WorldWideScience

Sample records for heterogeneous catalytic oxidative

  1. Lignin Valorization using Heterogenous Catalytic Oxidation

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    The research interests in biomass conversion to fuels and chemicals has increased significantly in the last decade in view of current problems such as global warming, high oil prices, food crisis and other geopolitical scenarios. Many different reactions and processes to convert biomass into high...... of the reaction conditions 4. Here, we therefore present an overview of the recent research about conversion of some lignin model compounds using heterogeneous catalysis in oxidation reactions....

  2. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  3. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  4. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  5. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  6. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  7. Heterogeneous catalytic oxidative dehydrogenation of ethylbenzene to styrene with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Badstube, T.; Papp, H. [Leipzig Univ. (Germany). Inst. fuer Technische Chemie; Kustrowski, P.; Dziembaj, R. [Jagiellonian Univ., Crakow (Poland). Faculty of Chemistry

    1998-12-31

    Alkaline promoted active carbon supported iron catalysts are very active in the oxidative dehydrogenation of ethylbenzene to styrene in the presence of carbon dioxide. The best results were obtained at 550 C for a Li-promoted catalyst with a conversion of ethylbenzene of 75% and a selectivity towards styrene of nearly 95%. These results are better than those obtained with industrial catalysts which perform the dehydrogenation process with an excess of water. The main product of the dehydrogenation reaction with CO{sub 2} was styrene, but the following by-products were detected - benzene and toluene. The selectivity towards toluene was always higher than towards benzene. We observed also the formation of carbon monoxide and water, which were produced with a constant molar ratio of about 0.8. The weight of the catalysts increased up to 20% during the reaction due to deposition of carbon. Using a too large excess of CO{sub 2} (CO{sub 2}/EB>10) was harmful for the styrene yield. The most favorable molar ratio of CO{sub 2} to EB was 10:1. No correlation between the molar ratios of reactants and the amount of deposited coke on the surface of catalysts was observed. The highest catalytic activity showed iron loaded D-90 catalysts which were promoted with alkali metals in a molar ratio of 1:10. Iron, nickel and cobalt loaded carbonized PPAN, PC, inorganic supports like Al{sub 2}O{sub 3}, SiO{sub 2}/ZrO{sub 2} or TiO{sub 2} respectively and commercial iron catalysts applied for styrene production did not show comparable catalytic activity in similar conditions. (orig.)

  8. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    International Nuclear Information System (INIS)

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  9. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  10. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  11. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  12. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  13. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  14. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  16. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  17. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  18. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  19. Zeolite-Y entrapped Ru(III and Fe(III complexes as heterogeneous catalysts for catalytic oxidation of cyclohexane reaction

    Directory of Open Access Journals (Sweden)

    Chetan K. Modi

    2017-02-01

    Full Text Available Catalysis is probably one of the greatest contributions of chemistry to both economic growth and environmental protection. Herein we report the catalytic behavior of zeolite-Y entrapped Ru(III and Fe(III complexes with general formulae [M(VTCH2·2H2O]+-Y and [M(VFCH2·2H2O]+-Y [where, VTCH = vanillin thiophene-2-carboxylic hydrazone and VFCH = vanillin furoic-2-carboxylic hydrazone] over the oxidation of cyclohexane forming cyclohexanone and cyclohexanol. The samples were corroborated by various physico-chemical techniques. These zeolite-Y based complexes are stable and recyclable under current reaction conditions. Amongst them, [Ru(VTCH2⋅2H2O]+-Y showed higher catalytic activity (41.1% with cyclohexanone (84.6% selectivity.

  20. Degradation of organic pollutants in the groundwater by mean of heterogeneous catalytic oxidation and a combined process of catalytic oxidation and aerobic biological degradation; Abbau von organischen Schadstoffen im Grundwasser durch heterogen-katalytische Oxidation und die Verfahrenskombination katalytische Oxidation mit aerob-biologischem Abbau

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, J.; Freier, U.; Wecks, M.; Haentzschel, D. [Inst. fuer Nichtklassische Chemie e.V. an der Univ. Leipzig, Leipzig (Germany)

    2004-07-01

    This project formed part of the SAFIRA joint project (Remediation research in regionally contaminated aquifers), which was coordinated by the project division on ''Post-industry and post-mining landscapes'' of Leizig-Halle Environmental Research Centre. The purpose of the present project was to develop various in situ methods of groundwater remediation and test them on the Bitterfeld model site. The project was focussed on developing a groundwater treatment method on the basis of the oxidative catalytic degradation of the organic pollutants. [German] Das Vorhaben war in den SAFIRA-Projektverbund (Sanierungsforschung in regional kontaminierten Aquiferen), das vom Projektbereich Industrie- und Bergbaufolgelandschaften des Umweltforschungszentrums Leipzig-Halle koordiniert wurde, eingebunden. Innerhalb dieses Vorhabens sollten unterschiedliche in-situ Methoden zur Grundwassersanierung entwickelt und am Modellstandort in Bitterfeld getestet werden. Der Schwerpunkt des Vorhabens bestand in der Entwicklung einer Grundwasserbehandlungstechnologie auf der Basis des oxidativ katalytischen Abbaus der organischen Schadstoffe. (orig.)

  1. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  2. Heterogeneous catalytic degradation of polyacrylamide solution | Hu ...

    African Journals Online (AJOL)

    Modified with trace metal elements, the catalytic activity of Fe2O3/Al2O3 could be changed greatly. Among various trace metal elements, Fe2O3/Al2O3 catalysts modified with Co and Cu showed great increase on catalytic activity. International Journal of Engineering, Science and Technology, Vol. 2, No. 7, 2010, pp. 110- ...

  3. Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Nichipor Henrietta

    2017-09-01

    Full Text Available Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas fl ow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal efficiency of NOx might be increased by 8-16% with the presence of a catalyst in the gas irradiated field.

  4. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  5. The tritium labeling of Butibufen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.

    1986-01-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs

  6. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  7. Scale-up of heterogeneous catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Heggs, P; Sunderland, P

    1979-12-01

    This report on the Institution of Chemical Engineers ''Problems in Applied Catalysis'' Meeting (Bath, U.K. 1/4-5/78) covers papers on the nature of the catalyst surface, including the use of IR spectroscopy, electron energy loss spectroscopy, low-energy electron diffraction, electron spectroscopy, secondary ion mass spectroscopy, and modular-beam scattering for investigating solid surfaces and their relevance to catalysis; study of the reaction mechanisms by which catalysis takes place; use of mechanistic models to determine the true chemical kinetics illustrated for the oxidation of benzene to maleic anhydride over a vanadium pentoxide/molybdenum trioxide catalyst; the study with respect to the importance of transport effects in catalyst pellets on scale-up, falsification of true kinetics, and the design of laboratory reactors; full-scale reactor design of packed-bed reactors; and practical scale-up problems illustrated for methanol synthesis over a copper catalyst, ammonia oxidation over a cobalt oxide catalyst, and the steam reforming of naphtha.

  8. Atmospheric Pressure Microwave Assisted Heterogeneous Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Ken Belmore

    2007-07-01

    Full Text Available The newly synthesized 5,10,15,20-tetra[3-(3-trifluoromethylphenoxy]porphyrin, TTFMPP, has been characterized using mass spectroscopy, 1H-, 13C- and 19F-NMR, MALDI-TOF mass spectrometry, UV-Vis and fluorescence spectrophotometry, andcyclic voltammetry. The NMR confirmed the structure of the compound and the massspectrum was in agreement with the proposed molecular formula. The UV-Vis absorptionspectrum of TTFMPP shows characteristic spectral patterns similar to those of tetraphenylporphryin, with a Soret band at 419 nm and four Q bands at 515, 550, 590, and 648 nm.Protonation of the porphyrin with TFA resulted in the expected red shift of the Soret band.Excitation at 419 nm gave an emission at 650 nm. The quantum yield of the porphyrin wasdetermined to be 0.08. Cyclic voltammetry was used to determine the oxidation andreduction potentials of the new porphyrin. Two quasi-reversible one-electron reductions at–1.00 and –1.32 V and a quasi-reversible oxidation at 1.20 V versus the silver/silverchloride reference electrode with tetrabutylammonium tetrafluoroborate as the supportingelectrolyte in methylene chloride were observed.

  9. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  10. Elementary steps of the catalytic oxidation of CO in a gas phase in the presence of rhenium cations with carbonyl and oxygen ligands: a comparison with heterogeneous catalysis

    International Nuclear Information System (INIS)

    Goncharov, V.B.; Fialko, E.F.; Shejnin, D.Eh.; Kikhtenko, A.V.

    1997-01-01

    Reactivity in a gaseous phase o rhenium (Re + ) and rhenium monocarbonyl (ReCO + ) in the reaction of CO oxidation in oxygen-containing reagents (NO, O 2 , H 2 O) is studied through the method of the ionic cyclotron resonance. It is shown that presence of carbonyl ligand essentially influences the ion reactivity. The effective channel of the metal monocarbonyl ions oxidation through molecular oxygen is found. Accounting for this stage makes of possible to explain the low-temperature activity of a number of oxide catalyzer Mo, W in the reaction of CO oxidation by molecular oxygen

  11. The tritium labelling of ibuprofen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.V.; Rivera, P.; Estaban, M.

    1986-01-01

    The tritium labelling of 2-(4-isobutylphenyl) propionic acid (ibuprofen) was performed. The method employed was heterogeneous catalytic exchange between ibuprofen and tritiated water. Prior to labelling, thermic stability of ibuprofen was studied. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activity of the labelled compound were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  12. Catalytic oxidation of cyclohexane to cyclohexanone

    Indian Academy of Sciences (India)

    ... a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  13. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso, M.; Kaiser, F.

    1977-01-01

    The influence of the temperature at 65degC and 120degC on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, diphenyl glioxal and 2,3-tetramethylene-4-phenylthien-7-oxodiacetin. The method employed was the heterogeneous catalytic exchange between tritiaded water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolitic effects on labelled benzoic acid were also considered. (author) [es

  14. The tritium labelling of organic molecules by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Angoso Marina, M.; Kaiser Ruiz del Olmo, F.

    1977-01-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs

  15. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  16. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    Science.gov (United States)

    Al-Sabawi, Mustafa N.

    catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.

  17. Heterogeneity in magnetic complex oxides

    Science.gov (United States)

    Arenholz, Elke

    Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by

  18. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  19. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  20. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  1. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  2. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  3. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  4. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  5. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  6. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  7. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  8. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2000-01-01

    investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... between 0.1 and 0.3 V. There were no Faradaic reactions in the negative polarization region, and there was an anodic current which was less than 16% of the theoretical value for an exclusively Faradaic SO2 oxidation. Therefore the promotion effects at negative polarization are completely non-Faradaic. All...... the promotion effects have been explained as mainly due to charging of the electric double layer at the gold electrode. The effect at -0.2 V also depends on the V2O5 concentration and is more pronounced at higher V2O5 concentrations. This has been ascribed to a destruction of the vanadium polymeric chains...

  9. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  10. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would

  11. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  12. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  13. Heterogeneous oxidation of mercury in simulated post combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec [Iowa State University, Ames, IA (United States). Center for Sustainable Environmental Technologies

    2003-01-01

    Heterogeneous mercury oxidation was studied by exposing whole fly ash samples and magnetic, nonmagnetic, and size-classified fly ash fractions to elemental mercury vapor in simulated flue gas streams. Fly ash from sub-bituminous Wyodak-Anderson PRB coal and bituminous Blacksville coal were used. Scanning electron microscopy, X-ray diffraction, thermogravimetric analyses, and BET N{sub 2} isothermal sorption analyses were performed to characterize the fly ash samples. Mercury speciation downstream from the ash was determined using the Ontario Hydro method. Results showed that the presence of fly ash was critical for mercury oxidation, and the surface area of the ash appears to be an important parameter. However, for a given fly ash, there were generally no major differences in catalytic oxidation potential between different fly ash fractions. This includes fractions enriched in unburned carbon and iron oxides. The presence of NO{sub 2}, HCl, and SO{sub 2} resulted in greater levels of mercury oxidation, while NO inhibited mercury oxidation. The gas matrix affected mercury oxidation more than the fly ash composition. 21 refs., 10 figs., 2 tabs.

  14. Enhanced Heterogeneous Catalytic Conversion of Furfuryl Alcohol into Butyl Levulinate

    NARCIS (Netherlands)

    Carà, P.D..; Ciriminna, R.; Shiju, N.R.; Rothenberg, G.; Pagliaro, M.

    2014-01-01

    We study the catalytic condensation of furfuryl alcohol with 1-butanol to butyl levulinate. A screening of several commercial and as-synthesized solid acid catalysts shows that propylsulfonic acid-functionalized mesoporous silica outperforms the state-of-the-art phosphotungstate acid catalysts. The

  15. Heterogeneous Photo catalytic Degradation of Hazardous Waste in Aqueous Suspension

    International Nuclear Information System (INIS)

    Sadek, S.A.; Ebraheem, S.; Friesen, K.J.

    1999-01-01

    The photo catalytic degradation of hazardous waste like chlorinated paraffin compound (1,12-Dichlorodoecane Ded) was investigated in different aquatic media using GC-MSD. The direct photolysis of Ded in HPLC water was considered to be negligible (k = 0.0020+-0.0007h - 1 ) . An acceleration of the photodegradation rate was occurred in presence of different TiO 2 catalyst systems. Molecular oxygen was found to play a vital role in the degradation process. Anatase TiO 2 was proved to be the most efficient one (k=0.7670+-0.0876h -1 ), while the rate constant of the rutile TiO 2 was calculated to be 0.2780+-0.0342h -1 . Improvement of photo catalytic efficiency of rutile TiO 2 was achieved by addition of Fe +2 giving a rate constant =0.6710+-0.0786h -1

  16. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  17. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...

  18. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  19. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming

    2013-11-19

    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.

  20. Structure and catalytic reactivity of Rh oxides

    DEFF Research Database (Denmark)

    Gustafson, J.; Westerström, R.; Resta, A.

    2009-01-01

    Using a combination of experimental and theoretical techniques, we show that a thin RhO2 surface oxide film forms prior to the bulk Rh2O3 corundum oxide on all close-packed single crystal Rh surfaces. Based on previous reports, we argue that the RhO2 surface oxide also forms on vicinal Rh surface...

  1. Kinetic investigation of heterogeneous catalytic reactions by means of the kinetic isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F; Dermietzel, J [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung

    1978-09-01

    The application of the kinetic isotope method to heterogeneous catalytic processes is possible for surface compounds by using the steady-state relation. However, the characterization of intermediate products becomes ambiguous if sorption rates are of the same order of magnitude as surface reactions rates. The isotopic exchange reaction renders possible the estimation of sorption rates.

  2. Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide

    NARCIS (Netherlands)

    Wang, Y.M.; Magusin, P.C.M.M.; Santen, van R.A.; Abbenhuis, H.C.L.

    2007-01-01

    Organo-bridged silsesquioxane titanates for heterogeneous catalytic epoxidation with aqueous hydrogen peroxide were synthesized through the acid-catalyzed hydrolysis and co-condensation of organotrialkoxysilane monomers and a,¿-bis(trialkoxysilyl) alkane cross-linkers in ethanol–water solution, with

  3. TEMPO functionalized C60 fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    International Nuclear Information System (INIS)

    Piotrowski, Piotr; Pawłowska, Joanna; Sadło, Jarosław Grzegorz; Bilewicz, Renata; Kaim, Andrzej

    2017-01-01

    C 60 TEMPO 10 catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C 60 TEMPO 10 @Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O 2 /Fe 3+ system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  4. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  5. Catalytic Partial Oxidation of Biomass/Oil Mixture

    Czech Academy of Sciences Publication Activity Database

    Veselý, Václav; Hanika, Jiří; Tukač, V.; Lederer, J.; Kovač, D.

    2013-01-01

    Roč. 7, č. 10 (2013), s. 1940-1945 ISSN 1934-8983 R&D Projects: GA TA ČR TE01020080; GA MPO 2A-2TP1/024 Institutional support: RVO:67985858 Keywords : hydrocarbon oil * biomass * catalytic partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.davidpublishing.com/journals_info.asp?jId=1718#

  6. Oxidation of phosphine by sulfur or selenium involving a catalytic ...

    Indian Academy of Sciences (India)

    Administrator

    P NMR spec- troscopy. Such interconversion with the participation of breaking of bridging copper-µ3-sulfur bond with the formation of new copper–phosphorous bond led to the development of a catalytic cycle using excess. PPh3 and S or Se as the reacting substrates. The turnover number for the oxidation of PPh3 by S ...

  7. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms...

  8. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  9. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  10. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  11. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  12. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  13. Use characterisation of a diatomite catalyst impregnated with iron in the heterogeneous catalytic ozonization process

    International Nuclear Information System (INIS)

    Garcia Herrera, Walter

    2014-01-01

    Advanced oxidation processes have had a promising option in the treatment of wastewater, mainly in the presence of emerging and persistent pollutants. Among these processes have highlighted the catalytic ozonization, which has showed positive results in water treatment. Heterogeneous catalytic ozonization was characterized using diatomite impregnated with iron at the Universidad de Costa Rica. Contaminant degradation model was quantified (spectrophotometrically) for ozonization process and catalytic ozonization with the catalyst studied (1.000 g / L) at three different pH 4, 7 and 10. The effect of the catalyst concentration in the solution (0.250, 0.500, 1000, 1500 and 2.000 g/L) was determined under the conditions of pH with better performance of the catalyst. Runs in the presence of tert-butyl alcohol (TBA), known hydroxyl radical scavenger were performed to evaluate the effect on ozone indirect reactions. The degree of mineralization obtained was measured in the catalytic process.The variation of the COD of the solution was quantified under the best working conditions obtained. Finally, the performance of the catalyst in 4 cycles of reuse was studied by monitoring the leached iron of the catalyst, which has turned out to be 12%. Most degradation of contaminant model in ozonization process was obtained at pH 10, in accordance with the above theory (Buhler, Stachelin, & Hoigne, 1984). In contrast, at pH 4 the catalyst has presented the best efficiency, to the 3 minutes the noncatalytic process was curettaged 35% of dye, while the catalytic process by 60% in the same time. The degradation of the contaminant was improved even in the case of noncatalytic process at pH 10, which the 3 minutes was degradated to 44%. The presence of the catalyst at initial pH of 7 and 10, has showed without significant improvements in the process. The solution concentration of catalyst has presented the best efficiency of degradation has been 2,000 g/L, which has increased 70% to 3

  14. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  15. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Catalytic activity of lanthanum oxide for the reduction of cyclohexanone

    International Nuclear Information System (INIS)

    Sugunan, S.; Sherly, K.B.

    1994-01-01

    Lanthanum oxides, La 2 O 3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La 2 O 3 activated at 300, 500 and 800 degC and its mixed oxides with alumina for the reduction of cylcohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides. (author). 15 refs., 2 figs., 1 tab

  17. Selective catalytic oxidations of alkylaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.W. [Celanese GmbH, Oberhausen (Germany); Roehrscheid, F. [Hoechst AG, Frankfurt am Main (Germany). Zentralforschung und Technologie

    1998-12-31

    Focused to the guidelines of `Sustainable Development` `Responsible Care` and `Customer Satisfaction`, modern production processes are critically assessed on their balance between their ecological benefits and their economical parameters as well as their value to the community. Also in the area of fine chemicals, it is obvious that more and more processes are devolved which save feedstock, reduce emissions and minimize the potential for safety hazards: Less additive but more integrated protection of the environment yielding ecologically highly valuable processes. The described production of aromatic carboxylic acids is an ideal example for such a modern process. Nowadays the synthesis of derivatives of benzoic acid utilizes air as Ideal oxidant and acetic acid as environmental unquestionable solvent. The major byproduct of the oxidation reaction is water in some cases, dependend on the substrate also carbon dioxide. (orig.)

  18. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  19. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels

    OpenAIRE

    Xianhui Zhao; Lin Wei; Shouyun Cheng; James Julson

    2017-01-01

    To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogeneous catalysts play a critical role in those processes. The present review summarizes current progres...

  20. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Catalytic aerobic oxidation of bio-renewable chemicals

    DEFF Research Database (Denmark)

    Gorbanev, Yury

    , EDS, XRF and other methods. Supported gold and ruthenium hydroxide catalyst systems were explored for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDA), a potential polymer building block for the plastic industry, or its dimethyl ester (FDMC). High product......-free conditions. Moreover, a detailed study on the performance and stability of the ruthenium hydroxide catalysts on magnesium-containing supports under reaction conditions was conducted. The aerobic oxidation of HMF to form another value-added chemical, 2,5-diformylfuran (DFF), was also investigated......Ox deposited on various metal oxides. Furthermore, this thesis presents the results of the catalytic aerobic oxidative degradation of higher alcohols over supported ruthenium hydroxide catalysts. A very efficient oxidative cleavage of vic-diols to form respective acids was also shown under examined conditions...

  2. Additive for vanadium and sulfur oxide capture in catalytic cracking

    International Nuclear Information System (INIS)

    Chin, A.A.; Sapre, A.V.; Sarli, M.S.

    1991-01-01

    This patent describes a fluid catalytic cracking process in which a hydrocarbon feedstock. It comprises: a vanadium contaminant in an amount of a least 2 ppmw is cracked under fluid catalytic cracking conditions with a solid, particulate cracking catalyst to produce cracking products of lower molecular weight while depositing carbonaceous material on the particles of cracking catalyst, separating the particles of cracking catalyst from the cracking products in the disengaging zone and oxidatively regenerating the cracking catalyst by burning off the deposited carbonaceous material in a regeneration zone, the improvement comprising reducing the make-up rate of the cracking catalyst by contacting the cracking feed with a particulate additive composition for passivating the vanadium content of the feed, comprising an alkaline earth metal oxide and an alkaline earth metal spinel

  3. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  4. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  5. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  6. Nitrogen removal from wastewater by a catalytic oxidation method.

