbGeO 5 glass with a high nucleation ability during heating in order to elucidate nanocrystallization dynamics. The results of the in-situ measurement and TEM observation revealed that nanometric heterogeneous region (∼1-2 nm) consisting of the Nb-richer phase develops, i.e., K 3 Nb 7 O 19 , at the temperature, in which glassy-supercooled-liquid (SCL) phase-transition occurs, i.e., precursive stage of nanocrystallization. This strongly suggests that evolution of the nanometric Nb-richer phase in the SCL phase corresponds to nucleation in the KNbGeO 5 glass.

  1. Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign

    Science.gov (United States)

    Waddicor, D.; Vaughan, G.; Choularton, T.

    2009-04-01

    The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a

  2. Effects of streptomycin, desiccation, and UV radiation on ice nucleation by Pseudomonas viridiflava

    International Nuclear Information System (INIS)

    Anderson, J.A.; Ashworth, E.N.

    1986-01-01

    Streptomycin (100 micrograms per milliliter), desiccation (over CaSO 4 ), and ultraviolet radiation (4500 microwatts per square centimeter at 254 nonometers for 15 minutes) reduced ice nucleation activity by Pseudomonas viridiflava strain W-1 as determined by freezing drops of the bacterial suspensions. Highest residual ice nucleation activity by dead cells was obtained by desiccation, although no freezing above -3.5 0 C was detected. The rate and extent of loss of ice nucleation activity following streptomycin and ultraviolet treatment was affected by preconditioning temperature. At 21 0 C and above, loss of activity by dead cells was rapid and irreversible

  3. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    International Nuclear Information System (INIS)

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-01-01

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or 'interstitial' aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation

  4. Nucleation and Growth of GaN on GaAs (001) Substrates

    International Nuclear Information System (INIS)

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-01-01

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 ''C. An rf plasma cell is used to generate chemically active nitrogen from N 2 . An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio

  5. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  6. Influence of surface conditions in nucleate boiling--the concept of bubble flux density

    International Nuclear Information System (INIS)

    Shoukri, M.; Judd, R.L.

    1978-01-01

    A study of the influence of surface conditions in nucleate pool boiling is presented. The surface conditions are represented by the number and distribution of the active nucleation sites as well as the size and size distribution of the cavities that constitute the nucleation sites. The heat transfer rate during nucleate boiling is shown to be influenced by the surface condition through its effect on the number and distribution of the active nucleation sites as well as the frequency of bubble departure from each of these different size cavities. The concept of bubble flux density, which is a function of both the active site density and frequency of bubble departure, is introduced. A method of evaluating the bubble flux density is proposed and a uniform correlation between the boiling heat flux and the bubble flux density is found to exist for a particular solid-liquid combination irrespective of the surface finish within the region of isolated bubbles

  7. Experimental study of ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    He, F.; Hopke, P.K.

    1993-01-01

    In the environment, the presence of ions from natural radioactivity may increase the rate of new particle formation through ion-induced nucleation. A thermal diffusion cloud chamber (TDCC) has been built to experimentally study ion-induced nucleation where the ions are produced by gaseous radioactive sources. The critical supersaturation values and nucleation rates for methanol, ethanol, 1-propanol, and 1-butanol vapors on ions produced within the volume of the chamber by alpha decay of 222 Rn have been measured quantitatively at various radioactivity concentrations and supersaturations. The presence of ion tracks and the effect of an external electric field were also investigated. The alpha tracks and ion-induced nucleation formed by 222 Rn decay become visible at the critical supersaturation that is below the value needed for homogeneous nucleation. At this supersaturation, the nucleation rates increase substantially with increasing 222 Rn at low activity concentrations, but attain limiting values at higher concentrations. The experimental results indicate that the ionization by radon decay will promote ion-cluster formation and lower the free energy barriers. The formation of visible droplets is strongly dependent on the supersaturation. This study also confirms that the external electric field has a significant effect on the observed rates of nucleation

  8. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  9. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  10. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae.

    Science.gov (United States)

    Palaiomylitou, M A; Kalimanis, A; Koukkou, A I; Drainas, C; Anastassopoulos, E; Panopoulos, N J; Ekateriniadou, L V; Kyriakidis, D A

    1998-08-01

    Ice nucleation protein was partially purified from the membrane fraction of E. coli carrying inaZ from Pseudomonas syringae. The ice nucleation protein was totally localized in the bacterial envelope and was extracted by either salt (0.25 M NH4Cl) or the nonionic detergent Tween 20. The extracted protein was partially purified by sequential passage through DEAE-52 cellulose and Sephacryl-S400 columns. The activity of the purified protein was lost after treatment with phospholipase C, and its activity was subsequently restored by addition of the naturally occurring lipid phosphatidylethanolamine. These results suggest that ice nucleation proteins have a requirement for lipids that reconstitute a physiological hydrophobic environment similar to the one existing in vivo, to attain and maintain a structure that enables ice catalysis. Copyright 1998 Academic Press.

  11. Convective boiling in a parallel microchannel heat sink with a diverging cross-section design and artificial nucleation sites

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan, Chin

    2009-01-01

    To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)

  12. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  13. Laboratory, Computational and Theoretical Investigations of Ice Nucleation and its Implications for Mixed Phase Clouds

    Science.gov (United States)

    Yang, Fan

    Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields

  14. Nucleation phenomena at Suzuki phases

    International Nuclear Information System (INIS)

    Acosta-Najarro, D.; Jose Y, M.

    1982-01-01

    Crystal of NaCl doped with Mn present regions with an increase in nucleation densities when observed by surface gold decoration; this increase is related to the nucleation of the Suzuki phases which are induced by cooling of the crystal matrix. Calculations based on atomistic nucleation theory are developed to explain the increased nucleation density. Experiments were made to compare with the theoretical results. In particular the density of nuclei was measured as a function of the rate or arrival of atoms to the surface. Therefore, the changes in the nucleation densities are explained in terms of change in migration energies between the Suzuki phase and the NaCl matrix excluding the possibility of nucleation induced by point defects. (author)

  15. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  16. A review of phosphate mineral nucleation in biology and geobiology.

    Science.gov (United States)

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.

  17. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    Science.gov (United States)

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber

    Science.gov (United States)

    Amato, P.; Joly, M.; Schaupp, C.; Attard, E.; Möhler, O.; Morris, C. E.; Brunet, Y.; Delort, A.-M.

    2015-06-01

    The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by a lack of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN) activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens) when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany). Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h). In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~ 33 min m-2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.

  19. A study on the role of diboride in the heterogeneous nucleation of aluminium

    International Nuclear Information System (INIS)

    Suarez, O. M.

    2004-01-01

    The intangible role of titanium and aluminium diboride in the nucleation of aluminium was re-examined. Two different techniques, complemented with scanning electron microscopy, allowed determining the stability of the diboride in the presence of titanium tri aluminides and liquid aluminium phases. Through rapid scintillated quenching the high temperature diboride were retained and studied. Then, in a diffusion couple, the reactivity of such diboride was tested in contact with pure titanium tri aluminide. It is proposed that a ternary diboride acts as the main catalytic particle in the crystallization of aluminium alloys with refined grains. (Author) 27 refs

  20. Exchange rate variability, market activity and heterogeneity

    OpenAIRE

    Rime, Dagfinn; Sucarrat, Genaro

    2007-01-01

    We study the role played by geographic and bank-size heterogeneity in the relation between exchange rate variability and market activity. We find some support for the hypothesis that increases in short-term global interbank market activity, which can be interpreted as due to variation in information arrival, increase variability. However, our results do not suggest that local short-term activity increases variability. With respect to long-term market activity, which can be interpreted as a me...

  1. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2013-06-01

    Full Text Available This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reservedReceived: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 14-33. (doi:10.9767/bcrec.8.1.4394.14-33][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4394.14-33] | View in  |

  2. Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator

    International Nuclear Information System (INIS)

    Jiang, Juan; Li, Gu; Tan, Nanshu; Ding, Qian; Mai, Kancheng

    2012-01-01

    Highlights: ► The supported calcium pimelate β-zeolite was prepared. ► The β-nucleation of zeolite was enhanced dramatically through reaction. ► High β-phase content iPP composites were obtained by introducing the β-zeolite into iPP. - Abstract: In order to prepare the zeolite filled β-iPP composites, the calcium pimelate as β-nucleator supported on the surface of zeolite (β-zeolite) was prepared by the interaction between calcified zeolite and pimelic acid. The β-nucleation, crystallization behavior and melting characteristic of zeolite, calcified zeolite and β-zeolite filled iPP composites were investigated by differential scanning calorimetry and wide-angle X-ray diffractometer. The results indicated that addition of the zeolite and calcified zeolite as well as β-zeolite increased the crystallization temperature of iPP. The zeolite and calcified zeolite filled iPP composites mainly crystallized in the α-crystal form and the strong β-heterogeneous nucleation of β-zeolite results in the formation of only β-crystal in β-zeolite filled iPP composites. The zeolite filled β-iPP composites with high β-crystal contents (above 0.90) can be easily obtained by adding β-zeolite into iPP matrix.

  3. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tohidifar, M.R. [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Riello, P. [Department of Molecular Sciences and Nanosystems, University of Ca’Foscari, Venice (Italy)

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  4. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    Science.gov (United States)

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Principles of nucleation theory

    International Nuclear Information System (INIS)

    Clement, C.F.; Wood, M.H.

    1980-01-01

    The nucleation of small stable species is described in the problem of void growth by discrete rate equations. When gas is being produced the problem reduces to one of calculating the incubation dose for the gas bubble to void transition. A general expression for the steady state nucleation rate is derived for the case when voids are formed by vacancy fluctuations which enable an effective nucleation barrier to be crossed. (author)

  6. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    OpenAIRE

    I. Steinke; C. Hoose; O. Möhler; P. Connolly; T. Leisner

    2014-01-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol ...

  7. The relevance of nanoscale biological fragments for ice nucleation in clouds

    Science.gov (United States)

    O‧Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.

    2015-01-01

    Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.

  8. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions : Impact of Particle Size, Line Tension, and Surface Functionality

    NARCIS (Netherlands)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G. Julius

    2017-01-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell

  9. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2016-02-01

    Full Text Available Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs all have the same INP surface area (ISA; however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T. This model is applied to address if (i a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and

  10. New trends in the nucleation research

    Science.gov (United States)

    Anisimov, M. P.; Hopke, P. K.

    2017-09-01

    During the last half of century the most of efforts have been directed towards small molecule system modeling using intermolecular potentials. Summarizing the nucleation theory, it can be concluded that the nowadays theory is far from complete. The vapor-gas nucleation theory can produce values that deviate from the experimental results by several orders of magnitude currently. Experiments on the vapor-gas nucleation rate measurements using different devices show significant inconsistencies in the measured rates as well. Theoretical results generally are quite reasonable for sufficiently low vapor nucleation rates where the capillary approximation is applicable. In the present research the advantages and current problems of the vapor-gas nucleation experiments are discussed briefly and a view of the future studies is presented. Using the brake points of the first derivative for the nucleation rate surface as markers of the critical embryos phase change is fresh idea to show the gas-pressure effect for the nucleating vapor-gas systems. To test the accuracy of experimental techniques, it is important to have a standard system that can be measured over a range of nucleation conditions. Several results illustrate that high-pressure techniques are needed to study multi-channel nucleation. In practical applications, parametric theories can be used for the systems of interest. However, experimental measurements are still the best source of information on nucleation rates. Experiments are labor intensive and costly, and thus, it is useful to extend the value of limited experimental measurements to a broader range of nucleation conditions. Only limited experimental data one needs for use in normalizing the slopes of the linearized nucleation rate surfaces. The nucleation rate surface is described in terms of steady-state nucleation rates. It is supposed that several new measuring systems, such as High Pressure Flow Diffusion Chamber for pressure limit up to 150 bar will be

  11. Ice nucleation triggered by negative pressure.

    Science.gov (United States)

    Marcolli, Claudia

    2017-11-30

    Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.

  12. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  13. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  14. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  15. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  16. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    Science.gov (United States)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth

  17. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  18. Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics

    Science.gov (United States)

    Chason, Eric; Vasquez, Justin; Pei, Fei; Jain, Nupur; Hitt, Andrew

    2018-01-01

    Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

  19. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations; Cinetique de precipitation heterogene du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hin, C

    2005-12-15

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in {open_square}-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  20. Role of nucleation in nanodiamond film growth

    International Nuclear Information System (INIS)

    Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.

    2006-01-01

    Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C 2 dimer growth (CH 4 and H 2 in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH 4 in H 2 ) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C 2 dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite

  1. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles.

    Science.gov (United States)

    Tyagi, Anil K; Randolph, Theodore W; Dong, Aichun; Maloney, Kevin M; Hitscherich, Carl; Carpenter, John F

    2009-01-01

    This study investigated factors associated with vial filling with a positive displacement piston pump leading to formation of protein particles in a formulation of an IgG. We hypothesized that nanoparticles shed from the pump's solution-contact surfaces nucleated protein aggregation and particle formation. Vials of IgG formulation filled at a clinical manufacturing site contained a few visible particles and about 100,000 particles (1.5-3 microm) per mL. In laboratory studies with the same model (National Instruments FUS-10) of pump, pumping of 20 mg/mL IgG formulation resulted in about 300,000 particles (1.5-3 microm) per mL. Pumping of protein-free formulation resulted in 13,000 particles (1.5-15 microm) per mL. More than 99% of the particles were 0.25-0.95 microm in size. Mixing of protein-free pumped solution with an equal volume of 40 mg/mL IgG resulted in 300,000 particles (1.5-15 microm) per mL. Also, mixing IgG formulation with 30,000/mL stainless steel nanoparticles resulted in formation of 30,000 protein microparticles (1.5-15 microm) per mL. Infrared spectroscopy showed that secondary structure of IgG in microparticles formed by pumping or mixing with steel nanoparticles was minimally perturbed. Our results document that nanoparticles of foreign materials shed by pumps can serve as heterogeneous nuclei for formation of protein microparticles. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    Science.gov (United States)

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  3. Silver chloride as a heterogeneous nucleant for the growth of silver nanowires.

