WorldWideScience

Sample records for heterogeneous grid environments

  1. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    Science.gov (United States)

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time

  2. Job scheduling in a heterogenous grid environment

    Energy Technology Data Exchange (ETDEWEB)

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-02-11

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  3. Scheduling in Heterogeneous Grid Environments: The Effects of DataMigration

    Energy Technology Data Exchange (ETDEWEB)

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this goal can be fully realized. One problem critical to the effective utilization of computational grids is efficient job scheduling. Our prior work addressed this challenge by defining a grid scheduling architecture and several job migration strategies. The focus of this study is to explore the impact of data migration under a variety of demanding grid conditions. We evaluate our grid scheduling algorithms by simulating compute servers, various groupings of servers into sites, and inter-server networks, using real workloads obtained from leading supercomputing centers. Several key performance metrics are used to compare the behavior of our algorithms against reference local and centralized scheduling schemes. Results show the tremendous benefits of grid scheduling, even in the presence of input/output data migration - while highlighting the importance of utilizing communication-aware scheduling schemes.

  4. Large-scale visualization system for grid environment

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of Japan Atomic Energy Agency (CCSE/JAEA) has been conducting R and Ds of distributed computing (grid computing) environments: Seamless Thinking Aid (STA), Information Technology Based Laboratory (ITBL) and Atomic Energy Grid InfraStructure (AEGIS). In these R and Ds, we have developed the visualization technology suitable for the distributed computing environment. As one of the visualization tools, we have developed the Parallel Support Toolkit (PST) which can execute the visualization process parallely on a computer. Now, we improve PST to be executable simultaneously on multiple heterogeneous computers using Seamless Thinking Aid Message Passing Interface (STAMPI). STAMPI, we have developed in these R and Ds, is the MPI library executable on a heterogeneous computing environment. The improvement realizes the visualization of extremely large-scale data and enables more efficient visualization processes in a distributed computing environment. (author)

  5. Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid

    OpenAIRE

    Chen, Ruey-Maw; Wang, Chuin-Mu

    2011-01-01

    The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO) metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimo...

  6. A performance study on the synchronisation of heterogeneous Grid databases using CONStanza

    CERN Document Server

    Pucciani, G; Domenici, Andrea; Stockinger, Heinz

    2010-01-01

    In Grid environments, several heterogeneous database management systems are used in various administrative domains. However, data exchange and synchronisation need to be available across different sites and different database systems. In this article we present our data consistency service CONStanza and give details on how we achieve relaxed update synchronisation between different database implementations. The integration in existing Grid environments is one of the major goals of the system. Performance tests have been executed following a factorial approach. Detailed experimental results and a statistical analysis are presented to evaluate the system components and drive future developments. (C) 2010 Elsevier B.V. All rights reserved.

  7. GridRun: A lightweight packaging and execution environment forcompact, multi-architecture binaries

    Energy Technology Data Exchange (ETDEWEB)

    Shalf, John; Goodale, Tom

    2004-02-01

    GridRun offers a very simple set of tools for creating and executing multi-platform binary executables. These ''fat-binaries'' archive native machine code into compact packages that are typically a fraction the size of the original binary images they store, enabling efficient staging of executables for heterogeneous parallel jobs. GridRun interoperates with existing distributed job launchers/managers like Condor and the Globus GRAM to greatly simplify the logic required launching native binary applications in distributed heterogeneous environments.

  8. A Hierarchical and Distributed Approach for Mapping Large Applications to Heterogeneous Grids using Genetic Algorithms

    Science.gov (United States)

    Sanyal, Soumya; Jain, Amit; Das, Sajal K.; Biswas, Rupak

    2003-01-01

    In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.

  9. A 2-layer and P2P-based architecture on resource location in future grid environment

    International Nuclear Information System (INIS)

    Pei Erming; Sun Gongxin; Zhang Weiyi; Pang Yangguang; Gu Ming; Ma Nan

    2004-01-01

    Grid and Peer-to-Peer computing are two distributed resource sharing environments developing rapidly in recent years. The final objective of Grid, as well as that of P2P technology, is to pool large sets of resources effectively to be used in a more convenient, fast and transparent way. We can speculate that, though many difference exists, Grid and P2P environments will converge into a large scale resource sharing environment that combines the characteristics of the two environments: large diversity, high heterogeneity (of resources), dynamism, and lack of central control. Resource discovery in this future Grid environment is a basic however, important problem. In this article. We propose a two-layer and P2P-based architecture for resource discovery and design a detailed algorithm for resource request propagation in the computing environment discussed above. (authors)

  10. Project Scheduling Heuristics-Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid

    Directory of Open Access Journals (Sweden)

    Ruey-Maw Chen

    2011-01-01

    Full Text Available The task scheduling problem has been widely studied for assigning resources to tasks in heterogeneous grid environment. Effective task scheduling is an important issue for the performance of grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this investigation introduces a named “standard“ particle swarm optimization (PSO metaheuristic approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising heuristics based on multimode project scheduling are proposed to help in solving interesting scheduling problems. They are the best performance resource heuristic and the latest finish time heuristic. These two heuristics applied to the PSO scheme are for speeding up the search of the particle and improving the capability of finding a sound schedule. Moreover, both global communication topology and local ring communication topology are also investigated for efficient study of proposed scheme. Simulation results demonstrate that the proposed approach in this investigation can successfully solve the task-resource assignment problems in grid computing and similar scheduling problems.

  11. A heterogeneous computing environment to solve the 768-bit RSA challenge

    OpenAIRE

    Kleinjung, Thorsten; Bos, Joppe Willem; Lenstra, Arjen K.; Osvik, Dag Arne; Aoki, Kazumaro; Contini, Scott; Franke, Jens; Thomé, Emmanuel; Jermini, Pascal; Thiémard, Michela; Leyland, Paul; Montgomery, Peter L.; Timofeev, Andrey; Stockinger, Heinz

    2010-01-01

    In December 2009 the 768-bit, 232-digit number RSA-768 was factored using the number field sieve. Overall, the computational challenge would take more than 1700 years on a single, standard core. In the article we present the heterogeneous computing approach, involving different compute clusters and Grid computing environments, used to solve this problem.

  12. Visual Climate Knowledge Discovery within a Grid Environment

    Science.gov (United States)

    Heitzler, Magnus; Kiertscher, Simon; Lang, Ulrich; Nocke, Thomas; Wahnes, Jens; Winkelmann, Volker

    2013-04-01

    The C3Grid-INAD project aims to provide a common grid infrastructure for the climate science community to improve access to climate related data and domain workflows via the Internet. To make sense of the heterogeneous, often large-sized or even dynamically generated and modified files originating from C3Grid, a highly flexible and user-friendly analysis software is needed to run on different high-performance computing nodes within the grid environment, when requested by a user. Because visual analysis tools directly address human visual perception and therefore are being considered to be highly intuitive, two distinct visualization workflows have been integrated in C3Grid-INAD, targeting different application backgrounds. First, a GrADS-based workflow enables the ad-hoc visualization of selected datasets in respect to data source, temporal and spatial extent, as well as variables of interest. Being low in resource demands, this workflow allows for users to gain fast insights through basic spatial visualization. For more advanced visual analysis purposes, a second workflow enables the user to start a visualization session via Virtual Network Computing (VNC) and VirtualGL to access high-performance computing nodes on which a wide variety of different visual analysis tools are provided. These are made available using the easy-to-use software system SimEnvVis. Considering metadata as well as user preferences and analysis goals, SimEnvVis evaluates the attached tools and launches the selected visual analysis tool by providing a dynamically parameterized template. This approach facilitates the selection of the most suitable tools, and at the same time eases the process of familiarization with them. Because of a higher demand for computational resources, SimEnvVis-sessions are restricted to a smaller set of users at a time. This architecture enables climate scientists not only to remotely access, but also to visually analyze highly heterogeneous data originating from C3

  13. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.

    Science.gov (United States)

    Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M

    2018-05-11

    Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.

  14. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Tarek Khalifa

    2018-05-01

    Full Text Available Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.

  15. Additional Security Considerations for Grid Management

    Science.gov (United States)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  16. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    Science.gov (United States)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is

  17. Heterogeneous Embedded Real-Time Systems Environment

    Science.gov (United States)

    2003-12-01

    AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259

  18. Analyzing Grid Log Data with Affinity Propagation

    NARCIS (Netherlands)

    Modena, G.; van Someren, M.W.; Ali, M; Bosse, T.; Hindriks, K.V.; Hoogendoorn, M.; Jonker, C.M; Treur, J.

    2013-01-01

    In this paper we present an unsupervised learning approach to detect meaningful job traffic patterns in Grid log data. Manual anomaly detection on modern Grid environments is troublesome given their increasing complexity, the distributed, dynamic topology of the network and heterogeneity of the jobs

  19. Optimization of application execution in the GridSpace environment

    NARCIS (Netherlands)

    Malawski, M.; Kocot, J.; Ryszka, I.; Bubak, M.; Wieczorek, M.; Fahringer, T.

    2008-01-01

    This paper describes an approach to optimization of execution of applications in the GridSpace environment. In this environment operations are invoked on special objects which reside on Grid resources what requires a specific approach to optimization of execution. This approach is implemented in the

  20. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.

    2005-01-01

    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  1. Workload Balancing on Heterogeneous Systems: A Case Study of Sparse Grid Interpolation

    KAUST Repository

    Muraraşu, Alin

    2012-01-01

    Multi-core parallelism and accelerators are becoming common features of today’s computer systems, as they allow for computational power without sacrificing energy efficiency. Due to heterogeneity, tuning for each type of compute unit and adequate load balancing is essential. This paper proposes static and dynamic solutions for load balancing in the context of an application for visualizing high-dimensional simulation data. The application relies on the sparse grid technique for data compression. Its performance critical part is the interpolation routine used for decompression. Results show that our load balancing scheme allows for an efficient acceleration of interpolation on heterogeneous systems containing multi-core CPUs and GPUs.

  2. A new ghost-node method for linking different models and initial investigations of heterogeneity and nonmatching grids

    Science.gov (United States)

    Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.

    2007-01-01

    A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly

  3. Job execution in virtualized runtime environments in grid

    International Nuclear Information System (INIS)

    Shamardin, Lev; Demichev, Andrey; Gorbunov, Ilya; Ilyin, Slava; Kryukov, Alexander

    2010-01-01

    Grid systems are used for calculations and data processing in various applied areas such as biomedicine, nanotechnology and materials science, cosmophysics and high energy physics as well as in a number of industrial and commercial areas. Traditional method of execution of jobs in grid is running jobs directly on the cluster nodes. This puts restrictions on the choice of the operational environment to the operating system of the node and also does not allow to enforce resource sharing policies or jobs isolation nor guarantee minimal level of available system resources. We propose a new approach to running jobs on the cluster nodes when each grid job runs in its own virtual environment. This allows to use different operating systems for different jobs on the same nodes in cluster, provides better isolation between running jobs and allows to enforce resource sharing policies. The implementation of the proposed approach was made in the framework of gLite middleware of the EGEE/WLCG project and was successfully tested in SINP MSU. The implementation is transparent for the grid user and allows to submit binaries compiled for various operating systems using exactly the same gLite interface. Virtual machine images with the standard gLite worker node software and sample MS Windows execution environment were created.

  4. Integration of heterogeneous industrial consumers to provide regulating power to the smart grid

    DEFF Research Database (Denmark)

    Rahnama, Samira; Stoustrup, Jakob; Rasmussen, Henrik

    2013-01-01

    In this paper, we propose a framework to utilize the flexibility of consumers in the future smart grid with a high share of fluctuating power. Focus is on industrial cases, where a total power consumption of a few number of consumers are large enough in order to bid in the market. Heterogeneous...

  5. Performance Analysis of Information Services in a Grid Environment

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-10-01

    Full Text Available The Information Service is a fundamental component in a grid environment. It has to meet a lot of requirements such as access to static and dynamic information related to grid resources, efficient and secure access to dynamic data, decentralized maintenance, fault tolerance etc., in order to achieve better performance, scalability, security and extensibility. Currently there are two different major approaches. One is based on a directory infrastructure and another one on a novel approach that exploits a relational DBMS. In this paper we present a performance comparison analysis between Grid Resource Information Service (GRIS and Local Dynamic Grid Catalog relational information service (LDGC, providing also information about two projects (iGrid and Grid Relational Catalog in the grid data management area.

  6. Grid planning in a competitive environment

    International Nuclear Information System (INIS)

    Quinto, J. de

    2007-01-01

    One principle that the electricity sector must fulfil is to simultaneously guarantee generation free entrance, new and old demand supply and a harmonic network development. This development is contained in the grid planning, a process assumed by a neutral institution apart from the grid or the interests of the market agents: In the case of Spain the ministry. The development of such planning, the investment to be built, are limited by the physical network and formal structure and by how the retribution is designed. In this article there is an evaluation of the problems related to develop the network planning in a competitive environment and also some proposals are suggested. (Author)

  7. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    Science.gov (United States)

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework

  8. Operational security in a grid environment

    CERN Document Server

    CERN. Geneva

    2008-01-01

    This talk presents the main goals of computer security in a grid environment, by using a FAQ approach. It details the evolution of the risks in the recent years, likely objectives for attackers and the progress made by the malware toolkits and frameworks. Finally, recommendations to deal with these threats are proposed.

  9. OGC and Grid Interoperability in enviroGRIDS Project

    Science.gov (United States)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  10. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    Science.gov (United States)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the

  11. Carrying capacity in a heterogeneous environment with habitat connectivity.

    Science.gov (United States)

    Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David

    2017-09-01

    A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Permafrost sub-grid heterogeneity of soil properties key for 3-D soil processes and future climate projections

    Directory of Open Access Journals (Sweden)

    Christian Beer

    2016-08-01

    Full Text Available There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2 deg C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.

  13. Adaptive Monitoring and Control Architectures for Power Distribution Grids over Heterogeneous ICT Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Hägerling, Christian; Kurtz, Fabian M.

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the q......The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...... to the reliability due to the stochastic behaviour found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments. An overview on the required Information and Communication Technology (ICT) architecture and its...

  14. Security on the US Fusion Grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  15. Security on the US Fusion Grid

    International Nuclear Information System (INIS)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  16. Security on the US fusion grid

    International Nuclear Information System (INIS)

    Burruss, J.R.; Fredian, T.W.; Thompson, M.R.

    2006-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This has led to the development of the U.S. fusion grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large U.S. fusion research facilities and with users both in the U.S. and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  17. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  18. Context-Aware Usage-Based Grid Authorization Framework

    Institute of Scientific and Technical Information of China (English)

    CUI Yongquan; HONG Fan; FU Cai

    2006-01-01

    Due to inherent heterogeneity, multi-domain characteristic and highly dynamic nature, authorization is a critical concern in grid computing. This paper proposes a general authorization and access control architecture, grid usage control (GUCON), for grid computing. It's based on the next generation access control mechanism usage control (UCON) model. The GUCON Framework dynamic grants and adapts permission to the subject based on a set of contextual information collected from the system environments; while retaining the authorization by evaluating access requests based on subject attributes, object attributes and requests. In general, GUCON model provides very flexible approaches to adapt the dynamically security request. GUCON model is being implemented in our experiment prototype.

  19. Development and verification of remote research environment based on 'Fusion research grid'

    International Nuclear Information System (INIS)

    Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro

    2008-01-01

    'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed

  20. Evaluation of mosix-Linux farm performances in GRID environment

    International Nuclear Information System (INIS)

    Barone, F.; Rosa, M.de; Rosa, R.de.; Eleuteri, A.; Esposito, R.; Mastroserio, P.; Milano, L.; Taurino, F.; Tortone, G.

    2001-01-01

    The MOSIX extensions to the Linux Operating System allow the creation of high-performance Linux Farms and an excellent integration of the several CPUs of the Farm, whose computational power can be furtherly increased and made more effective by networking them within the GRID environment. Following this strategy, the authors started to perform computational tests using two independent farms within the GRID environment. In particular, the authors performed a preliminary evaluation of the distributed computing efficiency with a MOSIX Linux farm in the simulation of gravitational waves data analysis from coalescing binaries. To this task, two different techniques were compared: the classical matched filters technique and one of its possible evolutions, based on a global optimisation technique

  1. Data security on the national fusion grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  2. Data security on the national fusion grid

    International Nuclear Information System (INIS)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  3. A Semantic Middleware Architecture Focused on Data and Heterogeneity Management within the Smart Grid

    Directory of Open Access Journals (Sweden)

    Rubén de Diego

    2014-09-01

    Full Text Available There is an increasing tendency of turning the current power grid, essentially unaware of variations in electricity demand and scattered energy sources, into something capable of bringing a degree of intelligence by using tools strongly related to information and communication technologies, thus turning into the so-called Smart Grid. In fact, it could be considered that the Smart Grid is an extensive smart system that spreads throughout any area where power is required, providing a significant optimization in energy generation, storage and consumption. However, the information that must be treated to accomplish these tasks is challenging both in terms of complexity (semantic features, distributed systems, suitable hardware and quantity (consumption data, generation data, forecasting functionalities, service reporting, since the different energy beneficiaries are prone to be heterogeneous, as the nature of their own activities is. This paper presents a proposal on how to deal with these issues by using a semantic middleware architecture that integrates different components focused on specific tasks, and how it is used to handle information at every level and satisfy end user requests.

  4. Heterogeneous networking in the home environment

    OpenAIRE

    Bolla, Raffaele; Davoli, Franco; Repetto, Matteo; Fragopoulos, Tasos; Serpanos, D.; Chessa, Stefano; Ferro, Erina

    2006-01-01

    The management and control at multiple protocol layers of a heterogeneous networking structure, to support multimedia applications in the home environment, is considered. The paper examines possible scenarios, and corresponding architectural solutions, also in the light of existing wireless and sensor networks technologies.

  5. AliEn: ALICE environment on the GRID

    International Nuclear Information System (INIS)

    Bagnasco, S; Betev, L; Buncic, P; Carminati, F; Cirstoiu, C; Grigoras, C; Hayrapetyan, A; Harutyunyan, A; Peters, A J; Saiz, P

    2008-01-01

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap

  6. AliEn: ALICE Environment on the GRID

    CERN Multimedia

    Bagnasco, S; Buncic, P; Carminati, F; Cirstoiu, C; Grigoras, C; Hayrapetyan, A; Harutyunyan, A; Peters, A J; Saiz, P

    2007-01-01

    Starting from mid-2008, the ALICE detector at CERN LHC will collect data at a rate of 4PB per year. ALICE will use exclusively distributed Grid resources to store, process and analyse this data. The top-level management of the Grid resources is done through the AliEn (ALICE Environment) system, which is in continuous development since year 2000. AliEn presents several original solutions, which have shown their viability in a number of large exercises of increasing complexity called Data Challenges. This paper describes the AliEn architecture: Job Management, Data Management and UI. The current status of AliEn will be illustrated, as well as the performance of the system during the data challenges. The paper also describes the future AliEn development roadmap.

  7. Distributed Data Management on the Petascale using Heterogeneous Grid Infrastructures with DQ2

    CERN Document Server

    Branco, M; Salgado, P; Lassnig, M

    2008-01-01

    We describe Don Quijote 2 (DQ2), a new approach to the management of large scientific datasets by a dedicated middleware. This middleware is designed to handle the data organisation and data movement on the petascale for the High-Energy Physics Experiment ATLAS at CERN. DQ2 is able to maintain a well-defined quality of service in a scalable way, guarantees data consistency for the collaboration and bridges the gap between EGEE, OSG and NorduGrid infrastructures to enable true interoperability. DQ2 is specifically designed to support the access and management of large scientific datasets produced by the ATLAS experiment using heterogeneous Grid infrastructures. The DQ2 middleware manages those datasets with global services, local site services and enduser interfaces. The global services, or central catalogues, are responsible for the mapping of individual files onto DQ2 datasets. The local site services are responsible for tracking files available on-site, managing data movement and guaranteeing consistency of...

  8. Authentication Method for Privacy Protection in Smart Grid Environment

    Directory of Open Access Journals (Sweden)

    Do-Eun Cho

    2014-01-01

    Full Text Available Recently, the interest in green energy is increasing as a means to resolve problems including the exhaustion of the energy source and, effective management of energy through the convergence of various fields. Therefore, the projects of smart grid which is called intelligent electrical grid for the accomplishment of low carbon green growth are being carried out in a rush. However, as the IT is centered upon the electrical grid, the shortage of IT also appears in smart grid and the complexity of convergence is aggravating the problem. Also, various personal information and payment information within the smart grid are gradually becoming big data and target for external invasion and attack; thus, there is increase in concerns for this matter. The purpose of this study is to analyze the security vulnerabilities and security requirement within smart grid and the authentication and access control method for privacy protection within home network. Therefore, we propose a secure access authentication and remote control method for user’s home device within home network environment, and we present their security analysis. The proposed access authentication method blocks the unauthorized external access and enables secure remote access to home network and its devices with a secure message authentication protocol.

  9. Dynamically Authorized Role-Based Access Control for Grid Applications

    Institute of Scientific and Technical Information of China (English)

    YAO Hanbing; HU Heping; LU Zhengding; LI Ruixuan

    2006-01-01

    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations". The heterogeneous, dynamic and multi-domain nature of these environments makes challenging security issues that demand new technical approaches. Despite the recent advances in access control approaches applicable to Grid computing, there remain issues that impede the development of effective access control models for Grid applications. Among them there are the lack of context-based models for access control, and reliance on identity or capability-based access control schemes. An access control scheme that resolve these issues is presented, and a dynamically authorized role-based access control (D-RBAC) model extending the RBAC with context constraints is proposed. The D-RABC mechanisms dynamically grant permissions to users based on a set of contextual information collected from the system and user's environments, while retaining the advantages of RBAC model. The implementation architecture of D-RBAC for the Grid application is also described.

  10. HeNCE: A Heterogeneous Network Computing Environment

    Directory of Open Access Journals (Sweden)

    Adam Beguelin

    1994-01-01

    Full Text Available Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM. The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.

  11. Grid Enabled Geospatial Catalogue Web Service

    Science.gov (United States)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  12. Heuristic Scheduling in Grid Environments: Reducing the Operational Energy Demand

    Science.gov (United States)

    Bodenstein, Christian

    In a world where more and more businesses seem to trade in an online market, the supply of online services to the ever-growing demand could quickly reach its capacity limits. Online service providers may find themselves maxed out at peak operation levels during high-traffic timeslots but too little demand during low-traffic timeslots, although the latter is becoming less frequent. At this point deciding which user is allocated what level of service becomes essential. The concept of Grid computing could offer a meaningful alternative to conventional super-computing centres. Not only can Grids reach the same computing speeds as some of the fastest supercomputers, but distributed computing harbors a great energy-saving potential. When scheduling projects in such a Grid environment however, simply assigning one process to a system becomes so complex in calculation that schedules are often too late to execute, rendering their optimizations useless. Current schedulers attempt to maximize the utility, given some sort of constraint, often reverting to heuristics. This optimization often comes at the cost of environmental impact, in this case CO 2 emissions. This work proposes an alternate model of energy efficient scheduling while keeping a respectable amount of economic incentives untouched. Using this model, it is possible to reduce the total energy consumed by a Grid environment using 'just-in-time' flowtime management, paired with ranking nodes by efficiency.

  13. Transfers in heterogeneous environments; Transferts en milieux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Flesselles, J M [Saint-Gobain Recherche, 93 - Aubervilliers (France); Gouesbet, G; Mees, L; Roze, C; Girasole, Th; Grehan, G [Laboratoire d' Electromagnetisme et Systemes Particulaires (LESP), UMR CNRS 6614, CORIA. Universite de Rouen et INSA de Rouen, 76 - Saint-Etienne du Rouvray (France); Goyheneche, J M; Vignoles, G; Coindreau, O [Laboratoire des Composites Thermostructuraux (LCTS), UMR 5801, 33 - Pessac (France); Moyne, Ch [LEMTA (UMR 7563) CNRS-INPL-UHP, 54 - Vandoeuvre les Nancy (France); Coussy, O [Institut Navier - ENPC, 77 - Marne-la-Vallee (France); Lassabatere, Th [Electricite de France Les Renardieres, Dept. Materiaux Mecanique des Composants, 77 - Moret sur Loing (France); Tadrist, L [IUSTI - UMR 6595, 13 - Marseille (France)

    2004-07-01

    This document gathers the articles and transparencies of the invited talks given at the 2004 French congress of thermal engineering about transfers in heterogeneous environment. Content: transfer phenomena in industrial glass furnaces; simple and multiple scattering diagnosis by femto-second pulsed laser: application to particulate diagnoses; thermal modeling of thermo-structural composites; hybrid mixtures theory, average volumic measurement, periodical or stochastic homogenization: advance in scale change processes; thermo-hydro-chemical-mechanical coupling in porous medium: application to young concrete structures and to clay barriers of disposal facilities; transfers and flows in fluidization: recent advances and future challenges. (J.S.)

  14. The Grid

    CERN Document Server

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  15. Assessment of heterogeneous geological environment using geostatistical techniques

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-02-01

    'Geoscientific' research at Tono are developing site investigation and assessment techniques in geological environment. One of their important themes is to establish rational methodology to reduce uncertainties associated with the understanding of geological environment, which often exhibits significant heterogeneity. Purpose of this study is to identify and evaluate uncertainties associated with the understanding of geological environment. Because it is useful to guide designing effective site investigation techniques to reduce the uncertainty. For this, a methodology of the uncertainty analysis concerning the heterogeneous geological environment has been developed. In this report the methodology has also been tested through an exercise attempted in Tono area to demonstrate its applicability. This report summarizes as follows: 1) The exercise shows that the methodology considered 'variability' and 'ignorance' can demonstrate its applicability at three-dimensional case. 2) The exercise shows that the methodology can identity and evaluate uncertainties concerning ground water flow associated with performance assessment. 3) Based on sensitivity analyses, it is possible for the methodology to support designs of the following stage investigations to reduce the uncertainties efficiently. (author)

  16. An Effective Framework for Distributed Geospatial Query Processing in Grids

    Directory of Open Access Journals (Sweden)

    CHEN, B.

    2010-08-01

    Full Text Available The emergence of Internet has greatly revolutionized the way that geospatial information is collected, managed, processed and integrated. There are several important research issues to be addressed for distributed geospatial applications. First, the performance of geospatial applications is needed to be considered in the Internet environment. In this regard, the Grid as an effective distributed computing paradigm is a good choice. The Grid uses a series of middleware to interconnect and merge various distributed resources into a super-computer with capability of high performance computation. Secondly, it is necessary to ensure the secure use of independent geospatial applications in the Internet environment. The Grid just provides the utility of secure access to distributed geospatial resources. Additionally, it makes good sense to overcome the heterogeneity between individual geospatial information systems in Internet. The Open Geospatial Consortium (OGC proposes a number of generalized geospatial standards e.g. OGC Web Services (OWS to achieve interoperable access to geospatial applications. The OWS solution is feasible and widely adopted by both the academic community and the industry community. Therefore, we propose an integrated framework by incorporating OWS standards into Grids. Upon the framework distributed geospatial queries can be performed in an interoperable, high-performance and secure Grid environment.

  17. AliEn - ALICE environment on the GRID

    International Nuclear Information System (INIS)

    Saiz, P.; Aphecetche, L.; Buncic, P.; Piskac, R.; Revsbech, J.-E.; Sego, V.

    2003-01-01

    AliEn (http://alien.cern.ch) (ALICE Environment) is a Grid framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed datasets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging. In the paper we will present the architecture and components of the system

  18. AliEn - ALICE environment on the GRID

    CERN Document Server

    Saiz, P; Buncic, P; Piskac, R; Revsbech, J E; Sego, V

    2003-01-01

    AliEn (http://alien.cern.ch) (ALICE Environment) is a Grid framework built on top of the latest Internet standards for information exchange and authentication (SOAP, PKI) and common Open Source components. AliEn provides a virtual file catalogue that allows transparent access to distributed datasets and a number of collaborating Web services which implement the authentication, job execution, file transport, performance monitor and event logging. In the paper we will present the architecture and components of the system.

  19. Visualization system for grid environment in the nuclear field

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Matsumoto, Nobuko; Idomura, Yasuhiro; Tani, Masayuki

    2006-01-01

    An innovative scientific visualization system is needed to integratedly visualize large amount of data which are distributedly generated in remote locations as a result of a large-scale numerical simulation using a grid environment. One of the important functions in such a visualization system is a parallel visualization which enables to visualize data using multiple CPUs of a supercomputer. The other is a distributed visualization which enables to execute visualization processes using a local client computer and remote computers. We have developed a toolkit including these functions in cooperation with the commercial visualization software AVS/Express, called Parallel Support Toolkit (PST). PST can execute visualization processes with three kinds of parallelism (data parallelism, task parallelism and pipeline parallelism) using local and remote computers. We have evaluated PST for large amount of data generated by a nuclear fusion simulation. Here, two supercomputers Altix3700Bx2 and Prism installed in JAEA are used. From the evaluation, it can be seen that PST has a potential to efficiently visualize large amount of data in a grid environment. (author)

  20. ENHANCED HYBRID PSO – ACO ALGORITHM FOR GRID SCHEDULING

    Directory of Open Access Journals (Sweden)

    P. Mathiyalagan

    2010-07-01

    Full Text Available Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, heuristic approaches based on particle swarm optimization and ant colony optimization algorithms are adopted for solving task scheduling problems in grid environment. Particle Swarm Optimization (PSO is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result. The ACO algorithm is improved by modifying the pheromone updating rule. ACO algorithm is hybridized with PSO algorithm for efficient result and better convergence in PSO algorithm.

  1. Plio-Pleistocene climate change and geographic heterogeneity in plant diversity-environment relationships

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Normand, Signe; Skov, Flemming

    2009-01-01

    Plio-Pleistocene climate change may have induced geographic heterogeneity in plant species richness-environment relationships in Europe due to greater in situ species survival and speciation rates in southern Europe. We formulate distinct hypotheses on how Plio-Pleistocene climate change may have...... affected richness-topographic heterogeneity and richness-water-energy availability relationships, causing steeper relationships in southern Europe. We investigated these hypotheses using data from Atlas Florae Europaeae on the distribution of 3069 species and geographically weighted regression (GWR). Our...... analyses showed that plant species richness generally increased with topographic heterogeneity (ln-transformed altitudinal range) and actual evapotranspiration (AET). We also found evidence for strong geographic heterogeneity in the species richness-environment relationship, with a greater increase...

  2. Integration operators for generating RDF/OWL-based user defined mediator views in a grid environment

    OpenAIRE

    Tawil, Abdel-Rahman H.; Taweel, Adel; Naeem, Usman; Montebello, Matthew; Bashroush, Rabih; Al-Nemrat, Ameer

    2014-01-01

    Research and development activities relating to the grid have generally focused on applications where data is stored in files. However, many scientific and commercial applications are highly dependent on Information Servers (ISs) for storage and organization of their data. A data-information system that supports operations on multiple information servers in a grid environment is referred to as an interoperable grid system. Different perceptions by end-users of interoperable systems in a grid ...

  3. AXAF user interfaces for heterogeneous analysis environments

    Science.gov (United States)

    Mandel, Eric; Roll, John; Ackerman, Mark S.

    1992-01-01

    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors

  4. Optimization Techniques for Dimensionally Truncated Sparse Grids on Heterogeneous Systems

    KAUST Repository

    Deftu, A.

    2013-02-01

    Given the existing heterogeneous processor landscape dominated by CPUs and GPUs, topics such as programming productivity and performance portability have become increasingly important. In this context, an important question refers to how can we develop optimization strategies that cover both CPUs and GPUs. We answer this for fastsg, a library that provides functionality for handling efficiently high-dimensional functions. As it can be employed for compressing and decompressing large-scale simulation data, it finds itself at the core of a computational steering application which serves us as test case. We describe our experience with implementing fastsg\\'s time critical routines for Intel CPUs and Nvidia Fermi GPUs. We show the differences and especially the similarities between our optimization strategies for the two architectures. With regard to our test case for which achieving high speedups is a "must" for real-time visualization, we report a speedup of up to 6.2x times compared to the state-of-the-art implementation of the sparse grid technique for GPUs. © 2013 IEEE.

  5. Access Selection Algorithm of Heterogeneous Wireless Networks for Smart Distribution Grid Based on Entropy-Weight and Rough Set

    Science.gov (United States)

    Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang

    2017-11-01

    To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.

  6. Task-and-role-based access-control model for computational grid

    Institute of Scientific and Technical Information of China (English)

    LONG Tao; HONG Fan; WU Chi; SUN Ling-li

    2007-01-01

    Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.

  7. NetJobs: A new approach to network monitoring for the Grid using Grid jobs

    OpenAIRE

    Pagano, Alfredo

    2011-01-01

    With grid computing, the far-fl�ung and disparate IT resources act as a single "virtual datacenter". Grid computing interfaces heterogeneous IT resources so they are available when and where we need them. Grid allows us to provision applications and allocate capacity among research and business groups that are geographically and organizationally dispersed. Building a high availability Grid is hold as the next goal to achieve: protecting against computer failures and site failures to avoid dow...