    Science.gov (United States)

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  7. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  8. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  9. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  10. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ojeda, Maria Eugenia [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain); Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Kim, Jungkwon [Chemical Engineering and Analytical Sciences Department, University of Manchester, Manchester (United Kingdom); Carrera, Julian [Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Metcalfe, Ian S. [Chemical Engineering and Advanced Materials Department, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom); Font, Josep [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain)]. E-mail: jose.font@urv.cat

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P{sub O{sub 2}}) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P{sub O{sub 2}} were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P{sub O{sub 2}}, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD{sub RB}) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  11. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    International Nuclear Information System (INIS)

    Suarez-Ojeda, Maria Eugenia; Kim, Jungkwon; Carrera, Julian; Metcalfe, Ian S.; Font, Josep

    2007-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P O 2 ) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P O 2 were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P O 2 , which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD RB ) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture

  12. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  13. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  14. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  15. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  16. Simultaneous catalytic degradation of 2,4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS)

    Science.gov (United States)

    Kermani, Majid; Mohammadi, Farzad; Kakavandi, Babak; Esrafili, Ali; Rostamifasih, Zeinab

    2018-06-01

    Herein, a sulfate radical (SO4rad -)-based oxidation process was utilized for simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicides using mesoporous hematite-based natural semi-conductor minerals (HM-NSMs) as efficient activators of persulfate (PS). The features of the catalyst were characterized using field emission scanning electron microscopy (FESEM); Brunauer, Emmett and Teller (BET) analysis; X-ray diffraction (XRD); and energy-dispersive X-ray spectroscopy (EDS). The effect of some operational parameters, including solution pH, catalyst loading, PS dosage and temperature, on the performance system of PS/HM-NSMs was examined. A plausible oxidation mechanism for degradation of both pollutants was also proposed. Increasing the removal efficiency of herbicides follows the order of PS/HM-NSM > HM-NSM > PS. In all experiments, the 2,4-D removal rates were slightly lower than those for MCPA, indicating that 2,4-D has a more recalcitrant nature than MCPA. Under optimized conditions, degradation rates of 68.1% and 74.5% were achieved for 2,4-D and MCPA, respectively, during a 120-min reaction. HM-NSM displays a highly synergistic effect on the degradation of herbicides in the presence of PS. The trapping experiments demonstrated that both OHrad and SO4rad - radicals contribute significantly during the degradation of 2,4-D and MCPA and that sulfate radicals were the dominant species. A mineralization degree of 36% was obtained under optimum conditions. In conclusion, the coupling of PS and HM-NSM is a promising and effective technique to degrade organic matter for the treatment of herbicide-contaminated waters and wastewaters under real conditions.

  17. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  18. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  19. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R.; Picasso Escobar, Gino I.

    2013-01-01

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C 12 H 15 N 3 O 2 S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 o C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H 2 NCONH 2 ·H 2 O 2 ) as oxidizing agent and methanol (CH 3 OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N 2 (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  20. Electro-catalytic oxidation of reactive Orange 107 using cerium doped oxides of Nd3+ nanoparticle

    International Nuclear Information System (INIS)

    Rajkumar, K.; Muthukumar, M.; Mangalaraja, R.V.

    2011-01-01

    A new rare earth doped cerium oxide powder was used as a catalyst to investigate the removal of colour and TOC from simulated wastewater of Reactive Orange 107. The electro oxidation process was carried out in the reactor in presence of an electrolyte NaCl. Graphite electrode was used as anode and cathode and electrolysis were carried out at a current density of 34.96 mAcm -2 with a catalyst concentration of 0.05g L -1 . In order to find the efficiency of nanocatalyst, experiments were also conducted without catalyst. From the experiment, it was found that complete colour removal was achieved on electrocatalytic oxidation as well as electro oxidation. When comparing the above processes, catalytic oxidation shows more efficient than electro oxidation. With respect to the degradation of the dye, catalytic oxidation shows more TOC removal than the oxidation taken place without catalyst. It infers that even though the electro-catalytic oxidation process achieves complete decolouration but it does not achieve complete mineralisation. The FTIR and GCMS studies confirmed the formation of by-products. (author)

  1. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  2. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  3. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2017-03-01

    Full Text Available To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogeneous catalysts play a critical role in those processes. The present review summarizes current progresses and remaining challenges of vegetable oil upgrading to biofuel. The catalyst properties, applications, deactivation, and regeneration are reviewed. A comparison of catalysts used in vegetable oil and bio-oil upgrading is also carried out. Some suggestions for heterogeneous catalysts applied in vegetable oil upgrading to improve the yield and quality of hydrocarbon biofuel are provided for further research in the future.

  4. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc)2)

    International Nuclear Information System (INIS)

    Karimipour, G.; Rezaei, M.; Ashouri, D.

    2013-01-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc) 2 in CH 3 CN/H 2 O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc) 2 in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  5. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    theoretical study of CO oxidation with experimental studies. The latter shows promoted catalytic activity when gold particle size decreases to 5 nm. Oxidizing CO by N2O was found to involve a CO␣O transition state, with atomic O adsorbed on the gold B5 sites and CO on the corners. On the other hand, CO...... and experiment were found to be the same. The experiment findings are in good agreement with our theoretical calculations. The second part of the thesis focuses on improving the convergence property of Quasi-Newton algorithm. The eigenvalues of the Hessian matrix of 54 atoms bulk Cu model are calculated......, and the sizes of eigenvalues follow power-law distribution. It is found that the anharmonicity of the weak modes lead to poor Newton step and poor Hessian update in BFGS type Quasi-Newton algorithm, which slow down the geometry optimization. Line search that fulfills Wolff conditions is then applied to improve...

  6. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  7. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    Science.gov (United States)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  8. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  9. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  10. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  11. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.; Duanmu, J. J.; Zhu, Yihan; Yuan, Y. F.; Guo, S. Y.; Yang, J. L.; Ren, Z. H.; Han, G. R.

    2017-01-01

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  12. The catalytic activity of several tungsten oxides for the oxidation of propene

    International Nuclear Information System (INIS)

    De Rossi, S.; Schiavello, M.; Rome Univ.; Iguchi, E.; Tilley, R.J.D.

    1976-01-01

    A study has been made of the catalytic oxidation of propene over the oxides WO 3 , WOsub(2,95), WOsub(2,90), WOsub(2,72) and Wo 2 , which were selected because they possess specific features of chemical and structural interest rather than for their catalytic ability. It was found that the oxides WOsub(2,95), WOsub(2,90) and WOsub(2,72) all selectively produce acrolein in small amounts. The oxides WO 3 and WO 2 were non-selective and rather inactive. The results are discussed in terms of a mechanism involving both variable valence in the crystal and the specific structural geometry of these compounds. (orig.) [de

  13. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  15. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  16. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  17. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  18. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.; Das, Soumen C.; Seal, Sudipta; Erlichman, Joseph S.; Heckman, Karin L.; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William Thomas

    2014-01-01

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  19. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  20. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Bjoern

    2013-11-15

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [German] Bis heute werden heterogene Katalysatoren ueberwiegend per ''trial and error'' entwickelt. Dies liegt daran, dass es mit Hilfe der traditionellen Herstellungsmethoden sehr schwierig ist, auf der Nanometerskala Strukturen gezielt herzustellen. Im Zuge der rasanten Entwicklungen in den Materialwissenschaften ist es jedoch moeglich geworden, verschiedenste Materialen mit massgeschneiderten Eigenschaften vom makroskopischen bis hinein in den Nanometerbereich herzustellen. Ziel dieser Arbeit war es, dieses Potential fuer die Katalyse zu nutzen. Dabei bestand die Aufgabe darin

  1. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    Science.gov (United States)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  2. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    gas (CO/CO2/H2) and an excellent thermal stability. Addition of alumina as a structural promoter is necessary in order to obtain a high activity for methanol formation. The binary systems, i.e., CuO/ZnO, ZnO/Al2O3 and CuO/Al2O3 are investigated as a prelude to the preparation of the ternary catalyst...... the flame temperature, the high temperature residence time and the precursor concentration. The Cu/ZnO/Al2O3 methanol catalyst is used as a model system for the preparation of catalytic materials. The flame synthesized catalyst exhibits a high and reproducible activity for methanol formation from synthesis...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  3. Catalytic decomposition of nitrogen dioxide over various metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shimokawabe, M; Ohi, A; Takezawa, N [Dept. of Chemical Process Engineering, Hokkaido Univ., Sapporo (Japan)

    1992-06-30

    The catalytic decomposition of nitrogen oxide (NO2) was investigated over 18 metal oxides (Al2O3, SiO2, ZrO2, SnO2, TiO2, V2O5, Cr2O3, MnO2, Fe2O3, Co3O4, NiO, CuO, ZnO, MgO, CaO, La2O3, CeO2, and Nd2O3). The relationship between the specific rates of metal oxides (Me{sub x}O{sub y}) (Me{sub x}O{sub y-1} + 1/2O{sub 2} {yields} Me{sub x}O{sub y}) shows a V-shaped curve with a minimum at -{Delta}H around 700 kJ/mol. This suggests that the mechanism dealt with in this article switches at -{Delta}H = 700 kJ/mol. 1 fig., 1 tab., 20 refs.

  4. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    Science.gov (United States)

    Yang, Zeheng; Zhang, Yuancheng; Zhang, Weixin; Wang, Xue; Qian, Yitai; Wen, Xiaogang; Yang, Shihe

    2006-03-01

    Single-crystalline nanorods of β-MnO 2, α-Mn 2O 3 and Mn 3O 4 were successfully synthesized via the heat-treatment of γ-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of γ-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 °C, the precursor γ-MnOOH was first changed to β-MnO 2, then to α-Mn 2O 3 and finally to Mn 3O 4. When calcined in N 2 atmosphere, γ-MnOOH was directly converted into Mn 3O 4 at as low as 500 °C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor γ-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H 2O 2.

  5. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  6. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  7. TEMPO functionalized C{sub 60} fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, Piotr; Pawłowska, Joanna [University of Warsaw, Department of Chemistry (Poland); Sadło, Jarosław Grzegorz [Institute of Nuclear Chemistry and Technology (Poland); Bilewicz, Renata; Kaim, Andrzej, E-mail: akaim@chem.uw.edu.pl [University of Warsaw, Department of Chemistry (Poland)

    2017-05-15

    C{sub 60}TEMPO{sub 10} catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C{sub 60}TEMPO{sub 10}@Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O{sub 2}/Fe{sup 3+} system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  8. A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Belyi, A S; Fomichev, Yu V; Duplyakin, V K; Alfeev, V S

    1977-07-01

    A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures (i.e., up to 40 atm) and nearly isothermal conditions up to 600/sup 0/C was designed for the conversion of small quantities of petrochemical feeds or feed mixtures at uniform, controllable flow rates of 0.5-5.0 cc/hr, for direct gas-chromatographic analysis of product samples at the reactor outlet, and for continuous monitoring of the degree of conversion in processes that evolve or absorb hydrogen. The device includes a feed injection system with a unique sealing feature that ensures a constant flow of liquid from a feed buret under positive displacement by a counterweight piston at very low rates into a tubular reactor of the perfect mixing type, a highly efficient vaporizer-mixer, and a two-channel sampler leading to the chromatograph. The apparatus has proved reliable, accurate, and convenient in two years of regular use. Diagrams.

  9. Investigations on the heterogenous catalytic hydrogenation using isotope effect and gamma- and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudlacek, R; Cabicar, J [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Katedra Jaderne Chemie

    1976-01-01

    The kinetic and solvent isotope effects during the maleic acid heterogeneous catalytic hydrogenation and deuteration in light and heavy water have been studied. Also the effect of the gamma and neutron irradiation on the Ni-ZnO catalysts (with various ratios of components) on the reaction kinetics and mechanism has been measured, as well as the effect of pH on the adsorption behaviour of maleic acid and the temperature dependence of the reaction rate. Existence of different adsorption centers for hydrogen and maleic acid could be deduced from these experiments. A reaction mechanism based on the two-dimensional diffusion of components in the surface is proposed. The catalyst is formed from Ni and ZnO-microspheres. Hydrogen is bound to nickel and maleic acid is adsorbed on the ZnO-microspheres. The reaction takes place on the boundary layers of these microspheres.

  10. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  11. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    International Nuclear Information System (INIS)

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  12. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes

    KAUST Repository

    Wang, Jianjian

    2017-05-12

    With concerns of diminishing fossil fuel reserves and environmental deterioration, great efforts have been made to explore novel approaches of efficiently utilizing bio-renewable feedstocks to produce chemicals and fuels. 5-Hydroxymethylfurfural (HMF), generated from dehydration of six-carbon ketose, is regarded as a primary and versatile renewable building block to realize the goal of production of these high valued products from renewable biomass resources transformation. In this review, we summarize the recent advances via green routes in the heterogeneous reaction system for the catalytic production of HMF from glucose conversion, and emphasize reaction pathways of these reaction approaches based on the fundamental mechanistic chemistry as well as highlight the challenges (such as separation and purification of products, reusing and regeneration of catalyst, recycling solvent) in this field.

  13. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  14. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  15. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  16. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tig...... exhibited a volcano-curve dependence on the heat of oxygen chemisorption, and among the tested pure metals and oxides Cr2O3 was the most active catalyst. Further improvements were achieved with a FeaCrbOx binary oxide catalyst....

  17. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  18. Catalytic Oxidation of Toluene on Hydrothermally Prepared Ceria Nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Duplančić

    2018-01-01

    Full Text Available Ceria nanocrystals were prepared hydrothermally and tested as potential catalysts for oxidation of volatile organic compounds using toluene as a model compound. Pure ceria with a crystallite size of 4 nm, determined by the Scherrer method from XRD pattern has been obtained. The specific surface area of the prepared nanoparticles determined by BET analysis yielded 201 m2 g–1, while the band gap of 3.2 eV was estimated from DRS spectrum via Tauc’s plot. Catalytic tests were performed on calcined ceria (500 °C with increased crystallite size (9 nm caused by thermal treatment. The tests showed good activities for the toluene oxidation with T50 temperatures, corresponding to 50 % toluene conversion, observed at 250 °C and even lower temperatures depending on the total flow rate of the gas mixture. The one-dimensional pseudo-homogeneous model of the fixed bed reactor was proposed to describe the reactor performance and the appropriate kinetic parameters were estimated. Good agreement between experimental data and the proposed model was observed.

  19. Catalytic oxidation of NO to NO2 on activated carbon

    International Nuclear Information System (INIS)

    Zhancheng Guo; Yusheng Xie

    2001-01-01

    Catalytic oxidation of NO to NO 2 over activated carbons PAN-ACF, pitch-ACF and coconut-AC at room temperature (30 o C) were studied to develop a method based on oxidative removal of NO from flue gases. For a dry gas, under the conditions of a gas space flow rate 1500 h -1 in the presence of oxygen of 2-20% in volume concentration, the activated coconut carbon with a surface area 1200 m 2 /g converted about 81-94% of NO with increasing oxygen concentration, the pitch based activated carbon fiber with a surface area 1000 m 2 /g about 44-75%, and the polyacrylonitrile-based activated carbon fiber with a surface area 1810 m 2 /g about 25-68%. The order of activity of the activated carbons was PAN-ACF c P NO P O2 β (F/W), where β is 0.042, 0.16, 0.31 for the coconut-AC, the pitch-ACF and the PAN-ACF respectively, and k c is 0.94 at 30 o C. (author)

  20. The tritium labeling of Butibufen by heterogeneous catalytic exchange; Marcado del Butibufen con Tritio por inter- cambio catalitico en disolucion

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, J; Rebollo, D

    1986-07-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs.

  1. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  2. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  3. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  4. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  5. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  6. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  7. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    International Nuclear Information System (INIS)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-01-01

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10 −3 s −1 ) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k app ), which is found to be 21.8, 26.2, and 8.7 (×10 −3 s −1 ), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  8. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T., E-mail: dhnaraj_masram27@rediffmail.com

    2017-02-28

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k{sub app}), which is found to be 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  9. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Li Ning; Descorme, Claude; Besson, Michele

    2007-01-01

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3 wt.% Ru/ZrO 2 . 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3 wt.% Ru/ZrO 2 is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393 K) and lower total pressure (3 MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect

  10. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines.

    Science.gov (United States)

    Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū

    2012-08-29

    We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.

  11. A novel approach to the design and operation scheduling of heterogeneous catalytic reactors

    International Nuclear Information System (INIS)

    Ghodasara, Kamlesh; Smith, Robin; Hwang, Sungwon

    2014-01-01

    A number of studies have been conducted to reduce the overall level of catalyst deactivation in heterogeneous catalytic reactors, and improve the performance of reactors, such as yield, conversion or selectivity. The methodology generally includes optimization of the following: (1) operating conditions of the reaction system, such as feed temperature, normal operating temperature, pressure, and composition of feed streams; (2) reactor design parameters, such as dimension of the reactor, side stream distribution along the axis of the reactor beds, the mixing ratio of inert catalyst at each bed; and (3) catalyst design parameters, such as the pore size distribution across the pellet, active material distribution, size and shape of the catalyst, etc. Few studies have examined optimization of the overall catalyst reactor performance throughout the catalyst lifetime, considering catalyst deactivation. Furthermore, little attention has been given to the impact of various configurations of reactor networks and scheduling of the reactor operation (i.e., online and offline-regeneration) on the overall reactor performance throughout the catalyst lifetime. Therefore, we developed a range of feasible sequences of reactors and scheduling of reactors for operation and regeneration, and compared the overall reactor performance of multiple cases. Furthermore, a superstructure of reactor networks was developed and optimized to determine the optimum reactor network that shows the maximum overall reactor performance. The operating schedule of each reactor in the network was considered further. Lastly, the methodology was illustrated using a case study of the MTO (methanol to olefin) process

  12. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    International Nuclear Information System (INIS)

    Nguyen, Thi Dung; Phan, Ngoc Hoa; Do, Manh Huy; Ngo, Kim Tham

    2011-01-01

    We present a simple and efficient method for the fabrication of magnetic Fe 2 MO 4 (M:Fe and Mn) activated carbons (Fe 2 MO 4 /AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe 2 MnO 4 /AC-H showed higher catalytic activity in the methyl orange oxidation than Fe 3 O 4 /AC-H. The effect of operational parameters (pH, catalyst loading H 2 O 2 dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  13. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  14. Next Generation Hybrid Photo-Catalytic Oxidation (PCO) for Trace Contaminant Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Photocatalytic oxidation (PCO) is a primary candidate as an alternative to thermal-catalytic or sorbent- based technologies for VOC trace contaminant control due to...

  15. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  16. Possibility of increasing the average rate of heterogeneous catalytic reactions by operating in the self-oscillating regime

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, G A; Slinko, M G

    1979-05-01

    The possibility of increasing the average rate of heterogeneous catalytic reactions by operating in the self-oscillating regime was demonstrated by analyzing a kinetic model of hydrogen interaction with oxygen over a metallic catalyst. Within a certain interval of partial pressures of oxygen, the average reaction rate over a period of oscillation may be over five times that of the steady-state reaction.

  17. Kinetics of liquid-phase catalytic heterogeneous protium-tritium isotope exchange with participation of gaseous hydrogen

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskij, Yu.L.

    1990-01-01

    Reaction rate constants of catalytic (PdO/BaSO 4 (Al 2 O 3 ) catalyst) heterogeneous protium - tritium isotopic exchange D - [1- 3 H] of carbohydrates and gaseous oxygen have been measured. It is ascertained that the rate of isotopic exchange depends on the nature of carbohydrate, catalyst, buffer and medium acidity. The value of concentration of carbohydrate acyclic forms plays the determining role in the process

  18. Mitoxantrone removal by electrochemical method: A comparison of homogenous and heterogenous catalytic reactions

    Directory of Open Access Journals (Sweden)

    Abbas Jafarizad

    2017-08-01

    Full Text Available Background: Mitoxantrone (MXT is a drug for cancer therapy and a hazardous pharmaceutical to the environment which must be removed from contaminated waste streams. In this work, the removal of MXT by the electro-Fenton process over heterogeneous and homogenous catalysts is reported. Methods: The effects of the operational conditions (reaction medium pH, catalyst concentration and utilized current intensity were studied. The applied electrodes were carbon cloth (CC without any processing (homogenous process, graphene oxide (GO coated carbon cloth (GO/CC (homogenous process and Fe3O4@GO nanocomposite coated carbon cloth (Fe3O4@GO/CC (heterogeneous process. The characteristic properties of the electrodes were determined by atomic force microscopy (AFM, field emission scanning electron microscopy (FE-SEM and cathode polarization. MXT concentrations were determined by using ultraviolet-visible (UV-Vis spectrophotometer. Results: In a homogenous reaction, the high concentration of Fe catalyst (>0.2 mM decreased the MXT degradation rate. The results showed that the Fe3O4@GO/CC electrode included the most contact surface. The optimum operational conditions were pH 3.0 and current intensity of 450 mA which resulted in the highest removal efficiency (96.9% over Fe3O4@GO/CC electrode in the heterogeneous process compared with the other two electrodes in a homogenous process. The kinetics of the MXT degradation was obtained as a pseudo-first order reaction. Conclusion: The results confirmed the high potential of the developed method to purify contaminated wastewaters by MXT.

  19. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  20. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    Science.gov (United States)

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  1. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    Science.gov (United States)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  2. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  3. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The catalytic oxidation of organic contaminants in a packed bed reactor

    NARCIS (Netherlands)

    van de Beld, L.; Bijl, M.P.G.; Reinders, A.; van der Wert, B.; Westerterp, K.R.