    Science.gov (United States)

    Schuette, Waynie M; Buhro, William E

    2013-05-28

    Various additives are employed in the polyol synthesis of silver nanowires (Ag NWs), which are typically halide salts such as NaCl. A variety of mechanistic roles have been suggested for these additives. We now show that the early addition of NaCl in the polyol synthesis of Ag NWs from AgNO3 in ethylene glycol results in the rapid formation of AgCl nanocubes, which induce the heterogeneous nucleation of metallic Ag upon their surfaces. Ag NWs subsequently grow from these nucleation sites. The conclusions are supported by studies using ex situ generated AgCl nanocubes.

  4. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    Science.gov (United States)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  5. A Comparative Study of Nucleation Parameterizations: 2. Three-Dimensional Model Application and Evaluation

    Science.gov (United States)

    Following the examination and evaluation of 12 nucleation parameterizations presented in part 1, 11 of them representing binary, ternary, kinetic, and cluster‐activated nucleation theories are evaluated in the U.S. Environmental Protection Agency Community Multiscale Air Quality ...

  6. Three-dimensional investigation of recrystallization nucleation in a particle-containing Al alloy

    DEFF Research Database (Denmark)

    Zhang, Yonghao; Juul Jensen, Dorte; Zhang, Yubin

    2012-01-01

    The effects of an inhomogeneous distribution of second-phase particles on nucleation of recrystallization in a particle-containing aluminum alloy are investigated by 3-D serial sectioning. Clusters and bands of big intermetallic particles are the dominating nucleation sites, but other sites...... are also active. The effects of nucleation sites and the inhomogeneous particle distribution on the orientation and size of the nuclei are investigated and their relationships are discussed. 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  7. Diamond Nucleation Using Polyethene

    Science.gov (United States)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  8. Heterogeneous nucleation of solid Al from the melt by Al 3 Ti : Molecular dynamics simulations

    KAUST Repository

    Wang, Junsheng; Horsfield, Andrew; Lee, Peter D.; Brommer, Peter

    2010-01-01

    It has been known experimentally for some time that Al3 Ti is a powerful nucleant for the solidification of aluminum from the melt; however, a full microscopic understanding is still lacking. To develop this understanding, we have performed molecular dynamics simulations of the nucleation and early stages of growth using published embedded atom method potentials for Al-Ti, but modified by us to stabilize the D 022 structure. We discover that Al3 Ti can indeed be very effective in promoting the growth of solid Al but the manner in which growth takes place depends sensitively on the surface on which the Al nucleates. In particular, complete growth of solid Al from the liquid on the (001) and (110) surfaces of Al3 Ti occurs at a lower temperature than on the (112) surface. This anisotropy agrees with observations in previous experiments. We explain this observation in terms of interfacial energies. On the preferential (111) surface of Al the solid-liquid interfacial energy is highest while the solid-vacuum energy is lowest. Our simulations also show that the extent of ordering taking place in liquid Al close to the Al 3 Ti substrate above the melting point correlates well with the effectiveness of the substrate as a nucleant below the melting temperature: this could provide a computationally efficient scheme to identify good nucleants. © 2010 The American Physical Society.

  9. Heterogeneous nucleation of solid Al from the melt by Al 3 Ti : Molecular dynamics simulations

    KAUST Repository

    Wang, Junsheng

    2010-10-27

    It has been known experimentally for some time that Al3 Ti is a powerful nucleant for the solidification of aluminum from the melt; however, a full microscopic understanding is still lacking. To develop this understanding, we have performed molecular dynamics simulations of the nucleation and early stages of growth using published embedded atom method potentials for Al-Ti, but modified by us to stabilize the D 022 structure. We discover that Al3 Ti can indeed be very effective in promoting the growth of solid Al but the manner in which growth takes place depends sensitively on the surface on which the Al nucleates. In particular, complete growth of solid Al from the liquid on the (001) and (110) surfaces of Al3 Ti occurs at a lower temperature than on the (112) surface. This anisotropy agrees with observations in previous experiments. We explain this observation in terms of interfacial energies. On the preferential (111) surface of Al the solid-liquid interfacial energy is highest while the solid-vacuum energy is lowest. Our simulations also show that the extent of ordering taking place in liquid Al close to the Al 3 Ti substrate above the melting point correlates well with the effectiveness of the substrate as a nucleant below the melting temperature: this could provide a computationally efficient scheme to identify good nucleants. © 2010 The American Physical Society.

  10. New approach to crystal nucleation from solution on active centers

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Zdeněk; Demo, Pavel; Sveshnikov, Alexey

    2013-01-01

    Roč. 5, č. 6 (2013), s. 548-552 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : phase transition * nucleation * solution Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  11. Probabilistic approach to lysozyme crystal nucleation kinetics.

    Science.gov (United States)

    Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P

    2015-09-01

    Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

  12. Using rheometry for determining nucleation density in colored system containing a nucleation agent

    NARCIS (Netherlands)

    Ma, Z.; Steenbakkers, R.J.A.; Giboz, J.; Peters, G.W.M.

    2011-01-01

    A new suspension-based rheological method was applied to study experimentally the crystallization of a nucleating agent (NA) filled isotactic polypropylene. This method allows for determination of point-nucleation densities where other methods fail. For example, optical microscopy can fail because

  13. Texture control and seeded nucleation of nanosize structures of ferroelectric thin films

    Science.gov (United States)

    Muralt, Paul

    2006-09-01

    An overview is given on nucleation phenomena of Pb(Zr ,Ti)O3 (PZT) thin films on Pt(111)-based substrates. Emphasis is given on in situ growth methods, particularly in situ reactive sputtering from three metallic targets. Growth of PZT thin films is discussed from the point of view of the PbOx-TiO2 phase diagram, PbO vapor pressure, and classical nucleation theory. The role of thin TiO2 affinity layers and spots is explained in the frame of this theory. Activation energies for desorption and chemisorption are adapted to comply with the fact that nucleation rates on TiO2 are much larger than the ones on bare Pt(111). The model reproduces well the PbO surface flux from bare Pt(111) to the affinity spots in the case of PbTiO3 nucleation and the reversed tendency in the case of PZT 40/60 nucleation, explaining experimental observations. The critical size of nuclei was calculated to contain 8-10unit cells for PbTiO3/Pt nucleation and 14-17 for PZT/Pt nucleation.

  14. Thermodynamic and Dynamic Aspects of Ice Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  15. Nucleation and growth of a multicomponent metallic glass

    Indian Academy of Sciences (India)

    Unknown

    corrosion resistance (Karve and Kulkarni 1985). The industrial ... Thermal analysis has been extensively used for study- ... is extremely important to determine the activation energy ... nucleation and growth, respectively for the metallic glass.

  16. E-cadherin junction formation involves an active kinetic nucleation process

    Science.gov (United States)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  17. Nucleation in Polymers and Soft Matter

    Science.gov (United States)

    Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang

    2014-04-01

    Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.

  18. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub.

    Science.gov (United States)

    Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David; Bryant, Clare E

    2018-01-24

    Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. © 2018, Latty et al.

  19. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.

    Science.gov (United States)

    Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M

    2010-08-12

    This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.

  20. Computer simulation of chemical nucleation

    International Nuclear Information System (INIS)

    Turner, J.S.

    1979-01-01

    The problem of nucleation at chemical instabilities is investigated by means of microscopic computer simulation. The first-order transition of interest involves a new kind of nucleation arising from chemical transformations rather than physical forces. Here it is the chemical state of matter, and not matter itself, which is spatially localized to form the nucleus for transition between different chemical states. First, the concepts of chemical instability, nonequilibrium phase transition, and dissipative structure are reviewed briefly. Then recently developed methods of reactive molecular dynamics are used to study chemical nucleation in a simple model chemical reactions. Finally, the connection of these studies to nucleation and condensation processes involving physical and chemical interactions is explored. (orig.)

  1. The barrier to ice nucleation in monatomic water

    Science.gov (United States)

    Prestipino, Santi

    2018-03-01

    Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.

  2. A classical view on nonclassical nucleation

    NARCIS (Netherlands)

    Smeets, P.J.M.; Finney, A.R.; Habraken, W.J.E.M.; Nudelman, F.; Friedrich, H.; Laven, J.; De Yoreo, J.J.; Rodger, P.M.; Sommerdijk, N.A.J.M.

    2017-01-01

    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO3) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO3 nucleation is still a

  3. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  4. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    Science.gov (United States)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  5. Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways.

    Science.gov (United States)

    Lifanov, Yuri; Vorselaars, Bart; Quigley, David

    2016-12-07

    We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature-fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO 3 ). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular "seeding" method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the "seeding" method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δμ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.

  6. Chemically assisted crack nucleation in zircaloy

    International Nuclear Information System (INIS)

    Williford, R.E.

    1985-01-01

    Stress corrosion cracking models (proposed to explain fuel rod failures) generally address crack propagation and cladding rupture, but frequently neglect the necessary nucleation stage for microcracks small enough to violate fracture mechanics continuum requirements. Intergranular microcrack nucleation was modeled with diffusion-controlled grain-boundary cavitation concepts, including the effects of metal embrittlement by iodine species. Computed microcrack nucleation times and strains agree with experimental observation, but the predicted grain-boundary cavities are so small that detection may be difficult. Without a protective oxide film intergranular microcracks can nucleate within 30 s at even low stresses when the embrittler concentration exceeds a threshold value. Indications were found that intergranular microcrack nucleation may be caused by combined corrosive and embrittlement phenomena. (orig.)

  7. A classical density functional investigation of nucleation

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Ghosh, Swapan K.

    2009-01-01

    Study of nucleation and growth phenomena in condensation is of prime importance in various applications such as crystal growth, nanoparticle synthesis, pattern formation etc. The knowledge of nucleation barrier in condensation is necessary to control the nucleation kinetics, size of the nanoparticles etc. Classical nucleation theory (CNT) assumes the density of the drop as bulk density irrespective of the size of the drop and overestimates the nucleation barrier. Here we are interested in solving the problem analytically using density functional theory (DFT) with square gradient approximation along the lines of Cahn and Hilliard. Nucleation barrier and density profile obtained in this work are consistent with other works based on nonclassical theory. (author)

  8. Atomistic simulation of dislocation nucleation barriers from cracktips in α-Fe

    International Nuclear Information System (INIS)

    Gordon, Peter A; Neeraj, T; Luton, Michael J

    2008-01-01

    In this work, we demonstrate that activation pathways for dislocation loop nucleation from cracktips can be explored with full atomistic detail using an efficient form of the nudged elastic band method. The approach is demonstrated in detail with an example of edge emission from an Fe crack under mode II loading, wherein activation energy barriers are obtained as a function of sub-critical stress intensity and the energy barriers for loop formation are compared with 2D calculations. Activation energy barriers are also computed for an intrinsically ductile cracktip orientation under mode I loading, from which we can infer the frequency of nucleation from the cracktip

  9. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  10. Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010

    Directory of Open Access Journals (Sweden)

    I. Steinke

    2011-12-01

    Full Text Available During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. It was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RHice =126%. About 0.1% of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1% was observed at around 233 K and RHice =116%. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (ns,imm ~ 109 m−2 at 247 K compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities ns,dep were found to be 1011 m−2 at 224 K and RHice =116%. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for

  11. Characterization of ice nucleating particles during continuous springtime measurements in Prudhoe Bay: an Arctic oilfield location

    Science.gov (United States)

    Creamean, J.; Spada, N. J.; Kirpes, R.; Pratt, K.

    2017-12-01

    Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphysical properties. INPs can thus subsequently impact cloud radiative forcing in addition to modification of precipitation formation processes. In regions such as the Arctic, aerosol-cloud interactions are severely understudied yet have significant implications for surface radiation reaching the sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. Characterizing a combination of aerosol chemical, physical, and ice nucleating properties is pertinent to evaluating of the role of aerosols in altering Arctic cloud microphysics. We present preliminary results from an aerosol sampling campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a U.S. Department of Energy's Atmospheric Radiation Measurement (DOE ARM) facility on the North Slope of Alaska. Three time- and size-resolved aerosol samplers were deployed from 1 Mar to 31 May 2017 and were co-located with routine measurements of aerosol number, size, chemical, and radiative property measurements conducted by DOE ARM at their Aerosol Observing System (AOS). Offline analysis of samples collected at a daily time resolution included composition and morphology via single-particle analysis and drop freezing measurements for INP concentrations, while analysis of 12-hourly samples included mass, optical, and elemental composition. We deliberate the possible influences on the aerosol and INP population from the Prudhoe Bay oilfield resource extraction and daily operations in addition to what may be local background or long-range transported aerosol. To our knowledge our results represent some of the first INP characterization measurements in an Arctic oilfield location and can be used as a benchmark for future INP characterization studies in Arctic locations impacted

  12. Semisynthesis and Structure-Activity Studies of Uncarinic Acid C Isolated from Uncaria rhynchophylla as a Specific Inhibitor of the Nucleation Phase in Amyloid β42 Aggregation.

    Science.gov (United States)

    Yoshioka, Takuya; Murakami, Kazuma; Ido, Kyohei; Hanaki, Mizuho; Yamaguchi, Kanoko; Midorikawa, Satohiro; Taniwaki, Shinji; Gunji, Hiroki; Irie, Kazuhiro

    2016-10-28

    Oligomers of the 42-mer amyloid-β protein (Aβ42), rather than fibrils, cause synaptic dysfunction in the pathology of Alzheimer's disease (AD). The nucleation phase in a nucleation-dependent aggregation model of Aβ42 is related to the formation of oligomers. Uncaria rhynchophylla is one component of "Yokukansan", a Kampo medicine, which is widely used for treating AD symptoms. Previously, an extract of U. rhynchophylla was found to reduce the aggregation of Aβ42, but its active principles have yet to be identified. In the present work, uncarinic acid C (3) was identified as an inhibitor of Aβ42 aggregation that is present in U. rhynchophylla. Moreover, compound 3 acted as a specific inhibitor of the nucleation phase of Aβ42 aggregation. Compound 3 was synthesized from saponin A (10), an abundant byproduct of rutin purified from Uncaria elliptica. Comprehensive structure-activity studies on 3 suggest that both a C-27 ferulate and a C-28 carboxylic acid group are required for its inhibitory activity. These findings may aid the development of oligomer-specific inhibitors for AD therapy.