  8. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    Directory of Open Access Journals (Sweden)

    Jongbin Ko

    2014-01-01

    Full Text Available A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  9. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    Science.gov (United States)

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  10. An integration bridge for heterogeneous e-service environments

    OpenAIRE

    Baeta, Henrique Jorge Lourenço

    2012-01-01

    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores Home automation has evolved from a single integration of services (provided by devices, equipment, etc.) in the environment to a more broad integration of these core services with others(external to the environment) to create some added-value services for home users. This presents a key challenge of how to integrate disparate and heterogeneous e-service networks. To this, there exist already...

  11. Distributed Framework for Prototyping of Observability Concepts in Smart Grids

    DEFF Research Database (Denmark)

    Prostejovsky, Alexander; Gehrke, Oliver; Kosek, Anna Magdalena

    2015-01-01

    —Development and testing of distributed monitoring, visualisation, and decision support concepts for future power systems require appropriate modelling tools that represent both the electrical side of the grid, as well as the communication and logical relations between the acting entities....... This work presents an Observability Framework for distributed data acquisition and knowledge inference that aims to facilitate the development of these distributed concepts. They are realised as applications that run within the framework and are able to access the information on the grid topology and states...... via an abstract information model. Data is acquired dynamically over low-level data interfaces that allow for easy integration within heterogeneous environments. A Multi-Agent System platform was chosen for implementation, where agents represent the different electrical and logical grid elements...

  12. Smart Control of Energy Distribution Grids over Heterogeneous Communication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Iov, Florin; Hägerling, Christian

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the qu......The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...

  13. The architecture of a virtual grid GIS server

    Science.gov (United States)

    Wu, Pengfei; Fang, Yu; Chen, Bin; Wu, Xi; Tian, Xiaoting

    2008-10-01

    The grid computing technology provides the service oriented architecture for distributed applications. The virtual Grid GIS server is the distributed and interoperable enterprise application GIS architecture running in the grid environment, which integrates heterogeneous GIS platforms. All sorts of legacy GIS platforms join the grid as members of GIS virtual organization. Based on Microkernel we design the ESB and portal GIS service layer, which compose Microkernel GIS. Through web portals, portal GIS services and mediation of service bus, following the principle of SoC, we separate business logic from implementing logic. Microkernel GIS greatly reduces the coupling degree between applications and GIS platforms. The enterprise applications are independent of certain GIS platforms, and making the application developers to pay attention to the business logic. Via configuration and orchestration of a set of fine-grained services, the system creates GIS Business, which acts as a whole WebGIS request when activated. In this way, the system satisfies a business workflow directly and simply, with little or no new code.

  14. Protect Heterogeneous Environment Distributed Computing from Malicious Code Assignment

    Directory of Open Access Journals (Sweden)

    V. S. Gorbatov

    2011-09-01

    Full Text Available The paper describes the practical implementation of the protection system of heterogeneous environment distributed computing from malicious code for the assignment. A choice of technologies, development of data structures, performance evaluation of the implemented system security are conducted.

  15. Development of a Smart Grid Simulation Environment

    OpenAIRE

    Delamare, J; Bitachon, B.; Peng, Z.; Wang, Y.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    2015-01-01

    With the increased integration of renewable energy sources the interaction between energy producers and consumers has become a bi-directional exchange. Therefore, the electrical grid must be adapted into a smart grid which effectively regulates this two-way interaction. With the aid of simulation, stakeholders can obtain information on how to properly develop and control the smart grid. In this paper, we present the development of an integrated smart grid simulation model, using the Anylogic ...

  16. Dynamic workload balancing of parallel applications with user-level scheduling on the Grid

    CERN Document Server

    Korkhov, Vladimir V; Krzhizhanovskaya, Valeria V

    2009-01-01

    This paper suggests a hybrid resource management approach for efficient parallel distributed computing on the Grid. It operates on both application and system levels, combining user-level job scheduling with dynamic workload balancing algorithm that automatically adapts a parallel application to the heterogeneous resources, based on the actual resource parameters and estimated requirements of the application. The hybrid environment and the algorithm for automated load balancing are described, the influence of resource heterogeneity level is measured, and the speedup achieved with this technique is demonstrated for different types of applications and resources.

  17. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    Science.gov (United States)

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.

  18. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment

    Science.gov (United States)

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2013-01-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  19. Scaling between reanalyses and high-resolution land-surface modelling in mountainous areas - enabling better application and testing of reanalyses in heterogeneous environments

    Science.gov (United States)

    Gruber, S.; Fiddes, J.

    2013-12-01

    In mountainous topography, the difference in scale between atmospheric reanalyses (typically tens of kilometres) and relevant processes and phenomena near the Earth surface, such as permafrost or snow cover (meters to tens of meters) is most obvious. This contrast of scales is one of the major obstacles to using reanalysis data for the simulation of surface phenomena and to confronting reanalyses with independent observation. At the example of modelling permafrost in mountain areas (but simple to generalise to other phenomena and heterogeneous environments), we present and test methods against measurements for (A) scaling atmospheric data from the reanalysis to the ground level and (B) smart sampling of the heterogeneous landscape in order to set up a lumped model simulation that represents the high-resolution land surface. TopoSCALE (Part A, see http://dx.doi.org/10.5194/gmdd-6-3381-2013) is a scheme, which scales coarse-grid climate fields to fine-grid topography using pressure level data. In addition, it applies necessary topographic corrections e.g. those variables required for computation of radiation fields. This provides the necessary driving fields to the LSM. Tested against independent ground data, this scheme has been shown to improve the scaling and distribution of meteorological parameters in complex terrain, as compared to conventional methods, e.g. lapse rate based approaches. TopoSUB (Part B, see http://dx.doi.org/10.5194/gmd-5-1245-2012) is a surface pre-processor designed to sample a fine-grid domain (defined by a digital elevation model) along important topographical (or other) dimensions through a clustering scheme. This allows constructing a lumped model representing the main sources of fine-grid variability and applying a 1D LSM efficiently over large areas. Results can processed to derive (i) summary statistics at coarse-scale re-analysis grid resolution, (ii) high-resolution data fields spatialized to e.g., the fine-scale digital elevation

  20. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  1. A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design

    Science.gov (United States)

    Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.

    2018-01-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework’s performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative

  2. A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.; Pal, Seemita; Rice, Mark J.; Gourisetti, Sri Nikhil Gup

    2017-09-19

    The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliability and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.

  3. Identifying Heterogeneities in Subsurface Environment using the Level Set Method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hongzhuan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lu, Zhiming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vesselinov, Velimir Valentinov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    These are slides from a presentation on identifying heterogeneities in subsurface environment using the level set method. The slides start with the motivation, then explain Level Set Method (LSM), the algorithms, some examples are given, and finally future work is explained.

  4. The GRID seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The Grid infrastructure is a key part of the computing environment for the simulation, processing and analysis of the data of the LHC experiments. These experiments depend on the availability of a worldwide Grid infrastructure in several aspects of their computing model. The Grid middleware will hide much of the complexity of this environment to the user, organizing all the resources in a coherent virtual computer center. The general description of the elements of the Grid, their interconnections and their use by the experiments will be exposed in this talk. The computational and storage capability of the Grid is attracting other research communities beyond the high energy physics. Examples of these applications will be also exposed during the presentation.

  5. Action research to improve methods of delivery and feedback in an Access Grid Room environment

    Science.gov (United States)

    McArthur, Lynne C.; Klass, Lara; Eberhard, Andrew; Stacey, Andrew

    2011-12-01

    This article describes a qualitative study which was undertaken to improve the delivery methods and feedback opportunity in honours mathematics lectures which are delivered through Access Grid Rooms. Access Grid Rooms are facilities that provide two-way video and audio interactivity across multiple sites, with the inclusion of smart boards. The principal aim was to improve the student learning experience, given the new environment. The specific aspects of the course delivery that the study focused on included presentation of materials and provision of opportunities for interaction between the students and between students and lecturers. The practical considerations in the delivery of distance learning are well documented in the literature, and similar problems arise in the Access Grid Room environment; in particular, those of limited access to face-to-face interaction and the reduction in peer support. The nature of the Access Grid Room classes implies that students studying the same course can be physically situated in different cities, and possibly in different countries. When studying, it is important that students have opportunity to discuss new concepts with others; particularly their peers and their lecturer. The Access Grid Room environment also presents new challenges for the lecturer, who must learn new skills in the delivery of materials. The unique nature of Access Grid Room technology offers unprecedented opportunity for effective course delivery and positive outcomes for students, and was developed in response to a need to be able to interact with complex data, other students and the instructor, in real-time, at a distance and from multiple sites. This is a relatively new technology and as yet there has been little or no studies specifically addressing the use and misuse of the technology. The study found that the correct placement of cameras and the use of printed material and smart boards were all crucial to the student experience. In addition, the

  6. Integrated Design Engineering Analysis (IDEA) Environment Automated Generation of Structured CFD Grids using Topology Methods

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2012-01-01

    This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.

  7. Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities

    International Nuclear Information System (INIS)

    Niedzwiedz, K.; Wischnewski, A.; Monkenbusch, M.; Richter, D.; Strauch, M.; Straube, E.; Genix, A.-C.; Arbe, A.; Colmenero, J.

    2007-01-01

    We present a neutron scattering investigation on a miscible blend of two polymers with greatly different glass-transition temperatures T g . Under such conditions, the nearly frozen high-T g component imposes a random environment on the mobile chain. The results demand the consideration of a distribution of heterogeneous mobilities in the material and demonstrate that the larger scale dynamics of the fast component is not determined by the average local environment alone. This distribution of mobilities can be mapped quantitatively on the spectrum of local relaxation rates measured at high momentum transfers

  8. Open Science Grid (OSG) Ticket Synchronization: Keeping Your Home Field Advantage In A Distributed Environment

    International Nuclear Information System (INIS)

    Gross, Kyle; Hayashi, Soichi; Teige, Scott; Quick, Robert

    2012-01-01

    Large distributed computing collaborations, such as the Worldwide LHC Computing Grid (WLCG), face many issues when it comes to providing a working grid environment for their users. One of these is exchanging tickets between various ticketing systems in use by grid collaborations. Ticket systems such as Footprints, RT, Remedy, and ServiceNow all have different schema that must be addressed in order to provide a reliable exchange of information between support entities and users in different grid environments. To combat this problem, OSG Operations has created a ticket synchronization interface called GOC-TX that relies on web services instead of error-prone email parsing methods of the past. Synchronizing tickets between different ticketing systems allows any user or support entity to work on a ticket in their home environment, thus providing a familiar and comfortable place to provide updates without having to learn another ticketing system. The interface is built in a way that it is generic enough that it can be customized for nearly any ticketing system with a web-service interface with only minor changes. This allows us to be flexible and rapidly bring new ticket synchronization online. Synchronization can be triggered by different methods including mail, web services interface, and active messaging. GOC-TX currently interfaces with Global Grid User Support (GGUS) for WLCG, Remedy at Brookhaven National Lab (BNL), and Request Tracker (RT) at the Virtual Data Toolkit (VDT). Work is progressing on the Fermi National Accelerator Laboratory (FNAL) ServiceNow synchronization. This paper will explain the problems faced by OSG and how they led OSG to create and implement this ticket synchronization system along with the technical details that allow synchronization to be preformed at a production level.

  9. Open Science Grid (OSG) Ticket Synchronization: Keeping Your Home Field Advantage In A Distributed Environment

    Science.gov (United States)

    Gross, Kyle; Hayashi, Soichi; Teige, Scott; Quick, Robert

    2012-12-01

    Large distributed computing collaborations, such as the Worldwide LHC Computing Grid (WLCG), face many issues when it comes to providing a working grid environment for their users. One of these is exchanging tickets between various ticketing systems in use by grid collaborations. Ticket systems such as Footprints, RT, Remedy, and ServiceNow all have different schema that must be addressed in order to provide a reliable exchange of information between support entities and users in different grid environments. To combat this problem, OSG Operations has created a ticket synchronization interface called GOC-TX that relies on web services instead of error-prone email parsing methods of the past. Synchronizing tickets between different ticketing systems allows any user or support entity to work on a ticket in their home environment, thus providing a familiar and comfortable place to provide updates without having to learn another ticketing system. The interface is built in a way that it is generic enough that it can be customized for nearly any ticketing system with a web-service interface with only minor changes. This allows us to be flexible and rapidly bring new ticket synchronization online. Synchronization can be triggered by different methods including mail, web services interface, and active messaging. GOC-TX currently interfaces with Global Grid User Support (GGUS) for WLCG, Remedy at Brookhaven National Lab (BNL), and Request Tracker (RT) at the Virtual Data Toolkit (VDT). Work is progressing on the Fermi National Accelerator Laboratory (FNAL) ServiceNow synchronization. This paper will explain the problems faced by OSG and how they led OSG to create and implement this ticket synchronization system along with the technical details that allow synchronization to be preformed at a production level.

  10. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    Science.gov (United States)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that

  11. Mobility management for SIP sessions in a heterogeneous network environment

    NARCIS (Netherlands)

    Romijn, Willem A.; Plas, Dirk-Jaap; Bijwaard, D.; Meeuwissen, Erik; van Ooijen, Gijs

    2004-01-01

    The next generation of communication networks is expected to create a heterogeneous network environment encompassing an ever-increasing number of different access networks and end-user terminals that will enable the introduction of and provide access to numerous feature-rich end-user services. It is

  12. Network printing in a heterogenous environment

    International Nuclear Information System (INIS)

    Beyer, C.; Schroth, G.

    2001-01-01

    Mail and printing are often said to be the most visible services for the user in the network. Though many people talked about the paperless bureau a few years ago it seems that the more digital data is accessible, the more it gets printed. Print management in a heterogenous network environments is typically crossing all operating systems. Each of those brings its own requirements and different printing system implementations with individual user interfaces. The scope is to give the user the advantage and features of the native interface of their operating system while making administration tasks as easy as possible by following the general ideas of a centralised network service on the server side

  13. Images of the Retailing Environment: An Example of the Use of the Repertory Grid Methodology

    Science.gov (United States)

    Hudson, Ray

    1974-01-01

    A necessary condition for studying cognitive images of environments is an appropriate method to define and measure these. Using a sample of students in Bristol, the Repertory Grid method was used to measure images of the retailing environment. The empirical results are discussed and possible future research is outlined. (BT)

  14. A virtual data language and system for scientific workflow management in data grid environments

    Science.gov (United States)

    Zhao, Yong

    With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.

  15. Current Grid operation and future role of the Grid

    Science.gov (United States)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  16. Current Grid operation and future role of the Grid

    International Nuclear Information System (INIS)

    Smirnova, O

    2012-01-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  17. Techniques and environments for big data analysis parallel, cloud, and grid computing

    CERN Document Server

    Dehuri, Satchidananda; Kim, Euiwhan; Wang, Gi-Name

    2016-01-01

    This volume is aiming at a wide range of readers and researchers in the area of Big Data by presenting the recent advances in the fields of Big Data Analysis, as well as the techniques and tools used to analyze it. The book includes 10 distinct chapters providing a concise introduction to Big Data Analysis and recent Techniques and Environments for Big Data Analysis. It gives insight into how the expensive fitness evaluation of evolutionary learning can play a vital role in big data analysis by adopting Parallel, Grid, and Cloud computing environments.

  18. Development of a Smart Grid Simulation Environment

    NARCIS (Netherlands)

    Delamare, J; Bitachon, B.; Peng, Z.; Wang, Y.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    2015-01-01

    With the increased integration of renewable energy sources the interaction between energy producers and consumers has become a bi-directional exchange. Therefore, the electrical grid must be adapted into a smart grid which effectively regulates this two-way interaction. With the aid of simulation,

  19. Framing the grid: effect of boundaries on grid cells and navigation.

    Science.gov (United States)

    Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John

    2016-11-15

    Cells in the mammalian hippocampal formation subserve neuronal representations of environmental location and support navigation in familiar environments. Grid cells constitute one of the main cell types in the hippocampal formation and are widely believed to represent a universal metric of space independent of external stimuli. Recent evidence showing that grid symmetry is distorted in non-symmetrical environments suggests that a re-examination of this hypothesis is warranted. In this review we will discuss behavioural and physiological evidence for how environmental shape and in particular enclosure boundaries influence grid cell firing properties. We propose that grid cells encode the geometric layout of enclosures. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Integrating GRID tools to build a computing resource broker: activities of DataGrid WP1

    International Nuclear Information System (INIS)

    Anglano, C.; Barale, S.; Gaido, L.; Guarise, A.; Lusso, S.; Werbrouck, A.

    2001-01-01

    Resources on a computational Grid are geographically distributed, heterogeneous in nature, owned by different individuals or organizations with their own scheduling policies, have different access cost models with dynamically varying loads and availability conditions. This makes traditional approaches to workload management, load balancing and scheduling inappropriate. The first work package (WP1) of the EU-funded DataGrid project is addressing the issue of optimizing the distribution of jobs onto Grid resources based on a knowledge of the status and characteristics of these resources that is necessarily out-of-date (collected in a finite amount of time at a very loosely coupled site). The authors describe the DataGrid approach in integrating existing software components (from Condor, Globus, etc.) to build a Grid Resource Broker, and the early efforts to define a workable scheduling strategy

  1. Understanding and Mastering Dynamics in Computing Grids Processing Moldable Tasks with User-Level Overlay

    CERN Document Server

    Moscicki, Jakub Tomasz

    Scientic communities are using a growing number of distributed systems, from lo- cal batch systems, community-specic services and supercomputers to general-purpose, global grid infrastructures. Increasing the research capabilities for science is the raison d'^etre of such infrastructures which provide access to diversied computational, storage and data resources at large scales. Grids are rather chaotic, highly heterogeneous, de- centralized systems where unpredictable workloads, component failures and variability of execution environments are commonplace. Understanding and mastering the hetero- geneity and dynamics of such distributed systems is prohibitive for end users if they are not supported by appropriate methods and tools. The time cost to learn and use the interfaces and idiosyncrasies of dierent distributed environments is another challenge. Obtaining more reliable application execution times and boosting parallel speedup are important to increase the research capabilities of scientic communities. L...

  2. Comprehensive Smart Grid Planning in a Regulated Utility Environment

    Science.gov (United States)

    Turner, Matthew; Liao, Yuan; Du, Yan

    2015-06-01

    This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.

  3. The ENCOURAGE ICT architecture for heterogeneous smart grids

    DEFF Research Database (Denmark)

    Albano, Michele; Ferreira, Luis; Le Guilly, Thibaut

    2013-01-01

    The ENCOURAGE project aims at rationalizing energy usage in building by implementing a smart energy grid based on intelligent scheduling of energy consuming appliances, renewable energy production, and inter-building energy trading. This paper presents the reference architecture proposed in the c...

  4. A Theorem on Grid Access Control

    Institute of Scientific and Technical Information of China (English)

    XU ZhiWei(徐志伟); BU GuanYing(卜冠英)

    2003-01-01

    The current grid security research is mainly focused on the authentication of grid systems. A problem to be solved by grid systems is to ensure consistent access control. This problem is complicated because the hosts in a grid computing environment usually span multiple autonomous administrative domains. This paper presents a grid access control model, based on asynchronous automata theory and the classic Bell-LaPadula model. This model is useful to formally study the confidentiality and integrity problems in a grid computing environment. A theorem is proved, which gives the necessary and sufficient conditions to a grid to maintain confidentiality.These conditions are the formalized descriptions of local (node) relations or relationship between grid subjects and node subjects.

  5. Porting of Scientific Applications to Grid Computing on GridWay

    Directory of Open Access Journals (Sweden)

    J. Herrera

    2005-01-01

    Full Text Available The expansion and adoption of Grid technologies is prevented by the lack of a standard programming paradigm to port existing applications among different environments. The Distributed Resource Management Application API has been proposed to aid the rapid development and distribution of these applications across different Distributed Resource Management Systems. In this paper we describe an implementation of the DRMAA standard on a Globus-based testbed, and show its suitability to express typical scientific applications, like High-Throughput and Master-Worker applications. The DRMAA routines are supported by the functionality offered by the GridWay2 framework, which provides the runtime mechanisms needed for transparently executing jobs on a dynamic Grid environment based on Globus. As cases of study, we consider the implementation with DRMAA of a bioinformatics application, a genetic algorithm and the NAS Grid Benchmarks.

  6. Programmable applications in a heterogeneous and concurrent environment

    International Nuclear Information System (INIS)

    Dubois, P.F.

    1995-01-01

    Equipe Basis (EB) is a new system for programmable applications which is under development at Lawrence Livermore Laboratory. EB is designed to permit user control of teams of interconnecting processes in a heterogeneous environment. Current systems work with programs written in Fortran or C on a single processor. The programs of the future will be in many languages and distributed over many processors. The object-oriented kernel can communicate data and commands between processes that are unaware of each other's inner structure. The programming language, Eiffel, is described. This document consists of extensive viewgraphs

  7. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  8. Study to optimize a disposal tunnel layout taking into account heterogeneous characteristics of the geological environment

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2007-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favorable from the perspective of long-term safety and ones that are less favorable. In order that the spatially heterogeneous environment itself may be utilized most effectively as an NBS, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a 'variable disposal tunnel layout'. The optimization approach minimizes the number of locations where major water conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability. (author)

  9. Authentication Method for Privacy Protection in Smart Grid Environment

    OpenAIRE

    Cho, Do-Eun; Yeo, Sang-Soo; Kim, Si-Jung

    2014-01-01

    Recently, the interest in green energy is increasing as a means to resolve problems including the exhaustion of the energy source and, effective management of energy through the convergence of various fields. Therefore, the projects of smart grid which is called intelligent electrical grid for the accomplishment of low carbon green growth are being carried out in a rush. However, as the IT is centered upon the electrical grid, the shortage of IT also appears in smart grid and the complexity o...

  10. The MicroGrid: A Scientific Tool for Modeling Computational Grids

    Directory of Open Access Journals (Sweden)

    H.J. Song

    2000-01-01

    Full Text Available The complexity and dynamic nature of the Internet (and the emerging Computational Grid demand that middleware and applications adapt to the changes in configuration and availability of resources. However, to the best of our knowledge there are no simulation tools which support systematic exploration of dynamic Grid software (or Grid resource behavior. We describe our vision and initial efforts to build tools to meet these needs. Our MicroGrid simulation tools enable Globus applications to be run in arbitrary virtual grid resource environments, enabling broad experimentation. We describe the design of these tools, and their validation on micro-benchmarks, the NAS parallel benchmarks, and an entire Grid application. These validation experiments show that the MicroGrid can match actual experiments within a few percent (2% to 4%.

  11. Performance of the NorduGrid ARC and the Dulcinea Executor in ATLAS Data Challenge 2

    DEFF Research Database (Denmark)

    Kleist, Josva; Eerola, P; Ekelöf, T.

    2004-01-01

    This talk describes the various stages of ATLAS Data Challenge 2 (DC2) in what concerns usage of resources deployed via NorduGrid's Advanced Resource Connector (ARC). It also describes the integration of these resources with the ATLAS production system using the Dulcinea executor. ATLAS Data...... Challenge 2 (DC2), run in 2004, was designed to be a step forward in the distributed data processing. In particular, much coordination of task assignment to resources was planned to be delegated to Grid in its different flavours. An automatic production management system was designed, to direct the tasks...... participation in ATLAS DC2. This was the first attempt to harness large amounts of strongly heterogeneous resources in various countries for a single collaborative exercise using Grid tools. This talk addresses various issues that arose during different stages of DC2 in this environment: preparation...

  12. Grid occupancy estimation for environment perception based on belief functions and PCR6

    Science.gov (United States)

    Moras, Julien; Dezert, Jean; Pannetier, Benjamin

    2015-05-01

    In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.

  13. Federated Access Control in Heterogeneous Intercloud Environment: Basic Models and Architecture Patterns

    NARCIS (Netherlands)

    Demchenko, Y.; Ngo, C.; de Laat, C.; Lee, C.

    2014-01-01

    This paper presents on-going research to define the basic models and architecture patterns for federated access control in heterogeneous (multi-provider) multi-cloud and inter-cloud environment. The proposed research contributes to the further definition of Intercloud Federation Framework (ICFF)

  14. Development of a Survivable Cloud Multi-Robot Framework for Heterogeneous Environments

    Directory of Open Access Journals (Sweden)

    Isaac Osunmakinde

    2014-10-01

    Full Text Available Cloud robotics is a paradigm that allows for robots to offload computationally intensive and data storage requirements into the cloud by providing a secure and customizable environment. The challenge for cloud robotics is the inherent problem of cloud disconnection. A major assumption made in the development of the current cloud robotics frameworks is that the connection between the cloud and the robot is always available. However, for multi-robots working in heterogeneous environments, the connection between the cloud and the robots cannot always be guaranteed. This work serves to assist with the challenge of disconnection in cloud robotics by proposing a survivable cloud multi-robotics (SCMR framework for heterogeneous environments. The SCMR framework leverages the combination of a virtual ad hoc network formed by robot-to-robot communication and a physical cloud infrastructure formed by robot-to-cloud communications. The quality of service (QoS on the SCMR framework was tested and validated by determining the optimal energy utilization and time of response (ToR on drivability analysis with and without cloud connection. The design trade-off, including the result, is between the computation energy for the robot execution and the offloading energy for the cloud execution.

  15. Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.

    Science.gov (United States)

    Yurk, Brian P

    2016-10-01

    The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.

  16. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  17. Development of an international matrix-solver prediction system on a French-Japanese international grid computing environment

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kushida, Noriyuki; Tatekawa, Takayuki; Teshima, Naoya; Caniou, Yves; Guivarch, Ronan; Dayde, Michel; Ramet, Pierre

    2010-01-01

    The 'Research and Development of International Matrix-Solver Prediction System (REDIMPS)' project aimed at improving the TLSE sparse linear algebra expert website by establishing an international grid computing environment between Japan and France. To help users in identifying the best solver or sparse linear algebra tool for their problems, we have developed an interoperable environment between French and Japanese grid infrastructures (respectively managed by DIET and AEGIS). Two main issues were considered. The first issue is how to submit a job from DIET to AEGIS. The second issue is how to bridge the difference of security between DIET and AEGIS. To overcome these issues, we developed APIs to communicate between different grid infrastructures by improving the client API of AEGIS. By developing a server deamon program (SeD) of DIET which behaves like an AEGIS user, DIET can call functions in AEGIS: authentication, file transfer, job submission, and so on. To intensify the security, we also developed functionalities to authenticate DIET sites and DIET users in order to access AEGIS computing resources. By this study, the set of software and computers available within TLSE to find an appropriate solver is enlarged over France (DIET) and Japan (AEGIS). (author)

  18. mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2006-03-01

    Full Text Available Abstract Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else. Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web

  19. mGrid: a load-balanced distributed computing environment for the remote execution of the user-defined Matlab code.

    Science.gov (United States)

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-03-15

    Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over

  20. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    Science.gov (United States)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  1. Integrating heterogeneous databases in clustered medic care environments using object-oriented technology

    Science.gov (United States)

    Thakore, Arun K.; Sauer, Frank

    1994-05-01

    The organization of modern medical care environments into disease-related clusters, such as a cancer center, a diabetes clinic, etc., has the side-effect of introducing multiple heterogeneous databases, often containing similar information, within the same organization. This heterogeneity fosters incompatibility and prevents the effective sharing of data amongst applications at different sites. Although integration of heterogeneous databases is now feasible, in the medical arena this is often an ad hoc process, not founded on proven database technology or formal methods. In this paper we illustrate the use of a high-level object- oriented semantic association method to model information found in different databases into an integrated conceptual global model that integrates the databases. We provide examples from the medical domain to illustrate an integration approach resulting in a consistent global view, without attacking the autonomy of the underlying databases.

  2. A Hybrid Density Functional Theory/Molecular Mechanics Approach for Linear Response Properties in Heterogeneous Environments.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans

    2014-03-11

    We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.

  3. Communication challenges and solutions in the smart grid

    CERN Document Server

    Bouhafs, Fayçal; Merabti, Madjid

    2014-01-01

    This SpringerBrief discusses the rise of the smart grid from the perspective of computing and communications. It explains how current and next-generation network technology and methodologies help recognize the potential that the smart grid initiative promises.Chapters provide context on the smart grid before exploring specific challenges related to communication control and energy management. Topics include control in heterogeneous power supply, solutions for backhaul and wide area networks, home energy management systems, and technologies for smart energy management systems.Designed for resea

  4. Integrating Grid Services into the Cray XT4 Environment

    OpenAIRE

    Cholia, Shreyas

    2009-01-01

    The 38640 core Cray XT4 "Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a share...

  5. SVOPME: A Scalable Virtual Organization Privileges Management Environment

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele; Sfiligoi, Igor; Levshina, Tanya; Wang, Nanbor; Ananthan, Balamurali

    2010-01-01

    Grids enable uniform access to resources by implementing standard interfaces to resource gateways. In the Open Science Grid (OSG), privileges are granted on the basis of the user's membership to a Virtual Organization (VO). However, Grid sites are solely responsible to determine and control access privileges to resources using users' identity and personal attributes, which are available through Grid credentials. While this guarantees full control on access rights to the sites, it makes VO privileges heterogeneous throughout the Grid and hardly fits with the Grid paradigm of uniform access to resources. To address these challenges, we are developing the Scalable Virtual Organization Privileges Management Environment (SVOPME), which provides tools for VOs to define and publish desired privileges and assists sites to provide the appropriate access policies. Moreover, SVOPME provides tools for Grid sites to analyze site access policies for various resources, verify compliance with preferred VO policies, and generate directives for site administrators on how the local access policies can be amended to achieve such compliance without taking control of local configurations away from site administrators. This paper discusses what access policies are of interest to the OSG community and how SVOPME implements privilege management for OSG.

  6. The Use of Proxy Caches for File Access in a Multi-Tier Grid Environment

    International Nuclear Information System (INIS)

    Brun, R; Duellmann, D; Ganis, G; Janyst, L; Peters, A J; Rademakers, F; Sindrilaru, E; Hanushevsky, A

    2011-01-01

    The use of proxy caches has been extensively studied in the HEP environment for efficient access of database data and showed significant performance with only very moderate operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the same concept to the area of file access and analyse the possible performance gains, operational impact on site services and applicability to different HEP use cases. Base on a proof-of-concept studies with a modified XROOT proxy server we review the cache efficiency and overheads for access patterns of typical ROOT based analysis programs. We conclude with a discussion of the potential role of this new component at the different tiers of a distributed computing grid.

  7. Dynamic parallel ROOT facility clusters on the Alice Environment

    International Nuclear Information System (INIS)

    Luzzi, C; Betev, L; Carminati, F; Grigoras, C; Saiz, P; Manafov, A

    2012-01-01

    The ALICE collaboration has developed a production environment (AliEn) that implements the full set of the Grid tools enabling the full offline computational work-flow of the experiment, simulation, reconstruction and data analysis, in a distributed and heterogeneous computing environment. In addition to the analysis on the Grid, ALICE uses a set of local interactive analysis facilities installed with the Parallel ROOT Facility (PROOF). PROOF enables physicists to analyze medium-sized (order of 200-300 TB) data sets on a short time scale. The default installation of PROOF is on a static dedicated cluster, typically 200-300 cores. This well-proven approach, has its limitations, more specifically for analysis of larger datasets or when the installation of a dedicated cluster is not possible. Using a new framework called PoD (Proof on Demand), PROOF can be used directly on Grid-enabled clusters, by dynamically assigning interactive nodes on user request. The integration of Proof on Demand in the AliEn framework provides private dynamic PROOF clusters as a Grid service. This functionality is transparent to the user who will submit interactive jobs to the AliEn system.

  8. Subjective usability of speech, touch and gesture in a heterogeneous multi-display environment

    NARCIS (Netherlands)

    Jong, A.P.J. de; Tak, S.; Toet, A.; Schultz, S.; Wijbenga, J.P.; Erp, J.B.F. van

    2013-01-01

    Several interaction techniques have been proposed to enable transfer of information between different displays in heterogeneous multi-display environments. However, it is not clear whether subjective user preference for these different techniques depends on the nature of the displays between which

  9. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  10. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  11. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    Science.gov (United States)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  12. Effective IPTV channel management method over heterogeneous environments

    Science.gov (United States)

    Joo, Hyunchul; Lee, Dai-boong; Song, Hwangjun

    2007-09-01

    This paper presents an effective IPTV channel management method using SVC (scalable video coding) that considers concurrently both channel zapping time and network utilization. A broadcasting channel is encoded in two-layered bitstream (base-layer channel and enhancement-layer channel) to supply for heterogeneous environments. The proposed algorithm locates only a limited numbers of base-layer channels close to users to reduce the network delay part of channel zapping time and adjusts the length of GOP (group of picture) into each base-layer channel to decrease the video decoding delay part of channel zapping time, which are performed based on user's channel preference information. Finally, the experimental results are provided to show the performance of the proposed schemes.

  13. GENIUS: a web portal for the grid

    International Nuclear Information System (INIS)

    Andronico, A.; Barbera, R.; Falzone, A.; Lo Re, G.; Pulvirenti, A.; Rodolico, A.

    2003-01-01

    The architecture and the current implementation of the grid portal GENIUS (Grid Enabled web environment for site Independent User job Submission), jointly developed by INFN and NICE within the context of the INFN Grid and DataGrid Project, is presented and discussed

  14. Application of heterogeneous multiple camera system with panoramic capabilities in a harbor environment

    NARCIS (Netherlands)

    Schwering, P.B.W.; Lensen, H.A.; Broek, S.P. van den; Hollander, R.J.M. den; Mark, W. van der; Bouma, H.; Kemp, R.A.W.