    1994-01-01

    The catalytic oxidation of several hydrocarbons was studied over noble metal and metal oxide catalysts. A fast empirical method was developed to determine the minimum operating temperature required to guarantee complete conversion of the hydrocarbon. The influence of the operating parameters such as

  5. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  6. Application of in situ x-ray diffraction techniques in heterogenous catalytic systems

    International Nuclear Information System (INIS)

    Sharifah Bee Abd Hamid

    2002-01-01

    A broad range of techniques is available today for the characterisation of catalysts and the investigation of catalyst reaction mechanisms. However, only a limited number of those are suitable for in situ studies, i.e experiments performed in conditions mimicking or close as possible to real operating conditions. Various commercially and in-house developed in situ X-Ray diffraction (XRD) cells have been used to obtain information on the phase and structure of materials at the initial formation stage, activation methodology, calcination, reduction and carburization. A major advantage of the in situ X-ray cells is that it allows direct observations on the decomposition of precursors leading to various phases in a controlled environment, i.e. controlled temperature and pressure under specified gases. The cells can be operated both at high temperatures and high pressures, equipped with Position Sensitive Detector (PSD), feature which was used to study phase transformation occurring during the activation of various solids. In MoO 3 , XRD results provide detailed information on the hydrogen insertion into its lattice, followed by carburization providing good understanding on the mechanism in the solid transformation leading to the metastable MoC 1 -x phase. For the Bi-SnO x systems, the environmental cell coupled with XRD and PSD allow the design of activation procedure to obtain the active Bi 2 Sn 2 O 7 . The in situ XRD technique reveals crucial information on the initial stage of oxides formations prior to condensation reaction shown in MCM-41 and titania systems. In this presentation, discussions on general achievements and problems relating to the use of in situ XRD techniques as well as of specific examples selected to illustrate the use and potential of in situ XRD are made. It is not intended to be a review of the art but a highlight of the challenges which the catalytic and material scientists face when entering the avenue. (Author)

  7. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, G.; Rezaei, M.; Ashouri, D. [Yasouj University, Department of Chemistry, 75918-74831 Yasouj (Iran, Islamic Republic of)

    2013-07-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc){sub 2} in CH{sub 3}CN/H{sub 2}O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc){sub 2} in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  8. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  9. Stereoselectivity in catalytic reactions: CO oxidation on Pd(100) by rotationally aligned O2 molecules

    Science.gov (United States)

    Vattuone, L.; Gerbi, A.; Savio, L.; Cappelletti, D.; Pirani, F.; Rocca, M.

    2010-05-01

    We report on stereodynamical effects in heterogeneous catalytic reactions as measured by molecular beam-surface experiments. Specifically for CO oxidation on Pd(100) we find that the rotational alignment of the incoming O2 at low (Θ = 0.04 ML) and at intermediate (ΘCO = 0.17 ML) CO pre-coverage, causes a higher reactivity of molecules in high and in low helicity states, respectively (corresponding to helicoptering and cartwheeling motion of O2). In first approximation, at low CO pre-coverage the difference in reactivity is determined by the different location of the O atoms generated in the dissociation process by the different parent molecules, while at intermediate CO pre-coverage the reactivity is influenced also by the different ability of cartwheeling and helicoptering O2 to penetrate through the CO adlayer. In accord with this the total amount of CO2 produced is always largest for helicopters which generate supersurface O atoms at least in the low CO pre-coverage limit. A deeper inspection of the data indicates, however, that the dynamics is more complex, two different pathways being present for the reaction with O generated by helicopters and one for O generated by cartwheels. Moreover, cartwheels generated oxygen influences the reactivity of subsequently arriving helicopters.

  10. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  11. Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity.

    Science.gov (United States)

    Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong

    2017-07-03

    Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.

  12. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  13. A study of the homogeneous stages in the catalytic oxidation of naphthalene, o-xylene, and benzene over a vibratory-fluidized catalyst bed

    Energy Technology Data Exchange (ETDEWEB)

    Korneichuk, G P; Stasevich, V P; Shaprinskaya, T M; Girushtin, G G; Gritsenko, V I; Zelenchukova, T G

    1978-01-01

    To identify the conditions for minimizing homogeneous states, the reaction kinetics were studied in a vibrating gradientless quartz reactor both in the presence and absence of the catalyst. A tenfold decrease of the reactional space in the absence of catalyst inhibited the oxidation (e.g., from a 68% conversion to 10% at 500/sup 0/C for o-xylene, and from 100% to 2% at 580/sup 0/C for benzene), whereas increasing the surface-volume ratio of the reactor increased the oxidation rate for benzene, which indicated that noncatalytic oxidation follows a radical-chain mechanism and involves both homogeneous (mainly) and heterogeneous stages. Catalytic oxidation carried out in a small volume (to avoid the homogeneous states) followed a heterogeneous mechanism up to 580/sup 0/C for naphthalene and o-xylene, and up to 550/sup 0/C for benzene. At higher temperatures, however, volume oxidation of benzene to carbon oxides was detected, which was favored by intense reactor vibration (i.e., increasing free space between catalyst grains), constituted 27% at 564/sup 0/C and 40% at 584/sup 0/C, and probably followed a heterogeneous-homogeneous mechanism. The partial oxidation products (i.e., phthalic and (for benzene) maleic anhydride) formed entirely by a heterogeneous mechanism. Tables and graphs.

  14. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  15. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.

  16. Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system.

    Science.gov (United States)

    Zha, Yiming; Zhou, Ziqing; He, Haibo; Wang, Tianlin; Luo, Liqiang

    2016-01-01

    Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption-desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.

  17. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  18. Catalytic oxidant scavenging by selenium-containing compounds

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I; Fu, Shanlin

    2017-01-01

    Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,...

  19. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zheng [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Jesus College, University of Oxford, OX1 3DW (United Kingdom); Yu, Junjie; Cheng, Jie; Hao, Zhengping [Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Xiao, Tiancun; Edwards, Peter P. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Jones, Martin O. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2010-01-15

    Co{sub x}Mg{sub 3-x} /Al composite oxides (xCoMAO-800) were prepared by calcination of Co{sub x}Mg{sub 3-x}/Al hydrotalcites (x=0.0,0.5,1.0,1.5,2.0,2.5,3.0, respectively) at 800 C. The materials were characterized using XRD, TG-DSC, N{sub 2} adsorption-desorption and TPR. The methane catalytic combustion over the xCoMAO-800 was assessed in a fixed bed micro-reactor. The results revealed that cobalt can be homogenously dispersed into the matrices of the hydrotalcites and determines the structure, specific surface areas and porosity of the derived xCoMAO-800 oxide catalysts. The thermal stability and homogeneity of the hydrotalcites markedly depends on the cobalt concentration in the hydrotalcites. The Co-based hydrotalcite-derived oxides exhibit good activity in the catalytic combustion of methane. The catalytic activity over the xCoMAO-800 oxides enhances with increasing x up to 1.5, but subsequently decreases dramatically as cobalt loadings are further increased. The 1.5CoMAO-800 catalyst shows the best methane combustion activity, igniting methane at 450 C and completing methane combustion around 600 C. The catalytic combustion activity over the xCoMAO-800 oxides are closely related to the strong Co-Mg/Al interaction within the mixed oxides according to the TG-DSC, TPR and activity characteristics. (author)

  20. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Lu Fugong; Xu Yong; Zhang Jing; Yang Xuefeng

    2006-01-01

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO 2 pellets at atmospheric pressure and 70 0 C. With a feed gas mixture of 276 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO 2 at GHSV of 16500 h -1 and input discharge energy density of 108 J l -1 . At the same experimental conditions, the conversion percentages of HCHO to CO 2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO 2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO 2 , play important roles in the catalytic redox circles of Ag/CeO 2 to oxidize HCHO and CO to CO 2

  1. Influence of ionizing radiation on the catalytic properties of oxide catalysts tested by hydrogen peroxide decomposition

    International Nuclear Information System (INIS)

    Mucka, V.

    1987-01-01

    Results of a study of some physical and catalytic properties of different oxide catalysts as affected by ionizing radiation (γ, n, e - ) and tested by the decomposition of hydrogen peroxide in aqueous solution are presented in this paper. The oxidation state of the active component present on the catalyst surface was found to be one of the most sensitive properties to the ionizing radiation. Changes of this state induced by γ-irradiation were found to be positive in most cases; electron pre-irradiation of the oxides leads, as a rule, to negative effects and the effects of neutron irradiation may be positive or negative. On the other hand, changes in the catalytic activity of the oxides after γ-or electron-irradiation seem to be mostly negative and positive, respectively; the effects of fast neutrons seem to vary here. Neither quantitative or qualitative correlation was found between the radiation-induced changes in these two quantities. The results give evidence that ionizing radiation principally affects the surface concentration of the catalytic sites. Both the character and magnitude of the changes in surface oxidation abilities and in catalytic activities of the oxide catalysts seem to be dependent upon the actual state of the catalyst surface. (author)

  2. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    Cyclohexene was oxidized using chromium (VI) oxide (CrO3) in pure acetic acid medium. The products of oxidation were analysed using simple qualitative analysis, IR spectroscopy and Gas chromatography-Mass spectrometry (GC/MS). Kinetics studies were carried out to determine the order of reaction, rate constant and ...

  3. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  4. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  5. Effect of tungsten doping on catalytic properties of niobium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Franciane P.; Nogueira, Andre E. [Departamento de Quimica, Universidade Federal de Lavras, Lavras-MG (Brazil); Patricio, Patricia S.O., E-mail: patriciapatricio@cefetmg.br [Centro Federal de Educacao Tecnologica, CEFET, Belo Horizonte, MG (Brazil); Oliveira, Luiz C.A. [Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-04-15

    A novel material based on niobia (Nb{sub 2}O{sub 5}) was synthesized to oxidize an organic compound in aqueous medium in the presence of H{sub 2}O{sub 2} after chemical modifications. Niobia was modified by doping with tungsten and also treating with H{sub 2}O{sub 2} in order to maximize the oxidative properties of this oxide. The analysis of the products from methylene blue dye oxidation with electro spray ionization mass spectrometry (ESI-MS) showed that the dye was successively oxidized to different intermediate compounds. The successive hydroxylation during this oxidation strongly suggests that highly reactive hydroxyl radicals are generated involving H{sub 2}O{sub 2} on the W-doped niobia grain surface. These results strongly suggest that the H{sub 2}O{sub 2} can regenerate in situ the peroxo group remaining active the system. (author)

  6. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  7. Catalytic Oxidation of Mustard Simulants in Basic Solution

    National Research Council Canada - National Science Library

    Richardson, David

    2002-01-01

    .... Variation of bicarbonate source and the cosolvent can allow optimization of substrate solubility and oxidation rates for applications in chemical warfare agent decontamination, Use of surfactants...

  8. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    Science.gov (United States)

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  9. Catalytic oxidation of silicon by cesium ion bombardment

    International Nuclear Information System (INIS)

    Souzis, A.E.; Huang, H.; Carr, W.E.; Seidl, M.

    1991-01-01

    Results for room-temperature oxidation of silicon using cesium ion bombardment and low oxygen exposure are presented. Bombardment with cesium ions is shown to allow oxidation at O 2 pressures orders of magnitude smaller than with noble gas ion bombardment. Oxide layers of up to 30 A in thickness are grown with beam energies ranging from 20--2000 eV, O 2 pressures from 10 -9 to 10 -6 Torr, and total O 2 exposures of 10 0 to 10 4 L. Results are shown to be consistent with models indicating that initial oxidation of silicon is via dissociative chemisorption of O 2 , and that the low work function of the cesium- and oxygen-coated silicon plays the primary role in promoting the oxidation process

  10. Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon

    International Nuclear Information System (INIS)

    Rodriguez, Henry; Hoyos Bibian

    2004-01-01

    Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon was studied, in acid media at different temperatures and concentrations. During the maturation time of deposited iridium, the surface is covered by an irreversible oxide formation, which affects the behavior of the catalytic mixture. The Pt 7 0 Ir 3 0 and Pt 9 0 Ir 1 0 mixtures seem to be a little more active than the Pt/C electrode at potentials below 800 mV (vs. HRE). In all electrodes appears two reactions: partial ethanol oxidation to produce acetaldehyde (main path of reaction at low temperatures and high electrode coverage with ethanol adsorption residues) and the total oxidation to carbon dioxide which is considerable at potential above 800 mV and it is increased with increasing temperature

  11. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  12. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  13. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  14. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  15. Catalytic ring-​opening copolymerization of limonene oxide and phthalic anhydride : toward partially renewable polyesters

    NARCIS (Netherlands)

    Hosseini Nejad, E.; Pionasari, A; Melis, van C.G.W.; Koning, C.E.; Duchateau, R.

    2013-01-01

    Catalytic ring-¿opening copolymn. of limonene oxide with phthalic anhydride was performed applying metal t-¿Bu-¿salophen complexes (t-¿Bu-¿salophen)¿MX; M = Cr, X = Cl (1)¿, M = Al, X = Cl (2)¿, M = Co, X = OAc (3)¿, M = Mn, X = Cl (4)¿, t-¿Bu-¿salophen =

  16. Preparation of AuNPs/GQDs/SiO2 Composite and Its Catalytic Performance in Oxidation of Veratryl Alcohol

    Directory of Open Access Journals (Sweden)

    Yaoyao Yang

    2017-01-01

    Full Text Available Composites of gold nanoparticles and graphene quantum dots (AuNPs/GQDs exhibit excellent dispersibility in aqueous solutions. Thus, it is difficult to separate them from wet reaction systems when they are used as catalysts. To resolve this issue, in this study, an AuNPs/GQDs composite was immobilized on silicon dioxide through the hydrothermal method, which involved the formation of an amide bond between the surface GQDs of the AuNPs/GQDs composite and the amino group of the silane. The as-synthesized AuNPs/GQDs/SiO2 composite was found to be suitable for use as a heterogeneous catalyst for the oxidation of veratryl alcohol in water and exhibited catalytic activity comparable to that of bare AuNPs/GQDs as well as better recyclability.

  17. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    Science.gov (United States)

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    Science.gov (United States)

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  19. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  20. Cyclic catalytic upgrading of chemical species using metal oxide materials

    Science.gov (United States)

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01Ba, Ca, La, or K; 0.02oxides.

  1. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  2. Catalytic oxidative conversion of alkanes to olefines and oxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    All of the direct reaction schemes described and the corresponding process schemes are still in an exploratory state. Ethylene by oxidative coupling of methane could become competitive if process schemes are developed with significantly less expenditures for separation of the product from unconverted feed. No encouragement for formaldehyde from methane can be presently derived from the existing knowledge. Liquid-phase oxidation of methane to methanol appears to be attractive but no final judgement is possible at present. Oxidative dehydrogenation of ethylene and propane look promising although further catalyst improvement is required. Acetic acid from ethane and acrylonitrile from propane have a certain potential as an alternative to present technology. The outlook for acrolein and acrylic acid from propane is less favourable; new concepts for catalyst design are necessary. (orig.)

  3. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  4. Heterogeneous reduction of nitric oxide on synthetic coal chars

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Model compounds, with a controlled heteroatoms content and well-defined functionalities, were used to study the release of nitrogen compounds from char combustion. In the present work, the mechanisms involved in NO-char heterogeneous reduction were studied with a synthetic coal (SC) char as carbon source. Another synthetic char (SN) without any nitrogen in its composition was also employed in these studies. Temperature programmed reduction (TPR) tests with a gas mixture of 400 ppm NO in argon and with isotopically labelled nitric oxide, {sup 15}NO (500 ppm {sup 15}NO in argon), were carried out. The gases produced were quantitatively determined by means of MS and FTIR analysers. Under the conditions of this work the main products of the NO-C reaction were found to be N{sub 2} and CO{sub 2}. The main path of reaction involves the formation of surface nitrogen compounds that afterwards react with nitrogen from the reactive gas to form N{sub 2}. It was observed that fuel-N also participates in the overall heterogeneous reduction reaction, although to a lesser extent.

  5. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  6. Study of nano-structured ceria for catalytic CO oxidation

    Czech Academy of Sciences Publication Activity Database

    Valechha, D.; Lokhande, S.; Klementová, Mariana; Šubrt, Jan; Rayalu, S.; Labhsetwar, N.

    2011-01-01

    Roč. 21, č. 11 (2011), s. 3718-3725 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z40320502 Keywords : mesoporous CeO2 * titania * alumina * oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 5.968, year: 2011

  7. Catalytic oxidation of butyl acetate over silver-loaded zeolites

    International Nuclear Information System (INIS)

    Wong, Cheng Teng; Abdullah, Ahmad Zuhairi; Bhatia, Subhash

    2008-01-01

    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV) = 15,000-32,000 h -1 , reaction temperature between 150 and 500 deg. C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 deg. C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively

  8. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  9. Catalytic oxidation of dichloromethane over sol-gel oxides supported Pd or Ni

    International Nuclear Information System (INIS)

    Martinez; Leidy Marcela; Montes, Consuelo

    2004-01-01

    Several supported Pd or Ni catalysts were synthesized by the sol-gel method using y-alumina, silica, sulfated zirconium and sulfated titanium as carriers. The resulting catalysts were characterized by XRD and nitrogen adsorption, and evaluated in the catalytic oxidation of dichloromethane. The effect of different parameters were determined, i.e. method of synthesis, temperature and the type of support. The durability of the best catalyst (0,5% Pd impregnated over sulfated titanium) was tested between 300 degrades Celsius and 350 degrades Celsius during 48 h. Under the conditions of this study, impregnated catalysts exhibited higher activity than those prepared by cogelation. Pd loaded catalysts showed higher conversion into CO 2 and HCl. Catalyst activity also increased with increasing temperature. Y-Alumina and sulfated titanium showed good activity but the formation of CO is favored instead of CO 2 . Therefore, bifunctional catalysts, i.e. containing metallic and acid sites appear to be required for the decomposition of methylene chloride into CO 2 and HCI

  10. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation

    Science.gov (United States)

    Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.

    1998-01-01

    Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863

  11. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    International Nuclear Information System (INIS)

    Das, Lalitendu; Xu, Siquan; Shi, Jian

    2017-01-01

    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C 2 C 1 Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H 2 O 2 as oxidizing agent in a batch reactor. CoCl 2 and Nb 2 O 5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H 2 O 2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (M w ) of liquid stream lignin after oxidation, for CoCl 2 and Nb 2 O 5 catalysts were 1,202 and 1,520 g mol −1 , respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  12. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Das, Lalitendu [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States); Xu, Siquan [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States); College of Chemical Engineering, Nanjing Forestry University, Nanjing (China); Shi, Jian, E-mail: j.shi@uky.edu [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States)

    2017-08-10

    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C{sub 2}C{sub 1}Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H{sub 2}O{sub 2} as oxidizing agent in a batch reactor. CoCl{sub 2} and Nb{sub 2}O{sub 5} proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H{sub 2}O{sub 2} concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (M{sub w}) of liquid stream lignin after oxidation, for CoCl{sub 2} and Nb{sub 2}O{sub 5} catalysts were 1,202 and 1,520 g mol{sup −1}, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  13. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  14. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Ian [Univ. of Virginia, Charlottesville, VA (United States)

    2017-05-26

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO2 is responsible for oxidative catalytic activity. O2 molecules bind with Au atoms and Ti4+ ions in the TiO2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atoms which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO2 catalysts with surface science on the TiO2(110) and TiO2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.

  15. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  16. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  17. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  18. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  19. An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates

    Directory of Open Access Journals (Sweden)

    Robert D. Armstrong

    2016-05-01

    Full Text Available The selective partial oxidation of short chain alkanes is a key challenge within catalysis research. Direct ethane oxidation to oxygenates is a difficult aim, but potentially rewarding, and it could lead to a paradigm shift in the supply chain of several bulk chemicals. Unfortunately, low C–H bond reactivity and kinetically labile products are just some reasons affecting the development and commercialisation of such processes. Research into direct ethane oxidation is therefore disparate, with approaches ranging from oxidation in the gas phase at high temperatures to enzyme catalysed hydroxylation under ambient conditions. Furthermore, in overcoming the barrier posed by the chemically inert C–H bond a range of oxidants have been utilised. Despite years of research, this remains an intriguing topic from both academic and commercial perspectives. Herein we describe some recent developments within the field of catalytic ethane oxidation focusing on the formation of oxygenated products, whilst addressing the key challenges which are still to be overcome.

  20. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    data as a function of temperature, anode and cathode atmospheres, and their flow rates are discussed. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4, Fig. 1) and doped-ceria (CeO2, Ce1-xGdxO2, Ce1-x...

  1. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  2. Quantum catalysis : the modelling of catalytic transition states

    NARCIS (Netherlands)

    Hall, M.B.; Margl, P.; Naray-Szabo, G.; Schramm, Vern; Truhlar, D.G.; Santen, van R.A.; Warshel, A.; Whitten, J.L.; Truhlar, D.G.; Morokuma, K.

    1999-01-01

    A review with 101 refs.; we present an introduction to the computational modeling of transition states for catalytic reactions. We consider both homogeneous catalysis and heterogeneous catalysis, including organometallic catalysts, enzymes, zeolites and metal oxides, and metal surfaces. We summarize

  3. Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Felts, Ashley C.; Abboud, Khalil A. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2016-12-15

    A novel metal-organic framework, (H{sub 2}pip){sub n}[Sm{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (1) (H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) has been synthesized under hydrothermal conditions and characterized by the elemental analysis, inductively coupled plasma (ICP) spectrometer, fourier transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). The structure of 1 was determined to be three-dimensional, linked along Sm-O-Sm chains. The asymmetric unit consisted of one singly anionic fragment consisting of Sm(III) coordinated to two H{sub 2}pydc ligands and one water, and one half of a protonated H{sub 2}pip, which sits on an inversion center. 1 exhibited luminescence emission bands at 534 nm at room temperature when excited at 440 nm. Its thermal behavior and catalytic performance were investigated and the selectivity was measured as 100% for the oxidation of thymol to thymoquinone. - Graphical abstract: A novel 3D lanthanide-organic framework has been synthesized under hydrothermal conditions. The thermal behavior and catalytic performance of 1 were investigated and its selectivity was measured as 100% for the oxidation of thymol to thymoquinone.