  13. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  14. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  15. Collective rotations of active particles interacting with obstacles

    Science.gov (United States)

    Mokhtari, Zahra; Aspelmeier, Timo; Zippelius, Annette

    2017-10-01

    We consider active particles in a heterogeneous medium, modeled by static, random obstacles. In accordance with the known tendency of active particles to cluster, we observe accumulation and crystallization of active particles around the obstacles which serve as nucleation sites. In the limit of high activity, the crystals start to rotate spontaneously, resembling a rotating rigid body. We trace the occurrence of these oscillations to the enhanced attraction of particles whose orientation points along the rotational velocity as compared to those whose orientation points in the opposite direction.

  16. Nucleation behavior of glutathione polymorphs in water

    International Nuclear Information System (INIS)

    Chen, Zhi; Dang, Leping; Li, Shuai; Wei, Hongyuan

    2013-01-01

    Nucleation behavior of glutathione (GSH) polymorphs in water was investigated by experimental method combined with classical nucleation theory. The solubility of α and β forms GSH in water at different temperatures, and the nucleation induction period at various supersaturations and temperatures were determined experimentally. The results show that, in a certain range of supersaturation, the nucleation of β form predominates at relatively higher temperature, while α form will be obtained at lower temperature. The nucleation kinetics parameters of α and β form were then calculated. To understand the crucial role of temperature on crystal forms, “hypothetic” nucleation parameters of β form at 283.15 K were deduced based on extrapolation method. The results show that the interfacial tension, critical free energy, critical nucleus radius and nucleus number of α form are smaller than that of β form in the same condition at 283.15 K, which implies that α form nucleates easier than β form at low temperature. This work may be useful for the control and optimization of GSH crystallization process in industry

  17. XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex.

    Science.gov (United States)

    Thawani, Akanksha; Kadzik, Rachel S; Petry, Sabine

    2018-05-01

    How microtubules (MTs) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the universal MT nucleator of the cell. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and the γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together, these factors synergistically stimulate MT nucleation in vitro. The amino-terminal TOG domains 1-5 of XMAP215 bind to αβ-tubulin and promote MT polymerization, whereas the conserved carboxy terminus is required for efficient MT nucleation and directly binds to γ-tubulin. In summary, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.

  18. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Pedersen, Jens Olaf Pepke; Marsh, N.D.

    2007-01-01

    Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields...... nucleation rates of the order of 0.1 1 cm(-3) s(-1). This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation....

  19. Parsing Heterogeneous Striatal Activity

    Directory of Open Access Journals (Sweden)

    Kae Nakamura

    2017-05-01

    Full Text Available The striatum is an input channel of the basal ganglia and is well known to be involved in reward-based decision making and learning. At the macroscopic level, the striatum has been postulated to contain parallel functional modules, each of which includes neurons that perform similar computations to support selection of appropriate actions for different task contexts. At the single-neuron level, however, recent studies in monkeys and rodents have revealed heterogeneity in neuronal activity even within restricted modules of the striatum. Looking for generality in the complex striatal activity patterns, here we briefly survey several types of striatal activity, focusing on their usefulness for mediating behaviors. In particular, we focus on two types of behavioral tasks: reward-based tasks that use salient sensory cues and manipulate outcomes associated with the cues; and perceptual decision tasks that manipulate the quality of noisy sensory cues and associate all correct decisions with the same outcome. Guided by previous insights on the modular organization and general selection-related functions of the basal ganglia, we relate striatal activity patterns on these tasks to two types of computations: implementation of selection and evaluation. We suggest that a parsing with the selection/evaluation categories encourages a focus on the functional commonalities revealed by studies with different animal models and behavioral tasks, instead of a focus on aspects of striatal activity that may be specific to a particular task setting. We then highlight several questions in the selection-evaluation framework for future explorations.

  20. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  1. Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth

    Directory of Open Access Journals (Sweden)

    S. Unterstrasser

    2010-02-01

    Full Text Available Simulations of contrail-to-cirrus transition were performed with an LES model. In Part 1 the impact of relative humidity, temperature and vertical wind shear was explored in a detailed parametric study. Here, we study atmospheric parameters like stratification and depth of the supersaturated layer and processes which may affect the contrail evolution. We consider contrails in various radiation scenarios herein defined by the season, time of day and the presence of lower-level cloudiness which controls the radiance incident on the contrail layer. Under suitable conditions, controlled by the radiation scenario and stratification, radiative heating lifts the contrail-cirrus and prolongs its lifetime. The potential of contrail-driven secondary nucleation is investigated. We consider homogeneous nucleation and heterogeneous nucleation of preactivated soot cores released from sublimated contrail ice crystals. In our model the contrail dynamics triggered by radiative heating does not suffice to force homogeneous freezing of ambient liquid aerosol particles. Furthermore, our model results suggest that heterogeneous nucleation of preactivated soot cores is unimportant. Contrail evolution is not controlled by the depth of the supersaturated layer as long as it exceeds roughly 500 m. Deep fallstreaks however need thicker layers. A variation of the initial ice crystal number is effective during the whole evolution of a contrail. A cut of the soot particle emission by two orders of magnitude can reduce the contrail timescale by one hour and the optical thickness by a factor of 5. Hence future engines with lower soot particle emissions could potentially lead to a reduction of the climate impact of aviation.

  2. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

    CERN Document Server

    Almeida, João; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Vehkamaki, Hanna; Kirkby, Jasper

    2013-01-01

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates ...

  3. Nonclassical nucleation pathways in protein crystallization.

    Science.gov (United States)

    Zhang, Fajun

    2017-11-08

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  4. Nonclassical nucleation pathways in protein crystallization

    Science.gov (United States)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  5. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  6. Role of stacking disorder in ice nucleation.

    Science.gov (United States)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  7. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    Science.gov (United States)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  8. Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites.

    Science.gov (United States)

    Song, Wenli; Wu, Yuan; Wang, Hui; Liu, Xiongjun; Chen, Houwen; Guo, Zhenxi; Lu, Zhaoping

    2016-10-01

    A novel strategy to control the precipitation behavior of the austenitic phase, and to obtain large-sized, transformation-induced, plasticity-reinforced bulk metallic glass matrix composites, with good tensile properties, is proposed. By inducing heterogeneous nucleation of the transformable reinforcement via potent nucleants formed in situ, the characteristics of the austenitic phase are well manipulated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  10. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  11. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    Science.gov (United States)

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856

  12. International Workshop on Comparing Ice Nucleation Measuring Systems 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cziczo, Daniel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-04-30

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impact climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].

  13. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.

    Science.gov (United States)

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-03-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  15. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  16. Effects of shear flow on phase nucleation and crystallization.

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  17. From glass to crystal - Nucleation, growth and de-mixing, from research to applications

    International Nuclear Information System (INIS)

    Neuville, Daniel R.; Cormier, Laurent; Caurant, Daniel; Montagne, Lionel; Charpentier, Thibault; Chevalier, Jerome; Comte, Monique; Dargaud, Olivier; Ligny, Dominique de; Deniard, Philippe; Dussardier, Bernard; Dussauze, Marc; Fargin, Evelyne; Gremillard, Laurent; Gredin, Patrick; Jousseaume, Cecile; Lafait, Jacques; Lancry, Mathieu; Lefebvre, Leila; Levelut, Claire; Magallanes-Pedromo, Marlin; Massiot, Dominique; Mear, Francois O.; Meille, Sylvain; Meng, Nicolas; Mortier, Michel; Papin, Sophie; Papon, Gautier; Pastouret, Main; Petit, Yannick; Poumellec, Bertrand; Pradel, Annie; Reillon, Vincent; Rodriguez, Vincent; Rogez, Jacques; Roussel, Pascal; Royon, Arnaud; Schuller, Sophie; Tricot, Gregory; Vigouroux, Helene

    2013-01-01

    This book first presents the conventional nucleation theory: vitrification, homogeneous and heterogeneous nucleation, induction time, crystal growth, Oswald law. The second part addresses the evolutions beyond this theory: cluster dynamics, validity of the Stokes-Einstein relationship, non conventional germ system, Gibbs generalized approach, two-stage model. The third part addresses the thermodynamic stability and the global kinetics of transformation: thermodynamic stability and instability of a vitreous system, phenomenological approach to transformation kinetics. The fourth part addresses the de-mixing process on glasses: thermodynamic description of phase separation, de-mixing kinetics, influence of glass structure on de-mixing trend, de-mixing characterisation. The next parts describe the crystal-chemical approach to the main crystalline phases noticed in glass-ceramics (silicate phases and phosphates), the elaboration and control of glass-ceramic microstructure (controllable parameters, elaboration processes, characterization methods, microstructure types, design of glass-ceramics with desired properties by control of crystallisation mechanisms), X ray diffraction in the case of glass-ceramics, calorimetry and differential thermal analysis for the study of glass ceramics, the application of electronic microscopy to the study of nucleation and crystallisation in glasses, small-angle scattering of X rays and neutrons, the use of nuclear magnetic resonance to understand the disorder and crystallisation in vitreous materials, the use of Raman spectrometry to study mechanisms of nucleation and crystal growth, large instruments aimed at an in situ approaches to crystallisation, commercial applications of glass-ceramics, applications of biomaterials in glass and glass-ceramics, the coloration of metal nanoparticles, transparent glass-ceramics, the formation and applications of nanoparticles in silica-based optic fibres, the both-way relationship between non linear

  18. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Hin, C.

    2005-12-01

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in □-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  19. Aerosol nucleation and growth and their coupling to thermal hydraulics

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    We examine the physical processes leading to vapour condensation as an aerosol in the formation and cooling of vapour-gas mixtures. Requirements for mathematical, computer and experimental modelling are discussed in relation to nuclear aerosols. In the absence of sudden pressure drops we give a complete schematic set of equations which govern the motion of aerosol, vapour, gas and heat including radiation. The coupling to the aerosol equation is mainly through the droplet growth rate, R, and a nucleation term whose possible forms are described. Rapid equilibration between vapour and aerosol means that the likely heterogeneous nucleation term must be treated separately. General forms are given for the coupling terms in the equations for vapour concentration and temperature in terms of the local mass transfer rate to the aerosol. The properties of this quantity are shown clearly by an expression for it obtained in terms of Lewis and condensation numbers and the quantify, zeta, whose derivative gives the local total heat transfer rate. Sizes of these numbers are given for some relevant vapour-gas mixtures. Throughout the paper we give the physical requirements necessary to make the transitions to the more calculable cases of uniform or well-mixed aerosols, and finally we discuss the case of initially unsaturated vapour-gas mixtures. (orig.)

  20. Analysis of supercooling activity of tannin-related polyphenols.

    Science.gov (United States)

    Kuwabara, Chikako; Wang, Donghui; Endoh, Keita; Fukushi, Yukiharu; Arakawa, Keita; Fujikawa, Seizo

    2013-08-01

    Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water

  1. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J., E-mail: tpjk2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  2. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  3. Interactions between bubble formation and heating surface in nucleate boiling

    International Nuclear Information System (INIS)

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  4. Interactions between bubble formation and heating surface in nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  5. Elucidating Key Motifs Required for Arp2/3-Dependent and Independent Actin Nucleation by Las17/WASP

    Science.gov (United States)

    Urbanek, Agnieszka N.; Smaczynska-de Rooij, Iwona I.

    2016-01-01

    Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function. PMID:27637067

  6. Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels

    International Nuclear Information System (INIS)

    Ravi, Ashwath M.; Sietsma, Jilt; Santofimia, Maria J.

    2016-01-01

    Bainite formation in steels begins with nucleation of bainitic ferrite at austenite grain boundaries (γ/γ interfaces). This leads to creation of bainitic ferrite/austenite interfaces (α/γ interfaces). Bainite formation continues through autocatalysis with nucleation of bainitic ferrite at these newly created α/γ interfaces. The displacive theory of bainite formation suggests that the formation of bainitic ferrite is accompanied by carbon enrichment of surrounding austenite. This carbon enrichment generally leads to carbide precipitation unless such a reaction is thermodynamically or kinetically unfavourable. Each bainitic ferrite nucleation event is governed by an activation energy. Depending upon the interface at which nucleation occurs, a specific activation energy would be related to a specific nucleation mechanism. On the basis of this concept, a model has been developed to understand the kinetics of bainite formation during isothermal treatments. This model is derived under the assumptions of displacive mechanism of bainite formation. The fitting parameters used in this model are physical entities related to nucleation and microstructural dimensions. The model is designed in such a way that the carbon redistribution during bainite formation is accounted for, leading to prediction of transformation kinetics both with and without of carbide precipitation during bainite formation. Furthermore, the model is validated using two different sets of kinetic data published in the literature.

  7. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte

    2009-01-01

    Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...... the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd...

  8. Observation and Analysis of Particle Nucleation at a Forest Site in Southeastern US

    Directory of Open Access Journals (Sweden)

    Viney Aneja

    2013-04-01

    Full Text Available This study examines the characteristics of new particle formation at a forest site in southeastern US. Particle size distributions above a Loblolly pine plantation were measured between November 2005 and September 2007 and analyzed by event type and frequency, as well as in relation to meteorological and atmospheric chemical conditions. Nucleation events occurred on 69% of classifiable observation days. Nucleation frequency was highest in spring. The highest daily nucleation (class A and B events frequency (81% was observed in April. The average total particle number concentration on nucleation days was 8,684 cm−3 (10 < Dp < 250 nm and 3,991 cm−3 (10 < Dp < 25 nm with a mode diameter of 28 nm with corresponding values on non-nucleation days of 2,143 cm−3, 655 cm−3, and 44.5 nm, respectively. The annual average growth rate during nucleation events was 2.7 ± 0.3 nm·h−1. Higher growth rates were observed during summer months with highest rates observed in May (5.0 ± 3.6 nm·h−1. Winter months were associated with lower growth rates, the lowest occurring in February (1.2 ± 2.2 nm·h−1. Consistent with other studies, nucleation events were more likely to occur on days with higher radiative flux and lower relative humidity compared to non-nucleation days. The daily minimum in the condensation sink, which typically occurred 2 to 3 h after sunrise, was a good indicator of the timing of nucleation onset. The intensity of the event, indicated by the total particle number concentration, was well correlated with photo-synthetically active radiation, used here as a surrogate for total global radiation, and relative humidity. Even though the role of biogenic VOC in the initial nuclei formation is not understood from this study, the relationships with chemical precursors and secondary aerosol products associated with nucleation, coupled with diurnal boundary layer dynamics and seasonal meteorological patterns, suggest that H2SO4 and biogenic

  9. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  10. A theoretical analysis of flow through the nucleating stage in a low pressure steam turbine

    International Nuclear Information System (INIS)

    Skillings, S.A.; Walters, P.T.; Jackson, R.