    2009-01-01

    In a harbor environment threats like explosives-packed rubber boats, mine-carrying swimmers and divers must be detected in an early stage. This paper describes the integration and use of a heterogeneous multiple camera system with panoramic observation capabilities for detecting these small vessels

  15. Coordinated Use of Heterogeneous Infrastructures for Scientific Computing at CIEMAT by means of Grid Technologies; Aprovechamiento Coordinado de las Infraestructuras Heterogeneas para Calculo Cientifico Participadas por el CIEMAT por medio de Tecnologias Grid

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Montero, A. J.

    2008-08-06

    Usually, research data centres maintain platforms from a wide range of architectures to cover the computational needs of their scientists. These centres are also frequently involved in diverse national and international Grid projects. Besides, it is very difficult to achieve a complete and efficient utilization of these recourses, due to the heterogeneity in their hardware and software configurations and their unequal use along the time. This report offers a solution to the problem of enabling a simultaneous and coordinated access to the variety of computing infrastructures and platforms available in great Research Organisms such as CIEMAT. For this purpose, new Grid technologies have been deployed in order to facilitate a common interface which enables the final user to access the internal and external resources. The previous computing infrastructure has not been modified and the independence on its administration has been guaranteed. For a sake of comparison, a feasibility study has been performed with the execution of the Drift Kinetic Equation solver (Dikes) tool, a high throughput scientific application used in the TJ-II Flexible Heliac at National Fusion Laboratory. (Author) 35 refs.

  16. Designing Scientific Software for Heterogeneous Computing

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig

    , algorithms and data structures must be designed to utilize the underlying parallel architecture. The architectural changes in hardware design within the last decade, from single to multi and many-core architectures, require software developers to identify and properly implement methods that both exploit...... makes parallel software design applicable, but also a challenge for scientific software developers at all levels. We have developed a generic C++ library for fast prototyping of large-scale PDEs solvers based on flexible-order finite difference approximations on structured regular grids. The library...... is designed with a high abstraction interface to improve developer productivity. The library is based on modern template-based design concepts as described in Glimberg, Engsig-Karup, Nielsen & Dammann (2013). The library utilizes heterogeneous CPU/GPU environments in order to maximize computational throughput...

  17. The Mini-Grid Framework: Application Programming Support for Ad hoc Volunteer Grids

    DEFF Research Database (Denmark)

    Venkataraman, Neela Narayanan

    2013-01-01

    To harvest idle, unused computational resources in networked environments, researchers have proposed different architectures for desktop grid infrastructure. However, most of the existing research work focus on centralized approach. In this thesis, we present the development and deployment of one......, and the performance of the framework in a real grid environment. The main contribution of this thesis are: i) modeling entities such as resources and applications using their context, ii) the context-based auction strategy for dynamic task distribution, iii) scheduling through application specific quality parameters...

  18. Monitoring the EGEE/WLCG grid services

    International Nuclear Information System (INIS)

    Duarte, A; Nyczyk, P; Retico, A; Vicinanza, D

    2008-01-01

    Grids have the potential to revolutionise computing by providing ubiquitous, on demand access to computational services and resources. They promise to allow for on demand access and composition of computational services provided by multiple independent sources. Grids can also provide unprecedented levels of parallelism for high-performance applications. On the other hand, grid characteristics, such as high heterogeneity, complexity and distribution create many new technical challenges. Among these technical challenges, failure management is a key area that demands much progress. A recent survey revealed that fault diagnosis is still a major problem for grid users. When a failure appears at the user screen, it becomes very difficult for the user to identify whether the problem is in the application, somewhere in the grid middleware, or even lower in the fabric that comprises the grid. In this paper we present a tool able to check if a given grid service works as expected for a given set of users (Virtual Organisation) on the different resources available on a grid. Our solution deals with grid services as single components that should produce an expected output to a pre-defined input, what is quite similar to unit testing. The tool, called Service Availability Monitoring or SAM, is being currently used by several different Virtual Organizations to monitor more than 300 grid sites belonging to the largest grids available today. We also discuss how this tool is being used by some of those VOs and how it is helping in the operation of the EGEE/WLCG grid

  19. Parallel Monte Carlo simulations on an ARC-enabled computing grid

    International Nuclear Information System (INIS)

    Nilsen, Jon K; Samset, Bjørn H

    2011-01-01

    Grid computing opens new possibilities for running heavy Monte Carlo simulations of physical systems in parallel. The presentation gives an overview of GaMPI, a system for running an MPI-based random walker simulation on grid resources. Integrating the ARC middleware and the new storage system Chelonia with the Ganga grid job submission and control system, we show that MPI jobs can be run on a world-wide computing grid with good performance and promising scaling properties. Results for relatively communication-heavy Monte Carlo simulations run on multiple heterogeneous, ARC-enabled computing clusters in several countries are presented.

  20. Profitability of smart grid solutions applied in power grid

    Directory of Open Access Journals (Sweden)

    Katić Nenad A.

    2016-01-01

    Full Text Available The idea of a Smart Grid solution has been developing for years, as complete solution for a power utility, consisting of different advanced technologies aimed at improving of the efficiency of operation. The trend of implementing various smart systems continues, e.g. Energy Management Systems, Grid Automation Systems, Advanced Metering Infrastructure, Smart power equipment, Distributed Energy Resources, Demand Response systems, etc. Futhermore, emerging technologies, such as energy storages, electrical vehicles or distributed generators, become integrated in distribution networks and systems. Nowadays, the idea of a Smart Grid solution becomes more realistic by full integration of all advanced operation technologies (OT within IT environment, providing the complete digitalization of an Utility (IT/OT integration. The overview of smart grid solutions, estimation of investments, operation costs and possible benefits are presented in this article, with discusison about profitability of such systems.

  1. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  2. Evolutionary Game Theory-Based Evaluation of P2P File-Sharing Systems in Heterogeneous Environments

    Directory of Open Access Journals (Sweden)

    Yusuke Matsuda

    2010-01-01

    Full Text Available Peer-to-Peer (P2P file sharing is one of key technologies for achieving attractive P2P multimedia social networking. In P2P file-sharing systems, file availability is improved by cooperative users who cache and share files. Note that file caching carries costs such as storage consumption and processing load. In addition, users have different degrees of cooperativity in file caching and they are in different surrounding environments arising from the topological structure of P2P networks. With evolutionary game theory, this paper evaluates the performance of P2P file sharing systems in such heterogeneous environments. Using micro-macro dynamics, we analyze the impact of the heterogeneity of user selfishness on the file availability and system stability. Further, through simulation experiments with agent-based dynamics, we reveal how other aspects, for example, synchronization among nodes and topological structure, affect the system performance. Both analytical and simulation results show that the environmental heterogeneity contributes to the file availability and system stability.

  3. A framework supporting the development of a Grid portal for analysis based on ROI.

    Science.gov (United States)

    Ichikawa, K; Date, S; Kaishima, T; Shimojo, S

    2005-01-01

    In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.

  4. Development and Operation of the D-Grid Infrastructure

    Science.gov (United States)

    Fieseler, Thomas; Gűrich, Wolfgang

    D-Grid is the German national grid initiative, granted by the German Federal Ministry of Education and Research. In this paper we present the Core D-Grid which acts as a condensation nucleus to build a production grid and the latest developments of the infrastructure. The main difference compared to other international grid initiatives is the support of three middleware systems, namely LCG/gLite, Globus, and UNICORE for compute resources. Storage resources are connected via SRM/dCache and OGSA-DAI. In contrast to homogeneous communities, the partners in Core D-Grid have different missions and backgrounds (computing centres, universities, research centres), providing heterogeneous hardware from single processors to high performance supercomputing systems with different operating systems. We present methods to integrate these resources and services for the DGrid infrastructure like a point of information, centralized user and virtual organization management, resource registration, software provision, and policies for the implementation (firewalls, certificates, user mapping).

  5. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  6. Shearing-induced asymmetry in entorhinal grid cells.

    Science.gov (United States)

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  7. Adapting RRT growth for heterogeneous environments

    KAUST Repository

    Denny, Jory; Morales, Marco; Rodriguez, Samuel; Amato, Nancy M.

    2013-01-01

    Rapidly-exploring Random Trees (RRTs) are effective for a wide range of applications ranging from kinodynamic planning to motion planning under uncertainty. However, RRTs are not as efficient when exploring heterogeneous environments and do not adapt to the space. For example, in difficult areas an expensive RRT growth method might be appropriate, while in open areas inexpensive growth methods should be chosen. In this paper, we present a novel algorithm, Adaptive RRT, that adapts RRT growth to the current exploration area using a two level growth selection mechanism. At the first level, we select groups of expansion methods according to the visibility of the node being expanded. Second, we use a cost-sensitive learning approach to select a sampler from the group of expansion methods chosen. Also, we propose a novel definition of visibility for RRT nodes which can be computed in an online manner and used by Adaptive RRT to select an appropriate expansion method. We present the algorithm and experimental analysis on a broad range of problems showing not only its adaptability, but efficiency gains achieved by adapting exploration methods appropriately. © 2013 IEEE.

  8. Adapting RRT growth for heterogeneous environments

    KAUST Repository

    Denny, Jory

    2013-11-01

    Rapidly-exploring Random Trees (RRTs) are effective for a wide range of applications ranging from kinodynamic planning to motion planning under uncertainty. However, RRTs are not as efficient when exploring heterogeneous environments and do not adapt to the space. For example, in difficult areas an expensive RRT growth method might be appropriate, while in open areas inexpensive growth methods should be chosen. In this paper, we present a novel algorithm, Adaptive RRT, that adapts RRT growth to the current exploration area using a two level growth selection mechanism. At the first level, we select groups of expansion methods according to the visibility of the node being expanded. Second, we use a cost-sensitive learning approach to select a sampler from the group of expansion methods chosen. Also, we propose a novel definition of visibility for RRT nodes which can be computed in an online manner and used by Adaptive RRT to select an appropriate expansion method. We present the algorithm and experimental analysis on a broad range of problems showing not only its adaptability, but efficiency gains achieved by adapting exploration methods appropriately. © 2013 IEEE.

  9. Exploring virtualisation tools with a new virtualisation provisioning method to test dynamic grid environments for ALICE grid jobs over ARC grid middleware

    International Nuclear Information System (INIS)

    Wagner, B; Kileng, B

    2014-01-01

    The Nordic Tier-1 centre for LHC is distributed over several computing centres. It uses ARC as the internal computing grid middleware. ALICE uses its own grid middleware AliEn to distribute jobs and the necessary software application stack. To make use of most of the AliEn infrastructure and software deployment methods for running ALICE grid jobs on ARC, we are investigating different possible virtualisation technologies. For this a testbed and possible framework for bridging different middleware systems is under development. It allows us to test a variety of virtualisation methods and software deployment technologies in the form of different virtual machines.

  10. Study of an optimization approach for a disposal tunnel layout, taking into account the geological environment with spatially heterogeneous characteristics

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2009-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favourable from the perspective of long-term safety and ones that are less favourable. In order that the spatially heterogeneous environment itself may be utilized most effectively as a natural barrier system, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a variable disposal tunnel layout. The optimization approach minimizes the number of locations where major water-conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability.

  11. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    Science.gov (United States)

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  12. Running parallel applications with topology-aware grid middleware

    NARCIS (Netherlands)

    Bar, P.; Coti, C.; Groen, D.; Herault, T.; Kravtsov, V.; Schuster, A; Swain, M.

    2009-01-01

    The concept of topology-aware grid applications is derived from parallelized computational models of complex systems that are executed on heterogeneous resources, either because they require specialized hardware for certain calculations, or because their parallelization is flexible enough to exploit

  13. Security Challenges in Smart-Grid Metering and Control Systems

    Directory of Open Access Journals (Sweden)

    Xinxin Fan

    2013-07-01

    Full Text Available The smart grid is a next-generation power system that is increasingly attracting the attention of government, industry, and academia. It is an upgraded electricity network that depends on two-way digital communications between supplier and consumer that in turn give support to intelligent metering and monitoring systems. Considering that energy utilities play an increasingly important role in our daily life, smart-grid technology introduces new security challenges that must be addressed. Deploying a smart grid without adequate security might result in serious consequences such as grid instability, utility fraud, and loss of user information and energy-consumption data. Due to the heterogeneous communication architecture of smart grids, it is quite a challenge to design sophisticated and robust security mechanisms that can be easily deployed to protect communications among different layers of the smart grid-infrastructure. In this article, we focus on the communication-security aspect of a smart-grid metering and control system from the perspective of cryptographic techniques, and we discuss different mechanisms to enhance cybersecurity of the emerging smart grid. We aim to provide a comprehensive vulnerability analysis as well as novel insights on the cybersecurity of a smart grid.

  14. Overload cascading failure on complex networks with heterogeneous load redistribution

    Science.gov (United States)

    Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui

    2017-09-01

    Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.

  15. Developing a Grid-based search and categorization tool

    CERN Document Server

    Haya, Glenn; Vigen, Jens

    2003-01-01

    Grid technology has the potential to improve the accessibility of digital libraries. The participants in Project GRACE (Grid Search And Categorization Engine) are in the process of developing a search engine that will allow users to search through heterogeneous resources stored in geographically distributed digital collections. What differentiates this project from current search tools is that GRACE will be run on the European Data Grid, a large distributed network, and will not have a single centralized index as current web search engines do. In some cases, the distributed approach offers advantages over the centralized approach since it is more scalable, can be used on otherwise inaccessible material, and can provide advanced search options customized for each data source.

  16. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2014-02-01

    Full Text Available Robust security is highly coveted in real wireless sensor network (WSN applications since wireless sensors’ sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring. The proposed framework offers: (i key initialization; (ii secure network (cluster formation (i.e., mutual authentication and dynamic key establishment; (iii key revocation; and (iv new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  17. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  18. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  19. Security Implications of Typical Grid Computing Usage Scenarios

    International Nuclear Information System (INIS)

    Humphrey, Marty; Thompson, Mary R.

    2001-01-01

    A Computational Grid is a collection of heterogeneous computers and resources spread across multiple administrative domains with the intent of providing users uniform access to these resources. There are many ways to access the resources of a Computational Grid, each with unique security requirements and implications for both the resource user and the resource provider. A comprehensive set of Grid usage scenarios are presented and analyzed with regard to security requirements such as authentication, authorization, integrity, and confidentiality. The main value of these scenarios and the associated security discussions are to provide a library of situations against which an application designer can match, thereby facilitating security-aware application use and development from the initial stages of the application design and invocation. A broader goal of these scenarios are to increase the awareness of security issues in Grid Computing

  20. Security Implications of Typical Grid Computing Usage Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.

    2001-06-05

    A Computational Grid is a collection of heterogeneous computers and resources spread across multiple administrative domains with the intent of providing users uniform access to these resources. There are many ways to access the resources of a Computational Grid, each with unique security requirements and implications for both the resource user and the resource provider. A comprehensive set of Grid usage scenarios are presented and analyzed with regard to security requirements such as authentication, authorization, integrity, and confidentiality. The main value of these scenarios and the associated security discussions are to provide a library of situations against which an application designer can match, thereby facilitating security-aware application use and development from the initial stages of the application design and invocation. A broader goal of these scenarios are to increase the awareness of security issues in Grid Computing.

  1. Multilevel QoS-policy-based routing management architecture appropriate for heterogeneous network environments

    Science.gov (United States)

    Chatzaki, Magda; Sartzetakis, Stelios

    1998-09-01

    As telecom providers introduce new and more sophisticated services the necessity of a global, unified view of the network infrastructure becomes demanding. Today, heterogenous backbone networks are interconnected in order to provide global connectivity. Due to technological impairments the cost of network operation, the maintenance complexity and the overuse of resources are extremely high under the goal of supporting the diverting customer requirements. We propose a scheme for ATM QoS support in such heterogenous, multi-domain, multi-technology network environment. The objective is to optimize users' and networks' profits by giving them the opportunity to satisfy their requirements. Our approach introduces a manager able to take routing decisions supporting quality of service guarantees for the customers, while making efficient use of network resources.

  2. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    Science.gov (United States)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  3. Optimal variable-grid finite-difference modeling for porous media

    International Nuclear Information System (INIS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-01-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)

  4. Applications of micro-spectroscopy and chemical imaging to delineate contaminant associations in heterogeneous mineral environments

    International Nuclear Information System (INIS)

    Hunter, D.

    1998-01-01

    Full text: Chemical speciation of a contaminant in the environment controls its mobility, bioavailability and ultimately its toxicity to organisms, including man. Transport models for environmental contaminants have continually failed because of an incomplete understanding of the physicochemical controls regulating the chemical speciation of both inorganic and organic contaminants. One of the greatest analytical difficulties to studying contaminant behavior in the subsurface is the inherent heterogeneity of mineral and organic constituents. Added to the multiplicity, of geological component surfaces that contaminants can interact with is the synergistic (both positive and negative) effects that occur due to non-conservative interactions between these components. Modern spectroscopic techniques can provide detailed quantitative and qualitative information on how contaminants behave within a specific mineral's surface-water interface. In general, the information is so rich as to be un interpretable in heterogeneous systems where multiple binding environments exist on competing multi-mineralic surfaces. None-the-less, it is the behaviour of contaminants in complex heterogeneous environments that is tantamount to understanding and predicting transport behaviour under field conditions. One solution is micro-spot spectroscopy. In micro-spot spectroscopy, chemical composition is determined by dispersing light absorbed or emitted from a highly localized spatial position within a heterogeneous sample. Such examples include FT-IR, Raman, fluorescence, and X-Ray absorption spectroscopies where spatial resolutions of 1 to 10 μm can be achieved. This scale can be still far too large to fully spectroscopically probe binding behaviour that is heterogeneous on colloidal scales ranging down to nanometers. However, it can provide a bridge to established characterization techniques such as optical petrography, since the challenge lies not only in identifying the speciation and

  5. Grid planning in a competitive environment; La planificacion de la red de transporte electrico en un entorno competitivo

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, J. de

    2007-07-01

    One principle that the electricity sector must fulfil is to simultaneously guarantee generation free entrance, new and old demand supply and a harmonic network development. This development is contained in the grid planning, a process assumed by a neutral institution apart from the grid or the interests of the market agents: In the case of Spain the ministry. The development of such planning, the investment to be built, are limited by the physical network and formal structure and by how the retribution is designed. In this article there is an evaluation of the problems related to develop the network planning in a competitive environment and also some proposals are suggested. (Author)

  6. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  7. gCube Grid services

    CERN Document Server

    Andrade, Pedro

    2008-01-01

    gCube is a service-based framework for eScience applications requiring collaboratory, on-demand, and intensive information processing. It provides to these communities Virtual Research Environments (VREs) to support their activities. gCube is build on top of standard technologies for computational Grids, namely the gLite middleware. The software was produced by the DILIGENT project and will continue to be supported and further developed by the D4Science project. gCube reflects within its name a three-sided interpretation of the Grid vision of resource sharing: sharing of computational resources, sharing of structured data, and sharing of application services. As such, gCube embodies the defining characteristics of computational Grids, data Grids, and virtual data Grids. Precisely, it builds on gLite middleware for managing distributed computations and unstructured data, includes dedicated services for managing data and metadata, provides services for distributed information retrieval, allows the orchestration...

  8. Assessment of heterogeneous geological environment at Tono. Japanese fiscal year 2004 (Contract research)

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Mori, Takayuki; Inaba, Takeshi; Sasakura, Takeshi; Atsumi, Hiroyuki; Masumoto, Kazuhiko; Kobayashi, Ichizo; Iwano, Keita; Furuichi, Mitsuaki; Ogata, Nobuhisa

    2007-09-01

    'Geoscientific research' at the Tono Area is developing site investigation, characterization and assessment techniques for understanding of geological environment. Their important goals are to establish a methodology for analyzing uncertainties in heterogeneous geological environment and to develop investigation technique for efficiently reducing the uncertainties. The current study proposes a new approach where all the possible options in the models and data-sets, which cannot be excluded in the light of the evidences available, are identified. This approach enables uncertainties associated with the understanding at a given stage of the site characterization to be made explicitly using an uncertainty analysis technique based on Fuzzy geostatics. This approach supports the design of the following investigation stage and reduces the uncertainties efficiently. In FY H16 the technique has been tested through geological modelling and groundwater analyses with Tono Area case based on current knowledge, to demonstrate its applicability and to compile the knowledge/information required to describe the H17 report. This report can be summarized as follows: 1) The knowledge/information required to describe the heterogeneous characteristics was compiled and connected to uncertainties associated with the characterization of a geological environment using a synthesis diagram. 2) Methodologies for assignment and screening of parameters were developed by using Evidential Support Logic (ESL). 3) Applicability of the technique could be confirmed with Tono Area case. 4) This report proposed a new methodology that integrates the technique into JAEA ordinary technique to good advantage in the geoscientific research project. (author)

  9. Search efficiency of biased migration towards stationary or moving targets in heterogeneously structured environments

    Science.gov (United States)

    Azimzade, Youness; Mashaghi, Alireza

    2017-12-01

    Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.

  10. A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment.

    Science.gov (United States)

    Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong

    2015-12-10

    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network's running and the degree of candidate nodes' effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime.

  11. Triple-layer smart grid business model

    DEFF Research Database (Denmark)

    Ma, Zheng; Lundgaard, Morten; Jørgensen, Bo Nørregaard

    2016-01-01

    Viewing the smart grid with the theory of business models may open opportunities in understanding and capturing values in new markets. This study tries to discover and map the smart grid ecosystem-based business model framework with two different environments (sub-Saharan Africa and Denmark......), and identifies the parameters for the smart grid solutions to the emerging markets. This study develops a triple-layer business model including the organizational (Niche), environmental (Intermediate), and global (Dominators) factors. The result uncovers an interface of market factors and stakeholders...... in a generic smart grid constellation. The findings contribute the transferability potential of the smart grid solutions between countries, and indicate the potential to export and import smart grid solutions based on the business modeling....

  12. Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Stochastic energy management of retailer under smart grid environment is proposed. • Optimal selling price is determined in the smart grid environment. • Fixed, time-of-use and real-time pricing are determined for selling to customers. • Charge/discharge of ESS is determined to increase the expected profit of retailer. • Demand response program is proposed to increase the expected profit of retailer. - Abstract: In this paper, bilateral contracting and selling price determination problems for an electricity retailer in the smart grid environment under uncertainties have been considered. Multiple energy procurement sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renewable energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS) as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based stochastic framework is used for uncertainty modeling of pool market prices, client group demand and variable climate condition containing temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand response program (DRP) has been implemented to flatten the load profile to minimize the cost for end-user customers as well as increasing the retailer profit. To validate the proposed model, three case studies are used and the results are compared.

  13. Towards the Automatic Detection of Efficient Computing Assets in a Heterogeneous Cloud Environment

    OpenAIRE

    Iglesias, Jesus Omana; Stokes, Nicola; Ventresque, Anthony; Murphy, Liam, B.E.; Thorburn, James

    2013-01-01

    peer-reviewed In a heterogeneous cloud environment, the manual grading of computing assets is the first step in the process of configuring IT infrastructures to ensure optimal utilization of resources. Grading the efficiency of computing assets is however, a difficult, subjective and time consuming manual task. Thus, an automatic efficiency grading algorithm is highly desirable. In this paper, we compare the effectiveness of the different criteria used in the manual gr...

  14. in Heterogeneous Media

    Directory of Open Access Journals (Sweden)

    Saeed Balouchi

    2013-01-01

    Full Text Available Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modeling. Recently, simulated annealing (SA has been applied to generate stochastic realizations of spatially correlated fracture networks by assuming that the elastic energy of fractures follows Boltzmann distribution. Although SA honors local variability, the objective function of geometrical fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA and the derivation of the energy function, a novel technique is presented to adjust the model with highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir properties. The original SA algorithm is also modified by being constrained in different directions and weighting the energy function to make it appropriate for heterogeneous conditions. The simulation results of the presented approach are in good agreement with the observed field data.

  15. WebGIS based on semantic grid model and web services

    Science.gov (United States)

    Zhang, WangFei; Yue, CaiRong; Gao, JianGuo

    2009-10-01

    As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by

  16. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  17. Fault tolerance in computational grids: perspectives, challenges, and issues.

    Science.gov (United States)

    Haider, Sajjad; Nazir, Babar

    2016-01-01

    Computational grids are established with the intention of providing shared access to hardware and software based resources with special reference to increased computational capabilities. Fault tolerance is one of the most important issues faced by the computational grids. The main contribution of this survey is the creation of an extended classification of problems that incur in the computational grid environments. The proposed classification will help researchers, developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of problems, such as omission, interaction, and timing related have been identified that need to be handled on various layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be established when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault identification, and tolerance techniques can improve the dependability of grid working environments.

  18. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Science.gov (United States)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  19. LHCb Distributed Data Analysis on the Computing Grid

    CERN Document Server

    Paterson, S; Parkes, C

    2006-01-01

    LHCb is one of the four Large Hadron Collider (LHC) experiments based at CERN, the European Organisation for Nuclear Research. The LHC experiments will start taking an unprecedented amount of data when they come online in 2007. Since no single institute has the compute resources to handle this data, resources must be pooled to form the Grid. Where the Internet has made it possible to share information stored on computers across the world, Grid computing aims to provide access to computing power and storage capacity on geographically distributed systems. LHCb software applications must work seamlessly on the Grid allowing users to efficiently access distributed compute resources. It is essential to the success of the LHCb experiment that physicists can access data from the detector, stored in many heterogeneous systems, to perform distributed data analysis. This thesis describes the work performed to enable distributed data analysis for the LHCb experiment on the LHC Computing Grid.

  20. Research on big data risk assessment of major transformer defects and faults fusing power grid, equipment and environment based on SVM

    Science.gov (United States)

    Guo, Lijuan; Yan, Haijun; Gao, Wensheng; Chen, Yun; Hao, Yongqi

    2018-01-01

    With the development of power big data, considering the wider power system data, the appropriate large data analysis method can be used to mine the potential law and value of power big data. On the basis of considering all kinds of monitoring data and defects and fault records of main transformer, the paper integrates the power grid, equipment as well as environment data and uses SVM as the main algorithm to evaluate the risk of the main transformer. It gets and compares the evaluation results under different modes, and proves that the risk assessment algorithms and schemes have certain effectiveness. This paper provides a new idea for data fusion of smart grid, and provides a reference for further big data evaluation of power grid equipment.

  1. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  2. National Fusion Collaboratory: Grid Computing for Simulations and Experiments

    Science.gov (United States)

    Greenwald, Martin

    2004-05-01

    The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.

  3. The Construction of an Ontology-Based Ubiquitous Learning Grid

    Science.gov (United States)

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  4. Grids to aid breast cancer diagnosis and research

    CERN Multimedia

    2005-01-01

    The Mammo Grid project is studying the commercial possibilities for its distributed computing environment taht emplys existing Grid technologies for the creation of a European database of mammogram data (1 page)

  5. Environmental heterogeneity generates opposite gene-by-environment interactions for two fitness-related traits within a population.

    Science.gov (United States)

    Culumber, Zachary W; Schumer, Molly; Monks, Scott; Tobler, Michael

    2015-02-01

    Theory predicts that environmental heterogeneity offers a potential solution to the maintenance of genetic variation within populations, but empirical evidence remains sparse. The live-bearing fish Xiphophorus variatus exhibits polymorphism at a single locus, with different alleles resulting in up to five distinct melanistic "tailspot" patterns within populations. We investigated the effects of heterogeneity in two ubiquitous environmental variables (temperature and food availability) on two fitness-related traits (upper thermal limits and body condition) in two different tailspot types (wild-type and upper cut crescent). We found gene-by-environment (G × E) interactions between tailspot type and food level affecting upper thermal limits (UTL), as well as between tailspot type and thermal environment affecting body condition. Exploring mechanistic bases underlying these G × E patterns, we found no differences between tailspot types in hsp70 gene expression despite significant overall increases in expression under both thermal and food stress. Similarly, there was no difference in routine metabolic rates between the tailspot types. The reversal of relative performance of the two tailspot types under different environmental conditions revealed a mechanism by which environmental heterogeneity can balance polymorphism within populations through selection on different fitness-related traits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  6. TIGER: Turbomachinery interactive grid generation

    Science.gov (United States)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  7. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments.

    Science.gov (United States)

    Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A

    2013-01-01

    Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

  8. Upscaled Lattice Boltzmann Method for Simulations of Flows in Heterogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-01-01

    Full Text Available An upscaled Lattice Boltzmann Method (LBM for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy-scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upscaled LBM uses coarser grids to represent the average effects of the fine-grid simulations. In the upscaled LBM, each coarse grid represents a subdomain of the fine-grid discretization and the effective permeability with the reduced-order models is proposed as we coarsen the grid. The effective permeability is computed using solutions of local problems (e.g., by performing local LBM simulations on the fine grids using the original permeability distribution and used on the coarse grids in the upscaled simulations. The upscaled LBM that can reduce the computational cost of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with averaged results obtained using a fine grid.

  9. Upscaled Lattice Boltzmann Method for Simulations of Flows in Heterogeneous Porous Media

    KAUST Repository

    Li, Jun

    2017-02-16

    An upscaled Lattice Boltzmann Method (LBM) for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy-scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upscaled LBM uses coarser grids to represent the average effects of the fine-grid simulations. In the upscaled LBM, each coarse grid represents a subdomain of the fine-grid discretization and the effective permeability with the reduced-order models is proposed as we coarsen the grid. The effective permeability is computed using solutions of local problems (e.g., by performing local LBM simulations on the fine grids using the original permeability distribution) and used on the coarse grids in the upscaled simulations. The upscaled LBM that can reduce the computational cost of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with averaged results obtained using a fine grid.

  10. Modelling Load Shifing Using Electric Vehicles in a Smart Grid Environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Electric vehicles (EVs) represent both a new demand for electricity and a possible storage medium that could supply power to utilities. The 'load shifting' and 'vehicle-to-grid' concepts could help cut electricity demand during peak periods and prove especially helpful in smoothing variations in power generation introduced to the grid by variable renewable resources such as wind and solar power. This paper proposes a method for simulating the potential benefits of using EVs in load shifting and 'vehicle-to-grid' applications for four different regions -- the United States, Western Europe, China and Japan -- that are expected to have large numbers of EVs by 2050.

  11. Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations

    KAUST Repository

    Iliev, Oleg P.

    2010-01-01

    We present a two-scale finite element method for solving Brinkman\\'s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation developed for Darcy\\'s equations by Arbogast in [4]. In order to reduce the error along the coarse-grid interfaces we have added a alternating Schwarz iteration using patches around the coarse-grid boundaries. We have implemented the subgrid method using Deal.II FEM library, [7], and we present the computational results for a number of model problems. © 2010 Springer-Verlag Berlin Heidelberg.

  12. Trends and Potentials of the Smart Grid Infrastructure: From ICT Sub-System to SDN-Enabled Smart Grid Architecture

    Directory of Open Access Journals (Sweden)

    Jaebeom Kim

    2015-10-01

    Full Text Available Context and situational awareness are key features and trends of the smart grid and enable adaptable, flexible and extendable smart grid services. However, the traditional hardware-dependent communication infrastructure is not designed to identify the flow and context of data, and it focuses only on packet forwarding using a pre-defined network configuration profile. Thus, the current network infrastructure may not dynamically adapt the various business models and services of the smart grid system. To solve this problem, software-defined networking (SDN is being considered in the smart grid, but the design, architecture and system model need to be optimized for the smart grid environment. In this paper, we investigate the state-of-the-art smart grid information subsystem, communication infrastructure and its emerging trends and potentials, called an SDN-enabled smart grid. We present an abstract business model, candidate SDN applications and common architecture of the SDN-enabled smart grid. Further, we compare recent studies into the SDN-enabled smart grid depending on its service functionalities, and we describe further challenges of the SDN-enabled smart grid network infrastructure.

  13. Workload Balancing on Heterogeneous Systems: A Case Study of Sparse Grid Interpolation

    KAUST Repository

    Muraraşu, Alin; Weidendorfer, Josef; Bode, Arndt

    2012-01-01

    load balancing is essential. This paper proposes static and dynamic solutions for load balancing in the context of an application for visualizing high-dimensional simulation data. The application relies on the sparse grid technique for data compression

  14. ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments

    International Nuclear Information System (INIS)

    Xu, X. George; Liu, Tianyu; Su, Lin; Du, Xining; Riblett, Matthew; Ji, Wei; Gu, Deyang; Carothers, Christopher D.; Shephard, Mark S.; Brown, Forrest B.; Kalra, Mannudeep K.; Liu, Bob

    2015-01-01

    Highlights: • A fast Monte Carlo based radiation transport code ARCHER was developed. • ARCHER supports different hardware including CPU, GPU and Intel Xeon Phi coprocessor. • Code is benchmarked again MCNP for medical applications. • A typical CT scan dose simulation only takes 6.8 s on an NVIDIA M2090 GPU. • GPU and coprocessor-based codes are 5–8 times faster than the CPU-based codes. - Abstract: The Monte Carlo radiation transport community faces a number of challenges associated with peta- and exa-scale computing systems that rely increasingly on heterogeneous architectures involving hardware accelerators such as GPUs and Xeon Phi coprocessors. Existing Monte Carlo codes and methods must be strategically upgraded to meet emerging hardware and software needs. In this paper, we describe the development of a software, called ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments), which is designed as a versatile testbed for future Monte Carlo codes. Preliminary results from five projects in nuclear engineering and medical physics are presented

  15. The effects of spatial heterogeneity and subsurface lateral transfer on evapotranspiration estimates in large scale Earth system models

    Science.gov (United States)

    Rouholahnejad, E.; Fan, Y.; Kirchner, J. W.; Miralles, D. G.