  4. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  5. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO4 under Oxygen Atmosphere

    International Nuclear Information System (INIS)

    Lee, Kang Hyeok; Ko, Kwang Youn

    2006-01-01

    KMnO 4 /alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O 2 atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO 4 /alumina reagent acts as a catalytic oxidant under O 2 atmosphere. Diphenyldiazomethane (Ph 2 CN 2 ) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group

  6. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  7. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  8. An empirical study on the preparation of the modified coke and its catalytic oxidation properties

    Science.gov (United States)

    Liu, Hao; Jiang, Wenqiang

    2017-05-01

    T As a methyl acrylic ester fungicide, pyraclostrobin has the advantages of high activity, wide sterilization spectrum and high safety level comparing with the traditional fungicide. Due to less toxicity and side effects on human and environment, the use of pyraclostrobin and its mixture in agriculture is increasing. The heavy use of pyraclostrobin will inevitably cause pollution to the biological and abiotic environment. Therefore, it is of great significance to do the research on the degradation of pyraclostrobin. In this study, coke, as matrix, was modified by chemical modification. The modified coke was used as the catalyst and the pyraclostrobin was used as the degradation object. The degradation experiment of pyraclostrobin was carried out by using catalytic oxidation. The catalytic oxidation performance of modified coke was studied. The result showed that in the catalytic oxidation system of using modified coke as catalyst and H2O2 as oxidant, the best reaction condition is as following: The modified coke which is modified by using 70% concentration nitric acid is used as catalyst; The dosage of the catalyst is10g; The dosage of H2O2 is 0.6ml; The reaction time is 6 hours.

  9. Nanodiamond-Gold Nanocomposites with the Peroxidase-Like Oxidative Catalytic Activity.

    Science.gov (United States)

    Kim, Min-Chul; Lee, Dukhee; Jeong, Seong Hoon; Lee, Sang-Yup; Kang, Eunah

    2016-12-21

    Novel nanodiamond-gold nanocomposites (NDAus) are prepared, and their oxidative catalytic activity is examined. Gold nanoparticles are deposited on carboxylated nanodiamonds (NDs) by in situ chemical reduction of gold precursor ions to produce NDAus, which exhibit catalytic activity for the oxidation of o-phenylenediamine in the presence of hydrogen peroxide similarly to a peroxidase. This remarkable catalytic activity is exhibited only by the gold nanoparticle-decorated NDs and is not observed for either Au nanoparticles or NDs separately. Kinetic oxidative catalysis studies show that NDAus exhibit a ping-pong mechanism with an activation energy of 93.3 kJ mol -1 , with the oxidation reaction rate being proportional to the substrate concentration. NDAus retain considerable activity even after several instances of reuse and are compatible with a natural enzyme, allowing the detection of xanthine using cascade catalysis. Association with gold nanoparticles makes NDs a good carbonic catalyst due to charge transfer at the metal-carbon interface and facilitated substrate adsorption. The results of this study suggest that diverse carbonic catalysts can be obtained by interfacial incorporation of various metal/inorganic substances.

  10. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  11. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2011-01-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  12. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  13. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun, E-mail: liulj@wtu.edu.cn [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chen, Ruifen; Liu, Weikai [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Wu, Jiamin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Gao, Di, E-mail: gaod@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-12-15

    Catalytic reduction of toxic 4-nitrophenol to 4-aminophenol over magnetically recoverable nanocatalysts has attracted much attention. Herein, we report a Ni-Pd/NrGO catalyst through the growth of Ni-Pd nanodimers (NDs) on nitrogen-doped reduced graphene oxide (NrGO). The Ni-Pd NDs show a heterogeneous nanostructure with Ni and Pd subparts contacting with each other, remarkably different from the frequently-observed core/shell nanoparticles (NPs) or nanoalloy. The formation of Ni-Pd NDs follows an initial deposition of Pd NPs on the graphene and in-situ catalytic generation of Ni subparts over the newly-generated Pd NPs. The resulting Ni-Pd/NrGO exhibits a superior catalytic activity towards the reduction of 4-nitrophenol at room temperature with a high rate constant (3400 s{sup -1} g{sup -1}) and a low activated energy (29.1 kJ mol{sup -1}) as compared to unsupported Ni-Pd NDs and supported monometallic catalysts. The conversion rate of 4-NP is calculated to be 99.5% and the percent yield (%) of 4-AP is as high as 99.1%. A synergistic catalysis mechanism is rationally proposed, which is ascribed to the electronic modification of Ni-Pd metals due to the strong metal/support interaction (SMSI) effect as well as the electron transfer between Ni and Pd. The hybrid catalyst shows soft ferromagnetic properties and can be magnetically separated and recycled without obvious loss of activity.

  14. Simultaneous sorption and catalytic oxidation of trivalent antimony by Canna indica derived biochars.

    Science.gov (United States)

    Cui, Xiaoqiang; Ni, Qijun; Lin, Qiang; Khan, Kiran Yasmin; Li, Tingqiang; Khan, Muhammad Bilal; He, Zhenli; Yang, Xiaoe

    2017-10-01

    The simultaneous sorption and oxidation of Sb(III) on biochars were investigated using batch experiments. The biochars were derived from Canna indica at different pyrolysis temperatures (300-600 °C, referred as CIB300-CIB600), and characterized by FTIR, BET, XRD, SEM-EDS, EPR and Boehm titration. The Sb(III) sorption data could be well fitted by both the Langmuir and Freundlich models, and the pseudo-second order model is best for describing the kinetic data. The maximum Sb(III) sorption capacity of CIB300 was 16.1 mg g -1 , which was greater than that of other biochars. Inner-sphere complexation with oxygen-containing functional groups and coordination with π electrons are the possible sorption mechanisms. It is worthwhile to note that 4.7-32.3% of Sb(III) was oxidized to Sb(V) after sorption equilibration, demonstrating the occurrence of Sb(III) oxidation during the sorption process. Further study of oxidation under anoxic condition confirmed the catalytic role of biochar for Sb(III) oxidation, and free radicals in biochars were crucial for electron transfer. CIB400 exhibited the highest catalytic oxidative ability for Sb(III), which could be ascribe to its reserve of more electroactive polyphenolic macromolecule and less electroinactive cellulose. These results imply that biochars have good potential as a green effective sorbent for remediation of Sb(III) contaminated water, and simultaneously reduce the toxicity of Sb(III) by catalytic oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  16. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    International Nuclear Information System (INIS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A.A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-01-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnO x , CoO x . The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO 2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnO x and CoO x catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition. (author)

  17. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  18. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  19. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  20. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  1. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  2. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    Science.gov (United States)

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  3. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  4. Certain aspects of the formation and identification of nanosized oxide components in heterogeneous catalysts prepared by different methods

    International Nuclear Information System (INIS)

    Ellert, Ol'ga G; Novotortsev, Vladimir M; Tsodikov, Mark V

    2010-01-01

    The results of studies into the relationship 'methods and synthesis conditions of a catalyst→catalyst structure→catalytic properties' in highly efficient crystallo-graphically amorphous copper- and iron-containing heterogeneous systems obtained by different chemical methods are generalized. Polymorphism of active phases and catalytic properties of nanostructured copper-containing zinc, zirconium, manganese and cerium oxides are discussed. Unusual transformations of nanosized Pt- and Pd-containing components on the γ-Al 2 O 3 surface in nanostructured catalysts of ethanol steam reforming into synthesis gas and reductive dehydration of ethanol to alkanes are considered. The results of comparative studies on the crystallographically amorphous mixed iron oxide catalysts synthesized by either the alkoxy method or the deposition on various supports obtained by the Moessbauer and XAFS spectroscopy and magnetic susceptibility measurements are presented. These materials are shown to be efficient catalysts of important processes such as liquid-phase oxidation of hydrocarbons, synthesis of alkenes and alkylaromatic hydrocarbons from CO and H 2 , hydrogenative transformation of brown coal organic mass to hydrocarbons.

  5. Thermodynamic Study on the Catalytic Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    XUJian; WEIWeisheng; 等

    2002-01-01

    The catalytic partial oxidation of methane to syngas (CO+H2) has been simulated thermodynamically with the advanced process simulator PRO/Ⅱ. The influences of temperature,pressure,CH4/O2 ratio and steam addition in feed gas on the conversion of CH4 selectively to syngas and heat duty required were investigated, and their effects on carbon formation were also discussed. The simulation results were in good agreement with the literature data taken from a spouted bed reactor.

  6. Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Kimmerle, Bertram; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    We present a spatiotemporal operando X-ray absorption study of a highly dynamic process, the ignition of the noble metal catalyzed partial oxidation of methane. Evolvement and propagation of the platinum component's structural changes are investigated with a high-speed X-ray camera, which...... in combination with temperature profiling by IR-thermography and catalytic activity measurements by online mass spectrometry gives insight into the first stages of the ignition of the reaction toward hydrogen and carbon monoxide....

  7. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  8. Preparation of H3-labelled methyl ethers of saturated fatty acids by heterogeneous catalytic isotope exchange in solution with gaseous tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1980-01-01

    A simple method of preparing 3 H-labelled methyl ethers of saturated fatty acids in the dioxane solution using the method of isotopic heterogenous catalytic exchange with gaseous tritium, is suggested. 3 H-labelled natural fatty acids (C 12 -C 18 ) are prepared by alkaline hydrolysis [ru

  9. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.

    Science.gov (United States)

    Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong

    2015-10-01

    Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. Copyright © 2015. Published by Elsevier B.V.

  10. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  11. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  12. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  13. The kinetics of nonequilibrium chain plasma-chemical oxidation in heterogeneous media

    International Nuclear Information System (INIS)

    Deminskii, M.A.; Potapkin, B.V.; Rusanov, V.D.

    1994-01-01

    The kinetics of oxidation of low-impurity components in air mixtures under heterogeneous conditions was studied. The principal kinetic features of the process were determined on the basis of theoretical analysis of plasma-chemical oxidation in heterogeneous media. The analysis also showed that low concentrations of impurities in liquid aerosol particles can be efficiently oxidized via a chain process induced by reactive species formed in the gas

  14. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  15. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite.

    Science.gov (United States)

    Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen

    2015-04-28

    Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  17. Process Simulation for the Design and Scale Up of Heterogeneous Catalytic Process: Kinetic Modelling Issues

    Directory of Open Access Journals (Sweden)

    Antonio Tripodi

    2017-05-01

    Full Text Available Process simulation represents an important tool for plant design and optimization, either applied to well established or to newly developed processes. Suitable thermodynamic packages should be selected in order to properly describe the behavior of reactors and unit operations and to precisely define phase equilibria. Moreover, a detailed and representative kinetic scheme should be available to predict correctly the dependence of the process on its main variables. This review points out some models and methods for kinetic analysis specifically applied to the simulation of catalytic processes, as a basis for process design and optimization. Attention is paid also to microkinetic modelling and to the methods based on first principles, to elucidate mechanisms and independently calculate thermodynamic and kinetic parameters. Different case studies support the discussion. At first, we have selected two basic examples from the industrial chemistry practice, e.g., ammonia and methanol synthesis, which may be described through a relatively simple reaction pathway and the relative available kinetic scheme. Then, a more complex reaction network is deeply discussed to define the conversion of bioethanol into syngas/hydrogen or into building blocks, such as ethylene. In this case, lumped kinetic schemes completely fail the description of process behavior. Thus, in this case, more detailed—e.g., microkinetic—schemes should be available to implement into the simulator. However, the correct definition of all the kinetic data when complex microkinetic mechanisms are used, often leads to unreliable, highly correlated parameters. In such cases, greater effort to independently estimate some relevant kinetic/thermodynamic data through Density Functional Theory (DFT/ab initio methods may be helpful to improve process description.

  18. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  20. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  1. Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wu, Tao; Xu, Xiaoyang; Xia, Fengling; Na, Heya [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yu, E-mail: liuyuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggao2012@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • Ni and Ag nanoparticles loaded on RGO (Ni–Ag@RGO) were fabricated in a one-pot reaction. • The Ni–Ag@RGO were excellent catalysts for the reduction of 4-nitrophenol. • The Ni–Ag@RGO showed superior catalytic activity for photodegradation of methyl orange. • The Ni–Ag@RGO exhibit good reusability in a magnetic field. - Abstract: A facile method for preparing Ni–Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni–Ag@RGO hybrid) has been established. Hydrazine hydrate was used as the reducing agent to reduce the graphene oxide, Ni{sup 2+} and Ag{sup +} to form Ni–Ag@RGO hybrid. The prepared hybrid was further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Interestingly, the prepared material shown good magnetic properties, which were determined by vibrating sample magnetometer. In addition, the Ni–Ag@RGO hybrid exhibited excellent catalytic activity for the reduction of 4-nitrophenol and the photodegradation of methyl orange. The catalytic process was monitored by determining the change in the concentration of the reactants with time using ultraviolet–visible absorption spectroscopy. After completion of the reaction, the catalyst can be separated from the reaction system simply under a magnet field and shows good recyclability.

  2. Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity

    International Nuclear Information System (INIS)

    Li, Fumin; Gao, Xueqing; Xue, Qi; Li, Shuni; Chen, Yu; Lee, Jong-Min

    2015-01-01

    Reduced graphene oxide (rGO) supported platinum nanocubes (Pt-NCs) composites (Pt-NCs/rGO) were synthesized successfully by a water-based co-chemical reduction method, in which polyallylamine hydrochloride acted as a multi-functional molecule for the functionalization of graphene oxide, anchorage of Pt II precursor, and control of Pt crystal facets. The morphology, structure, composition, and catalytic property of Pt-NCs/rGO composites were characterized in detail by various spectroscopic techniques. Transmission electron microscopy images showed well-defined Pt-NCs with an average size of 9 nm uniformly distributed on the rGO surface. The as-prepared Pt-NCs/rGO composites had excellent colloidal stability in the aqueous solution, and exhibited superior catalytic activity towards the hydrogenation reduction of nitro groups compared to commercial Pt black. The improved catalytic activity originated from the abundant exposed Pt{100} facets of Pt-NCs, excellent dispersion of Pt-NCs on the rGO surface, and synergistic effect between Pt-NCs and rGO. (paper)

  3. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  4. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  5. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  6. Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.; Dam-Johansen, Kim

    1996-01-01

    activity with respect to each species involved. An existing particle model, the Grain-Micrograin Model, which simulates sulphur capture on limestone under oxidizing conditions is considered in the modelling. Simulation results in good qualitative agreement with experimental data are obtained here......A theoretical study of the complex transient system of simultaneous sulphur capture and catalytic reactions of N-containing compounds taking place on a single limestone particle is conducted. The numerical technique developed previously by the authors (Kiil et al. 1994) based on collocation...... for the catalytic chemistry of NH3 during simultaneous sulphur capture on a Stevns Chalk particle. The reduction of NO by NH3 over CaSO4 (which is the product of the reaction between SO2, O2 and limestone) was found to be important because this reaction could explain the change in selectivity with increased solid...

  7. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  8. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  9. Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones

    Directory of Open Access Journals (Sweden)

    Yingting Wang

    2018-02-01

    Full Text Available A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.

  10. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  11. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst; Oxidacion catalitica de albendazol empleando como catalizador molibdeno soportado en nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R., E-mail: msun@pucp.edu.pe [Departamento de Ciencias, Seccion Quimica. Pontificia Universidad Catolica del Peru, Avenida Universitaria 1801, Lima (Peru); Picasso Escobar, Gino I. [Laboratorio de Investigacion de Fisicoquimica, Facultad de Ciencias, Universidad Nacional de Ingenieria, Avenida Tupac Amaru 210, Lima (Peru)

    2013-10-15

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C{sub 12}H{sub 15}N{sub 3}O{sub 2}S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 {sup o}C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H{sub 2}NCONH{sub 2}·H{sub 2}O{sub 2}) as oxidizing agent and methanol (CH{sub 3}OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N{sub 2} (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  12. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  13. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad Dar

    2012-06-01

    Full Text Available The present work is intended to determine the catalytic activity of Mixed Oxide supported gold for aerobic oxidative dehydrogenation of amines to imines using Ceria as a main constituent of the each support. The model catalysts Au/CeO2:TiO2 Au/CeO2:SiO2, Au/CeO2:ZrO2 and Au/CeO2:Al2Os were prepared by deposition co-precipitation method and deposition of gold was determined by EDEX analysis. The supported nano-gold catalyzes the dehydrogenation of secondary amines to imines without loss of activity. On recycling good amount of product yield is obtained. Oxidation of secondary amines to imines is carried at 100˚C and almost 90 % conversion was obtained with >99% selectivity. © 2012 BCREC UNDIP. All rights reservedReceived: 26th December 2011; Revised: 7th June 2012; Accepted: 13rd June 2012[How to Cite: B.A. Dar, M. Sharma, B. Singh. (2012. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen. Bulletin of Chemical Reaction Engineering & Catalysis, 7(1: 79-84.  doi:10.9767/bcrec.7.1.1257.79-84][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1257.79-84 ] | View in 

  14. Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics.

    Science.gov (United States)

    Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie

    2015-05-22

    A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A catalytic wet oxidation process for mixed waste volume reduction/recycling

    International Nuclear Information System (INIS)

    Dhooge, Patrick M.

    1992-01-01

    Mixed wastes have presented a challenge to treatment and destruction technologies. A recently developed catalytic wet oxidation method has promising characteristics for volume reduction and recycling of mixed wastes. The process utilizes iron (III) as an oxidant in the presence of homogeneous cocatalysts which increase organics' oxidation rates and the rate of oxidation of iron (II) by oxygen. The reaction is conducted in an aqueous mineral acid solution at temperatures of 373 - 573 deg K. The mineral acid should solvate a number of heavy metals, including U and Pu. Studies of reaction rates show that the process can oxidize a wide range of organic compounds including aromatics and chlorinated hydrocarbons. Rate constants in the range of 10 -7 to 10 -4 sec -1 , depending on the cocatalyst, acidity, type of anions, type of organic, temperature, and time. Activation energies ranged from 25. to 32. KJ/mole. Preliminary measurements of the extent of oxidation which could be obtained ranged from 80% for trichloroethylene to 99.8% for 1,2,4-trimethylbenzene; evidence was obtained that absorption by the fluorocarbon liners of the reaction bombs allowed some of the organics to escape exposure to the catalyst solution. The results indicate that complete oxidation of the organics used here, and presumably many others, can be achieved. (author)

  16. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    International Nuclear Information System (INIS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-01-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  17. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  18. The study of biodiesel production using CaO as a heterogeneous catalytic reaction

    Directory of Open Access Journals (Sweden)

    Kamila Colombo

    2017-06-01

    Full Text Available With the aim of developing a process of biodiesel production that is environmentally benign much interest has been focused on the use of solid base catalysts, such as calcium oxide, for the transesterification of vegetable oils with methanol. In the study reported herein a recycling reactor was used in bench scale, with the capacity to produce 3 L of biodiesel. The reactor was designed especially for this research study. A full 23 factorial plan was used to evaluate the process parameters related to this study, in particular, the catalyst concentration, the alcohol to oil molar ratio and the reaction time. Using this equipment for the transesterification reaction resulted in the recovery of the excess alcohol. The reaction products were characterized using gas chromatography and liquid analysis to determine the ester and calcium concentrations, respectively. The main conclusions drawn were that the best conversion percentage (100% of biodiesel was reached when the methanol:oil molar ratio was 6:1, the reaction time was 75 min and the catalyst mass was 3% in relation to the oil mass used in this process. The CaO concentration determined exceeded the limit of concentration defined by legislation and thus a secondary operation was carried out to purify the reaction products obtained. The results of this study showed a high performance, and the proposed experiment could be used as a new and innovative way to produce biodiesel in the future.

  19. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  20. Catalytic partial oxidation of methane over porous silica supported VO{sub x} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pirovano, C.; Schoenborn, E.; Kalevaru, V.N.; Wohlrab, S.; Luecke, B.; Martin, A. [University Rostock e.V., Rostock (Germany). Leibniz Inst. for Catalysis

    2011-07-01

    High surface area mesoporous siliceous MCM-41 and SBA-15 materials have been used as supports to disperse vanadium oxide species using wet impregnation and incipient wetness impregnation methods. These materials were used as catalysts for the partial oxidation of methane (POM) to formaldehyde. The physico-chemical properties of the solids were studied by means of BET, DR-UV/Vis spectroscopy, Py-FTIR and TEM. The influence of support and the preparation method on the dispersion of VOx is also investigated. The catalytic properties of the catalysts were examined in a fixed bed stainless steel reactor at 923 K. So far a maximum production of formaldehyde can be detected on SBA-15 supported VOx-catalysts prepared by incipient wetness impregnation. On this V/SBA-15 material a covalent attachment of catalytic active molecular vanadium species dominates, which in turn leads to a lower activation temperature and thereby reduced over-oxidation. From the best case, the space time yield of HCHO could be reached close to 775 g{sub HCHO} Kg{sub cat}{sup -1} h{sup -1}. (orig.)

  1. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    Science.gov (United States)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  2. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  3. MWW-type titanosilicate synthesis, structural modification and catalytic applications to green oxidations

    CERN Document Server

    Wu, Peng; Xu, Le; Liu, Yueming; He, Mingyuan

    2013-01-01

    This book provides a comprehensive review of a new generation of selective oxidation titanosilicate catalysts with the MWW topology (Ti-MWW) based on the research achievements of the past 12 years. It gives an overview of the synthesis, structure modification and catalytic properties of Ti-MWW. Ti-MWW can readily be prepared by means of direct hydrothermal synthesis with crystallization-supporting agents, using dual-structure-directing agents and a dry-gel conversion technique. It also can be post-synthesized through unique reversible structure transformation and liquid-phase isomorphous subst

  4. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  5. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  6. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.