    1989-01-01

    In order to improve steam turbine efficiency and reliability, the phenomena associated with the formation and growth of water droplets must be understood. This report describes a theoretical investigation into flow behaviour in the nucleating stage, where the predictions of a one-dimensional theory are compared with measured turbine data. Results indicate that droplet sizes predicted by homogeneous condensation theory cannot be reconciled with measurements unless fluctuating shock waves arise. Heterogeneous effects and flow turbulence are also discussed along with their implications for the condensation process. (author)

  11. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    Science.gov (United States)

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate.

  12. Experimental Investigation of the Role of Ions in Aerosol Nucleation

    Science.gov (United States)

    Pedersen, J. P.; Enghoff, M. B.; Bondo, T.; Johnson, M. S.; Paling, S.; Svensmark, H.

    2008-12-01

    The role of ions in producing aerosols in Earth's atmosphere is an area of very active research. Atmospheric (Clarke et al. 1998) and experimental (Berndt et al. 2005) observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation and Ternary Nucleation. Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far removed from those relevant for the lower part of the atmosphere (Bricard et al. 1968). Recent experimental work (Svensmark et al. 2007) demonstrated that ions, produced by cosmic rays in the atmosphere, are likely to play an important role in the production of new aerosol particles. The mechanism whereby energetic cosmic rays can promote the production of cloud condensation nuclei at low altitudes constitutes a link between cosmic rays and Earth's climate and there is thus a need to corroborate the results in a different experiment. The present results are obtained in the same laboratory, but using a new setup The experiments were conducted in a 50 L cylindrical reaction chamber made of electropolished stainless steel. Aerosols were grown using photochemically produced sulphuric acid and ionization levels were controlled with a Cs-137 gamma-source. An increase in nucleation was observed when the chamber was exposed to the radioactive source. The results were analyzed using a model based on the General Dynamic Equation and the analysis revealed that Ion Induced Nucleation is the most likely mechanism for the observed nucleation increases and thus confirm the previous results. Berndt, T, Böge, O., Stratmann, F., Heintzenberg, J. & Kulmala, M. (2005), Science, 307, 698--700 Bricard, J., Billard, F. & Madelaine, G. (1968), J. Geophys. Res. 73, 4487--4496 Clarke, A.D., Davis, D., Kapustin, V. N. Eisele, F. Chen, G. Paluch

  13. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  14. A classical view on nonclassical nucleation.

    Science.gov (United States)

    Smeets, Paul J M; Finney, Aaron R; Habraken, Wouter J E M; Nudelman, Fabio; Friedrich, Heiner; Laven, Jozua; De Yoreo, James J; Rodger, P Mark; Sommerdijk, Nico A J M

    2017-09-19

    Understanding and controlling nucleation is important for many crystallization applications. Calcium carbonate (CaCO 3 ) is often used as a model system to investigate nucleation mechanisms. Despite its great importance in geology, biology, and many industrial applications, CaCO 3 nucleation is still a topic of intense discussion, with new pathways for its growth from ions in solution proposed in recent years. These new pathways include the so-called nonclassical nucleation mechanism via the assembly of thermodynamically stable prenucleation clusters, as well as the formation of a dense liquid precursor phase via liquid-liquid phase separation. Here, we present results from a combined experimental and computational investigation on the precipitation of CaCO 3 in dilute aqueous solutions. We propose that a dense liquid phase (containing 4-7 H 2 O per CaCO 3 unit) forms in supersaturated solutions through the association of ions and ion pairs without significant participation of larger ion clusters. This liquid acts as the precursor for the formation of solid CaCO 3 in the form of vaterite, which grows via a net transfer of ions from solution according to z Ca 2+ + z CO 3 2- → z CaCO 3 The results show that all steps in this process can be explained according to classical concepts of crystal nucleation and growth, and that long-standing physical concepts of nucleation can describe multistep, multiphase growth mechanisms.

  15. Nucleation versus instability race in strained films

    Science.gov (United States)

    Liu, Kailang; Berbezier, Isabelle; David, Thomas; Favre, Luc; Ronda, Antoine; Abbarchi, Marco; Voorhees, Peter; Aqua, Jean-Noël

    2017-10-01

    Under the generic term "Stranski-Krastanov" are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with exp(1 /x4) for nucleation, while it only behaves as 1 /x8 for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

  16. Nanoparticles found in superheated steam: a quantitative analysis of possible heterogeneous condensation nuclei

    Czech Academy of Sciences Publication Activity Database

    Kolovratník, M.; Hrubý, Jan; Ždímal, Vladimír; Bartoš, Ondřej; Jiříček, I.; Moravec, Pavel; Zíková, Naděžda

    2014-01-01

    Roč. 228, č. 2 (2014), s. 186-193 ISSN 0957-6509 R&D Projects: GA ČR GA101/09/1633 Institutional support: RVO:61388998 ; RVO:67985858 Keywords : heterogeneous nucleation * steam turbine * ultrafine aerosol particles Subject RIV: BJ - Thermodynamics; CF - Physical ; Theoretical Chemistry (UCHP-M) Impact factor: 0.645, year: 2014 http://pia.sagepub.com/content/early/2013/12/10/0957650913512816

  17. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  18. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    Science.gov (United States)

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  19. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  20. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  1. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Directory of Open Access Journals (Sweden)

    T. Maki

    2018-06-01

    Full Text Available The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols, that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation and upper (spring accumulation parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia, northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which

  2. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Science.gov (United States)

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice-nucleation

  3. Modelling the role of compositional fluctuations in nucleation kinetics

    International Nuclear Information System (INIS)

    Ženíšek, J.; Kozeschnik, E.; Svoboda, J.; Fischer, F.D.

    2015-01-01

    The classical nucleation theory of precipitate nucleation in interstitial/substitutional alloys is applied to account for the influence of spatial A–B composition fluctuations in an A–B–C matrix on the kinetics of nucleation of (A,B) 3 C precipitates. A and B are substitutional elements in the matrix and C is an interstitial component, assumed to preferentially bind to B atoms. All lattice sites are considered as potential nucleation sites. The fluctuations of chemical composition result in a local variation of the nucleation probability. The nucleation sites are eliminated from the system if they are located in a C-depleted diffusion zone belonging to an already nucleated and growing precipitate. The chemistry is that of an Fe–Cr–C system, and the specific interface energy is treated as a free parameter. Random, regular and homogeneous A–B distributions in the matrix are simulated and compared for various values of the interface energy. An increasing enhancement of the role of compositional fluctuations on nucleation kinetics with increasing interface energy and decreasing chemical driving force is observed

  4. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  5. Ice nucleation rates near ˜225 K

    Science.gov (United States)

    Amaya, Andrew J.; Wyslouzil, Barbara E.

    2018-02-01

    We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.

  6. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  7. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    Science.gov (United States)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern

  8. Molecular-dynamics simulations of urea nucleation from aqueous solution

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-01

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  9. Molecular-dynamics simulations of urea nucleation from aqueous solution.

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-06

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.

  10. Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation

    International Nuclear Information System (INIS)

    Liu Zheng-Guang; Wang Chong-Yu; Yu Tao

    2014-01-01

    The effect of Re on stacking fault (SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni—Al—Re embedded-atom-method potential. A parameter (ΔE sf b ), the activation energy of SF nucleation under shear strain, is introduced to evaluate the effect of Re on SF nucleation under shear strain. Calculation results show that ΔE sf b decreases with Re addition, which means that SF nucleation under shear strain in Ni may be enhanced by Re. The atomic structure observation shows that the decrease of ΔE sf b may be due to the expansion of local structure around the Re atom when SF goes through the Re atom. (rapid communication)

  11. Non stationary nucleation: the model with minimal environment

    OpenAIRE

    Kurasov, Victor

    2013-01-01

    A new model to calculate the rate of nucleation is formulated. This model is based on the classical nucleation theory but considers also vapor depletion around the formed embryo. As the result the free energy has to be recalculated which brings a new expression for the nucleation rate.

  12. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter [Univ. of Minnesota, Minneapolis, MN (United States); Smuth, James [University Corporation for Atmospheric Research, Irvine, CA (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  13. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  14. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1985-01-01

    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  15. Simulations of a non-Markovian description of nucleation

    NARCIS (Netherlands)

    Kuipers, J.; Barkema, G.T.

    2010-01-01

    In most nucleation theories, the state of a nucleating system is described by a distribution of droplet masses and this distribution evolves as a memoryless stochastic process. This is incorrect for a large class of nucleating systems. In a recent paper [ J. Kuipers and G. T. Barkema, Phys. Rev. E

  16. Impact of surface nanostructure on ice nucleation.

    Science.gov (United States)

    Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

    2014-09-28

    Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

  17. The nature of the active site in heterogeneous metal catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Larsen, Britt Hvolbæk

    2008-01-01

    This tutorial review, of relevance for the surface science and heterogeneous catalysis communities, provides a molecular-level discussion of the nature of the active sites in metal catalysis. Fundamental concepts such as "Bronsted-Evans-Polanyi relations'' and "volcano curves'' are introduced...

  18. Conjugate heat transfer effects on wall bubble nucleation in subcooled flashing flows

    International Nuclear Information System (INIS)

    Peterson, P.F.; Hijikata, K.

    1990-01-01

    A variety of models have been proposed to explain observations that large liquid superheat is required to initiate nucleation in flashing flows of subcooled liquids in nozzles, cracks and pipes. In such flows an abrupt change in the fluid temperature occurs downstream of the nucleating cavities. This paper examines the subcooling of the nucleating cavities due to conjugate heat transfer to the cold downstream fluid. This examination suggests a mechanism limiting the maximum active cavity size. Simple analysis shows that, of the total superheat required to initiate flashing, a substantial portion results from conjugate wall subcooling, which decreases the cavity vapor pressure. The specific case of flashing critical nozzle flow is examined in detail. Here boundary-layer laminarization due to the strong favorable pressure gradient aids the analysis of conjugate heat transfer

  19. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    Science.gov (United States)

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  20. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Science.gov (United States)

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  1. Design and properties of a novel nucleating agent for isotactic polypropylene

    International Nuclear Information System (INIS)

    Lv, Zhiping; Yang, Yunfei; Wu, Ran; Tong, Yuchao

    2012-01-01

    Highlights: ► Three new nucleating agents which is structurally similar to Al-PTBBA were prepared. ► These three nucleating agents were very effective in increasing T c and X c of iPP. ► Great improvement of mechanical properties of nucleated iPP was also obtained. ► Nucleating agent TSD was the most effective nucleating agent for iPP. -- Abstract: Three new nucleating agents TB, TD and TSD (titanate of benzoate or 4-tert-Butylbenzoate) were prepared. Isotactic polypropylene (iPP) nucleated were studied by using thermogravimetry analysis (TGA), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The mechanical properties and Vicat softening temperature (VST) of iPP were also tested. The results indicated that these three nucleating agents were very effective in increasing the crystallization temperature (T c ) and crystallinity (X c ) of iPP. Mechanical properties of nucleated iPP were improved remarkably, especially nucleating agent TSD.

  2. Molecular heterogeneous catalysts derived from bipyridine-based organosilica nanotubes for C-H bond activation.

    Science.gov (United States)

    Zhang, Shengbo; Wang, Hua; Li, Mei; Han, Jinyu; Liu, Xiao; Gong, Jinlong

    2017-06-01

    Heterogeneous metal complex catalysts for direct C-H activation with high activity and durability have always been desired for transforming raw materials into feedstock chemicals. This study described the design and synthesis of one-dimensional organosilica nanotubes containing 2,2'-bipyridine (bpy) ligands in the framework (BPy-NT) and their post-synthetic metalation to provide highly active and robust molecular heterogeneous catalysts. By adjusting the ratios of organosilane precursors, very short BPy-NT with ∼50 nm length could be controllably obtained. The post-synthetic metalation of bipyridine-functionalized nanotubes with [IrCp*Cl(μ-Cl)] 2 (Cp* = η 5 -pentamethylcyclopentadienyl) and [Ir(cod)(OMe)] 2 (cod = 1,5-cyclooctadiene) afforded solid catalysts, IrCp*-BPy-NT and Ir(cod)-BPy-NT, which were utilized for C-H oxidation of heterocycles and cycloalkanes as well as C-H borylation of arenes. The cut-short nanotube catalysts displayed enhanced activities and durability as compared to the analogous homogeneous catalysts and other conventional heterogeneous catalysts, benefiting from the isolated active sites as well as the fast transport of substrates and products. After the reactions, a detailed characterization of Ir-immobilized BPy-NT via TEM, SEM, nitrogen adsorption, UV/vis, XPS, and 13 C CP MAS NMR indicated the molecular nature of the active species as well as stable structures of nanotube scaffolds. This study demonstrates the potential of BPy-NT with a short length as an integration platform for the construction of efficient heterogeneous catalytic systems for organic transformations.

  3. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Fradera, J.; Cuesta-López, S.