    2017-12-01

    Most Earth system models (ESM) average over considerable sub-grid heterogeneity in land surface properties, and overlook subsurface lateral flow. This could potentially bias evapotranspiration (ET) estimates and has implications for future temperature predictions, since overestimations in ET imply greater latent heat fluxes and potential underestimation of dry and warm conditions in the context of climate change. Here we quantify the bias in evaporation estimates that may arise from the fact that ESMs average over considerable heterogeneity in surface properties, and also neglect lateral transfer of water across the heterogeneous landscapes at global scale. We use a Budyko framework to express ET as a function of P and PET to derive simple sub-grid closure relations that quantify how spatial heterogeneity and lateral transfer could affect average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimation of average ET. Our analysis at global scale shows that the effects of sub-grid heterogeneity will be most pronounced in steep mountainous areas where the topographic gradient is high and where P is inversely correlated with PET across the landscape. In addition, we use the Total Water Storage (TWS) anomaly estimates from the Gravity Recovery and Climate Experiment (GRACE) remote sensing product and assimilate it into the Global Land Evaporation Amsterdam Model (GLEAM) to correct for existing free drainage lower boundary condition in GLEAM and quantify whether, and how much, accounting for changes in terrestrial storage can improve the simulation of soil moisture and regional ET fluxes at global scale.

  16. Invocation of Grid operations in the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Bartyński, T.; Malawski, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    This paper presents invocation of grid operations within the ViroLab Virtual Laboratory. Virtual laboratory enables users to develop and execute experiments that access computational resources on the Grid exposed via various middleware technologies. An abstraction over the Grid environment is

  17. Smart Grids. Innovators talking; Smart Grids. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on Smart Grids [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar Smart Grids.

  18. Smart Grids. Innovators talking; Smart Grids. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on Smart Grids [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar Smart Grids.

  19. Thundercloud: Domain specific information security training for the smart grid

    Science.gov (United States)

    Stites, Joseph

    In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.

  20. Grid and Cloud for Developing Countries

    Science.gov (United States)

    Petitdidier, Monique

    2014-05-01

    The European Grid e-infrastructure has shown the capacity to connect geographically distributed heterogeneous compute resources in a secure way taking advantages of a robust and fast REN (Research and Education Network). In many countries like in Africa the first step has been to implement a REN and regional organizations like Ubuntunet, WACREN or ASREN to coordinate the development, improvement of the network and its interconnection. The Internet connections are still exploding in those countries. The second step has been to fill up compute needs of the scientists. Even if many of them have their own multi-core or not laptops for more and more applications it is not enough because they have to face intensive computing due to the large amount of data to be processed and/or complex codes. So far one solution has been to go abroad in Europe or in America to run large applications or not to participate to international communities. The Grid is very attractive to connect geographically-distributed heterogeneous resources, aggregate new ones and create new sites on the REN with a secure access. All the users have the same servicers even if they have no resources in their institute. With faster and more robust internet they will be able to take advantage of the European Grid. There are different initiatives to provide resources and training like UNESCO/HP Brain Gain initiative, EUMEDGrid, ..Nowadays Cloud becomes very attractive and they start to be developed in some countries. In this talk challenges for those countries to implement such e-infrastructures, to develop in parallel scientific and technical research and education in the new technologies will be presented illustrated by examples.

  1. Grid computing in large pharmaceutical molecular modeling.

    Science.gov (United States)

    Claus, Brian L; Johnson, Stephen R

    2008-07-01

    Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.

  2. Distributed Grid Experiences in CMS DC04

    CERN Document Server

    Fanfani, A; Grandi, C; Legrand, I; Suresh, S; Campana, S; Donno, F; Jank, W; Sinanis, N; Sciabà, A; García-Abia, P; Hernández, J; Ernst, M; Anzar, A; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatine, N; Perelmutov, T; Pordes, R; Ratnikova, N; Weigand, J; Wu, Y; Colling, D J; MacEvoy, B; Tallini, H; Wakefield, L; De Filippis, N; Donvito, G; Maggi, G; Bonacorsi, D; Dell'Agnello, L; Martelli, B; Biasotto, M; Fantinel, S; Corvo, M; Fanzago, F; Mazzucato, M; Tuura, L; Martin, T; Letts, J; Bockjoo, K; Prescott, C; Rodríguez, J; Zahn, A; Bradley, D

    2005-01-01

    In March-April 2004 the CMS experiment undertook a Data Challenge (DC04). During the previous 8 months CMS undertook a large simulated event production. The goal of the challenge was to run CMS reconstruction for sustained period at 25Hz in put rate, distribute the data to the CMS Tier-1 centers and analyze them at remote sites. Grid environments developed in Europe by the LHC Computing Grid (LCG) and in the US with Grid2003 were utilized to complete the aspects of the challenge. A description of the experiences, successes and lessons learned from both experiences with grid infrastructure is presented.

  3. Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid

    International Nuclear Information System (INIS)

    Padée, Adam; Zaremba, Krzysztof; Kurek, Krzysztof

    2013-01-01

    Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters

  4. Effects of the duration and inorganic nitrogen composition of a nutrient-rich patch on soil exploration by the roots of Lolium perenne in a heterogeneous environment.

    Science.gov (United States)

    Nakamura, Ryoji; Kachi, N; Suzuki, J-I

    2010-05-01

    We investigated the growth of and soil exploration by Lolium perenne under a heterogeneous environment before its roots reached a nutrient-rich patch. Temporal changes in the distribution of inorganic nitrogen, i.e., NO(3)(-)-N and NH(4)(+)-N, in the heterogeneous environment during the experimental period were also examined. The results showed that roots randomly explored soil, irrespective of the patchy distribution of inorganic nitrogen and differences in the chemical composition of inorganic nitrogen distribution between heterogeneous and homogeneous environments. We have also elucidated the potential effects of patch duration and inorganic nitrogen distribution on soil exploration by roots and thus on plant growth.

  5. FastSLAM Using Compressed Occupancy Grids

    Directory of Open Access Journals (Sweden)

    Christopher Cain

    2016-01-01

    Full Text Available Robotic vehicles working in unknown environments require the ability to determine their location while learning about obstacles located around them. In this paper a method of solving the SLAM problem that makes use of compressed occupancy grids is presented. The presented approach is an extension of the FastSLAM algorithm which stores a compressed form of the occupancy grid to reduce the amount of memory required to store the set of occupancy grids maintained by the particle filter. The performance of the algorithm is presented using experimental results obtained using a small inexpensive ground vehicle equipped with LiDAR, compass, and downward facing camera that provides the vehicle with visual odometry measurements. The presented results demonstrate that although with our approach the occupancy grid maintained by each particle uses only 40% of the data needed to store the uncompressed occupancy grid, we can still achieve almost identical results to the approach where each particle filter stores the full occupancy grid.

  6. Grid computing : enabling a vision for collaborative research

    International Nuclear Information System (INIS)

    von Laszewski, G.

    2002-01-01

    In this paper the authors provide a motivation for Grid computing based on a vision to enable a collaborative research environment. The authors vision goes beyond the connection of hardware resources. They argue that with an infrastructure such as the Grid, new modalities for collaborative research are enabled. They provide an overview showing why Grid research is difficult, and they present a number of management-related issues that must be addressed to make Grids a reality. They list projects that provide solutions to subsets of these issues

  7. Optimal economic and environment operation of micro-grid power systems

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Gualous, Hamid; Lo Brutto, Ottavio A.

    2016-01-01

    Highlights: • Real-time energy management system for Micro-Grid power systems is introduced. • The management system considered cost objective function and emission constraints. • The optimization problem is solved using Binary Particle Swarm Algorithm. • Advanced real-time interface libraries are used to run the optimization code. - Abstract: In this paper, an advanced real-time energy management system is proposed in order to optimize micro-grid performance in a real-time operation. The proposed strategy of the management system capitalizes on the power of binary particle swarm optimization algorithm to minimize the energy cost and carbon dioxide and pollutant emissions while maximizing the power of the available renewable energy resources. Advanced real-time interface libraries are used to run the optimization code. The simulation results are considered for three different scenarios considering the complexity of the proposed problem. The proposed management system along with its control system is experimentally tested to validate the simulation results obtained from the optimization algorithm. The experimental results highlight the effectiveness of the proposed management system for micro-grids operation.

  8. The CrossGrid project

    International Nuclear Information System (INIS)

    Kunze, M.

    2003-01-01

    There are many large-scale problems that require new approaches to computing, such as earth observation, environmental management, biomedicine, industrial and scientific modeling. The CrossGrid project addresses realistic problems in medicine, environmental protection, flood prediction, and physics analysis and is oriented towards specific end-users: Medical doctors, who could obtain new tools to help them to obtain correct diagnoses and to guide them during operations; industries, that could be advised on the best timing for some critical operations involving risk of pollution; flood crisis teams, that could predict the risk of a flood on the basis of historical records and actual hydrological and meteorological data; physicists, who could optimize the analysis of massive volumes of data distributed across countries and continents. Corresponding applications will be based on Grid technology and could be complex and difficult to use: the CrossGrid project aims at developing several tools that will make the Grid more friendly for average users. Portals for specific applications will be designed, that should allow for easy connection to the Grid, create a customized work environment, and provide users with all necessary information to get their job done

  9. CRED 5m Gridded bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa, South Pacific. Almost...

  10. GENECODIS-Grid: An online grid-based tool to predict functional information in gene lists

    International Nuclear Information System (INIS)

    Nogales, R.; Mejia, E.; Vicente, C.; Montes, E.; Delgado, A.; Perez Griffo, F. J.; Tirado, F.; Pascual-Montano, A.

    2007-01-01

    In this work we introduce GeneCodis-Grid, a grid-based alternative to a bioinformatics tool named Genecodis that integrates different sources of biological information to search for biological features (annotations) that frequently co-occur in a set of genes and rank them by statistical significance. GeneCodis-Grid is a web-based application that takes advantage of two independent grid networks and a computer cluster managed by a meta-scheduler and a web server that host the application. The mining of concurrent biological annotations provides significant information for the functional analysis of gene list obtained by high throughput experiments in biology. Due to the large popularity of this tool, that has registered more than 13000 visits since its publication in January 2007, there is a strong need to facilitate users from different sites to access the system simultaneously. In addition, the complexity of some of the statistical tests used in this approach has made this technique a good candidate for its implementation in a Grid opportunistic environment. (Author)

  11. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  12. TIGER: A graphically interactive grid system for turbomachinery applications

    Science.gov (United States)

    Shih, Ming-Hsin; Soni, Bharat K.

    1992-01-01

    Numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to the use of general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical User Interactions are provided in the algorithm, allowing the user to design and manipulate the grid lines with a mouse.

  13. The Experiment Method for Manufacturing Grid Development on Single Computer

    Institute of Scientific and Technical Information of China (English)

    XIAO Youan; ZHOU Zude

    2006-01-01

    In this paper, an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed. The characteristic of the proposed method is constructing a full prototype Manufacturing Grid application system which is hosted on a single personal computer with the virtual machine technology. Firstly, it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine technology. Secondly, all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes. Then, we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer, and can carry on the experiment on this foundation. Compared with the known experiment methods for the Manufacturing Grid application system development, the proposed method has the advantages of the known methods, such as cost inexpensively, operation simple, and can get the confidence experiment result easily. The Manufacturing Grid application system constructed with the proposed method has the high scalability, stability and reliability. It is can be migrated to the real application environment rapidly.

  14. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    Science.gov (United States)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  15. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  16. Grid interoperability: joining grid information systems

    International Nuclear Information System (INIS)

    Flechl, M; Field, L

    2008-01-01

    A grid is defined as being 'coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations'. Over recent years a number of grid projects, many of which have a strong regional presence, have emerged to help coordinate institutions and enable grids. Today, we face a situation where a number of grid projects exist, most of which are using slightly different middleware. Grid interoperation is trying to bridge these differences and enable Virtual Organizations to access resources at the institutions independent of their grid project affiliation. Grid interoperation is usually a bilateral activity between two grid infrastructures. Recently within the Open Grid Forum, the Grid Interoperability Now (GIN) Community Group is trying to build upon these bilateral activities. The GIN group is a focal point where all the infrastructures can come together to share ideas and experiences on grid interoperation. It is hoped that each bilateral activity will bring us one step closer to the overall goal of a uniform grid landscape. A fundamental aspect of a grid is the information system, which is used to find available grid services. As different grids use different information systems, interoperation between these systems is crucial for grid interoperability. This paper describes the work carried out to overcome these differences between a number of grid projects and the experiences gained. It focuses on the different techniques used and highlights the important areas for future standardization

  17. Grid-supported Medical Digital Library.

    Science.gov (United States)

    Kosiedowski, Michal; Mazurek, Cezary; Stroinski, Maciej; Weglarz, Jan

    2007-01-01

    Secure, flexible and efficient storing and accessing digital medical data is one of the key elements for delivering successful telemedical systems. To this end grid technologies designed and developed over the recent years and grid infrastructures deployed with their use seem to provide an excellent opportunity for the creation of a powerful environment capable of delivering tools and services for medical data storage, access and processing. In this paper we present the early results of our work towards establishing a Medical Digital Library supported by grid technologies and discuss future directions of its development. These works are part of the "Telemedycyna Wielkopolska" project aiming to develop a telemedical system for the support of the regional healthcare.

  18. Probabilistic Learning by Rodent Grid Cells.

    Science.gov (United States)

    Cheung, Allen

    2016-10-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population

  19. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  20. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  1. Dedicated Filter for Robust Occupancy Grid Mapping

    Directory of Open Access Journals (Sweden)

    KS Nagla

    2015-03-01

    Full Text Available Sensor based perception of the environment is an emerging area of the mobile robot research where sensors play a pivotal role. For autonomous mobile robots, the fundamental requirement is the convergent of the range information in to high level internal representation. Internal representation in the form of occupancy grid is commonly used in autonomous mobile robots due to its various advantages. There are several sensors such as vision sensor, laser rage finder, and ultrasonic and infrared sensors etc. play roles in mapping. However the sensor information failure, sensor inaccuracies, noise, and slow response are the major causes of an error in the mapping. To improve the reliability of the mobile robot mapping multisensory data fusion is considered as an optimal solution. This paper presents a novel architecture of sensor fusion frame work in which a dedicated filter (DF is proposed to increase the robustness of the occupancy grid for indoor environment. The technique has been experimentally verified for different indoor test environments. The proposed configuration shows improvement in the occupancy grid with the implementation of dedicated filters.

  2. The Particle Physics Data Grid. Final Report

    International Nuclear Information System (INIS)

    Livny, Miron

    2002-01-01

    The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services: reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities

  3. 84-KILOMETER RADIOLOGICAL MONITORING GRID

    International Nuclear Information System (INIS)

    L. Roe

    2000-01-01

    The purpose of this calculation is to document the development of a radial grid that is suitable for evaluating the pathways and potential impacts of a release of radioactive materials to the environment within a distance of 84 kilometers (km). The center of the grid represents an approximate location from which a potential release of radioactive materials could originate. The center is located on Nevada State Plane coordinates Northing 765621.5, and Easting 570433.6, which is on the eastern side of Exile Hill at the Yucca Mountain site. The North Portal Pad is located over this point. The grid resulting from this calculation is intended for use primarily in the Radiological Monitoring Program (RadMP). This grid also is suitable for use in Biosphere Modeling and other Yucca Mountain Site Characteristic Project (YMP) activities that require the evaluation of data referenced by spatial or geographic coordinates

  4. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    Science.gov (United States)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  5. The Impact of Grid on Health Care Digital Repositories

    CERN Document Server

    Donno, Flavia; CERN. Geneva. IT Department

    2008-01-01

    Grid computing has attracted worldwide attention in a variety of applications like Health Care. In this paper we identified the Grid services that could facilitate the integration and interoperation of Health Care data and frameworks world-wide. While many of the current Health Care Grid projects address issues such as data location and description on the Grid and the security aspects, the problems connected to data storage, integrity, preservation and distribution have been neglected. We describe the currently available Grid storage services and protocols that can come in handy when dealing with those problems. We further describe a Grid infrastructure to build a cooperative Health Care environment based on currently available Grid services and a service able to validate it.

  6. PROBABILISTIC MODEL OF LASER RANGE FINDER FOR THREE DIMENSIONAL GRID CELL IN CLOSE RANGE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Hafiz b Iman

    2016-04-01

    Full Text Available The probabilistic model of a laser scanner presents an important aspect for simultaneous localization and map-building (SLAM. However, the characteristic of the beam of the laser range finder under extreme incident angles approaching 900 has not been thoroughly investigated. This research paper reports the characteristic of the density of the range value coming from a laser range finder under close range circumstances where the laser is imposed with a high incident angle. The laser was placed in a controlled environment consisting of walls at a close range and 1000 iteration of scans was collected. The assumption of normal density of the metrical data collapses when the beam traverses across sharp edges in this environment. The data collected also shows multimodal density at instances where the range has discontinuity. The standard deviation of the laser range finder is reported to average at 10.54 mm, with 0.96 of accuracy. This significance suggests that under extreme incident angles, a laser range finder reading behaves differently compared to normal distribution. The use of this information is crucial for SLAM activity in enclosed environments such as inside piping grid or other cluttered environments.KEYWORDS:   Hokuyo UTM-30LX; kernel density estimation; probabilistic model  

  7. The dynamic management system for grid resources information of IHEP

    International Nuclear Information System (INIS)

    Gu Ming; Sun Gongxing; Zhang Weiyi

    2003-01-01

    The Grid information system is an essential base for building a Grid computing environment, it collects timely the resources information of each resource in a Grid, and provides an entire information view of all resources to the other components in a Grid computing system. The Grid technology could support strongly the computing of HEP (High Energy Physics) with big science and multi-organization features. In this article, the architecture and implementation of a dynamic management system are described, as well as the grid and LDAP (Lightweight Directory Access Protocol), including Web-based design for resource information collecting, querying and modifying. (authors)

  8. Towards Efficient Energy Management: Defining HEMS and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Soler, José

    2011-01-01

    in home environments, researches have been designing Home Energy Management Systems (HEMS). Efficiently managing and distributing electricity in the grid will also help to reduce the increase of energy consumption in the future. The power grid is evolving into the Smart Grid, which is being developed...... to distribute and produce electricity more efficiently. This paper presents the high level goals and requirements of HEMS and the Smart Grid. Additionally, it provides an overview on how Information and Communication Technologies (ICT) is involved in the Smart Grid and how they help to achieve the emerging...... functionalities that the Smart Grid can provide....

  9. Future electrical distribution grids: Smart Grids

    International Nuclear Information System (INIS)

    Hadjsaid, N.; Sabonnadiere, J.C.; Angelier, J.P.

    2010-01-01

    The new energy paradigm faced by distribution network represents a real scientific challenge. Thus, national and EU objectives in terms of environment and energy efficiency with resulted regulatory incentives for renewable energies, the deployment of smart meters and the need to respond to changing needs including new uses related to electric and plug-in hybrid vehicles introduce more complexity and favour the evolution towards a smarter grid. The economic interest group in Grenoble IDEA in connection with the power laboratory G2ELab at Grenoble Institute of technology, EDF and Schneider Electric are conducting research on the electrical distribution of the future in presence of distributed generation for ten years.Thus, several innovations emerged in terms of flexibility and intelligence of the distribution network. One can notice the intelligence solutions for voltage control, the tools of network optimization, the self-healing techniques, the innovative strategies for connecting distributed and intermittent generation or load control possibilities for the distributor. All these innovations are firmly in the context of intelligent networks of tomorrow 'Smart Grids'. (authors)

  10. Grid computing the European Data Grid Project

    CERN Document Server

    Segal, B; Gagliardi, F; Carminati, F

    2000-01-01

    The goal of this project is the development of a novel environment to support globally distributed scientific exploration involving multi- PetaByte datasets. The project will devise and develop middleware solutions and testbeds capable of scaling to handle many PetaBytes of distributed data, tens of thousands of resources (processors, disks, etc.), and thousands of simultaneous users. The scale of the problem and the distribution of the resources and user community preclude straightforward replication of the data at different sites, while the aim of providing a general purpose application environment precludes distributing the data using static policies. We will construct this environment by combining and extending newly emerging "Grid" technologies to manage large distributed datasets in addition to computational elements. A consequence of this project will be the emergence of fundamental new modes of scientific exploration, as access to fundamental scientific data is no longer constrained to the producer of...

  11. Health-e-Child a grid platform for european paediatrics

    CERN Document Server

    Skaburskas, K; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integr...

  12. A login shell interface for INFN-GRID

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, S [INFN - Sezione di Napoli, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy); Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G [Universita degli Studi di Napoli ' Federico M' , Dipartimento di Scienze Fisiche, Complesso di Monte S.Angelo - Via Cintia 80126 Napoli (Italy)], E-mail: silvio.pardi@na.infn.it

    2008-12-15

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  13. A login shell interface for INFN-GRID

    International Nuclear Information System (INIS)

    Pardi, S; Calloni, E; Rosa, R De; Garufi, F; Milano, L; Russo, G

    2008-01-01

    The user interface is a crucial service to guarantee the Grid accessibility. The goal to achieve, is the implementation of an environment able to hide the grid complexity and offer a familiar interface to the final user. Currently many graphical interfaces have been proposed to simplify the grid access, but the GUI approach appears not very congenital to UNIX developers and users accustomed to work with command line interface. In 2004 the GridShell project proposed an extension of popular UNIX shells such as TCSH and BASH with features supporting Grid computing. Starting from the ideas included in GridShell, we propose IGSH (INFN-GRID SHELL) a new login shell for the INFN-GRID middleware, that interact with the Resource Broker services and integrates in a 'naturally way' the grid functionality with a familiar interface. The architecture of IGSH is very simple, it consist of a software layer on the top of the INFN-GRID middleware layer. When some operation is performed by the user, IGSH takes in charge to parse the syntax and translate it in the correspondents INFN-GRID commands according to some semantic rules specified in the next sections. The final user interacts with the underlying distributed infrastructure by using IGSH instead of his default login shell, with the sensation to work on a local machine.

  14. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain.

    Science.gov (United States)

    Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar

    2018-01-30

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  15. Minimizing draining waste through extending the lifetime of pilot jobs in Grid environments

    International Nuclear Information System (INIS)

    Sfiligoi, I; Martin, T; Würthwein, F; Bockelman, B P; Bradley, D C

    2014-01-01

    The computing landscape is moving at an accelerated pace to many-core computing. Nowadays, it is not unusual to get 32 cores on a single physical node. As a consequence, there is increased pressure in the pilot systems domain to move from purely single-core scheduling and allow multi-core jobs as well. In order to allow for a gradual transition from single-core to multi-core user jobs, it is envisioned that pilot jobs will have to handle both kinds of user jobs at the same time, by requesting several cores at a time from Grid providers and then partitioning them between the user jobs at runtime. Unfortunately, the current Grid ecosystem only allows for relatively short lifetime of pilot jobs, requiring frequent draining, with the relative waste of compute resources due to varying lifetimes of the user jobs. Significantly extending the lifetime of pilot jobs is thus highly desirable, but must come without any adverse effects for the Grid resource providers. In this paper we present a mechanism, based on communication between the pilot jobs and the Grid provider, that allows for pilot jobs to run for extended periods of time when there are available resources, but also allows the Grid provider to reclaim the resources in a short amount of time when needed. We also present the experience of running a prototype system using the above mechanism on a few US-based Grid sites.

  16. FAULT TOLERANCE IN MOBILE GRID COMPUTING

    OpenAIRE

    Aghila Rajagopal; M.A. Maluk Mohamed

    2014-01-01

    This paper proposes a novel model for Surrogate Object based paradigm in mobile grid environment for achieving a Fault Tolerance. Basically Mobile Grid Computing Model focuses on Service Composition and Resource Sharing Process. In order to increase the performance of the system, Fault Recovery plays a vital role. In our Proposed System for Recovery point, Surrogate Object Based Checkpoint Recovery Model is introduced. This Checkpoint Recovery model depends on the Surrogate Object and the Fau...

  17. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    Science.gov (United States)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  18. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment

    OpenAIRE

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2013-01-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cy...

  19. Enhanced ID-Based Authentication Scheme Using OTP in Smart Grid AMI Environment

    Directory of Open Access Journals (Sweden)

    Sang-Soo Yeo

    2014-01-01

    Full Text Available This paper presents the vulnerabilities analyses of KL scheme which is an ID-based authentication scheme for AMI network attached SCADA in smart grid and proposes a security-enhanced authentication scheme which satisfies forward secrecy as well as security requirements introduced in KL scheme and also other existing schemes. The proposed scheme uses MDMS which is the supervising system located in an electrical company as a time-synchronizing server in order to synchronize smart devices at home and conducts authentication between smart meter and smart devices using a new secret value generated by an OTP generator every session. The proposed scheme has forward secrecy, so it increases overall security, but its communication and computation overhead reduce its performance slightly, comparing the existing schemes. Nonetheless, hardware specification and communication bandwidth of smart devices will have better conditions continuously, so the proposed scheme would be a good choice for secure AMI environment.

  20. Assessment of heterogeneous geological environment at Tono. A technical report

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Inaba, Takeshi; Sasakura, Takeshi; Atsumi, Hiroyuki; Tanaka, Toshiyuki; Kobayashi, Ichizo; Iwano, Keita; Furuichi, Mitsuaki

    2004-02-01

    'Geoscientific research' at Tono is developing site investigation, characterization and assessment techniques for understanding of geological environment. Their important themes are to establish a methodology for analyzing uncertainties in heterogeneous geological environment and to develop investigation techniques for reducing the uncertainties efficiently. The current study proposes a new approach where all the possible options in the models and data-sets that cannot be excluded in the light of the evidence available is identified. This approach enables uncertainties associated with the understanding at a given stage of the site characterization to be made explicitly using an uncertainty analysis technique based on Fuzzy geostatistics. This in turn, supports the design of the following investigation stage to reduce the uncertainties efficiently. In this report the technique has been tested through geological modelling and groundwater analyses with Tono area case based on current knowledge, to demonstrate its applicability. This report summarizes as follows; 1) It is possible to quantify the uncertainties with Tono area case based on current knowledge using the technique. 2) Based on sensitivity analyses, it is possible to support designs of the following investigation stage to reduce the uncertainties efficiently. 3) The methodology of the technique has been developed with Tono area case. 4) The above could evaluate its applicability and propose further issues for synthesis of the methodology. (author)

  1. NASA's Information Power Grid: Large Scale Distributed Computing and Data Management

    Science.gov (United States)

    Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)

    2001-01-01

    Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.

  2. Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems

    CERN Document Server

    Kołodziej, Joanna

    2012-01-01

    One of the most challenging issues in modelling today's large-scale computational systems is to effectively manage highly parametrised distributed environments such as computational grids, clouds, ad hoc networks and P2P networks. Next-generation computational grids must provide a wide range of services and high performance computing infrastructures. Various types of information and data processed in the large-scale dynamic grid environment may be incomplete, imprecise, and fragmented, which complicates the specification of proper evaluation criteria and which affects both the availability of resources and the final collective decisions of users. The complexity of grid architectures and grid management may also contribute towards higher energy consumption. All of these issues necessitate the development of intelligent resource management techniques, which are capable of capturing all of this complexity and optimising meaningful metrics for a wide range of grid applications.   This book covers hot topics in t...

  3. LOCATION TRANSPARENT SERVICE WITH IMPROVED AVAILABILITY [LTSIA] FOR GRID

    Directory of Open Access Journals (Sweden)

    A. Suthan

    2011-04-01

    Full Text Available Grid Computing provide ample opportunities in many areas. A authorized user should be able to access any data that has been created by him, in the Grid, considering all the factor for security and other vital criteria such as reliability, availability, secure reading and writing of data. The proposed service helps the authorized user to create, modify, view the data that has been created by him or his group, irrespective of whether he is inside the grid environment or he is outside the grid. This service is maintained and moderated by a co-ordinator which takes care of factors of security, other vital criteria and properties of distributed and grid environment. In order to increase the availability of data LTSIA uses a replication algorithm that decides the number of replicas that has to be created and where to store the replicated data. The decisions are made from the information stored in the service table linked with co-ordinator. Elliptic curve crypto Algorithm is used to encrypt data while being transmitted outside the grid. The authorized user can use a unique id assigned to him to decrypt the data or shall use a digital certificate system as a tool to decrypt it.

  4. Two Approaches for the Management of Virtual Machines on Grid Infrastructures

    International Nuclear Information System (INIS)

    Tapiador, D.; Rubio-Montero, A. J.; Juedo, E.; Montero, R. S.; Llorente, I. M.

    2007-01-01

    Virtual machines are a promising technology to overcome some of the problems found in current Grid infrastructures, like heterogeneity, performance partitioning or application isolation. This work shows a comparison between two strategies to manage virtual machines in Globus Grids. The first alternative is a straightforward deployment that does not require additional middle ware to be installed. It is only based on standard Grid services and is not bound to a given virtualization technology. Although this option is fully functional, it is only suitable for single process batch jobs. The second solution makes use of the Virtual Workspace Service which allows a remote client to securely negotiate and manage a virtual resource. This approach better exploits the potential benefits offered by the virtualization technology and provides a wider application range. (Author)

  5. Multi-agent approach for power system in a smart grid protection context

    DEFF Research Database (Denmark)

    Abedini, Reza; Pinto, Tiago; Morais, Hugo

    2013-01-01

    electricity markets and in the other hand with increasing penetration of Distributed Generation (DG) because of environment issues and diminishing in fossil fuel reserves and its price growth, made microgrid more attractive. Micro grids are considers as partial of SmartGrid system to accommodate DGs as well......With increasing penetration of electricity application in society and the need of majority of appliance to electricity, high level of reliability becomes more essential; in one hand with deregulation of electricity market in production, transmission and distribution and emerge of competitive...... proposes a new approach for protection in a Microgrid environment as a part of SmartGrid: Multi-agent system to Protections Coordination (MAS-ProteC) which integrated in MASGriP (Multi-Agent Smart Grid Platform), providing protection services within network operation in SmartGrid in electricity market...

  6. Near-Body Grid Adaption for Overset Grids

    Science.gov (United States)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  7. Innovative testing and measurement solutions for smart grid

    CERN Document Server

    Huang, Qi; Yi, Jianbo; Zhen, Wei

    2015-01-01

    Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Presents the most updated technological developments in the measurement and testing of power systems within the smart grid environment Reflects the modernization of electric utility power systems with the extensive use of computer, sensor, and data communications technologies, providing benefits to energy consumers and utility companies alike The leading author heads a group of researchers focusing on

  8. Smart grids. Socioeconomic value and optimal flexibility portfolios - Summary

    International Nuclear Information System (INIS)

    2017-06-01

    Even by 2030, the management of the electricity consumption peaks will remain the main economic value for smart grid flexibility solutions in France. The economic potential of smart grid flexibility solutions increases with the rising needs for new capacities to ensure the security of supply. This need could be covered by a mix of different smart grid solutions (battery storage, pumped hydroelectric power stations, demand response by industrial or residential consumers). Flexibility solutions, even connected to the distribution network, can moderate reinforcements of the transmission network. The economic benefits are significant: smart grid solutions can be deployed for the benefit of consumers and can support the energy transition. The implementation of smart grid solutions in France can lightly reduce the GHG emissions of the French power system, even if the life cycles of equipments are taken into account in the analysis. Battery storage: in the next years, a solution that should no longer be limited to a niche market. Residential demand response: a deployment reflecting the heterogeneity of consumers and the different development stages of demand response solutions (smart meters, 'DR boxes'...). Demand response in the industry or tertiary sector: a 'no regret' option for the management of consumption peaks. Wind power controllability: a 'no regret' option to moderate investments in the network. The socio-economic assessment of smart grid solutions summarised in this report provides new information about the issues associated with the development of smart grid flexibilities in the French power system. It can now be used to assess the most efficient level of development of various smart grid solutions, taking into account the effects of competition between the different solutions in accessing the sources of value

  9. A policy system for Grid Management and Monitoring

    International Nuclear Information System (INIS)

    Stagni, Federico; Santinelli, Roberto

    2011-01-01

    Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resources are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.

  10. A policy system for Grid Management and Monitoring

    Science.gov (United States)

    Stagni, Federico; Santinelli, Roberto; LHCb Collaboration

    2011-12-01

    Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resoures are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.

  11. LHCb: A Policy System for Grid Management and Monitoring

    CERN Multimedia

    Stagni, F; Sapunov, M

    2010-01-01

    Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a mask composed by services exposed b y local resources. In an ideal world, the more services in a mask, the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an e...

  12. A Simplified Control Method for Tie-Line Power of DC Micro-Grid

    OpenAIRE

    Yanbo Che; Jinhuan Zhou; Tingjun Lin; Wenxun Li; Jianmei Xu

    2018-01-01

    Compared with the AC micro-grid, the DC micro-grid has low energy loss and no issues of frequency stability, which makes it more accessible for distributed energy. Thus, the DC micro-grid has good potential for development. A variety of renewable energy is included in the DC micro-grid, which is easily affected by the environment, causing fluctuation of the DC voltage. For grid-connected DC micro-grid with droop control strategy, the tie-line power is affected by fluctuations in the DC voltag...