    2006-01-01

    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  7. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  8. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  9. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    Science.gov (United States)

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  10. Preparation of carbon nanotube-neodymium oxide composite and research on its catalytic performance

    International Nuclear Information System (INIS)

    Zhao Lei; Wang Zhihua; Han Dongmei; Tao Dongliang; Guo Guangsheng

    2009-01-01

    Carbon Nanotube-Neodymium Oxide (CNT-Nd 2 O 3 ) composite was prepared by using acid treated carbon nanotubes (CNTs) and neodymium nitrate in the presence of sodium dodecyl sulfate and ammonia liquid. Techniques of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential thermal analysis (DTA) are used to characterize the morphology, structure, composition and catalytic property of the CNT-Nd 2 O 3 composite. The experimental results show that the Nd 2 O 3 nanoparticles, which have an average diameter of about 30-40 nm, are loaded on the surface of carbon nanotube. Compared with pure Nd 2 O 3 nanorods, the CNT-Nd 2 O 3 composite can catalyze the thermal decomposition of ammonium perchlorate more effectively. The sampling methods of the experimental samples made a difference on the catalytic experiment results, and the best catalytic result was obtained when de-ionized water served as the solvent of ammonium perchlorate

  11. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  12. Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 1/4 olefins by tert. -butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmann, J; Hoeft, E; Boeden, H F; Dilcher, H

    1979-09-01

    Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 14/ olefins by tert.-butyl hydroperoxide (TBHP) avoids large product losses to side reactions, associated with the use of homogeneous catalysts, such as Mo(CO)/sub 6/. With an unsupported MoO/sub 3/ catalyst, 48% TBHP conversion was achieved after one hour (vs. 24% after two hours for Mo(CO)/sub 6/) in 1-octene epoxidation at 90/sup 0/C and 2:1:3 octene/TBHP/toluene (solvent) molar ratio. The use of silica-supported catalysts, such as Bi/sub 9/PMo/sub 12/O/sub 52//30% SiO/sub 2/ (ACN, an industrial catalyst for acrylonitrile), MoO/sub 3//30% SiO/sub 2/ (D-1), 3MoO/sub 3/-Sb/sub 2/O/sub 5//50% SiO/sub 2/ (D-2), or 2MoO/sub 3/-As/sub 2/O/sub 3//50% SiO/sub 2/ (D-3) increased the conversion to 68, 67, 70, and 73%, respectively, with up to 95-99% selectivities for the epoxide. Under optimum conditions of 3:1 olefin/TBHP, 110/sup 0/C, and 2-4 g/l. catalyst, TBHP conversions in epoxidation of 1-tetradecene in a batch reactor over ACN, D-2, and D-3 after two hours were 94, 88, and 91%, respectively, but they decreased to 52, 78, and 79%, respectively, after five two-hour operating cycles. In epoxidation of 1-decene or a mixture of decene isomers (a model for the industrial olefin mixtures obtained by paraffin dehydrogenation via the Parex process) carried out in a continuous flow reactor over the D-3 catalyst at 90/sup 0/-110/sup 0/C, stable catalytic activities with TBHP conversions of approx. 90% and 90-96% selectivities for epoxides were observed for about 900 hr.

  13. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    Science.gov (United States)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  14. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO{sub 4} material phase transformations in direct methanol synthesis from methane

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@ki.si [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia); Khan, Faiza B. [Energy Technology (South Africa); Hanzel, Darko [Jozef Stefan Institute (Slovenia); Bharuth-Ram, Krish [Durban University of Technology, Physics Department (South Africa); Likozar, Blaž [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia)

    2017-11-15

    The effect of the FePO{sub 4} material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O{sub 2}, H{sub 2}O and N{sub 2}O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO{sub 4} (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe{sub 2}P{sub 2}O{sub 7}, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  15. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    Catalytic incineration is one of the methods to reduce the emissions of CO and VOCs. Low operation temperature and low catalyst cost are essential parameters for catalytic incinerators. Pt/Al{sub 2}O{sub 3} catalysts are frequently used today, but the cheaper metal oxide catalysts can be very competitive if comparable overall activity is obtained. This thesis concerns how it is possible to decrease the operation temperature for supported metal oxide catalysts by using different supports, active metal oxides and additives. In the thesis it is demonstrated that different copper oxide based catalysts have the best activity and durability for complete oxidation among several tested metal oxide catalysts. CuO{sub x} supported on TiO{sub 2} and Al{sub 2}O{sub 3} showed increased activity with the CuO{sub x} loading up to the threshold coverage for formation of crystalline CuO particles, which is 12 {mu}mol/m{sup 2} on TiO{sub 2} and 6 {mu}mol/m{sup 2} on Al{sub 2}O{sub 3}. Up to the threshold coverage for CuO formation, well dispersed copper oxide species were formed on TiO{sub 2}, and a dispersed copper aluminate surface phase was formed on Al{sub 2}O{sub 3}. Durability tests showed accelerated sintering of TiO{sub 2} by copper, but stabilisation was possible by modification of the TiO{sub 2} with CeO{sub x} before the deposition of CuO{sub x}. The stabilisation was obtained by formation of a Ce-O-Ti surface phase. Addition of CeO{sub x} also enhanced the activity of the copper oxide species thanks to favourable interaction between the active copper oxide species and the CeO{sub x} on the support, which could be seen as increased reducibility in TPR experiments. The increased activity and reducibility was also observed for CuO{sub x} supported on ceria modified Al{sub 2}O{sub 3}. In this regard it was shown that CuO{sub x} deposited on CeO{sub 2}(001) surfaces was substantially more active for CO oxidation than copper oxide deposited on CeO{sub 2}(111) Surfaces. This

  16. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bluhm, Hendrik, E-mail: hbluhm@lbl.gov [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Selective oxidation of CH{sub 3}OH to CH{sub 2}O over a Cu foil has been studied by in situ gas phase XPS. • C1s and O1s spectra were used for identification of reagents and reaction products in a gas phase. • Catalytic data (conversions and reaction products yields) calculated from XPS spectra are in a good agreement with QMS results. • The possible reasons of the observed variations in reaction mechanism have been discussed. - Abstract: Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  17. Heterogeneous catalytic process for alcohol fuels from syngas. Fifteenth quarterly technical progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The previous best catalysts consisted of potassium-promoted Pd on a Zn/Cr spinel oxide prepared via controlled pH precipitation. The authors have now examined the effect of cesium addition to the Zn/Cr spinel oxide support. Surprisingly, cesium levels required for optimum performance are similar to those for potassium on a wt% basis. The addition of 3 wt% cesium gives isobutanol rates > 170 g/kg-hr at 440 C and 1,500 psi with selectivity to total alcohols of 77% and with a methanol/isobutanol mole ratio of 1.4: this performance is as good as their best Pd/K catalyst. The addition of both cesium and palladium to a Zn/Cr spinel oxide support gives further performance improvements. The 5 wt% cesium, 5.9 wt% Pd formulation gives isobutanol rates > 150 g/kg-hr at 440 C and only 1,000 psi with a selectivity to total alcohols of 88% and with a methanol/isobutanol mole ratio of 0.58: this is their best overall performance to date. The addition of both cesium and palladium to a Zn/Cr/Mn spinel oxide support that contains excess Zn has also been examined. This spinel was the support used in the synthesis of 10-DAN-54, the benchmark catalyst. Formulations made on this support show a lower overall total alcohol rate than those using the spinel without Mn present, and require less cesium for optimal performance.

  18. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Science.gov (United States)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-02-01

    In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  19. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  20. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  1. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  2. Conversion and Estrogenicity of 17β-estradiol During Photolytic/Photocatalytic Oxidation and Catalytic Wet-air Oxidation.

    Science.gov (United States)

    Bistan, Mirjana; Tišler, Tatjana; Pintar, Albin

    2012-06-01

    Estrogen 17β-estradiol (E2), produced by human body and excreted into municipal wastewaters, belongs to the group of endocrine disrupting compounds that are resistant to biological degradation. The aim of this study was to assess the efficiency of E2 removal from aqueous solutions by means of catalytic wet-air oxidation (CWAO) and photolytic/photocatalytic oxidation. CWAO experiments were conducted in a trickle-bed reactor at temperatures up to 230 °C and oxygen partial pressure of 10 bar over TiO2 and Ru/TiO2 solids. Photolytic/photocatalytic oxidation was carried out in a batch slurry reactor employing a TiO2 P-25 (Degussa) catalyst under visible or UV light. HPLC analysis and yeast estrogen screen assay were used to evaluate the removal of E2 and estrogenicity of treated samples. The latter was completely removed during photolytic/photocatalytic oxidation under UV (365 nm) light and photocatalytic oxidation under visible light. In CWAO experiments, complete removal of both E2 and estrogenicity from the feed solution were noticed in the presence of TiO2 and Ru/TiO2 catalysts.

  3. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo, E-mail: wushuo@dlut.edu.cn; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H{sub 2}O{sub 2}. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL{sup −1} to 100 ng mL{sup −1} and a low limit of detection of 0.037 pg mL{sup −1}. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. - Highlights: • An enzyme-free electrochemical immunosensor is reported for detecting proteins. • A silver nanocluster/graphene oxide composite is synthesized as nanotag. • The nanotags exhibit highly catalytic activity to the electro-reduction of H{sub 2}O{sub 2}. • The as-fabricated immunosensor could detect protein in serum samples.

  4. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g-1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  5. Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-01-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li–Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g−1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li–Mn spinel oxides obtained by conventional solid-state methods. PMID:26456216

  6. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    International Nuclear Information System (INIS)

    Thu, Tran Viet; Ko, Pil Ju; Phuc, Nguyen Huu Huy; Sandhu, Adarsh

    2013-01-01

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag–rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH 4 ) and trisodium citrate. The resulting products were characterized using UV–Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density (∼1,700 NPs μm −2 ) and well-defined size (3.6 ± 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag–rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed

  7. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Tran Viet, E-mail: thu@eiiris.tut.ac.jp; Ko, Pil Ju, E-mail: ko@eiiris.tut.ac.jp [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan); Phuc, Nguyen Huu Huy [Toyohashi University of Technology, Department of Electrical and Electronic Information Engineering (Japan); Sandhu, Adarsh [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan)

    2013-10-15

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag-rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH{sub 4}) and trisodium citrate. The resulting products were characterized using UV-Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density ({approx}1,700 NPs {mu}m{sup -2}) and well-defined size (3.6 {+-} 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag-rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH{sub 4} in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed.

  8. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H2O2.

    Science.gov (United States)

    Choi, Seeyoung; Love, Paul E

    2018-01-05

    Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.

  9. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2018-01-01

    How to Cite: Nurhadi, M., Kusumawardani, R., Nur, H. (2018. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 113-118 (doi:10.9767/bcrec.13.1.1171.113-118

  10. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  11. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular

  12. Influence of thermal treatments on the basic and catalytic properties of Mg,Al-mixed oxides derived from hydrotalcites

    Directory of Open Access Journals (Sweden)

    Bastiani R.

    2004-01-01

    Full Text Available This work studied the influence of calcination conditions on basic properties and catalytic performance of Mg,Al-mixed oxides derived from a hydrotalcite sample (Al/(Al+Mg=0.20. Various heating rates, calcination atmospheres and lengths of calcination at 723K were evaluated. TPD of CO2 and retroaldolization of diacetone alcohol (DAA were used to determine the basic properties of the mixed oxides. The basic site density determined by TPD of CO2 showed a better correlation with catalytic activity for acetone/citral aldol condensation than the relative basicity obtained from retroaldolization of DAA. Calcination atmosphere was the parameter that influenced most the basic and the catalytic properties of the Mg,Al-mixed oxides, with calcination under dry air being the best choice.

  13. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhipan [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Yalei, E-mail: zhangyalei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dai, Chaomeng [College of Civil Engineering, Tongji University, Shanghai 200092 (China); Sun, Zhen [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-04-28

    Highlights: • MMIC with large surface area and pore volume was synthesized via the hard template. • MMIC could be easily separated from aqueous solution with an external magnetic field. • MMIC presented excellent catalytic activity for the oxidation of As(III). • As(III) was mainly oxidized by surface-bound ·OH{sub ads} and free ·OH{sub free} radicals. • MMIC played a dual function role for the arsenic removal in aqueous solution. - Abstract: Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000 ppb As(III) after 60 min and complete removal of arsenic species after 180 min with reaction conditions of 0.4 g/L catalyst, pH of 3.0 and 0.4 mM H{sub 2}O{sub 2}. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014 min{sup −1} to 0.0548 min{sup −1} as the H{sub 2}O{sub 2} concentration increased from 0.04 mM to 0.4 mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by ·OH radicals, including the surface-bound ·OH{sub ads} generated on the MMIC surface which were involved in ≡Fe{sup 2+} and ≡Ce{sup 3+}, and free ·OH{sub free} generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption.

  14. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  15. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme.

    Science.gov (United States)

    Fernandes, Ilizandra A; Esmelindro, Maria Carolina; Corazza, Marcos L; Franceschi, Elton; Treichel, Helen; de Oliveira, Debora; Frizzo, Caren D; Oliveira, J Vladimir

    2010-07-01

    This paper reports the catalytic oxidation of the concentrated orange oil phase using the complexes [Fe(III)(BMPP)Cl(micro-O)Fe(III)Cl(3)], [Cu(II)(BTMEA)(2)Cl]Cl and [Co(II)(BMPP)]Cl(2) biomimetic to methane monooxygenase enzyme as catalysts and hydrogen peroxide as oxidant. The reaction products of oil oxidation, mainly nootkatone, were identified by gas chromatography/mass spectrometry. A screening of catalysts was performed through a full 2(3) experimental design, varying the temperature from 30 to 70 degrees C, the catalyst concentration from 7.0 x 10(-4) to 1.5 x 10(-3) mol L(-1) and the oxidant/substrate molar ratio from 1:1 to 3:1. The results of reaction kinetics employing the most promising catalysts showed that conversions to nootkatone of up to 8% were achieved after 16 h at 70 degrees C. The results obtained in this study in terms of nootkatone production should be considered encouraging, since a real, industrially collected, raw material, instead of pure valencene, was employed in the reaction experiments, with a final content about ten times that present in the original concentrated oil.

  16. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.

    Science.gov (United States)

    Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P

    2017-08-01

    Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.

  17. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    Science.gov (United States)

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  18. Kinetics of heterogeneous catalysis oxidation of carbon monoxide

    International Nuclear Information System (INIS)

    Khawaja, Y.; Sadiq, A.

    1987-10-01

    An irreversible kinetic surface-reaction model, based upon the reaction of carbon monoxide nd oxygen on a catalyst surface is investigated by means of Monte Carlo simulation. The adsorbed molecules/atoms on the surface undergo both first and second order kinetic phase transitions. The first order transition is found to occur at x/sub/co=x/sub/2=0.5255 with an error bar of 0.0003, where x/sub/co is the concentration of carbon monoxide in the gas phase. The time evolution of this catalytic reaction is studied both analytically and by computer simulation. Slightly above x/sub/2, the oxygen coverage relaxation time for the oxygen is found to diverage as the inverse of 3.54 times the absolute of the difference of x/sub/2 and x/sub/co. (orig./A.B.)

  19. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  20. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid.

    Science.gov (United States)

    Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na

    2017-07-05

    In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,​N-​dimethyl-​dodecyl-​(4-​vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  2. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  3. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  4. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  5. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  6. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    Demands for a better drinking water quality, especially concerning arsenic, a compound with many adverse health effects, put a pressure on the utilities to ensure the best treatment technologies that meet nowadays and possible future quality standards. The aim of this paper is to introduce...... an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...

  7. Synthesis, Characterization and Shape-Dependent Catalytic CO Oxidation Performance of Ruthenium Oxide Nanomaterials: Influence of Polymer Surfactant

    Directory of Open Access Journals (Sweden)

    Antony Ananth

    2015-08-01

    Full Text Available Ruthenium oxide nano-catalysts supported on mesoporous γ-Al2O3 have been prepared by co-precipitation method and tested for CO oxidation. The effect of polyethylene glycol (PEG on the properties of the catalyst was studied. Addition of the PEG surfactant acted as a stabilizer and induced a change in the morphology of ruthenium oxide from spherical nanoparticles to one-dimensional nanorods. Total CO conversion was measured as a function of morphology at 175 °C and 200 °C with 1.0 wt.% loading for PEG-stabilized and un-stabilized catalysts, respectively. Conversion routinely increased with temperature but in each case, the PEG-stabilized catalyst exhibited a notably higher catalytic activity as compared to the un-stabilized equivalent. It can be assumed that the increase in the activity is due to the changes in porosity, shape and dispersion of the catalyst engendered by the use of PEG.

  8. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  9. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Yong [Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, National Lab of Solid State Microstructure, ERERC, Nanjing University, Nanjing 210093 (China); Pei, Chonghua, E-mail: peichonghua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.

  10. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui; Zhou, Yong; Pei, Chonghua

    2014-01-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS 13 C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g

  11. Annihilation characteristics of positrons in oxide powders in relation to catalytic activities

    International Nuclear Information System (INIS)

    Ito, K.; Ohtsu, Y.; Tanigawa, S.; Enomura, A.; Tsuda, N.

    1982-01-01

    The annihilation chaaracteristics in magnesium oxide powders were studied by the measurements of Doppler broadening of annihilation radiations. MgO powders are well known as a solid base and are utilized as a catalyst for the reactions which start by extracting protons from molecules such as decomposition of alcohol. The isochronal annealing behavior of annihilation characteristics in the process Mg(OH) 2 → MgO was found to correspond just to the change in the number of basic points, specific surface area and catalytic activities in some reactions. From the results of the thermal equilibrium measurements of MgO powders after dehydration, the temperature dependence of S parameter can be considered as the thermal activation process of the escape of positrons from trapped states at surface to form positroniums. The derived value of this activation energy was 0.187 eV. (Auth.)

  12. Catalytic oxidation efficiencies for tritium and tritiated methane in a mature, industrial-scale decontamination system

    International Nuclear Information System (INIS)

    Mintz, J.M.; Gildea, P.D.

    1981-01-01

    Almost all tritium decontamination systems proposed for fusion facilities employ catalytic oxidation to water, followed by drying, to remove tritium and tritiated hydrocarbons from gas streams. One such large-scale system, the gas purification system (GPS), has been operating in the Tritium Research Laboratory (TRL) at Sandia National Laboratories, Livermore, CA, since October 1977. A series of experiments have recently been conducted there to assesss the current operating characteristics of the GPS catalyst. The experiments used tritium and tritiated methane and covered a range of temperatures, flow rates, and concentration levels. When contrasted with 1977 data, the results indicate that no measurable degradation of catalyst function had occurred. However, some reduction in active metal surface area, as indicated by B.E.T. surface area measurements (approx. 100 → 90m 2 /g) and AES scans (approx. 1.4 → 0.9 at. % Pt), had occurred. Kinetic rate coefficients were also derived and a rough temperature dependence obtained

  13. Catalytic oxidation efficiencies for tritium and tritiated methane in a mature, industrial-scale decontamination system

    International Nuclear Information System (INIS)

    Mintz, J.M.; Gildea, P.D.

    1980-10-01

    Almost all tritium decontamination systems proposed for fusion facilities employ catalytic oxidation to water, followed by drying, to remove tritium and tritiated hydrocarbons from gas streams. One such large-scale system, the gas purification system (GPS), has been operating in the Tritium Research Laboratory (TRL) at Sandia National Laboratories, Livermore, CA, since October 1977. A series of experiments have recently been conducted there to assess the current operating characteristics of the GPS catalyst. The experiments used tritium and tritiated methane and covered a range of temperatures, flow rates, and concentration levels. When contrasted with 1977 data, the results indicate that no measurable degradation of catalyst function had occurred. However, some reduction in active metal surface area, as indicated by B.E.T. surface area measurements (approx. 100 → 90 m 2 /g) and AES scans (approx. 1.4 → 0.9 at% Pt), had occurred. Kinetic rate coefficients were also derived and a rough temperature dependence obtained

  14. Catalytic activity of bimetal-containing Co,Pd systems in the oxidation of carbon monoxide

    Science.gov (United States)

    Oleksenko, L. P.; Lutsenko, L. V.

    2013-02-01

    The catalytic activity of low-percentage Co,Pd systems on ZSM-5, ERI, SiO2, and Al2O3 supports in the oxidation of CO was studied. The activity of bimetal-containing catalysts was shown to depend on the nature of the catalyst and the amount and ratio of their active components. According to the results of thermoprogrammed reduction with H2 (H2 TPR) and X-ray photoelectron spectroscopy (XPS) data, the metals are distributed as isolated cations or Coδ+-O-Pdδ+ clusters with cobalt and palladium cations surrounded by off-lattice oxygen in Co,Pd systems. The 0.8% Co,0.5% Pd-ZSM-5 bimetal catalysts were found to be more active due to the presence of clusters.

  15. On the Pt(+) and Rh(+) Catalytic Activity in the Nitrous Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Rondinelli, F; Russo, N; Toscano, M

    2008-11-11

    Nitrous oxide activation by CO in the presence of platinum and rhodium monocations was elucidated by density functional methods for ground and first excited states. Platinum and rhodium cations fulfill the thermodynamic request for the oxygen-atom transport that allows the catalytic cycle to be completed, but actually, just the first one meaningfully improves the kinetics of the process. For both catalysts, the reaction pathways show the only activation barrier in correspondence of nitrogen release and monoxide cation formation. The kinetic analysis of the potential energy profile, in agreement with ICP/SIFT MS experimental data, indicates that platinum performs more in the reduction, while the whole process is not sufficiently fast in the case of rhodium ionic catalyst.

  16. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin [Shihezi University, Shihezi (China)

    2013-02-15

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO{sub 4}. Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H{sub 2}O{sub 2}/sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively.

  17. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process

    International Nuclear Information System (INIS)

    Tang, Ling; Luo, Guangqing; Kang, Lihua; Zhu, Mingyuan; Dai, Bin

    2013-01-01

    To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO 4 . Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H 2 O 2 /sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively

  18. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    Science.gov (United States)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  19. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  20. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    Science.gov (United States)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  1. Platinum Catalysts Supported on Ce, Zr, Pr - Oxides in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 146, č. 3 (2007), s. 1248-1253 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * cerium oxide * carbonate species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2007

  2. Effects of Mn- and K-addition on catalytic activity of calcium oxide for methane activation

    International Nuclear Information System (INIS)

    Park, Jong Sik; Kong, Jang Il; Lee, Sung Han; Jun, Jong Ho

    1998-01-01

    Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800 .deg. C to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction (XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally p(CH 4 )/p(O 2 )=250 Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best C 2 yield of 8.0% with a selectivity of 43.2% at 775 .deg. C. The C 2 selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO((Mn)>6.3 mol%)catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the C 2 selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000 .deg. C at Po2's of 10 -3 to 10 -1 atm. The electrical conductivity was decreased with Mn-doping and increased with increasing Po 2 in the range of 10 -3 to 10 -1 atm, indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry

  3. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  4. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    Science.gov (United States)

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power.