    2013-01-01

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM ® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  4. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  5. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  6. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-07-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  7. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  8. Mechanistic insights into heterogeneous methane activation

    International Nuclear Information System (INIS)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; Yoo, Jong Suk; Kulkarni, Ambarish

    2017-01-01

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

  9. Damage nucleation in Si during ion irradiation

    International Nuclear Information System (INIS)

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed

  10. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  11. Frost-related dieback of Swedish and Estonian Salix plantations due to pathogenic and ice nucleation-active bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cambours, M.A.

    2004-07-01

    During the past decade, important dieback has been observed in short-rotation forestry plantations of Salix viminalis and S. dasyclados in Sweden and Estonia, plantations from which the isolation of ice nucleation-active (INA) and pathogenic bacteria has also been reported. This thesis investigates the connection between bacterial infection and frost as a possible cause for such damage, and the role played by internal and external factors (e.g. plant frost sensitivity, fertilisation) in the dieback observed. Bacterial floras isolated from ten Salix clones growing on fertilised/unfertilised mineral soil or nitrogen-rich organic soil, were studied. Culturable bacterial communities present both in internal necrotic tissues and on the plant surface (i.e. epiphytes) were isolated on two occasions (spring and autumn). The strains were biochemically characterised (with gram, oxidase and fluorescence tests), and tested for ice nucleation-activity. Their pathogenic properties were studied with and without association to a freezing stress. Certain strains were eventually identified with BIOLOG plates and 16S rRNA analysis. A high number of culturable bacterial strains was found in the plant samplings, belonging mainly to Erwinia and Sphingomonas spp.; pathogenic and INA communities being mostly Erwinia-, Sphingomonas- and Xanthomonas-like. The generally higher plant dieback noted in the field on nutrient-rich soils and for frost sensitive clones was found connected to higher numbers of pathogenic and INA bacteria in the plants. We thus confirm Salix dieback to be related to a synergistic effect of frost and bacterial infection, possibly aggravated by fertilisation.

  12. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 °C and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  14. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 oC and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  15. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers......, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol . H2O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol...... bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed....

  16. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  17. Modelling the stochastic behaviour of primary nucleation.

    Science.gov (United States)

    Maggioni, Giovanni Maria; Mazzotti, Marco

    2015-01-01

    We study the stochastic nature of primary nucleation and how it manifests itself in a crystallisation process at different scales and under different operating conditions. Such characteristics of nucleation are evident in many experiments where detection times of crystals are not identical, despite identical experimental conditions, but instead are distributed around an average value. While abundant experimental evidence has been reported in the literature, a clear theoretical understanding and an appropriate modelling of this feature is still missing. In this contribution, we present two models describing a batch cooling crystallisation, where the interplay between stochastic nucleation and deterministic crystal growth is described differently in each. The nucleation and growth rates of the two models are estimated by a comprehensive set of measurements of paracetamol crystallisation from aqueous solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012, 72, 10-19]. Both models are applied to the cooling crystallisation process above under different operating conditions, i.e. different volumes, initial concentrations, cooling rates. The advantages and disadvantages of the two approaches are illustrated and discussed, with particular reference to their use across scales of nucleation rate measured in very small crystallisers.

  18. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  19. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  20. Nucleation and Growth Kinetics from LaMer Burst Data.

    Science.gov (United States)

    Chu, Daniel B K; Owen, Jonathan S; Peters, Baron

    2017-10-12

    In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.

  1. Structural and dynamical heterogeneity of undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yu; Wang, Li; Wang, Shenghai, E-mail: shenghaiw@163.com; Li, Xuelian; Cui, Wenchao

    2014-12-05

    Highlights: • We simulate the undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap at atomic level. • Fe{sub 75}Cu{sub 25} melts separate into Cu-rich and Fe-rich liquid upon relaxation. • The process is controlled by the nucleation and grows mechanism. • Both PPCFs and CN confirm that L–L phase separation is a successive process. - Abstract: Molecular dynamics simulation (MD) based upon the developed embedded atom method (EAM) has been performed to explore the structural and dynamical heterogeneity of Fe{sub 75}Cu{sub 25} melts. The results show that the melts separate into Cu-rich droplets surround by the Fe-rich matrix controlled by nucleation and growth mechanism. The larger undercoolings suggest the higher nucleation rate and growth rate of droplets. The growth of droplet is achieved by the aggregation and coagulation of neighbor droplet with the characteristics of collective movement for homogeneous atoms. A sharp increase of S{sub CC} (q = 0) is found at all simulated temperature, which means concentration fluctuation on large length scales are much pronounced. Both partial pair correlation functions (PPCFs) and coordination number (CN) confirm that liquid–liquid (L–L) phase separation is a successive process with a stronger interaction of homogeneous pairs than that of heterogeneous pairs in Fe{sub 75}Cu{sub 25} melts. The studies above characterize the phase separation of metal melts on the atomic scale.

  2. Nucleation, Melting Behaviour and Mechanical Properties of Poly(L ...

    African Journals Online (AJOL)

    Anew category of nucleating agent for poly(L-lactic acid) (PLLA) was developed. An organic nucleating agent; N,N'-bis(benzoyl) suberic acid dihydrazide (NA) was synthesized from benzoyl hydrazine and suberoyl chloride which was deprived from suberic acid via acylation. The nucleation, melting behaviour and ...

  3. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves.

    Science.gov (United States)

    Paraskevov, A V; Zendrikov, D K

    2017-03-23

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  4. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    Science.gov (United States)

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  5. The laminar flow tube reactor as a quantitative tool for nucleation studies: Experimental results and theoretical analysis of homogeneous nucleation of dibutylphthalate

    International Nuclear Information System (INIS)

    Mikheev, Vladimir B.; Laulainen, Nels S.; Barlow, Stephan E.; Knott, Michael; Ford, Ian J.

    2000-01-01

    A laminar flow tube reactor was designed and constructed to provide an accurate, quantitative measurement of a nucleation rate as a function of supersaturation and temperature. Measurements of nucleation of a supersaturated vapor of dibutylphthalate have been made for the temperature range from -30.3 to +19.1 degree sign C. A thorough analysis of the possible sources of experimental uncertainties (such as defining the correct value of the initial vapor concentration, temperature boundary conditions on the reactor walls, accuracy of the calculations of the thermodynamic parameters of the nucleation zone, and particle concentration measurement) is given. Both isothermal and the isobaric nucleation rates were measured. The experimental data obtained were compared with the measurements of other experimental groups and with theoretical predictions made on the basis of the self-consistency correction nucleation theory. Theoretical analysis, based on the first and the second nucleation theorems, is also presented. The critical cluster size and the excess of internal energy of the critical cluster are obtained. (c) 2000 American Institute of Physics

  6. Delays due to gas diffusion in flash boiling nucleation

    International Nuclear Information System (INIS)

    Hanbury, W.T.; McCartney, W.S.

    1976-01-01

    A theoretical model to account for the time delay between decompression and nucleation in flash boiling is presented and analyzed. It shows that gas diffusion can be responsible for delayed nucleation when the critical radius for nucleation and the suspended particle size are of the same order of magnitude

  7. Homogeneous nucleation in 4He: A corresponding-states analysis

    International Nuclear Information System (INIS)

    Sinha, D.N.; Semura, J.S.; Brodie, L.C.

    1982-01-01

    We report homogeneous-nucleation-temperature measurements in liquid 4 He over a bath-temperature range 2.31 4 He, in a region far from the critical point. A simple empirical form is presented for estimating the homogeneous nucleation temperatures for any liquid with a spherically symmetric interatomic potential. The 4 He data are compared with nucleation data for Ar, Kr, Xe, and H; theoretical predictions for 3 He are given in terms of reduced quantities. It is shown that the nucleation data for both quantum and classical liquids obey a quantum law of corresponding states (QCS). On the basis of this QCS analysis, predictions of homogeneous nucleation temperatures are made for hydrogen isotopes such as HD, DT, HT, and T 2

  8. A variational approach to nucleation simulation.

    Science.gov (United States)

    Piaggi, Pablo M; Valsson, Omar; Parrinello, Michele

    2016-12-22

    We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.

  9. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    Science.gov (United States)

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  10. Effect of Heterogeneity of Vertex Activation on Epidemic Spreading in Temporal Networks

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available Development of sensor technologies and the prevalence of electronic communication services provide us with a huge amount of data on human communication behavior, including face-to-face conversations, e-mail exchanges, phone calls, message exchanges, and other types of interactions in various online forums. These indirect or direct interactions form potential bridges of the virus spread. For a long time, the study of virus spread is based on the aggregate static network. However, the interaction patterns containing diverse temporal properties may affect dynamic processes as much as the network topology does. Some empirical studies show that the activation time and duration of vertices and links are highly heterogeneous, which means intense activity may be followed by longer intervals of inactivity. We take heterogeneous distribution of the node interactivation time as the research background to build an asynchronous communication model. The two sides of the communication do not have to be active at the same time. One derives the threshold of virus spreading on the communication mode and analyzes the reason the heterogeneous distribution of the vertex interactivation time suppresses the spread of virus. At last, the analysis and results from the model are verified on the BA network.

  11. Coincident brane nucleation and the neutralization of Λ

    International Nuclear Information System (INIS)

    Garriga, Jaume; Megevand, Ariel

    2004-01-01

    Nucleation of branes by a four-form field has recently been considered in string motivated scenarios for the neutralization of the cosmological constant. An interesting question in this context is whether the nucleation of stacks of coincident branes is possible, and if so, at what rate does it proceed. Feng et al. have suggested that, at high ambient de Sitter temperature, the rate may be strongly enhanced, due to large degeneracy factors associated with the number of light species living on the worldsheet. This might facilitate the quick relaxation from a large effective cosmological constant down to the observed value. Here, we analyze this possibility in some detail. In four dimensions, and after the moduli are stabilized, branes interact via repulsive long range forces. Because of that, the Coleman-de Luccia (CdL) instanton for coincident brane nucleation may not exist, unless there is some short range interaction that keeps the branes together. If the CdL instanton exists, we find that the degeneracy factor depends only mildly on the ambient de Sitter temperature, and does not switch off even in the case of tunneling from flat space. This would result in catastrophic decay of the present vacuum. If, on the contrary, the CdL instanton does not exist, coincident brane nucleation may still proceed through a 'static' instanton, representing pair creation of critical bubbles--a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the 'saltatory' relaxation scenario proposed by Feng et al

  12. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Science.gov (United States)

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  13. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  14. Recent developments in the kinetic theory of nucleation.

    Science.gov (United States)

    Ruckenstein, E; Djikaev, Y S

    2005-12-30

    A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation

  15. Kinetics of small particle activation in supersaturated vapors

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  16. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    Ion-induced nucleation has been studied in a deep underground ultra-low background radiation environment where the role of ions can be distinguished from alternative neutral aerosol nucleation mechanisms. Our results demonstrate that ions have a significant effect on the production of small...... sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  17. Nucleation in an ultra low ionisation environment

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    in aerosol nucleation. By exposing a controlled volume of air to varying levels of ionising radiation, and with the minimum ionisation level vastly reduced compared to normal surface laboratory conditions, we have provided both a validation of earlier studies of ion-induced nucleation and extended...

  18. Controlled nucleation and crystallization of fluorozirconate glasses

    International Nuclear Information System (INIS)

    Frischat, G.H.

    1993-01-01

    Pt, Se, and Ag, respectively, were used as nucleating agents for a ZrF 4 -BaF 4 -YF 3 -AlF 3 glass. Nucleation and crystal growth rates were determined as a function of experimental conditions. In all cases the bulk crystals mainly consist of β-BaZrF6, leading to a relatively coarse-grained microstructure. However, in the case of Ag used as a nucleating agent, the microstructure is bimodal with an additional fine-grained crystal phase. In the cases of Se and Ag the relative crystal fraction could be developed in a controlled way between 0 and 100%

  19. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15......R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...

  20. Viscosity of interfacial water regulates ice nucleation

    International Nuclear Information System (INIS)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun; Song, Yanlin

    2014-01-01

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J 0 and Γ, in the context of classical nucleation theory. From the extracted J 0 and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces

  1. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.

    Science.gov (United States)

    Nudelman, Fabio

    2015-10-01

    The wide diversity of biogenic minerals that is found in nature, each with its own morphology, mechanical properties and composition, is remarkable. In order to produce minerals that are optimally adapted for their function, biomineralisation usually occurs under strict cellular control. This control is exerted by specialised proteins and polysaccharides that assemble into a 3-dimensional organic matrix framework, forming a microenvironment where mineral deposition takes place. Molluscs are unique in that they use a striking variety of structural motifs to build their shells, each made of crystals with different morphologies and different calcium carbonate polymorphs. Much of want is known about mollusc shell formation comes from studies on the nacreous layer, or mother-of-pearl. In this review, we discuss two existing models on the nucleation of aragonite crystals during nacre formation: heteroepitaxial nucleation and mineral bridges. The heteroepitaxial nucleation model is based on the identification of chemical functional groups and aragonite-nucleating proteins at the centre of crystal imprints. It proposes that during nacre formation, each aragonite tablet nucleates independently on a nucleation site that is formed by acidic proteins and/or glycoproteins adsorbed on the chitin scaffold. The mineral bridges model is based on the identification of physical connections between the crystals in a stack, which results in a large number of crystals across several layers sharing the same crystallographic orientation. These observations suggest that there is one nucleation event per stack of tablets. Once the first crystal nucleates and reaches the top interlamellar matrix, it continues growing through pores, giving rise to the next layer of nacre, subsequently propagating into a stack. We compare both models and propose that they work in concert to control crystal nucleation in nacre. De novo crystal nucleation has to occur at least once per stack of aligned crystals

  2. Binary nucleation kinetics. III. Transient behavior and time lags

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.

    1996-01-01

    Transient binary nucleation is more complex than unary because of the bidimensionality of the cluster formation kinetics. To investigate this problem qualitatively and quantitatively, we numerically solved the birth-death equations for vapor-to-liquid phase transitions. Our previous work showed that the customary saddle point and growth path approximations are almost always valid in steady state gas phase nucleation and only fail if the nucleated solution phase is significantly nonideal. Now, we demonstrate that in its early transient stages, binary nucleation rarely, if ever, occurs via the saddle point. This affects not only the number of particles forming but their composition and may be important for nucleation in glasses and other condensed mixtures for which time scales are very long. Before reaching the state of saddle point nucleation, most binary systems pass through a temporary stage in which the region of maximum flux extends over a ridge on the free energy surface. When ridge crossing nucleation is the steady state solution, it thus arises quite naturally as an arrested intermediate state that normally occurs in the development of saddle point nucleation. While the time dependent and steady state distributions of the fluxes and concentrations for each binary system are strongly influenced by the gas composition and species impingement rates, the ratio of nonequilibrium to equilibrium concentrations has a quasiuniversal behavior that is determined primarily by the thermodynamic properties of the liquid mixture. To test our quantitive results of the transient behavior, we directly calculated the time lag for the saddle point flux and compared it with the available analytical predictions. Although the analytical results overestimate the time lag by factors of 1.2-5, they should be adequate for purposes of planning experiments. We also found that the behavior of the saddle point time lag can indicate when steady state ridge crossing nucleation will occur

  3. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  4. Theoretical Studies Of Nucleation Kinetics And Nanodroplet Microstructure

    International Nuclear Information System (INIS)

    Wilemski, Gerald

    2009-01-01

    The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.

  5. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  6. Adherent nanoparticles-mediated micro- and nanobubble nucleation

    Science.gov (United States)

    Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter

    2014-11-01

    Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.

  7. Homogeneous nucleation of water in argon. Nucleation rate computation from molecular simulations of TIP4P and TIP4P/2005 water model.

    Science.gov (United States)

    Dumitrescu, Lucia R; Smeulders, David M J; Dam, Jacques A M; Gaastra-Nedea, Silvia V

    2017-02-28

    Molecular dynamics (MD) simulations were conducted to study nucleation of water at 350 K in argon using TIP4P and TIP4P/2005 water models. We found that the stability of any cluster, even if large, strongly depends on the energetic interactions with its vicinity, while the stable clusters change their composition almost entirely during nucleation. Using the threshold method, direct nucleation rates are obtained. Our nucleation rates are found to be 1.08×10 27 cm -3 s -1 for TIP4P and 2.30×10 27 cm -3 s -1 for TIP4P/2005. The latter model prescribes a faster dynamics than the former, with a nucleation rate two times larger due to its higher electrostatic charges. The non-equilibrium water densities derived from simulations and state-of-art equilibrium parameters from Vega and de Miguel [J. Chem. Phys. 126, 154707 (2007)] are used for the classical nucleation theory (CNT) prediction. The CNT overestimates our results for both water models, where TIP4P/2005 shows largest discrepancy. Our results complement earlier data at high nucleation rates and supersaturations in the Hale plot [Phys. Rev. A 33, 4156 (1986)], and are consistent with MD data on the SPC/E and the TIP4P/2005 model.

  8. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    Science.gov (United States)

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H 2 or CH 4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H 2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H 2 /CH 4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  9. Incorporating C60 as Nucleation Sites Optimizing PbI2 Films To Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability via Vapor-Assisted Deposition Method.

    Science.gov (United States)

    Chen, Hai-Bin; Ding, Xi-Hong; Pan, Xu; Hayat, Tasawar; Alsaedi, Ahmed; Ding, Yong; Dai, Song-Yuan

    2018-01-24

    To achieve high-quality perovskite solar cells (PSCs), the morphology and carrier transportation of perovskite films need to be optimized. Herein, C 60 is employed as nucleation sites in PbI 2 precursor solution to optimize the morphology of perovskite films via vapor-assisted deposition process. Accompanying the homogeneous nucleation of PbI 2 , the incorporation of C 60 as heterogeneous nucleation sites can lower the nucleation free energy of PbI 2 , which facilitates the diffusion and reaction between PbI 2 and organic source. Meanwhile, C 60 could enhance carrier transportation and reduce charge recombination in the perovskite layer due to its high electron mobility and conductivity. In addition, the grain sizes of perovskite get larger with C 60 optimizing, which can reduce the grain boundaries and voids in perovskite and prevent the corrosion because of moisture. As a result, we obtain PSCs with a power conversion efficiency (PCE) of 18.33% and excellent stability. The PCEs of unsealed devices drop less than 10% in a dehumidification cabinet after 100 days and remain at 75% of the initial PCE during exposure to ambient air (humidity > 60% RH, temperature > 30 °C) for 30 days.

  10. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface

    Science.gov (United States)

    Atkinson, Samantha; Kirik, Angela; Kirik, Viktor

    2014-01-01

    Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522

  11. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing

    Directory of Open Access Journals (Sweden)

    Masaya eIshikawa

    2015-03-01

    Full Text Available Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA of various flower bud tissues of using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121°C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving labile. Anti-nucleation activity (ANA was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen.

  12. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.

    Science.gov (United States)

    Kashchiev, Dimo

    2015-11-17

    The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.

    Science.gov (United States)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2015-08-14

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 10(6) molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 10(19) cm(-3) s(-1), helping close the gap between experimentally measured rates ∼ 10(17) cm(-3) s(-1). We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  14. Molecular dynamics simulation of bubble nucleation in explosive boiling

    International Nuclear Information System (INIS)

    Zou Yu; Chinese Academy of Sciences, Beijing; Huai Xiulan; Liang Shiqiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range. (authors)

  15. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    Directory of Open Access Journals (Sweden)

    H. Beydoun

    2016-10-01

    Full Text Available Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS density (ns often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown

  16. Neonatal nucleated red blood cells in G6PD deficiency.

    Science.gov (United States)

    Yeruchimovich, Mark; Shapira, Boris; Mimouni, Francis B; Dollberg, Shaul

    2002-05-01

    The objective of this study is to study the absolute number of nucleated red blood cells (RBC) at birth, an index of active fetal erythropoiesis, in infants with G6PD deficiency and in controls. We tested the hypothesis that hematocrit and hemoglobin would be lower, and absolute nucleated RBC counts higher, in the G6PD deficient and that these changes would be more prominent in infants exposed passively to fava bean through maternal diet. Thirty-two term infants with G6PD deficiency were compared with 30 term controls. Complete blood counts with manual differential counts were obtained within 12 hours of life. Absolute nucleated RBC and corrected leukocyte counts were computed from the Coulter results and the differential count. G6PD deficient patients did not differ from controls in terms of gestational age, birth weight, or Apgar scores or in any of the hematologic parameters studied, whether or not the mother reported fava beans consumption in the days prior to delivery. Although intrauterine hemolysis is possible in G6PD deficient fetuses exposed passively to fava beans, our study supports that such events must be very rare.

  17. Crosslinked Aspartic Acids as Helix-Nucleating Templates.

    Science.gov (United States)

    Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang

    2016-09-19

    Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The influence of heterogeneous nucleation on the surface crystallization of guaifenesin from melt extrudates containing Eudragit L10055 or Acryl-EZE.

    Science.gov (United States)

    Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2010-05-01

    The objective of this study was to investigate the influence of talc and humidity conditions during storage on the crystal growth of guaifenesin on the surface of melt-extruded matrix tablets. Tablets consisted of the model drug guaifenesin in a matrix of either Acryl-EZE(R) or Eudragit(R) L10055 and either no talc, 25% or 50% talc. After processing, the hot-melt-extruded matrix tablets were supersaturated with amorphous guaifenesin, which resulted in the development of guaifenesin drug crystals on exposed surfaces of the tablet during storage (all tablets were stored at 24 degrees C). A previously developed, quantitative test was used to assay for surface guaifenesin. In tablets with a drug-to-polymer ratio of 19:81, talc-containing tablets exhibited an earlier onset of crystal growth (storage at 17% relative humidity). The presence of talc also increased the amount of surface crystallization and was independent of the talc concentration, since the talc levels used in this study exceeded the critical nucleant concentration. Additional non-melting components did not have an additive effect on surface crystal growth. High humidity during storage (78%) increased guaifenesin crystallization, but moisture uptake of tablets did not correlate with increased drug recrystallization. When storage at 17% relative humidity was interrupted for 3days by storage at 78% relative humidity before the tablets were returned to their previous low RH storage conditions, crystal growth quickly increased during the high RH interval and remained at an elevated level throughout the remaining storage period. A similar intermediate period of low, 17% relative humidity in tablets stored before and after that time at 78% RH did not affect surface crystallization levels. The effects of humidity and talc on the crystallization of guaifenesin from melt-extruded dosage forms supersaturated with amorphous drug were ascribed to heterogeneous nucleation.

  19. Heat transfer in nucleate pool boiling of aqueous SDS and triton X-100 solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wasekar, Vivek M. [Tata Steel Limited, Department of Research and Development, Jamshedpur (India)

    2009-09-15

    Variation in degree of surface wettability is presented through the application of Cooper's correlative approach (h{proportional_to}M{sup -0.5}q{sub w}''0.67) for computing enhancement ({phi}) in nucleate pool boiling of aqueous solutions of SDS and Triton X-100 and its presentation with Marangoni parameter ({chi}) that represents the dynamic convection effects due to surface tension gradients. Dynamic spreading coefficient defined as {sigma} {sub dyn}N{sub a}, which relates spreading and wetting characteristics with the active nucleation site density on the heated surface and bubble evolution process, represents cavity filling and activation process and eliminates the concentration dependence of nucleate pool boiling heat transfer in boiling of aqueous surfactant solutions. Using the dynamic spreading coefficient ({sigma}{sub dyn}N{sub a}=0.09q{sub w}''0.71), correlation predictions within {+-}15% for both SDS and triton X-100 solutions for low heat flux boiling condition (q{sub w}''{<=} 100 kW/m {sup 2}) characterised primarily by isolated bubble regime are presented. (orig.)

  20. On the influence of matrix's heterogeneity on uncertainty of gamma-spectrometry at activity assay of radioactive waste

    Directory of Open Access Journals (Sweden)

    V. S. Prokopenko

    2009-09-01

    Full Text Available The influence of the waste matrix heterogeneity on the flux density value of initial gamma quanta at the transport of quanta in the matrix was considered. It is shown that the waste heterogeneity leads to the positive shift of the average flux density value comparing with corresponding value for homogeneous waste if average value of the attenuation factor in heterogeneous matrix is equal to the attenuation factor of homogeneous matrix. Due to this the activity assay of heterogeneous waste by a technique which was calibrated by using a homogeneous standard (surrogate container the measurement results will be positively shifted, or, in other words, conservative estimation of the waste activity will be obtained.

  1. Pathogenic and Ice-Nucleation Active (INA) Bacteria causing Dieback of Willows in Short Rotation Forestry

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, Pajand

    2005-03-01

    To find out whether bacteria isolated from diseased plant parts can be the main causal agent for the dieback appearing in Salix energy forestry plantations in Sweden during the last few years, and if the joint effects of bacteria and frost injury are synergistic, extensive sampling of shoots from diseased Salix plants was performed. We performed several laboratory and greenhouse investigations and used evaluation techniques on the functions of the Ice-Nucleation Active (INA) bacteria. We carried out a comparison between spring and autumn bacterial communities isolated from within (endophytically) and surface (epiphytically) plant tissues of Salix viminalis. Seasonal variation of bacteria in willow clones with different levels of frost sensitivity and symptoms of bacterial damage was also investigated. We further focussed on possible effect of fertilisation and nutrient availability on the bacterial community in relation to plant dieback in Estonian willow plantations. The identification and detection of INA bacteria which cause damage in combination with frost to willow (Salix spp) plants in late fall, winter and spring was performed using BIOLOG MicroPlate, biochemical tests, selective INA primers and 16S rDNA analysis. To distinguish the character for differentiation between these bacteria morphologically and with respect to growing ability different culture media were used. We studied the temperature, at which ice nucleation occurred for individual bacteria, estimated the population of INA bacteria, effect of growth limiting factors, and evaluated the effect of chemical and physical agents for disruption and possible inhibition of INA among individual bacterial strains. The concentration of carbon, nitrogen and phosphorus on INA is discussed. We demonstrate that among the bacterial isolates recovered from the willow plantations, there were many that were capable of ice nucleation at temperatures between -2 and -10 deg C, many that were capable of inducing a

  2. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  3. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  4. Two-Dimensional Nucleation on the Terrace of Colloidal Crystals with Added Polymers.

    Science.gov (United States)

    Nozawa, Jun; Uda, Satoshi; Guo, Suxia; Hu, Sumeng; Toyotama, Akiko; Yamanaka, Junpei; Okada, Junpei; Koizumi, Haruhiko

    2017-04-04

    Understanding nucleation dynamics is important both fundamentally and technologically in materials science and other scientific fields. Two-dimensional (2D) nucleation is the predominant growth mechanism in colloidal crystallization, in which the particle interaction is attractive, and has recently been regarded as a promising method to fabricate varieties of complex nanostructures possessing innovative functionality. Here, polymers are added to a colloidal suspension to generate a depletion attractive force, and the detailed 2D nucleation process on the terrace of the colloidal crystals is investigated. In the system, we first measured the nucleation rate at various area fractions of particles on the terrace, ϕ area . In situ observations at single-particle resolution revealed that nucleation behavior follows the framework of classical nucleation theory (CNT), such as single-step nucleation pathway and existence of critical size. Characteristic nucleation behavior is observed in that the nucleation and growth stage are clearly differentiated. When many nuclei form in a small area of the terrace, a high density of kink sites of once formed islands makes growth more likely to occur than further nucleation because nucleation has a higher energy barrier than growth. The steady-state homogeneous 2D nucleation rate, J, and the critical size of nuclei, r*, are measured by in situ observations based on the CNT, which enable us to obtain the step free energy, γ, which is an important parameter for characterizing the nucleation process. The γ value is found to change according to the strength of attraction, which is tuned by the concentration of the polymer as a depletant.

  5. Fatigue crack nucleation of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Kim, Woo Gon; Hong, Jun Hwa; Ryu, Woo Seog

    2000-01-01

    Low Cycle Fatigue (LCF) life decreases drastically with increasing temperature but increases with the addition of nitrogen at room and high temperatures. The effect of nitrogen on LCF life may be related to crack nucleation at high temperatures in austenitic stainless steel because the fraction of crack nucleation in LCF life is about 40%. The influence of nitrogen on the crack nucleation of LCF in type 316LN stainless steel is investigated by observations of crack population and crack depth after testing at 40% of fatigue life. Nitrogen increases the number of cycles to nucleate microcracks of 100 μm but decreases the crack population

  6. Study of rare gases behavior in uranium dioxide: diffusion and bubble nucleation and growth mechanisms

    International Nuclear Information System (INIS)

    Michel, A.

    2011-01-01

    During in-reactor irradiation of the nuclear fuel, fission gases, mainly xenon and krypton, are generated that are subject to several phenomena: diffusion and precipitation. These phenomena can have adverse consequences on the fuel physical and chemical properties and its in-reactor behavior. The purpose of this work is to better understand the behavior of fission gases by identifying diffusion, bubble nucleation and growth mechanisms. To do this, studies involving separate effects have been established coupling ion irradiations/implantations with fine characterizations on Large Scale Facilities. The influence of several parameters such as gas type, concentration and temperature has been identified separately. Interpretation of the Thermal Desorption Spectrometry (TDS) measurements has enabled us to determine xenon and krypton diffusion coefficients in uranium dioxide. A heterogeneous nucleation mechanism on defects was determined by means of experiments on the JANNuS platform in Orsay that consists of a coupling of an implantor, an accelerator and a Transmission Electron Microscope (TEM). Finally, TEM and X-ray Absorption Spectroscopy characterizations of implanted and annealed samples put in relieve a bubble growth mechanism by atoms and vacancies capture. (author) [fr

  7. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  8. Nucleation and creep of vortices in superfluids and clean superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1995-01-01

    The paper is devoted to vortex nucleation in uniform and nonuniform superflows in superfluids, and to creep of vortices trapped by twin boundaries and columnar defects in isotropic and anisotropic superconductors. The shape of a nuclated loop which yields the maximal nucleation rate is defined from the balance of the Lorentz and the line-tension forces. If the trapping energy is small, the contact angle at which the vortex line meets the plane of the twin-boundary or the axis of the columnar defect is also small. This may strongly enhance the rate of thermal nucleation and especially of quantum nucleation. In the analysis of quantum tunnelling it was assumed that the vortex has no mass and its motion is governed by the Magnus force, as expected for superfluids and very pure superconductors. Quantum nucleation rate from the traditional quasiclassical theory of macroscopic tunnelling is compared with the nucleation rate derived from the Gross-Pitaevskii theory of a weakly nonideal Bose-gas. (orig.)

  9. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  10. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti

    2012-07-01

    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA, two illites (Illite NX and Illite SE and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K<Tonstd<242 K and best sites with averaged median freezing temperature Tmedbest=257 K, but only some featuring a special peak (i.e. KSF, K-10, K-SA and SWy-2 with freezing onsets in the range 240–248 K. The illites showed broad standard peaks with freezing onsets at 244 K Tonstd<246 K and best sites with averaged median freezing temperature Tmedbest=262 K. The large difference between freezing temperatures of standard and best sites shows that characterizing ice nucleation efficiencies of dust particles on the basis of freezing onset temperatures from bulk experiments, as has been done in some atmospheric studies, is not appropriate. Our investigations

  11. Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    Directory of Open Access Journals (Sweden)

    C. D. O'Dowd

    2007-01-01

    Full Text Available A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs (50% cut from 3–5.4–9.6 nm and a nano-Scanning Mobility Particle Sizer (nSMPS and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

  12. Ice nucleation efficiency of AgI: review and new insights

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2016-07-01

    Full Text Available AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI–AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  13. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds

    Science.gov (United States)

    Yun, Yuxing; Penner, Joyce E.

    2012-04-01

    A new aerosol-dependent mixed phase cloud parameterization for deposition/condensation/immersion (DCI) ice nucleation and one for contact freezing are compared to the original formulations in a coupled general circulation model and aerosol transport model. The present-day cloud liquid and ice water fields and cloud radiative forcing are analyzed and compared to observations. The new DCI freezing parameterization changes the spatial distribution of the cloud water field. Significant changes are found in the cloud ice water fraction and in the middle cloud fractions. The new DCI freezing parameterization predicts less ice water path (IWP) than the original formulation, especially in the Southern Hemisphere. The smaller IWP leads to a less efficient Bergeron-Findeisen process resulting in a larger liquid water path, shortwave cloud forcing, and longwave cloud forcing. It is found that contact freezing parameterizations have a greater impact on the cloud water field and radiative forcing than the two DCI freezing parameterizations that we compared. The net solar flux at top of atmosphere and net longwave flux at the top of the atmosphere change by up to 8.73 and 3.52 W m-2, respectively, due to the use of different DCI and contact freezing parameterizations in mixed phase clouds. The total climate forcing from anthropogenic black carbon/organic matter in mixed phase clouds is estimated to be 0.16-0.93 W m-2using the aerosol-dependent parameterizations. A sensitivity test with contact ice nuclei concentration in the original parameterization fit to that recommended by Young (1974) gives results that are closer to the new contact freezing parameterization.

  14. Investigating the nucleation of protein crystals with hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Damak, M [Laboratoire de Chimie des Substances Naturelles, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Jenner, G [Laboratoire de Piezochimie Organique, UMR 7123, Faculte de Chimie, Universite Louis Pasteur, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex (France); Lorber, B [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Giege, R [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France)

    2003-12-17

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M{sub r} 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm{sup 3} mol{sup -1}. It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein.

  15. Investigating the nucleation of protein crystals with hydrostatic pressure

    International Nuclear Information System (INIS)

    Kadri, A; Damak, M; Jenner, G; Lorber, B; Giege, R

    2003-01-01

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M r 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm 3 mol -1 . It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein

  16. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  17. Nucleation of super-critical carbon dioxide in a venturi nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Jarrahbashi, D., E-mail: dorrin.jarrahbashi@me.gatech.edu; Pidaparti, S.R.; Ranjan, D.

    2016-12-15

    Highlights: • Nucleation of S-CO{sub 2} in a nozzle near critical point has been computationally studied. • The nucleation behavior is very sensitive to the inlet pressure and temperature. • After nucleation, high liquid-content two-phase mixture near wall travels downstream. - Abstract: Pressure reduction at the entrance of the compressor in supercritical CO{sub 2} Brayton cycles may cause nucleation and create a mixture of vapor and liquid droplets due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and degrade the materials used in the design. The nucleation behavior of supercritical carbon-dioxide inside a venturi nozzle near the critical point is computationally studied. A transient compressible 3D Navier–Stokes solver, coupled with continuity, and energy equations have been implemented. In order to expedite the simulations, Fluid property Interpolation Tables (FIT) based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO{sub 2} properties. The mass fraction of vapor created in the venturi nozzle has been calculated using homogeneous equilibrium model (HEM). Nucleation behavior has been shown to be very sensitive to the inlet pressure, inlet temperature, and flow rate. The flow conditions that led to nucleation were identified. Nucleation was observed in the throat area and divergent section of the nozzle for mass flow rates from 0.050 kg/s to 0.065 kg/s, inlet pressure from 7.8 to 7.4 MPa for fixed exit pressure equal to 7.28 MPa. The inception of high-vapor-content nucleation was first observed in the throat area away from the side walls that remained confined to the throat region in later times. However, near the walls, a high liquid-content two-phase region was detected, first in the divergent section. At later times, the two-phase region was convected downstream toward the nozzle exit

  18. Controlling the crystal polymorph by exploiting the time dependence of nucleation rates.

    Science.gov (United States)

    Little, Laurie J; King, Alice A K; Sear, Richard P; Keddie, Joseph L

    2017-10-14

    Most substances can crystallise into two or more different crystal lattices called polymorphs. Despite this, there are no systems in which we can quantitatively predict the probability of one competing polymorph forming instead of the other. We address this problem using large scale (hundreds of events) studies of the competing nucleation of the alpha and gamma polymorphs of glycine. In situ Raman spectroscopy is used to identify the polymorph of each crystal. We find that the nucleation kinetics of the two polymorphs is very different. Nucleation of the alpha polymorph starts off slowly but accelerates, while nucleation of the gamma polymorph starts off fast but then slows. We exploit this difference to increase the purity with which we obtain the gamma polymorph by a factor of ten. The statistics of the nucleation of crystals is analogous to that of human mortality, and using a result from medical statistics, we show that conventional nucleation data can say nothing about what, if any, are the correlations between competing nucleation processes. Thus we can show that with data of our form it is impossible to disentangle the competing nucleation processes. We also find that the growth rate and the shape of a crystal depend on it when nucleated. This is new evidence that nucleation and growth are linked.

  19. A study on Z-phase nucleation in martensitic chromium steels

    DEFF Research Database (Denmark)

    Golpayegani, Ardeshir; Andrén, Hans-Olof; Danielsen, Hilmar Kjartansson

    2008-01-01

    , initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small....... Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase....

  20. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    International Nuclear Information System (INIS)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-01-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials. - Highlights: • A rigorous TEM statistical analysis, including free surface effects, is reported. • Increasing He fluence promotes both the nucleation and growth of bubbles. • Increasing implantation temperature enhances the growth of bubbles. • Activation energies describing the evolution of the bubble population are obtained. • A He diffusion controlled nucleation through a replacement mechanism is suggested.

  1. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.

    1980-01-01

    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  2. Numerical investigation of nucleate pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Stojanović Andrijana D.

    2016-01-01

    Full Text Available Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018 i br. OI-174014

  3. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent.

    Science.gov (United States)

    Datta, Saurabh; Coussios, Constantin-C; Ammi, Azzdine Y; Mast, T Douglas; de Courten-Myers, Gabrielle M; Holland, Christy K

    2008-09-01

    Ultrasound has been shown previously to act synergistically with a thrombolytic agent, such as recombinant tissue plasminogen activator (rt-PA) to accelerate thrombolysis. In this in vitro study, a commercial contrast agent, Definity, was used to promote and sustain the nucleation of cavitation during pulsed ultrasound exposure at 120 kHz. Ultraharmonic signals, broadband emissions and harmonics of the fundamental were measured acoustically by using a focused hydrophone as a passive cavitation detector and used to quantify the level of cavitation activity. Human whole blood clots suspended in human plasma were exposed to a combination of rt-PA, Definity and ultrasound at a range of ultrasound peak-to-peak pressure amplitudes, which were selected to expose clots to various degrees of cavitation activity. Thrombolytic efficacy was determined by measuring clot mass loss before and after the treatment and correlated with the degree of cavitation activity. The penetration depth of rt-PA and plasminogen was also evaluated in the presence of cavitating microbubbles using a dual-antibody fluorescence imaging technique. The largest mass loss (26.2%) was observed for clots treated with 120-kHz ultrasound (0.32-MPa peak-to-peak pressure amplitude), rt-PA and stable cavitation nucleated by Definity. A significant correlation was observed between mass loss and ultraharmonic signals (r = 0.85, p cavitation activity. Stable cavitation activity plays an important role in enhancement of thrombolysis and can be monitored to evaluate the efficacy of thrombolytic treatment.

  4. New species of ice nucleating fungi in soil and air

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1,2). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (3, 4). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (3). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (5, 6). The results presented in Fröhlich-Nowoisky et al. 2012 (7) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. DNA analyses of aerosol samples collected during rain events showed higher diversity and frequency of occurrence for fungi belonging to the Sordariomycetes, than samples that were collected under dry conditions (8). Sordariomycetes is the class that comprises known ice nucleation active species (Fusarium spp.). By determination of freezing ability of fungal colonies isolated from air samples two species of ice nucleation active fungi that were not previously known as biological ice nucleators were found. By DNA-analysis they were identified as Isaria farinosa and Acremonium implicatum. Both fungi belong to the phylum Ascomycota, produce fluorescent spores in the range of 1-4 µm in diameter, and induced freezing at -4 and

  5. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  6. Nucleation at hardness indentations in cold rolled Al

    DEFF Research Database (Denmark)

    Xu, C.L.; Zhang, Yubin; Wu, G.L.

    2015-01-01

    Nucleation of recrystallization near hardness indentations has been investigated in slightly cold rolled high purity aluminium. Samples were cold rolled to 12% and 20% reductions in thickness and indentations were done with two different loads (500 g and 2000 g). The samples were annealed at 300 °C...... for 1 h and nuclei were identified. It is found that the indentations are preferential nucleation sites. With EBSD maps around indentation tips, the orientation relationship between nuclei and matrix is analyzed. Finally, effects of rolling reduction and indentation load on local misorientations...... and stored energy distributions and thus on nucleation are discussed....

  7. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  8. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  9. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    Science.gov (United States)

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi

  10. Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation.

    Science.gov (United States)

    Zahn, Dirk

    2015-07-20

    Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  11. ON THE PRECISION OF THE NUCLEATOR

    Directory of Open Access Journals (Sweden)

    Javier González-Villa

    2017-06-01

    Full Text Available The nucleator is a design unbiased method of local stereology for estimating the volume of a bounded object. The only information required lies in the intersection of the object with an isotropic random ray emanating from a fixed point (called the pivotal point associated with the object. For instance, the volume of a neuron can be estimated from a random ray emanating from its nucleolus. The nucleator is extensively used in biosciences because it is efficient and easy to apply. The estimator variance can be reduced by increasing the number of rays. In an earlier paper a systematic sampling design was proposed, and theoretical variance predictors were derived, for the corresponding volume estimator. Being the only variance predictors hitherto available for the nucleator, our basic goal was to check their statistical performance by means of Monte Carlo resampling on computer reconstructions of real objects. As a plus, the empirical distribution of the volume estimator revealed statistical properties of practical relevance.

  12. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-01-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  13. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  14. Water nucleation : wave tube experiments and theoretical considerations

    NARCIS (Netherlands)

    Holten, V.

    2009-01-01

    This work is an experimental and theoretical study of the condensation of water. Condensation consists of nucleation – the formation of droplets – and the subsequent growth of those droplets. In our expansion tube setup, these processes are separated in time with the nucleation pulse principle, in

  15. Modelling the effect of acoustic waves on nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Haqshenas, S. R., E-mail: seyyed.haqshenas.12@ucl.ac.uk; Saffari, N., E-mail: n.saffari@ucl.ac.uk [Department of Mechanical Engineering, University College London, Gower Street, London WC1E 7JE (United Kingdom); Ford, I. J., E-mail: i.ford@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-07-14

    A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.

  16. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.

    2003-01-01

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen

  17. Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite

    Science.gov (United States)

    Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.

    2011-03-01

    Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.

  18. Cumulative distribution functions associated with bubble-nucleation processes in cavitation

    KAUST Repository

    Watanabe, Hiroshi

    2010-11-15

    Bubble-nucleation processes of a Lennard-Jones liquid are studied by molecular dynamics simulations. Waiting time, which is the lifetime of a superheated liquid, is determined for several system sizes, and the apparent finite-size effect of the nucleation rate is observed. From the cumulative distribution function of the nucleation events, the bubble-nucleation process is found to be not a simple Poisson process but a Poisson process with an additional relaxation time. The parameters of the exponential distribution associated with the process are determined by taking the relaxation time into account, and the apparent finite-size effect is removed. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows to the critical size leads to an incorrect estimation of the nucleation rate. © 2010 The American Physical Society.

  19. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay

    2016-01-01

    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes...... and amorphous carbon. These defects would serve as a pathway for the diffusion of 02 during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has...... a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance...

  20. Stochastic simulation of nucleation in binary alloys

    Science.gov (United States)

    L’vov, P. E.; Svetukhin, V. V.

    2018-06-01

    In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.

  1. Responses of Mixed-Phase Cloud Condensates and Cloud Radiative Effects to Ice Nucleating Particle Concentrations in NCAR CAM5 and DOE ACME Climate Models

    Science.gov (United States)

    Liu, X.; Shi, Y.; Wu, M.; Zhang, K.

    2017-12-01

    Mixed-phase clouds frequently observed in the Arctic and mid-latitude storm tracks have the substantial impacts on the surface energy budget, precipitation and climate. In this study, we first implement the two empirical parameterizations (Niemand et al. 2012 and DeMott et al. 2015) of heterogeneous ice nucleation for mixed-phase clouds in the NCAR Community Atmosphere Model Version 5 (CAM5) and DOE Accelerated Climate Model for Energy Version 1 (ACME1). Model simulated ice nucleating particle (INP) concentrations based on Niemand et al. and DeMott et al. are compared with those from the default ice nucleation parameterization based on the classical nucleation theory (CNT) in CAM5 and ACME, and with in situ observations. Significantly higher INP concentrations (by up to a factor of 5) are simulated from Niemand et al. than DeMott et al. and CNT especially over the dust source regions in both CAM5 and ACME. Interestingly the ACME model simulates higher INP concentrations than CAM5, especially in the Polar regions. This is also the case when we nudge the two models' winds and temperature towards the same reanalysis, indicating more efficient transport of aerosols (dust) to the Polar regions in ACME. Next, we examine the responses of model simulated cloud liquid water and ice water contents to different INP concentrations from three ice nucleation parameterizations (Niemand et al., DeMott et al., and CNT) in CAM5 and ACME. Changes in liquid water path (LWP) reach as much as 20% in the Arctic regions in ACME between the three parameterizations while the LWP changes are smaller and limited in the Northern Hemispheric mid-latitudes in CAM5. Finally, the impacts on cloud radiative forcing and dust indirect effects on mixed-phase clouds are quantified with the three ice nucleation parameterizations in CAM5 and ACME.

  2. Ion Mediated Nucleation: how is it Influenced by Changes in the Solar Activity?

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    2003-12-01

    Recently it has been pointed out that tropospheric cloudiness can be correlated with the galactic cosmic rays (GCRs) intensity [Svensmark and Friis-Christensen, 1997]. A possible explanation for such a correlation relies on the fact that GCRs are the main ionization source in the upper troposphere, hence, throughout ionic mediated nucleation, they could possibly influence the global cloud condensation nuclei (CCN) formation [e.g., Yu, 2001; Dickinson, 1975]. Because the GCRs are modulated by the interaction between the solar wind and the Earth's magnetosphere and their intensity generally decreases with increasing solar activity, subtle changes in the solar activity could indirectly affect the Earth's climate. We have been studying the very first steps of ionic nucleation considering the molecular species of atmospheric interest (e.g.,water, nitric acid, sulfuric acid, ammonia etc.). In our approach the formation and evolution of ionic clusters is followed by resolving the time dependent kinetic aggregation process and considering the ions sources (ultimately the atmospheric ionization of neutral species) and sinks. We show how in typical atmospheric conditions stable populations of molecular ions forms. The novelty of our work consists in the determination of the kinetic parameters that govern the molecular ions growth (i.e., the forward and reverse clustering reaction constants for each cluster type and size) at a microscopic level. In fact a thermochemistry data base is built for the species of interest by integrating laboratory measurements, quantum mechanical calculations and, when appropriate, results from the macroscopic liquid droplet model [Thomson, 1928]. Such database is than used to retrieve the reverse clustering reaction coefficients for the molecular ion type and size and for the environmental conditions (pressure and temperature) of interest. The forward reaction is instead determined by calculating the ionic-neutral collisional rate or is assumed

  3. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-05-14

    The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  4. Cavitation nucleation in gelatin: Experiment and mechanism.

    Science.gov (United States)

    Kang, Wonmo; Adnan, Ashfaq; O'Shaughnessy, Thomas; Bagchi, Amit

    2018-02-01

    Dynamic cavitation in soft materials is becoming increasingly relevant due to emerging medical implications such as the potential of cavitation-induced brain injury or cavitation created by therapeutic medical devices. However, the current understanding of dynamic cavitation in soft materials is still very limited, mainly due to lack of robust experimental techniques. To experimentally characterize cavitation nucleation under dynamic loading, we utilize a recently developed experimental instrument, the integrated drop tower system. This technique allows quantitative measurements of the critical acceleration (a cr ) that corresponds to cavitation nucleation while concurrently visualizing time evolution of cavitation. Our experimental results reveal that a cr increases with increasing concentration of gelatin in pure water. Interestingly, we have observed the distinctive transition from a sharp increase (pure water to 1% gelatin) to a much slower rate of increase (∼10× slower) between 1% and 7.5% gelatin. Theoretical cavitation criterion predicts the general trend of increasing a cr , but fails to explain the transition rates. As a likely mechanism, we consider concentration-dependent material properties and non-spherical cavitation nucleation sites, represented by pre-existing bubbles in gels, due to possible interplay between gelatin molecules and nucleation sites. This analysis shows that cavitation nucleation is very sensitive to the initial configuration of a bubble, i.e., a non-spherical bubble can significantly increase a cr . This conclusion matches well with the experimentally observed liquid-to-gel transition in the critical acceleration for cavitation nucleation. From a medical standpoint, understanding dynamic cavitation within soft materials, i.e., tissues, is important as there are both potential injury implications (blast-induced cavitation within the brain) as well as treatments utilizing the phenomena (lithotripsy). In this regard, the main

  5. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  6. Influence of an oscillator bath on the nucleation rate

    International Nuclear Information System (INIS)

    Amritkar, R.E.

    1984-09-01

    The nucleation rate of a system in a metastable state coupled to an oscillator bath is considered. It is shown that for a weak coupling and small oscillator frequencies the nucleation rate increases. (author)

  7. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  8. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  9. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.

    Science.gov (United States)

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun

    2014-01-01

    Antheraea pernyi (A. pernyi) silk fibroin, which is spun from a wild silkworm, has increasingly attracted interest in the field of tissue engineering. The aim of this study was to investigate the nucleation of hydroxyapatite (HAp) on A. pernyi fibroin film. Von Kossa staining proved that A. pernyi fibroin had Ca binding activity. The A. pernyi fibroin film was mineralized with HAp crystals by alternative soaking in calcium and phosphate solutions. Spherical crystals were nucleated on the A. pernyi fibroin film according to scanning electron microscopeimaging results. The FT-IR and X-ray diffraction spectra confirmed that these spherical crystals were HAp. The results of in vitro cell culture using MG-63 cells demonstrated that the mineralized A. pernyi fibroin film showed excellent cytocompatibility and sound improvement of the MG-63 cellviability.

  10. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    Directory of Open Access Journals (Sweden)

    H. Yu

    2016-03-01

    Full Text Available Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014–2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity – RH and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm−3 s−1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56–0.86, excluding a day with significant nocturnal nucleation, but the correlation among all eight events deteriorated (R2 =  0.17 due to temperature or season change. We observed that new particle growth rate (GR did not increase monotonically with particle size, but had a local maximum up to 25 nm h−1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  11. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    Science.gov (United States)

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  12. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    Science.gov (United States)

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  13. On the Role of Ammonia in Arctic Aerosol Nucleation and Cloud Formation

    Science.gov (United States)

    Browse, J.; Dall'Osto, M.; Geels, C.; Skov, H.; Massling, A.; Boertmann, D.; Beddows, D.; Gordon, H.; Pringle, K.

    2017-12-01

    This study investigates the importance of ammonia in Arctic aerosol nucleation and the formation of cloud condensation nuclei (CCN) at high-latitudes. The importance of atmospheric nucleation processes to summertime Arctic aerosol concentration has been frequently noted at ground-stations, during campaigns and within models (which typically predict that the majority of aerosol in the Arctic summertime boundary layer derives from nucleation). However, as nucleation mechanisms in global models have increased in complexity (improving model skill globally) our skill in the Arctic has generally decreased. This decrease in model skill is likely due to a lack of organic compounds (monterpenes etc.) in the modelled high Arctic which have been identified as a key component in atmospheric nucleation in the mid-latitudes and thus incorporated into many global nucleation parametrisations. Recently it has been suggested that ammonia (also identified as a potentially important component in atmospheric nucleation) may control nucleation processes in the Arctic. However, the source (or sources) of Arctic ammonia remain unclear. Here, we use modelling, long-term aerosol in-situ observations, high resolution sea-ice satellite observations and new emission inventories to investigate the link between ammonia sources (including bird colonies, sea-ice melt and open ocean in the marginal ice zones) and nucleation events in the mid-to-high Arctic, and thus quantify the importance of individual ammonia sources to Arctic-wide CCN and cloud droplet populations.

  14. Nucleation of Recrystallization studied by EBSP and 3DXRD

    DEFF Research Database (Denmark)

    West, Stine

    2009-01-01

    When a deformed crystalline material is annealed, recrystallization will typically take place. In this process new perfect crystals nucleate and grow, consuming the deformation structure. Traditionally, nucleation theories state that the crystal orientations of these new grains were already present...... in the deformed state, but several experiments have shown the emergence of what appears to be new orientations. The purpose of the present project was to observe nucleation of recrystallization both on surfaces and in the bulk. Special focus was on the possible formation of nuclei with orientations not present...... in the deformed matrix before annealing. To facilitate the nucleation studies, a well-annealed starting material was prepared from high-purity aluminum with a large average grain size and almost straight grain boundaries mostly forming triple junctions with angles close to 120°. The large grain size was necessary...

  15. An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [Nuclear Research Centre for Agriculture and Medicine, AEOI, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)]. E-mail: mmojtahedzadeh@nrcam.org; Le Normand, F. [Groupe Surfaces-Interfaces, IPCMS, UMR 7504 CNRS, BP 20, 67037 Strasbourg Cedex 2 (France); Cregut, O. [Groupe Surfaces-Interfaces, IPCMS, UMR 7504 CNRS, BP 20, 67037 Strasbourg Cedex 2 (France)

    2007-02-15

    Optical emission spectroscopy (OES) was used to study the plasma generated by the activation of the gas phase CH{sub 4} + H{sub 2} both by hot filaments and by a plasma discharge (DC HF CVD) during the nucleation of CVD diamond. The effects of nucleation parameters, such as methane concentration and extraction potential, on the plasma chemistry near the surface were investigated. The density of the diamond nucleation and the quality of the diamond films were studied by scanning electron microscopy (SEM) and Raman scattering, respectively. The OES results showed that the methane concentration influenced strongly the intensity ratio of H{sub {beta}}-H{sub {alpha}} implying an increase of electron mean energy, as well as CH, CH{sup +}, C{sub 2}. A correlation between the relative increase of CH{sup +} and the diamond nucleation density was found, conversely the increase of C{sub 2} contributed to the introduction of defects in the diamond nuclei.

  16. Acoustic Effects in Classical Nucleation Theory

    Science.gov (United States)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  17. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    Science.gov (United States)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  18. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  19. Visualization of nucleate pool boiling of freon 113

    International Nuclear Information System (INIS)

    Afify, M.A.; Fruman, D.H.

    1987-01-01

    The purpose of this investigation is to give a fine description of the behaviour of vapour bubbles in nucleate pool boiling at sites of known sizes using high speed photography. The shapes and growth history of isolated bubbles were determined for a variety of experimental conditions. Coalescence effects between two adjacent or consecutive bubbles were also visualized and the occurrence of vapour patches and continuous vapour columns was demonstrated. Quantitative analysis of the films allows to determine the history and nucleation characteristics of bubbles as a function of various parameters such as heat flux, liquid subcooling and size and nature of nucleation sites. These results are in good agreement with those found in the literature

  20. A two-parameter extension of classical nucleation theory

    Science.gov (United States)

    Lutsko, James F.; Durán-Olivencia, Miguel A.

    2015-06-01

    A two-variable stochastic model for diffusion-limited nucleation is developed using a formalism derived from fluctuating hydrodynamics. The model is a direct generalization of the standard classical nucleation theory (CNT). The nucleation rate and pathway are calculated in the weak-noise approximation and are shown to be in good agreement with direct numerical simulations for the weak-solution/strong-solution transition in globular proteins. We find that CNT underestimates the time needed for the formation of a critical cluster by two orders of magnitude and that this discrepancy is due to the more complex dynamics of the two variable model and not, as often is assumed, a result of errors in the estimation of the free energy barrier.