  13. AliEn: ALICE Environment on the GRID

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AliEn is the GRID middleware used by the ALICE collaboration. It provides all the components that are needed to manage the distributed resources. AliEn is used for all the computing workflows of the experiment: Montecarlo production, data replication and reconstruction and organixed or chaotic user analysis. Moreover, AliEn is also being used by other experiments like PANDA and CBM. The main components of AliEn are a centralized file and metadata catalogue, a job execution model and file replication model. These three components have been evolving over the last 10 years to make sure that the satisfy the computing requirements of the experiment, which keep increasing every year.

  14. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    Science.gov (United States)

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these

  15. Health-e-Child: a grid platform for european paediatrics

    International Nuclear Information System (INIS)

    Skaburskas, K; Estrella, F; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integration and indicates how these will be resolved in the HeC system. HeC is presented as an example of how computer science (and, in particular Grid infrastructures) originating from high energy physics can be adapted for use by biomedical informaticians to deliver tangible real-world benefits

  16. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    Science.gov (United States)

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  18. Development and Execution of an Impact Cratering Application on a Computational Grid

    Directory of Open Access Journals (Sweden)

    E. Huedo

    2005-01-01

    Full Text Available Impact cratering is an important geological process of special interest in Astrobiology. Its numerical simulation comprises the execution of a high number of tasks, since the search space of input parameter values includes the projectile diameter, the water depth and the impactor velocity. Furthermore, the execution time of each task is not uniform because of the different numerical properties of each experimental configuration. Grid technology is a promising platform to execute this kind of applications, since it provides the end user with a performance much higher than that achievable on any single organization. However, the scheduling of each task on a Grid involves challenging issues due to the unpredictable and heterogeneous behavior of both the Grid and the numerical code. This paper evaluates the performance of a Grid infrastructure based on the Globus toolkit and the GridWay framework, which provides the adaptive and fault tolerance functionality required to harness Grid resources, in the simulation of the impact cratering process. The experiments have been performed on a testbed composed of resources shared by five sites interconnected by RedIRIS, the Spanish Research and Education Network.

  19. Uniformity on the grid via a configuration framework

    International Nuclear Information System (INIS)

    Igor V Terekhov et al.

    2003-01-01

    As Grid permeates modern computing, Grid solutions continue to emerge and take shape. The actual Grid development projects continue to provide higher-level services that evolve in functionality and operate with application-level concepts which are often specific to the virtual organizations that use them. Physically, however, grids are comprised of sites whose resources are diverse and seldom project readily onto a grid's set of concepts. In practice, this also creates problems for site administrators who actually instantiate grid services. In this paper, we present a flexible, uniform framework to configure a grid site and its facilities, and otherwise describe the resources and services it offers. We start from a site configuration and instantiate services for resource advertisement, monitoring and data handling; we also apply our framework to hosting environment creation. We use our ideas in the Information Management part of the SAM-Grid project, a grid system which will deliver petabyte-scale data to the hundreds of users. Our users are High Energy Physics experimenters who are scattered worldwide across dozens of institutions and always use facilities that are shared with other experiments as well as other grids. Our implementation represents information in the XML format and includes tools written in XQuery and XSLT

  20. The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network

    Directory of Open Access Journals (Sweden)

    T. A. Mityushkina

    2012-12-01

    Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.

  1. Virtual Experiments on the Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E; Cobb, John W; Farhi, Emmanuel N; Miller, Stephen D; Taylor, M

    2008-01-01

    The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted

  2. Heterogeneous information sharing of sensor information in contested environments

    Science.gov (United States)

    Wampler, Jason A.; Hsieh, Chien; Toth, Andrew; Sheatsley, Ryan

    2017-05-01

    The inherent nature of unattended sensors makes these devices most vulnerable to detection, exploitation, and denial in contested environments. Physical access is often cited as the easiest way to compromise any device or network. A new mechanism for mitigating these types of attacks developed under the Assistant Secretary of Defense for Research and Engineering, ASD(R and E) project, "Smoke Screen in Cyberspace", was demonstrated in a live, over-the-air experiment. Smoke Screen encrypts, slices up, and disburses redundant fragments of files throughout the network. Recovery is only possible after recovering all fragments and attacking/denying one or more nodes does not limit the availability of other fragment copies in the network. This experiment proved the feasibility of redundant file fragmentation, and is the foundation for developing sophisticated methods to blacklist compromised nodes, move data fragments from risks of compromise, and forward stored data fragments closer to the anticipated retrieval point. This paper outlines initial results in scalability of node members, fragment size, file size, and performance in a heterogeneous network consisting of the Wireless Network after Next (WNaN) radio and Common Sensor Radio (CSR).

  3. Heterogeneity in avian richness-environment relationships along the Pacific Crest Trail

    Directory of Open Access Journals (Sweden)

    Michael C. McGrann

    2014-12-01

    Full Text Available Predictions of the responses of montane bird communities to climate change generally presuppose that species and assemblages hold constant relationships to temperature across large study regions. However, comparative studies of avian communities exploring the factors that currently shape species richness patterns rarely analyze relationships across neighboring ecological regions of the same mountain chain. Evaluations of the intrinsic regional differences in species-environment relationships are needed to better inform expectations of how bird communities may be affected by future climate change. In this study, we evaluated the relative importance of three environmental factors (temperature, precipitation, and net primary productivity in structuring avian richness patterns along a continuous mega-transect. We followed the route of the Pacific Crest Trail (PCT (32.58° N to 42.00° N, ranging in elevation from 365 to 4020 m on the California cordillera and completed avian point counts on 3578 systematically established survey plots. We divided this mega-transect into five sections, which corresponded to distinct ecological regions along the mountain chain. Regions differed both for elevation-richness patterns, exhibiting linear and unimodal trends, and for model-supported environmental drivers of patterns, with some richness-environment correlations changing sign across adjacent regions. These results were robust to sampling bias, regional species availability, and spatial autocorrelation. Although seasonal variation in avian movements may have limited influence on our results, we conclude that intrinsic regional environments affect bird species richness differently in each of these sections on the PCT, thus creating region-specific species-environment relationships. Appreciation of regional environmental heterogeneity will only increase in light of forecasted climate change, where regional predictions often diverge greatly from global trends

  4. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    International Nuclear Information System (INIS)

    Cass, Tony

    2012-01-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  5. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    Science.gov (United States)

    Vernet, David; Corral, Guiomar

    2018-01-01

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748

  6. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    Directory of Open Access Journals (Sweden)

    Víctor Caballero

    2018-01-01

    Full Text Available Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  7. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    Science.gov (United States)

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  8. An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Kumbhare, Alok; Cao, Baohua; Prasanna, Viktor K.

    2011-07-09

    Power utilities globally are increasingly upgrading to Smart Grids that use bi-directional communication with the consumer to enable an information-driven approach to distributed energy management. Clouds offer features well suited for Smart Grid software platforms and applications, such as elastic resources and shared services. However, the security and privacy concerns inherent in an information rich Smart Grid environment are further exacerbated by their deployment on Clouds. Here, we present an analysis of security and privacy issues in a Smart Grids software architecture operating on different Cloud environments, in the form of a taxonomy. We use the Los Angeles Smart Grid Project that is underway in the largest U.S. municipal utility to drive this analysis that will benefit both Cloud practitioners targeting Smart Grid applications, and Cloud researchers investigating security and privacy.

  9. Services on Application Level in Grid for Scientific Calculations

    OpenAIRE

    Goranova, Radoslava

    2010-01-01

    AMS Subj. Classification: 00-02, (General) The Grid is a hardware and software infrastructure that coordinates access to distribute computational and data resources, shared by different institutes, computational centres and organizations. The Open Grid Services Architecture (OGSA) describes an architecture for a service-oriented grid computing environment, based on Web service technologies, WSDL and SOAP. In this article we investigate possibilities for realization of business process com...

  10. Grid computing and collaboration technology in support of fusion energy sciences

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2005-01-01

    Science research in general and magnetic fusion research in particular continue to grow in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. The simultaneous increase in wide area network speeds has made it practical to envision distributed working environments that are as productive as traditionally collocated work. In computing power, it has become reasonable to decouple production and consumption resulting in the ability to construct computing grids in a similar manner as the electrical power grid. Grid computing, the secure integration of computer systems over high speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. For human interaction, advanced collaborative environments are being researched and deployed to have distributed group work that is as productive as traditional meetings. The DOE Scientific Discovery through Advanced Computing Program initiative has sponsored several collaboratory projects, including the National Fusion Collaboratory Project, to utilize recent advances in grid computing and advanced collaborative environments to further research in several specific scientific domains. For fusion, the collaborative technology being deployed is being used in present day research and is also scalable to future research, in particular, to the International Thermonuclear Experimental Reactor experiment that will require extensive collaboration capability worldwide. This paper briefly reviews the concepts of grid computing and advanced collaborative environments and gives specific examples of how these technologies are being used in fusion research today

  11. Electrolyzers Enhancing Flexibility in Electric Grids

    Directory of Open Access Journals (Sweden)

    Manish Mohanpurkar

    2017-11-01

    Full Text Available This paper presents a real-time simulation with a hardware-in-the-loop (HIL-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.

  12. Disentangling the effects of root foraging and inherent growth rate on plant biomass accumulation in heterogeneous environments : a modelling study

    NARCIS (Netherlands)

    Fransen, B.; Kroon, de H.; Kovel, de C.G.F.; Bosch, van den F.

    1999-01-01

    Empirical evidence indicates that fast-growing species generally display a higher degree of selective root placement in heterogeneous environments than slow-growing species. Such root foraging is accomplished by root morphological responses, but since some morphological responses are simply the

  13. Implementation of grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper presents the transfer of a microgrid converter from/to on-grid to/from off-grid when the converter is working in two different modes. In the first transfer presented method, the converter operates as a Current Source Inverter (CSI) when on-grid and as a Voltage Source Inverter (VSI) when off-grid. In the second transfer method, the converter is operated as a VSI both, when operated on-grid and off-grid. The two methods are implemented successfully in a real pla...

  14. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Science.gov (United States)

    Stonko, David P; Manning, Lathiena; Starz-Gaiano, Michelle; Peercy, Bradford E

    2015-01-01

    Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.

  15. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Directory of Open Access Journals (Sweden)

    David P Stonko

    Full Text Available Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of

  16. The role of smart grids in integrating renewable energy

    Directory of Open Access Journals (Sweden)

    Ali MEKKAOUI

    2017-06-01

    Full Text Available In this paper a novel model of smart grid connected photovoltaic / wind turbine hybrid system is developed. A Smart Grid has been presented in MATLAB/SIMULINK environment to see the approach for analysis of power exchange. Analysis of this last, gives the exact idea to know the range of maximum permissible loads that can be connected to their relevant bus bars. This paper presents the variation of Active Power with varying load angle in context with small signal analysis. The Smart Grid, regarded as the future generation power grid, uses two-way flow of electricity and information to create a widely distributed automated energy delivery network.

  17. Grist: Grid-based Data Mining for Astronomy

    Science.gov (United States)

    Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.

    2005-12-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  18. Grist : grid-based data mining for astronomy

    Science.gov (United States)

    Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden; hide

    2004-01-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  19. WinGridder - An interactive grid generator for TOUGH - A user's manual (Version 1.0)

    International Nuclear Information System (INIS)

    Pan, Lehua; Hinds, Jennifer; Haukwa, Charles; Wu, Yu-Shu; Bodvarsson, Gudmundur

    2001-01-01

    WinGridder is a Windows-based software package for designing, generating, and visualizing at various spatial scales numerical grids used in reservoir simulations and groundwater modeling studies. Development of this software was motivated by the requirements of the TOUGH (Transport of Unsaturated Groundwater and Heat) family of codes (Pruess 1987, 1991) for simulating subsurface processes related to high-level nuclear waste isolation in partially saturated geological media. Although the TOUGH family of codes has great flexibility in handling the variety of grid information required to describe complex objects, designing and generating a suitable irregular grid can be a tedious and error-prone process, even with the help of existing grid generating programs. This is especially true when the number of cells and connections is very large. The processes of inspecting the quality of the grid or extracting sub-grids or other specific grid information are also complex. The mesh maker embedded within TOUGH2 generates only uniform numerical grids and handles only one set of uniform fracture and matrix properties throughout the model domain. This is not suitable for grid generation in complex flow and transport simulations (such as those of Yucca Mountain, which have heterogeneity in both fracture and matrix media). As a result, the software program Amesh (Haukwa 2000) was developed to generate irregular, effective-continuum (ECM) grids

  20. Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway

    Science.gov (United States)

    Hagen, Stephen J.; Son, Minjun

    2017-02-01

    Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.

  1. A hybrid method for the simulation of radionuclide contaminant plumes in heterogeneous, unsaturated formations

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, T.J.; Souto, H.P. Amaral; Francisco, A.S.

    2009-01-01

    The decision concerning the location of sites for nuclear waste repositories in the subsurface depends upon the long-term containment capabilities of hydrogeological environments. The numerical simulation of the multiphase flow and contaminant transport that take place in this problem is an important tool to help engineers and scientists in selecting appropriate sites. In this paper, we employ a hybrid strategy that combines an Eulerian approximation scheme for the underlying two-phase flow problem with a locally conservative Lagrangian method to approximate the transport of radionuclide. This Lagrangian scheme is computationally efficient and virtually free of numerical diffusion. In order to face unsaturated and heterogeneous problems, four extensions in the Lagrangian scheme are implemented. To show the effectiveness of the improved version we perform a grid refinement study. (author)

  2. Using Grid for the BABAR Experiment

    International Nuclear Information System (INIS)

    Bozzi, C.

    2005-01-01

    The BaBar experiment has been taking data since 1999. In 2001 the computing group started to evaluate the possibility to evolve toward a distributed computing model in a grid environment. We built a prototype system, based on the European Data Grid (EDG), to submit full-scale analysis and Monte Carlo simulation jobs. Computing elements, storage elements, and worker nodes have been installed at SLAC and at various European sites. A BaBar virtual organization (VO) and a test replica catalog (RC) are maintained in Manchester, U.K., and the experiment is using three EDG testbed resource brokers in the U.K. and in Italy. First analysis tests were performed under the assumption that a standard BaBar software release was available at the grid target sites, using RC to register information about the executable and the produced n-tuples. Hundreds of analysis jobs accessing either Objectivity or Root data files ran on the grid. We tested the Monte Carlo production using a farm of the INFN-grid testbed customized to install an Objectivity database and run BaBar simulation software. First simulation production tests were performed using standard Job Description Language commands and the output files were written on the closest storage element. A package that can be officially distributed to grid sites not specifically customized for BaBar has been prepared. We are studying the possibility to add a user friendly interface to access grid services for BaBar

  3. Cognitive Radio for Smart Grid with Security Considerations

    Directory of Open Access Journals (Sweden)

    Khaled Shuaib

    2016-04-01

    Full Text Available In this paper, we investigate how Cognitive Radio as a means of communication can be utilized to serve a smart grid deployment end to end, from a home area network to power generation. We show how Cognitive Radio can be mapped to integrate the possible different communication networks within a smart grid large scale deployment. In addition, various applications in smart grid are defined and discussed showing how Cognitive Radio can be used to fulfill their communication requirements. Moreover, information security issues pertained to the use of Cognitive Radio in a smart grid environment at different levels and layers are discussed and mitigation techniques are suggested. Finally, the well-known Role-Based Access Control (RBAC is integrated with the Cognitive Radio part of a smart grid communication network to protect against unauthorized access to customer’s data and to the network at large.

  4. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  5. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  6. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  7. On an integro-differential model for pest control in a heterogeneous environment.

    Science.gov (United States)

    Rodríguez, Nancy

    2015-04-01

    Insect pests pose a major threat to a balanced ecology as it can threaten local species as well as spread human diseases; thus, making the study of pest control extremely important. In practice, the sterile insect release method (SIRM), where a sterile population is introduced into the wild population with the aim of significantly reducing the growth of the population, has been a popular technique used to control pest invasions. In this work we introduce an integro-differential equation to model the propagation of pests in a heterogeneous environment, where this environment is divided into three regions. In one region SIRM is not used making this environment conducive to propagation of the insects. A second region is the eradication zone where there is an intense release of sterile insects, leading to decay of the population in this region. In the final region we explore two scenarios. In the first case, there is a small release of sterile insects and we prove that if the eradication zone is sufficiently large the pests will not invade. In the second case, when SIRM is not used at all in this region we show that invasions always occur regardless of the size of the eradication zone. Finally, we consider the limiting equation of the integro-differential equation and prove that in this case there is a critical length of the eradication zone which separates propagation from obstruction. Moreover, we provide some upper and lower bound for the critical length.

  8. Population dynamics on heterogeneous bacterial substrates

    Science.gov (United States)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  9. Grid Technology as a Cyberinfrastructure for Delivering High-End Services to the Earth and Space Science Community

    Science.gov (United States)

    Hinke, Thomas H.

    2004-01-01

    Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid

  10. Smart Grid Control and Communication

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Pedersen, Rasmus; Kristensen, Thomas le Fevre

    2015-01-01

    to the reliability due to the stochastic behavior found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments and its Real-Time Hardware-In-the Loop (HIL) verification. An overview on the required Information...

  11. System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous MPSoC Design

    Directory of Open Access Journals (Sweden)

    Daniel D. Gajski

    2008-07-01

    Full Text Available The constantly growing complexity of embedded systems is a challenge that drives the development of novel design automation techniques. C-based system-level design addresses the complexity challenge by raising the level of abstraction and integrating the design processes for the heterogeneous system components. In this article, we present a comprehensive design framework, the system-on-chip environment (SCE which is based on the influential SpecC language and methodology. SCE implements a top-down system design flow based on a specify-explore-refine paradigm with support for heterogeneous target platforms consisting of custom hardware components, embedded software processors, dedicated IP blocks, and complex communication bus architectures. Starting from an abstract specification of the desired system, models at various levels of abstraction are automatically generated through successive step-wise refinement, resulting in a pin-and cycle-accurate system implementation. The seamless integration of automatic model generation, estimation, and verification tools enables rapid design space exploration and efficient MPSoC implementation. Using a large set of industrial-strength examples with a wide range of target architectures, our experimental results demonstrate the effectiveness of our framework and show significant productivity gains in design time.

  12. The roles of households in the smart grid

    DEFF Research Database (Denmark)

    Røpke, Inge

    2013-01-01

    The smart grid is often mentioned as one of the key examples of IT playing a positive role for the environment, because it is regarded as a precondition for a low carbon transition of the energy system. Households are expected to play a variety of roles in relation to the development of the smart...... grid. The changes are complex and involve a number of concerns and challenges for policy-making....

  13. Failure probability analysis of optical grid

    Science.gov (United States)

    Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng

    2008-11-01

    Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.

  14. Green cloud environment by using robust planning algorithm

    Directory of Open Access Journals (Sweden)

    Jyoti Thaman

    2017-11-01

    Full Text Available Cloud computing provided a framework for seamless access to resources through network. Access to resources is quantified through SLA between service providers and users. Service provider tries to best exploit their resources and reduce idle times of the resources. Growing energy concerns further makes the life of service providers miserable. User’s requests are served by allocating users tasks to resources in Clouds and Grid environment through scheduling algorithms and planning algorithms. With only few Planning algorithms in existence rarely planning and scheduling algorithms are differentiated. This paper proposes a robust hybrid planning algorithm, Robust Heterogeneous-Earliest-Finish-Time (RHEFT for binding tasks to VMs. The allocation of tasks to VMs is based on a novel task matching algorithm called Interior Scheduling. The consistent performance of proposed RHEFT algorithm is compared with Heterogeneous-Earliest-Finish-Time (HEFT and Distributed HEFT (DHEFT for various parameters like utilization ratio, makespan, Speed-up and Energy Consumption. RHEFT’s consistent performance against HEFT and DHEFT has established the robustness of the hybrid planning algorithm through rigorous simulations.

  15. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  16. Discontinuous finite element and characteristics methods for neutrons transport equation solution in heterogeneous grids

    International Nuclear Information System (INIS)

    Masiello, E.

    2006-01-01

    The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)

  17. AQUAGRID: The subsurface hydrology Grid service of the Sardinian regional Grid infrastructure

    International Nuclear Information System (INIS)

    Lecca, G.; Murgia, F.; Maggi, P.; Perias, A.

    2007-01-01

    AQUAGRID is the subsurface hydrology service of the Sardinian regional Grid infrastructure, designed to deliver complex environmental applications via a user-friendly Web portal. The service is oriented towards the needs of water professionals providing them a flexible and powerful tool to solve water resources management problems and aid decision between different remediation options for contaminated soil and groundwater. In this paper, the AQUAGRID application concept and the enabling technologies are illustrated. The heart of the service is the CODESA-3D hydrogeological model to simulate complex and large groundwater flow and contaminant transport problems. The relevant experience gained from the porting of the CODESA-3D application on the EGEE infrastructure, via the GILDA test bed (https://gilda.ct.infn.it), has contributed to the service prototype. AQUAGRID is built on top of compute-Grid technologies by means of the EnginFrame Grid portal. The portal enables the interaction with the underlying Grid infrastructure and manages the computational requirements of the whole application system. Data management, distribution and visualization mechanisms are based on the tools provided by the DatacroSSing Decision Support System (http://datacrossing.crs4.it). The DSS, built on top of the SRB data-Grid middleware, is based on Web-GIS and relational database technologies. The resulting production environment allows the end-user to visualize and interact with the results of the performed analyses, using graphs, annotated maps and 3D objects. Such a set of graphical widgets increases enormously the number of AQUAGRID potential users because it does not require any specific expertise of the physical model and technological background to be understood. (Author)

  18. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB Injectors

    International Nuclear Information System (INIS)

    Agostinetti, P.; Dal Bello, S.; Palma, M.D.; Zaccaria, P.

    2006-01-01

    The SINGle Aperture - SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi Aperture Multi Grid (MAMuG) reference configuration. Optimized geometry of the SINGAP grids (plasma, extraction, pre-acceleration, and grounded grid) was identified by CEA Association considering specific requirements for ions extraction and beam generation referring to experimental data and code simulations. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB Injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with thermo-hydraulic and thermo-mechanical sensitivity analyses in order to satisfy the grid functional requirements (temperatures, in plane and out of plane deformations). A complete and detailed thermo-structural design assessment of the SINGAP grids was accomplished applying the structural design rules for ITER in-vessel components and considering both the reference load conditions and the maximum load provided by the power supplies. The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models. The grids were finally integrated with the support and cooling systems inside the beam source vessel. The main results of the thermo-hydraulic and thermo-mechanical analyses are presented. The open issues are then reported, mainly regarding the material properties characterization (static and fatigue tests) and the qualification of technologies for OFHC copper electro-deposition, brazing, and welding of heterogeneous materials. (author)

  19. CDF experience with monte carlo production using LCG grid

    International Nuclear Information System (INIS)

    Griso, S P; Lucchesi, D; Compostella, G; Sfiligoi, I; Cesini, D

    2008-01-01

    The upgrades of the Tevatron collider and CDF detector have considerably increased the demand on computing resources, in particular for Monte Carlo production. This has forced the collaboration to move beyond the usage of dedicated resources and start exploiting the Grid. The CDF Analysis Farm (CAF) model has been reimplemented into LcgCAF in order to access Grid resources by using the LCG/EGEE middleware. Many sites in Italy and in Europe are accessed through this portal by CDF users mainly to produce Monte Carlo data but also for other analysis jobs. We review here the setup used to submit jobs to Grid sites and retrieve the output, including CDF-specific configuration of some Grid components. We also describe the batch and interactive monitor tools developed to allow users to verify the jobs status during their lifetime in the Grid environment. Finally we analyze the efficiency and typical failure modes of the current Grid infrastructure reporting the performances of different parts of the system used

  20. A gridding method for object-oriented PIC codes

    International Nuclear Information System (INIS)

    Gisler, G.; Peter, W.; Nash, H.; Acquah, J.; Lin, C.; Rine, D.

    1993-01-01

    A simple, rule-based gridding method for object-oriented PIC codes is described which is not only capable of dealing with complicated structures such as multiply-connected regions, but is also computationally faster than classical gridding techniques. Using, these smart grids, vacant cells (e.g., cells enclosed by conductors) will never have to be stored or calculated, thus avoiding the usual situation of having to zero electromagnetic fields within conductors after valuable cpu time has been spent in calculating the fields within these cells in the first place. This object-oriented gridding technique makes use of encapsulating characteristics of actual physical objects (particles, fields, grids, etc.) in C ++ classes and supporting software reuse of these entities through C ++ class inheritance relations. It has been implemented in the form of a simple two-dimensional plasma particle-in-cell code, and forms the initial effort of an AFOSR research project to develop a flexible software simulation environment for particle-in-cell algorithms based on object-oriented technology

  1. Enabling Campus Grids with Open Science Grid Technology

    International Nuclear Information System (INIS)

    Weitzel, Derek; Fraser, Dan; Pordes, Ruth; Bockelman, Brian; Swanson, David

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  2. A GridFTP transport driver for Globus XIO

    International Nuclear Information System (INIS)

    Kettimuthu, R.; Wantao, L.; Link, J.; Bresnahan, J.

    2008-01-01

    GridFTP is a high-performance, reliable data transfer protocol optimized for high-bandwidth wide-area networks. Based on the Internet FTP protocol, it defines extensions for high-performance operation and security. The Globus implementation of GridFTP provides a modular and extensible data transfer system architecture suitable for wide area and high-performance environments. GridFTP is the de facto standard in projects requiring secure, robust, high-speed bulk data transport. For example, the high energy physics community is basing its entire tiered data movement infrastructure for the Large Hadron Collider computing Grid on GridFTP; the Laser Interferometer Gravitational Wave Observatory routinely uses GridFTP to move 1 TB a day during production runs; and GridFTP is the recommended data transfer mechanism to maximize data transfer rates on the TeraGrid. Commonly used GridFTP clients include globus-url-copy, uberftp, and the Globus Reliable File Transfer service. In this paper, we present a Globus XIO based client to GridFTP that provides a simple Open/Close/Read/Write (OCRW) interface to the users. Such a client greatly eases the addition of GridFTP support to third-party programs, such as SRB and MPICH-G2. Further, this client provides an easier and familiar interface for applications to efficiently access remote files. We compare the performance of this client with that of globus-url-copy on multiple endpoints in the TeraGrid infrastructure. We perform both memory-to-memory and disk-to-disk transfers and show that the performance of this OCRW client is comparable to that of globus-url-copy. We also show that our GridFTP client significantly outperforms the GPFS WAN on the TeraGrid.

  3. Grid Technology and Quality Assurance

    International Nuclear Information System (INIS)

    Rippa, A.; Manieri, A.; Begin, M.E.; Di Meglio, A.

    2007-01-01

    Grid is one of the potential architectures of the coming years to support both the research and the commercial environment. Quality assurance techniques need both to adapt to these new architectures and exploit them to improve its effectiveness. Software quality is a key issue in the Digital Era: Industries as well as Public Administrations devote time to check and verify the quality of ICT products and services supplied. The definition of automatic measurement of quality metrics is a key point for implementing effective QA methods. In this paper we propose a quality certification model, named Grid-based Quality Certification Model (GQCM), that uses automatically calculable metrics to asses the quality of software applications; this model has been developed within the ETICS SSA4 activities and exploit grid technology for full automation of metrics calculation. It is however designed to be generic enough such that it can be implemented using any automatic build and test tool. (Author)

  4. Efficient Double Auction Mechanisms in the Energy Grid with Connected and Islanded Microgrids

    Science.gov (United States)

    Faqiry, Mohammad Nazif

    The future energy grid is expected to operate in a decentralized fashion as a network of autonomous microgrids that are coordinated by a Distribution System Operator (DSO), which should allocate energy to them in an efficient manner. Each microgrid operating in either islanded or grid-connected mode may be considered to manage its own resources. This can take place through auctions with individual units of the microgrid as the agents. This research proposes efficient auction mechanisms for the energy grid, with is-landed and connected microgrids. The microgrid level auction is carried out by means of an intermediate agent called an aggregator. The individual consumer and producer units are modeled as selfish agents. With the microgrid in islanded mode, two aggregator-level auction classes are analyzed: (i) price-heterogeneous, and (ii) price homogeneous. Under the price heterogeneity paradigm, this research extends earlier work on the well-known, single-sided Kelly mechanism to double auctions. As in Kelly auctions, the proposed algorithm implements the bidding without using any agent level private infor-mation (i.e. generation capacity and utility functions). The proposed auction is shown to be an efficient mechanism that maximizes the social welfare, i.e. the sum of the utilities of all the agents. Furthermore, the research considers the situation where a subset of agents act as a coalition to redistribute the allocated energy and price using any other specific fairness criterion. The price homogeneous double auction algorithm proposed in this research ad-dresses the problem of price-anticipation, where each agent tries to influence the equilibri-um price of energy by placing strategic bids. As a result of this behavior, the auction's efficiency is lowered. This research proposes a novel approach that is implemented by the aggregator, called virtual bidding, where the efficiency can be asymptotically maximized, even in the presence of price anticipatory bidders

  5. Assessment of grid optimisation measures for the German transmission grid using open source grid data

    Science.gov (United States)

    Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.

    2018-02-01

    The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.

  6. An Economic Framework for Resource Allocation in Ad-hoc Grids

    OpenAIRE

    Pourebrahimi, B.

    2009-01-01

    In this dissertation, we present an economic framework to study and develop different market-based mechanisms for resource allocation in an ad-hoc Grid. Such an economic framework helps to understand the impact of certain choices and explores what are the suitable mechanisms from Grid user/owner perspectives under given circumstances. We focus on resource allocation in a Grid-based environment in the case where some resources are lying idle and could be linked with overloaded nodes in a netwo...

  7. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  8. Enabling campus grids with open science grid technology

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Derek [Nebraska U.; Bockelman, Brian [Nebraska U.; Swanson, David [Nebraska U.; Fraser, Dan [Argonne; Pordes, Ruth [Fermilab

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  9. Heterogeneous continuous-time random walks

    Science.gov (United States)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  10. Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method

    Directory of Open Access Journals (Sweden)

    Peipei You

    2017-12-01

    Full Text Available Electricity market reform is in progress in China, and the operational performance of power grid enterprises are vital for its healthy and sustainable development in the current electricity market environment. In this paper, a hybrid multi-criteria decision-making (MCDM framework for operational performance evaluation of a power grid enterprise is proposed from the perspective of sustainability. The latest MCDM method, namely the best-worst method (BWM was employed to determine the weights of all criteria, and the technique for order preference by similarity to an ideal solution (TOPSIS was applied to rank the operation performance of a power grid enterprise. The evaluation index system was built based on the concept of sustainability, which includes three criteria (namely economy, society, and environment and seven sub-criteria. Four power grid enterprises were selected to perform the empirical analysis, and the results indicate that power grid enterprise A1 has the best operation performance. The proposed hybrid BWM-TOPSIS-based framework for operation performance evaluation of a power grid enterprise is effective and practical.

  11. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    Science.gov (United States)

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  12. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2015-01-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  13. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal

    2015-08-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  14. The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context

    International Nuclear Information System (INIS)

    Han Liangxiu

    2009-01-01

    Grid computing aims to enable 'resource sharing and coordinated problem solving in dynamic, multi-institutional virtual organizations (VOs)'. However, due to the nature of heterogeneous and dynamic resources, dynamic failures in the distributed grid environment usually occur more than in traditional computation platforms, which cause failed VO formations. In this paper, we develop a novel self-adaptive mechanism to dynamic failures during VO formations. Such a self-adaptive scheme allows an individual and member of VOs to automatically find other available or replaceable one once a failure happens and therefore makes systems automatically recover from dynamic failures. We define dynamic failure situations of a system by using two standard indicators: mean time between failures (MTBF) and mean time to recover (MTTR). We model both MTBF and MTTR as Poisson distributions. We investigate and analyze the efficiency of the proposed self-adaptation mechanism to dynamic failures by comparing the success probability of VO formations before and after adopting it in three different cases: (1) different failure situations; (2) different organizational structures and scales; (3) different task complexities. The experimental results show that the proposed scheme can automatically adapt to dynamic failures and effectively improve the dynamic VO formation performance in the event of node failures, which provide a valuable addition to the field.

  15. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    Science.gov (United States)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of

  16. The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment

    CERN Document Server

    Méndez-Lorenzo, P; Lamanna, M; Meyer, X; Lazeyras, M; Bjorgo, E; Retiere, A; Falzone, A; Venuti, N; Maccarone, S; Ugolotti, B

    2007-01-01

    UNOSAT is a United Nations activity to provide access to satellite images and geographic system services for humanitarian operations for rescue or aid activities. UNOSAT is implemented by the UN Institute for Training and Research (UNITAR) and managed by the UN Office for Project Services (UNOPS). In addition, partners from different organizations constitute the UNOSAT consortium. Among these partners, CERN participates actively providing the required computational and storage resources. The critical part of the UNOSAT activity is the storage and processing of large quantities of satellite images. The fast and secure access to these images from any part of the world is mandatory during these activities. Based on two successful CERN-GRID/UNOSAT pilot projects (data storage/compression/download and image access through mobile phone), the GRIDUNOSAT project has consolidated the considerable work undertaken so far in the present activity. The main use case already demonstrated is the delivery of satellite images ...

  17. Control and performance analysis of grid connected photovoltaic systems of two different technologies in a desert environment

    Directory of Open Access Journals (Sweden)

    Layachi ZAGHBA

    2017-12-01

    Full Text Available In this study, is to investigate the effect of real climatic conditions on the performance parameters of a 9 kWp grid connected photovoltaic plant during one-year using typical days installed in the desert environment in south of Algeria (Ghardaia site. The PV plant contain the following components: solar PV array, with a DC/DC boost converter, neural MPPT, that allow maximal power conversion into the grid, have been included. These methods can extract maximum power from each of the independent PV arrays connected to DC link voltage level, a DC/AC inverter and a PI current control system. The PV array is divides in two parallel PV technology types; the first includes 100 PV modules mono-crystalline silicon (mc-Si arranged in 20 parallel groups of 5 modules in series, and the second of composed of 24 amorphous modules (Inventux X series, arranged in 6 parallel groups of 4 modules in series. The proposed system tested using MATLAB/SIMULINK platform in which a maximum power tracked under constant and real varying solar irradiance. The study concluded that output power and energy from two PV technology types (mc-Si and Amorphous-Si increases linearly with increase of solar irradiance.

  18. A user-centric execution environment for CineGrid workloads

    NARCIS (Netherlands)

    Dumitru, C.; Grosso, P.; de Laat, C.

    2015-01-01

    The abundance and heterogeneity of IT resources available, together with the ability to dynamically scale applications poses significant usability issues to users. Without understanding the performance profile of available resources users are unable to efficiently scale their applications in order

  19. Overcoming PV grid issues in the urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Ehara, T.

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at grid issues in urban photovoltaic electricity and how to overcome them. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The paper discusses the goal of mainstreaming PV systems in the urban environment. In this report, PV grid interconnection issues and countermeasures based on the latest studies are identified and summarised. Appropriate and understandable information is provided for all possible stakeholders. Possible impacts and benefits of PV grid interconnection are identified, technical measures designed to eliminate negative impacts and enhance possible benefits are presented. The status of research and demonstration projects is introduced and the latest outcomes are summarised. Recommendations and conclusions based on the review process are summarised and presented.

  20. The GridEcon Platform: A Business Scenario Testbed for Commercial Cloud Services

    Science.gov (United States)

    Risch, Marcel; Altmann, Jörn; Guo, Li; Fleming, Alan; Courcoubetis, Costas

    Within this paper, we present the GridEcon Platform, a testbed for designing and evaluating economics-aware services in a commercial Cloud computing setting. The Platform is based on the idea that the exact working of such services is difficult to predict in the context of a market and, therefore, an environment for evaluating its behavior in an emulated market is needed. To identify the components of the GridEcon Platform, a number of economics-aware services and their interactions have been envisioned. The two most important components of the platform are the Marketplace and the Workflow Engine. The Workflow Engine allows the simple composition of a market environment by describing the service interactions between economics-aware services. The Marketplace allows trading goods using different market mechanisms. The capabilities of these components of the GridEcon Platform in conjunction with the economics-aware services are described in this paper in detail. The validation of an implemented market mechanism and a capacity planning service using the GridEcon Platform also demonstrated the usefulness of the GridEcon Platform.

  1. Adaptive colour polymorphism of Acrida ungarica H. (Orthoptera: Acrididae) in a spatially heterogeneous environment

    Science.gov (United States)

    Pellissier, Loïc; Wassef, Jérôme; Bilat, Julia; Brazzola, Gregory; Buri, Pierrick; Colliard, Caroline; Fournier, Bertrand; Hausser, Jacques; Yannic, Glenn; Perrin, Nicolas

    2011-03-01

    Intra-specific colour polymorphism provides a cryptic camouflage from predators in heterogeneous habitats. The orthoptera species, Acrida ungarica (Herbst, 1786) possess two well-distinguished colour morphs: brown and green and displays several disruptive colouration patterns within each morph to improve the crypsis. This study focused on how the features of the background environment relate to the proportion of the two morphs and to the intensity of disruptive colouration patterns in A. ungarica. As the two sexes are very distinct with respect to mass and length, we also distinctively tested the relationship for each sex. In accordance with the background matching hypothesis, we found that, for both sexes, the brown morph was in higher proportion at sites with a brown-dominant environment, and green morphs were in higher proportion in green-dominant environments. Globally, individuals in drier sites and in the drier year also had more intense disruptive colouration patterns, and brown morphs and females were also more striped. Colour patterns differed largely between populations and were significantly correlated with relevant environmental features. Even if A. ungarica is a polymorphic specialist, disruptive colouration still appears to provide strong benefits, particularly in some habitats. Moreover, because females are larger, they are less able to flee, which might explain the difference between sexes.

  2. Towards Efficient Energy Management: Defining HEMS, AMI and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Soler, José

    2011-01-01

    electricity in the grid will also help to reduce the increase of energy consumption in the future. In order to reduce energy consumption in home environments, researches have been designing Home Energy Management Systems (HEMS). In addition, Advanced Metering Infrastructure (AMI) and smart grids are also...... being developed to distribute and produce electricity efficiently. This paper presents the high level goals and requirements of HEMS. Additionally, it gives an overview of Advanced Metering Infrastructure benefits and smart grids objectives....

  3. Research on a New Control Scheme of Photovoltaic Grid Power Generation System

    Directory of Open Access Journals (Sweden)

    Dong-Hui Li

    2014-01-01

    Full Text Available A new type of photovoltaic grid power generation system control scheme to solve the problems of the conventional photovoltaic grid power generation systems is presented. To aim at the oscillation and misjudgment of traditional perturbation observation method, an improved perturbation observation method comparing to the next moment power is proposed, combining with BOOST step-up circuit to realize the maximum power tracking. To counter the harmonic pollution problem in photovoltaic grid power generation system, the deadbeat control scheme in fundamental wave synchronous frequency rotating coordinate system of power grid is presented. A parameter optimization scheme based on positive feedback of active frequency shift island detection to solve the problems like the nondetection zone due to the import of disturbance in traditional island detection method is proposed. Finally, the results in simulation environment by MATLAB/Simulink simulation and experiment environment verify the validity and superiority of the proposed scheme.

  4. Raman spectroscopy, "big data", and local heterogeneity of solid state synthesized lithium titanate

    Science.gov (United States)

    Pelegov, Dmitry V.; Slautin, Boris N.; Gorshkov, Vadim S.; Zelenovskiy, Pavel S.; Kiselev, Evgeny A.; Kholkin, Andrei L.; Shur, Vladimir Ya.

    2017-04-01

    Existence of defects is an inherent property of real materials. Due to an explicit correlation between defects concentration and conductivity, it is important to understand the level and origins of the structural heterogeneity for any particulate electrode material. Poor conductive lithium titanate Li4Ti5O12 (LTO), widely used in batteries for grids and electric buses, needs it like no one else. In this work, structural heterogeneity of compacted lithium titanate is measured locally in 100 different points by conventional micro-Raman technique, characterized in terms of variation of Raman spectra parameters and interpreted using our version of "big data" analysis. This very simple approach with automated measurement and treatment has allowed us to demonstrate inherent heterogeneity of solid-state synthesized LTO and attribute it to the existence of lithium and oxygen vacancies. The proposed approach can be used as a fast, convenient, and cost-effective defects-probing tool for a wide range of materials with defects-sensitive properties. In case of LTO, such an approach can be used to increase its charge/discharge rates by synthesis of materials with controlled nonstoichiometry. New approaches to solid state synthesis of LTO, suitable for high-power applications, will help to significantly reduce the costs of batteries for heavy-duty electric vehicles and smart-grids.

  5. GridCom, Grid Commander: graphical interface for Grid jobs and data management; GridCom, Grid Commander: graficheskij interfejs dlya raboty s zadachami i dannymi v gride

    Energy Technology Data Exchange (ETDEWEB)

    Galaktionov, V V

    2011-07-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  6. Information-Quality based LV-Grid-Monitoring Framework and its Application to Power-Quality Control

    DEFF Research Database (Denmark)

    Findrik, Mislav; Kristensen, Thomas le Fevre; Hinterhofer, Thomas

    2015-01-01

    The integration of unpredictable renewable energy sources into the low voltage (LV) power grid results in new challenges when it comes to ensuring power quality in the electrical grid. Addressing this problem requires control of not only the secondary substation but also control of flexible assets...... inside the LV grid. In this paper we investigate how the flexibility information of such assets can be accessed by the controller using heterogeneous off-the-shelf communication networks. To achieve this we develop an adaptive monitoring framework, through which the controller can subscribe to the assets......' flexibility information through an API. We define an information quality metric making the monitoring framework able to adapt information access strategies to ensure the information is made available to the controller with the highest possible information quality. To evaluate the monitoring framework...

  7. Progress in Grid Generation: From Chimera to DRAGON Grids

    Science.gov (United States)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  8. Mosquito population regulation and larval source management in heterogeneous environments.

    Directory of Open Access Journals (Sweden)

    David L Smith

    Full Text Available An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM. We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats' carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%. Unsurprisingly, targeting (i.e. treating a subset of the most productive pools gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides.

  9. RGLite, an interface between ROOT and gLite—proof on the grid

    Science.gov (United States)

    Malzacher, P.; Manafov, A.; Schwarz, K.

    2008-07-01

    Using the gLitePROOF package it is possible to perform PROOF-based distributed data analysis on the gLite Grid. The LHC experiments managed to run globally distributed Monte Carlo productions on the Grid, now the development of tools for data analysis is in the foreground. To grant access interfaces must be provided. The ROOT/PROOF framework is used as a starting point. Using abstract ROOT classes (TGrid, ...) interfaces can be implemented, via which Grid access from ROOT can be accomplished. A concrete implementation exists for the ALICE Grid environment AliEn. Within the D-Grid project an interface to the common Grid middleware of all LHC experiments, gLite, has been created. Therefore it is possible to query Grid File Catalogues from ROOT for the location of the data to be analysed. Grid jobs can be submitted into a gLite based Grid. The status of the jobs can be asked for, and their results can be obtained.

  10. RGLite, an interface between ROOT and gLite-proof on the grid

    International Nuclear Information System (INIS)

    Malzacher, P; Manafov, A; Schwarz, K

    2008-01-01

    Using the gLitePROOF package it is possible to perform PROOF-based distributed data analysis on the gLite Grid. The LHC experiments managed to run globally distributed Monte Carlo productions on the Grid, now the development of tools for data analysis is in the foreground. To grant access interfaces must be provided. The ROOT/PROOF framework is used as a starting point. Using abstract ROOT classes (TGrid, ...) interfaces can be implemented, via which Grid access from ROOT can be accomplished. A concrete implementation exists for the ALICE Grid environment AliEn. Within the D-Grid project an interface to the common Grid middleware of all LHC experiments, gLite, has been created. Therefore it is possible to query Grid File Catalogues from ROOT for the location of the data to be analysed. Grid jobs can be submitted into a gLite based Grid. The status of the jobs can be asked for, and their results can be obtained

  11. Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Akorede, Mudathir Funsho; Montesinos-Miracle, Daniel

    2014-01-01

    interconnection issues that usually arise as DG units connect to the electric grid. The proposed strategy, implemented in Matlab/Simulink environment in different operating scenarios, provides compensation for active, reactive, unbalanced, and harmonic current components of grid-connected nonlinear unbalanced...... resources as they connect to the exiting power grid could provoke many power quality problems on the grid side. For this reason, due considerations must be given to power generation and safe running before DG units is actually integrated into the power grid. The main aim of this paper is to address the grid...... loads. The simulation results obtained in this study demonstrate the level of accuracy of the proposed technique, which ensure a balance in the overall grid phase currents, injection of maximum available power from DG resources to the grid, improvement of the utility grid power factor, and a reduction...

  12. Remote data access in computational jobs on the ATLAS data grid

    CERN Document Server

    Begy, Volodimir; The ATLAS collaboration; Lassnig, Mario

    2018-01-01

    This work describes the technique of remote data access from computational jobs on the ATLAS data grid. In comparison to traditional data movement and stage-in approaches it is well suited for data transfers which are asynchronous with respect to the job execution. Hence, it can be used for optimization of data access patterns based on various policies. In this study, remote data access is realized with the HTTP and WebDAV protocols, and is investigated in the context of intra- and inter-computing site data transfers. In both cases, the typical scenarios for application of remote data access are identified. The paper also presents an analysis of parameters influencing the data goodput between heterogeneous storage element - worker node pairs on the grid.

  13. Replikasi Unidirectional pada Heterogen Database

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2013-12-01

    Full Text Available The use of diverse database technology in enterprise today can not be avoided. Thus, technology is needed to generate information in real time. The purpose of this research is to discuss a database replication technology that can be applied in heterogeneous database environments. In this study we use Windows-based MS SQL Server database to Linux-based Oracle database as the goal. The research method used is prototyping where development can be done quickly and testing of working models of the interaction process is done through repeated. From this research it is obtained that the database replication technolgy using Oracle Golden Gate can be applied in heterogeneous environments in real time as well.

  14. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  15. Grid and Data Analyzing and Security

    Directory of Open Access Journals (Sweden)

    Fatemeh SHOKRI

    2012-12-01

    Full Text Available This paper examines the importance of secure structures in the process of analyzing and distributing information with aid of Grid-based technologies. The advent of distributed network has provided many practical opportunities for detecting and recording the time of events, and made efforts to identify the events and solve problems of storing information such as being up-to-date and documented. In this regard, the data distribution systems in a network environment should be accurate. As a consequence, a series of continuous and updated data must be at hand. In this case, Grid is the best answer to use data and resource of organizations by common processing.

  16. Grid3: An Application Grid Laboratory for Science

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    level services required by the participating experiments. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. The Grid3 infrastructure was deployed from grid level services provided by groups and applications within the collaboration. The services were organized into four distinct "grid level services" including: Grid3 Packaging, Monitoring and Information systems, User Authentication and the iGOC Grid Operatio...

  17. Software, component, and service deployment in computational Grids

    International Nuclear Information System (INIS)

    von Laszewski, G.; Blau, E.; Bletzinger, M.; Gawor, J.; Lane, P.; Martin, S.; Russell, M.

    2002-01-01

    Grids comprise an infrastructure that enables scientists to use a diverse set of distributed remote services and resources as part of complex scientific problem-solving processes. We analyze some of the challenges involved in deploying software and components transparently in Grids. We report on three practical solutions used by the Globus Project. Lessons learned from this experience lead us to believe that it is necessary to support a variety of software and component deployment strategies. These strategies are based on the hosting environment

  18. A gating grid driver for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tangwancharoen, S.; Lynch, W.G.; Barney, J.; Estee, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shane, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Tsang, M.B., E-mail: tsang@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Y. [Department of Physics, Tsinghua University, Beijing 100084 (China); Isobe, T.; Kurata-Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Murakami, T. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606–8502 (Japan); Xiao, Z.G. [Department of Physics, Tsinghua University, Beijing 100084 (China); Zhang, Y.F. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2017-05-01

    A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 µs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 µs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 µs.

  19. GRID Prototype for imagery processing in scientific applications

    International Nuclear Information System (INIS)

    Stan, Ionel; Zgura, Ion Sorin; Haiduc, Maria; Valeanu, Vlad; Giurgiu, Liviu

    2004-01-01

    The paper presents the results of our study which is part of the InGRID project. This project is supported by ROSA (ROmanian Space Agency). In this paper we will show the possibility to take images from the optical microscope through web camera. The images are then stored on the PC in Linux operating system and distributed to other clusters through GRID technology (using http, php, MySQL, Globus or AliEn systems). The images are provided from nuclear emulsions in the frame of Becquerel Collaboration. The main goal of the project InGRID is to actuate developing and deploying GRID technology for images technique taken from space, different application fields and telemedicine. Also it will create links with the same international projects which use advanced Grid technology and scalable storage solutions. The main topics proposed to be solved in the frame of InGRID project are: - Implementation of two GRID clusters, minimum level Tier 3; - Adapting and updating the common storage and processing computing facility; - Testing the middelware packages developed in the frame of this project; - Testbed production of the prototype; - Build-up and advertise the InGRID prototype in scientific community through current dissemination. InGRID Prototype developed in the frame of this project, will be used by partner institutes as deploying environment of the imaging applications the dynamical features of which will be defined by conditions of contract. Subsequent applications will be deployed by the partners of this project with governmental, nongovernmental and private institutions. (authors)

  20. Grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper compares two methods for controlling the on-line transference from connected to stand-alone mode and vice versa in converters for micro-grids. The first proposes a method where the converter changes from CSI (Current Source Inverter) in grid-connected mode to VSI (Voltage Source Inverter) in off-grid. In the second method, the inverter always works as a non-ideal voltage source, acting as VSI, using AC droop control strategy.

  1. The GridSite Web/Grid security system

    International Nuclear Information System (INIS)

    McNab, Andrew; Li Yibiao

    2010-01-01

    We present an overview of the current status of the GridSite toolkit, describing the security model for interactive and programmatic uses introduced in the last year. We discuss our experiences of implementing these internal changes and how they and previous rounds of improvements have been prompted by requirements from users and wider security trends in Grids (such as CSRF). Finally, we explain how these have improved the user experience of GridSite-based websites, and wider implications for portals and similar web/grid sites.

  2. Developing Information Power Grid Based Algorithms and Software

    Science.gov (United States)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  3. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  4. A Mediated Definite Delegation Model allowing for Certified Grid Job Submission

    CERN Document Server

    Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten

    2012-01-01

    Grid computing infrastructures need to provide traceability and accounting of their users" activity and protection against misuse and privilege escalation. A central aspect of multi-user Grid job environments is the necessary delegation of privileges in the course of a job submission. With respect to these generic requirements this document describes an improved handling of multi-user Grid jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of delegated assignments. These limitations are discussed and formulated, both in general and with respect to an adoption in line with multi-user Grid jobs. Based on the architecture of the ALICE...

  5. Socioeconomic assessment of smart grids. Summary

    International Nuclear Information System (INIS)

    2015-07-01

    In September of 2013, the President of France identified smart grids as an important part of the country's industrial strategy, given the opportunities and advantages they can offer French industry, and asked the Chairman of the RTE Management Board to prepare a road-map outlining ways to support and accelerate smart grid development. This road-map, prepared in cooperation with stakeholders from the power and smart grids industries, identifies ten actions that can be taken in priority to consolidate the smart grids sector and help French firms play a leading role in the segment. These priorities were presented to the President of France on 7 May 2014. Action items 5 and 6 of the road-map on smart grid development relate, respectively, to the quantification of the value of smart grid functions from an economic, environmental and social (impact on employment) standpoint and to the large-scale deployment of some of the functions. Two tasks were set out in the 'Smart Grids' plan for action item 5: - Create a methodological framework that, for all advanced functions, allows the quantification of benefits and costs from an economic, environmental and social (effect on jobs) standpoint; - Quantify, based on this methodological framework, the potential benefits of a set of smart grid functions considered sufficiently mature to be deployed on a large scale in the near future. Having a methodology that can be applied in the same manner to all solutions, taking into account their impacts on the environment and employment in France, will considerably add to and complement the information drawn from demonstration projects. It will notably enable comparisons of benefits provided by smart grid functions and thus help give rise to a French smart grids industry that is competitive. At first, the smart grids industry was organised around demonstration projects testing different advanced functions within specific geographic areas. These projects covered a wide enough

  6. Socioeconomic assessment of smart grids - Summary

    International Nuclear Information System (INIS)

    Janssen, Tanguy

    2015-07-01

    In September of 2013, the President of France identified smart grids as an important part of the country's industrial strategy, given the opportunities and advantages they can offer French industry, and asked the Chairman of the RTE Management Board to prepare a road-map outlining ways to support and accelerate smart grid development. This road-map, prepared in cooperation with stakeholders from the power and smart grids industries, identifies ten actions that can be taken in priority to consolidate the smart grids sector and help French firms play a leading role in the segment. These priorities were presented to the President of France on 7 May 2014. Action items 5 and 6 of the road-map on smart grid development relate, respectively, to the quantification of the value of smart grid functions from an economic, environmental and social (impact on employment) standpoint and to the large-scale deployment of some of the functions. Two tasks were set out in the 'Smart Grids' plan for action item 5: - Create a methodological framework that, for all advanced functions, allows the quantification of benefits and costs from an economic, environmental and social (effect on jobs) standpoint; - Quantify, based on this methodological framework, the potential benefits of a set of smart grid functions considered sufficiently mature to be deployed on a large scale in the near future. Having a methodology that can be applied in the same manner to all solutions, taking into account their impacts on the environment and employment in France, will considerably add to and complement the information drawn from demonstration projects. It will notably enable comparisons of benefits provided by smart grid functions and thus help give rise to a French smart grids industry that is competitive. At first, the smart grids industry was organised around demonstration projects testing different advanced functions within specific geographic areas. These projects covered a wide enough

  7. The Knowledge Grid

    CERN Document Server

    Zhuge, Hai

    2004-01-01

    The Knowledge Grid is an intelligent and sustainable interconnection environment that enables people and machines to effectively capture, publish, share and manage knowledge resources. It also provides appropriate on-demand services to support scientific research, technological innovation, cooperative teamwork, problem solving, and decision making. It incorporates epistemology and ontology to reflect human cognitive characteristics; exploits social, ecological and economic principles; and adopts techniques and standards developed during work toward the future web. This book presents its methodology, theory, models and applications systematically for the first time.

  8. Grid-optimized Web 3D applications on wide area network

    Science.gov (United States)

    Wang, Frank; Helian, Na; Meng, Lingkui; Wu, Sining; Zhang, Wen; Guo, Yike; Parker, Michael Andrew

    2008-08-01

    Geographical information system has come into the Web Service times now. In this paper, Web3D applications have been developed based on our developed Gridjet platform, which provides a more effective solution for massive 3D geo-dataset sharing in distributed environments. Web3D services enabling web users could access the services as 3D scenes, virtual geographical environment and so on. However, Web3D services should be shared by thousands of essential users that inherently distributed on different geography locations. Large 3D geo-datasets need to be transferred to distributed clients via conventional HTTP, NFS and FTP protocols, which often encounters long waits and frustration in distributed wide area network environments. GridJet was used as the underlying engine between the Web 3D application node and geo-data server that utilizes a wide range of technologies including the one of paralleling the remote file access, which is a WAN/Grid-optimized protocol and provides "local-like" accesses to remote 3D geo-datasets. No change in the way of using software is required since the multi-streamed GridJet protocol remains fully compatible with existing IP infrastructures. Our recent progress includes a real-world test that Web3D applications as Google Earth over the GridJet protocol beats those over the classic ones by a factor of 2-7 where the transfer distance is over 10,000 km.

  9. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    International Nuclear Information System (INIS)

    Xu, L.J.; Chu, W.; Graham, Nigel

    2014-01-01

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H 2 O 2 decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US and USUV

  10. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J., E-mail: xulijie827@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W., E-mail: cewchu@polyu.edu.hk [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Graham, Nigel, E-mail: n.graham@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-06-30

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H{sub 2}O{sub 2} decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US

  11. Safe Grid

    Science.gov (United States)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  12. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    Science.gov (United States)

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  13. VLAM-G: Interactive Data Driven Workflow Engine for Grid-Enabled Resources

    Directory of Open Access Journals (Sweden)

    Vladimir Korkhov

    2007-01-01

    Full Text Available Grid brings the power of many computers to scientists. However, the development of Grid-enabled applications requires knowledge about Grid infrastructure and low-level API to Grid services. In turn, workflow management systems provide a high-level environment for rapid prototyping of experimental computing systems. Coupling Grid and workflow paradigms is important for the scientific community: it makes the power of the Grid easily available to the end user. The paradigm of data driven workflow execution is one of the ways to enable distributed workflow on the Grid. The work presented in this paper is carried out in the context of the Virtual Laboratory for e-Science project. We present the VLAM-G workflow management system and its core component: the Run-Time System (RTS. The RTS is a dataflow driven workflow engine which utilizes Grid resources, hiding the complexity of the Grid from a scientist. Special attention is paid to the concept of dataflow and direct data streaming between distributed workflow components. We present the architecture and components of the RTS, describe the features of VLAM-G workflow execution, and evaluate the system by performance measurements and a real life use case.

  14. caGrid 1.0: a Grid enterprise architecture for cancer research.

    Science.gov (United States)

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  15. A Simplified Control Method for Tie-Line Power of DC Micro-Grid

    Directory of Open Access Journals (Sweden)

    Yanbo Che

    2018-04-01

    Full Text Available Compared with the AC micro-grid, the DC micro-grid has low energy loss and no issues of frequency stability, which makes it more accessible for distributed energy. Thus, the DC micro-grid has good potential for development. A variety of renewable energy is included in the DC micro-grid, which is easily affected by the environment, causing fluctuation of the DC voltage. For grid-connected DC micro-grid with droop control strategy, the tie-line power is affected by fluctuations in the DC voltage, which sets higher requirements for coordinated control of the DC micro-grid. This paper presents a simplified control method to maintain a constant tie-line power that is suitable for the DC micro-grid with the droop control strategy. By coordinating the designs of the droop control characteristics of generators, energy storage units and grid-connected inverter, a dead band is introduced to the droop control to improve the system performance. The tie-line power in the steady state is constant. When a large disturbance occurs, the AC power grid can provide power support to the micro-grid in time. The simulation example verifies the effectiveness of the proposed control strategy.

  16. Job system generation in grid taking into account user preferences

    Directory of Open Access Journals (Sweden)

    D. M. Yemelyanov

    2016-01-01

    Full Text Available Distributed computing environments like Grid are characterized by heterogeneity, low cohesion and dynamic structure of computing nodes. This is why the task of resource scheduling in such environments is complex. Different approaches to job scheduling in grid exist. Some of them use economic principles. Economic approaches to scheduling have shown their efficiency. One of such approaches is cyclic scheduling scheme which is considered in this paper.Cyclic scheduling scheme takes into account the preferences of computing environment users by means of an optimization criterion, which is included in the resource request. Besides, the scheme works cyclically by scheduling a certain job batch at each scheduling step. This is why there is a preliminary scheduling step which is job batch generation.The purpose of this study was to estimate the infl uence of job batch structure by the user criterion on the degree of its satisfaction. In other words we had to find the best way to form the batch with relation to the user optimization criterion. For example if it is more efficient to form the batch with jobs with the same criterion value or with different criterion values. Also we wanted to find the combination of criterion values which would give the most efficient scheduling results.To achieve this purpose an experiment in a simulation environment was conducted. The experiment consisted of scheduling of job batches with different values of the user criterion, other parameters of the resource request and the characteristics of the computing environment being the same. Three job batch generation strategies were considered. In the first strategy the batch consisted of jobs with the same criterion value. In the second strategy the batch consisted of jobs with all the considered criteria equally likely. The third strategy was similar to the second one, but only two certain criteria were considered. The third strategy was considered in order to find the most

  17. Collaborative DFA learning applied to Grid administration

    NARCIS (Netherlands)

    Mulder, W.; Jacobs, C.J.H.; van Someren, M.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    This paper proposes a distributed learning mechanism that learns patterns from distributed datasets. The complex and dynamic settings of grid environments requires supporting systems to be of a more sophisticated level. Contemporary tools lack the ability to relate and infer events. We developed an

  18. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    Science.gov (United States)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  19. Defining a convergence network platform framework for smart grid and intelligent transport systems

    International Nuclear Information System (INIS)

    Coronado Mondragon, Adrian E.; Coronado, Etienne S.; Coronado Mondragon, Christian E.

    2015-01-01

    The challenges faced by electricity grids suggest smart grids will have to coordinate its operation with other important initiatives in areas such as transportation. The smart grid relies on the use of network platforms where meter readings and data can be transmitted. On the other hand, concerning transportation systems the need to achieve a reduction of road congestion and traffic accidents among the increasing use of electric vehicles has consolidated the importance of ITS (intelligent transport systems). Given the magnitude of the challenges faced by both the smart grid and ITS, the aim of this work is to identify the elements comprising a convergence platform capable of supporting future services for data traffic associated to smart grid operations as well as ITS-related commercial service applications and road traffic safety messaging. A seaport terminal scenario is used to present a convergence network platform incorporating WSN (wireless sensor network) theory. The results of the simulation of the proposed network confirms the suitability of WSN to be used in the transmission of data traffic associated to meter readings which is required for effective energy consumption and management policies in industrial environments comprising equipment with high energy demands. - Highlights: • Common needs/challenges of smart grid/ITS can be addressed by a convergence network platform. • VANETs are identified as key components of the smart grid/ITS convergence network platform. • WSN (Wireless Sensor Network) theory is suitable for the transmission of data traffic associated to meter readings. • The amount of energy supplied to the network is low but enough to support data traffic required in industrial environments. • WSN supports the steady exchange of packets as characterized in industrial environments like seaports

  20. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Science.gov (United States)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  1. Protecting Intelligent Distributed Power Grids against Cyber Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

    2010-12-31

    Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

  2. A 1998 Workshop on Heterogeneous Computing

    Science.gov (United States)

    1998-09-18

    Programming Heterogenous Computing Systems? Panel Chair: GulA. Agha, University of Illinois, Urbana -Champaign, IL, USA Modular Heterogeneous System...electrical engineering from the University of Illinois, Urbana -Champaign, in 1975. She worked at the I.B.M. T.J. Watson Research Center with the...Distributed System Environment". I Encuentro de Computaciön. Taller de Sistemas Distribuidos y Paralelos. Memorias . Queretaro, Qro. Mexico. September 1997

  3. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  4. The extended RBAC model based on grid computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  5. 'BioNessie(G) - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X; Jiang, J; Ajayi, O; Gu, X; Gilbert, D; Sinnott, R

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scal...

  6. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  7. Optimizing Electric Vehicle Coordination Over a Heterogeneous Mesh Network in a Scaled-Down Smart Grid Testbed

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Lévesque, Martin; Maier, Martin

    2015-01-01

    High penetration of renewable energy sources and electric vehicles (EVs) create power imbalance and congestion in the existing power network, and hence causes significant problems in the control and operation. Despite investing huge efforts from the electric utilities, governments, and researchers......, smart grid (SG) is still at the developmental stage to address those issues. In this regard, a smart grid testbed (SGT) is desirable to develop, analyze, and demonstrate various novel SG solutions, namely demand response, real-time pricing, and congestion management. In this paper, a novel SGT...... is developed in a laboratory by scaling a 250 kVA, 0.4 kV real low-voltage distribution feeder down to 1 kVA, 0.22 kV. Information and communication technology is integrated in the scaled-down network to establish real-time monitoring and control. The novelty of the developed testbed is demonstrated...

  8. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  9. Cross Layer Optimization and Simulation of Smart Grid Home Area Network

    Directory of Open Access Journals (Sweden)

    Lipi K. Chhaya

    2018-01-01

    Full Text Available An electrical “Grid” is a network that carries electricity from power plants to customer premises. Smart Grid is an assimilation of electrical and communication infrastructure. Smart Grid is characterized by bidirectional flow of electricity and information. Smart Grid is a complex network with hierarchical architecture. Realization of complete Smart Grid architecture necessitates diverse set of communication standards and protocols. Communication network protocols are engineered and established on the basis of layered approach. Each layer is designed to produce an explicit functionality in association with other layers. Layered approach can be modified with cross layer approach for performance enhancement. Complex and heterogeneous architecture of Smart Grid demands a deviation from primitive approach and reworking of an innovative approach. This paper describes a joint or cross layer optimization of Smart Grid home/building area network based on IEEE 802.11 standard using RIVERBED OPNET network design and simulation tool. The network performance can be improved by selecting various parameters pertaining to different layers. Simulation results are obtained for various parameters such as WLAN throughput, delay, media access delay, and retransmission attempts. The graphical results show that various parameters have divergent effects on network performance. For example, frame aggregation decreases overall delay but the network throughput is also reduced. To prevail over this effect, frame aggregation is used in combination with RTS and fragmentation mechanisms. The results show that this combination notably improves network performance. Higher value of buffer size considerably increases throughput but the delay is also greater and thus the choice of optimum value of buffer size is inevitable for network performance optimization. Parameter optimization significantly enhances the performance of a designed network. This paper is expected to serve

  10. Multiscale Lattice Boltzmann method for flow simulations in highly heterogenous porous media

    KAUST Repository

    Li, Jun

    2013-01-01

    A lattice Boltzmann method (LBM) for flow simulations in highly heterogeneous porous media at both pore and Darcy scales is proposed in the paper. In the pore scale simulations, flow of two phases (e.g., oil and gas) or two immiscible fluids (e.g., water and oil) are modeled using cohesive or repulsive forces, respectively. The relative permeability can be computed using pore-scale simulations and seamlessly applied for intermediate and Darcy-scale simulations. A multiscale LBM that can reduce the computational complexity of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with the averaged results obtained using fine grid.

  11. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  12. Research and Design in Unified Coding Architecture for Smart Grids

    Directory of Open Access Journals (Sweden)

    Gang Han

    2013-09-01

    Full Text Available Standardized and sharing information platform is the foundation of the Smart Grids. In order to improve the dispatching center information integration of the power grids and achieve efficient data exchange, sharing and interoperability, a unified coding architecture is proposed. The architecture includes coding management layer, coding generation layer, information models layer and application system layer. Hierarchical design makes the whole coding architecture to adapt to different application environments, different interfaces, loosely coupled requirements, which can realize the integration model management function of the power grids. The life cycle and evaluation method of survival of unified coding architecture is proposed. It can ensure the stability and availability of the coding architecture. Finally, the development direction of coding technology of the Smart Grids in future is prospected.

  13. GSIMF: a web service based software and database management system for the next generation grids

    International Nuclear Information System (INIS)

    Wang, N; Ananthan, B; Gieraltowski, G; May, E; Vaniachine, A

    2008-01-01

    To process the vast amount of data from high energy physics experiments, physicists rely on Computational and Data Grids; yet, the distribution, installation, and updating of a myriad of different versions of different programs over the Grid environment is complicated, time-consuming, and error-prone. Our Grid Software Installation Management Framework (GSIMF) is a set of Grid Services that has been developed for managing versioned and interdependent software applications and file-based databases over the Grid infrastructure. This set of Grid services provide a mechanism to install software packages on distributed Grid computing elements, thus automating the software and database installation management process on behalf of the users. This enables users to remotely install programs and tap into the computing power provided by Grids

  14. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  15. Multiobjective Variable Neighborhood Search algorithm for scheduling independent jobs on computational grid

    Directory of Open Access Journals (Sweden)

    S. Selvi

    2015-07-01

    Full Text Available Grid computing solves high performance and high-throughput computing problems through sharing resources ranging from personal computers to super computers distributed around the world. As the grid environments facilitate distributed computation, the scheduling of grid jobs has become an important issue. In this paper, an investigation on implementing Multiobjective Variable Neighborhood Search (MVNS algorithm for scheduling independent jobs on computational grid is carried out. The performance of the proposed algorithm has been evaluated with Min–Min algorithm, Simulated Annealing (SA and Greedy Randomized Adaptive Search Procedure (GRASP algorithm. Simulation results show that MVNS algorithm generally performs better than other metaheuristics methods.

  16. An Informatics Approach to Demand Response Optimization in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  17. A new service-oriented grid-based method for AIoT application and implementation

    Science.gov (United States)

    Zou, Yiqin; Quan, Li

    2017-07-01

    The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.

  18. Energy management of internet data centers in smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    This book reports the latest findings on intelligent energy management of Internet data centers in smart-grid environments. The book gathers novel research ideas in Internet data center energy management, especially scenarios with cyber-related vulnerabilities, power outages and carbon emission constraints. The book will be of interest to university researchers, R&D engineers and graduate students in communication and networking areas who wish to learn the core principles, methods, algorithms, and applications of energy management of Internet data centers in smart grids.

  19. Grid: From EGEE to EGI and from INFN-Grid to IGI

    International Nuclear Information System (INIS)

    Giselli, A.; Mazzuccato, M.

    2009-01-01

    In the last fifteen years the approach of the computational Grid has changed the way to use computing resources. Grid computing has raised interest worldwide in academia, industry, and government with fast development cycles. Great efforts, huge funding and resources have been made available through national, regional and international initiatives aiming at providing Grid infrastructures, Grid core technologies, Grid middle ware and Grid applications. The Grid software layers reflect the architecture of the services developed so far by the most important European and international projects. In this paper Grid e-Infrastructure story is given, detailing European, Italian and international projects such as EGEE, INFN-Grid and NAREGI. In addition the sustainability issue in the long-term perspective is described providing plans by European and Italian communities with EGI and IGI.

  20. Characterizing hydrogeologic heterogeneity using lithologic data

    International Nuclear Information System (INIS)

    Flach, G.P.; Hamm, L.L.; Harris, M.K.; Thayer, P.A.; Haselow, J.S.; Smits, A.D.

    1995-01-01

    Large-scale (> 1 m) variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about site-scale heterogeneity, than other site characterization data. In this study, a technique for generating a heterogeneous, three-dimensional hydraulic conductivity field from sediment lithologic descriptions is presented. The approach involves creating a three-dimensional, fine-scale representation of mud (silt + clay) percentage using a stratified interpolation algorithm. Mud percentage is then translated into horizontal and vertical conductivity using direct correlations derived from measured data and inverse groundwater flow modeling. Lastly, the fine-scale conductivity fields are averaged to create a coarser grid for use in groundwater flow and transport modeling. The approach is demonstrated using a finite-element groundwater flow model of a Savannah River Site solid radioactive and hazardous waste burial ground. Hydrostratigraphic units in the area consist of fluvial, deltaic, and shallow marine sand, mud and calcareous sediment that exhibit abrupt facies changes over short distances

  1. Flows and chemical reactions in heterogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2014-01-01

    This book - a sequel of previous publications 'Flows and Chemical Reactions' and 'Chemical Reactions in Flows and Homogeneous Mixtures' - is devoted to flows with chemical reactions in heterogeneous environmentsHeterogeneous media in this volume include interfaces and lines. They may be the site of radiation. Each type of flow is the subject of a chapter in this volume. We consider first, in Chapter 1, the question of the generation of environments biphasic individuals: dusty gas, mist, bubble flow.  Chapter 2 is devoted to the study at the mesoscopic scale: particle-fluid exchange of mom

  2. From the grid to the smart grid, topologically

    Science.gov (United States)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  3. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    Science.gov (United States)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  4. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  5. An adaptive multi-agent-based approach to smart grids control and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Marco [Florida Institute of Technology, Melbourne, FL (United States); Perez, Carlos; Granados, Adrian [Institute for Human and Machine Cognition, Ocala, FL (United States)

    2012-03-15

    In this paper, we describe a reinforcement learning-based approach to power management in smart grids. The scenarios we consider are smart grid settings where renewable power sources (e.g. Photovoltaic panels) have unpredictable variations in power output due, for example, to weather or cloud transient effects. Our approach builds on a multi-agent system (MAS)-based infrastructure for the monitoring and coordination of smart grid environments with renewable power sources and configurable energy storage devices (battery banks). Software agents are responsible for tracking and reporting power flow variations at different points in the grid, and to optimally coordinate the engagement of battery banks (i.e. charge/idle/discharge modes) to maintain energy requirements to end-users. Agents are able to share information and coordinate control actions through a parallel communications infrastructure, and are also capable of learning, from experience, how to improve their response strategies for different operational conditions. In this paper we describe our approach and address some of the challenges associated with the communications infrastructure for distributed coordination. We also present some preliminary results of our first simulations using the GridLAB-D simulation environment, created by the US Department of Energy (DoE) at Pacific Northwest National Laboratory (PNNL). (orig.)

  6. VOSpace: a Prototype for Grid 2.0

    Science.gov (United States)

    Graham, M. J.; Morris, D.; Rixon, G.

    2007-10-01

    As Grid 1.0 was characterized by distributed computation, so Grid 2.0 will be characterized by distributed data and the infrastructure needed to support and exploit it: the emerging success of Amazon S3 is already testimony to this. VOSpace is the IVOA interface standard for accessing distributed data. Although the base definition (VOSpace 1.0) only relates to flat, unconnected data stores, subsequent versions will add additional layers of functionality. In this paper, we consider how incorporating popular web concepts such as folksonomies (tagging), social networking, and data-spaces could lead to a much richer data environment than provided by a traditional collection of networked data stores.

  7. FAULT TOLERANCE IN JOB SCHEDULING THROUGH FAULT MANAGEMENT FRAMEWORK USING SOA IN GRID

    Directory of Open Access Journals (Sweden)

    V. Indhumathi

    2017-01-01

    Full Text Available The rapid development in computing resources has enhanced the recital of computers and abridged their costs. This accessibility of low cost prevailing computers joined with the fame of the Internet and high-speed networks has leaded the computing surroundings to be mapped from dispersed to grid environments. Grid is a kind of dispersed system which supports the allotment and harmonized exploit of geographically dispersed and multi-owner resources, autonomously from their physical form and site, in vibrant practical organizations that carve up the similar objective of decipher large-scale applications. Thus any type of failure can happen at any point of time and job running in grid environment might fail. Therefore fault tolerance is an imperative and demanding concern in grid computing as the steadiness of individual grid resources may not be guaranteed. In order to build computational grids more effectual and consistent fault tolerant system is required. In order to accomplish the user prospect in terms of recital and competence, the Grid system desires SOA Fault Management Framework for the sharing of tasks with fault tolerance. A Fault Management Framework endeavor to pick up the response time of user’s proposed applications by ensures maximal exploitation of obtainable resources. The main aim is to avert, if probable, the stipulation where some processors are congested by means of a set of tasks while others are flippantly loaded or even at leisure.

  8. Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prabakar, Kumar [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hoke, Anderson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company, Honolulu, HI (United States); Ueda, Reid [Hawaiian Electric Company, Honolulu, HI (United States); Shindo, Jon [Hawaiian Electric Company, Honolulu, HI (United States); Kubojiri, Kandice [Hawaiian Electric Company, Honolulu, HI (United States); Ceria, Riley [Hawaiian Electric Company, Honolulu, HI (United States); Ifuku, Earle [Hawaiian Electric Company, Honolulu, HI (United States)

    2016-12-01

    The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distribution feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.

  9. Quantifying the impacts of landscape heterogeneity and model resolution on dust emissions in the Arabian Peninsula

    KAUST Repository

    Shi, Mingjie; Yang, Zong-Liang; Stenchikov, Georgiy L.; Parajuli, Sagar P.; Tao, Weichun; Kalenderski, Stoitchko

    2016-01-01

    This study evaluates the spatiotemporal variability of dust emission in the Arabian Peninsula and quantifies the emission sensitivity to the land-cover heterogeneity by using the Community Land Model version 4 (CLM43) at three different spatial resolutions. The land-cover heterogeneity is represented by the CLM4-default plant function types (PFTs) and the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover types, respectively, at different grids. We area-average surface vegetation data and use the default nearest neighbor method to interpolate meteorological variables. We find that using MODIS data leads to a slightly higher coverage of vegetated land than the default PFT data; the former also gives more dust emission than the latter at 25- and 50-km grids as the default PFT data have more gridcells favoring less dust emission. The research highlights the importance of using proper data-processing methods or dust emission thresholds to preserve the dust emission accuracy in land models. © 2016 Elsevier Ltd.

  10. Quantifying the impacts of landscape heterogeneity and model resolution on dust emissions in the Arabian Peninsula

    KAUST Repository

    Shi, Mingjie

    2016-01-11

    This study evaluates the spatiotemporal variability of dust emission in the Arabian Peninsula and quantifies the emission sensitivity to the land-cover heterogeneity by using the Community Land Model version 4 (CLM43) at three different spatial resolutions. The land-cover heterogeneity is represented by the CLM4-default plant function types (PFTs) and the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover types, respectively, at different grids. We area-average surface vegetation data and use the default nearest neighbor method to interpolate meteorological variables. We find that using MODIS data leads to a slightly higher coverage of vegetated land than the default PFT data; the former also gives more dust emission than the latter at 25- and 50-km grids as the default PFT data have more gridcells favoring less dust emission. The research highlights the importance of using proper data-processing methods or dust emission thresholds to preserve the dust emission accuracy in land models. © 2016 Elsevier Ltd.

  11. Levy-like behaviour in deterministic models of intelligent agents exploring heterogeneous environments

    International Nuclear Information System (INIS)

    Boyer, D; Miramontes, O; Larralde, H

    2009-01-01

    Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on mental maps to explore strongly heterogeneous environments. In this work, we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power law, p(k) ∼ k -β , in some range of the exponent β, the foraging medium induces movements that are similar to Levy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.

  12. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    Science.gov (United States)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation

  13. A Stackelberg Game Approach for Energy Outage-Aware Power Distribution of an Off-Grid Base Station over Multiple Retailers

    Directory of Open Access Journals (Sweden)

    Seung Hyun Jeon

    2018-03-01

    Full Text Available This paper investigates the problem of power distribution for an off-grid base station (BS that operates sustainably without an electrical grid. We consider that multiple retailers with heterogeneous renewable energy sources (RESs compete to maximize their revenues by individually setting the unit power price. Energy outages (EOs, which cause the power supply to fall below that which is sufficient for ensuring the traffic arrival rate required for the off-grid BS, critically affect the users’ service quality. To minimize EOs and operational expenditure (OPEX, the off-grid BS manages the power supply by reacting to the retailers’ pricing decisions. We analyze the economic benefits of power distribution to the off-grid BS from the perspective of the retailers’ pricing competition, by designing a hierarchical decision-making scheme as a multi-leader single-follower Stackelberg game. We derive a closed form expression for the optimal behavior of the off-grid BS and retailers, based on well-designed utility functions. Finally, numerical results demonstrate the proposed solution with its practical convergence time.

  14. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    Science.gov (United States)

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  15. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, Ted [Aquion Energy, Inc., Pittsburgh, PA (United States); Whitacre, Jay [Aquion Energy, Inc., Pittsburgh, PA (United States); Weber, Eric [Aquion Energy, Inc., Pittsburgh, PA (United States); Eshoo, Michael [Aquion Energy, Inc., Pittsburgh, PA (United States); Noland, James [Aquion Energy, Inc., Pittsburgh, PA (United States); Blackwood, David [Aquion Energy, Inc., Pittsburgh, PA (United States); Campbell, Williams [Aquion Energy, Inc., Pittsburgh, PA (United States); Sheen, Eric [Aquion Energy, Inc., Pittsburgh, PA (United States); Spears, Christopher [Aquion Energy, Inc., Pittsburgh, PA (United States); Smith, Christopher [Aquion Energy, Inc., Pittsburgh, PA (United States)

    2012-08-31

    Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energy's Smart Grid Demonstration Program Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquion's low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles.

  16. Grid-based Simulation of Industrial Thin Film Production

    NARCIS (Netherlands)

    Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Gorbachev, Y.E.

    2005-01-01

    In this article, the authors introduce a Grid-based virtual reactor, a High Level Architecture (HLA)-supported problem-solving environment that allows for detailed numerical study of industrial thin-film production in plasma-enhanced chemical vapor deposition (PECVD) reactors. They briefly describe

  17. A CR Spectrum Allocation Algorithm in Smart Grid Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2014-10-01

    Full Text Available Cognitive radio (CR method was introduced in smart grid communication systems to resolve potential maladies such as the coexistence of heterogeneous networks, overloaded data flow, diversity in data structures, and unstable quality of service (QOS. In this paper, a cognitive spectrum allocation algorithm based on non-cooperative game theory is proposed. The CR spectrum allocation model was developed by modifying the traditional game model via the insertion of a time variable and a critical function. The computing simulation result shows that the improved spectrum allocation algorithm can achieve stable spectrum allocation strategies and avoid the appearance of multi-Nash equilibrium at the expense of certain sacrifices in the system utility. It is suitable for application in distributed cognitive networks in power grids, thus contributing to the improvement of the isomerism and data capacity of power communication systems.

  18. Stress Analysis of Single Spacer Grid Support considering Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. G.; Jung, D. H.; Kim, J. H. [Chungnam National University, Daejeon (Korea, Republic of); Park, J. K.; Jeon, K. L. [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2010-10-15

    Pressurized water reactor (PWR) nuclear fuel assembly is mainly composed of a top-end piece, a bottom-end piece, lots of fuel rods, and several spacer grids. Among them, the main function of spacer grid is protecting fuel rods from Fluid Induced Vibration (FIV). The cross section of spacer grid assembled by laser welding in upper and lower point. When the fuel rod inserted in spacer gird, spring and dimple and around of welded area got a stresses. The main hypothesis of this analysis is the boundary area of HAZ and base metal can get a lot of damage than other area by FIV. So, design factors of spacer grid mainly considered to preventing the fatigue failure in HAZ and spring and dimple of spacer grid. From previous researching, the environment in reactor verified. Pressure and temperature of light water observed 15MPa and 320 .deg. C, and vibration of the fuel rod observed within 0 {approx} 50Hz. In this study, mechanical properties of zirconium alloy that extracted from the test and the spacer grid model which used in the PWR were applied in stress analyzing. General-purpose finite element analysis program was used ANSYS Workbench 12.0.1 version. 3-D CAD program CATIA was used to create spacer grid model

  19. Simulation of Electrical Grid with Omnet++ Open Source Discrete Event System Simulator

    Directory of Open Access Journals (Sweden)

    Sőrés Milán

    2016-12-01

    Full Text Available The simulation of electrical networks is very important before development and servicing of electrical networks and grids can occur. There are software that can simulate the behaviour of electrical grids under different operating conditions, but these simulation environments cannot be used in a single cloud-based project, because they are not GNU-licensed software products. In this paper, an integrated framework was proposed that models and simulates communication networks. The design and operation of the simulation environment are investigated and a model of electrical components is proposed. After simulation, the simulation results were compared to manual computed results.

  20. Informatic infrastructure for Climatological and Oceanographic data based on THREDDS technology in a Grid environment

    Science.gov (United States)

    Tronconi, C.; Forneris, V.; Santoleri, R.

    2009-04-01

    CNR-ISAC-GOS is responsible for the Mediterranean Sea satellite operational system in the framework of MOON Patnership. This Observing System acquires satellite data and produces Near Real Time, Delayed Time and Re-analysis of Ocean Colour and Sea Surface Temperature products covering the Mediterranean and the Black Seas and regional basins. In the framework of several projects (MERSEA, PRIMI, Adricosm Star, SeaDataNet, MyOcean, ECOOP), GOS is producing Climatological/Satellite datasets based on optimal interpolation and specific Regional algorithm for chlorophyll, updated in Near Real Time and in Delayed mode. GOS has built • an informatic infrastructure data repository and delivery based on THREDDS technology The datasets are generated in NETCDF format, compliant with both the CF convention and the international satellite-oceanographic specification, as prescribed by GHRSST (for SST). All data produced, are made available to the users through a THREDDS server catalog. • A LAS has been installed in order to exploit the potential of NETCDF data and the OPENDAP URL. It provides flexible access to geo-referenced scientific data • a Grid Environment based on Globus Technologies (GT4) connecting more than one Institute; in particular exploiting CNR and ESA clusters makes possible to reprocess 12 years of Chlorophyll data in less than one month.(estimated processing time on a single core PC: 9months). In the poster we will give an overview of: • the features of the THREDDS catalogs, pointing out the powerful characteristics of this new middleware that has replaced the "old" OPENDAP Server; • the importance of adopting a common format (as NETCDF) for data exchange; • the tools (e.g. LAS) connected with THREDDS and NETCDF format use. • the Grid infrastructure on ISAC We will present also specific basin-scale High Resolution products and Ultra High Resolution regional/coastal products available on these catalogs.

  1. Deployment of a Grid-based Medical Imaging Application

    CERN Document Server

    Amendolia, S R; Frate, C; Gálvez, J; Hassan, W; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T; Warren, R

    2005-01-01

    The MammoGrid project has deployed its Service-Oriented Architecture (SOA)-based Grid application in a real environment comprising actual participating hospitals. The resultant setup is currently being exploited to conduct rigorous in-house tests in the first phase before handing over the setup to the actual clinicians to get their feedback. This paper elaborates the deployment details and the experiences acquired during this phase of the project. Finally the strategy regarding migration to an upcoming middleware from EGEE project will be described. This paper concludes by highlighting some of the potential areas of future work.

  2. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  3. A new design of the LAPS land surface scheme for use over and through heterogeneous and non-heterogeneous surfaces: Numerical simulations and tests

    Science.gov (United States)

    Mihailovic, Dragutin T.; Lazic, Jelena; Leśny, Jacek; Olejnik, Janusz; Lalic, Branislava; Kapor, Darko; Cirisan, Ana

    2010-05-01

    Numerical simulations and tests with the recently redesigned land-air parameterization scheme (LAPS) are presented. In all experiments, supported either by one-point micrometeorological, 1D or 3D simulations, the attention has been directed to: (1) comparison of simulation outputs, expressing the energy transfer over and through heterogeneous and non-heterogeneous surfaces, versus observations and (2) analysis of uncertainties occurring in the solution of the energy balance equation at the land-air interface. To check the proposed method for aggregation of albedo, "propagating hole" sensitivity tests with LAPS over a sandstone rock grid cell have been performed with the forcing meteorological data for July 17, 1999 in Baxter site, Philadelphia (USA). Micrometeorological and biophysical measurements from the surface experiments conducted over crops and apple orchard in Serbia, Poland, Austria and France were used to test the operation of LAPS in calculating surface fluxes and canopy environment temperatures within and above plant covers of different densities. In addition, sensitivity tests with single canopy covers over the Central Europe region and comparison against the observations taken from SYNOP data using 3D simulations were made. Validation of LAPS performances over a solid surface has been done by comparison of 2 m air temperature observations against 5-day simulations over the Sahara Desert rocky ground using 3D model. To examine how realistically the LAPS simulates surface processes over a heterogeneous surface, we compared the air temperature measured at 2 m and that predicted by the 1D model with the LAPS as the surface scheme. Finally, the scheme behaviour over urban surface was tested by runs over different parts of a hypothetical urban area. The corresponding 1D simulations were carried out with an imposed meteorological dataset collected during HAPEX-MOBILHY experiment at Caumont (France). The quantities predicted by the LAPS compare well with the

  4. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2010-01-01

    This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...

  5. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  6. Design of investment management optimization system for power grid companies under new electricity reform

    Science.gov (United States)

    Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei

    2017-03-01

    The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.

  7. Understanding the Role of Built Environment in Reducing Vehicle Miles Traveled Accounting for Spatial Heterogeneity

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2014-01-01

    Full Text Available In recent years, increasing concerns over climate change and transportation energy consumption have sparked research into the influences of urban form and land use patterns on motorized travel, notably vehicle miles traveled (VMT. However, empirical studies provide mixed evidence of the influence of the built environment on travel. In particular, the role of density after controlling for the confounding factors (e.g., land use mix, average block size, and distance from CBD still remains unclear. The object of this study is twofold. First, this research provides additional insights into the effects of built environment factors on the work-related VMT, considering urban form measurements at both the home location and workplace simultaneously. Second, a cross-classified multilevel model using Bayesian approach is applied to account for the spatial heterogeneity across spatial units. Using Washington DC as our study area, the home-based work tour in the AM peak hours is used as the analysis unit. Estimation results confirmed the important role that the built environment at both home and workplace plays in affecting work-related VMT. In particular, the results reveal that densities at the workplace have more important roles than that at home location. These findings confirm that urban planning and city design should be part of the solution in stabilizing global climate and energy consumption.

  8. Integrated Electrical and Thermal Grid Facility - Testing of Future Microgrid Technologies

    Directory of Open Access Journals (Sweden)

    Sundar Raj Thangavelu

    2015-09-01

    Full Text Available This paper describes the Experimental Power Grid Centre (EPGC microgrid test facility, which was developed to enable research, development and testing for a wide range of distributed generation and microgrid technologies. The EPGC microgrid facility comprises a integrated electrical and thermal grid with a flexible and configurable architecture, and includes various distributed energy resources and emulators, such as generators, renewable, energy storage technologies and programmable load banks. The integrated thermal grid provides an opportunity to harness waste heat produced by the generators for combined heat, power and cooling applications, and support research in optimization of combined electrical-thermal systems. Several case studies are presented to demonstrate the testing of different control and operation strategies for storage systems in grid-connected and islanded microgrids. One of the case studies also demonstrates an integrated thermal grid to convert waste heat to useful energy, which thus far resulted in a higher combined energy efficiency. Experiment results confirm that the facility enables testing and evaluation of grid technologies and practical problems that may not be apparent in a computer simulated environment.

  9. Progress in markets for grid-connected PV systems in the built environment

    International Nuclear Information System (INIS)

    Haas, R.

    2004-01-01

    In the last decade of the twentieth century a wide variety of promotion strategies increased the market penetration of small grid-connected PV systems world-wide. The objective of this paper is to assess the impact of these promotion strategies on the market for and on the economic performance of small grid-connected PV systems. The most important conclusions of this analysis are: Pure cost-effectiveness is not crucial for private customers. Affordability is rather what counts. Non-monetary issues play an important role for a substantial increase in market deployment. Comprehensive accompanied information and education activities are also important along with financial incentives. There are still considerable barriers in the market: on the one hand transparent and competitive markets exist in only a few countries; on the other hand non-monetary transaction costs still represent a major barrier. Progress with respect to cost reduction has been achieved, but mainly for non-module components. (author)

  10. Geographical failover for the EGEE-WLCG grid collaboration tools

    International Nuclear Information System (INIS)

    Cavalli, A; Pagano, A; Aidel, O; L'Orphelin, C; Mathieu, G; Lichwala, R

    2008-01-01

    Worldwide grid projects such as EGEE and WLCG need services with high availability, not only for grid usage, but also for associated operations. In particular, tools used for daily activities or operational procedures are considered to be critical. The operations activity of EGEE relies on many tools developed by teams from different countries. For each tool, only one instance was originally deployed, thus representing single points of failure. In this context, the EGEE failover problem was solved by replicating tools at different sites, using specific DNS features to automatically failover to a given service. A new domain for grid operations (gridops.org) was registered and deployed following DNS testing in a virtual machine (vm) environment using nsupdate, NS/zone configuration and fast TTLs. In addition, replication of databases, web servers and web services have been tested and configured. In this paper, we describe the technical mechanism used in our approach to replication and failover. We also describe the procedure implemented for the EGEE/WLCG CIC Operations Portal use case. Furthermore, we present the interest in failover procedures in the context of other grid projects and grid services. Future plans for improvements of the procedures are also described

  11. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  12. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  13. A review on distributed energy resources and MicroGrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiayi, Huang; Chuanwen, Jiang; Rong, Xu [Department of Electrical Engineering, Shanghai Jiaotong University, Huashan Road 1954, Shanghai 200030 (China)

    2008-12-15

    The distributed energy resources (DER) comprise several technologies, such as diesel engines, micro turbines, fuel cells, photovoltaic, small wind turbines, etc. The coordinated operation and control of DER together with controllable loads and storage devices, such as flywheels, energy capacitors and batteries are central to the concept of MicroGrid (MG). MG can operate interconnected to the main distribution grid, or in an islanded mode. This paper reviews the researches and studies on MG technology. The operation of MG and the MG in the market environment are also described in the paper. (author)

  14. Virtual laboratory of electrical mini-grids with distributed generation

    International Nuclear Information System (INIS)

    Menezes Ramos, Vanessa; Barros Galhardo, Marcos André; Oliveira Barbosa, Claudomiro Fábio de; Tavares Pinho, João

    2015-01-01

    This paper presents a computing tool called Virtual Laboratory de Minirredes (Virtual Laboratory of Mini-grids). Using the virtual environment of the developed tool, it is possible to make remote connection/disconnection of switches and loads (resistive, inductive, capacitive and non-linear) at strategic points of the electric mini-grid with hybrid distributed generation systems (solar photovoltaic-diesel). The mini-grid has a length of about 1 km and is installed in the test area of the Grupo de Estudios e Desenvolvimento de Alternativas Exergética (GEDAE) of the Universidade Federal do Pará, located in the city of Belém, Pará, Brazil. The developed tool has communication functions with electric parameters transducers and programmable logic controllers (PLCs). This communication enables the opening and closing of contactors, resulting in different settings for the mini-grid. In addition to that, based on the proposed configuration by the user, the real-time operation status of mini-grid is presented in a graphic interface (for example, monitored electric parameters, distributed generators connected, status of disconnected switches, etc.) and the acquired data is stored. The use of the computing tool also focuses on the construction of a database, in order to obtain knowledge about the mini-grid performance under various conditions that can be set, depending on the operational strategy adopted, based on the choice of the layout, loads and power sources used in the mini-grid. (full text)

  15. Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS based random walk model

    NARCIS (Netherlands)

    Schippers, P.; Verboom, J.; Knaapen, J.P.; Apeldoorn, van R.

    1996-01-01

    A grid-based random walk model has been developed to simulate animal dispersal, taking landscape heterogeneity and linear barriers such as roads and rivers into account. The model can be used to estimate connectivity and has been parameterized for thebadger in the central part of the Netherlands.

  16. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    Science.gov (United States)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-12-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.

  17. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    International Nuclear Information System (INIS)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-01-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware. (paper)

  18. The Grid-Enabled NMR Spectroscopy

    International Nuclear Information System (INIS)

    Lawenda, M.; Meyer, N.; Stroinski, M.; Popenda, L.; Gdaniec, Z.; Adamiak, R.W.

    2005-01-01

    The laboratory equipment used for experimental work is very expensive and unique as well. Only big regional or national centers could afford to purchase and use it, but on a very limited scale. That is a real problem that disqualifies all other research groups not having direct access to these instruments. Therefore the proposed framework plays a crucial role in equalizing the chances of all research groups. The Virtual Laboratory (VLab) project focuses its activity on embedding laboratory equipments in grid environments (handling HPC and visualization), touching some crucial issues not solved yet. In general the issues concern the standardization of the laboratory equipment definition to treat it as a simple grid resource, supporting the end user under the term of the workflow definition, introducing the accounting issues and prioritizing jobs which follow experiments on equipments. Nowadays, we have a lot of various equipments, which can be accessed remotely via network, but only on the way allowing the local management console/display to move through the network to make a simpler access. To manage an experimental and post-processing data as well as store them in a organized way, a special Digital Science Library was developed. The project delivers a framework to enable the usage of many different scientific facilities. The physical layer of the architecture includes the existing high-speed network like PIONIER in Poland, and the HPC and visualization infrastructure. The application, in fact the framework, can be used in all experimental disciplines, where access to physical equipments are crucial, e.g., chemistry (spectrometer), radio astronomy (radio telescope), and medicine (CAT scanner). The poster presentation will show how we deployed the concept in chemistry, supporting these disciplines with grid environment and embedding the Bruker Avance 600 MHz and Varian 300 MHz spectrometers. (author)

  19. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  20. The Grid2003 Production Grid Principles and Practice

    CERN Document Server

    Foster, I; Gose, S; Maltsev, N; May, E; Rodríguez, A; Sulakhe, D; Vaniachine, A; Shank, J; Youssef, S; Adams, D; Baker, R; Deng, W; Smith, J; Yu, D; Legrand, I; Singh, S; Steenberg, C; Xia, Y; Afaq, A; Berman, E; Annis, J; Bauerdick, L A T; Ernst, M; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatkin, N; Pordes, R; Sekhri, V; Weigand, J; Wu, Y; Baker, K; Sorrillo, L; Huth, J; Allen, M; Grundhoefer, L; Hicks, J; Luehring, F C; Peck, S; Quick, R; Simms, S; Fekete, G; Van den Berg, J; Cho, K; Kwon, K; Son, D; Park, H; Canon, S; Jackson, K; Konerding, D E; Lee, J; Olson, D; Sakrejda, I; Tierney, B; Green, M; Miller, R; Letts, J; Martin, T; Bury, D; Dumitrescu, C; Engh, D; Gardner, R; Mambelli, M; Smirnov, Y; Voeckler, J; Wilde, M; Zhao, Y; Zhao, X; Avery, P; Cavanaugh, R J; Kim, B; Prescott, C; Rodríguez, J; Zahn, A; McKee, S; Jordan, C; Prewett, J; Thomas, T; Severini, H; Clifford, B; Deelman, E; Flon, L; Kesselman, C; Mehta, G; Olomu, N; Vahi, K; De, K; McGuigan, P; Sosebee, M; Bradley, D; Couvares, P; De Smet, A; Kireyev, C; Paulson, E; Roy, A; Koranda, S; Moe, B; Brown, B; Sheldon, P

    2004-01-01

    The Grid2003 Project has deployed a multi-virtual organization, application-driven grid laboratory ("GridS") that has sustained for several months the production-level services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome analysis, and computer science research projects in such areas as job and data scheduling. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. We describe the principles that have guided the development of this unique infrastructure and the practical experiences that have resulted from its creation and use. We discuss application requirements for grid services deployment and configur...

  1. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project ''Grid fault and designbasis for wind turbine'' supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  2. Increased Productivity for Emerging Grid Applications the Application Support System

    CERN Document Server

    Maier, Andrew; Mendez Lorenzo, Patricia; Moscicki, Jakub; Lamanna, Massimo; Muraru, Adrian

    2008-01-01

    Recently a growing number of various applications have been quickly and successfully enabled on the Grid by the CERN Grid application support team. This allowed the applications to achieve and publish large-scale results in a short time which otherwise would not be possible. We present the general infrastructure, support procedures and tools that have been developed. We discuss the general patterns observed in supporting new applications and porting them to the EGEE environment. The CERN Grid application support team has been working with the following real-life applications: medical and particle physics simulation (Geant4, Garfield), satellite imaging and geographic information for humanitarian relief operations (UNOSAT), telecommunications (ITU), theoretical physics (Lattice QCD, Feynman-loop evaluation), Bio-informatics (Avian Flu Data Challenge), commercial imaging processing and classification (Imense Ltd.) and physics experiments (ATLAS, LHCb, HARP). Using the EGEE Grid we created a standard infrastruct...

  3. Smart grid as a service: a discussion on design issues.

    Science.gov (United States)

    Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.

  4. Spatial Indexing for Data Searching in Mobile Sensing Environments.

    Science.gov (United States)

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S

    2017-06-18

    Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  5. On-the-fly XMM-Newton Spacecraft Data Reduction on the Grid

    Directory of Open Access Journals (Sweden)

    A. Ibarra

    2006-01-01

    Full Text Available We present the results of the first prototype of a XMM-Newton pipeline processing task, parallelized at a CCD level, which can be run in a Grid system. By using the Grid Way application and the XMM-Newton Science Archive system, the processing of the XMM-Newton data is distributed across the Virtual Organization (VO constituted by three different research centres: ESAC (European Space Astronomy Centre, ESTEC (the European Space research and TEchnology Centre and UCM (Complutense University of Madrid. The proposed application workflow adjusts well to the Grid environment, making use of the massive parallel resources in a flexible and adaptive fashion.

  6. The Czech National Grid Infrastructure

    Science.gov (United States)

    Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.

    2017-10-01

    The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.

  7. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.

    2012-01-01

    synchronization method for three-phase three-wire networks, namely dual second-order generalized integrator (SOGI) frequency-locked loop. The method is based on two adaptive filters, implemented by using a SOGI on the stationary αβ reference frame, and it is able to perform an excellent estimation......Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...

  8. Grid infrastructure for automatic processing of SAR data for flood applications

    Science.gov (United States)

    Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii

    2010-05-01

    More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be

  9. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    OpenAIRE

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We pr...

  10. Lightweight Data Aggregation Scheme against Internal Attackers in Smart Grid Using Elliptic Curve Cryptography

    Directory of Open Access Journals (Sweden)

    Debiao He

    2017-01-01

    Full Text Available Recent advances of Internet and microelectronics technologies have led to the concept of smart grid which has been a widespread concern for industry, governments, and academia. The openness of communications in the smart grid environment makes the system vulnerable to different types of attacks. The implementation of secure communication and the protection of consumers’ privacy have become challenging issues. The data aggregation scheme is an important technique for preserving consumers’ privacy because it can stop the leakage of a specific consumer’s data. To satisfy the security requirements of practical applications, a lot of data aggregation schemes were presented over the last several years. However, most of them suffer from security weaknesses or have poor performances. To reduce computation cost and achieve better security, we construct a lightweight data aggregation scheme against internal attackers in the smart grid environment using Elliptic Curve Cryptography (ECC. Security analysis of our proposed approach shows that it is provably secure and can provide confidentiality, authentication, and integrity. Performance analysis of the proposed scheme demonstrates that both computation and communication costs of the proposed scheme are much lower than the three previous schemes. As a result of these aforementioned benefits, the proposed lightweight data aggregation scheme is more practical for deployment in the smart grid environment.

  11. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  12. The HEPiX Virtualisation Working Group: Towards a “Grid of Clouds”

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The HEPiX Virtualisation Working Group has sponsored the development of policies and technologies that permit Grid sites to safely instantiate remotely generated virtual machine images confident in the knowledge that they will be able to meet their obligations, most notably in terms of guaranteeing the accountability and traceability of any Grid Job activity at their site. We will present the current status of the HEPiX Virtualisation Working Group technology and or links to related projects, notably StratusLab. We will also comment on the utility of our work in enabling a move from a Grid environment to a “Grid of Clouds” to provide a more responsive service to end users and reduce the service management load at participating sites.

  13. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  14. GridICE: monitoring the user/application activities on the grid

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A; Fantinel, S

    2008-01-01

    The monitoring of the grid user activity and application performance is extremely useful to plan resource usage strategies particularly in cases of complex applications. Large VOs, such as the LHC VOs, do their monitoring by means of dashboards. Other VOs or communities, like for example the BioinfoGRID one, are characterized by a greater diversification of the application types: so the effort to provide a dashboard like monitor is particularly heavy. The main theme of this paper is to show the improvements introduced in GridICE, a web tool built to provides an almost complete grid monitoring. These recent improvements allows GridICE to provide new reports on the resources usage with details of the VOMS groups, roles and users. By accessing the GridICE web pages, the grid user can get all information that is relevant to keep track of his activity on the grid. In the same way, the activity of a VOMS group can be distinguished from the activity of the entire VO. In this paper we briefly talk about the features and advantages of this approach and, after discussing the requirements, we describe the software solutions, middleware and prerequisite to manage and retrieve the user's credentials

  15. GridSpace Engine of the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Ciepiela, E.; Kocot, J.; Gubala, T.; Malawski, M.; Kasztelnik, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    GridSpace Engine is the central operational unit of the ViroLab Virtual Laboratory. This specific runtime environment enables access to computational and data resources by coordinating execution of experiments written in the Ruby programming language extended with virtual laboratory capabilities.

  16. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A.D.; Sørensen, P.

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project "Grid fault and design basis for wind turbine" supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  17. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  18. Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-06-01

    Full Text Available The contributions of Distributed Energy Generation (DEG and Distributed Energy Storage (DES for Demand Side Management (DSM purposes in a smart macrogrid or microgrid cannot be over-emphasised. However, standalone DEG and DES can lead to under-utilisation of energy generation by consumers and financial investments; in grid-connection mode, though, DEG and DES can offer arbitrage opportunities for consumers and utility provider(s. A grid-connected smart microgrid comprising heterogeneous (active and passive smart consumers, electric vehicles and a large-scale centralised energy storage is considered in this paper. Efficient energy management by each smart entity is carried out by the proposed Microgrid Energy Management Distributed Optimisation Algorithm (MEM-DOA installed distributively within the network according to consumer type. Each smart consumer optimises its energy consumption and trading for comfort (demand satisfaction and profit. The proposed model was observed to yield better consumer satisfaction, higher financial savings, and reduced Peak-to-Average-Ratio (PAR demand on the utility grid. Other associated benefits of the model include reduced investment on peaker plants, grid reliability and environmental benefits. The MEM-DOA also offered participating smart consumers energy and tariff incentives so that passive smart consumers do not benefit more than active smart consumers, as was the case with some previous energy management algorithms.

  19. A unified grid current control for grid-interactive DG inverters in microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittan...... locus analyses in the discrete z-domain are performed for elaborating the controller design. Simulations and experimental results demonstrate the performances of the proposed approach.......This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittance...... in the outer loop. It, therefore, provides several superior features over traditional control schemes: 1) high-quality grid current in the grid-connected mode, 2) inherent derivative-less virtual output impedance control, and 3) the unified active damping for both grid-connected and islanded operations. Root...

  20. Event heap: a coordination infrastructure for dynamic heterogeneous application interactions in ubiquitous computing environments

    Science.gov (United States)

    Johanson, Bradley E.; Fox, Armando; Winograd, Terry A.; Hanrahan, Patrick M.

    2010-04-20

    An efficient and adaptive middleware infrastructure called the Event Heap system dynamically coordinates application interactions and communications in a ubiquitous computing environment, e.g., an interactive workspace, having heterogeneous software applications running on various machines and devices across different platforms. Applications exchange events via the Event Heap. Each event is characterized by a set of unordered, named fields. Events are routed by matching certain attributes in the fields. The source and target versions of each field are automatically set when an event is posted or used as a template. The Event Heap system implements a unique combination of features, both intrinsic to tuplespaces and specific to the Event Heap, including content based addressing, support for routing patterns, standard routing fields, limited data persistence, query persistence/registration, transparent communication, self-description, flexible typing, logical/physical centralization, portable client API, at most once per source first-in-first-out ordering, and modular restartability.

  1. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CDF GlideinWMS usage in Grid computing of high energy physics

    International Nuclear Information System (INIS)

    Zvada, Marian; Sfiligoi, Igor; Benjamin, Doug

    2010-01-01

    Many members of large science collaborations already have specialized grids available to advance their research in the need of getting more computing resources for data analysis. This has forced the Collider Detector at Fermilab (CDF) collaboration to move beyond the usage of dedicated resources and start exploiting Grid resources. Nowadays, CDF experiment is increasingly relying on glidein-based computing pools for data reconstruction. Especially, Monte Carlo production and user data analysis, serving over 400 users by central analysis farm middleware (CAF) on the top of Condor batch system and CDF Grid infrastructure. Condor is designed as distributed architecture and its glidein mechanism of pilot jobs is ideal for abstracting the Grid computing by making a virtual private computing pool. We would like to present the first production use of the generic pilot-based Workload Management System (glideinWMS), which is an implementation of the pilot mechanism based on the Condor distributed infrastructure. CDF Grid computing uses glideinWMS for its data reconstruction on the FNAL campus Grid, user analysis and Monte Carlo production across Open Science Grid (OSG). We review this computing model and setup used including CDF specific configuration within the glideinWMS system which provides powerful scalability and makes Grid computing working like in a local batch environment with ability to handle more than 10000 running jobs at a time.

  3. Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...

  4. Micro-Grids for Colonias (TX)

    Energy Technology Data Exchange (ETDEWEB)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid

  5. Communication tools between Grid virtual organisations, middleware deployers and sites

    CERN Document Server

    Dimou, Maria

    2008-01-01

    Grid Deployment suffers today from the difficulty to reach users and site administrators when a package or a configuration parameter changes. Release notes, twiki pages and news’ broadcasts are not efficient enough. The interest of using GGUS as an efficient and effective intra-project communication tool is the message to the user community presented here. The purpose of GGUS is to bring together End Users and Supporters in the Regions where the Grid is deployed and in operation. Today’s Grid usage is still very far from the simplicity and functionality of the web. While pressing for middleware usability, we try to turn the Global Grid User Support (GGUS) into the central tool for identifying areas in the support environment that need attention. To do this, we exploit GGUS' capacity to expand, by including new Support Units that follow the project's operational structure. Using tailored GGUS database searches we obtain concrete results that prove where we need to improve procedures, Service Level Agreemen...

  6. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    CERN Document Server

    INSPIRE-00416173; Kebschull, Udo

    2015-01-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machin...

  7. Knowledge Discovery for Smart Grid Operation, Control, and Situation Awareness -- A Big Data Visualization Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason; Gao, Tianlu; Muljadi, Eduard

    2016-11-21

    In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmit the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.

  8. A comprehensive WSN-based approach to efficiently manage a Smart Grid.

    Science.gov (United States)

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-10-10

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators-mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices-making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach.

  9. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  10. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  11. Cyberhubs: Virtual Research Environments for Astronomy

    Science.gov (United States)

    Herwig, Falk; Andrassy, Robert; Annau, Nic; Clarkson, Ondrea; Côté, Benoit; D’Sa, Aaron; Jones, Sam; Moa, Belaid; O’Connell, Jericho; Porter, David; Ritter, Christian; Woodward, Paul

    2018-05-01

    Collaborations in astronomy and astrophysics are faced with numerous cyber-infrastructure challenges, such as large data sets, the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous data sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy package for small- to medium-sized collaborations based on the Jupyter and Docker technology, which allows web-browser-enabled, remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment steps of the system are described, as well as the requirements collection through an account of the different approaches to data structuring, handling, and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration performs large-scale 3D stellar hydrodynamics simulations of interior convection in the late phases of stellar evolution. Examples of science that is currently performed on cyberhubs, in the areas of 3D stellar hydrodynamic simulations, stellar evolution and nucleosynthesis, and Galactic chemical evolution, are presented.

  12. Smart Grid: Network simulator for smart grid test-bed

    International Nuclear Information System (INIS)

    Lai, L C; Ong, H S; Che, Y X; Do, N Q; Ong, X J

    2013-01-01

    Smart Grid become more popular, a smaller scale of smart grid test-bed is set up at UNITEN to investigate the performance and to find out future enhancement of smart grid in Malaysia. The fundamental requirement in this project is design a network with low delay, no packet drop and with high data rate. Different type of traffic has its own characteristic and is suitable for different type of network and requirement. However no one understands the natural of traffic in smart grid. This paper presents the comparison between different types of traffic to find out the most suitable traffic for the optimal network performance.

  13. Parallel execution of chemical software on EGEE Grid

    CERN Document Server

    Sterzel, Mariusz

    2008-01-01

    Constant interest among chemical community to study larger and larger molecules forces the parallelization of existing computational methods in chemistry and development of new ones. These are main reasons of frequent port updates and requests from the community for the Grid ports of new packages to satisfy their computational demands. Unfortunately some parallelization schemes used by chemical packages cannot be directly used in Grid environment. Here we present a solution for Gaussian package. The current state of development of Grid middleware allows easy parallel execution in case of software using any of MPI flavour. Unfortunately many chemical packages do not use MPI for parallelization therefore special treatment is needed. Gaussian can be executed in parallel on SMP architecture or via Linda. These require reservation of certain number of processors/cores on a given WN and the equal number of processors/cores on each WN, respectively. The current implementation of EGEE middleware does not offer such f...

  14. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  15. CRIS and the GRIDs Architecture

    Directory of Open Access Journals (Sweden)

    K Jeffery

    2010-04-01

    Full Text Available The end-user demands low effort threshold access to systems providing e-information, e-business, and e-entertainment. Innovators and entrepreneurs require also equally low-energy access to heterogeneous information homogenised to a form and language familiar to them. On top of that, decision-makers, whether in a control room or government strategic planning, demand equally easy access to information that is statistically or inductively enhanced to knowledge and access to modelling or simulation systems to allow 'what if?' requests. Researchers and technical workers have an additional requirement for rapid integration of information with statistical, induction, modelling, and simulation systems to generate and verify hypotheses so generating data and information, to be used by others, which in turn advances knowledge. Access is required, and can now be provided, anytime, anyhow, anywhere through ambient computing technology. A new paradigm, GRIDs, provides the architectural framework.

  16. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets

    Directory of Open Access Journals (Sweden)

    Matthew H. Savoie

    2012-03-01

    Full Text Available Defined in the early 1990s for use with gridded satellite passive microwave data, the Equal-Area Scalable Earth Grid (EASE-Grid was quickly adopted and used for distribution of a variety of satellite and in situ data sets. Conceptually easy to understand, EASE-Grid suffers from limitations that make it impossible to format in the widely popular GeoTIFF convention without reprojection. Importing EASE-Grid data into standard mapping software packages is nontrivial and error-prone. This article defines a standard for an improved EASE-Grid 2.0 definition, addressing how the changes rectify issues with the original grid definition. Data distributed using the EASE-Grid 2.0 standard will be easier for users to import into standard software packages and will minimize common reprojection errors that users had encountered with the original EASE-Grid definition.

  17. Smart grids and e-mobility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the third European Conference at 17th-18th October, 2011 in Munich (Federal Republic of Germany) the following lectures and posters were presented: (1) Market and billing models for electric mobility (M. Bolczek); (2) Optimal pooling of electric vehicles for ancillary markets under consideration of uncertain parameters (T. Pollok); (3) Introducing human factors psychology to vehicle-to-grid technologies (U. Hahnel); (4) The role of smart sensor networks for voltage monitoring in smart grids (P. Stoea); (5) Evaluating the impacts of electric vehicles and micro-generation in distribution networks (F. Soares); (6) Electric cars as energy storages - case study from Nordic Country (J. Lussia); (7) Are battery electric vehicles competitive? - The development of a customer value-based model (R. Colmon); (8) Technical and commercial protocol for different bidirectional integration topologies (P. Benoit); (9) The use of electric vehicles in Greece: A case study (C. Ioakimidis); (10) Fast charging station business analysis (J. Borges); (11) Power distribution networks: Intelligent substations (S2G) (M.E. Hervas); (12) Optimal design and energy management of decentralized PV-power supply units with short-term and long-term energy storage path (T. Bocklisch); (13) Easy grid analysis method for a central observing and controlling system in the low voltage grid for E-Mobility and renewable integration (A. Schuser); (14) Smart grids and EU data protection law - What is the legal framework? (J. Hladjk); (15) Smart integration of electric vehicles (A. Niesse); (16) Smart standards for smart grid devices (G. Kaestle); (17) Driving ambition: Bridging the gap between electric vehicles and smart metering (A. Galdos); (18) Analysis of an electric vehicle agent based management model (P. Papadopoulos); (19) Assessing the potential of electric vehicles and photovoltaics in a smart-grid environment in Brazil (R. Ruether); (20) Opportunities and challenges with large scale

  18. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-01-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252 Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235 U(n th , f).

  19. Modern Grid Initiative Distribution Taxonomy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

    2008-11-01

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects

  20. Smart Pricing for Smart Grid

    OpenAIRE

    Wang, Zhimin

    2014-01-01

    Flat-rate electricity tariffs in Great Britain, which have no price variation throughout a day or a year, have been ongoing for decades to recover the cost of energy production and delivery. However, this type of electricity tariff has little incentives to encourage customers to modify their demands to suit the condition of the power supply system. Hence, it is challenged in the new smart grid environment, where demand side responses have important roles to play to encourage conventional ener...

  1. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  2. Gridded bathymetry of 35 fthm Bank, and 37 fthm Bank, north of Farallon de Medinilla, CNMI, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5m) of the bank environment of 35-fthm Bank and 37 fthm Bank,CNMI USA. These netCDF and ASCII grids include multibeam bathymetry from the Reson...

  3. High-Performance Secure Database Access Technologies for HEP Grids

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Vranicar; John Weicher

    2006-04-17

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist’s computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications.” There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the

  4. High-Performance Secure Database Access Technologies for HEP Grids

    International Nuclear Information System (INIS)

    Vranicar, Matthew; Weicher, John

    2006-01-01

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist's computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that 'Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications'. There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure

  5. A Reference Model for Distribution Grid Control in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); De Martini, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kristov, Lorenzo [California Independent System Operator, Folsom, CA (United States)

    2015-07-01

    Intensive changes in the structure of the grid due to the penetration of new technologies, coupled with changing societal needs are outpacing the capabilities of traditional grid control systems. The gap is widening at an accelerating rate with the biggest impacts occurring at the distribution level due to the widespread adoption of diverse distribution-connected energy resources (DER) . This paper outlines the emerging distribution grid control environment, defines the new distribution control problem, and provides a distribution control reference model. The reference model offers a schematic representation of the problem domain to inform development of system architecture and control solutions for the high-DER electric system.

  6. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    Science.gov (United States)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  7. Grid-Enabled Measures

    Science.gov (United States)

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  8. CQPSO scheduling algorithm for heterogeneous multi-core DAG task model

    Science.gov (United States)

    Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng

    2017-07-01

    Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.

  9. Grid Databases for Shared Image Analysis in the MammoGrid Project

    CERN Document Server

    Amendolia, S R; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Reading, T; Rogulin, D; Schottlander, D; Solomonides, T

    2004-01-01

    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UK

  10. Multigrid on unstructured grids using an auxiliary set of structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  11. Adapting multiuser 3D virtual environments to heterogeneous devices

    OpenAIRE

    Araujo, Regina Borges de; Silva, Alessandro Rodrigues e; Todesco, Glauco

    2006-01-01

    With the growing dissemination and reliability of wireless networks and the emergence of devices with increasing processing and communication power, applications that up to now were restricted to the PCs are being envisaged to run on devices as heterogeneous as wrist clocks, refrigerators with access to the internet, mobile phones, PDAs, set-top-boxes, game consoles etc. Application development for this myriad of devices and networks with different capabilities requires special attention from...

  12. Spatial Indexing for Data Searching in Mobile Sensing Environments

    Directory of Open Access Journals (Sweden)

    Yuchao Zhou

    2017-06-01

    Full Text Available Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  13. Asymmetrical Grid Fault Ride-Through Strategy of Three-phase Grid-connected Inverter Considering Network Impedance Impact in Low Voltage Grid

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Zhang, Xue; Wang, Baocheng

    2014-01-01

    This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... of the proposed solution for the flexible voltage support in a low-voltage grid, where thenetwork impedance is mainly resistive.......This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... inductive, the proposed control strategy is more flexible and effective by considering the network impedance impact, which is of great importance for the high penetration of grid-connected renewable energy systems into low-voltage grids. The experimental tests are carried out to validate the effectiveness...

  14. Synchrophasor Sensor Networks for Grid Communication and Protection.

    Science.gov (United States)

    Gharavi, Hamid; Hu, Bin

    2017-07-01

    This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems.

  15. A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU

    Science.gov (United States)

    Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha

    2018-03-01

    Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.

  16. Importance of Grid Center Arrangement

    Science.gov (United States)

    Pasaogullari, O.; Usul, N.

    2012-12-01

    In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs

  17. Initial results of local grid control using wind farms with grid support

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.

    2005-09-01

    This report describes initial results with simulation of local grid control using wind farms with grid support. The focus is on simulation of the behaviour of the wind farms when they are isolated from the main grid and establish a local grid together with a few other grid components. The isolated subsystems used in the work presented in this report do not intend to simulate a specific subsystem, but they are extremely simplified single bus bar systems using only a few more components than the wind farm. This approach has been applied to make it easier to understand the dynamics of the subsystem. The main observation is that the fast dynamics of the wind turbines seem to be able to contribute significantly to the grid control, which can be useful where the wind farm is isolated with a subsystem from the main grid with surplus of generation. Thus, the fast down regulation of the wind farm using automatic frequency control can keep the subsystem in operation and thereby improve the reliability of the grid. (LN)

  18. How should grid operators govern smart grid innovation projects? An embedded case study approach

    International Nuclear Information System (INIS)

    Reuver, Mark de; Lei, Telli van der; Lukszo, Zofia

    2016-01-01

    Grid operators increasingly have to collaborate with other actors in order to realize smart grid innovations. For routine maintenance, grid operators typically acquire technologies in one-off transactions, but the innovative nature of smart grid projects may require more collaborate relationships. This paper studies how a transactional versus relational approach to governing smart grid innovation projects affects incentives for other actors to collaborate. We analyse 34 cases of smart grid innovation projects based on extensive archival data as well as interviews. We find that projects relying on relational governance are more likely to provide incentives for collaboration. Especially non-financial incentives such as reputational benefits and shared intellectual property rights are more likely to be found in projects relying on relational governance. Policy makers that wish to stimulate smart grid innovation projects should consider stimulating long-term relationships between grid operators and third parties, because such relationships are more likely to produce incentives for collaboration. - Highlights: • Smart grids require collaboration between grid operators and other actors. • We contrast transactional and relational governance of smart grid projects. • Long-term relations produce more incentives for smart grid collaboration. • Non-financial incentives are more important in long-term relations. • Policy makers should stimulate long-term relations to stimulate smart grids.

  19. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    Science.gov (United States)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  20. Functional classification of spatially heterogeneous environments: the Land Cover Mosaic approach in remote sensing

    NARCIS (Netherlands)

    Obbink, M.H.

    2011-01-01

    Tropical rainforest areas are difficult to classify in the digital analysis of remote sensing data because of spatial heterogeneity. Often many technical solutions are adopted to reduce the ‘problem’ of spatial heterogeneity. This thesis describes theory and methods that now use this

  1. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    Science.gov (United States)

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    snowpack energetics over the distributions) was found to yield similar SCD and discharge results as simulations that resolved internal energy differences. Spatial/internal snowpack melt energy effects are more pronounced at times earlier in spring before the main period of snowmelt and SCD, as shown in previously published work. The paper discusses the importance of these findings as they apply to the warranted complexity of snowmelt process simulation in cold mountain environments, and shows how the end-of-winter SWE distribution represents an effective means of resolving snow cover heterogeneity at multiple scales for modelling, even in steep and complex terrain.

  2. Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...

  3. Grid connectivity issues and the importance of GCC. [GCC - Grid Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Schwartz, M.-K. [GL Renewable Certification, Malleswaram, Bangalore (India)

    2012-07-01

    In India, the wind energy is concentrated in rural areas with a very high penetration. In these cases, the wind power has an increasing influence on the power quality on the grids. Another aspect is the influence of weak grids on the operation of wind turbines. Hence it becomes very much essential to introduce such a strong grid code which is particularly applicable to wind sector and suitable for Indian environmental grid conditions. This paper focuses on different international grid codes and their requirement with regard to the connection of wind farms to the electric power systems to mitigate the grid connectivity issues. The requirements include the ways to achieve voltage and frequency stability in the grid-tied wind power system. In this paper, comparative overview and analysis of the main grid connecting requirements will be conducted, comprising several national and regional codes from many countries where high wind penetration levels have been achieved or are expected in the future. The objective of these requirements is to provide wind farms with the control and regulation capabilities encountered in conventional power plants and are necessary for the safe, reliable and economic operation of the power system. This paper also provides a brief idea on the Grid Code Compliance (GCC) certification procedure implemented by the leading accredited certifying body like Germanischer Lloyd Renewables Certification (GL RC), who checks the conformity of the wind turbines as per region specific grid codes. (Author)

  4. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    Science.gov (United States)

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  5. Optimal usage of computing grid network in the fields of nuclear fusion computing task

    International Nuclear Information System (INIS)

    Tenev, D.

    2006-01-01

    Nowadays the nuclear power becomes the main source of energy. To make its usage more efficient, the scientists created complicated simulation models, which require powerful computers. The grid computing is the answer to powerful and accessible computing resources. The article observes, and estimates the optimal configuration of the grid environment in the fields of the complicated nuclear fusion computing tasks. (author)

  6. The GridShare solution: a smart grid approach to improve service provision on a renewable energy mini-grid in Bhutan

    International Nuclear Information System (INIS)

    Quetchenbach, T G; Harper, M J; Jacobson, A E; Robinson IV, J; Hervin, K K; Chase, N A; Dorji, C

    2013-01-01

    This letter reports on the design and pilot installation of GridShares, devices intended to alleviate brownouts caused by peak power use on isolated, village-scale mini-grids. A team consisting of the authors and partner organizations designed, built and field-tested GridShares in the village of Rukubji, Bhutan. The GridShare takes an innovative approach to reducing brownouts by using a low cost device that communicates the state of the grid to its users and regulates usage before severe brownouts occur. This demand-side solution encourages users to distribute the use of large appliances more evenly throughout the day, allowing power-limited systems to provide reliable, long-term renewable electricity to these communities. In the summer of 2011, GridShares were installed in every household and business connected to the Rukubji micro-hydro mini-grid, which serves approximately 90 households with a 40 kW nominal capacity micro-hydro system. The installation was accompanied by an extensive education program. Following the installation of the GridShares, the occurrence and average length of severe brownouts, which had been caused primarily by the use of electric cooking appliances during meal preparation, decreased by over 92%. Additionally, the majority of residents surveyed stated that now they are more certain that their rice will cook well and that they would recommend installing GridShares in other villages facing similar problems. (letter)

  7. How to build a high-performance compute cluster for the Grid

    CERN Document Server

    Reinefeld, A

    2001-01-01

    The success of large-scale multi-national projects like the forthcoming analysis of the LHC particle collision data at CERN relies to a great extent on the ability to efficiently utilize computing and data-storage resources at geographically distributed sites. Currently, much effort is spent on the design of Grid management software (Datagrid, Globus, etc.), while the effective integration of computing nodes has been largely neglected up to now. This is the focus of our work. We present a framework for a high- performance cluster that can be used as a reliable computing node in the Grid. We outline the cluster architecture, the management of distributed data and the seamless integration of the cluster into the Grid environment. (11 refs).

  8. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  9. Cloud-Based Parameter-Driven Statistical Services and Resource Allocation in a Heterogeneous Platform on Enterprise Environment

    Directory of Open Access Journals (Sweden)

    Sungju Lee

    2016-09-01

    Full Text Available A fundamental key for enterprise users is a cloud-based parameter-driven statistical service and it has become a substantial impact on companies worldwide. In this paper, we demonstrate the statistical analysis for some certain criteria that are related to data and applied to the cloud server for a comparison of results. In addition, we present a statistical analysis and cloud-based resource allocation method for a heterogeneous platform environment by performing a data and information analysis with consideration of the application workload and the server capacity, and subsequently propose a service prediction model using a polynomial regression model. In particular, our aim is to provide stable service in a given large-scale enterprise cloud computing environment. The virtual machines (VMs for cloud-based services are assigned to each server with a special methodology to satisfy the uniform utilization distribution model. It is also implemented between users and the platform, which is a main idea of our cloud computing system. Based on the experimental results, we confirm that our prediction model can provide sufficient resources for statistical services to large-scale users while satisfying the uniform utilization distribution.

  10. Incorporating Brokers within Collaboration Environments

    Science.gov (United States)

    Rajasekar, A.; Moore, R.; de Torcy, A.

    2013-12-01

    A collaboration environment, such as the integrated Rule Oriented Data System (iRODS - http://irods.diceresearch.org), provides interoperability mechanisms for accessing storage systems, authentication systems, messaging systems, information catalogs, networks, and policy engines from a wide variety of clients. The interoperability mechanisms function as brokers, translating actions requested by clients to the protocol required by a specific technology. The iRODS data grid is used to enable collaborative research within hydrology, seismology, earth science, climate, oceanography, plant biology, astronomy, physics, and genomics disciplines. Although each domain has unique resources, data formats, semantics, and protocols, the iRODS system provides a generic framework that is capable of managing collaborative research initiatives that span multiple disciplines. Each interoperability mechanism (broker) is linked to a name space that enables unified access across the heterogeneous systems. The collaboration environment provides not only support for brokers, but also support for virtualization of name spaces for users, files, collections, storage systems, metadata, and policies. The broker enables access to data or information in a remote system using the appropriate protocol, while the collaboration environment provides a uniform naming convention for accessing and manipulating each object. Within the NSF DataNet Federation Consortium project (http://www.datafed.org), three basic types of interoperability mechanisms have been identified and applied: 1) drivers for managing manipulation at the remote resource (such as data subsetting), 2) micro-services that execute the protocol required by the remote resource, and 3) policies for controlling the execution. For example, drivers have been written for manipulating NetCDF and HDF formatted files within THREDDS servers. Micro-services have been written that manage interactions with the CUAHSI data repository, the Data

  11. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  12. Smart grid in Denmark 2.0. Implementing three key recommendations from the Smart Grid Network. [DanGrid]; Smart Grid i Danmark 2.0. Implementering af tre centrale anbefalinger fra Smart Grid netvaerket

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    In 2011 the Smart Grid Network, established by the Danish Climate and Energy minister in 2010, published a report which identifies 35 recommendations for implementing smart grid in Denmark. The present report was prepared by the Danish Energy Association and Energinet.dk and elaborates three of these recommendations: Concept for controlling the power system; Information model for the dissemination of data; Roadmap for deployment of smart grid. Concept of Smart Grid: The concept mobilizes and enables electric power demand response and production from smaller customers. This is done by customers or devices connected to the power system modify their behavior to meet the needs of the power system. The concept basically distinguishes between two different mechanisms to enable flexibility. One is the use of price signals (variable network tariffs and electricity prices), which gives customers a financial incentive to move their electricity consumption and production to times when it is of less inconvenience to the power system. The second is flexibility products, where a pre-arranged and well-specified performance - for example, a load reduction in a defined network area - can be activated as required by grid operators and / or Energinet.dk at an agreed price. Information Model for Disseminating Data: The future power system is complex with a large number of physical units, companies and individuals are actively involved in the power system. Similarly, the amount of information needed to be collected, communicated and processed grows explosively, and it is therefore essential to ensure a well-functioning IT infrastructure. A crucial element is a standardized information model in the Danish power system. The concept therefore indicates to use international standards to define an information model. Roadmap Focusing on Grid Companies' Role: There is a need to remove two key barriers. The first barrier is that the existing regulation does not support the grid using

  13. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  14. Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.

    Science.gov (United States)

    Rubin, Ilan N; Doebeli, Michael

    2017-12-21

    Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into

  15. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization

    DEFF Research Database (Denmark)

    Pappalardo, F.; Halling-Brown, M. D.; Rapin, Nicolas

    2009-01-01

    conceptual models of the immune system, models of antigen processing and presentation, system-level models of the immune system, Grid computing, and database technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGrid modules share common conceptual models and ontologies......Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and optimization. We have developed a framework that combines computational tools for the study of immune function and vaccine development. This framework, named ImmunoGrid combines...

  16. A Grid storage accounting system based on DGAS and HLRmon

    International Nuclear Information System (INIS)

    Cristofori, A; Fattibene, E; Veronesi, P; Gaido, L; Guarise, A

    2012-01-01

    Accounting in a production-level Grid infrastructure is of paramount importance in order to measure the utilization of the available resources. While several CPU accounting systems are deployed within the European Grid Infrastructure (EGI), storage accounting systems, stable enough to be adopted in a production environment are not yet available. As a consequence, there is a growing interest in storage accounting and work on this is being carried out in the Open Grid Forum (OGF) where a Usage Record (UR) definition suitable for storage resources has been proposed for standardization. In this paper we present a storage accounting system which is composed of three parts: a sensor layer, a data repository with a transport layer (Distributed Grid Accounting System - DGAS) and a web portal providing graphical and tabular reports (HLRmon). The sensor layer is responsible for the creation of URs according to the schema (described in this paper) that is currently being discussed within OGF. DGAS is one of the CPU accounting systems used within EGI, in particular by the Italian Grid Infrastructure (IGI) and some other National Grid Initiatives (NGIs) and projects. DGAS architecture is evolving in order to collect Usage Records for different types of resources. This improvement allows DGAS to be used as a ‘general’ data repository and transport layer. HLRmon is the web portal acting as an interface to DGAS. It has been improved to retrieve storage accounting data from the DGAS repository and create reports in an easy way. This is very useful not only for the Grid users and administrators but also for the stakeholders.

  17. Flexible operation of parallel grid-connecting converters under unbalanced grid voltage

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    -link voltage ripple, and overloading. Moreover, under grid voltage unbalance, the active power delivery ability is decreased due to the converter's current rating limitation. In this paper, a thorough study on the current limitation of the grid-connecting converter under grid voltage unbalance is conducted....... In addition, based on the principle that total output active power should be oscillation free, a coordinated control strategy is proposed for the parallel grid-connecting converters. The case study has been conducted to demonstrate the effectiveness of this proposed control strategy....

  18. Hebbian plasticity realigns grid cell activity with external sensory cues in continuous attractor models

    Directory of Open Access Journals (Sweden)

    Marcello eMulas

    2016-02-01

    Full Text Available After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN, is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors overtime due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments.

  19. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  20. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.