  5. Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon

    Science.gov (United States)

    Pande, Gaurav

    A range of VOC oxidation catalysts have been prepared in this study from agricultural and industrial waste as the starting point. The aim is to prepare catalysts with non-noble metal oxides as the active catalytic component (iron in red mud). The same active component was also supported on activated carbon obtained from unburned carbon in bagasse ash. Red mud which is an aluminum industry waste and rich in different phases of iron as oxide and hydroxide is used as the source for the catalytically active species. It is our aim to enhance the catalytic performance of red mud which though high in iron concentration has a low surface area and may not have the properties of an ideal catalyst by itself. In one of the attempts to enhance the catalytic performance, we have tried to leach red mud for which we have explored a range of leaching acids for effecting the leaching most efficiently and then precipitated the iron from the leachate as its hydroxide by precipitating with alkali solution followed by drying and calcination to give high surface area metal oxide material. Extensive surface characterization and VOC oxidation catalytic testing were performed for these solids. In a step to further enhance the catalytic activity towards oxidation, copper was introduced by taking another industrial waste from the copper tubing industry viz. the pickling acid. Copper has a more favourable redox potential making it catalytically more effective than iron. To make the mixed metal oxide, red mud leachate was mixed with the pickling acid in a pre-decided ratio before precipitating with alkali solution followed by drying and calcination as was done with the red mud leachate. The results from these experiments are encouraging. The temperature programmed reduction (TPR) of the solids show that the precipitate of red mud leachates show hydrogen uptake peak at a lower temperature than for just the calcined red mud. This could be due to the greatly enhanced surface area of the prepared

  6. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    Science.gov (United States)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  7. Kinetic study of the hydration of propylene oxide in the presence of heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Akyalcin Sema

    2017-01-01

    Full Text Available The kinetics of the hydration of propylene oxide was studied using a pressurized batch reactor for both uncatalyzed and heterogeneously catalyzed reactions. Lewatit MonoPlus M500/HCO3 - was used as heterogeneous catalyst, which showed better performance than Dowex Marathon A/HCO3 -. The effects of the parameters, namely internal and external diffusion resistances, temperature, catalyst loading and mole ratios of reactants, on the reaction rate were studied. The uncatalyzed and heterogeneously catalyzed reactions were proven to follow a series-parallel irreversible homogeneous mechanism. The temperature dependencies of the rate constants appearing in the rate expressions were determined.

  8. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization.

    Science.gov (United States)

    Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong

    2016-02-25

    Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.

  9. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  10. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  11. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  12. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  13. The tritium labelling of organic molecules by heterogeneous catalytic exchange; El marcado de moleculas organicas con tritio por intercambio catalitico heterogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Angoso Marina, M; Kaiser Ruiz del Olmo, F.

    1977-07-01

    The influence of the temperature at 65 degree centigree and 120 degree centigree on the labelling of three organic molecules with tritium was studied. The compounds were: benzoic acid, de phenyl glyoxal and 2,3-tetramethylene-4-pantothenyl-7-oxo diacetin.The method employed was the heterogeneous catalytic exchange between tritiated water and the organic compound. The purification was made by thin-layer chromatography and the concentration, purity and specific activity of the products were determined by counting and ultraviolet techniques. The thermal stability and the radiolytic effects on labelled benzoic acid were also considered. (Author) 9 refs.

  14. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH{sub 3}SH catalytic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Wan, Gengping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Research Center for Analysis and Measurement, Hainan University, Haikou, 570228 (China); He, Sufang [Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093 (China); Luo, Yongming, E-mail: environcatalysis222@yahoo.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China)

    2016-12-30

    Highlights: • Ce{sub 0.75}RE{sub 0.25}O{sub 2-δ} (RE = Y, Sm and La) were synthesized by citrate complexation method. • Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ} exhibited the best stability for the decomposition of CH{sub 3}SH. • Cation radius played a key role in determining structure and surface characteristics. • Catalytic behavior depended on synergistic role of oxygen vacancies and basic sites. • Ce{sub 2}S{sub 3} accumulation on the surface was responsible for the deactivation of catalyst. - Abstract: A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO{sub 2} were synthesized and evaluated by conducting CH{sub 3}SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H{sub 2}-TPR, XPS, FT-IR, CO{sub 2}-TPD and CH{sub 3}SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH{sub 3}SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ}), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce{sub 0.75}La{sub 0.25}O{sub 2-δ}) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce{sub 2}S{sub 3}) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce{sub 0.75}Sm{sub 0.25}O{sub 2-δ} sample was comparable to that of pure Ce

  15. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase

    International Nuclear Information System (INIS)

    Toussaint, O.; Lerch, K.

    1987-01-01

    The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, the authors studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants. In contrast, the reaction rates observed for aromatic amines are relatively slow as compared to monophenols. The enzymatic conversion of arylamines by tryosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-know monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18 O 2

  16. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  17. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  18. Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe2.

    Science.gov (United States)

    Yuan, Xingzhong; Guan, Renpeng; Wu, Zhibin; Jiang, Longbo; Li, Yifu; Chen, Xiaohong; Zeng, Guangming

    2018-04-05

    Oily scum, a hazardous by-product of petroleum industry, need to be deposed urgently to reduce environmental risks. This paper introduces catalytic wet persulfate oxidation (CWPO) process in the treatment of oily scum to realize risk relief. Under the activation of heat and Fe 2+ , persulfate (PS) was decomposed into sulfate radicals and hydroxyl radicals, which played a major role on the degradation of petroleum hydrocarbons. The effects of wet air oxidation (WAO) and CWPO process on the degradation of oily scum were compared. In CWPO process, the total petroleum hydrocarbons (TPHs) content of oily scum was decreased from 92.63% to 16.75%, which was still up to 70.19% in WAO process. The degradation rate of TPHs in CWPO process was about 3.38 times higher than that in WAO process. The great performance of CWPO process was also confirmed by elemental analysis, which indicated that the C and H contents of oily scum were reduced significantly by CWPO process. These results indicated that CWPO process has high potential on the degradation of oily scum for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Spectrophotometric determination of nitrite by its catalytic effect on the oxidation of congo red with bromate

    Directory of Open Access Journals (Sweden)

    Zenovia Moldovan

    2012-08-01

    Full Text Available A novel simple, sensitive and rapid kinetic-spectrophotometric method for the determination of trace amounts of nitrite is proposed. The method is based on its catalytic effect on the oxidation of congo red (CR by potassium bromate in acidic solution. The oxidation reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of CR at a suitable λmax = 570 nm for the first 10–40 s from the start of the reaction. Under the optimum experimental conditions (sulfuric acid, 0.3 M; CR, 0.75Χ10-4 M; potassium bromate, 5Χ10-4 M and 25 oC, nitrite can be determined in the range of 0.015–0.75 µg mL−1 with the detection limit of 0.006 µg mL−1. The relative standard deviation of five replicate determination of 0.25 µg mL−1 nitrite was 2.5%. The proposed method was applied satisfactorily to the determination of nitrite in spiked drinking water samples.DOI: http://dx.doi.org/10.4314/bcse.v26i2.1

  20. Alumina- and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides

    International Nuclear Information System (INIS)

    Blanco, J.; Avila, P.; Suarez, S.; Martin, J.A.; Knapp, C.

    2000-01-01

    The selective catalytic reduction of NO+NO 2 (NO x ) at low temperature (180-230C) with ammonia has been investigated with copper-nickel and vanadium oxides supported on titania and alumina monoliths. The influence of the operating temperature, as well as NH 3 /NO x and NO/NO 2 inlet ratios has been studied. High NO x conversions were obtained at operating conditions similar to those used in industrial scale units with all the catalysts. Reaction temperature, ammonia and nitrogen dioxide inlet concentration increased the N 2 O formation with the copper-nickel catalysts, while no increase was observed with the vanadium catalysts. The vanadium-titania catalyst exhibited the highest DeNO x activity, with no detectable ammonia slip and a low N 2 O formation when NH 3 /NO x inlet ratio was kept below 0.8. TPR results of this catalyst with NO/NH 3 /O 2 , NO 2 /NH 3 /O 2 and NO/NO 2 /NH 3 /O 2 feed mixtures indicated that the presence of NO 2 as the only nitrogen oxide increases the quantity of adsorbed species, which seem to be responsible for N 2 O formation. When NO was also present, N 2 O formation was not observed

  1. Positron age-momentum correlation in metal oxide powders as catalytic materials

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Ito, K.; Tanigawa, S.; Tsuda, N.

    1982-01-01

    Annihilation characteristics of positrons in fine particles of various types of metal oxides (MgO, SiO 2 , #betta#-Al 2 O 3 , TiO 2 , ZnO and NiO) were studied by the two parameter correlation measurements between the positron age and the momentum of annihilating pairs. It was found that the momentum dependence of lifetime can be classified into three types, that is, the bell shape tau-E relation (Type I : #betta#-Al 2 O 3 ), the W-like one (Type II : ZnO, NiO, MgO and TiO 2 ) and the M-like one (Type III : SiO 2 ). This variation may be due to the difference in the formation and reaction of positroniums at the surface of fine particles of different oxides reflecting the nature of acid points or basic points in catalytic reactions. Particularly, the frequent occurrence of the conversion process of ortho-Ps was observed. (Auth.)

  2. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process

    International Nuclear Information System (INIS)

    Mok, Young Sun; Koh, Dong Jun; Shin, Dong Nam; Kim, Kyong Tae

    2004-01-01

    Removal of nitrogen oxides (NO x ) using a nonthermal plasma reactor (dielectric-packed bed reactor) combined with monolith V 2 O 5 /TiO 2 catalyst was investigated. The effect of initial NO x concentration, feed gas flow rate (space velocity), humidity, and reaction temperature on the removal of NO x was examined. The plasma reactor used can be energized by either ac or pulse voltage. An attempt was made to utilize the electrical ignition system of an internal combustion engine as a high-voltage pulse generator for the plasma reactor. When the plasma reactor was energized by the electrical ignition system, NO was readily oxidized to NO 2 . Performance was as good as with ac energization. Increasing the fraction of NO 2 in NO x , which is the main role of the plasma reactor, largely enhanced the NO x removal efficiency. In the plasma-catalytic reactor, the increases in initial NO x concentration, space velocity (feed gas flow rate) and humidity lowered the NO x removal efficiency. However, the reaction temperature in the range up to 473 K did not significantly affect the NO x removal efficiency in the presence of plasma discharge

  3. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel.

    Science.gov (United States)

    Hao, Lingwan; Wang, Meiri; Shan, Wenjuan; Deng, Changliang; Ren, Wanzhong; Shi, Zhouzhou; Lü, Hongying

    2017-10-05

    A series of L-proline-based DESs was prepared through an atom economic reaction between L-proline (L-Pro) and four different kinds of organic acids. The DESs were characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance ( 1 HNMR), cyclic voltammogram (CV) and the Hammett method. The synthesized DESs were used for the oxidative desulfurization and the L-Pro/p-toluenesultonic acid (L-Pro/p-TsOH) system shows the highest catalytic activity that the removal of dibenzothiophene (DBT) reached 99% at 60°C in 2h, which may involve the dual activation of the L-Pro/p-TsOH. The acidity of four different L-proline-based DESs was measured and the results show that it could not simply conclude that the correlation between the acidity of DESs and desulfurization capability was positive or negative. The electrochemical measurements evidences and recycling experiment indicate a good stability performance of L-Pro/p-TsOH in desulfurization. This work will provide a novel and potential method for the deep oxidation desulfurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  5. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  6. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  7. Preparation, characterization and catalytic activity of uranium-antimony oxide for selective oxidation of propene

    Energy Technology Data Exchange (ETDEWEB)

    Baussart, H.; Delobel, R.; Le Bras, M.; Le Maguer, D.; Leroy, J.M. (Ecole Nationale Superieure de Chimie de Lille, 59 (France). Lab. de Catalyse et Physico-Chimie des Solides)

    1982-02-01

    The selective oxidation of propene to acrolein over USb/sub 3/O/sub 10/ was studied in a continuous flow reactor. The experimental results show that the preparation of a well-defined catalyst of uniform composition depends on the temperature and time of calcination. The kinetic data indicate that acrolein is formed via a redox mechanism in which the surface of the catalyst is partially reduced. Moessbauer spectroscopy reveals the presence of Sb/sup 5 +/ and Sb/sup 3 +/ in the used catalyst. I.r. spectroscopy shows a structural modification. On the basis of these results it is concluded that each steady-state condition is characterized by a vacancy concentration leading to the observed modifications of the catalyst.

  8. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  9. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...

  10. Indoor air purificaton using heterogeneous photocatalytic oxidation, Part 2: Kinetic study

    NARCIS (Netherlands)

    Yu, Q.; Ballari, M.; Brouwers, H.J.H.

    2010-01-01

    In part I to this article [1], the application of the heterogeneous photocatalytic oxidation (PCO) theory for the indoor air quality improvement was presented. With a modified TiO2 that can be activated by visible light as the photocatalyst coated on a special wall paper, and one typical indoor air

  11. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  12. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  13. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    Science.gov (United States)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  14. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

    International Nuclear Information System (INIS)

    Sen, A.

    1998-01-01

    'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact proceeded

  15. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts

    International Nuclear Information System (INIS)

    Xie, Wenlei; Zhao, Liangliang

    2013-01-01

    Highlights: • Heterogeneous catalysts were prepared by an impregnation method with different conditions. • The catalysts were efficient in the soybean oil transesterification. • The catalytic activity and stability of the catalyst were investigated. - Abstract: The main objective of this work was to develop an environmentally benign process for the production of biodiesel by using a stable solid base catalyst. To this purpose, different heterogeneous CaO–SnO 2 catalysts have been prepared by means of impregnation methods. Various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied for the catalyst characterization. The transesterification of soybean oil with methanol, to produce biodiesel, was carried out under batch conditions at refluxed methanol over the CaO–SnO 2 catalysts. The catalytic activity is found to be highly dependent on the Ca/Sn ratio and calcination temperature. The solid catalyst with the Ca/Sn molar ratio of 4:1 and calcined at a temperature of 973 K, performed the best activity, reaching the conversion to methyl esters of 89.3% after 6 h of reaction at methanol reflux temperature (343 K) when a methanol/oil molar ratio of 12:1 and catalyst dosage of 8 wt.% were employed. Further, the solid catalyst is proved to be stable and durable for the transesterification reaction

  16. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  17. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram

    2012-01-01

    oxidation of methane, the catalyst reduced from the end to the beginning of the catalyst bed and oxidized again toward the end as soon as the entire catalyst bed was reduced. On an entirely oxidized catalyst bed, only total oxidation of methane was observed and consumed the oxygen until the conditions...... of the Pd particles at increasing age of the catalyst was observed, which leads to a lower oscillation frequency. Effects of particle size, oven temperature, and oxygen/methane ratio on the oscillation behavior were studied in detail. The deactivation period (reoxidation of Pd) was much less influenced...... by the oven temperature than the ignition behavior of the catalytic partial oxidation of methane. This indicates that deactivation is caused by an autoreduction of the palladium at the beginning of the catalyst bed due to the high temperature achieved by total oxidation of methane....

  18. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  19. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    Science.gov (United States)

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  20. Time resolved FTIR study of the catalytic CO oxidation under periodic variation of the reactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kritzenberger, J; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Oxidation of CO over palladium/zirconia catalyst obtained from an amorphous Pd{sub 25}Zr{sub 75} precursor was investigated by time resolved FTIR spectroscopy. Sine wave shaped modulation of the reactant concentration, i.e. variation of CO or O{sub 2} partial pressure, was used to induce variations of the IR signals of product (CO{sub 2}) and unconverted reactant (CO), which were detected in a multi-pass absorption cell. The phase shift {phi} between external perturbation and variation of the CO{sub 2} signal was examined in dependence on temperature (100{sup o}C{<=}T{<=}350{sup o}C) and modulation frequency (1.39x10{sup -4}Hz{<=}{omega}{<=}6.67x10{sup -2}Hz). From the phase shift values, a simple Eley-Rideal mechanism is excluded, and the rate limiting step of the Langmuir-Hinshelwood mechanism for the CO oxidation may be identified. Adsorption and possible surface movement of CO to the actual reaction site determine the rate of the CO oxidation on the palladium/zirconia catalyst used in our study. The introduction of an external perturbation is a first step towards the application of two-dimensional infrared spectroscopy to heterogeneous catalyzed reactions. (author) 3 figs., 4 refs.

  1. Preparative treatment with NaOH to selectively concentrate iron oxides of a Chilean volcanic soil material to produce effective heterogeneous Fenton catalyst

    International Nuclear Information System (INIS)

    Manzo, Valentina; Pizarro, Carmen; Rubio, María Angélica; Cavalcante, Luis Carlos Duarte; Garg, Vijayendra Kumar; Fabris, José Domingos

    2011-01-01

    A Chilean volcanic Ultisol material was first size-fractionated so as to obtain the fraction with mean particle sizes φ   − 1 NaOH, in an attempt to evaluate the effectiveness of the selective chemical dissolution to concentrate iron oxides, as a preparation procedure before using the materials as heterogeneous Fenton catalysts. The effects of those treatments on the iron oxides mineralogy were monitored with Mössbauer spectroscopy. The NaOH-treated samples were tested as catalysts towards the H 2 O 2 decomposition. Three or five sequential NaOH treatments were found to be comparably effective, by concentrating nearly the same proportion of iron oxides in the remaining solid phase (25.1 ± 0.4 and 23.3 ± 0.2 mass%, respectively). 298 K-Mössbauer patterns were similar for both samples, with a central (super)paramagnetic Fe 3 +  doublet and a broad sextet, assignable to several closely coexisting magnetically ordered forms of iron oxides. Despite of this nearly similar effect of the two treatments, the Ultisol material treated three times with NaOH presents higher heterogeneous catalytic efficiency and is more suitable to decompose H 2 O 2 than that with five treatments.

  2. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    Science.gov (United States)

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB were soaked into silver nitrate (AgNO3 aqueous solution. The Ag-TiO2-SiO2(Ag-TS composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis. Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.% as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions.

  4. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  5. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO{sub 4} under Oxygen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hyeok; Ko, Kwang Youn [Ajou University, Suwon (Korea, Republic of)

    2006-02-15

    KMnO{sub 4}/alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O{sub 2} atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO{sub 4}/alumina reagent acts as a catalytic oxidant under O{sub 2} atmosphere. Diphenyldiazomethane (Ph{sub 2}CN{sub 2}) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group.

  6. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  7. Magnetic Fe{sub 2}MO{sub 4} (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Dung [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Phan, Ngoc Hoa [Department of Chemical Technology, Hochiminh University of Technology, 268 Ly Thuong Kiet, District 10, Ho Chi Minh (Viet Nam); Do, Manh Huy, E-mail: huydoma@vast-hcm.ac.vn [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Ngo, Kim Tham [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); College of science, Can Tho University, 3/2, Can Tho (Viet Nam)

    2011-01-30

    We present a simple and efficient method for the fabrication of magnetic Fe{sub 2}MO{sub 4} (M:Fe and Mn) activated carbons (Fe{sub 2}MO{sub 4}/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe{sub 2}MnO{sub 4}/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe{sub 3}O{sub 4}/AC-H. The effect of operational parameters (pH, catalyst loading H{sub 2}O{sub 2} dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  8. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  9. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    Science.gov (United States)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  10. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    International Nuclear Information System (INIS)

    Kovanda, Frantisek; Rojka, Tomas; Dobesova, Jana; Machovic, Vladimir; Bezdicka, Petr; Obalova, Lucie; Jiratova, Kveta; Grygar, Tomas

    2006-01-01

    Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 deg. C in Co-Al sample to 120 deg. C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 deg. C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N 2 O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N 2 O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1

  11. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  12. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  13. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor

    Science.gov (United States)

    Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.

    Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.

  14. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  15. Investigation into catalytic properties of the second group metal molybdates in acrolein oxidation

    International Nuclear Information System (INIS)

    Yakubovich, M.N.; Gorochovatskij, Ya.B.; Alchazov, T.G.; Adzhamov, K.Yu.

    1976-01-01

    The catalytic properties are investigated of magnesium, calcium, strontium, zinc, cadmium, and barium molybdates. Temperature dependence of catalysts activity is studied. At temperature over 370 deg C the activity becomes higher in the series ZnMoO 4 -CaMoO 4 -MgMoO 4 -SrMoO 4 . A sharp fall in the activity is observed for BaMoO 4 , and CdMoO 4 . SrMoO 4 is the most active catalyst. The activity series have been made up with respect to the formation of acrylic acid: MgMoO 4 >ZnMoO 4 >CaMoO 4 , and also with respect to the formation of the deep oxidation products: SrMoO 4 >CaMoO 4 >MgMoO 4 >ZnMoO 4 . The dependence of selectivity with respect to the formation of acrylic acid and the sum of the acids on temperature is provided

  16. The catalytic oxidation of malachite green by the microwave-Fenton processes.

    Science.gov (United States)

    Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng

    2010-01-01

    Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.

  17. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  18. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  19. Boosting the catalytic activity of natural magnetite for wet peroxide oxidation.

    Science.gov (United States)

    Álvarez-Torrellas, Silvia; Munoz, Macarena; Mondejar, Victor; de Pedro, Zahara M; Casas, Jose A

    2018-06-02

    This work explores the modification of naturally occurring magnetite by controlled oxidation (200-400 °C, air atmosphere) and reduction (300-600 °C, H 2 atmosphere) treatments with the aim of boosting its activity in CWPO. The resulting materials were fully characterized by XRD, XPS, TGA, TPR, SEM, and magnetization measurements, allowing to confirm the development of core-shell type structures. The magnetite core of the solid remained unchanged upon the treatment whereas the Fe(II)/Fe(III) ratio of the shell was modified (e.g. 0.42, 0.11 and 0.63 values were calculated for pristine Fe 3 O 4 , Fe 3 O 4 -O400, and Fe 3 O 4 -R400, respectively). The performance of the catalysts was tested in the CWPO of sulfamethoxazole (SMX) (5 mg L -1 ) under ambient conditions and circumneutral pH (pH 0  = 5), using the stoichiometric dose of H 2 O 2 (25 mg L -1 ) and a catalyst load of 1 g L -1 . The key role of the ferrous species on the mineral shell was evidenced. Whereas the oxidation of magnetite led to significantly slower degradation rates of the pollutant, its reduction gave rise to a dramatic increase, achieving the complete removal of SMX in 1.5 h reaction time with the optimum catalyst (Fe 3 O 4 -R400) compared to the 3.5 h required with the pristine mineral. A reaction mechanism was proposed for SMX degradation, and a kinetic equation based on the Eley-Rideal model was accordingly developed. This model successfully fitted the experimental results. The stability of Fe 3 O 4 -R400 was evaluated upon five sequential runs. Finally, the versatility of the catalytic system was proved in real environmentally relevant water matrices.

  20. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Science.gov (United States)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  1. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp [International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan)

    2016-06-03

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  2. Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations.

    Science.gov (United States)

    Rodríguez-Chueca, Jorge; Amor, Carlos; Mota, Joana; Lucas, Marco S; Peres, José A

    2017-10-01

    The treatment of winery effluents through sulphate radical-based advanced oxidation processes (SR-AOPs) driven by solar radiation is reported in this study. Photolytic and catalytic activations of peroxymonosulphate (PMS) and persulphate (KPS and SPS) at different pH values (4.5 and 7) were studied in the degradation of organic matter. Portugal is one of the largest wine producers in Europe. The wine making activities generate huge volume of effluents characterized by a variable volume and organic load, being their seasonal nature one of the most important drawbacks. Recently, SR-AOPs are gradually attracting attention as in situ chemical oxidation technologies, instead of hydroxyl radical AOPs (HR-AOPs). The studied concentrations are suitable to obtain notable values of organic matter degradation, with TOC removal around 50%. In general terms, no notable differences were observed between treatments at pH values 4.5 and 7. Photolytic activation of SPS with solar radiation treatments obtained the highest efficiency (28 and 40% of TOC removal with 1 and 50 mM, respectively, at pH 4.5) in comparison to KPS and PMS. The addition of a transition metal as catalyst, such as Fe(II) or Co(II), increased considerably the TOC removal efficiency higher than 50%, but not in all cases. For instance, the combination KPS or PMS with Co(II) at pH 4.5 did not allow to obtain better results than photolytic activation of these persulphate salts. In summary, the use of SR-AOPs could be a serious alternative as tertiary treatment for winery wastewaters.

  3. Removal of Selected Heavy Metals from Green Mussel via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Faizuan Abdullah; Abdull Rahim Mohd Yusoff; Wan Azelee Wan Abu Bakar; Razali Ismail; Dwi Priya Hadiyanto

    2014-01-01

    Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/ 2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe 2 O 3 , and ZnO catalysts. The lethal dose of LD 50 to rats of PAA is 1540 mg kg -1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 degree Celsius as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL -1 PAA and catalyzed with Fe 2 O 3 / Al 2 O 3 for up to 90 % mercury (Hg) removal. Using PAA with only 1 hour of reaction time, at room temperature (30-35 degree Celsius), pH 5-6 and salinity of 25-28 ppt, 90 % lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel. (author)

  4. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Júlio César M. [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Piasentin, Ricardo M.; Spinacé, Estevam V.; Neto, Almir O. [Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2016-09-01

    Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In{sub 2}O{sub 3}){sub 9}·(SnO{sub 2}){sub 1}) and ATO (Pt/C-ATO (SnO{sub 2}){sub 9}·(Sb{sub 2}O{sub 5}){sub 1}) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In{sub 2}O{sub 3} in ITO support and cassiterite SnO{sub 2} phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In{sub 2}O{sub 3} phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N{sub ads}) and promotion of ammonia electro-oxidation. - Highlights: • Oxide support effect on the catalytic activity of Pt towards ammonia electro-oxidation. • Direct ammonia fuel cell (DAFC) performance using Pt over different supports as anode. • Pt/C-ITO shows better catalytic activity for ammonia oxidation than Pt/C and Pt/C-ATO.

  5. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    Science.gov (United States)

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  7. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  8. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  9. N2O Catalytic Decomposition - Effect of Pelleting Pressure on Activity of Co-Mn-Al Mixed Oxide Catalyst

    Czech Academy of Sciences Publication Activity Database

    Galejová, K.; Obalová, L.; Jirátová, Květa; Pacultová, K.; Kovanda, F.

    2009-01-01

    Roč. 63, č. 2 (2009), s. 172-179 ISSN 0366-6352. [International Conference of the Slovak-Society-of-Chemical-Engineering /35./. Tatranske Matliare, 26.05.2008-30.05.2008] R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : pelleting pressure * nitrous oxide * catalytic decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.791, year: 2009

  10. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer

    OpenAIRE

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-01-01

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600??C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO bac...

  11. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.; Sarawade, Pradip B.; Hussain, Irshad; Zhu, Haibo; Al-Johani, Hind; Anjum, Dalaver H.; Hedhili, Mohamed N.; Maity, Niladri; D'Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation

    KAUST Repository

    Qureshi, Ziyauddin S.

    2016-04-13

    Gold nanoparticles (Au NPs) of different sizes were supported on fibrous silica nanospheres (KCC-1) by various methods. The size and the location of the Au NPs on the support were found to depend on the preparation method. The KCC-1-supported Au NPs were thoroughly characterized by using HR-TEM, XRD, X-ray photoelectron spectroscopy, UV, and Brunauer-Emmett-Teller surface area measurements and were applied in catalysis for the oxidation of CO. The catalytic performance is discussed in relation to the morphological properties of KCC-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    Science.gov (United States)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  14. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  15. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    Science.gov (United States)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  16. Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

    Directory of Open Access Journals (Sweden)

    Carl J. Mallia

    2016-07-01

    Full Text Available A flow system to perform Chan–Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times.

  17. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol.

    Science.gov (United States)

    Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M

    2018-07-01

    Transition metal oxides present in waste incineration systems have the ability to catalyze the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) through surface reactions involving organic dioxin precursors. However, studies have concentrated on the catalytic effects of individual transition metal oxides, while the complex elemental composition of fly ash introduces the possibility of synergistic or inhibiting effects between multiple, catalytically active components. In this study, we have tested fly ash surrogates containing different ratios (by weight) of iron (III) oxide and copper (II) oxide. Such Fe 2 O 3 /CuO mixed-oxide surrogates (in the Fe:Cu ratio of 3.5, 0.9 and 0.2 ) were used to study the cooperative effects between two transition metals that are present in high concentrations in most combustion systems and are known to individually catalyze the formation of PCDD/Fs. The presence of both iron and copper oxides increased the oxidative power of the fly ash surrogates in oxygen rich conditions and led to extremely high PCDD/F yields under pyrolytic conditions (up to >5% yield) from 2-monochlorophenol precursor. PCDD/F congener profiles from the mixed oxide samples are similar to results obtained from only CuO, however the total PCDD/F yield increases with increasing Fe 2 O 3 content. Careful analysis of the reaction products and changes to the oxidation states of active metals indicate the CuO surface sites are centers for reaction while the Fe 2 O 3 is affecting the bonds in CuO and increasing the ability of copper centers to form surface-bound radicals that are precursors to PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    Science.gov (United States)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  19. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    Science.gov (United States)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  20. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with on-line battery of analyzers. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behaviour in other combustion equipments, i.e. fluidized bed combustors. It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range NO heterogeneous reduction seems to be controlled by the evolution of surface complexes. In the high-temperature range a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor. 27 refs., 6 figs., 1 tab.

  1. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.

    Science.gov (United States)

    Arenillas, Ana; Rubiera, Fernando; Pis, José J

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.

  2. Volcano Relation for the Deacon Process over Transition-Metal Oxides

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Hansen, Heine Anton

    2010-01-01

    We establish an activity relation for the heterogeneous catalytic oxidation of HCI (the Deacon Process) over rutile transition-metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps...

  3. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  4. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.

    Science.gov (United States)

    Feng, Zhenxing; Hong, Wesley T; Fong, Dillon D; Lee, Yueh-Lin; Yacoby, Yizhak; Morgan, Dane; Shao-Horn, Yang

    2016-05-17

    Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-δ and (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ oxide thin films, and

  5. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions

    KAUST Repository

    Feng, Zhenxing

    2016-05-05

    δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1–ySry)2CoO4±δ/La1–xSrxCo0.2Fe0.8O3−δ. Sr enrichment in many electrocatalysts, such as La1–xSrxMO3−δ (M = Cr, Co, Mn, or Co and Fe) and Sm1–xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst’s activity while maintaining stability to design efficient, cost-effective electrocatalysts.

  6. Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Heterogeneous ruthenium-based catalysts were applied in the selective, aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, to form 2,5-furandicarboxylic acid. The oxidation reactions were performed in water with dioxygen as the oxidant at different pressures without...

  7. Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.

    Science.gov (United States)

    Gondal, M A; Dastageer, M A; Oloore, L E; Baig, U; Rashid, S G

    2017-07-03

    Ordered mesoporous indium oxide nanocrystal (m-In 2 O 3 ) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In 2 O 3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In 2 O 3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In 2 O 3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO 2 ) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg -1 h -1 after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO 2 into methanol.

  8. Selective heterogeneous catalytic hydrogenation of ketone (C═O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach.

    Science.gov (United States)

    Shah, Muhammad Tariq; Balouch, Aamna; Rajar, Kausar; Sirajuddin; Brohi, Imdad Ali; Umar, Akrajas Ali

    2015-04-01

    Magnetite nanoparticles were successfully synthesized and effectively employed as heterogeneous catalyst for hydrogenation of ketone moiety to alcohol moiety by NaBH4 under the microwave radiation process. The improvement was achieved in percent recovery of isopropyl alcohol by varying and optimizing reaction time, power of microwave radiations and amount of catalyst. The catalytic study revealed that acetone would be converted into isopropyl alcohol (IPA) with 99.5% yield in short period of reaction time, using 10 μg of magnetite NPs (Fe3O4). It was observed that the catalytic hydrogenation reaction, followed second-order of reaction and the Langmuir-Hinshelwood kinetic mechanism, which elucidated that both reactants get adsorb onto the surface of silica coated magnetite nanocatalyst to react. Consequently, the rate-determining step was the surface reaction of acetone and sodium borohydride. The current study revealed an environment friendly conversion of acetone to IPA on the basis of its fast, efficient, and highly economical method of utilization of microwave irradiation process and easy catalyst recovery.

  9. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Mul, G.; Perez-Ramirez, J.; Xu, Xiaoding; Oonk, H.; Yakovlev, A.

    2001-06-01

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  10. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  11. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Kootenaei, A.H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-01-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V 2 O 5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere

  12. Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of L-cysteine.

    Science.gov (United States)

    Yin, Kun; Li, Bowei; Wang, Xiaochun; Zhang, Weiwei; Chen, Lingxin

    2015-02-15

    As an essential element, copper ion (Cu(2+)) plays important roles in human beings for its participation in diverse metabolic processes as a cofactor and/or a structural component of enzymes. However, excessive uptake of Cu(2+) ion gives rise to the risk of certain diseases. So, it is important to develop simple ways to monitor and detect Cu(2+) ion. In this study, a simple, facile colorimetric sensor for the ultrasensitive determination of Cu(2+) ion was developed based on the following principle: L-cysteine and 1-chloro-2,4-dinitrobenzene (CDNB) could be conjugated to form the yellow product 2,4-dinitrophenylcysteine (DNPC), which was measurable at 355nm; however, upon addition of Cu(2+) ion, the absorbance of DNPC would be decreased owing to the Cu(2+) ion catalytic oxidation of L-cysteine to L-cystine in the presence of O2. Thus, the colorimetric detection of Cu(2+) ion could be achieved. The optimal pH, buffer, temperature and incubation time for the colorimetric sensor were obtained of pH 6.8 in 0.1M HEPES solution, 90 °C and 50 min, respectively. A good linearity within the range of 0.8-10 nM (r = 0.996) was attained, with a high detectability up to 0.5nM. Analyses of Cu(2+) ion in drinking water, lake water, seawater and biological samples were carried out and the method performances were found to agree well with that obtained by ICP-MS. The developed simple colorimetric sensor proved applicable for Cu(2+) ion determination in real samples with high sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Kootenaei, A.H. Shahbazi [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Towfighi, J., E-mail: towfighi@modares.ac.ir [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Khodadadi, A.; Mortazavi, Y. [Catalysis and Nanostructured Materials Laboratory, Oil and Gas Processing Center of Excellence, Department of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V{sub 2}O{sub 5} catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  14. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Li

    2006-01-01

    Full Text Available Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS, the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8×1014 molecule cm-3] oxidation by O3 [(1.2–12×1014 molecule cm-3] was determined to be (1.4±0.3×10-7 using the BET area as the reactive area and (7.7±1.6×10-4 using the geometric area. A two-stage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.

  15. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-01-01

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H 2 O 2 /ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H 2 O 2 ) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H 2 O 2 ), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H 2 O 2 ) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  16. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  17. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  18. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  19. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  20. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaoliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Liu, Peng [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); He, Hongping, E-mail: hehp@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Wei, Gaoling [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Chen, Tianhu [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009 (China); Tan, Wei; Tan, Fuding [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Zhu, Jianxi; Zhu, Runliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China)

    2016-04-05

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn{sup 4+} species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H{sub 2} temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn{sup 4+} species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  1. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Liu, Peng; He, Hongping; Wei, Gaoling; Chen, Tianhu; Tan, Wei; Tan, Fuding; Zhu, Jianxi; Zhu, Runliang

    2016-01-01

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn"4"+ species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H_2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn"4"+ species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  3. Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

    DEFF Research Database (Denmark)

    Falsig, Hanne

    -metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Brønsted–Evans–Polanyi (BEP) relations for the activation barriers of dissociation of diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd......The main aim of this thesis is to understand the catalytic activity of transition metals and noble metals for the direct decomposition of NO and the oxidation of CO. The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step...... towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition...

  4. Effect of Composition and Mass Ratio on the Catalytic Wet Air Oxidation Catalyst Cu–Fe–La/FSC

    Directory of Open Access Journals (Sweden)

    Wu Chao

    2016-01-01

    Full Text Available The catalytic wet air oxidation (CWAO technology is used for the treatment of the simulated printing and dyeing wastewater and also for investigating the catalyst performance indicators such as catalyst activity and stability. The catalyst activity is mainly reflected from the water decolorization and CODCr removal rates, and the stability of the catalyst is mainly reflected by the quantity of metal dissolution. The experimental results showed that the prepared Cu–Fe–La/FSC catalyst with a 1:1:2 ratio of Cu–Fe–La by the impregnation method exhibited good activity for the treatment of the simulated printing and dyeing wastewater by the CWAO method, and the decolorization and CODCr removal rates using this catalyst were 98.7% and 78.6%, respectively, with a higher catalytic activity, lower concentration of metal dissolution, and good stability.

  5. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: synthesis of 1,2-disubstituted benzimidazoles.

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-09-01

    Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  6. Combination of sunlight irradiated oxidative processes for landfill leachate: heterogeneous catalysis (TiO2 versus homogeneous catalysis (H2O2

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Cobra Guimarães

    2013-04-01

    Full Text Available The objective of this work was to study the treatment of landfill leachate liquid in nature, after the use of a combination of advanced oxidation processes. More specifically, it compared heterogeneous catalysis with TiO2 to homogeneous catalysis with H2O2, both under photo-irradiated sunlight. The liquid used for the study was the leachate from the landfill of the city of Cachoeira Paulista, São Paulo State, Brazil. The experiments were conducted in a semi-batch reactor open to the absorption of solar UV radiation, with 120 min reaction time. The factors and their respective levels (-1, 0 and 1 were distributed in a experimental design 24-1 with duplicate and triplicate in the central point, resulting in an array with 19 treatment trials. The studied factors in comparing the two catalytic processes were: liquid leachate dilution, TiO2 concentration on the reactor plate, the H2O2 amount and pH level. The leachate had low photo-catalytic degradability, with NOPC reductions ranging from 1% to a maximum of 24.9%. When considering each factor alone, neither homogeneous catalysis with H2O2, nor heterogeneous catalysis with TiO2, could degrade the percolated liquid without significant reductions (5% level in total NOPC. On the other hand, the combined use of homogenous catalysis with H2O2 and heterogeneous catalysis H2O2 resulted in the greatest reductions in NOPC. The optimum condition for the NOPC reduction was obtained at pH 7, dilution of percolated:water at 1:1 (v v-1 rate; excess of 12.5% H2O2 and coating plate reactor with 0.025 g cm-2 TiO2.

  7. Promotion of catalytic performance by adding W into Pt/ZrO{sub 2} catalyst for selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mengmeng [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan (China); Wang, Suning; Li, Yuanshan [College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Xu, Haidi, E-mail: xuhaidi@scu.edu.cn [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan (China); Chen, Yaoqiang, E-mail: nic7501@scu.edu.cn [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan (China); College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2017-04-30

    Highlights: • The tungsten species weaken platinum-oxygen bond strength. • Pt{sup 0} was the active species of ammonia oxidation reaction in the low temperature. • Some PtO species could convert to Pt [111] beside WO{sub 3} species. - Abstract: Pt-WO{sub 3}/ZrO{sub 2} catalyst was prepared by co-impregnation method to improve the ammonia oxidation performance of Pt/ZrO{sub 2}. Differences in textural, structural, surface chemical states, redox properties and acid properties, together with the catalytic performance of Pt/ZrO{sub 2} and Pt-WO{sub 3}/ZrO{sub 2} catalysts were investigated systematically. The results of H{sub 2}-TPR revealed that higher reduction ability was possessed by Pt-WO{sub 3}/ZrO{sub 2} than that of Pt/ZrO{sub 2} due to the influence of tungsten on platinum. The XPS results showed that electron transfer from tungsten to platinum species made higher electron density around platinum. The TEM results revealed that the active lattice plane Pt[111] was obtained by modification of W species. Consequently, Pt-WO{sub 3}/ZrO{sub 2} exhibited obviously better ammonia oxidation performance compared with Pt/ZrO{sub 2}, the light-off temperature of NH{sub 3} shifted from 284 °C to 249 °C, the activation energy decreased from 113.4 kJ mol{sup −1} to 96.2 kJ mol{sup −1}.

  8. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  9. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    Science.gov (United States)

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  10. EFFECT OF IMPREGNATION PROCEDURE OF Pt/γ-Al2O3 CATALYSTS UPON CATALYTIC OXIDATION OF CO

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available The oxidation of carbon monoxide by oxygen using two catalysts prepared by two different methods has been investigated. In the first method, catalyst prepared by immersing γ-Al2O3 into the hexa-chloroplatinic acid solution at 80oC for 4 h, resulted Pt/γ-Al2O3 catalyst having platinum highly dispersed on the support. While that of immersing γ-Al2O3 in the hexa-chloroplatinic acid solution at room temperature for 12 h, produced Pt/ γ-Al2O3 catalyst where platinum dispersion was much lower. Catalytic activity test showed that platinum well dispersed on the support enhanced the activity of oxidation of carbon monoxide. The platinum impregnated at room temperature resulted in the poor activity.   Keyword: Catalyst, CO Oxidation, Platinum.

  11. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  12. Co/Zr substitution in a cerium-zirconium oxide by catalytic steam reforming of bio-ethanol

    International Nuclear Information System (INIS)

    Vargas, J.C.; Thomas, S.; Roger, A.C.; Kiennemann, A.; Vargas, J.C.

    2006-01-01

    This work deals with the production of hydrogen by bio-ethanol catalytic steam reforming. The aim is to develop a catalyst active in ethanol conversion, selective in hydrogen and resistant to deactivation, particularly those induced by the formation of carbon deposition. The metal-support interaction being one of the keys of this challenge, catalysts in which a transition metal is inserted into an oxide by a liquid synthesis method (by the precursor method) have been developed. The initial insertion of cobalt into a cerium oxide-zirconia structure presents the advantages to increase the redox properties of the host oxide and to allow a stable reduction of a cobalt part while favoring the metal-support interaction. (O.M.)

  13. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example.

    Science.gov (United States)

    Galeano, Carolina; Güttel, Robert; Paul, Michael; Arnal, Pablo; Lu, An-Hui; Schüth, Ferdi

    2011-07-18

    The use of nanostructured yolk-shell materials offers a way to discriminate support and particle-size effects for mechanistic studies in heterogeneous catalysis. Herein, gold yolk-shell materials have been synthesized and used as model catalysts for the investigation of support effects in CO oxidation. Carbon has been selected as catalytically inert support to study the intrinsic activity of the gold nanoparticles, and for comparison, zirconia has been used as oxidic support. Au, @C materials have been synthesized through nanocasting using two different nonporous-core@mesoporous-shell exotemplates: Au@SiO(2)@ZrO(2) and Au@SiO(2)@m-SiO(2). The catalytic activity of Au, @C with a gold core of about 14 nm has been evaluated and compared with Au, @ZrO(2) of the same gold core size. The strong positive effect of metal oxide as support material on the activity of gold has been proved. Additionally, size effects were investigated using carbon as support to determine only the contribution of the nanoparticle size on the catalytic activity of gold. Therefore, Au, @C with a gold core of about 7 nm was studied showing a less pronounced positive effect on the activity than the metal oxide support effect. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel.

    Science.gov (United States)

    Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I

    2017-09-21

    The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.

  15. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  16. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  17. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  18. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    International Nuclear Information System (INIS)

    González, J.; Chen, L.F.; Wang, J.A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J.L.

    2016-01-01

    Highlights: • Oxidative desulfurization of model diesel was tested in a biphasic system. • ODS activity was proportional to the V 5+ /(V 4+ + V 5+ ) values of the catalysts. • Lewis acidity was related to vanadium content and catalytic activity. • 99.9% DBT was oxidized using 25%V 2 O 5 /Ti-MCM-41 at 60 °C within 60 min. - Abstract: A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H 2 O 2 as oxidant. ODS activity was found to be proportional to the V 5+ /(V 4+ + V 5+ ) values of the catalysts, indicating that the surface vanadium pentoxide (V 2 O 5 ) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V 2 O 5 ) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V 2 O 5 /Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  19. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Matsuzawa, Y.; Ninagawa, S.

    1977-11-01

    Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.

  20. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  1. Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4

    Science.gov (United States)

    Yang, Heng; Lv, Kangle; Zhu, Junjiang; Li, Qin; Tang, Dingguo; Ho, Wingkei; Li, Mei; Carabineiro, Sónia A. C.

    2017-04-01

    Mesoporous graphitic carbon nitride (mpg-CN) was synthesized using Triton X-100, a surfactant containing a hydrophilic polyethylene oxide group and a tert-octyl-phenyl hydrophobic moiety, as a soft template. The obtained mpg-CN was used as a support for Co3O4, and this supported catalyst was used for CO oxidation. The effects of the amount of Triton X-100, weight ratio of Co3O4 to mpg-CN and calcination temperature on the catalytic performances for CO oxidation of Co3O4/mpg-CN composites were systematically studied. It was found that the presence of Triton X-100 not only retarded the polymerization of dicyandiamide, but also affected the microstructure of Co3O4. Bubbles formed because of the hydrophobic group of the surfactant Triton X-100 can be act as a soft template for the synthesis of mesoporous g-C3N4. The enhanced catalytic activity of Co3O4/mpg-CN was attributed to a synergistic effect, enlarged BET surface areas, increased Co3+ and lattice oxygen contents, and the porous structure of mpg-CN support. The high stability of 12.5% Co3O4/mpg-CN(1.0) makes it a promising catalyst for practical applications.

  2. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  3. Synthesis and application of multiple rods gold-zinc oxide nano structures in the photo catalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Arab Chamjangali, M.; Bagherian, G.; Bahramian, B.; Fahimi Rad, B.

    2015-01-01

    Zinc oxide and gold-zinc oxide (Au-Zn O) nano structures with multiple rods (multi pods) morphology were successfully prepared. Au-Zn O nano structures were synthesized via a simple precipitation route method in the presence of oligo aniline-coated gold nanoparticles. The Au-Zn O catalyst obtained was applied for the degradation of methyl orange in an aqueous solution under UV irradiation Effects of the operational parameters such as the solution p H, amount of photocatalyst, and dye concentration on the photo catalytic degradation and decolorisation of methyl orange were studied. Detailed studies including kinetic study and regeneration of catalyst were carried out on the optimal conditions for the photodegradation of methyl orange by Au-Zn O multi pods in aqueous solution. Effect of foreign species on the photodegradation of methyl orange was also studied. An enhancement of the photo catalytic activities for photodegradation of methyl orange was observed when the gold nanoparticles were loaded on the zinc oxide multi pods. The proposed catalyst was applied for the degradation of methyl orange in synthetic wastewater samples with satisfactory results.

  4. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  5. Review of literature on catalytic recombination of hydrogen--oxygen

    International Nuclear Information System (INIS)

    Homsy, R.V.; Glatron, C.A.

    1968-01-01

    The results are reported of a literature search for information concerning the heterogeneous, gas phase, catalytic hydrogen-oxygen recombination. Laboratory scale experiments to test the performance of specific metal oxide catalysts under conditions simulating the atmosphere within a nuclear reactor containment vessel following a loss-of-coolant blowdown accident are suggested

  6. Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2010-11-01

    Full Text Available The heterogeneous reactions of carbonyl sulfide (OCS on the typical mineral oxides in the mineral dust particles were investigated using a Knudsen cell flow reactor and a diffuse reflectance UV-vis spectroscopy. The reaction pathway for OCS on mineral dust was identified based on the gaseous products and surface species. The hydrolysis of OCS and succeeding oxidation of intermediate products readily took place on α-Al2O3, MgO, and CaO. Reversible and irreversible adsorption of OCS were observed on α-Fe2O3 and ZnO, respectively, whereas no apparent uptake of OCS by SiO2 and TiO2 was observed. The reactivity of OCS on these oxides depends on both the basicity of oxides and the decomposition reactivity of oxides for H2S. Based on the individual uptake coefficients and chemical composition of authentic mineral dust, the uptake coefficient (γBET of mineral dust was estimated to be in the range of 3.84×10−7–2.86×10−8. The global flux of OCS due to heterogeneous reactions and adsorption on mineral dust was estimated at 0.13–0.29 Tg yr−1, which is comparable to the annual flux of OCS for its reaction with ·OH.

  7. Determination of molybdenum (VI) by its catalytic effect on the oxidation of nile blue by hydrogen peroxide

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Sadeghie, Majid M.; Alaie-Yazdie, F.

    1998-01-01

    A spectrophotometric reaction rate method for the determination of molybdenum is described, based on its catalytic effect on the oxidation of nile blue by hydrogen peroxide. The decrease in absorbance of nile blue with time from 0.5 to 4 min at 590 nm is proportional to the concentration of Mo(VI) over the range 0.022-1000 μg/ml. The limit of detection of molybdenum(VI) is 0.008 μg/ml. The precision and the effect of more than forty ions are reported. The procedure has been successfully applied for the determination of molybdenum (VI) in plant materials and steel samples. (author)

  8. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  9. Denitration of medium level liquid radioactive wastes by catalytic destruction of nitrogen oxides

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.

    1984-01-01

    The catalytic abatement by means of NH 3 of the NOsub(x) produced in the radwaste conditioning has been studied. With reference to the gas produced in a bituminization plant, the thermodynamics and the chemistry of the NOsub(x) catalytic reduction to nitrogen and H 2 O have been evaluated. The following operational parameters have been experimentally studied: the catalyst bed temperature; the gas residence time; the vapour concentration; the NOsub(x) concentration; the gas velocity; the catalyst grain size distribution; the catalyst time-life. Abatement yields of the order of 99,5% have been obtained following experimental conditions must be selected. In the case of a bituminization plant, a NOsub(x) catalytic reactor, if installed between the evaporator denitrator and the condenser, could reduce to less than 1/100 the volume of the NaNO 3 secondary wastes produced by the gas scrubbing

  10. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    Science.gov (United States)

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    International Nuclear Information System (INIS)

    Joo, Sung Hee; Zhao, Dongye

    2017-01-01

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  12. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sung Hee, E-mail: s.joo1@miami.edu [Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630 (United States); Zhao, Dongye [Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849 (United States)

    2017-01-15

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  13. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  14. Catalytic oxidation of sulfide in drinking water treatment: activated carbon as catalyst; Katalytische Oxidation von Sulfid bei der Trinkwasseraufbereitung: Aktivkohle als Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, V; Grischek, T; Wolff, D; Worch, E [Technische Univ. Dresden (Germany). Inst. fuer Wasserchemie; Gun, J [Hebrew Univ. of Jerusalem (Israel). Div. of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science

    2001-07-01

    In regions with warm climate and limited water resources high sulfide concentrations in groundwater can cause problems during drinking water treatment. Aeration of the raw water is not always sufficient to ensure the hydrogen sulfide concentration below the odour threshold value for hydrogen sulfide. As an alternative, activated carbon can be used as a catalyst for sulfide oxidation of raw water. The use of different types of activated carbon was investigated in kinetic experiments. Both Catalytic Carbon from Calgon Carbon and granulated activated carbon from Norit showed high catalytic activities. The results of the experiments are discussed with regard to the practical use of activated carbon for the elimination of hydrogen sulfide during drinking water treatment. (orig.)

  15. Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions.

    Science.gov (United States)

    Yang, Xiaochao; You, Xiaoxiao; Zhang, Bin; Guo, Chuigen; Yu, Chaosheng

    2017-10-01

    Magnetic imprinted N-doped P25/Fe 3 O 4 -graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe 3 O 4 -GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.

  16. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    Science.gov (United States)

    González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.

    2016-08-01

    A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  17. Heterogeneous photo-Fenton oxidation with natural clays for phenol and tyrosol remediation

    Directory of Open Access Journals (Sweden)

    Djeffal L.

    2013-09-01

    Full Text Available Due to their excellent properties, clays have been widely used in several applications, particularly in catalysis. In this paper, three clays were used as heterogeneous photo-Fenton catalysts for phenol and tyrosol oxidations. Particular attention was given to the effect of the main operating conditions on the process performance. A total conversion was obtained for both organic pollutants with studied catalysts in 20 minutes reaction. For phenol, a total organic carbon (TOC conversion of 93% was obtained using sieved and calcined smectite clay. The TOC conversion was 60% for tyrosol with the same catalyst. Clays were characterized by chemical analysis, BET, XRD, TPR and SEM.

  18. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets.

    Science.gov (United States)

    Basiri Parsa, Jalal; Ebrahimzadeh Zonouzian, Seyyed Alireza

    2013-11-01

    A low pressure pilot scale hydrodynamic cavitation (HC) reactor with 30 L volume, using fixed scrap iron sheets, as the heterogeneous catalyst, with no external source of H2O2 was devised to investigate the effects of operating parameters of the HC reactor performance. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The reactor optimization was done based upon the extent of decolorization (ED) of aqueous solution of Rhodamine B (RhB). To have a perfect study on the pertinent parameters of the heterogeneous catalyzed HC reactor, the following cases as, the effects of scrap iron sheets, inlet pressure (2.4-5.8 bar), the distance between orifice plates and catalyst sheets (submerged and inline located orifice plates), back-pressure (2-6 bar), orifice plates type (4 various orifice plates), pH (2-10) and initial RhB concentration (2-14 mg L(-1)) have been investigated. The results showed that the highest cavitational yield can be obtained at pH 3 and initial dye concentration of 10 mg L(-1). Also, an increase in the inlet pressure would lead to an increase in the ED. In addition, it was found that using the deeper holes (thicker orifice plates) would lead to lower ED, and holes with larger diameter would lead to the higher ED in the same cross-sectional area, but in the same holes' diameters, higher cross-sectional area leads to the lower ED. The submerged operation mode showed a greater cavitational effects rather than the inline mode. Also, for the inline mode, the optimum value of 3 bar was obtained for the back-pressure condition in the system. Moreover, according to the analysis of changes in the UV-Vis spectra of RhB, both degradation of RhB chromophore structure and N-deethylation were occurred during the catalyzed HC process. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Removal of Humic Substances from Water by Advanced Oxidation Process Using UV/TiO2 Photo Catalytic Technology

    Directory of Open Access Journals (Sweden)

    Hassan Khorsandi

    2009-01-01

    Full Text Available Humic substances have been known as precursors to disinfection by-products. Because conventional treatment processes cannot meet disinfection by-product standards, novel methods have been increasingly applied for the removal of disinfection by-products precursors. The UV/TiO2 process is one of the advanced oxidation processes using the photocatalytic technology. The most important advantages of this process are its stability and high efficiency removal. The present study aims to investigate the effect of UV/TiO2 photo-catalytic technology on removal of humic substances. The study was conducted in a lab-scale batch photo-catalytic reactor using the interval experimental method. The UV irradiation source was a low pressure mercury vapor lamp 55w that was axially centered and was immersed in a humic acids solution within a stainless steel tubular 2.8 L reaction volume. Each of the samples taken from the UV/TiO2 process and other processes studied were analyzed for their dissolved organic carbon, UV absorbance at 254nm, and specific UV254 absorbance. The results indicated the high efficiency of the UV/TiO2 photo-catalytic process (TiO2=0.1 g/L and pH=5, compared to other processes, for humic substances removal from water sources. The process was also found to be capable of decreasing the initial dissolved organic carbon from 5 to 0.394 mg/L. The Specific UV254 Absorbance of 2.79 L/mg.m was attained after 1.5 hr. under photo-catalytic first order reaction (k= 0.0267 min-1. It may be concluded that the UV/TiO2 process can provide desirable drinking water quality in terms of humic substance content.

  20. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  1. Oxidative cracking of n-hexane: a catalytic pathway to olefins

    NARCIS (Netherlands)

    Boyadjian, C.A.

    2010-01-01

    Steam cracking, the major, current existing route for light olefin production, is the most energy consuming process in the chemical industry. The need for an energy efficient processes, urged substantial research work for the development of new catalytic technologies for light olefin production.

  2. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.

    Science.gov (United States)

    Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2011-12-01

    The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  4. Modifications induced by potassium addition on chromia/alumina catalysts and their influence on the catalytic activity for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Rombi, E.; Gazzoli, D.; Cutrufello, M.G.; De Rossi, S.; Ferino, I.

    2010-01-01

    The oxidative dehydrogenation of propane was investigated on K-containing chromia/alumina catalysts, with nominal Cr and K loadings of 10 and 0-2 wt%, respectively. Their chemical composition, structure, texture, nature of surface species, redox features and surface acidity were determined. Catalytic behaviour was investigated in a continuous-flow micro-reactor under different conditions. Besides the nature and concentration of the chromium species, potassium addition was found to affect the reducibility of the catalysts as well as their acid surface features. Such modifications were found to condition the catalytic behaviour, which appeared somewhat peculiar in comparison with that of the catalytic systems reported in literature.

  5. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    International Nuclear Information System (INIS)

    Schaefer, C.; Jansen, A. P. J.

    2013-01-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  6. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  7. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  8. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua; Li, Kun; Sioud, Salim; Cha, Dong Kyu; Amad, Maan H.; Hedhili, Mohamed N.; Al-Talla, Zeyad

    2012-01-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  9. Green approach for preparation of reduced graphene oxide decorated with gold nanoparticles and its optical and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Šimšíková, M., E-mail: michaela.simsikova@ceitec.vutbr.cz [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Bartoš, M. [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Keša, P. [Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 54 Košice (Slovakia); Department of Biophysics, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice (Slovakia); Šikola, T. [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2016-07-01

    Graphene oxide (GO) was reduced and modified by gold nanoparticles using aqueous leaf extract of green tea. Successful formation of gold nanoparticles (AuNPs) on graphene oxide surface was determined by scanning electron microscopy (SEM). Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared analyses (FT-IR) have been used to demonstrate the behavior of complex of reduced graphene oxide with gold nanoparticles (rGO-AuNPs), the removal of oxygen-containing groups from the graphene, and subsequent formation of reduced graphene oxide (rGO). We also demonstrated the change of optical properties of GO after the reduction and formation of gold nanoparticles on its surface by UV–vis spectroscopy and fluorescence spectroscopy. The positive impact of rGO-AuNPs composite on safranin T reduction in the presence of NaBH{sub 4} without light irradiation was examined, as well. The dye decolorization was observed within 60 min which highlights the exceptional catalytic potential of the rGO-AuNPs. - Highlights: • Reduction of GO was performed by an environmentally friendly approach. • Gold nanoparticles were prepared by self-assembly on the graphene oxide surface. • Surface properties were enhanced after the formation of gold nanoparticles. • Optical properties have been changed after the graphene reduction and formation of gold nanoparticles. • The decolorization of safranin T was observed within 60 min.

  10. Green approach for preparation of reduced graphene oxide decorated with gold nanoparticles and its optical and catalytic properties

    International Nuclear Information System (INIS)

    Šimšíková, M.; Bartoš, M.; Keša, P.; Šikola, T.

    2016-01-01

    Graphene oxide (GO) was reduced and modified by gold nanoparticles using aqueous leaf extract of green tea. Successful formation of gold nanoparticles (AuNPs) on graphene oxide surface was determined by scanning electron microscopy (SEM). Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared analyses (FT-IR) have been used to demonstrate the behavior of complex of reduced graphene oxide with gold nanoparticles (rGO-AuNPs), the removal of oxygen-containing groups from the graphene, and subsequent formation of reduced graphene oxide (rGO). We also demonstrated the change of optical properties of GO after the reduction and formation of gold nanoparticles on its surface by UV–vis spectroscopy and fluorescence spectroscopy. The positive impact of rGO-AuNPs composite on safranin T reduction in the presence of NaBH_4 without light irradiation was examined, as well. The dye decolorization was observed within 60 min which highlights the exceptional catalytic potential of the rGO-AuNPs. - Highlights: • Reduction of GO was performed by an environmentally friendly approach. • Gold nanoparticles were prepared by self-assembly on the graphene oxide surface. • Surface properties were enhanced after the formation of gold nanoparticles. • Optical properties have been changed after the graphene reduction and formation of gold nanoparticles. • The decolorization of safranin T was observed within 60 min.

  11. One-pot synthesis of reduced graphene oxide supported PtCuy catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction

    International Nuclear Information System (INIS)

    Peng, Xinglan; Zhao, Yanchun; Chen, Duhong; Fan, Yanfang; Wang, Xiao; Wang, Weili; Tian, Jianniao

    2014-01-01

    The outstanding performance PtCu y (y = 1,2,3) alloy nanoparticles supported on reduced graphene oxide (rGO) have been synthesized by a facile, efficient, one-pot hydrothermal synthesis approach. The as-prepared PtCu y /rGO catalysts are comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy. Cyclic voltammetry, CO-stripping voltammetry and chronoamperometry results reveal that the PtCu y /rGO catalysts have higher electro-catalytic activity, more negative onset oxidative potential, more excellent tolerance ability for CO poisoning and enhanced stability for the electro-oxidation of methanol compared to pure Pt/rGO. As far as the as-made PtCu y /rGO catalysts are concerned, the PtCu 2 /rGO exhibits the highest electro-catalytic activity. The mechanism of the promoting effect of Cu on Pt is explained based on the electronic modification effect. The nature of interfacial interactions between the Pt-Cu active metal phase and the rGO supporting materials is crucial to achieving high performance

  12. Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation

    Directory of Open Access Journals (Sweden)

    Misael Cordoba

    2017-12-01

    Full Text Available Co3O4 particles were supported on a series of activated carbons (G60, CNR, RX3, and RB3. Incipient wetness method was used to prepare these catalysts. The effect of the structural and surface properties of the carbonaceous supports during oxidation of benzyl alcohol was evaluated. The synthetized catalysts were characterized via IR, TEM, TGA/MS, XRD, TPR, AAS, XPS, and N2 adsorption/desorption isotherm techniques. Co3O4/G60 and Co3O4/RX3 catalysts have high activity and selectivity on the oxidation reaction reaching conversions above 90% after 6 h, without the presence of promoters. Catalytic performances show that differences in chemistry of support surface play an important role in activity and suggest that the presence of different ratios of species of cobalt and oxygenated groups on surface in Co3O4/G60 and Co3O4/RX3 catalysts, offered a larger effect synergic between both active phase and support increasing their catalytic activity when compared to the other tested catalysts.

  13. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  14. Fuel processor integrated H{sub 2}S catalytic partial oxidation technology for sulfur removal in fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, T.H.; Berry, D.A.; Lyons, K.D.; Beer, S.K.; Freed, A.D. [U.S. Department of Energy, Morgantown, WV (USA). National Energy Technology Laboratory

    2002-12-01

    H{sub 2}S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O{sub 2}-blown coal-derived synthesis gas. The H{sub 2}S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H{sub 2}S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H{sub 2}S and 0.3 order in O{sub 2}. 18 refs., 14 figs., 3 tabs.

  15. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  16. Impact of OH Heterogenous Oxidation on the Evolution of Brown Carbon Aerosol Optical Properties

    Science.gov (United States)

    Schnitzler, E.; Abbatt, J.

    2017-12-01

    The effects of varying relative humidity (RH) on the evolution of brown carbon (BrC) optical properties induced by heterogeneous OH oxidation were investigated in a series of photooxidation chamber experiments. A BrC surrogate was generated from aqueous 1,3-dihydroxybenzene (10 mM) and H2O2 (10 mM) exposed to >300 nm radiation, atomized, passed through a series of trace gas denuders, and injected into the chamber, which was conditioned to about 10 or 60% RH. Following aerosol injection, H2O2 was continuously bubbled into the chamber; an hour later, the chamber was irradiated with black-lights (UV-B) to produce OH. Before irradiation, aerosol absorption and scattering at 405 nm, measured using a photoacoustic spectrometer, decreased due only to deposition and dilution, and single scattering albedo (SSA) was relatively steady. In the presence of gas-phase OH, absorption first increased, despite continued particle losses, and SSA decreased. Subsequently, absorption decreased faster than scattering, and SSA increased uniformly. At 60% RH, colour enhancement, likely associated with functionalization, was greatest after only minutes of reaction. In contrast, at 10% RH, peak colour enhancement occurred after about two hours of reaction, indicating that the decrease in RH and the attendant increase in particle viscosity significantly impeded heterogeneous OH oxidation of the BrC surrogate.

  17. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  18. Catalytic Oxidation of CO and Soot over Ce-Zr-Pr Mixed Oxides Synthesized in a Multi-Inlet Vortex Reactor: Effect of Structural Defects on the Catalytic Activity.

    Science.gov (United States)

    Bensaid, Samir; Piumetti, Marco; Novara, Chiara; Giorgis, Fabrizio; Chiodoni, Angelica; Russo, Nunzio; Fino, Debora

    2016-12-01

    In the present work, ceria, ceria-zirconia (Ce = 80 at.%, Zr = 20 at.%), ceria praseodymia (Ce = 80 at.%, Pr = 20 at.%) and ceria-zirconia-praseodymia catalysts (Ce = 80 at.%, Zr = 10 at.% and Pr = 10 at.%) have been prepared by the multi-inlet vortex reactor (MIVR). For each set of samples, two inlet flow rates have been used during the synthesis (namely, 2 ml min -1 , and 20 ml min -1 ) in order to obtain different particle sizes. Catalytic activity of the prepared materials has been investigated for CO and soot oxidation reactions. As a result, when the catalysts exhibit similar crystallite sizes (in the 7.7-8.8 nm range), it is possible to observe a direct correlation between the O v /F 2g vibrational band intensity ratios and the catalytic performance for the CO oxidation. This means that structural (superficial) defects play a key role for this process. The incorporation of Zr and Pr species into the ceria lattice increases the population of structural defects, as measured by Raman spectroscopy, according to the order: CeO 2  oxidation activity for these catalysts, in contrast with nanostructured ones (e.g., Ce-Zr-O nanopolyhedra, Ce-Pr-O nanocubes) described elsewhere (Andana et al. Appl. Catal. B 197: 125-137, 2016; Piumetti et al., Appl Catal B 180: 271-282, 2016).

  19. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically co