WorldWideScience

Sample records for heterogeneous alkene metathesis

  1. Synthesis of tetrasubstituted alkenes via metathesis.

    Science.gov (United States)

    Paek, Seung-Mann

    2012-03-15

    Fully substituted olefin generation via metathesis is presented. Catalyst development, optimization of reaction conditions and substrate screening are included. In addition, asymmetric alkene metathesis, the cross metathesis reaction for this transformation and its application in natural products will be discussed.

  2. Synthesis of Tetrasubstituted Alkenes via Metathesis

    Directory of Open Access Journals (Sweden)

    Seung-Mann Paek

    2012-03-01

    Full Text Available Fully substituted olefin generation via metathesis is presented. Catalyst development, optimization of reaction conditions and substrate screening are included. In addition, asymmetric alkene metathesis, the cross metathesis reaction for this transformation and its application in natural products will be discussed.

  3. Stereoselectivity of supported alkene metathesis catalysts: a goal and a tool to characterize active sites

    Directory of Open Access Journals (Sweden)

    Christophe Copéret

    2011-01-01

    Full Text Available Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues, the use of (E/Z ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.

  4. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    Science.gov (United States)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  5. Alkene metathesis - a tool for the synthesis of conjugated polymers.

    Science.gov (United States)

    Bunz, Uwe H F; Mäker, Dominic; Porz, Michael

    2012-05-29

    Alkene metathesis is a superb methodology. We report the progress using alkene metathesis in the synthesis of polymeric organic semiconductors. Three classes of polymers have been synthesized using acyclic diene metathesis (ADMET) or ring opening metathesis polymerization (ROMP), viz., poly(acetylene)s (PA), poly(arylene-vinylene)s (PAV), and organometallic polymers. For PAs, ROMP of cyclooctatetraenes is best, whereas for PAV, both ADMET and indirect and direct ROMP are viable. Metathesis performs flawlessly with the correct monomers, as molybdenum and particularly the robust Ru carbenes demonstrate. When performing ROMP, one is often rewarded with structurally uniform polymers that can display very low polydispersities. Overall, metathesis is a powerful tool for the preparation of semiconducting polymers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  7. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  8. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  9. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  10. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  11. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-07

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.

  12. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  13. Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives

    Directory of Open Access Journals (Sweden)

    Dixneuf Pierre H.

    2016-03-01

    Full Text Available This account presents the importance of ruthenium-catalysed alkene cross-metathesis for the catalytic transformations of biomass derivatives into useful intermediates, especially those developed by the authors in the Rennes (France catalysis team in cooperation with chemical industry. The cross-metathesis of a variety of functional alkenes arising from plant oils, with acrylonitrile and fumaronitrile and followed by catalytic tandem hydrogenation, will be shown to afford linear amino acid derivatives, the precursors of polyamides. The exploration of cross-metathesis of bio-sourced unsaturated nitriles with acrylate with further catalytic hydrogenation has led to offer an excellent route to α,ω-amino acid derivatives. That of fatty aldehydes has led to bifunctional long chain aldehydes and saturated diols. Two ways of access to functional dienes by ruthenium-catalyzed ene-yne cross-metathesis of plant oil alkene derivatives with alkynes and by cross-metathesis of bio-sourced alkenes with allylic chloride followed by catalytic dehydrohalogenation, are reported. Ricinoleate derivatives offer a direct access to chiral dihydropyrans and tetrahydropyrans via ring closing metathesis. Cross-metathesis giving value to terpenes and eugenol for the straightforward synthesis of artificial terpenes and functional eugenol derivatives without C=C bond isomerization are described.

  14. Recent Applications of Alkene Metathesis in Fine Chemical Synthesis

    Science.gov (United States)

    Bicchielli, Dario; Borguet, Yannick; Delaude, Lionel; Demonceau, Albert; Dragutan, Ileana; Dragutan, Valerian; Jossifov, Christo; Kalinova, Radostina; Nicks, François; Sauvage, Xavier

    During the last decade or so, the emergence of the metathesis reaction in organic synthesis has revolutionised the strategies used for the construction of complex molecular structures. Olefin metathesis is indeed particularly suited for the construction of small open-chain molecules and macrocycles using crossmetathesis and ring-closing metathesis, respectively. These reactions serve, inter alia, as key steps in the synthesis of various agrochemicals and pharmaceuticals such as macrocyclic peptides, cyclic sulfonamides, novel macrolides, or insect pheromones. The present chapter is aiming at illustrating the great synthetic potential of metathesis reactions. Shortcomings, such as the control of olefin geometry and the unpredictable effect of substituents on the reacting olefins, will also be addressed. Examples to be presented include epothilones, amphidinolides, spirofungin A, and archazolid. Synthetic approaches involving silicon-tethered ring-closing metathesis, relay ring-closing metathesis, sequential reactions, domino as well as tandem metathesis reactions will also be illustrated.

  15. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

    Science.gov (United States)

    Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-12-01

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  16. Cross-metathesis reaction of α- and β-vinyl C-glycosides with alkenes

    Directory of Open Access Journals (Sweden)

    Ivan Šnajdr

    2015-08-01

    Full Text Available Cross-metathesis of α- and β-vinyl C-deoxyribosides and α-vinyl C-galactoside with various terminal alkenes under different conditions was studied. The cross-metathesis of the former proceeded with good yields of the corresponding products in ClCH2CH2Cl the latter required the presence of CuI in CH2Cl2 to achieve good yields of the products. A simple method for the preparation of α- and β-vinyl C-deoxyribosides was also developed. In addition, feasibility of deprotection and further transformations were briefly explored.

  17. Heterogenization of alkene epoxidation catalysts

    Directory of Open Access Journals (Sweden)

    Buffon Regina

    2003-01-01

    Full Text Available This account describes our efforts to heterogenize epoxidation catalysts. Anchored and sol-gel entrapped molybdenum were shown to be very selective, but had a strongly reduced activity. On the other hand, molybdenum silicates were very active and stable as long as no diols were present in the reaction mixture. Heterogenized rhenium catalysts were less active but allowed the use of anhydrous hydrogen peroxide as oxidant. However, the high cost and difficult regeneration prevents the industrial use of these catalysts. During these investigations, we found that alumina alone is active in the epoxidation with anhydrous hydrogen peroxide, giving good conversions to epoxides with high selectivity. More research is needed in order to clarify the nature of the hydroxyl groups responsible for its catalytic activity and thus to produce an appropriate material which would allow the obtention of epoxides with high selectivity under industrial conditions.

  18. Heterogeneous Catalysis: The Horiuti-Polanyi Mechanism and Alkene Hydrogenation

    Science.gov (United States)

    Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika

    2013-01-01

    The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…

  19. The metathesis of alkynes

    Directory of Open Access Journals (Sweden)

    H. C. M. Vosloo

    1991-07-01

    Full Text Available The alkyne metathesis reaction is a direct result of the known and intensively studied alkene or olefin metathesis reaction. Unfortunately this reaction was never studied as intensively as the alkene metathesis reaction, mainly because of a lack of active catalytic systems. In the alkyn metathesis reaction the carbon-carbon triple bonds are broken and rearranged to give a redistribution of alkylidyne groups.

  20. De novo synthesis of multisubstituted aryl amines using alkene cross metathesis.

    Science.gov (United States)

    Tatton, Matthew R; Simpson, Iain; Donohoe, Timothy J

    2014-04-04

    The olefin cross-metathesis reaction allows rapid access to 1,5-dicarbonyl intermediates which, upon treatment with a primary or secondary amine, allow the synthesis of a range of multisubstituted carbocyclic aryl amines. This de novo arene synthesis yields nonclassical substitution patterns in a regioselective and predictable approach that is compatible with several functional groups.

  1. Synthesis of novel aryl brassinosteroids through alkene cross-metathesis and preliminary biological study

    Czech Academy of Sciences Publication Activity Database

    Kořínková, Petra; Bazgier, V.; Oklešťková, Jana; Rárová, L.; Strnad, Miroslav; Kvasnica, Miroslav

    2017-01-01

    Roč. 127, NOV (2017), s. 46-55 ISSN 0039-128X R&D Projects: GA ČR GJ15-08202Y; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * BRI1 receptor kinase * Cross-metathesis * Molecular docking * Organic synthesis * Plant bioassays Subject RIV: CC - Organic Chemistry Impact factor: 2.282, year: 2016

  2. Synthesis and Application of Novel Ruthenium Catalysts for High Temperature Alkene Metathesis

    Directory of Open Access Journals (Sweden)

    Tegene T. Tole

    2017-01-01

    Full Text Available Four pyridinyl alcohols and the corresponding hemilabile pyridinyl alcoholato ruthenium carbene complexes of the Grubbs second generation-type RuCl(H2IMes(O^N(=CHPh, where O^N = 1-(2′-pyridinyl-1,1-diphenyl methanolato, 1-(2′-pyridinyl-1-(2′-chlorophenyl,1-phenyl methanolato, 1-(2′-pyridinyl-1-(4′-chlorophenyl,1-phenyl methanolato and 1-(2′-pyridinyl-1-(2′-methoxyphenyl,1-phenyl methanolato, are synthesized in very good yields. At high temperatures, the precatalysts showed high stability, selectivity and activity in 1-octene metathesis compared to the Grubbs first and second generation precatalysts. The 2-/4-chloro- and 4-methoxy-substituted pyridinyl alcoholato ligand-containing ruthenium precatalysts showed high performance in the 1-octene metathesis reaction in the range 80–110 °C. The hemilabile 4-methoxy-substituted pyridinyl alcoholato ligand improved the catalyst stability, activity and selectivity for 1-octene metathesis significantly at 110 °C.

  3. Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization

    Science.gov (United States)

    Balcar, Hynek; Čejka, Jiří

    Heterogeneous catalysts for olefin metathesis using different types of (i) siliceous mesoporous molecular sieves, and (ii) organized mesoporous alumina as supports are reported. The catalysts were prepared either by spreading of transition metal oxidic phase on the support surface or by immobilizing transition metal compounds (mostly organometallic) on the support. The activity of these catalysts in various types of metathesis reactions (i.e. alkene and diene metathesis, metathesis of unsaturated esters and ethers, RCM, ROMP and metathesis polymerization of alkynes) was described. The main advantages of these catalysts consist generally in their high activity and selectivity, easy separation of catalysts from reaction products and the preparation of products free of catalyst residue. The examples of pore size influence on the selectivity in metathesis reactions are also given.

  4. Well-defined silica-supported zirconium–imido complexes mediated heterogeneous imine metathesis

    KAUST Repository

    Hamzaoui, Bilel

    2016-02-15

    Upon prolonged thermal exposure under vacuum, a well-defined single-site surface species [(≡Si-O-)Zr(NEt2)3] (1) evolves into an ethylimido complex [(≡Si-O-)Zr(=NEt)NEt2] (2). Reactions of 2 with an imine substrate result in imido/imine (=NRi, R: Et, Ph) exchange (metathesis) with the formation of [(≡Si-O-)Zr(=NPh)NEt2] (3). Compounds 2 and 3 effectively catalyze imine/imine cross-metathesis and are thus considered as the first heterogeneous catalysts active for imine metathesis. © The Royal Society of Chemistry 2016.

  5. Metallacyclobutane substitution and its effect on alkene metathesis for propylene production over W-H/Al2O3: Case of isobutene/2-butene cross-metathesis

    KAUST Repository

    Szeto, Kaï Chung

    2013-09-06

    Cross metathesis between 2-butenes and isobutene yielding the valuable products propylene and 2-methyl-2-butene has been investigated at low pressure and temperature using WH3/Al2O3, a highly active and selective catalyst. Two parallel catalytic cycles for this reaction have been proposed where the cycle involving the less sterically hindered tungstacyclobutane intermediates is most likely favored. Moreover, it has been found that the arrangement of substituents on the least thermodynamically favored tungstacyclobutane governs the conversion rate of the cross metathesis reaction for propylene production from butenes and/or ethylene. © 2013 American Chemical Society.

  6. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  7. Relay cross metathesis reactions of vinylphosphonates

    Directory of Open Access Journals (Sweden)

    Raj K. Malla

    2014-08-01

    Full Text Available Dimethyl (β-substituted vinylphosphonates do not readily undergo cross metathesis reactions with Grubbs catalyst and terminal alkenes. However, the corresponding mono- or diallyl vinylphosphonate esters undergo facile cross metathesis reactions. The improved reactivity is attributed to a relay step in the cross metathesis reaction mechanism.

  8. Tube-in-tube reactor as a useful tool for homo- and heterogeneous olefin metathesis under continuous flow mode.

    Science.gov (United States)

    Skowerski, Krzysztof; Czarnocki, Stefan J; Knapkiewicz, Paweł

    2014-02-01

    A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mechanistic studies of olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H.

    1979-03-01

    A review covers studies of the olefin metathesis mechanism which indicated that the reaction proceeds by a non-pairwise mechanism; detailed mechanistic studies on the homogeneously and heterogeneously catalyzed metathesis; and stereochemical investigations.

  10. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  11. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  12. Allenyl esters as quenching agents for ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Roy, Animesh; Silvestri, Maximilian A; Hall, Robert A; Lepore, Salvatore D

    2017-01-04

    In the attempt to synthesize substituted allenyl esters through a metathesis coupling of unsubstituted allenyl esters and alkenes using a variety of ruthenium catalysts, it was discovered that allenyl esters themselves cleanly arrested the activity of the catalysts. Further studies suggests possible utility of allene esters as general quenching agents for metathesis reactions. To explore this idea, several representative olefin metathesis reactions, including ring closing, were successfully terminated by the addition of simple allenyl esters for more convenient purification.

  13. Factors influencing ring closure through olefin metathesis-A ...

    Indian Academy of Sciences (India)

    Success of ring closure reactions of substrates having two terminal alkenes through olefin metathesis depends on a number of factors such as catalysts, nature and size of the rings to be formed and the substituents/functional groups present on the alkenes as well as at the allylic position. This article presents an overview of ...

  14. Atom-Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visible-Light Photocatalysis.

    Science.gov (United States)

    Mao, Liang-Liang; Cong, Huan

    2017-11-23

    Heterogeneous visible-light photocatalysis represents an important route toward the development of sustainable organic synthesis. In this study visible light-induced, heavy metal-free atom-transfer radical addition to unactivated terminal olefins is carried out by using the combination of heterogeneous titanium dioxide as photocatalyst and a hypervalent iodine(III) reagent as co-initiator. The reaction can be applied to a range of substrates with good functional-group tolerance under very mild conditions. In addition to a number of commonly used atom-transfer reagents, the relatively challenging chloroform is also suitable. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Methods of making organic compounds by metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  16. Light-induced olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuval Vidavsky

    2010-11-01

    Full Text Available Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions.

  17. Light-induced olefin metathesis

    OpenAIRE

    Yuval Vidavsky; N. Gabriel Lemcoff

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to...

  18. Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2010-12-01

    Olefin metathesis has recently emerged as a viable reaction for chemical protein modification. The scope and limitations of olefin metathesis in bioconjugation, however, remain unclear. Herein we report an assessment of various factors that contribute to productive cross-metathesis on protein substrates. Sterics, substrate scope, and linker selection are all considered. It was discovered during this investigation that allyl chalcogenides generally enhance the rate of alkene metathesis reactions. Allyl selenides were found to be exceptionally reactive olefin metathesis substrates, enabling a broad range of protein modifications not previously possible. The principles considered in this report are important not only for expanding the repertoire of bioconjugation but also for the application of olefin metathesis in general synthetic endeavors.

  19. Influence of alkene substituent in dictating the reaction course to ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 12. Influence of alkene substituent in dictating the reaction course to form carbocycles or oxacycles during ring closing metathesis of acyclic trienes. RITABRATA DATTA SUBRATA GHOSH. REGULAR ARTICLE Volume 129 Issue 12 December 2017 pp ...

  20. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. E- and Z-Selective Transfer Semihydrogenation of Alkynes Catalyzed by Standard Ruthenium Olefin Metathesis Catalysts.

    Science.gov (United States)

    Kusy, Rafał; Grela, Karol

    2016-12-02

    Selective transfer semihydrogenation of alkynes to yield alkenes was achieved with commercial first and second generation Hoveyda-Grubbs catalysts and formic acid as a hydrogen donor. This catalytic system is distinguished by its selectivity and compatibility with many functional groups (halogens, cyano, nitro, sulfide, alkenes). The metathetic activity of the ruthenium catalysts may be utilized in tandem sequences of olefin metathesis plus alkyne reduction.

  2. Synthesis of 6-Hydroxysphingosine and alpha-Hydroxy Ceramide Using a Cross-Metathesis Strategy

    NARCIS (Netherlands)

    Wisse, Patrick; de Geus, Mark A. R.; Cross, Gen; van den Nieuwendijk, Adrianus M. C. H.; van Rooden, Eva J.; van den Berg, Richard J. B. H. N.; Aerts, Johannes M. F. G.; van der Marel, Gijsbert A.; Codée, Jeroen D. C.; Overkleeft, Herman S.

    2015-01-01

    In this paper, a new synthetic route toward 6-hydroxysphingosine and alpha-hydroxy ceramide is described. The synthesis employs a cross-metathesis to unite a sphingosine head allylic alcohol with a long-chain fatty acid alkene that also bears an allylic alcohol group. To allow for a productive CM

  3. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    Science.gov (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  4. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  5. Olefin metathesis for chemical biology.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis.

  6. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    Science.gov (United States)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  7. Teaching metathesis "simple" stereochemistry

    National Research Council Canada - National Science Library

    Fürstner, Alois

    2013-01-01

    Applications of metal-catalyzed olefin metathesis reactions manifested dramatic growth during the late 20th and early 21st centuries, culminating in the 2005 Nobel Prize awarded to three of the pioneers...

  8. Latent olefin metathesis catalysts

    OpenAIRE

    Monsaert, Stijn; Lozano Vila, Ana; Drozdzak, Renata; Van Der Voort, Pascal; Verpoort, Francis

    2009-01-01

    Olefin metathesis is a versatile synthetic tool for the redistribution of alkylidene fragments at carbon-carbon double bonds. This field, and more specifically the development of task-specific, latent catalysts, attracts emerging industrial and academic interest. This tutorial review aims to provide the reader with a concise overview of early breakthroughs and recent key developments in the endeavor to develop latent olefin metathesis catalysts, and to illustrate their use by prominent exampl...

  9. Olefin metathesis in air

    OpenAIRE

    Lorenzo Piola; Fady Nahra; Nolan, Steven P

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments...

  10. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  11. Mechanochemical Immobilisation of Metathesis Catalysts in a Metal–Organic Framework

    NARCIS (Netherlands)

    Spekreijse, Jurjen; Öhrström, Lars; Sanders, Johan P.M.; Bitter, Harry; Scott, Elinor L.

    2016-01-01

    A simple, one-step mechanochemical procedure for immobilisation of homogeneous metathesis catalysts in metal–organic frameworks was developed. Grinding MIL-101-NH2(Al) with a Hoveyda–Grubbs second-generation catalyst resulted in a heterogeneous catalyst that is active for metathesis

  12. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    Science.gov (United States)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  13. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  14. Catalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide.

    Science.gov (United States)

    Yu, Miao; Schrock, Richard R; Hoveyda, Amir H

    2015-01-02

    Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring-closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization.

    Science.gov (United States)

    Engel, Julien; Smit, Wietse; Foscato, Marco; Occhipinti, Giovanni; Törnroos, Karl W; Jensen, Vidar R

    2017-11-08

    Ruthenium-based olefin metathesis catalysts are used in laboratory-scale organic synthesis across chemistry, largely thanks to their ease of handling and functional group tolerance. In spite of this robustness, these catalysts readily decompose, via little-understood pathways, to species that promote double-bond migration (isomerization) in both the 1-alkene reagents and the internal-alkene products. We have studied, using density functional theory (DFT), the reactivity of the Hoveyda-Grubbs second-generation catalyst 2 with allylbenzene, and discovered a facile new decomposition pathway. In this pathway, the alkylidene ligand is lost, via ring expansion of the metallacyclobutane intermediate, leading to the spin-triplet 12-electron complex (SIMes)RuCl2 ((3)R21, SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene). DFT calculations predict (3)R21 to be a very active alkene isomerization initiator, either operating as a catalyst itself, via a η(3)-allyl mechanism, or, after spin inversion to give R21 and formation of a cyclometalated Ru-hydride complex, via a hydride mechanism. The calculations also suggest that the alkylidene-free ruthenium complexes may regenerate alkylidene via dinuclear ruthenium activation of alkene. The predicted capacity to initiate isomerization is confirmed in catalytic tests using p-cymene-stabilized R21 (5), which promotes isomerization in particular under conditions favoring dissociation of p-cymene and disfavoring formation of aggregates of 5. The same qualitative trends in the relative metathesis and isomerization selectivities are observed in identical tests of 2, indicating that 5 and 2 share the same catalytic cycles for both metathesis and isomerization, consistent with the calculated reaction network covering metathesis, alkylidene loss, isomerization, and alkylidene regeneration.

  16. Ultrasound-assisted self-metathesis reactions of monounsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Elmkaddem Mohammed Kamal

    2016-09-01

    Full Text Available An efficient protocol for the self-metathesis of oleic acid, using ruthenium catalysts is described. The self-metathesis reaction under ultrasonic activation allows the conversion of monoenic fatty acids such as oleic acid, elaidic acid and erucic acid into diacids and olefins with very short reaction times in the presence of Grubbs ruthenium catalysts. These yields and selectivity towards the desired products are influenced by the nature of solvents. This study demonstrated that metathesis reaction carried out in DCM or 1-butanol showed promising results, since it produced a variety of products, like n-alkenes and diacids with good yields (45–75% and high selectivities (75–95%.

  17. Olefin Metathesis for Chemical Biology

    OpenAIRE

    Binder, Joseph B.; Raines, Ronald T

    2008-01-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-openi...

  18. Hyperbranched Macromolecules via Olefin Metathesis

    OpenAIRE

    Gorodetskaya, Irina A.; Choi, Tae-Lim; Grubbs, Robert H

    2007-01-01

    A facile route to hyperbranched polymers via acyclic diene metathesis is reported. Any molecule functionalized with two or more acrylate groups and one terminal olefin can serve as an AB_n monomer when exposed to an imidazolinylidene-based ruthenium olefin metathesis catalyst, due to the cross metathesis selectivity of this catalyst. For the polymers obtained by this method, both ^1H NMR spectroscopy and triple detector size exclusion chromatography conclusively indicate a branched architecture.

  19. Teaching metathesis "simple" stereochemistry.

    Science.gov (United States)

    Fürstner, Alois

    2013-09-20

    Applications of metal-catalyzed olefin metathesis reactions manifested dramatic growth during the late 20th and early 21st centuries, culminating in the 2005 Nobel Prize awarded to three of the pioneers. The standard catalysts developed during that time frame and their descendants have profoundly changed the mindset of the synthetic community, even though they do not provide a handle to control selectivity issues as fundamental as the E/Z geometry of the newly formed double bond. With yet another generation of catalysts in the making that are far superior in this regard, a new wave seems to be building up that is expected to have enormous impact, too. The current state of the art is critically assessed, as are possible alternatives such as the metathesis of triple bonds followed by stereoselective semi-reduction.

  20. Photolithographic Olefin Metathesis Polymerization

    OpenAIRE

    Weitekamp, Raymond A.; Atwater, Harry A.; Grubbs, Robert H

    2013-01-01

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, whic...

  1. Catalytic Z-selective olefin cross-metathesis for natural product synthesis.

    Science.gov (United States)

    Meek, Simon J; O'Brien, Robert V; Llaveria, Josep; Schrock, Richard R; Hoveyda, Amir H

    2011-03-24

    Alkenes are found in many biologically active molecules, and there are a large number of chemical transformations in which alkenes act as the reactants or products (or both) of the reaction. Many alkenes exist as either the E or the higher-energy Z stereoisomer. Catalytic procedures for the stereoselective formation of alkenes are valuable, yet methods enabling the synthesis of 1,2-disubstituted Z alkenes are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and of allylic amides, used until now only in E-selective processes. The corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. These transformations, promoted by catalysts that contain the highly abundant and inexpensive metal molybdenum, are amenable to gram-scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. The utility of this method is demonstrated by its use in syntheses of an anti-oxidant plasmalogen phospholipid, found in electrically active tissues and implicated in Alzheimer's disease, and the potent immunostimulant KRN7000.

  2. Mechanochemical ruthenium-catalyzed olefin metathesis.

    Science.gov (United States)

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  3. Olefin metathesis in nano-sized systems

    OpenAIRE

    Denise Méry; Victor Martinez; Cátia Ornelas; Liyuan Liang; Sylvain Gatard; Abdou K. Diallo; Didier Astruc; Jaime Ruiz

    2011-01-01

    The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in w...

  4. Z-Selective Catalytic Olefin Cross-Metathesis

    Science.gov (United States)

    Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.

    2011-01-01

    Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774

  5. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  6. A bis-calixarene from olefin metathesis

    Directory of Open Access Journals (Sweden)

    Shimelis T. Hailu

    2012-06-01

    Full Text Available A ring-closing olefin metathesis reaction of tetrakis(allyloxycalix[4]arene gave the bis calixarene, (15E,40E,60E-65,74-bis(prop-2-en-1-yloxy-13,18,38,43,58,63-hexaoxadodecacyclo[28.26.8.720,36.111,45.151,55.05,57.07,12.019,24.026,64.032,37.044,49.168,72]tetraheptaconta-1,3,5(57,7,9,11,15,19(24,20,22,26,28,30(64,32,34,36,40,44(49,45,47,51,53,55(65,60,68,70,72(74-heptacosaene, C74H68O8. It is a cage formed from two calix[4]arene units joined by butenyl groups at three of the O atoms on the narrow rim. The fourth O atom on each calixarene unit is joined with an allyl group. Each of the calix[4]arene units has a flattened cone conformation in which the allyloxy-substituted aryl group and the opposite aryl group are close together and almost parallel [dihedral angle between planes = 1.09 (11°], and the other two aryl groups are splayed outward [dihedral angle between planes = 79.53 (11°]. No guest molecule (e.g. solvent was observed within the cage. The alkene C atoms of one of the links between the calixarene moieties are disordered over two orientations with occupancies of 0.533 (9 and 0.467 (9.

  7. Catalyst-Controlled Stereoselective Olefin Metathesis as a Principal Strategy in Multi-Step Synthesis Design. A Concise Route to (+)-Neopeltolide**

    Science.gov (United States)

    Yu, Miao; Schrock, Richard R.

    2014-01-01

    Mo-, W- and Ru-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. Here, we disclose a concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monopyrrolide aryloxide (MAP) complex and a macrocyclic ring-closing metathesis affording a trisubstituted alkene catalyzed by a Mo bis-aryloxide species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in stereoselective synthesis of the acyclic dienyl moiety of the target molecule. PMID:25377347

  8. Light-induced olefin metathesis

    National Research Council Canada - National Science Library

    Vidavsky, Yuval; Lemcoff, N Gabriel

    2010-01-01

    Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful...

  9. Highly efficient epoxidation of alkenes with m-chloroperbenzoic acid ...

    Indian Academy of Sciences (India)

    Highly efficient epoxidation of alkenes with m-chloroperbenzoic acid catalyzed by nanomagnetic Co(III)@Fe₃O₄/SiO₂ salen complex ... The heterogeneous nanocatalyst was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier transform infrared ...

  10. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Science.gov (United States)

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Olefin metathesis in carotenoid synthesis.

    Science.gov (United States)

    Kajikawa, Takayuki; Iguchi, Naoko; Katsumura, Shigeo

    2009-11-21

    Olefin metathesis is a powerful and widely applicable synthetic method for carbon-carbon double bond formation. However, its application to the synthesis of conjugating polyene chains has been very limited because of possible undesired side reactions. We attempted to apply this method to the synthesis of symmetrical carotenoids. In this paper, the syntheses of violaxanthin and mimulaxanthin are described using the olefin metathesis protocol.

  12. Kinetically E-selective macrocyclic ring-closing metathesis

    Science.gov (United States)

    Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a

  13. Asymmetric fluorocyclizations of alkenes.

    Science.gov (United States)

    Wolstenhulme, Jamie R; Gouverneur, Véronique

    2014-12-16

    CONSPECTUS: The vicinal fluorofunctionalization of alkenes is an attractive transformation that converts feedstock olefins into valuable cyclic fluorinated molecules for application in the pharmaceutical, agrochemical, medical, and material sectors. The challenges associated with asymmetric fluorocyclizations induced by F(+) reagents are distinct from other types of halocyclizations. Processes initiated by the addition of an F(+) reagent onto an alkene do not involve the reversible formation of bridged fluoronium ions but generate acyclic β-fluorocationic intermediates. This mechanistic feature implies that fluorocyclizations are not stereospecific. A discontinuity exists between the importance of this class of fluorocyclization and the activation modes currently available to implement successful catalysis. Progress toward fluorocyclization has been achieved by investing in neutral and cationic [NF] reagent development. The body of work on asymmetric fluorination using chiral cationic [NF](+) reagents prepared by fluorine transfer from the dicationic [NF](2+) reagent Selectfluor to quinuclidines, inspired the development of asymmetric F(+)-induced fluorocyclizations catalyzed by cinchona alkaloids; for catalysis, the use of N-fluorobenzenesulfonimide, which is less reactive than Selectfluor, ensures that the achiral F(+) source remains unreactive toward the alkene. These organocatalyzed enantioselective fluorocyclizations can be applied to indoles to install the fluorine on a quaternary benzylic stereogenic carbon center and to afford fluorinated analogues of natural products featuring the hexahydropyrrolo[2,3-b]indole or the tetrahydro-2H-furo[2,3-b]indole skeleton. In an alternative approach, the poor solubility of dicationic Selectfluor bis(tetrafluoroborate) in nonpolar solvent was exploited with anionic phase transfer catalysis as the operating activation mode. Exchange of the tetrafluoroborate ions of Selectfluor with bulky lipophilic chiral anions (e

  14. Industrial processes of olefin metathesis. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1987-05-01

    Olefin metathesis opens new synthetic routes to typical petrochemicals (ethylene, propylene, n-butenes), special olefins (neohexene, higher molecular linear olefins, , -dienes) and unsaturated polymers (polynorbornene, -cyclooctene, -dicyclopentadiene) in an industrial scale. The 8 metathesis processes used in industry and further possible applications of olefin metathesis are reviewed.

  15. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    Science.gov (United States)

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups.

  16. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    Energy Technology Data Exchange (ETDEWEB)

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. (Univ. of North Carolina, Chapel Hill (United States)); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. (Univ. of Florida, Gainesville (United States))

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  17. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement

    2016-03-22

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  18. Hoveyda–Grubbs type metathesis catalyst immobilized on mesoporous molecular sieves MCM-41 and SBA-15

    Directory of Open Access Journals (Sweden)

    Zdeněk Bastl

    2011-01-01

    Full Text Available A commercially available Hoveyda–Grubbs type catalyst (RC303 Zhannan Pharma was immobilized on mesoporous molecular sieves MCM-41 and on SBA-15 by direct interaction with the sieve wall surface. The immobilized catalysts exhibited high activity and nearly 100% selectivity in several types of alkene metathesis reactions. Ru leaching was found to depend on the substrate and solvent used (the lowest leaching was found for ring-closing metathesis of 1,7-octadiene in cyclohexane – 0.04% of catalyst Ru content. Results of XPS, UV–vis and NMR spectroscopy showed that at least 76% of the Ru content was bound to the support surface non-covalently and could be removed from the catalyst by washing with THF.

  19. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    Science.gov (United States)

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer.

  20. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  1. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  2. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  3. The allylic chalcogen effect in olefin metathesis.

    Science.gov (United States)

    Lin, Yuya A; Davis, Benjamin G

    2010-12-23

    Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  4. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  5. Catalysis: The mechanics of metathesis

    Science.gov (United States)

    Love, Jennifer A.

    2010-07-01

    Olefin metathesis is a flexible and efficient method for making carbon-carbon bonds and has found widespread application in academia and industry. Now, a detailed mechanistic study looking at key catalytic intermediates offers new insight into this reaction, and may prove useful in the development of more active and selective catalysts.

  6. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  7. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  8. Synthesis of alpha,beta-unsaturated 4,5-disubstituted gamma-lactones via ring-closing metathesis catalyzed by the first-generation Grubbs' catalyst.

    Science.gov (United States)

    Bassetti, Mauro; D'Annibale, Andrea; Fanfoni, Alessia; Minissi, Franco

    2005-04-28

    [reaction: see text] 4-Methyl-5-alkyl-2(5H)-furanones have been prepared by ruthenium-catalyzed ring-closing metathesis of the suitable methallyl acrylates. Despite the electron deficiency of the conjugated double bond and of the gem-disubstitution of the allylic alkene moiety in the starting acrylates, the first-generation Grubbs' catalyst I proved to be an effective promoter for the ring closure, affording the expected butenolides in good to high yields.

  9. Application of olefin metathesis in the synthesis of steroids.

    Science.gov (United States)

    Morzycki, Jacek W

    2011-01-01

    Over the past decade, ruthenium-mediated metathesis transformations, including cross-metathesis, ring-closing metathesis, enyne metathesis, ring-opening metathesis polymerization, and also tandem processes, belong to the most intensively studied reactions. Many applications of olefin metathesis in the synthesis of natural products have been recently described. Also in the field of steroid chemistry new methods of total synthesis and hemisynthesis based on metathesis reactions have been elaborated. Various biologically active compounds, e.g. vitamin D and hormone analogues, steroid dimers and macrocycles, etc. have been prepared using a variety of olefin-metathesis protocols. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The arene–alkene photocycloaddition

    Directory of Open Access Journals (Sweden)

    Christian G. Bochet

    2011-04-01

    Full Text Available In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions.

  11. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall, the st...

  12. Olefin metathesis reaction on GaN (0 0 0 1) surfaces

    Science.gov (United States)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2011-03-01

    Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.

  13. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  14. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir

    2017-04-06

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  15. Effect of catalyst pretreatment on the olefin metathesis catalyzed by alumina-supported (9%) rhenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.C.

    1979-01-01

    A kinetic model was developed to express the time-on-stream profile of the activity during catalyst break-in and deactivation. The catalyst surface is in geometric and energetic heterogeneity. Partial catalyst reduction is a prerequisite step for olefin metathesis. The metathesis activity may be affected by the coordination number and the type of ligands associated with the sites on the catalyst. The deactivation is proposed due to deposition of residues on the active sites, and to sintering, etc. A dispersion pretreatment increased activity. Oxygen is an activator. The hydrogen reduction at 500/sup 0/C causes partial but permanent loss of activity.

  16. Highly Active Water-Soluble Olefin Metathesis Catalyst

    OpenAIRE

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-01-01

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media.

  17. Halide exchanged Hoveyda-type complexes in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Julia Wappel

    2010-11-01

    Full Text Available The aims of this contribution are to present a straightforward synthesis of 2nd generation Hoveyda-type olefin metathesis catalysts bearing bromo and iodo ligands, and to disclose the subtle influence of the different anionic co-ligands on the catalytic performance of the complexes in ring opening metathesis polymerisation, ring closing metathesis, enyne cycloisomerisation and cross metathesis reactions.

  18. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts

    OpenAIRE

    T. Patrick Montgomery; Johns, Adam M.; Grubbs, Robert H

    2017-01-01

    Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-olefins easily accessible to both laboratory and industrial chemists. Further design enhancements to as...

  19. Application of olefin metathesis in petrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1979-01-01

    A survey covers the catalysts used in olefin metathesis; olefin types which undergo metathesis, e.g., ring-opening metathetic polymerization of cycloolefins; equilibria and side reactions; the Phillips Triolefin process for 2-butene production; the Shell Higher Olefin Process (SHOP) for the production of C/sub 11/-C/sub 14/ ..cap alpha..-olefins; the Phillips Petroleum 225 ton/yr process for the conversion of trimethylpentane to neohexene, which is used in gasoline and pharmaceutical manufacture; the production of isoprene precursors; and various other metathesis reactions used in synthesizing specific olefins.

  20. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  1. The Olefin Metathesis Reactions in Dendrimers

    Science.gov (United States)

    Astruc, Didier

    Dendrimers containing terminal olefins or ruthenium-benzylidene terminal groups undergo olefin metathesis reactions (RCM and ROMP types), and essentially results from our group are reviewed here. Dendrimers have been loaded at their periphery with ruthenium-chelating bis-phosphines, which leads to the formation of dendrimer-cored stars by ring-opening-metathesis polymerization (ROMP). CpFe+-induced perallylation of polymethylaromatics (Cp = η5-C5H5) followed by ring-closing metathesis (RCM) and/or cross metathesis (CM) leads to poly-ring, cage, oligomeric and polymeric architectures. In the presence of acrylic acid or metha-crylate, stereospecific CM inhibits oligomerization, and dendritic olefins yield polyacid dendrimers. Finally, cros-metahesis reactions with dendronic acrylate allow dendritic construction and growth.

  2. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  3. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie

    2010-02-16

    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  4. Metathesis: A "Change-Your-Partners" Dance

    Indian Academy of Sciences (India)

    What is Metathesis? In general, a chemical reaction is referred to as 'metathesis' or exchange reaction, if it is of the type. A-B + C-D ~ A-D + C-B where parts of two reacting structures swap places. This type of process can occur between two inorganic salts when one product is insoluble in water, driving the reaction forward ...

  5. Metathesis and hydroformylation reactions in ionic liquids.

    OpenAIRE

    2008-01-01

    Ionic liquids (ILs), consisting of ions that are liquid at ambient temperatures, can act as solvents for a broad spectrum of chemical processes. These ionic liquids are attracting increasing attention from industry because they promise significant environmental as well as product and process benefits. ILs were used as solvents for two industrially important homogeneous reactions namely metathesis of 1-octene and the hydroformylation of vinyl acetate. In the metathesis of 1-octene, several rea...

  6. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  7. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    Science.gov (United States)

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  8. An expedient route to substituted furans via olefin cross-metathesis

    Science.gov (United States)

    Donohoe, Timothy J.; Bower, John F.

    2010-01-01

    The olefin cross-metathesis (CM) reaction is used extensively in organic chemistry and represents a powerful method for the selective synthesis of differentially substituted alkene products. Surprisingly, efforts to integrate this remarkable process into strategies for aromatic and heteroaromatic construction have not been reported. Such structures represent key elements of the majority of small molecule drug compounds; methods for the controlled preparation of highly substituted derivatives are essential to medicinal chemistry. Here we show that the olefin CM reaction, in combination with an acid cocatalyst or subsequent Heck arylation, provides a concise and flexible entry to 2,5-di- or 2,3,5-tri-substituted furans. These cascade processes portend further opportunities for the regiocontrolled preparation of other highly substituted aromatic and heteroaromatic classes. PMID:20142508

  9. In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds.

    Science.gov (United States)

    Xu, Chaofan; Shen, Xiao; Hoveyda, Amir H

    2017-08-09

    In situ methylene capping is introduced as a practical and broadly applicable strategy that can expand the scope of catalyst-controlled stereoselective olefin metathesis considerably. By incorporation of commercially available Z-butene together with robust and readily accessible Ru-based dithiolate catalysts developed in these laboratories, a large variety of transformations can be made to proceed with terminal alkenes, without the need for a priori synthesis of a stereochemically defined disubstituted olefin. Reactions thus proceed with significantly higher efficiency and Z selectivity as compared to when other Ru-, Mo-, or W-based complexes are utilized. Cross-metathesis with olefins that contain a carboxylic acid, an aldehyde, an allylic alcohol, an aryl olefin, an α substituent, or amino acid residues was carried out to generate the desired products in 47-88% yield and 90:10 to >98:2 Z:E selectivity. Transformations were equally efficient and stereoselective with a ∼70:30 Z-:E-butene mixture, which is a byproduct of crude oil cracking. The in situ methylene capping strategy was used with the same Ru catechothiolate complex (no catalyst modification necessary) to perform ring-closing metathesis reactions, generating 14- to 21-membered ring macrocyclic alkenes in 40-70% yield and 96:4-98:2 Z:E selectivity; here too, reactions were more efficient and Z-selective than when the other catalyst classes are employed. The utility of the approach is highlighted by applications to efficient and stereoselective syntheses of several biologically active molecules. This includes a platelet aggregate inhibitor and two members of the prostaglandin family of compounds by catalytic cross-metathesis reactions, and a strained 14-membered ring stapled peptide by means of macrocyclic ring-closing metathesis. The approach presented herein is likely to have a notable effect on broadening the scope of olefin metathesis, as the stability of methylidene complexes is a generally

  10. Liquid-phase synthesis of bridged peptides using olefin metathesis of a protected peptide with a long aliphatic chain anchor.

    Science.gov (United States)

    Aihara, Keisuke; Komiya, Chiaki; Shigenaga, Akira; Inokuma, Tsubasa; Takahashi, Daisuke; Otaka, Akira

    2015-02-06

    Bridged peptides including stapled peptides are attractive tools for regulating protein-protein interactions (PPIs). An effective synthetic methodology in a heterogeneous system for the preparation of these peptides using olefin metathesis and hydrogenation of protected peptides with a long aliphatic chain anchor is reported.

  11. Recent applications of ring-rearrangement metathesis in organic synthesis

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-10-01

    Full Text Available Ring-rearrangement metathesis (RRM involves multiple metathesis processes such as ring-opening metathesis (ROM/ring-closing metathesis (RCM in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008–2014.

  12. Photocatalytic Aerobic Phosphatation of Alkenes.

    Science.gov (United States)

    Depken, Christian; Krätzschmar, Felix; Rieger, Rene; Rode, Katharina; Breder, Alexander

    2018-02-23

    A catalytic regime for the direct phosphatation of simple, non-polarized alkenes has been devised that is based on using ordinary, non-activated phosphoric acid diesters as the phosphate source and O 2 as the terminal oxidant. The title method enables the direct and highly economic construction of a diverse range of allylic phosphate esters. From a conceptual viewpoint, the aerobic phosphatation is entirely complementary to traditional methods for phosphate ester formation, which predominantly rely on the use of prefunctionalized or preactivated reactants, such as alcohols and phosphoryl halides. The title transformation is enabled by the interplay of a photoredox and a selenium π-acid catalyst and involves a sequence of single-electron-transfer processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chelated ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2011-06-08

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stereocontrolled olefin metathesis.

  14. Metathesis of carbon dioxide and phenyl isocyanate catalysed by ...

    Indian Academy of Sciences (India)

    Carbodiimide metathesis is catalysed by a number of complexes leading to formation of unsymmetrical carbodiimides.1 Group 14 compounds are known to catalyse metathesis of phenyl isocyanates to give N, N′ diphenyl carbodiimides and carbon dioxide.2 The reverse reaction, metathesis of carbon dioxide with.

  15. Thermal decomposition of ethylene oxide on Pd(111). Comparison of the pathways for the selective oxidation of ethylene and olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, R.M. (Univ. of Cambridge (United Kingdom)); Ormerod, R.M. (Univ. of Keele (United Kingdom)); Tysoe, W.T. (Univ. of Wisconsin, Milwaukee, WI (United States))

    1994-03-01

    The product distribution detected in the multimass temperature-programmed desorption of a saturated overlayer of ethylene oxide adsorbed on Pd(111) at [approximately] 180 K indicates that it decomposes to yield ethylene and acetaldehyde. These observations are interpreted by postulating that ethylene oxide reacts to form an oxymetallocycle. This is proposed to thermally decompose in a manner analogous to carbometallocycles that form during olefin metathesis catalysis by the reaction between an alkene and a surface carbene. Thus, the metallocycle can decompose to yield ethylene and deposit adsorbed atomic oxygen or undergo a [beta]-hydrogen transfer to form acetaldehyde. 25 refs., 2 figs., 1 tab.

  16. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts

    Directory of Open Access Journals (Sweden)

    T. Patrick Montgomery

    2017-03-01

    Full Text Available Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-olefins easily accessible to both laboratory and industrial chemists. Further design enhancements to asymmetric olefin metathesis catalysts have streamlined the construction of complex molecules. The understanding gained in these areas has extended to the employment of ruthenium catalysts to stereoretentive olefin metathesis, the first example of a kinetically E-selective process. These advancements, as well as synthetic applications of the newly developed catalysts, are discussed.

  17. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene-cat......-catalyst, these dienes selectively underwent ring-closing metathesis reactions to form 5- and 7-membered heterocycles and cyclic aminals via a tandem isomerization/N-alkyliminium cyclization sequence.......A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  18. Methyltrioxorhenium as catalyst for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wagner, W. (Consortium fuer Elektrochemische Industrie GmbH, Muenchen (Germany)); Flessner, U.N.; Volkhardt, U.; Komber, H. (Institut fuer Technologie der Polymere, Dresden (Germany))

    1991-12-01

    No cocatalysts are needed as additives when methyltrioxorhenium (MTO) supported on acidic carriers is employed to catalyze the metathesis of functionalized olefins. A typical system is MTO/Al{sub 2}O{sub 3}-SiO{sub 2}, which is active, for instance, in the metathesis of allyl halides, allylsilanes, unsaturated carboxylates, and nitriles. MTO in combination with R{sub n}AlCl{sub 3-n} is a homogeneous catalyst in ring-opening polymerizations (R = CH{sub 3}, C{sub 2}H{sub 5}; n = 1,2). (orig.).

  19. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    Science.gov (United States)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  20. Metatheases: artificial metalloproteins for olefin metathesis.

    Science.gov (United States)

    Sauer, D F; Gotzen, S; Okuda, J

    2016-10-21

    The incorporation of organometallic catalyst precursors in proteins results in so-called artificial metalloenzymes. The protein structure will control activity, selectivity and stability of the organometallic site in aqueous medium and allow non-natural reactions in biological settings. Grubbs-Hoveyda type ruthenium catalysts with an N-heterocyclic carbene (NHC) as ancillary ligand, known to be active in olefin metathesis, have recently been incorporated in various proteins. An overview of these artificial metalloproteins and their potential application in olefin metathesis is given.

  1. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-04

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Abstract. A solid-state metathesis approach initiated by microwave energy has been successfully applied for the synthesis of orthovanadates, M3V2O8 (M = Ca, Sr, and Ba). The structural, vibrational, thermal, optical and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning ...

  3. Thermally Stable, Latent Olefin Metathesis Catalysts.

    Science.gov (United States)

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures.

  4. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  5. Syngas conversion to a light alkene and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2017-11-14

    Methods of producing a light alkene. The method comprises contacting syngas and tungstated zirconia to produce a product stream comprising at least one light alkene. The product stream is recovered. Methods of converting syngas to a light alkene are also disclosed. The method comprises heating a precursor of tungstated zirconia to a temperature of between about 350.degree. C. and about 550.degree. C. to form tungstated zirconia. Syngas is flowed over the tungstated zirconia to produce a product stream comprising at least one light alkene and the product stream comprising the at least one light alkene is recovered.

  6. The activation mechanism of Fe-based olefin metathesis catalysts

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts.

  7. N-Heterocyclic Carbene Complexes in Olefin Metathesis

    Science.gov (United States)

    Luan, Xinjun; Dorta, Reto; Leitgeb, Anita; Slugovc, Christian; Tiede, Sascha; Blechert, Siegfried

    Olefin metathesis is now a synthetic tool found ubiquitously in various fields involving synthesis. Of its many variations, three are prominently used: (1) catalytic ring closing metathesis (RCM) is an extremely powerful method for the construction of carbon-carbon double bonds in organic chemistry; (2) ring opening metathesis polymerisation (ROMP) where polymers are formed by use of the energy released from cyclic strain; and (3) cross metathesis (CM) where non-cyclic partners are coupled through C-C double bond formation. These important transformations and variations on these themes mediated by second generation ruthenium complexes bearing a NHC ligand will be presented in the following sections.

  8. Optically Pure, Structural, and Fluorescent Analogues of a Dimeric Y4 Receptor Agonist Derived by an Olefin Metathesis Approach.

    Science.gov (United States)

    Liu, Mengjie; Mountford, Simon J; Richardson, Rachel R; Groenen, Marleen; Holliday, Nicholas D; Thompson, Philip E

    2016-07-14

    The dimeric peptide 1 (BVD-74D, as a diastereomeric mixture) is a potent and selective neuropeptide Y Y4 receptor agonist. It represents a valuable candidate in developing traceable ligands for pharmacological studies of Y4 receptors and as a lead compound for antiobesity drugs. Its optically pure stereoisomers along with analogues and fluorescently labeled variants were prepared by exploiting alkene metathesis reactions. The (2R,7R)-diaminosuberoyl containing peptide, (R,R)-1, had markedly higher affinity and agonist efficacy than its (S,S)-counterpart. Furthermore, the sulfo-Cy5 labeled (R,R)-14 retained high agonist potency as a novel fluorescent ligand for imaging Y4 receptors.

  9. Solid-phase synthesis of peptide thioureas and thiazole-containing macrocycles through ru-catalyzed ring-closing metathesis

    DEFF Research Database (Denmark)

    Cohrt, A. Emil; Nielsen, Thomas E.

    2014-01-01

    between two alkene moieties, said thiazole core was conveniently embedded in peptide macrocycles via Ru-catalyzed ring-closing metathesis reactions. Various 15-17 membered macrocycles were easily accessible in all diastereomeric forms using this methodology. The developed "build/couple/pair" strategy......N-Terminally modified α-thiourea peptides can selectively be synthesized on solid support under mild reaction conditions using N,N′-di-Boc-thiourea and Mukaiyama's reagent (2-chloro-1-methyl-pyridinium iodide). This N-terminal modification applies to the 20 proteinogenic amino acid residues...... on three commonly used resins for solid-phase synthesis. Complementary methods for the synthesis of α-guanidino peptides have also been developed. The thiourea products underwent quantitative reactions with α-halo ketones to form thiazoles in excellent purities and yields. When strategically installed...

  10. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  11. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    Science.gov (United States)

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Olefin metathesis : tapping into breakthrough chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2010-06-15

    Olefin metathesis is a catalyst technology where 2 double bond-containing molecules or olefins are split in order to exchange atoms and result in the formation of 2 new molecules or substances. Earlier researchers used a variety of materials to convert propylene into a mixture of butenes and ethylenes. A method developed by Shell researchers produces linear olefins used as detergent feedstocks. In 1971, scientists used a metal-carbene catalyst to react with the olefins to produce both a new olefin and a new metal carbene in order to perpetuate the process. In 2002, a new metathesis technology was developed using renewable natural oils as a feedstock. The catalyst is introduced as a solid into the oil, and then agitated by stirring. The modified oil is then reacted with hydrogen to remove the double bonds and filter off the catalyst. The method is offered on a contract basis by Elevance Renewable Sciences in a variety of application. The process was designed to take place at lower temperatures with the release of fewer greenhouse gases (GHGs). New metathesis technologies are also being developed to reduce the molecular weight of polymers in order to reduce viscosity and increase flow. 3 figs.

  13. Profluorescent substrates for the screening of olefin metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Raphael Reuter

    2015-10-01

    Full Text Available Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  14. Profluorescent substrates for the screening of olefin metathesis catalysts.

    Science.gov (United States)

    Reuter, Raphael; Ward, Thomas R

    2015-01-01

    Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  15. Ruthenium-based four-coordinate olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, M.S.; Henling, L.M.; Day, M.W.; Grubbs, R.H. [California Inst. of Tech., Pasadena (United States). Div. of Chemistry and Chemical Engineering

    2000-10-02

    A series of four-coordinate Ru{sup II} alkylidenes has been prepared as analogues of the proposed olefin metathesis intermediate [(PCy{sub 3})Cl{sub 2}Ru=CHPh]. These complexes exhibit unusual trigonal-pyramidal solid-state geometries, and are rendered highly active for ring-closing metathesis by the addition of HCl. (orig.)

  16. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-01-01

    Full Text Available The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C2-symmetric and C1-symmetric NHCs is provided.

  17. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  18. Metathesis: A" Change-Your-Partners" Dance-Chemistry Nobel ...

    Indian Academy of Sciences (India)

    Metathesis: A "Change-Your-Partners" Dance-Chemistry Nobel Prize – 2005. K Sivapriya S Chandrasekaran ... Keywords. Metathesis; organic synthesis; catalysis; green chemistry. Author Affiliations. K Sivapriya1 S Chandrasekaran1. Department of Organic Chemistry Indian Institute of Science Bangalore 560012, India.

  19. Ring opening of monocyclic dimethyl cyclopropene via metathesis ...

    Indian Academy of Sciences (India)

    Metathesis reaction of 3,3-disubstituted cyclopropene mediated by the model catalyst tungsten alkylidene W(NH)(CH2)(OCH3)2 has been studied at the B3LYP/LANL2DZ level of theory. The stationary points on the potential energy surface for ring opening metathesis were calculated considering all stereochemically distinct ...

  20. Olefin metathesis for site-selective protein modification.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2009-04-17

    For a reaction to be generally useful for protein modification, it must be site-selective and efficient under conditions compatible with proteins: aqueous media, low to ambient temperature, and at or near neutral pH. To engineer a reaction that satisfies these conditions is not a simple task. Olefin metathesis is one of most useful reactions for carbon-carbon bond formation, but does it fit these requirements? This minireview is an account of the development of olefin metathesis for protein modification. Highlighted below are examples of olefin metathesis in peptidic systems and in aqueous media that laid the groundwork for successful metathesis on protein substrates. Also discussed are the opportunities in protein engineering for the genetic introduction of amino acids suitable for metathesis and the related challenges in chemistry and biology.

  1. Improved ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Keitz, Benjamin K; Endo, Koji; Patel, Paresma R; Herbert, Myles B; Grubbs, Robert H

    2012-01-11

    Several new C-H-activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g., carboxylates). The use of nitrato-type ligands in place of carboxylates afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially relevant products. © 2011 American Chemical Society

  2. Recent Progress on Enyne Metathesis: Its Application to Syntheses of Natural Products and Related Compounds

    Science.gov (United States)

    Mori, Miwako

    2010-01-01

    Olefin metathesis using ruthenium carbene complexes is a useful method in synthetic organic chemistry. Enyne metathesis is also catalyzed by these complexes and various carbo- and heterocycles could be synthesized from the corresponding enynes. Dienyne metathesis, cross enyne metathesis and ring-opening enyne metathesis have been further developed. Various complicated compounds, such as the natural products and the related biologically active substances, could be synthesized using these metatheses reactions. Skeletal reorganization using the transition metals and metallotropic rearrangement are also discussed.

  3. Catalytic, stereospecific syn-dichlorination of alkenes

    Science.gov (United States)

    Cresswell, Alexander J.; Eey, Stanley T.-C.; Denmark, Scott E.

    2015-02-01

    As some of the oldest organic chemical reactions known, the ionic additions of elemental halogens such as bromine and chlorine to alkenes are prototypical examples of stereospecific reactions, typically delivering vicinal dihalides resulting from anti-addition. Although the invention of enantioselective variants is an ongoing challenge, the ability to overturn the intrinsic anti-diastereospecificity of these transformations is also a largely unsolved problem. Here, we describe the first catalytic, syn-stereospecific dichlorination of alkenes, employing a group transfer catalyst based on a redox-active main group element (selenium). With diphenyl diselenide (PhSeSePh) (5 mol%) as the pre-catalyst, benzyltriethylammonium chloride (BnEt3NCl) as the chloride source and an N-fluoropyridinium salt as the oxidant, a wide variety of functionalized cyclic and acyclic 1,2-disubstituted alkenes, including simple allylic alcohols, deliver syn-dichlorides with exquisite stereocontrol. This methodology is expected to find applications in streamlining the synthesis of polychlorinated natural products such as the chlorosulfolipids.

  4. Thermoset polymers via ring opening metathesis polymerization of functionalized oils

    Energy Technology Data Exchange (ETDEWEB)

    Larock, Richard C; Henna, Phillip H; Kessier, Michael R

    2012-11-27

    The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.

  5. Olefin metathesis over UV-irradiated silica

    Science.gov (United States)

    Tanaka, Tsunehiro; Matsuo, Shigehiro; Maeda, Takashi; Yoshida, Hisao; Funabiki, Takuzo; Yoshida, Satohiro

    1997-11-01

    Photoirradiated silica evacuated at temperatures higher than 800 K was found to be active for olefin metathesis reactions. The analysis of products shows that the metalacyclobutane intermediate is likely. The instantaneous response of the reaction to the irradiation and the activity change with various UV filter showed that the reaction is induced by UV-excitation of silica. The correlation between the evacuation temperature and the activity showed that the surface free from water molecules plays a role in the reaction and the removal of isolated OH groups strongly relates to the generation of active sites.

  6. Chalcopyrite formation through the metathesis of pyrrhotite with aqueous copper

    Science.gov (United States)

    Elliot, Alexander Dean; Watling, Helen R.

    2011-04-01

    The heterogeneous chemical environment which develops in the heap leaching of some pyrrhotite-containing copper ores can promote covellite and chalcopyrite formation particularly in acid-depleted regions of a heap. In such circumstances, copper recovery will be delayed until the acid and oxidation fronts move through the bed of ore and these secondary copper sulfides are re-leached. The transition from pyrrhotite to chalcopyrite most probably follows the sequence, pyrrhotite to copper-pyrrhotite to unnamed mineral CuFe 3S 4 to isocubanite to chalcopyrite, with a major structural expansion occurring prior to CuFe 3S 4. The mechanism is one in which copper is incorporated into pyrrhotite, which maintains its NiAs-type structure up to a stability limit, above which the structure rearranges to a chalcopyrite-like structure followed by isomorphic substitution of copper for iron. The structural rearrangement proceeds with significant expansion in one of the hexagonal axis directions and contractions in the other directions. Depending on the orientation, this expansion induces different levels of strain in the product chalcopyrite. The level of strain subsequently impacts on the rate of chalcopyrite metathesis to covellite. The depth of chalcopyrite formation into the pyrrhotite varies with pyrrhotite orientation.

  7. Synthesis of Orthogonally Reactive FK506 Derivatives via Olefin Cross Metathesis

    Science.gov (United States)

    Marinec, Paul S.; Evans, Christopher G.; Gibbons, Garrett S.; Tarnowski, Malloree A.; Overbeek, Daniel L.; Gestwicki, Jason E.

    2009-01-01

    Chemical inducers of dimerization (CIDs) are employed in a wide range of biological applications, to control protein localization, modulate protein-protein interactions and improve drug lifetimes. These bifunctional chemical probes are assembled from two synthetic modules, which each provide affinity for a distinct protein target. FK506 and its derivatives are often employed as modules in the syntheses of these bifunctional constructs, owing to the abundance and favorable distribution of their target, FK506-binding protein (FKBP). However, the structural complexity of FK506 necessitates multi-step syntheses and/or multiple protection-deprotection schemes prior to installation into CIDs. In this work, we describe an efficient, one-step synthesis of FK506 derivatives through a selective, microwave-accelerated, cross metathesis diversification step of the C39 terminal alkene. Using this approach, FK506 is modified with an array of functional groups, including primary amines and carboxylic acids, which make the resulting derivatives suitable for the modular assembly of CIDs. To illustrate this idea, we report the synthesis of a heterobifunctional HIV protease inhibitor. PMID:19643614

  8. Olefin cross-metathesis for the synthesis of heteroaromatic compounds.

    Science.gov (United States)

    Donohoe, Timothy J; Bower, John F; Chan, Louis K M

    2012-02-21

    The olefin metathesis reaction has underpinned spectacular achievements in organic synthesis in recent years. Arguably, metathesis has now become the foremost choice for a carbon-carbon double bond disconnection. Despite this general utility, de novo routes to heteroaromatic compounds using the cross-metathesis (CM) reaction have only recently emerged as an efficient strategy. This approach allows a convergent union of simple, functionalised, three- to four-carbon olefinic core building blocks, to generate furans, pyrroles and pyridines with a high degree of control of substitution pattern in the product.

  9. Metathesis access to monocyclic iminocyclitol-based therapeutic agents

    Directory of Open Access Journals (Sweden)

    Albert Demonceau

    2011-05-01

    Full Text Available By focusing on recent developments on natural and non-natural azasugars (iminocyclitols, this review bolsters the case for the role of olefin metathesis reactions (RCM, CM as key transformations in the multistep syntheses of pyrrolidine-, piperidine- and azepane-based iminocyclitols, as important therapeutic agents against a range of common diseases and as tools for studying metabolic disorders. Considerable improvements brought about by introduction of one or more metathesis steps are outlined, with emphasis on the exquisite steric control and atom-economical outcome of the overall process. The comparative performance of several established metathesis catalysts is also highlighted.

  10. Osmium-free direct syn-dihydroxylation of alkenes.

    Science.gov (United States)

    Bataille, Carole J R; Donohoe, Timothy J

    2011-01-01

    Numerous synthetic protocols for producing syn-diols from the corresponding alkenes have been developed and published over recent years. It is the intent of the following tutorial review to present a concise summary of the main methods used to prepare syn-diol fragments directly from alkene precursors, and that do not make use of osmium oxo complexes as catalysts.

  11. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    Science.gov (United States)

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  12. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  13. Cross-metathesis of allylcarboranes with O-allylcyclodextrins

    Directory of Open Access Journals (Sweden)

    Ivan Šnajdr

    2010-11-01

    Full Text Available Cross-metathesis between allylcarboranes and O-allylcyclodextrins was catalyzed by Hoveyda–Grubbs 2nd generation catalyst in toluene. The corresponding carboranyl-cyclodextrin conjugates were isolated in 15–25% yields.

  14. Cross-metathesis of allylcarboranes with O-allylcyclodextrins

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, I.; Janoušek, Zbyněk; Jindřich, J.; Kotora, M.

    2010-01-01

    Roč. 6, - (2010), s. 1099-1105 ISSN 1860-5397 Institutional research plan: CEZ:AV0Z40320502 Keywords : carborane * catalysis * cross-metathesis Subject RIV: CC - Organic Chemistry Impact factor: 1.515, year: 2010

  15. Kinetically controlled E-selective catalytic olefin metathesis

    National Research Council Canada - National Science Library

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-01-01

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution...

  16. An alkyne metathesis-based route toortho-dehydrobenzannulenes

    Energy Technology Data Exchange (ETDEWEB)

    Miljanic, Ognjen S.; Vollhardt, Peter C.; Whitener, Glenn D.

    2002-11-07

    An application of alkyne metathesis to 1,2-di(prop-1-ynyl)arenes, producing dehydrobenzannulenes, is described. An efficient method for selective Sonogashira couplings of bromoiodoarenes under conditions of microwave irradiation is also reported.

  17. Ene–yne cross-metathesis with ruthenium carbene catalysts

    Directory of Open Access Journals (Sweden)

    Christian Bruneau

    2011-02-01

    Full Text Available Conjugated 1,3-dienes are important building blocks in organic and polymer chemistry. Enyne metathesis is a powerful catalytic reaction to access such structural domains. Recent advances and developments in ene–yne cross-metathesis (EYCM leading to various compounds of interest and their intermediates, that can directly be transformed in tandem procedures, are reviewed in this article. In addition, the use of bio-resourced olefinic substrates is presented.

  18. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  19. Iron(III)-catalysed carbonyl-olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  20. Bioconjugation with strained alkenes and alkynes.

    Science.gov (United States)

    Debets, Marjoke F; van Berkel, Sander S; Dommerholt, Jan; Dirks, A Ton J; Rutjes, Floris P J T; van Delft, Floris L

    2011-09-20

    The structural complexity of molecules isolated from biological sources has always served as an inspiration for organic chemists. Since the first synthesis of a natural product, urea, chemists have been challenged to prepare exact copies of natural structures in the laboratory. As a result, a broad repertoire of synthetic transformations has been developed over the years. It is now feasible to synthesize organic molecules of enormous complexity, and also molecules with less structural complexity but prodigious societal impact, such as nylon, TNT, polystyrene, statins, estradiol, XTC, and many more. Unfortunately, only a few chemical transformations are so mild and precise that they can be used to selectively modify biochemical structures, such as proteins or nucleic acids; these are the so-called bioconjugation strategies. Even more challenging is to apply a chemical reaction on or in living cells or whole organisms; these are the so-called bioorthogonal reactions. These fields of research are of particular importance because they not only pose a worthy challenge for chemists but also offer unprecedented possibilities for studying biological systems, especially in areas in which traditional biochemistry and molecular biology tools fall short. Recent years have seen tremendous growth in the chemical biology toolbox. In particular, a rapidly increasing number of bioorthogonal reactions has been developed based on chemistry involving strained alkenes or strained alkynes. Such strained unsaturated systems have the unique ability to undergo (3 + 2) and (4 + 2) cycloadditions with a diverse set of complementary reaction partners. Accordingly, chemistry centered around strain-promoted cycloadditions has been exploited to precisely modify biopolymers, ranging from nucleic acids to proteins to glycans. In this Account, we describe progress in bioconjugation centered around cycloadditions of these strained unsaturated systems. Being among the first to recognize the utility

  1. Metal-catalyzed oxidation of 2-alkenals generates genotoxic 4-oxo-2-alkenals during lipid peroxidation.

    Science.gov (United States)

    Nuka, Erika; Tomono, Susumu; Ishisaka, Akari; Kato, Yoji; Miyoshi, Noriyuki; Kawai, Yoshichika

    2016-10-01

    Lipid peroxidation products react with cellular molecules, such as DNA bases, to form covalent adducts, which are associated with aging and disease processes. Since lipid peroxidation is a complex process and occurs in multiple stages, there might be yet unknown reaction pathways. Here, we analyzed comprehensively 2'-deoxyguanosine (dG) adducts with oxidized arachidonic acid using liquid chromatography-tandem mass spectrometry and found the formation of 7-(2-oxo-hexyl)-etheno-dG as one of the major unidentified adducts. The formation of this adduct was reproduced in the reaction of dG with 2-octenal and predominantly with 4-oxo-2-octenal (OOE). We also found that other 2-alkenals (with five or more carbons) generate corresponding 4-oxo-2-alkenal-type adducts. Importantly, it was found that transition metals enhanced the oxidation of C4-position of 2-octenal, leading to the formation of OOE-dG adduct. These findings demonstrated a new pathway for the formation of 4-oxo-2-alkenals during lipid peroxidation and might provide a mechanism for metal-catalyzed genotoxicity.

  2. Assisted Tandem Catalysis : Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2015-01-01

    Here we report the first example of a tandem metathesis-asymmetric hydrogenation protocol where the prochiral olefin generated by metathesis is hydrogenated with high enantioselectivity by an in situ formed chiral ruthenium catalyst. We show that either the ruthenium metathesis catalysts or the

  3. Ligand Exchange-Mediated Activation and Stabilization of a Re-Based Olefin Metathesis Catalyst by Chlorinated Alumina.

    Science.gov (United States)

    Gallo, Alessandro; Fong, Anthony; Szeto, Kai C; Rieb, Julia; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Peters, Baron; Scott, Susannah L

    2016-10-05

    Extensive chlorination of γ-Al2O3 results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support. More specifically, Re LIII-edge EXAFS and DFT calculations support facile ligand exchange between MTO and Cl-Al2O3 to generate [CH3ReO2Cl(+)] fragments that interact with a bridging oxygen of the support via a Lewis acid-base interaction. According to IR and solid-state NMR, the methyl group remains intact, and does not evolve spontaneously to a stable methylene tautomer. Nevertheless, the chloride-promoted metathesis catalyst is far more active and productive than MTO/γ-Al2O3, easily achieving a TON of 100 000 for propene metathesis in a flow reactor at 10 °C (compared to TON < 5000 for the nonchlorinated catalyst). Increased activity is a consequence of both a larger fraction of active sites and a higher intrinsic activity for the new sites. Increased stability is tentatively attributed to a stronger interaction between MTO and chlorinated surface regions, as well as extensive depletion of the Brønsted acidic surface hydroxyl population. The reformulated catalyst represents a major advance for Re-based metathesis catalysts, whose widespread use has thus far been severely hampered by their instability.

  4. Novel anticancer alkene lactone from Persea americana.

    Science.gov (United States)

    Falodun, Abiodun; Engel, Nadja; Kragl, Udo; Nebe, Barbara; Langer, Peter

    2013-06-01

    Persea americana Mill (Lauraceae) root bark is used in ethnomedicine for a variety of diseases including cancer. To isolate and characterize the chemical constituent in P. americana, and also to determine the anticancer property of a new alkene lactone from the root bark of P. americana. The MCF-7 cells were treated with different concentrations of the pure compound for 48 h. The percentage of cells in the various phases, online monitoring of metabolic changes and integrin receptor expression determined by flow cytometry. One novel alkene lactone (4-hydroxy-5-methylene-3-undecyclidenedihydrofuran-2 (3H)-one) (1) was isolated and characterized using 1D-NMR, 2D-NMR, infrared, UV and MS. At a concentration of 10 µg/mL, significant reduction of proliferation of MCF-7 was induced while MCF-12 A cell was significantly stimulated by 10 µg/mL. The IC50 value for MCF-7 cells is 20.48 µg/mL. Lower concentration of 1 harbor no significant effect on either MCF-7 or MCF-12A. The apoptotic rates of MCF-7 cells were increased significantly. At the final concentration 10 µg/mL, up to 80% of all breast cancer cells were dead. On the non-tumorigenic cell line MCF-12A, the same concentrations (1 and 10 µg/mL) of compound 1 caused significant enhanced apoptotic rates. A total of 1 µg/mL of 1 caused a decrease of α4-, α6-, β1- and β3-integrin expression. The compound caused a stimulatory effect on non-tumorigenic MCF-12A cells with respect to cell adhesion while tumorigenic MCF-7 cells detached continuously. This is the first report on the anticancer effects of this class of compound.

  5. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    Science.gov (United States)

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O.

  6. Ruthenium Olefin Metathesis Catalysts Bearing an N-Fluorophenyl-N-Mesityl-Substituted Unsymmetrical N-Heterocyclic Carbene

    OpenAIRE

    Vougioukalakis, Georgios C.; Grubbs, Robert H

    2007-01-01

    Two new ruthenium-based olefin metathesis catalysts, each bearing an unsymmetrical N-heterocyclic carbene ligand, have been synthesized and fully characterized. Their catalytic performance has been evaluated in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization reactions.

  7. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  8. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring Closing Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.

    2010-01-01

    (eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172

  9. A well-defined rhenium(VII) olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Toreki, R.; Schrock, R.R. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-03-14

    Molybdenum tungsten, and rhenium are the three most active metals in classical olefin metathesis systems. Molybdenum (VI){sup 2} and tungsten(VI){sup 3} alkylidene complexes of the type M-(CHR{prime})(NAr)(OR){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) have been shown to be well-behaved olefin metathesis catalysts with an activity that can be controlled through the choice of OR. Although several rhenium alkylidene complexes have been reported, none has shown any confirmable metathesis activity, even toward strained cyclic olefins such as norbornene. Since Re{triple bond}CR{double prime} and M{double bond}NR{double prime} (M = Mo or W) can be regarded as isoelectronic units, plausible candidates as olefin metathesis catalysts are complexes of the type Re(CHR{prime})(CR{double prime})(OR){sub 2}. The authors report here that such a complex in which OR = OCMe(CF{sub 3}){sub 2} is a well-behaved olefin metathesis catalyst.

  10. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    Science.gov (United States)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  11. Stereoretentive Olefin Metathesis: An Avenue to Kinetic Selectivity.

    Science.gov (United States)

    Montgomery, T Patrick; Ahmed, Tonia S; Grubbs, Robert H

    2017-09-04

    Olefin metathesis is an incredibly valuable transformation that has gained widespread use in both academic and industrial settings. Lately, stereoretentive olefin metathesis has garnered much attention as a method for the selective generation of both E- and Z-olefins. Early studies employing ill-defined catalysts showed evidence for retention of the stereochemistry of the starting olefins at low conversion. However, thermodynamic ratios E/Z were reached as the reaction proceeded to equilibrium. Recent studies in olefin metathesis have focused on the synthesis of catalysts that can overcome the inherent thermodynamic preference of an olefin, providing synthetically useful quantities of a kinetically favored olefin isomer. These reports have led to the development of stereoretentive catalysts that not only generate Z-olefins selectively, but also kinetically produce E-olefins, a previously unmet challenge in olefin metathesis. Advancements in stereoretentive olefin metathesis using tungsten, ruthenium, and molybdenum catalysts are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Room Temperature Hydrosilylation of Silicon Nanocrystals with Bifunctional Terminal Alkenes

    Science.gov (United States)

    Yu, Yixuan; Hessel, Colin M.; Bogart, Timothy; Panthani, Matthew G.; Rasch, Michael R.; Korgel, Brian A.

    2013-01-01

    H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties—ethyl-, methyl-ester or carboxylic acids—without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene. PMID:23312033

  13. Recent Progress on Enyne Metathesis: Its Application to Syntheses of Natural Products and Related Compounds

    Directory of Open Access Journals (Sweden)

    Miwako Mori

    2010-03-01

    Full Text Available Olefin metathesis using ruthenium carbene complexes is a useful method in synthetic organic chemistry. Enyne metathesis is also catalyzed by these complexes and various carbo- and heterocycles could be synthesized from the corresponding enynes. Dienyne metathesis, cross enyne metathesis and ring-opening enyne metathesis have been further developed. Various complicated compounds, such as the natural products and the related biologically active substances, could be synthesized using these metatheses reactions. Skeletal reorganization using the transition metals and metallotropic rearrangement are also discussed.

  14. Target Specific Tactics in Olefin Metathesis: Synthetic Approach to cis-syn-cis-Triquinanes and -Propellanes.

    Science.gov (United States)

    Kotha, Sambasivarao; Aswar, Vikas R

    2016-04-15

    A concise and simple synthetic approach to cis-syn-cis-triquinanes and -propellanes has been demonstrated via olefin metathesis starting with exo-nadic anhydride. This approach involves a ring-opening and ring-closing metathesis sequence of norbornene derivatives using Grubb's catalyst. Early-stage diallylation of norbornene derivatives is demonstrated followed by ring-closing metathesis that delivers propellanes exclusively. Surprisingly, ring-opening metathesis, late-stage diallylation, followed by ring-closing metathesis delivers triquinane as well as propellane derivatives.

  15. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  16. Building Indenylidene-Ruthenium Catalysts for Metathesis Transformations

    Science.gov (United States)

    Clavier, Hervé; Nolan, Steven P.

    Ruthenium-mediated olefin metathesis has emerged as an indispensable tool in organic synthesis for the formation carbon-carbon double bonds, attested by the large number of applications for natural product synthesis. Among the numerous catalysts developed to mediate olefin metathesis transformations, ruthenium-indenylidene complexes are robust and powerful pre-catalysts. The discovery of this catalyst category was slightly muddled due to a first mis-assignment of the compound structure. This report provides an overview of the synthetic routes for the construction of the indenylidene pattern in ruthenium complexes. The parameters relating to the indenylidene moiety construction will be discussed as well as the mechanism of this formation

  17. Refining of plant oils to chemicals by olefin metathesis.

    Science.gov (United States)

    Chikkali, Samir; Mecking, Stefan

    2012-06-11

    Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...... acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes...

  19. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  20. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes......Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...

  1. Influence of alkene substituent in dictating the reaction course to ...

    Indian Academy of Sciences (India)

    RITABRATA DATTA

    2017-11-06

    Nov 6, 2017 ... Ghosh S, Ghosh S and Sarkar N 2006 Factors Influencing. Ring Closure Through Olefin Metathesis-A Perspective J. Chem. Sci. 118 223. 3. (a) Maity S, Matcha K and Ghosh S 2010 Synthetic. Studies on Schisandra Nortriterpenoids. Stereocontrolled. Synthesis of Enantiopure C-5-epi ABC Ring Systems of.

  2. Covalently stabilized self-assembled chlorophyll nanorods by olefin metathesis.

    Science.gov (United States)

    Sengupta, Sanchita; Würthner, Frank

    2012-06-11

    A new chlorophyll derivative with peripheral olefinic chains has been synthesised and its self-assembly properties have been studied, revealing formation of well-defined nanorods. These nanorods were stabilized and rigidified by olefin metathesis reaction as confirmed by spectroscopic and microscopic methods.

  3. Recent advances in the development of alkyne metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Matthias Tamm

    2011-01-01

    Full Text Available The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review.

  4. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  5. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone.

  6. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  7. Fluoronium metathesis and rearrangements of fluorine stabilized carbocations

    NARCIS (Netherlands)

    Oomens, J.; Morton, T.H.

    2011-01-01

    The ion-molecule reaction of gaseous trifluoromethyl cation with the conjugated enone 3-methylcyclopentenone yields the C6H8F+ product from metathesis of F+ with the ketone oxygen, along with concomitant formation of neutral carbonyl fluoride. Comparison of the infrared multiple photon dissociation

  8. Fluoronium metathesis and rearrangements of fluorine-stabilized carbocations

    NARCIS (Netherlands)

    Oomens, J.; Morton, T. H.

    2011-01-01

    The ion-molecule reaction of gaseous trifluoromethyl cation with the conjugated enone 3-methylcyclopentenone yields the C(6)H(8)F(+) product from metathesis of F(+) with the ketone oxygen, along with concomitant formation of neutral carbonyl fluoride. Comparison of the infrared multiple photon

  9. Metathesis of carbon dioxide and phenyl isocyanate catalysed by ...

    Indian Academy of Sciences (India)

    The insertion reactions of zirconium(IV) -butoxide and titanium(IV) -butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion.

  10. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Metathesis synthesis of complex metal fluorides using mechanochemical activation has been reported. The high lattice energy of the byproduct KCl helps the reaction towards product formation in under 20 min. The proposed process, in contrast to the available methods of synthesis, is very rapid, economical and ...

  11. The mechanism for iron-catalyzed alkene isomerization in solution

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  12. Synthesis of Alkyne and Alkene Ketal Derivatives of Pentacyclo[5.4 ...

    African Journals Online (AJOL)

    Generally the synthesis of terminal alkyne and cyclic alkene ketal derivatives were performed fairly easily. Synthesis of the terminal alkenes provided some difficulties. Reduction of the alkyne ketal derivatives using Pd/CaCO3 has been demonstrated to forma mixture containing the desired alkene ketal derivatives.

  13. Unidirectional light-driven molecular motors based on overcrowded alkenes.

    Science.gov (United States)

    Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L

    2014-01-01

    Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising for performing work at the nanoscale. In this chapter, progress on light-driven molecular motors based on overcrowded alkenes is reviewed. Both the so-called first and second generation molecular motors are discussed, as well as their potential applications.

  14. Alkenes with antioxidative activities from Murraya koenigii (L.) Spreng.

    Science.gov (United States)

    Ma, Qin-Ge; Xu, Kun; Sang, Zhi-Pei; Wei, Rong-Rui; Liu, Wen-Min; Su, Ya-Lun; Yang, Jian-Bo; Wang, Ai-Guo; Ji, Teng-Fei; Li, Lu-Jun

    2016-02-01

    Four new alkenes (1-4), and six known alkenes (5-12) were isolated from Murraya koenigii (L.) Spreng. Their structures were elucidated on the basis of spectroscopic analyses and references. Compounds (1-12) were evaluated for antioxidative activities. Among them, compounds 1, 2, 4, and 7 exhibited significant antioxidative activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with IC50=21.4-49.5 μM. The known compounds (5-12) were isolated from this plant for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  16. Ruthenium-Catalyzed Olefin Metathesis after Tetra-n-butylammonium Fluoride-Mediated Desilylation

    Science.gov (United States)

    Osman, Sami

    2012-01-01

    One-pot procedures expedite organic synthesis but pose challenges in that many reagents must be compatible with each other. We discovered that the presence of nBu4NF hindered rutheniumcatalyzed olefin metathesis when nBu4NF-mediated desilylation and olefin metathesis were performed in one pot. This problem could be solved by the addition of (TMS)2O to remove fluoride anions in order to facilitate the ruthenium-catalyzed olefin metathesis. PMID:23269856

  17. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  18. Origins of the Stereoretentive Mechanism of Olefin Metathesis with Ru-Dithiolate Catalysts.

    Science.gov (United States)

    Grandner, Jessica M; Shao, Huiling; Grubbs, Robert H; Liu, Peng; Houk, K N

    2017-10-06

    A comprehensive computational study of stereoretentive olefin metathesis with Ru-dithiolate catalysts has been performed. We have determined how the dithiolate ligand enforces a side-bound mechanism and how the side-bound mechanism allows for stereochemical control over the forming olefin. We have used density functional theory (DFT) and ligand steric contour maps to elucidate the origins of stereoretentive metathesis with the goal of understanding how to design a new class of E-selective metathesis catalysts.

  19. A Ruthenium Catalyst for Olefin Metathesis Featuring an Anti-Bredt N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Martin, David; Marx, Vanessa M; Grubbs, Robert H; Bertrand, Guy

    2016-03-17

    A ruthenium complex bearing an "anti-Bredt" N-heterocyclic carbene was synthesized, characterized and evaluated as a catalyst for olefin metathesis. Good conversions were observed at room temperature for the formation of di- and tri-substituted olefins by ring-closing metathesis. It also allowed for the ring-opening metathesis polymerization of cyclooctadiene, as well as for the cross-metathesis of cis-1,4-diacetoxy-2-butene with allyl-benzene, with enhanced Z/E kinetic selectivity over classical NHC-based catalysts.

  20. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.

    Science.gov (United States)

    Kozłowska, Anna; Dranka, Maciej; Zachara, Janusz; Pump, Eva; Slugovc, Christian; Skowerski, Krzysztof; Grela, Karol

    2014-10-20

    Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Computational study of productive and non-productive cycles in fluoroalkene metathesis

    Directory of Open Access Journals (Sweden)

    Markéta Rybáčková

    2015-11-01

    Full Text Available A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda–Grubbs 2nd generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues.

  2. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis

    NARCIS (Netherlands)

    Dong, J.; Fernandez Fueyo, E.; Li, Jingbo; Guo, Zheng; Renirie, Rokus; Wever, Ron; Hollmann, F.

    The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s−1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as

  3. Heuristical Strategies on the Study Theme "The Unsaturated Hydrocarbons -- Alkenes"

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2011-01-01

    The influence of heuristical strategies upon the level of two experimental classes is studied in this paper. The didactic experiment took place at secondary school in Cluj-Napoca, in 2008-2009 school year. The study theme "The Unsaturated Hydrocarbons--Alkenes" has been efficiently learned by using the most active methods: laboratory…

  4. Green oxidation of alkenes in ionic liquid solvent by hydrogen ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 3. Green oxidation of alkenes in ionic liquid solvent by hydrogen peroxide over high performance Fe(III) Schiff base complexes immobilized on MCM-41. Mohammad Taghi Goldani Ali Mohammadi Reza Sandaroos. Regular Articles Volume 126 Issue 3 May ...

  5. palladium-catalysed transfer hydrogenation of alkenes in the ...

    African Journals Online (AJOL)

    ABSTRACT. Catalytic transfer hydrogenation using palladiumfll) chloride, zinc powder and various organic acids proved effective for the reduction of a variety of alkenes at ambient temperature and atmospheric pressure. The method was found to be convenient, economical and uses a stable nonpyrophoric catalyst.

  6. Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis

    KAUST Repository

    Pump, Eva

    2017-08-24

    The mechanism of cyclooctane metathesis using confinement effect strategies in mesoporous silica nanoparticles (MSNs) is discussed by catalytic experiments and density functional theory (DFT) calculations. WMe6 was immobilized inside the pores of a series of MSNs having the same structure but different pore diameters (60, 30 and 25 Å). Experiments in cyclooctane metathesis suggest that confinement effects observed in smaller pores (30 and 25 Å) improve selectivity towards the dimeric cyclohexadecane. In contrast, in larger pores (60 Å) a broad product distribution dominated by ring contracted cycloalkanes was found. The catalytic cycle and potential side reactions occurring at [(≡SiO-)WMe5] were examined with DFT calculations. Analysis of the geometries for the key reaction intermediates allowed to rationalize the impact of a confined environment on the enhanced selectivity towards the dimeric product in smaller pores, while in large pores the ring contracted products are favored.

  7. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. Copyright © 2016, American Association for the Advancement of Science.

  8. Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds

    Directory of Open Access Journals (Sweden)

    Manie H. C. Vosloo

    2008-04-01

    Full Text Available The complexes RuCl2(PCy32(=CHPh, 1, and RuCl2(PCy3(H2IMes(=CHPh, 2, proved to be active catalysts for the self-metathesis of oleate-type fatty compounds containing the ester, hydroxyl, epoxy and carboxylic acid functional groups. At elevated reaction temperatures 2 showed a higher activity, stability and lower selectivity for primary metathesis products compared to 1. A profound influence of organic functional groups on catalyst activity and selectivity was found and from relative activities and selectivities 2 has proved to be more resistant to deactivation by polar functional groups and more inclined to promote double bond isomerisation than 1. The observed catalyst deactivation by oxygen-containing functional groups could be attributed to a phosphine displacement side reaction.

  9. [Alkene bromination used for detailed hydrocarbon and bulk hydrocarbon group-type analysis of gasolines containing alkenes].

    Science.gov (United States)

    Liu, Ying-Rong; Yang, Hai-Ying; Li, Chang-Xiu

    2002-07-01

    The optimized reaction conditions of selective alkene bromination for gasolines containing aromatics and saturated hydrocarbons are presented. By this way, the interfering problem in alkene determination from coeluting saturated hydrocarbons has been solved. So the detailed hydrocarbon analysis can be improved by a simple system containing polar and non-polar columns or by a gas chromatograph coupled with an atomic emission detector (GC-AED). Under the optimized conditions, it was found that the alkene compounds were selectively and completely brominated but the aromatics and alkane compounds were remained unaffected. A simple treatment, 90 s-120 s for reaction and 10 s-20 s for removing the excess bromine, can be easily realized. The treatment is applied for the different types of gasoline containing 0-100% alkene. Besides, one of the most important applications of this treatment is to analyse the hydrocarbons in detail from the fluid catalytic cracking (FCC) gasoline. The samples in these cases may not be accurately analyzed when using the traditional method of hydrocarbon analysis because of the presence of coeluted interfering olefins above C7.

  10. Consideration of applications of olefin metathesis in synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Heveling, J.

    1984-07-01

    One of the characteristics of Fischer-Tropsch synthesis and many oligomerization processes, is insufficient selectivity. Efforts have to be made to bring the products obtained in line with the market requirements. The olefin metathesis reaction has the potential to convert less desirable olefins to more useful ones and provides new ways of producing petrochemicals. Based on existing and suggested process technologies, applications of this reaction for the production of synthetic liquid fuels are discussed.

  11. Total Synthesis of Mycalolides A and B through Olefin Metathesis.

    Science.gov (United States)

    Kita, Masaki; Oka, Hirotaka; Usui, Akihiro; Ishitsuka, Tomoya; Mogi, Yuzo; Watanabe, Hidekazu; Tsunoda, Masaki; Kigoshi, Hideo

    2015-11-16

    An asymmetric total synthesis of the trisoxazole marine macrolides mycalolides A and B is described. This synthesis involves the convergent assembly of highly functionalized C1-C19 trisoxazole and C20-C35 side-chain segments through the use of olefin metathesis and esterification as well as Julia-Kocienski olefination and enamide formation as key steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metathesis process for preparing an alpha, omega-functionalized olefin

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, Kenneth A. (Midland, MI); Mokhtarzadeh, Morteza (Charleston, WV); Timmers, Francis J. (Midland, MI)

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  13. Theoretical evidence for bond stretch isomerism in Grubbs olefin metathesis.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2017-07-15

    A comprehensive density functional theory study on the dissociative and associative mechanisms of Grubbs first and second generation olefin metathesis catalysis reveals that ruthenacyclobutane intermediate (RuCB) observed in the Chauvin mechanism is not unique as it can change to a non-metathetic ruthenacyclobutane (RuCB') via the phenomenon of bond stretch isomerism (BSI). RuCB and RuCB' differ mainly in RuCα , RuCβ , and Cα Cβ bond lengths of the metallacycle. RuCB is metathesis active due to the agostic type bonding-assisted simultaneous activation of both Cα Cβ bonds, giving hypercoordinate character to Cβ whereas an absence of such bonding interactions in RuCB' leads to typical CC single bond distances and metathesis inactivity. RuCB and RuCB' are connected by a transition state showing moderate activation barrier. The new mechanistic insights invoking BSI explains the non-preference of associative mechanism and the requirement of bulky ligands in the Grubbs catalyst design. The present study lifts the status of BSI from a concept of largely theoretical interest to a phenomenon of intense importance to describe an eminent catalytic reaction. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands

    Science.gov (United States)

    Szadkowska, Anna; Grela, Karol

    This review article is devoted to recent advances in the design and application of so-called “dormant” or “latent” ruthenium olefin metathesis catalysts bearing S-chelating alkylidene ligands. Selected ruthenium complexes containing S-donor ligands, which possess controllable initiation behaviour are presented. Applications of these complexes in olefin metathesis are described.

  15. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Saá, Carlos

    2016-09-05

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New pseudohalide ligands in Ru-catalyzed olefin metathesis : a robust, air-activated iminopyrrolato catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Drouin, S.D.; Foucault, H.M.; Yap, G.P.A.; Fogg, D.E. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation

    2005-07-01

    This study demonstrated the feasibility of using iminopyrrolatos as a new pseudohalide ligand in Ru-catalyzed olefin metathesis, particularly in terms of stereo control and anchoring. Ring-closing metathesis (RCM) and cross-metathesis reactions hold promise for pharmaceutical synthesis, as well as green chemistry initiatives to transform seed oils into olefin feedstocks. The advent of robust, functional-group tolerant ruthenium (Ru) catalysts has expanded the deployment of olefin metathesis methodologies by the organic community. Despite recent advances in metathesis activity, major issues remain to be addressed, particularly the problem of short catalyst lifetimes which increase catalyst loading requirements, as well as heavy metal contamination of the organic products. This study revealed that chelation does not prevent isomerization of aryloxide ligands that form larger, seven-membered chelate rings. Complex 5 proved to be a robust olefin metathesis catalyst, effecting RCM of the benchmark substrate diethyl diallylmalonate at 70 degrees C in air, in nondistilled and nondegassed solvent. The reaction revealed complete selectivity for RCM over intermolecular acyclic diene metathesis processes, even in the absence of a solvent. It was shown that RuCl(NN')(Pcy{sub 3})(CHPh) (5) is activated via loss of phosphine. As a result, the catalyst achieves maximum activity in the presence of air, providing a good experimental protocol for metathesis chemistry.

  17. Direct C–H trifluoromethylation of di- and trisubstituted alkenes by photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Ren Tomita

    2014-05-01

    Full Text Available Background: Trifluoromethylated alkene scaffolds are known as useful structural motifs in pharmaceuticals and agrochemicals as well as functional organic materials. But reported synthetic methods usually require multiple synthetic steps and/or exhibit limitation with respect to access to tri- and tetrasubstituted CF3-alkenes. Thus development of new methodologies for facile construction of Calkenyl–CF3 bonds is highly demanded.Results: The photoredox reaction of alkenes with 5-(trifluoromethyldibenzo[b,d]thiophenium tetrafluoroborate, Umemoto’s reagent, as a CF3 source in the presence of [Ru(bpy3]2+ catalyst (bpy = 2,2’-bipyridine under visible light irradiation without any additive afforded CF3-substituted alkenes via direct Calkenyl–H trifluoromethylation. 1,1-Di- and trisubstituted alkenes were applicable to this photocatalytic system, providing the corresponding multisubstituted CF3-alkenes. In addition, use of an excess amount of the CF3 source induced double C–H trifluoromethylation to afford geminal bis(trifluoromethylalkenes.Conclusion: A range of multisubstituted CF3-alkenes are easily accessible by photoredox-catalyzed direct C–H trifluoromethylation of alkenes under mild reaction conditions. In particular, trifluoromethylation of triphenylethene derivatives, from which synthetically valuable tetrasubstituted CF3-alkenes are obtained, have never been reported so far. Remarkably, the present facile and straightforward protocol is extended to double trifluoromethylation of alkenes.

  18. A diversity-oriented approach to spirocyclic and fused hydantoins via olefin metathesis.

    Science.gov (United States)

    Dhara, Kalyan; Midya, Ganesh Chandra; Dash, Jyotirmayee

    2012-09-21

    An efficient and general method is reported to prepare a diverse series of 5,5-spirocyclic and 1,5-, 4,5-, and 3,4-fused bicyclic imidazolidinone derivatives based on selective alkylation and ring closing metathesis (RCM) by exploiting the four possible points of diversity in the hydantoin ring. Hydantoins containing trienes and tetraenes undergo selective RCM and cross metathesis to afford functionalized spirohydantoins. A tandem metathesis sequence involving ring closing-ring opening-ring closing and cross metathesis (RC-RO-RC-CM) occurred with a hydantoin triene to give a bicyclic hydantoin dimer in high yield. The fused bicylic dimer could participate in cross metathesis to produce a functionalized fused hydantoin derivative. The methodology establishes novel routes to unnatural amino acids, proline homologues, and cyclic vicinal diamines.

  19. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers

    Science.gov (United States)

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  20. Palladium-catalyzed anti-Markovnikov oxidation of terminal alkenes.

    Science.gov (United States)

    Dong, Jia Jia; Browne, Wesley R; Feringa, Ben L

    2015-01-12

    The palladium-catalyzed oxidation of alkenes, the Wacker-Tsuji reaction, is undoubtedly a classic in organic synthesis and provides reliable access to methyl ketones from terminal alkenes under mild reaction conditions. Methods that switch the selectivity of the reaction to provide the aldehyde product are desirable because of the access they provide to a valuable functional group, however such methods are elusive. Herein we survey both the methods which have been developed recently in achieving such selectivity and discuss common features and mechanistic insight which offers promise in achieving the goal of a general method for anti-Markovnikov-selective olefin oxidations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New mechanistic aspects of the asymmetric homogeneous hydrogenation of alkenes.

    Science.gov (United States)

    Brown, J M; Giernoth, R

    2000-11-01

    Progress in homogeneous catalysis depends upon an understanding of the reaction mechanism; in asymmetric catalysis this entails an insight into the origins of enantioselectivity. Significant advances have been made in the area of alkene reduction catalyzed by rhodium or ruthenium complexes, which has been in tandem with the development of new, more effective ligands for the reaction. The combination of quantum chemical calculations and direct spectroscopic observation of catalytic intermediates has proved powerful in this regard.

  2. Abundance of DNA adducts of 4-oxo-2-alkenals, lipid peroxidation-derived highly reactive genotoxins.

    Science.gov (United States)

    Kawai, Yoshichika; Nuka, Erika

    2018-01-01

    Reactive oxygen species and their reaction products can damage DNA to form mutagenic lesions. Among the reactive species, lipid peroxidation-derived aldehydes react with nucleobases and form bulky exocyclic adducts. Many types of aldehyde-derived DNA adducts have been characterized, identified and detected in vitro and in vivo , whereas relative quantitative and pathophysiological contributions of each adduct still remain unclear. In recent years, an abundant class of DNA adducts derived from 4-oxo-2-alkenals have been identified, in addition to classic aldehyde-derived adducts. The presence of 4-oxo-2-alkenal-derived DNA adducts associated with age-related diseases has been revealed in rodents and humans. In vitro studies have demonstrated that 4-oxo-2-alkenals, as compared with other classes of lipid peroxidation-derived aldehydes, are highly reactive with nucleobases. It has been generally recognized that 4-oxo-2-alkenals are generated through oxidative degradation of the corresponding 4-hydroperoxy-2-alkenals, homolytic degradation products of polyunsaturated fatty acid hydroperoxides. Our recent results have also shown an alternative pathway for the formation of 4-oxo-2-alkenals, in which 2-alkenals could undergo the metal-catalyzed autoxidation resulting in the formation of the corresponding 4-oxo-2-alkenals. This review summarizes the basis of the formation of lipid peroxidation-derived genotoxic aldehydes and their covalent adduction to nucleobases, especially focusing on the abundance of 4-oxo-2-alkenal-derived DNA adducts.

  3. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  4. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  5. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    Science.gov (United States)

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  6. Poly(trimethylsilylcyclooctatetraene): A soluble conjugated polyacetylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, E.J.; Gorman, C.B.; Grubbs, R.H.; Marder, S.R. (California Institute of Technology, Pasadena (USA))

    1989-09-13

    highly conjugated polymers, such as polyacetylene, polythiophene, and poly(p-phenylene vinylene), have been the subject of intensive research due to their intriguing optical and electronic properties. These parent systems are highly desirable for experimental and theoretical studies due to their simplicity. Their intractability, however, has made characterization an arduous task, and insolubility has severely limited their applications. Researchers have successfully circumvented these obstacles by synthesizing soluble alkyl- and alkoxy-substituted polythiphenes and poly(p-phenylene vinylenes). Analogous soluble highly conjugated polyacetylene derivatives have proven more elusive. The authors report here the synthesis of such a polymer using ring-opening metathesis polymerization (ROMP).

  7. Cardanol-Based Materials as Natural Precursors for Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-08-01

    Full Text Available Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enylphenol, 3-(pentadeca-8,11-dienylphenol and 3-(pentadeca-8,11,14-trienylphenol. Olefin metathesis (OM reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed.

  8. Microwave-Assisted Olefin Metathesis as Pivotal Step in the Synthesis of Bioactive Compounds.

    Science.gov (United States)

    Etsè, Koffi Sénam; Ngendera, Alice; Tshibalonza, Ntumba Nelly; Demonceau, Albert; Delaude, Lionel; Dragutan, Ileana; Dragutan, Valerian

    2017-03-14

    Over the last two decades, olefin metathesis has emerged as a new avenue in the design of new routes for the synthesis of natural products and active pharmaceutical ingredients. In many cases, syntheses based on olefin metathesis strategies provide elegant routes in terms of increasing the overall yields, improving the synthesis scope, and decreasing the number of steps. On the other hand, over the last decade, microwave-assisted chemistry has experienced an incredible development, which rapidly opened new vistas in organic synthesis and in homogeneous catalysis. In this review article, we highlight applications of microwave-heated olefin metathesis reactions as pivotal steps in the total synthesis of biologically active compounds. By drawing selected examples from the recent literature, we aim to illustrate the great synthetic power and variety of metathesis reactions, as well as the beneficial effects of microwave irradiation over conventional heating sources. The majority of the selected applications of microwave-assisted olefin metathesis cover the synthesis of medium-ring cycles, macrocycles, and peptidomimetics by means of ring-closing metathesis (RCM) and cross-metathesis (CM) routes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  10. Highly Active Ruthenium Metathesis Catalysts Exhibiting Unprecedented Activity and Z-Selectivity

    Science.gov (United States)

    Rosebrugh, Lauren E.; Herbert, Myles B.; Marx, Vanessa M.; Keitz, Benjamin K.; Grubbs, Robert H.

    2013-01-01

    A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically-active species were synthesized using an improved method employing sodium carboxylates to induce the salt metathesis and C-H activation of these chelated complexes. All of these new ruthenium-based catalysts are highly Z-selective in the homodimerization of terminal olefins. PMID:23317178

  11. Ruthenium-Vinylidene Complexes: An Efficient Class of Homogeneous Metathesis Catalysts

    Science.gov (United States)

    Dragutan, Ileana; Verpoort, Francis; Dragutan, Valerian; Drozdzak, Renata

    Several routes to access ruthenium (Ru)-vinylidene complexes are described, the majority of which employ alkynes and a Ru source as the starting materials. The successful application of Ru-vinylidenes as efficient pre-catalysts for the synthesis of carbocyclic and heterocyclic compounds by ring-closing metathesis (RCM) of αω, -dienes, and in the synthesis of polymers by ring-opening metathesis polymerization (ROMP) of cyclooctene, norbornene, 5-substituted norbornene, and dicyclopentadiene is fully illustrated. Relevant aspects concerning the activity and selectivity of this type of Ru complexes in metathesis reactions are highlighted.

  12. Olefin Metathesis in Homogeneous Aqueous Media Catalyzed by Conventional Ruthenium Catalysts

    Science.gov (United States)

    Binder, Joseph B.; Blank, Jacqueline J.; Raines, Ronald T.

    2008-01-01

    Olefin metathesis in aqueous solvents is sought for applications in green chemistry and with the hydrophilic substrates of chemical biology, such as proteins and polysaccharides. Most demonstrations of metathesis in water, however, utilize exotic complexes. We have examined the performance of conventional catalysts in homogeneous water–organic mixtures, finding that the second-generation Hoveyda–Grubbs catalyst has extraordinary efficiency in aqueous dimethoxyethane and aqueous acetone. High (71–95%) conversions are achieved for ring-closing and cross metathesis of a variety of substrates in these solvent systems. PMID:17949009

  13. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Science.gov (United States)

    Maison, Wolfgang; Büchert, Marina; Deppermann, Nina

    2007-01-01

    Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles. PMID:18088413

  14. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Directory of Open Access Journals (Sweden)

    Deppermann Nina

    2007-12-01

    Full Text Available Abstract Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles.

  15. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    Science.gov (United States)

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization.

  16. Poly(aryleneethynylene)s: Properties, Applications and Synthesis Through Alkyne Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Michael; Yu, Chao; Jin, Yinghua; Zhang, Wei

    2017-06-26

    Functional polymeric materials have seen their way into every facet of materials chemistry and engineering. In this review article, we focus on a promising class of polymers, poly(aryleneethynylene)s, by covering several of the numerous applications found thus far for these materials. Additionally, we survey the current synthetic strategies used to create these polymers, with a focus on the emerging technique of alkyne metathesis. An overview is presented of the most recent catalytic systems that support alkyne metathesis as well as the more useful alkyne metathesis reaction capable of synthesizing poly(aryleneethynylene)s.

  17. Metallocene-catalyzed alkene polymerization and the observation of Zr-allyls

    OpenAIRE

    Landis, Clark R.; Christianson, Matthew D.

    2006-01-01

    Single-site polymerization catalysts enable exquisite control over alkene polymerization reactions to produce new materials with unique properties. Knowledge of catalyst speciation and fundamental kinetics are essential for full mechanistic understanding of zirconocene-catalyzed alkene polymerization. Currently the effect of activators on fundamental polymerization steps is not understood. Progress in understanding activator effects requires determination of fundamental kinetics for zirconoce...

  18. C25 highly branched isoprenoid (HBI) alkenes from the marine benthic diatom Pleurosigma strigosum

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Grossi, V.; Beker, B.; Geenevasen, J.A.J.; Schouten, S.; Raphel, D.; Fontaine, M.F.

    2004-01-01

    The hydrocarbon composition of the marine diatom Pleurosigma strigosum isolated from coastal Mediterranean sediments is described. A suite of five C25 highly branched isoprenoid (HBI) alkenes with 2 5 double bonds were detected together with n-C21:4 and n-C21:5 alkenes and squalene. The analysis by

  19. Atmospheric Gas-Phase Reactions of Fluorinated Compounds and Alkenes

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From

    for Atmospheric Research, Denmark. All setups consist of a chamber and uses UV light to initiate the experiments and Fourier transform infrared spectroscopy for the analysis of the data. The atmospheric chemistry of new chlorofluorocarbon replacements is discussed. Experimental studies have been performed on: (CF......Experimental studies have been performed using three different smog chamber setups to investigate the atmospheric chemistry of fluorinated compounds as well as alkenes. The three instruments were at Ford Motor Company, USA, National Center for Atmospheric Research, USA, and Copenhagen Center...

  20. Side-chain modification and "grafting onto" via olefin cross-metathesis.

    Science.gov (United States)

    de Espinosa, Lucas Montero; Kempe, Kristian; Schubert, Ulrich S; Hoogenboom, Richard; Meier, Michael A R

    2012-12-13

    Olefin cross-metathesis is introduced as a versatile polymer side-chain modification technique. The reaction of a poly(2-oxazoline) featuring terminal double bonds in the side chains with a variety of functional acrylates has been successfully performed in the presence of Hoveyda-Grubbs second-generation catalyst. Self-metathesis, which would lead to polymer-polymer coupling, can be avoided by using an excess of the cross-metathesis partner and a catalyst loading of 5 mol%. The results suggest that bulky acrylates reduce chain-chain coupling due to self-metathesis. Moreover, different functional groups such as alkyl chains, hydroxyl, and allyl acetate groups, as well as an oligomeric poly(ethylene glycol) and a perfluorinated alkyl chain have been grafted with quantitative conversions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.

    Science.gov (United States)

    Sari, Ozkan; Hamada, Manabu; Roy, Vincent; Nolan, Steven P; Agrofoglio, Luigi A

    2013-09-06

    Intermolecular ultrasound-assisted olefin cross-metathesis is reported. This approach allows an easy access to challenging trisubstituted alkenyl nucleoside phosphonates. Regioselective chemoenzymatic deacetylation and Mitsunobu coupling are also described.

  2. Unravelling the olefin cross metathesis on solid support. Factors affecting the reaction outcome.

    Science.gov (United States)

    Poeylaut-Palena, Andrés A; Mata, Ernesto G

    2010-09-07

    Olefin cross metathesis on solid support under a variety of conditions is described. A comprehensive analysis considering diverse factors governing the reaction outcome gives a series of patterns for the application of this useful methodology in organic synthesis. If the intrasite reaction is not possible, homodimerization of the soluble olefin is crucial. When the homodimer is less reactive than its monomer, reaction outcome depends on the homodimerization rate, which, in turn, depends on the precatalyst used and the reaction conditions. If the site-site interaction is a feasible process, the cross metathesis product is obtained exclusively when the newly-formed double bond is resilient to further metathetic events. Taking into account these considerations, we have demonstrated that excellent results in terms of cross metathesis coupling can be obtained under the optimized conditions, and that microwave irradiation is also an interesting alternative for the development of a practical and energy-efficient cross metathesis on solid support.

  3. Mild Functionalization of Tetraoxane Derivatives via Olefin Metathesis: Compatibility of Ruthenium Alkylidene Catalysts with Peroxides.

    Science.gov (United States)

    Jana, Anupam; Grela, Karol

    2017-02-03

    An easy and mild functionalization method of tetraoxane derivatives via olefin metathesis is reported. This reaction offers a new method to afford fully functionalized tetraoxanes in high yields. This method is also utilized in the functionalization of bioactive compounds.

  4. Efficient Removal of Ruthenium Byproducts from Olefin Metathesis Products by Simple Aqueous Extraction

    Science.gov (United States)

    Hong, Soon Hyeok; Grubbs, Robert H.

    2008-01-01

    Simple aqueous extraction removed ruthenium byproducts efficiently from ring-closing metathesis (RCM) reactions catalyzed by a PEG-supported N-heterocyclic carbene-based ruthenium complex. PMID:17428062

  5. p-Cymene as Solvent for Olefin Metathesis: Matching Efficiency and Sustainability.

    Science.gov (United States)

    Granato, Artur V; Santos, Alexandra G; Dos Santos, Eduardo N

    2017-04-22

    The underexploited biorenewable p-cymene is employed as a solvent for the metathesis of various substrates. p-Cymene is a nontoxic compound that can be obtained in large amounts as a side product of the cellulose and citrus industry. For the cross-metathesis of estragole with methyl acrylate, this solvent prevents the consecutive double-bond isomerization of the product and affords the best yield of all solvents tested. Undesired consecutive isomerization is a major challenge for many substrates in olefin metathesis, including pharmaceutical precursors, and the use of p-cymene as a solvent may be a way to prevent it. This solvent results in a better metathesis performance than toluene for the three substrates tested in this work, matching its performance for two other substrates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of a tricyclic lactam via Beckmann rearrangement and ring-rearrangement metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A tricyclic lactam is reported in a four step synthesis sequence via Beckmann rearrangement and ring-rearrangement metathesis as key steps. Here, we used a simple starting material such as dicyclopentadiene.

  7. Synthetic studies on taxanes: A domino-enyne metathesis/Diels ...

    Indian Academy of Sciences (India)

    Abstract. A domino enyne cross-metathesis/intramolecular Diels-Alder reaction has been successfully used to synthesize a bicyclo[5.3.1] undecene, corresponding to AB-ring of taxol without the gem dimethyl group.

  8. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan

    2008-05-22

    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  9. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    Science.gov (United States)

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-05

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  10. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    Science.gov (United States)

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-10-21

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  11. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    Science.gov (United States)

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

  12. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review.

    Science.gov (United States)

    Dong, Yifan; Matson, John B; Edgar, Kevin J

    2017-06-12

    Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives.

  13. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  14. Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals.

    Science.gov (United States)

    Hidalgo, Francisco J; Aguilar, Isabel; Zamora, Rosario

    2018-02-01

    The reaction between 4-oxo-2-alkenals (fumaraldehyde, 4-oxo-2-hexenal, and 4-oxo-2-nonenal) and phenolic compounds (resorcinol and 2-methylresorcinol) was studied to characterize the trapping ability of phenolic compounds for these lipid oxidation products. The reaction occurred rapidly under neutral or slightly basic conditions and different carbonyl-phenol adducts were produced. However, these compounds were unstable and their stabilization had to be achieved by means of either acetylation or reduction with sodium borohydride. Three different kinds of adducts were isolated and characterized by using mass spectrometry (MS) and 1D and 2D nuclear magnetic resonance spectroscopy (NMR). They were benzofuran-6-ols, 2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran-2,6-diols, and chromane-2,7-diols. Most of them were produced as mixtures of diasteromers and all of them had a carbonyl group in a free form or as hemiacetal. A reaction pathway that explains the formation of these compounds is proposed. These results provide the basis to understand the removal of 4-oxo-2-alkenals by phenolic compounds in foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Reaction of NO(2) with selected conjugated alkenes.

    Science.gov (United States)

    Bernard, François; Cazaunau, Mathieu; Mu, Yujing; Wang, Xinming; Daële, Véronique; Chen, Jianmin; Mellouki, Abdelwahid

    2013-12-27

    The gas phase reactions of selected alkenes (isoprene, myrcene, ocimene, and 1,3-cyclohexadiene) with NO2 under dark condition have been investigated at T ∼ 298 K and P ∼ 760 Torr of purified air. The kinetic studies were performed under pseudo-first-order conditions using a large excess of NO2 concentration to those of the alkenes. The rate coefficients (in 10(-19) cm(3) molecule(-1) s(-1)) obtained are 1.1 ± 0.2 for isoprene, 2.5 ± 0.3 for myrcene, 8.5 ± 1.2 for ocimene, and 15 ± 1 for 1,3-cyclohexadiene. Several products were identified by using in situ Fourier transform infrared (FT-IR) spectrometry, and acetone was found to be the major product from the reactions of NO2 with myrcene and ocimene, with a formation yield of 22 ± 3% and 26 ± 7%, respectively. The oxidation products from the reactions of NO2 with isoprene and 1,3-cyclohexadiene were found to be mainly nitro compounds identified by FT-IR spectroscopy. Reaction mechanisms were proposed to account for the products observed.

  16. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection.

    Science.gov (United States)

    Mangold, Shane L; O'Leary, Daniel J; Grubbs, Robert H

    2014-09-03

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.

  17. Synthesis of skeletally diverse alkaloid-like molecules: exploitation of metathesis substrates assembled from triplets of building blocks

    Directory of Open Access Journals (Sweden)

    Sushil K. Maurya

    2013-04-01

    Full Text Available A range of metathesis substrates was assembled from triplets of unsaturated building blocks. The approach involved the iterative attachment of a propagating and a terminating building block to a fluorous-tagged initiating building block. Metathesis cascade chemistry was used to “reprogram” the molecular scaffolds. Remarkably, in one case, a cyclopropanation reaction competed with the expected metathesis cascade process. Finally, it was demonstrated that the metathesis products could be derivatised to yield the final products. At each stage, purification was facilitated by the presence of a fluorous-tagged protecting group.

  18. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C2-symmetric building block: a strategy for the synthesis of decanolide natural products

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2013-11-01

    Full Text Available Starting from the conveniently available ex-chiral pool building block (R,R-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i a site-selective cross metathesis, (ii a highly diastereoselective extended tethered RCM to furnish a (Z,E-configured dienyl carboxylic acid and (iii a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  19. Aliphatic long-chain C20 polyesters from olefin metathesis.

    Science.gov (United States)

    Trzaskowski, Justyna; Quinzler, Dorothee; Bährle, Christian; Mecking, Stefan

    2011-09-01

    Self-metathesis of undecenoic acid with [(PCy3)2Cl2Ru=CHPh] (2), followed by exhaustive hydrogenation yielded pure 1,20-eicosanedioic acid (5) (>99%) free of side-products from isomerization. Polycondensation with eicosane-1,20-diol (6), formed by reduction of the diol, yielded polyester 20,20 (Tm = 108 °C). By comparison, the known ADMET polymerization of undec-10-enyl undec-10-enoate (7), and subsequent exhaustive polymer-analogous hydrogenation yielded a polyester (poly-8) with irregular structure of the ester groups in the polymer chain (-O(C=O)- vs. -C(=O)O-) (Tm = 103 °C). Hydrogenation of secondary dispersions of poly-7 yielded aqueous dispersions of the long-chain aliphatic polyester poly-8. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  1. Phosphine-Free EWG-Activated Ruthenium Olefin Metathesis Catalysts

    Science.gov (United States)

    Grela, Karol; Szadkowska, Anna; Michrowska, Anna; Bieniek, Michal; Sashuk, Volodymyr

    Hoveyda-Grubbs catalyst has been successfully fine-tuned by us in order to increase its activity and applicability by the introduction of electron-withdrawing groups (EWGs) to diminish donor properties of the oxygen atom. As a result, the stable and easily accessible nitro-substituted Hoveyda-Grubbs catalyst has found a number of successful applications in various research and industrial laboratories. Some other EWG-activated Hoveyda-type catalysts are commercially available. The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of EWGs without detriment to catalysts stability. Equally noteworthy is the observation that different Ru catalysts turned out to be optimal for different applications. This shows that no single catalyst outperforms all others in all possible applications.

  2. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis

    Science.gov (United States)

    Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik

    2017-04-01

    Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.

  3. Diversity-oriented approach to macrocyclic cyclophane derivatives by Suzuki-Miyaura cross-coupling and olefin metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Chavan, Arjun S; Shaikh, Mobin

    2012-01-06

    Palladium-catalyzed Suzuki-Miyaura (SM) cross-coupling reaction with allylboronic acid pinacol ester and titanium assisted cross-metathesis (CM)/ring-closing metathesis (RCM) cascade has been used to synthesize macrocyclic cyclophane derivatives.

  4. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study.

    Science.gov (United States)

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh; Kudryavtsev, Yaroslav V

    2015-01-01

    The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1(st) generation Grubbs' catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ (1)H and ex situ (13)C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities.

  5. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study

    Directory of Open Access Journals (Sweden)

    Yulia I. Denisova

    2015-10-01

    Full Text Available The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1st generation Grubbs’ catalyst Cl2(PCy32Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ 1H and ex situ 13C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities.

  6. Synthesis of Borylcyclopropanes by Chromium-Promoted Cyclopropanation of Unactivated Alkenes.

    Science.gov (United States)

    Murai, Masahito; Mizuta, Chisato; Taniguchi, Ryuji; Takai, Kazuhiko

    2017-11-17

    The combination of diiodomethylboronate ester, CrCl2 with TMEDA promoted borylcyclopropanation of unactivated alkenes under mild conditions. Compared with the typical Simmons-Smith cyclopropanation, the current protocol offers the following advantages: (1) the reaction proceeds stereoselectively with disubstituted alkenes even without hydroxy or alkoxy groups; (2) both electron-rich and electron-deficient alkenes can be applicable; and (3) the reaction does not require potentially flammable alkylzinc. These unique reactivity features result from the steric and electronic nature of the gem-dichromiomethane intermediates.

  7. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    Science.gov (United States)

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  8. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-08

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  9. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    Science.gov (United States)

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New developments in gold-catalyzed manipulation of inactivated alkenes

    Directory of Open Access Journals (Sweden)

    Michel Chiarucci

    2013-11-01

    Full Text Available Over the recent years, the nucleophilic manipulation of inactivated carbon–carbon double bonds has gained remarkable credit in the chemical community. As a matter of fact, despite lower reactivity with respect to alkynyl and allenyl counterparts, chemical functionalization of isolated alkenes, via carbon- as well as hetero atom-based nucleophiles, would provide direct access to theoretically unlimited added value of molecular motifs. In this context, homogenous [Au(I] and [Au(III] catalysis continues to inspire developments within organic synthesis, providing reliable responses to this interrogative, by combining crucial aspects such as chemical selectivity/efficiency with mild reaction parameters. This review intends to summarize the recent progresses in the field, with particular emphasis on mechanistic details.

  11. Asymmetric allylic alkylation in combination with ring-closing metathesis for the preparation of chiral N-heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Zhang, Suyan; Zijl, Anthoni W. van; Slaa, Jan Willem; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    Asymmetric copper-catalyzed allylic substitution with methylmagnesium bromide is employed in combination with ring-closing olefin metathesis or ene-yne metathesis to achieve the synthesis of chiral, unsaturated nitrogen heterocycles. The resulting six- to eight-membered chiral heterocycles are

  12. Organometallic Catalysis in Diene and Cyclo-olefin Polymerisation Processes. II. The Metathesis Reaction in Polymer Chemistry

    Science.gov (United States)

    Dolgoplosk, B. A.; Korshak, Yu V.

    1984-01-01

    The development of ideas concerning the mechanism of the metathesis reaction and its employment in polymer chemistry are examined. The possible applications of the metathesis reaction in the synthesis of polymers by the polymerisation of cycloolefins and cyclodienes with ring opening and via the degradation of high-molecular-weight rubbers and their modification are discussed. The bibliography includes 160 references.

  13. Straightforward synthesis of alpha,beta-unsaturated thioesters via ruthenium-catalyzed olefin cross-metathesis with thioacrylate

    NARCIS (Netherlands)

    van Zijl, Anthoni W.; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    The cross-metathesis reaction of S-ethyl thioacrylate with a variety of olefins is effectively catalyzed by using a ruthenium benzylidene olefin metathesis catalyst. This reaction provides a convenient and versatile route to substituted alpha,beta-unsaturated thioesters, key building blocks in

  14. Towards in-plane metathesis polymerization at self-assembled monolayers of norbornene adsorbates on gold surfaces

    NARCIS (Netherlands)

    Li, X.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    Ring-opening metathesis polymerization (ROMP) of norbornene thiol derivative 1 and bis(thioether) 2 was carried out both on monolayer-protected gold nanoclusters (MPCs) and at self-assembled monolayers (SAMs) on a gold(111) surface. Metathesis polymerization was carried out by using the Grubbs

  15. New library of aminosulfonyl-tagged Hoveyda–Grubbs type complexes: Synthesis, kinetic studies and activity in olefin metathesis transformations

    Directory of Open Access Journals (Sweden)

    Etienne Borré

    2010-12-01

    Full Text Available Seven novel Hoveyda–Grubbs precatalysts bearing an aminosulfonyl function are reported. Kinetic studies indicate an activity enhancement compared to Hoveyda’s precatalyst. A selection of these catalysts was investigated with various substrates in ring-closing metathesis of dienes or enynes and cross metathesis. The results demonstrate that these catalysts show a good tolerance to various chemical functions.

  16. Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi.

    Science.gov (United States)

    Amaya, Jose A; Rutland, Cooper D; Makris, Thomas M

    2016-05-01

    Intensive interest has focused on enzymes that are capable of synthesizing hydrocarbons, alkenes and alkanes, for sustainable fuel production. A recently described cytochrome P450 (OleTJE) from the CYP152 family catalyzes an unusual carbon-carbon scission reaction, transforming Cn fatty acids to Cn-1 1-alkenes. Here, we show that a second CYP152, CYP-MP from Methylobacterium populi ATCC BAA 705, also catalyzes oxidative substrate decarboxylation. Alkene production is accompanied with the production of fatty alcohol products, underscoring the mechanistic similarity of the decarboxylation reaction with canonical P450 monooxygenation chemistry. The branchpoint of these two chemistries, and regiospecificity of oxidation products, is strongly chain length dependent, suggesting an importance of substrate coordination for regulating alkene production. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Triflic acid catalyzed oxidative lactonization and diacetoxylation of alkenes using peroxyacids as oxidants.

    Science.gov (United States)

    Kang, Yan-Biao; Gade, Lutz H

    2012-02-03

    A clean and efficient diacetoxylation reaction of alkenes catalyzed by triflic acid using commercially available peroxyacids as the oxidants has been developed. This method was also applied in oxidative lactonizations of unsaturated carboxylic acids in good to high yields.

  18. The doping effect of fluorinated aromatic solvents on the rate of ruthenium-catalysed olefin metathesis.

    Science.gov (United States)

    Samojłowicz, Cezary; Bieniek, Michał; Pazio, Aleksandra; Makal, Anna; Woźniak, Krzysztof; Poater, Albert; Cavallo, Luigi; Wójcik, Jacek; Zdanowski, Konrad; Grela, Karol

    2011-11-11

    A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  20. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis.

    Science.gov (United States)

    Kreye, Oliver; Kugele, Dennis; Faust, Lorenz; Meier, Michael A R

    2014-02-01

    The combination of the Passerini reaction and olefin cross-metathesis is shown to be a very useful approach for the divergent synthesis of dendrimers. Castor oil-derived platform chemicals, such as 10-undecenoic acid and 10-undecenal, are reacted in a Passerini reaction with an unsaturated isocyanide to obtain a core unit having three terminal double bonds. Subsequent olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation of the double bonds and hydrolysis of the tert-butyl ester, leads to an active core unit bearing three carboxylic acid groups as reactive sites. Iterative steps of the Passerini reaction with 10-undecenal and 10-isocyanodec-1-ene for branching, and olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation and hydrolysis allow the synthesis of a third-generation dendrimer. All steps of the synthesis are carefully characterized by NMR, GPC, MS, and IR.

  1. Kinetic Selectivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes

    Science.gov (United States)

    Anderson, Donde R.; Ung, Thay; Mkrtumyan, Garik; Bertrand, Guy; Grubbs, Robert H.; Schrodi, Yann

    2008-01-01

    The evaluation of ruthenium olefin metathesis catalysts 4–6 bearing cyclic (alkyl)(amino)carbenes (CAACs) in the cross-metathesis of cis-1,4-diacetoxy-2-butene (7) with allylbenzene (8) and the ethenolysis of methyl oleate (11) is reported. Relative to most NHC-substituted complexes, CAAC-substituted catalysts exhibit lower E/Z ratios (3:1 at 70% conversion) in the cross-metathesis of 7 and 8. Additionally, complexes 4–6 demonstrate good selectivity for the formation of terminal olefins versus internal olefins in the ethenolysis of 11. Indeed, complex 6 achieved 35 000 TONs, the highest recorded to date. CAAC-substituted complexes exhibit markedly different kinetic selectivity than most NHC-substituted complexes. PMID:18584055

  2. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C–H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  3. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    Science.gov (United States)

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

  4. Reactivity of Tungsten-aryloxides with Hydrosilane Cocatalysts in Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Baibich Ione M.

    2002-01-01

    Full Text Available The reactivity of the [WCl4(OAr2] (OAr = O-2,6-C3H3Cl2, O-2,6-C6H3F2 and O-C6H3Me2 systems, plus the silicon compounds Ph2SiH2 and polymethylhydrosiloxane (PMHS, were studied in metathesis reactions. The olefins used were methyl-10-undecenoate and 1-hexene. The results showed that the [WCl4(OAr2]-silicon compound systems are active and selective when the aryloxide ligand contain electronegative groups. The silicon compound PMHS proved to be the best cocatalyst for metathesis, even with the [WCl4(O-2,6-C6H3Me 22] compound, which has no electronegative substituents. Because it is non-toxic, non-volatile, easy to handle and cheap, PMHS is a good alternative cocatalyst in metathesis reactions.

  5. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Directory of Open Access Journals (Sweden)

    Hynek Balcar

    2015-11-01

    Full Text Available Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36 and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (− counter anion; in contrast, PF6− counter anion underwent partial decomposition.

  6. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids.

    Science.gov (United States)

    Ohlmann, Dominik M; Tschauder, Nicole; Stockis, Jean-Pierre; Goossen, Käthe; Dierker, Markus; Goossen, Lukas J

    2012-08-22

    The dimeric palladium(I) complex [Pd(μ-Br)(t)Bu(3)P](2) was found to possess unique activity for the catalytic double-bond migration within unsaturated compounds. This isomerization catalyst is fully compatible with state-of-the-art olefin metathesis catalysts. In the presence of bifunctional catalyst systems consisting of [Pd(μ-Br)(t)Bu(3)P](2) and NHC-indylidene ruthenium complexes, unsaturated compounds are continuously converted into equilibrium mixtures of double-bond isomers, which concurrently undergo catalytic olefin metathesis. Using such highly active catalyst systems, the isomerizing olefin metathesis becomes an efficient way to access defined distributions of unsaturated compounds from olefinic substrates. Computational models were designed to predict the outcome of such reactions. The synthetic utility of isomerizing metatheses is demonstrated by various new applications. Thus, the isomerizing self-metathesis of oleic and other fatty acids and esters provides olefins along with unsaturated mono- and dicarboxylates in distributions with adjustable widths. The cross-metathesis of two olefins with different chain lengths leads to regular distributions with a mean chain length that depends on the chain length of both starting materials and their ratio. The cross-metathesis of oleic acid with ethylene serves to access olefin blends with mean chain lengths below 18 carbons, while its analogous reaction with hex-3-enedioic acid gives unsaturated dicarboxylic acids with adjustable mean chain lengths as major products. Overall, the concept of isomerizing metatheses promises to open up new synthetic opportunities for the incorporation of oleochemicals as renewable feedstocks into the chemical value chain.

  7. Push-pull alkenes: structure and p-electron distribution

    Directory of Open Access Journals (Sweden)

    ERICH KLEINPETER

    2006-01-01

    Full Text Available Push-pull alkenes are substituted alkenes with one or two electron-donating substituents on one end of C=C double bond and with one or two electron-accepting substituents at the other end. Allowance for p-electron delocalization leads to the central C=C double bond becoming ever more polarized and with rising push-pull character, the p-bond order of this double bond is reduced and, conversely, the corresponding p-bond orders of the C–Don and C–Acc bonds are accordingly increased. This push-pull effect is of decisive influence on both the dynamic behavior and the chemical reactivity of this class of compounds and thus it is of considerable interest to both determine and to quantify the inherent push-pull effect. Previously, the barriers to rotation about the C=C, C–Don and/or C–Acc partial double bonds (DG±, as determined by dynamic NMR spectroscopy or the 13C chemical shift difference of the polarized C=C partial double bond (DdC=C were employed for this purpose. However, these parameters can have serious limitations, viz. the barriers can be immeasurable on the NMR timescale (either by being too high or too low; heavily-biased conformers are present, etc. or DdC=C behaves in a non-additive manner with respect to the combination of the four substituents. Hence, a general parameter to quantify the push-pull effect is not yet available. Ab initio MO calculations on a collection of compounds, together with NBO analysis, provided valuable information on the structure, bond energies, electron occupancies and bonding/antibonding interactions. In addition to DG±C=C (either experimentally determined or theoretically calculated and DdC=C, the bond length of the C=C partial double bond was also examined and it proved to be a reliable parameter to quantify the push-pull effect. Equally so, the quotient of the occupation numbers of the antibonding andbonding p orbitals of the central C=C partial double bond ( p*C=C/ pC=C could also be employed for

  8. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    Science.gov (United States)

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-06

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  9. Macrocyclic olefin metathesis at high concentrations by using a phase-separation strategy.

    Science.gov (United States)

    Raymond, Michaël; Holtz-Mulholland, Michael; Collins, Shawn K

    2014-09-26

    Macrocyclic olefin metathesis has seen advances in the areas of stereochemistry, chemoselectivity, and catalyst stability, but strategies aimed at controlling dilution effects in macrocyclizations are rare. Herein, a protocol to promote macrocyclic olefin metathesis, one of the most common synthetic tools used to prepare macrocycles, at relatively high concentrations (up to 60 mM) is described by exploitation of a phase-separation strategy. A variety of macrocyclic skeletons could be prepared having either different alkyl, aryl, or amino acids spacers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of electronically modified Ru-based neutral 16 VE allenylidene olefin metathesis precatalysts.

    Science.gov (United States)

    Lichtenheldt, Martin; Kress, Steffen; Blechert, Siegfried

    2012-05-04

    Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra) modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy₃. The catalytic performance was investigated in RCM reaction (ring closing metathesis) of benchmark substrates such as diallyltosylamide and diethyl diallylmalonate.

  11. Batchwise and continuous nanofiltration of POSS-tagged Grubbs-Hoveyda-type olefin metathesis catalysts.

    Science.gov (United States)

    Kajetanowicz, Anna; Czaban, Justyna; Krishnan, G Rajesh; Malińska, Maura; Woźniak, Krzysztof; Siddique, Humera; Peeva, Ludmila G; Livingston, Andrew G; Grela, Karol

    2013-01-01

    New molecular-weight-enlarged metathesis catalysts, which bear polyhedral oligomeric silsesquioxane (POSS) tags, were synthesized and characterized. The catalysts can be recovered from the reaction mixture by using nanofiltration techniques and can be reused. It was found that the membranes Starmem 228 and PuraMem 280 successfully separate the catalyst from the post-reaction mixtures to below 3 ppm. The application of these POSS-tagged catalysts in a continuous metathesis reaction was also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    McAtee, Christopher C; Riehl, Paul S; Schindler, Corinna S

    2017-03-01

    Polycyclic aromatic hydrocarbons are important structural motifs in organic chemistry, pharmaceutical chemistry, and materials science. The development of a new synthetic strategy toward these compounds is described based on the design principle of iron(III)-catalyzed carbonyl-olefin metathesis reactions. This approach is characterized by its operational simplicity, high functional group compatibility, and regioselectivity while relying on FeCl3 as an environmentally benign, earth-abundant metal catalyst. Experimental evidence for oxetanes as reactive intermediates in the catalytic carbonyl-olefin ring-closing metathesis has been obtained.

  13. Synthetic Strategies for Converting Carbohydrates into Carbocycles by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Madsen, Robert

    2007-01-01

    This microreview covers recent advances in the use of ring-closing metathesis for the synthesis of carbocycles from carbohydrates. Various strategies for the synthesis of a,w-dienes from carbohydrates are presented, which give rise to a large variety of dienes with different stereochemistry......, protecting groups and substituents. Subsequent ring-closing metathesis with a ruthenium carbene complex affords highly functionalized carbocycles with ring-sizes ranging from five- to eight-membered rings. The application of these methods for the synthesis of carbocyclic natural products from carbohydrates...

  14. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  15. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction.

    Science.gov (United States)

    Ludwig, Jacob R; Phan, Susan; McAtee, Christopher C; Zimmerman, Paul M; Devery, James J; Schindler, Corinna S

    2017-08-09

    Iron(III)-catalyzed carbonyl-olefin ring-closing metathesis represents a new approach toward the assembly of molecules traditionally generated by olefin-olefin metathesis or olefination. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies to determine the mechanistic features imparted by iron(III), substrate, and temperature to the catalytic cycle. These data are consistent with an iron(III)-mediated asynchronous, concerted [2+2]-cycloaddition to form an intermediate oxetane as the turnover-limiting step. Fragmentation of the oxetane via Lewis acid-activation results in the formation of five- and six-membered unsaturated carbocycles.

  16. Quantitative Metathesis in the Dialect of Cos: Ionic Influence or Local Feature?

    Directory of Open Access Journals (Sweden)

    Enrique Nieto Izquierdo

    2015-12-01

    Full Text Available In this paper the author discusses the adjective τέλεως and the «quantitative metathesis» of the type βασιλῆος > βασιλέως in the Ancient Greek Doric dialect of Cos. After presenting the available data, the author refutes the hypothesis that explain this feature as an influence of the nearby Ionic dialect and he provides arguments that prove that the «quantitative metathesis » is a local feature of the dialect of the island.

  17. Synthesis of Electronically Modified Ru-Based Neutral 16 VE Allenylidene Olefin Metathesis Precatalysts

    Directory of Open Access Journals (Sweden)

    Siegfried Blechert

    2012-05-01

    Full Text Available Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy3. The catalytic performance was investigated in RCM reaction (ring closing metathesis of benchmark substrates such as diallyltosylamide (6 and diethyl diallylmalonate (7.

  18. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives

    Directory of Open Access Journals (Sweden)

    Jasmine Tomasek

    2015-10-01

    Full Text Available A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  19. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good

  20. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Lam, Trinh To; Le, Thach Ngoc

    2009-01-01

    Essential oil allylbenzenes from have been converted quickly and efficiently into the corresponding benzaldehydes in good yields by a two-step "green" reaction pathway based on a solventless alkene group isomerization by KF/Al2O3 to form the corresponding 1-arylpropene and a subsequent solventless...

  1. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  2. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  3. Ring-Opening Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalyst Coordinated with 1,3-Bis(2,6-Diisopropylphenyl)-4,5-Dihydroimidazoline

    Science.gov (United States)

    Karabulut, Solmaz; Verpoort, Francis

    A 1,3-bis-(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene substituted ruthenium (Ru)-based complex (4) has been prepared starting from (PCy3)2(Cl)2Ru=CHPh (2). The catalytic performance of catalyst (4) is checked on ring-opening metathesis polymerization (ROMP) of the low strain monomer, cycloocta-1,5-diene (COD), and also compared with catalyst (2) and (3).

  4. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  5. Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    Science.gov (United States)

    Sinha, Amritanshu; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have found that Mo(NAr)(CHR′)(NPh2)2 (R′ = t-Bu or CMe2Ph) and Mo(NAr′)(CHCMe2Ph)(NPh2)2 (Ar = 2,6-i-Pr2C6H3; Ar′ = 2,6-Me2C6H3) can be prepared through addition of two equivalents of LiNPh2 to Mo(NR″)(CHR′)(OTf)2(dme) species (R″ = Ar or Ar′ dme = 1,2-dimethoxyethane), although yields are low. A high yield route consists of addition of LiNPh2 to bishexafluro-t-butoxide species. An X-ray structure of Mo(NAr)(CHCMe2Ph)(NPh2)2 reveals that the two diphenylamido groups are oriented in a manner that allows an 18 electron count to be achieved. The diphenylamido complexes react readily with t-BuOH and (CF3)2MeCOH, but not readily with the sterically demanding biphenol H2[Biphen] (Biphen2- = 3,3′-Di-t-butyl-5,5′,6,6′-tetramethyl-1,1′-Biphenyl-2,2′-diolate). The diphenylamido complexes do react with various 3,3′-disubstituted binaphthols to yield binaphtholate catalysts that can be prepared in situ and employed for a simple asymmetric ring-closing metathesis reaction. In several cases conversions and enantioselectivities were comparable to reactions in which isolated catalysts were employed. PMID:19030118

  6. Bond Energies in Models of the Schrock Metathesis Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu, Monica; Li, Shenggang; Arduengo, Anthony J.; Dixon, David A.

    2011-06-23

    Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR)(OH)₂ (M = Cr, Mo, W; CRR = CH₂, CHF, CF₂) and MO₂(OH)₂ compounds, and Brønsted acidities and fluoride affinities for the M(NH)(CH₂)(OH) ₂ transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C₂H4 with M(NH)-(CH₂)(OH)2 and MO₂(OH)₂ are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy ((1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs ofMdCF₂ andMdCHF bonds are much lower than theMdCH₂ bonds. The Cr compounds have smaller BDEs than theWorMo complexes and should be less stable. Different M(NH)(OH)₂(C₃H₆) and MO(OH)₂(OC₂H4) metallacycle intermediates are investigated, and the lowest-energy metallacycles have a square pyramidal geometry. The results show that consideration of the singlet_triplet splitting in the carbene in the initial catalyst as well as in the metal product formed by the retro [2+2] cycloaddition is a critical component in the design of an effective olefin metathesis catalyst in terms of the parent catalyst and the groups being transferred.

  7. Pressure-induced metathesis reaction to sequester Cs.

    Science.gov (United States)

    Im, Junhyuck; Seoung, Donghoon; Lee, Seung Yeop; Blom, Douglas A; Vogt, Thomas; Kao, Chi-Chang; Lee, Yongjae

    2015-01-06

    We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate.

  8. Determination of alkenes in cracking products by normal-phase high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Tomić, Tatjana; Babić, Sandra; Nasipak, Nada Uzorinac; Ruszkowski, Maja Fabulić; Skrobonja, Livijana; Kastelan-Macan, Marija

    2009-05-01

    Alkene content determinations in fluid catalytic cracking (FCC) liquid products were performed by means of normal-phase high-performance liquid chromatography (NP-HPLC) with diode array detection (UV/DAD). Separation of alkenes from aromatic hydrocarbons was performed on amino-modified silica gel column with n-heptane as mobile phase. The column has a little affinity to alkenes and saturated hydrocarbons and a pronounced affinity to aromatic compounds. The problem of alkenes and saturates co-elution on this column type was overcome with the detection system, UV/DAD, sensitive and selective to alkenes, while saturates are inactive in UV field. Total alkene content was determined as a sum of mono- and dialkene groups quantified by external standard method. Validation and verification of the developed method proved their applicability. The following criteria were used to validate the HPLC-DAD method: selectivity, linearity, precision, limits of detection and quantification. Alkene contents were quantified with the external standard method of wide calibration range, so both low and high alkene contents can be determined by the single calibration. Correlation coefficients were higher than 0.99. Precision was evaluated as repeatability and intermediary precision with relative standard deviations less than 5%. Some structural investigation of alkene groups was performed to confirm the assumption. Proposed method was compared with certified NMR method. Six commercial motor gasoline samples were analyzed by these two methods. Obtained results indicate good agreement between alkene content determined by both methods. The developed method was applied to the determination of alkene content in liquid FCC products in the boiling range from 70 degrees C to 190 degrees C.

  9. Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes.

    Science.gov (United States)

    Kistemaker, Jos C M; Pizzolato, Stefano F; van Leeuwen, Thomas; Pijper, Thomas C; Feringa, Ben L

    2016-09-12

    Chiroptical molecular switches play an important role in responsive materials and dynamic molecular systems. Here we present the synthesis of four chiral overcrowded alkenes and the experimental and computational study of their photochemical and thermal behavior. By irradiation with UV light, metastable diastereoisomers with opposite helicity were generated through high yielding E-Z isomerizations. Kinetic studies on metastable 1-4 using CD spectroscopy and HPLC analysis revealed two pathways at higher temperatures for the thermal isomerization, namely a thermal E-Z isomerization (TEZI) and a thermal helix inversion (THI). These processes were also studied computationally whereby a new strategy was developed for calculating the TEZI barrier for second-generation overcrowded alkenes. To demonstrate that these overcrowded alkenes can be employed as bistable switches, photochromic cycling was performed, which showed that the alkenes display good selectivity and fatigue resistance over multiple irradiation cycles. In particular, switch 3 displayed the best performance in forward and backward photoswitching, while 1 excelled in thermal stability of the photogenerated metastable form. Overall, the alkenes studied showed a remarkable and unprecedented combination of switching properties including dynamic helicity, reversibility, selectivity, fatigue resistance, and thermal stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Titanocene-catalyzed carbosilylation of alkenes and dienes using alkyl halides and chlorosilanes

    Science.gov (United States)

    Nii; Terao; Kambe

    2000-08-25

    A new method for regioselective carbosilylation of alkenes and dienes has been developed by the use of a titanocene catalyst. This reaction proceeds efficiently at 0 degrees C in THF in the presence of Grignard reagents by the combined use of alkyl halides (R'-X, X = Br or Cl) and chlorotrialkylsilanes (R3''Si-Cl) as the alkylating and silylating reagents, respectively. Terminal alkenes having aryl or silyl substituents (YRC=CH2, Y = Ar or Me3Si, R = H or Me) afford addition products YRC-(SiR''3)-CH2R' in good yields, whereas 1-octene and internal alkenes were sluggish. When 2,3-disubstituted 1,3-butadienes were used instead of alkenes, alkyl and silyl units are introduced at the 1- and 4-positions giving rise to allylsilanes in high yields under similar conditions. The present reaction involves (i) addition of alkyl radicals toward alkenes or dienes, and (ii) electrophilic trapping of benzyl- or allylmagnesium halides with chlorosilanes. The titanocene catalyst plays important roles in generation of these active species, i.e., alkyl radicals and benzyl- or allylmagnesium halides.

  11. Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst

    Science.gov (United States)

    Keitz, Benjamin K.; Endo, Koji; Herbert, Myles B.

    2011-01-01

    The cross-metathesis of terminal olefins using a novel ruthenium catalyst results in excellent selectivity for the Z-olefin homodimer. The reaction was found to tolerate a large number of functional groups, solvents, and temperatures while maintaining excellent Z-selectivity, even at high reaction conversions. PMID:21649443

  12. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    Science.gov (United States)

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility.

  13. Control of olefin geometry in macrocyclic ring-closing metathesis using a removable silyl group.

    Science.gov (United States)

    Wang, Yikai; Jimenez, Miguel; Hansen, Anders S; Raiber, Eun-Ang; Schreiber, Stuart L; Young, Damian W

    2011-06-22

    Introducing a silyl group at one of the internal olefin positions in diolefinic substrates results in E-selective olefin formation in macrocyclic ring-forming metathesis. The application of this method to a range of macrocyclic (E)-alkenylsiloxanes is described. Protodesilylation of alkenylsiloxane products yields novel Z-configured macrocycles.

  14. Hydrogen bond templated 1:1 macrocyclization through an olefin metathesis/hydrogenation sequence.

    Science.gov (United States)

    Trita, Andrada Stefania; Roisnel, Thierry; Mongin, Florence; Chevallier, Floris

    2013-07-19

    The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single ruthenium-alkylidene precatalyst open access to macrocyclic molecules.

  15. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  16. Efforts toward rapid construction of the cortistatin A carbocyclic core via enyne-ene metathesis

    KAUST Repository

    Baumgartner, Corinne

    2010-01-01

    Our efforts toward the construction of the carbocylic core of cortistatin A via an enyne-ene metathesis are disclosed. Interestingly, an attempted S N2 inversion of a secondary mesylate in our five-membered D-ring piece gave a product with retention of stereochemistry. © 2010 The Royal Society of Chemistry.

  17. Toward an efficient synthesis of taxane analogs by dienyne ring-closing metathesis.

    Science.gov (United States)

    Aldegunde, María J; Castedo, Luis; Granja, Juan R

    2008-09-04

    An efficient tandem ring-closing dienyne metathesis of dienynes derived from cyclohex-2-enone affords the [5.3.1] carbon framework characteristic of taxanes in a single-step process. Further stereoselective functionalizations of the resulting [5.3.1] carbon framework lead to an advanced intermediate in a novel synthetic strategy for taxane analogs.

  18. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    Science.gov (United States)

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  19. Attractive Noncovalent Interactions in the Mechanism of Grubbs Second-Generation Ru Catalysts for Olefin Metathesis.

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan; Truhlar, Donald G.

    2007-05-10

    Second-generation ruthenium carbenoid catalysts for olefin metathesis are a hundred to a thousand times more active than first-generation catalysts, despite a slower initiation step. A new density functional capable of treating medium-range correlation energy shows that the relative rates of generation of the catalyst are determined by attractive noncovalent interactions.

  20. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis.

    Science.gov (United States)

    Ivry, Elisa; Ben-Asuly, Amos; Goldberg, Israel; Lemcoff, N Gabriel

    2015-03-04

    Several amino acid ligands were introduced into the Hoveyda-Grubbs 2nd generation complex by a facile anionic ligand exchange. The chiral pre-catalysts obtained displayed enantioselectivity in asymmetric ring-closing and ring-opening cross-metathesis reactions. Reduction of the lability of the carboxylate ligands was found to be cardinal for improving the observed enantiomeric product enrichment.

  1. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst

    Science.gov (United States)

    The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or co-solvents, in a short period of time. We found that inhomogen...

  2. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    Science.gov (United States)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  3. The mechanism of activation of amidobenzylidene ruthenium chelates - latent catalysts of olefin metathesis.

    Science.gov (United States)

    Rogalski, Szymon; Żak, Patrycja; Tadeuszyk, Natalia; Pyta, Krystian; Przybylski, Piotr; Pietraszuk, Cezary

    2017-01-24

    Amidobenzylidene ruthenium chelates - latent catalysts of olefin metathesis can be easily activated by the addition of Brønsted or Lewis acids. Their activation in the presence of hydrogen chloride involves the formation of catalytically active trans-dichloro carbamatobenzylidene ruthenium chelates.

  4. 2005 Nobel Prize in Chemistry: Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-01-01

    The 2005 Nobel Prize in Chemistry was awarded "for the development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other…

  5. Synthesis of Calystegine A(3) from Glucose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Pipper, Charlotte Bressen; Madsen, Robert

    2009-01-01

    and allylated in the same pot. The functionalized nona-1,8-diene, thus obtained, is converted into the seven-membered carbon skeleton in calystegine A(3) by ring-closing olefin metathesis. Subsequent deoxygenation by the Barton-McCombie protocol, hydroboration and oxidative workup followed by hydrogenolysis...

  6. Ring-opening Metathesis Polymerization of Norbornene Catalyzed by Ru(II)-Vinylidene Complex

    NARCIS (Netherlands)

    Koten, G. van; Rio, I. del

    1999-01-01

    Highly selective ring opening metathesis polymerization (ROMP) of norbornene can be achieved using a new Ru(II)-vinylidene complex as catalyst precursor. The polymerization reaction proceeds in 1, 2-dichloroethane at 80 }o{C in absence of co-catalysts with high turnover frequencies. The molecular

  7. Design and synthesis of novel bis-annulated caged polycycles via ring-closing metathesis: pushpakenediol

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2014-11-01

    Full Text Available Intricate caged molecular frameworks are assembled by an atom economical process via a Diels–Alder (DA reaction, a Claisen rearrangement, a ring-closing metathesis (RCM and an alkenyl Grignard addition. The introduction of olefinic moieties in the pentacycloundecane (PCUD framework at appropriate positions followed by RCM led to the formation of novel heptacyclic cage systems.

  8. Stability of bound species during alkene reactions on solid acids

    Science.gov (United States)

    Sarazen, Michele L.; Iglesia, Enrique

    2017-05-01

    This study reports the thermodynamics of bound species derived from ethene, propene, n-butene, and isobutene on solid acids with diverse strength and confining voids. Density functional theory (DFT) and kinetic data indicate that covalently bound alkoxides form C-C bonds in the kinetically relevant step for dimerization turnovers on protons within TON (0.57 nm) and MOR (0.67 nm) zeolitic channels and on stronger acids HPW (polyoxometalate clusters on silica). Turnover rates for mixed alkenes give relative alkoxide stabilities; the respective adsorption constants are obtained from in situ infrared spectra. Tertiary alkoxides (from isobutene) within larger voids (MOR, HPW) are more stable than less substituted isomers but are destabilized within smaller concave environments (TON) because framework distortions are required to avoid steric repulsion. Adsorption constants are similar on MOR and HPW for each alkoxide, indicating that binding is insensitive to acid strength for covalently bound species. DFT-derived formation free energies for alkoxides with different framework attachments and backbone length/structure agree with measurements when dispersion forces, which mediate stabilization by confinement in host-guest systems, are considered. Theory reveals previously unrecognized framework distortions that balance the C-O bond lengths required for covalency with host-guest distances that maximize van der Waals contacts. These distortions, reported here as changes in O-atom locations and dihedral angles, become stronger for larger, more substituted alkoxides. The thermodynamic properties reported here for alkoxides and acid hosts differing in size and conjugate-anion stability are benchmarked against DFT-derived free energies; their details are essential to design host-guest pairs that direct alkoxide species toward specific products.

  9. Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands.

    Science.gov (United States)

    Vougioukalakis, Georgios C; Grubbs, Robert H

    2008-02-20

    A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy3)2Cl2Ru=CHPh or (PCy3)Cl2Ru=CH(o-iPrO-Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective.

  10. The Nitrilimine–Alkene Cycloaddition Regioselectivity Rationalized by Density Functional Theory Reactivity Indices

    Directory of Open Access Journals (Sweden)

    Giorgio Molteni

    2017-01-01

    Full Text Available Conventional frontier molecular orbital theory is not able to satisfactorily explain the regioselectivity outcome of the nitrilimine–alkene cycloaddition. We considered that conceptual density functional theory (DFT could be an effective theoretical framework to rationalize the regioselectivity of the title reaction. Several nitrilimine–alkene cycloadditions were analyzed, for which we could find regioselectivity data in the literature. We computed DFT reactivity indices at the B3LYP/6-311G(2d,p//B3LYP/6-31G(d,p and employed the grand potential stabilization criterion to calculate the preferred regioisomer. Experimental and calculated regioselectivity agree in the vast majority of cases. It was concluded that predominance of a single regioisomer can be obtained by maximizing (i the chemical potential difference between nitrilimine and alkene and (ii the local softness difference between the reactive atomic sites within each reactant. Such maximization can be achieved by carefully selecting the substituents on both reactants.

  11. Chemoenzymatic Epoxidation of Alkenes and Reusability Study of the Phenylacetic Acid

    Directory of Open Access Journals (Sweden)

    Emilia Abdulmalek

    2014-01-01

    Full Text Available Here, we focused on a simple enzymatic epoxidation of alkenes using lipase and phenylacetic acid. The immobilised Candida antarctica lipase B, Novozym 435 was used to catalyse the formation of peroxy acid instantly from hydrogen peroxide (H2O2 and phenylacetic acid. The peroxy phenylacetic acid generated was then utilised directly for in situ oxidation of alkenes. A variety of alkenes were oxidised with this system, resulting in 75–99% yield of the respective epoxides. On the other hand, the phenylacetic acid was recovered from the reaction media and reused for more epoxidation. Interestingly, the waste phenylacetic acid had the ability to be reused for epoxidation of the 1-nonene to 1-nonene oxide, giving an excellent yield of 90%.

  12. Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast.

    Science.gov (United States)

    Zhou, Yongjin J; Hu, Yating; Zhu, Zhiwei; Siewers, Verena; Nielsen, Jens

    2018-01-12

    Microbial production of fatty acid-derived hydrocarbons offers a great opportunity to sustainably supply biofuels and oleochemicals. One challenge is to achieve a high production rate. Besides, low efficiency in secretion will cause high separation costs, and it is therefore desirable to have product secretion. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce and secrete 1-alkenes by manipulation of the fatty acid metabolism, enzyme selection, engineering the electron transfer system and expressing a transporter. Furthermore, we implemented a dynamic regulation strategy to control the expression of membrane enzyme and transporter, which improved 1-alkene production and cell growth by relieving the possible toxicity of overexpressed membrane proteins. With these efforts, the engineered yeast cell factory produced 35.3 mg/L 1-alkenes with more than 80% being secreted. This represents a 10-fold improvement compared with earlier reported hydrocarbon production by S. cerevisiae.

  13. A Ru-isocyanate initiator for fast, living, precisely controlled ring-opening metathesis polymerization at ambient temperatures.

    Science.gov (United States)

    Monfette, Sebastien; Marleau-Gillette, Joshua; Conrad, Jay C; McDonald, Robert; Fogg, Deryn E

    2012-12-28

    The new complex Ru(NCO)(2)(IMes)(py)(2)(=CHPh) is the first ruthenium metathesis initiator capable of fast, controlled living polymerization of functionalized norbornenes at room temperature, irrespective of monomer bulk.

  14. A Comparison of the Performance of the Semiempirical PM6 Method Versus DFT Methods in Ru-Catalyzed Olefin Metathesis

    Science.gov (United States)

    Correa, Andrea; Poater, Albert; Ragone, Francesco; Cavallo, Luigi

    In this work we compare the performance of the semiempirical PM6 method with a more accurate DFT method when applied to Ru-catalyzed olefin metathesis. We demonstrate that the PM6 method reproduces with interesting accuracy the geometries located with a DFT approach. As for the energetics, the relative DFT stability of the metallacycle with respect to the coordination intermediate is reproduced with reasonable accuracy by the PM6 method, whereas the olefin coordination energy and the energy barrier of the metathesis step are overestimated. Further, for the same system we performed a PM6-based meta-dynamics study of the olefin metathesis reaction, which indicated a reasonable good behavior of the system also under dynamic conditions. In conclusion, the obtained results validate the use of the semiempirical PM6 method for preliminary and computationally fast screening on new ligands/substrates in Ru catalyzed olefin metathesis.

  15. Combinatorial screening of an in situ generated library of tungsten oxyhalide and imido complexes for olefin metathesis.

    Science.gov (United States)

    Romer, Duane R; Sussman, Victor J; Burdett, Ken; Chen, Yu; Miller, Kami J

    2014-10-13

    A series of substituted tungsten(VI) halides with general formula WECl4 (E = O or -NR (imido)) were screened via a high throughput study to identify potential new olefin metathesis catalysts. The tungsten species were treated with a series of aluminum alkyl activators and modifier ligands to generate active catalyst species in situ. Ring-opening metathesis polymerization (ROMP) of cyclooctene was used as a primary screen to identify potential metathesis catalysts and active catalysts were subjected to a secondary screen to evaluate tolerance toward polar functional groups. Several combinations from the high throughput campaign yielded active metathesis catalysts for the ROMP of cyclooctene. However, none of the catalysts examined in this study exhibited any evidence of significant polar functional group tolerance as determined by the results of the secondary cyclooctene/butyl acetate screen.

  16. Synthesis of Heterocycles through a Ruthenium‐Catalyzed Tandem Ring‐Closing Metathesis/Isomerization/N‐Acyliminium Cyclization Sequence

    DEFF Research Database (Denmark)

    Ascic, Erhad; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2011-01-01

    Tandem bicycle: In the title reaction double bonds created during ring-closing metathesis isomerize to generate reactive iminium intermediates that undergo intramolecular cyclization reactions with tethered heteroatom and carbon nucleophiles. In this way, a series of biologically interesting...

  17. Exposing the hidden complexity of stoichiometric and catalytic metathesis reactions by elucidation of Mg-Zn hybrids

    National Research Council Canada - National Science Library

    Eva Hevia; Jonathan Z. Chua; Pablo García-Álvarez; Alan R. Kennedy; Matthew D. McCall; Jack Halpern

    2010-01-01

    Studying seemingly simple metathesis reactions between ZnCl₂ and t BuMgCl has, surprisingly, revealed a much more complex chemistry involving mixed magnesium-zinc compounds that could be regarded as Mg-Zn hybrids...

  18. A simple and effective catalytic system for epoxidation of aliphatic terminal alkenes with manganese(II) as the catalyst.

    Science.gov (United States)

    Ho, Kam-Piu; Wong, Wing-Leung; Lam, Kin-Ming; Lai, Cheuk-Piu; Chan, Tak Hang; Wong, Kwok-Yin

    2008-01-01

    A simple catalytic system that uses commercially available manganese(II) perchlorate as the catalyst and peracetic acid as the oxidant is found to be very effective in the epoxidation of aliphatic terminal alkenes with high product selectivity at ambient temperature. Many terminal alkenes are epoxidised efficiently on a gram scale in less than an hour to give excellent yields of isolated product (>90 %) of epoxides in high purity. Kinetic studies with some C9-alkenes show that the catalytic system is more efficient in epoxidising terminal alkenes than internal alkenes, which is contrary to most commonly known epoxidation systems. The reaction rate for epoxidation decreases in the order: 1-nonene>cis-3-nonene>trans-3-nonene. ESI-MS and EPR spectroscopic studies suggest that the active form of the catalyst is a high-valent oligonuclear manganese species, which probably functions as the oxygen atom-transfer agent in the epoxidation reaction.

  19. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    Directory of Open Access Journals (Sweden)

    Vasily M. Muzalevskiy

    2015-11-01

    Full Text Available A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  20. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes.

    Science.gov (United States)

    Matcha, Kiran; Antonchick, Andrey P

    2014-10-27

    The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  2. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    KAUST Repository

    Manzini, Simone

    2015-03-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  3. Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction.

    Science.gov (United States)

    Ornelas, Cátia; Méry, Denise; Cloutet, Eric; Ruiz Aranzaes, Jaime; Astruc, Didier

    2008-01-30

    Olefin cross metathesis was used to efficiently functionalize polyolefin dendrimers, polymers, and gold nanoparticles using the second-generation Grubbs catalyst. In these structures, the tethers were lengthened to prevent the facile cross metathesis that otherwise predominates in polyolefin dendrimers having short tethers. This synthetic strategy allows the one-step access to polyacid, polyester, and polyferrocenyl structures from polyolefins. Cross metathesis is also used to efficiently achieve an iterative divergent dendritic construction. All the cross metathesis reactions were monitored by 1H NMR showing the chemo-, regio-, and stereoselectivity. MALDI-TOF mass spectrometry was a very useful technique to confirm the efficiency of this synthetic strategy.

  4. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    Science.gov (United States)

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-02

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization.

  5. Heterogeneous Catalysis.

    Science.gov (United States)

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  6. Highly efficient epoxidation of alkenes with m-chloroperbenzoic acid ...

    Indian Academy of Sciences (India)

    Furthermore, the heterogeneous catalyst showed good stability and the mag- netic properties (which made possible the easy recovery of catalyst with external magnet) without significant ...... 2010 Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor J.

  7. Palladium-Catalyzed Enantioselective Addition of Two Distinct Nucleophiles across Alkenes Capable of Quinone Methide Formation

    OpenAIRE

    Jensen, Katrina H.; Pathak, Tejas P.; Zhang, Yang; Sigman, Matthew S.

    2009-01-01

    A sequential intramolecular-intermolecular enantioselective alkene difunctionalization reaction has been developed which is thought to proceed through Pd-catalyzed quinone methide formation. The synthesis of new chiral heterocyclic compounds with adjacent chiral centers is achieved in enantiomeric ratios up to 99:1 and diastereomeric ratios up to 10:1.

  8. Synthesis of insect pheromones belonging to the group of (Z)-trisubstituted alkenes

    Science.gov (United States)

    Grigorieva, Natalia Ya; Tsiklauri, Paata G.

    2000-07-01

    Stereo- and regiocontrolled methods for the construction of a (Z)-trisubstituted C=C bond and for the regiospecific introduction of a chiral fragment are exemplified in total syntheses of insect pheromones belonging to (Z)-trisubstituted alkenes. The bibliography includes 113 references.

  9. Diffusion of dioxygen in 1-alkenes and biphenyl in perfluoro- n-alkanes

    Science.gov (United States)

    Kowert, Bruce A.; Sobush, Kurtis T.; Dang, Nhan C.; Seele, Louis G., III; Fuqua, Chantel F.; Mapes, Courtney L.

    2002-02-01

    The translational diffusion constant, D, has been measured for O 2 in the even 1-alkenes 1-C 6H 12 to 1-C 16H 32 and biphenyl in n-C 6F 14 and n-C 9F 20. Deviations from the Stokes-Einstein relation were found; the use of D/ T= A/ ηp gave p=0.560±0.017 for O 2 in the 1-alkenes, the same (within experimental error) as found previously for O 2 in the n-alkanes. The charge transfer (CT) transition used to detect O 2 in the 1-alkenes is at 220 nm. The D values for biphenyl in the perfluoro- n-alkanes (PFAs) are consistent with those in the n-alkanes, where p=0.718±0.004. These results suggest that O 2 has similar solute-solvent interactions in both the 1-alkenes and n-alkanes as does biphenyl in the n-alkanes and PFAs.

  10. Mechanism of the Hydrosilylation Reaction of Alkenes at Porous Silicon: Experimental and Computational Deuterium Labeling Studies

    NARCIS (Netherlands)

    Smet, de L.C.P.M.; Zuilhof, H.; Sudhölter, E.J.R.; Lie, L.H.; Houlton, A.; Horrocks, B.R.

    2005-01-01

    The mechanism of the formation of Si-C bonded monolayers on silicon by reaction of 1-alkenes with hydrogen-terminated porous silicon surfaces has been studied by both experimental and computational means. We propose that monolayer formation occurs via the same radical chain process as at

  11. 1-Isocyano-2-dimethylamino-alkenes: Versatile reagents in diversity-oriented organic synthesis

    NARCIS (Netherlands)

    Dömling, Alexander; Illgen, Katrin

    2005-01-01

    1-Isocyano-2-dimethylamino-alkenes are versatile and multifunctional reagents in organic synthesis. Two useful protocols are given for multicomponent reactions (MCRs) for the assembly of a 6-oxo-1,4,5,6-tetrahydropyrazine-2- carboxylic acid methyl ester derivative and a highly substituted thiazole.

  12. Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents

    NARCIS (Netherlands)

    Bos, Pieter H.; Rudolph, Alena; Pérez, Manuel; Fañanás-Mastral, Martín; Harutyunyan, Syuzanna R.; Feringa, Bernard

    2012-01-01

    A highly efficient method is reported for the asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Using a copper/chiral phosphoramidite complex together with a Lewis acid (BF3·OEt2), full selectivity for the anti isomer and excellent enantioselectivities were obtained for the

  13. Carbon Dioxide Induced Alkene Extrusion from Bis(pentamethylcyclopentadienyl)titanium(III) Alkyls

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1987-01-01

    Reaction of titanium(III) alkyls, (η5-C5Me5)2TiR (R = Et or Prn), in toluene solution with CO2 proceeds at room temperature with formation of the titanium formate (η5-C5Me5)2TiO2CH, and the corresponding alkene (ethene or propene).

  14. Mechanisms in manganese catalysed oxidation of alkenes with H2O2

    NARCIS (Netherlands)

    Saisaha, Pattama; de Boer, Johannes W.; Browne, Wesley R.

    2013-01-01

    The development of new catalytic systems for cis-dihydroxylation and epoxidation of alkenes, based on atom economic and environmentally friendly concepts, is a major contemporary challenge. In recent years, several systems based on manganese catalysts using H2O2 as the terminal oxidant have been

  15. Reversible gel-sol photoswitching with an overcrowded alkene-based bis-urea supergelator

    NARCIS (Netherlands)

    Wezenberg, Sander J.; Croisetu, Christelle M.; Stuart, Marc C. A.; Feringa, Ben L.

    2016-01-01

    A new type of low-molecular-weight gelator (LMWG), i.e. overcrowded alkene-based bis-ureas, can be switched effectively between cis and trans isomers using light as demonstrated by H-1 NMR and UV-Vis spectroscopy. Gelation studies reveal that one of the synthesized trans compounds forms stable gels

  16. A new united atom force field for adsorption of alkenes in zeolites

    NARCIS (Netherlands)

    Liu, B.; Smit, B.; Rey, F.; Valencia, S.; Calero, S.

    2008-01-01

    A new united atom force field was developed that accurately describes the adsorption properties of linear alkenes in zeolites. The force field was specifically designed for use in the inhomogeneous system and therefore a truncated and shifted potential was used. With the determined force field, we

  17. Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes

    NARCIS (Netherlands)

    Kistemaker, Jos C. M.; Pizzolato, Stefano F.; van Leeuwen, Thomas; Pijper, Thomas C.; Feringa, Ben L.

    2016-01-01

    Chiroptical molecular switches play an important role in responsive materials and dynamic molecular systems. Here we present the synthesis of four chiral overcrowded alkenes and the experimental and computational study of their photochemical and thermal behavior. By irradiation with UV light,

  18. Epoxidation of Alkenes with Aqueous Hydrogen Peroxide and Quaternary Ammonium Bicarbonate Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kegnæs, Søren

    2013-01-01

    A range of solid and liquid catalysts containing bicarbonate anions were synthesised and tested for the epoxidation of alkenes with aqueous hydrogen peroxide. The combination of bicarbonate anions and quaternary ammonium cations opens up for new catalytic systems that can help to overcome...

  19. Synthesis of insect pheromones belonging to the group of (Z)-trisubstituted alkenes

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, Natalia Ya; Tsiklauri, Paata G [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2000-07-31

    Stereo- and regiocontrolled methods for the construction of a (Z)-trisubstituted C=C bond and for the regiospecific introduction of a chiral fragment are exemplified in total syntheses of insect pheromones belonging to (Z)-trisubstituted alkenes. The bibliography includes 113 references.

  20. A shock tube study of C4–C6 straight chain alkenes + OH reactions

    KAUST Repository

    Khaled, Fathi

    2016-06-28

    Alkenes are known to be good octane boosters and they are major components of commercial fuels. Detailed theoretical calculations and direct kinetic measurements of elementary reactions of alkenes with combustion radicals are scarce for C4 alkenes and they are practically absent for C5 and larger alkenes. The overall rate coefficients for the reaction of OH radical with 1-butene (CH CHCH CH, k ), 1-pentene (CH CHCH CH-CH, k ), cis/trans 2-pentene (CH CHCHCH CH, k and k ), 1-hexene (CH CHCH CH CH CH, k ) and cis/trans 2-hexene (CH CHCHCH CH CH, k and k ) were measured behind reflected shock waves over the temperature range of 833-1377K and pressures near 1.5atm. The reaction progress was followed by measuring mole fraction of OH radicals near 306.7nm using UV laser absorption technique. It is found that the rate coefficients of OH+trans-2-alkenes are larger than those of OH+cis-2-alkenes, followed by OH+1-alkenes. The derived Arrhenius expressions for the overall rate coefficients (in cm.mol.s) are:. kI=(4.83±0.03)104.T2.72±0.01.exp(940.8±2.9cal/molRT)(946K-1256K) + kII=(5.66±0.54)10-1.T4.14±0.80.exp(4334±227cal/molRT)(875K-1379K) + kIII=(3.25±0.12)104.T2.76±0.5.exp(1962±83cal/molRT)(877K-1336K) + kIV=(3.42±0.09)104.T2.76±0.5.exp(1995±59cal/molRT)(833K-1265K) + kV=(7.65±0.58)10-4.T5±1.exp(5840±175cal/molRT)(836K-1387K) + kVI=(2.58±0.06)106.T2.17±0.37.exp(1461±55cal/molRT)(891K-1357K) + kVII=(3.08±0.05)106.T2.18±0.37.exp(1317±38cal/molRT)(881K-1377K) +

  1. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2008-08-01

    Full Text Available Sunflower (Helianthus annuus L. oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported.

  2. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    Science.gov (United States)

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-21

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. The activation mechanism of Ru-indenylidene complexes in olefin metathesis.

    Science.gov (United States)

    Urbina-Blanco, César A; Poater, Albert; Lebl, Tomas; Manzini, Simone; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations.

  4. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  5. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    Science.gov (United States)

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-04

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function.

    Science.gov (United States)

    Sutar, Revannath L; Levin, Efrat; Butilkov, Danielle; Goldberg, Israel; Reany, Ofer; Lemcoff, N Gabriel

    2016-01-11

    A sulfur-chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N-heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light-guided chemical sequences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Olefin metathesis and quadruple hydrogen bonding: A powerful combination in multistep supramolecular synthesis

    Science.gov (United States)

    Scherman, Oren A.; Ligthart, G. B. W. L.; Ohkawa, Haruki; Sijbesma, Rint P.; Meijer, E. W.

    2006-08-01

    We show that combining concepts generally used in covalent organic synthesis such as retrosynthetic analysis and the use of protecting groups, and applying them to the self-assembly of polymeric building blocks in multiple steps, results in a powerful strategy for the self-assembly of dynamic materials with a high level of architectural control. We present a highly efficient synthesis of bifunctional telechelic polymers by ring-opening metathesis polymerization (ROMP) with complementary quadruple hydrogen-bonding motifs. Because the degree of functionality for the polymers is 2.0, the formation of alternating, blocky copolymers was demonstrated in both solution and the bulk leading to stable, microphase-separated copolymer morphologies. ring-opening metathesis polymerization | self-assembly | block copolymer | retrosynthesis

  8. From ruthenium olefin metathesis catalyst to (η5-3- phenylindenyl)hydrido complex via alcoholysis

    KAUST Repository

    Manzini, Simone

    2014-01-01

    The synthesis and characterisation of [Ru(H)(η5-3- phenylindenyl)(iBu-Phoban)2] 4 is reported ( iBu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl 2(PPh3)2(3-phenylindenylidene)] (M 10). This journal is © The Royal Society of Chemistry.

  9. Concise syntheses of insect pheromones using Z-selective cross metathesis.

    Science.gov (United States)

    Herbert, Myles B; Marx, Vanessa M; Pederson, Richard L; Grubbs, Robert H

    2013-01-02

    Very short synthetic routes to nine cis-olefin-containing pheromones containing a variety of functionality, including an unconjugated (E,Z) diene, are reported. These lepidopteran pheromones are used extensively for pest control, and were easily prepared using ruthenium-based Z-selective cross metathesis, highlighting the advantages of this method over less efficient ways to form Z olefins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ruthenium-Catalyzed Olefin Cross-Metathesis with Tetrafluoroethylene and Analogous Fluoroolefins.

    Science.gov (United States)

    Takahira, Yusuke; Morizawa, Yoshitomi

    2015-06-10

    This Communication describes a successful olefin cross-metathesis with tetrafluoroethylene and its analogues. A key to the efficient catalytic cycle is interconversion between two thermodynamically stable, generally considered sluggish, Fischer carbenes. This newly demonstrated catalytic transformation enables easy and short-step synthesis of a new class of partially fluorinated olefins bearing plural fluorine atoms, which are particularly important and valuable compounds in organic synthesis and medicinal chemistry as well as the materials and polymer industries.

  11. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    Science.gov (United States)

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  12. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    Science.gov (United States)

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-09

    Invited for this month's cover is the group of Karol Grela (University of Warsaw) in collaboration with Apeiron Synthesis (based in the Wrocław Technology Park). The researchers created a new, bidentate isocyanide scavenger that is very effective at removing ruthenium residues from the products of olefin metathesis. The Full Paper itself is available at 10.1002/cssc.201500784. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The intriguing modeling of cis–trans selectivity in ruthenium-catalyzed olefin metathesis

    Directory of Open Access Journals (Sweden)

    Luigi Cavallo

    2011-01-01

    Full Text Available In this study we have investigated computationally the origin of the cis–trans selectivity in the Ru-catalyzed cross metathesis (CM of a prototype monosubstituted olefin, i.e., propene. Our calculations suggest that the origin of the preferential formation of trans-olefins is in the product release step, which prevents the initially formed cis-olefin from escaping the metal, and returns it to the reaction pool until the trans-olefin is formed.

  14. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    Directory of Open Access Journals (Sweden)

    Stefano Guidone

    2015-09-01

    Full Text Available The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  15. Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization

    KAUST Repository

    Zhang, Hefeng

    2014-01-01

    A novel strategy using polyhomologation and ring opening metathesis polymerization (ROMP) has been developed for the synthesis of well-defined polyethylene (PE) molecular brushes. Polyhomologation was used to afford an OH-terminated PE, which after transformation to the norbornyl PE macromonomer was subjected to ROMP. Kinetics of ROMP of the PE macromonomer was studied by in situ1H NMR monitoring. The brush structure was proved from HT-GPC, 1H NMR and DSC results.

  16. Construction of Eight-Membered Carbocycles with Trisubstituted Double Bonds Using the Ring Closing Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2010-06-01

    Full Text Available Medium sized carbocycles are particularly difficult to synthesize. Ring closing metathesis reactions (RCM have recently been applied to construct eight-membered carbocycles, but trisubstituted double bonds in the eight-membered rings are more difficult to produce using RCM reactions. In this review, model examples and our own results are cited and the importance of the preparation of suitably designed precursors is discussed. Examples of RCM reactions used in the total synthesis of natural products are also outlined.

  17. Bis-mixed-carbene ruthenium-thiolate-alkylidene complexes: synthesis and olefin metathesis activity.

    Science.gov (United States)

    Dahcheh, Fatme; Stephan, Douglas W

    2015-01-28

    A series of bis-carbene Ru-hydride species, including (IMes)(Im(OMe)2)(PPh3)RuHCl (1) and (SIMes)(Me2Im(OMe)2)(PPh3)RuHCl (2) were prepared and subsequently shown to react with aryl-vinyl-sulfides to give the bis-carbene-alkylidene complexes: Im(OMe)2(SIMes)RuCl(SR)(=CHCH3) (R = p-FC6H4 (3), p-(NO2)C6H4 (4)), Im(OMe)2(IMes)RuCl(=CHCH3)(SPh) (5), Me2Im(OMe)2(SIMes)RuCl(=CHCH3)(SPh) (6), Im(OMe)2(SIMes)(F5C6S)RuCl(=CHR) (R = C4H9 (9), C5H11 (10)). The activity of these species in the standard Grubbs' tests for ring-opening metathesis polymerization, ring-closing and cross-metathesis are reported. Although these thiolate derivatives are shown to exhibit modest metathesis activities, the reactivity is enhanced in the presence of BCl3.

  18. Studies of the mechanism of the olefin metathesis reaction and the process of active site formation on photoreduced molybdenum-silicate catalysts. 2. Productive and degenerative metathesis of C/sub 2/H/sub 4/-C/sub 2/D/sub 4/ and C/sub 3/H/sub 6/-C/sub 3/D/sub 6/ mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Elev, I.V.; Shelimov, B.N.; Kazanskii, V.B.

    1987-10-01

    The specific catalytic activity of photoreduced Mo/sup 4 +//SiO/sub 2/ samples has been compared for productive and degenerate metathesis reactions of C/sub 3/H/sub 6/-C/sub 3/D/sub 6/ and C/sub 2/H/sub 4/-C/sub 2/D/sub 4/ mixtures. It has been found, that, under comparable conditions, the rate of degenerate metathesis of ethylene is 4-5 times slower than the rate of productive metathesis of propylene, although the rate of degenerate metathesis of propylene is 5 x 10/sup 3/-10/sup 4/ times greater than its rate of productive metathesis. Based on these results, it is concluded that degenerate metathesis of propylene occurs via the involvement of secondary (ethylidene) carbenes.

  19. Design of Heterogeneous Hoveyda–Grubbs Second-Generation Catalyst–Lipase Conjugates

    Directory of Open Access Journals (Sweden)

    Anthony Neville

    2016-12-01

    Full Text Available Heterogeneous catalysts have been synthesized by the conjugation of Hoveyda–Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result was found using tetrahydrofuran as a solvent. Some additives such as phenylboronic acid or polyetheneglycol slightly improved the activity of the Ru catalyst whereas others, such as pyridine or dipeptides affected it negatively. The organometallic compound immobilized on functionalized-surface materials activated with boronic acid or epoxy groups (around 50–60 µg per mg support and showed 50% conversion at 24 h in the ring-closing metathesis. Cross-linked enzyme aggregates (CLEA’s of the Hoveyda–Grubbs second-generation catalyst with Candida antarctica lipase (CAL-B were prepared, although low Ru catalyst was found to be translated in low conversion. Therefore, a sol–gel preparation of the Hoveyda–Grubbs second-generation and CAL-B was performed. This catalyst exhibited good activity in the metathesis of diethyldiallymalonate in toluene and in aqueous media. Finally, a new sustainable approach was used by the conjugation lipase–Grubbs in solid phase in aqueous media. Two strategies were used: one using lipase previously covalently immobilized on an epoxy-Sepharose support (hydrophilic matrix and then conjugated with grubbs; and in the second, the free lipase was incubated with organometallic in aqueous solution and then immobilized on epoxy-Sepharose. The different catalysts showed excellent conversion values in the ring-closing metathesis of diethyldiallymalonate in aqueous media at 25 °C.

  20. Design of Heterogeneous Hoveyda-Grubbs Second-Generation Catalyst-Lipase Conjugates.

    Science.gov (United States)

    Neville, Anthony; Iniesta, Javier; Palomo, Jose M

    2016-12-06

    Heterogeneous catalysts have been synthesi zed by the conjugation of Hoveyda-Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result was found using tetrahydrofuran as a solvent. Some additives such as phenylboronic acid or polyetheneglycol slightly improved the activity of the Ru catalyst whereas others, such as pyridine or dipeptides affected it negatively. The organometallic compound immobilized on functionalized-surface materials activated with boronic acid or epoxy groups (around 50-60 µg per mg support) and showed 50% conversion at 24 h in the ring-closing metathesis. Cross-linked enzyme aggregates (CLEA's) of the Hoveyda-Grubbs second-generation catalyst with Candida antarctica lipase (CAL-B) were prepared, although low Ru catalyst was found to be translated in low conversion. Therefore, a sol-gel preparation of the Hoveyda-Grubbs second-generation and CAL-B was performed. This catalyst exhibited good activity in the metathesis of diethyldiallymalonate in toluene and in aqueous media. Finally, a new sustainable approach was used by the conjugation lipase-Grubbs in solid phase in aqueous media. Two strategies were used: one using lipase previously covalently immobilized on an epoxy-Sepharose support (hydrophilic matrix) and then conjugated with grubbs; and in the second, the free lipase was incubated with organometallic in aqueous solution and then immobilized on epoxy-Sepharose. The different catalysts showed excellent conversion values in the ring-closing metathesis of diethyldiallymalonate in aqueous media at 25 °C.

  1. Resolving Heterogeneity

    DEFF Research Database (Denmark)

    Hölzenspies, Jurriaan; Dela Cruz, Gelo Victoriano; M Brickman, Joshua

    2016-01-01

    sets of pluripotency and differentiation markers. It has become increasingly apparent that this transcriptional heterogeneity is an important characteristic of ESC culture. By sorting for specific populations of ESCs it is possible to enrich for cells with a capacity to colonize the embryo proper...

  2. Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica.

    Science.gov (United States)

    Sen, Suman; Schowner, Roman; Imbrich, Dominik A; Frey, Wolfgang; Hunger, Michael; Buchmeiser, Michael R

    2015-09-21

    The synthesis and single-crystal X-ray structures of the novel molybdenum imido alkylidene N-heterocyclic carbene complexes [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] (3), [Mo(N-2,6-Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] (4), [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] (5), [Mo(N-2,6-Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)](+)BArF(-) (6), [Mo(N-2,6-Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] (7) and [Mo(N-2,6-Cl2C6H3)(IMes)(CHCMe3)(OTf)2] (8) are reported (IMesH2=1,3-dimesitylimidazolidin-2-ylidene, IMes=1,3-dimesitylimidazolin-2-ylidene, BArF(-)=tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3(-)). Also, silica-immobilized versions I1 and I2 were prepared. Catalysts 3-8, I1 and I2 were used in homo-, cross-, and ring-closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω-diynes. In the RCM of α,ω-dienes, in the homometathesis of 1-alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100,000, 210,000 and 30,000, respectively, were achieved. With I1 and I2, virtually Mo-free products were obtained (<3 ppm Mo). With 1,6-hepta- and 1,7-octadiynes, catalysts 3, 4, and 5 allowed for the regioselective cyclopolymerization of 4,4-bis(ethoxycarbonyl)-1,6-heptadiyne, 4,4-bis(hydroxymethyl)-1,6-heptadiyne, 4,4-bis[(3,5-diethoxybenzoyloxy)methyl]-1,6-heptadiyne, 4,4,5,5-tetrakis(ethoxycarbonyl)-1,7-octadiyne, and 1,6-heptadiyne-4-carboxylic acid, underlining the high functional-group tolerance of these novel Group 6 metal alkylidenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic Fe@g‑C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically...

  4. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties.

    Science.gov (United States)

    Zhang, Xin-Yu; Elfarra, Adnan A

    2017-05-01

    Adverse drug reactions (ADRs) pose a significant health problem and are generally attributed to reactive metabolites. Olefinic moieties in drugs can undergo cytochrome P450-mediated bioactivation to produce reactive metabolites but myeloperoxidase (MPO)-mediated bioactivation of these moieties has not been reported. Thus, small molecules of alkene hydrocarbons are used as model compounds to characterize the MPO-mediated metabolism. Areas covered: The authors focus on MPO-mediated metabolism of alkene hydrocarbons to form chlorohydrins and the potential role of chlorohydrins in alkene toxicity and carcinogenicity. A case study is presented, in which a carcinogenic alkene, 1,3-butadiene, is demonstrated to form 1-chloro-2-hydroxy-3-butene (CHB) through the MPO-mediated pathway. Further bioactivation of CHB yields a cross-linking metabolite, 1-chloro-3-buten-2-one (CBO), which is highly reactive toward glutathione, proteins, nucleosides, and DNA. Toxicity and mutagenicity of CHB and CBO are also presented. Expert opinion: Alkene hydrocarbons readily undergo MPO-mediated bioactivation to form chlorohydrins, which can further be biotransformed into proteins/DNA-modifying reactive metabolites. Therefore, chlorohydrin formation may play an important role in alkene toxicity and carcinogenicity. Olefinic moieties in drugs are expected to undergo similar bioactivation, which may contribute to ADRs. Studies to investigate the roles of MPO and chlorohydrin formation in ADRs are thus warranted.

  5. Heterogeneous Gossip

    Science.gov (United States)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  6. Engineering of TM1459 from Thermotoga maritima for Increased Oxidative Alkene Cleavage Activity.

    Science.gov (United States)

    Fink, Matthias; Trunk, Sarah; Hall, Mélanie; Schwab, Helmut; Steiner, Kerstin

    2016-01-01

    Oxidative cleavage of alkenes is a widely employed process allowing oxyfunctionalization to corresponding carbonyl compounds. Recently, a novel biocatalytic oxidative alkene cleavage activity on styrene derivatives was identified in TM1459 from Thermotoga maritima. In this work we engineered the enzyme by site-saturation mutagenesis of active site amino acids to increase its activity and to broaden its substrate scope. A high-throughput assay for the detection of the ketone products was successfully developed. Several variants with up to twofold improved conversion level of styrene derivatives were successfully identified. Especially, changes in or removal of the C-terminus of TM1459 increased the activity most significantly. These best variants also displayed a slightly enlarged substrate scope.

  7. Engineering of TM1459 from Thermotoga maritima for increased oxidative alkene cleavage activity

    Directory of Open Access Journals (Sweden)

    Matthias Fink

    2016-09-01

    Full Text Available Oxidative cleavage of alkenes is a widely employed process allowing oxyfunctionalization to corresponding carbonyl compounds. Recently, a novel biocatalytic oxidative alkene cleavage activity on styrene derivatives was identified in TM1459 from Thermotoga maritima. In this work we engineered the enzyme by site-saturation mutagenesis of active site amino acids to increase its activity and to broaden its substrate scope. A high-throughput assay for the detection of the ketone products was successfully developed. Several variants with up to two fold improved conversion level of styrene derivatives were successfully identified. Especially changes in or removal of the C-terminus of TM1459 increased the activity most significantly. These best variants also displayed a slightly enlarged substrate scope.

  8. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    Science.gov (United States)

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New Enantiomerically Pure Alkylimido Mo-Based Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts

    Science.gov (United States)

    Pilyugina, Tatiana S.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    Molybdenum olefin metathesis catalysts that contain aliphatic 1-phenylcyclohexylimido (NPhCy) and 2-phenyl-2-adamantylimido (NPhAd) groups and (S)-Biphen or (R)-Trip)(THF) ligands (Biphen = 3,3′-di-tert-butyl-5,5′,6,6′-tetramethyl-1,1′-biphenyl-2,2′-diolate; Trip = 3,3′-bis(2,4,6-triisopropylphenyl)-2,2′-binaphtholate) have been prepared. Their catalytic activity and enantioselectivity in desymmetrization reactions such as ring-closing metathesis of amines and lactams and ring-opening/cross-metathesis of substituted norborneols with styrene were compared to the results obtained with the only known alkylimido catalyst Mo(NAd)(CHCMe2Ph)[(S)-Biphen]. The activities and enantioselectivities provided by these new chiral complexes vary significantly, but in virtually all instances explored were not superior to the adamantylimido analogs. PMID:19079732

  11. Ruthenium Catalysts Supported by Amino-Substituted N-Heterocyclic Carbene Ligands for Olefin Metathesis of Challenging Substrates.

    Science.gov (United States)

    César, Vincent; Zhang, Yin; Kośnik, Wioletta; Zieliński, Adam; Rajkiewicz, Adam A; Ruamps, Mirko; Bastin, Stéphanie; Lugan, Noël; Lavigne, Guy; Grela, Karol

    2017-02-03

    N-Heterocyclic carbene (NHC) ligands IMesNMe2 and IMes(NMe2)2 derived from the well-known IMes ligand by substituting the carbenic heterocycle with one and two dimethylamino groups, respectively, were employed for the synthesis of second-generation Grubbs- and Grubbs-Hoveyda-type ruthenium metathesis precatalysts. Whereas the stability of the complexes was found to depend on the degree of dimethylamino-substitution and on the type of complex, the backbone-substitution was shown to have a positive impact on their catalytic activity in ring-closing metathesis, with a more pronounced effect in the second-generation Grubbs-type series. The new complexes were successfully implemented in a number of challenging olefin metathesis reactions leading to the formation of tetra-substituted C=C double bonds and/or functionalized compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleTJE.

    Science.gov (United States)

    Matthews, Sarah; Belcher, James D; Tee, Kang Lan; Girvan, Hazel M; McLean, Kirsty J; Rigby, Stephen E J; Levy, Colin W; Leys, David; Parker, David A; Blankley, Richard T; Munro, Andrew W

    2017-03-24

    The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe79, His85, and Arg245 to interrogate their roles in substrate binding and catalytic activity. His85 is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His85 in this process. Phe79 interacts with His85, and Phe79 mutants showed diminished affinity for shorter chain (C10-C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg245 is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Rhodium-Catalyzed Cyanation of C(sp(2))-H Bond of Alkenes.

    Science.gov (United States)

    Chaitanya, Manthena; Anbarasan, Pazhamalai

    2015-08-07

    Efficient and selective rhodium-catalyzed cyanation of chelation-assisted C-H bonds of alkenes has been accomplished using environmentally benign N-cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS) as a cyanating reagent. The developed methodology tolerates various functional groups and allows the synthesis of diverse substituted acrylonitriles in good to excellent yields. Furthermore, the potential of the methodology was demonstrated through the formal synthesis of chlorpheniramine-based antagonist.

  14. Gas chromatographic-mass spectrometric characterization of all acyclic C5-C7 alkenes from fluid catalytic cracked gasoline using polydimethylsiloxane and squalane stationary phases.

    Science.gov (United States)

    Soják, Ladislav; Addová, Gabriela; Kubinec, Róbert; Kraus, Angelika; Hu, Gengyuan

    2002-02-15

    Published retention indices of acyclic alkenes C5-C7 on squalane and polydimethylsiloxane as stationary phases were investigated, and reliable retention indices of alkenes from various sources were converted to separation systems used in a laboratory. Retention indices measured on available authentic commercial alkenes and on alkenic fraction of gasoline, published retention indices as well as means of GC-MS were used for verification of calculated retention indices. Retention of some gas chromatographic unseparated isomer pairs was obtained by mass spectrometric deconvolution using a specific single-ion monitoring. On the basis of these retention data, C5-C7 alkenes were identified and analyzed in the gasoline from fluid catalytic cracking. In the gasoline all 59 acyclic C5-C7 isomeric alkenes were determined at significantly different concentration levels.

  15. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    Science.gov (United States)

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    Directory of Open Access Journals (Sweden)

    Krzysztof Skowerski

    2016-01-01

    Full Text Available An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot.

  17. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  18. A diversity-oriented approach to indolocarbazoles via Fischer indolization and olefin metathesis: total synthesis of tjipanazole D and I.

    Science.gov (United States)

    Kotha, Sambasivarao; Saifuddin, Mohammad; Aswar, Vikas R

    2016-10-18

    New synthetic strategies to indolocarbazoles have been reported via two-fold Fischer indolization under green conditions using l-(+)-tartaric acid and N,N-dimethyl urea. Starting with cyclohexanone, a bench-top starting material, this methodology has been extended to the total synthesis of natural products such as tjipanazoles D and I as well as the core structure of asteropusazole and racemosin B. Here, atom economical reactions like ring-closing metathesis, enyne-metathesis, and the Diels-Alder reaction have been used as key steps. Diverse strategies demonstrated here are useful in medicinal chemistry and materials science to design a library of decorated indoles.

  19. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    Directory of Open Access Journals (Sweden)

    Julia Wappel

    2016-01-01

    Full Text Available A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene (pDCPD. Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  20. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.

    2016-03-01

    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  1. Cationic Tungsten(VI Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Dey Raju

    2016-03-01

    Full Text Available Tungsten-hexa-methyl readily reacts with B(C6F53 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  2. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  3. Effect of Support on Metathesis of n-Decane: Drastic Improvement in Alkane Metathesis with WMe5 Linked to Silica-Alumina

    KAUST Repository

    Samantaray, Manoja

    2015-03-11

    [WMe6] (1) supported on the surface of SiO2-Al2O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2-Al2O3(500) (2) transformed at 120°C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten.

  4. Metathesis in the generation of low-temperature gas in marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2010-01-01

    Full Text Available Abstract The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis as the source of equilibrium in experiments with Cretaceous Mowry shale at 100°C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C1*(C3]/[(C22], and between these hydrocarbons and n-butane, Q* (K = [(C1*(n-C4]/[(C2*(C3], reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW. Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [Cn] to smaller intermediates (fission as gas generation creates open catalytic sites ([ ]: [Cn] + [ ] → [Cn-m] + [Cm]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C3] and [n-C4] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.

  5. Room Temperature Ionic Liquids as Green Solvent Alternatives in the Metathesis of Oleochemical Feedstocks

    Directory of Open Access Journals (Sweden)

    Priya A. Thomas

    2016-02-01

    Full Text Available One of the most important areas of green chemistry is the application of environmentally friendly solvents in catalysis and synthesis. Conventional organic solvents pose a threat to the environment due to the volatility, highly flammability, toxicity and carcinogenic properties they exhibit. The recently emerged room temperature ionic liquids (RTILs are promising green solvent alternatives to the volatile organic solvents due to their ease of reuse, non-volatility, thermal stability and ability to dissolve a variety of organic and organometallic compounds. This review explores the use of RTILs as green solvent media in olefin metathesis for applications in the oleochemical industry.

  6. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    Directory of Open Access Journals (Sweden)

    Ileana Dragutan

    2015-12-01

    Full Text Available This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials.

  7. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  8. An Olefin Cross-Metathesis Approach to Depudecin and Stereoisomeric Analogues.

    Science.gov (United States)

    Cheng-Sánchez, Iván; García-Ruiz, Cristina; Guerrero-Vásquez, Guillermo A; Sarabia, Francisco

    2017-05-05

    A new total synthesis of the natural product (-)-depudecin, a unique and unexplored histone deacetylase (HDAC) inhibitor, is reported. A key feature of the synthesis is the utilization of an olefin cross-metathesis strategy, which provides for an efficient and improved access to natural depudecin, compared with our previous linear synthesis. Featured by its brevity and convergency, our developed synthetic strategy was applied to the preparation of the 10-epi derivative and the enantiomer of depudecin, which represent interesting stereoisomeric analogues for structure-activity relationship studies.

  9. Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis.

    Science.gov (United States)

    Gawin, Rafał; Kozakiewicz, Anna; Guńka, Piotr A; Dąbrowski, Paweł; Skowerski, Krzysztof

    2017-01-19

    The state-of-the-art in olefin metathesis is application of N-heterocyclic carbene (NHC)-containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)-containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Olefin Metathesis Polymerization: The Unexpected Role of Carbenoid Species in Formation of Macromolecules

    Science.gov (United States)

    Snyder, Donald M.

    1996-02-01

    Today most undergraduate organic chemistry texts present some material on polymers, but the coverage in these texts is necessarily quite limited. Step-growth and free-radical chain growth systems, along with some mention of coordination polymerization, usually constitute the bulk of introductory material. Very little of the advances in polymer chemistry since the 1960's is reflected in the undergraduate curriculum. One particularly interesting topic still rarely seen outside of the research literature is the subject of metathesis polymerization. This article is intended to present the interested reader with a brief introduction to the mechanism of this unique process, its historical background, and some recent developments in the field.

  11. Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis.

    Science.gov (United States)

    Zhu, Bin; Chen, Huanxin; Lin, Wei; Ye, Yang; Wu, Jing; Li, Shijun

    2014-10-29

    We describe the fabrication of a suite of flexible porphyrin cages and nanorings from a simple tetraalkene-derived zinc porphyrin monomer via a highly efficient template-directed strategy. The zinc porphyrin monomers were preorganized together by coordination with N atoms of multidentate ligands. Subsequent one-step olefin metathesis furnished a bisporphyrin cage, a triporphyrin nanoring, and a hexaporphyrin nanoring. In the case of the hexaporphyrin nanoring, 24 terminal olefins from six porphyrin monomers reacted with each other to form 12 new double bonds, delivering the final product. The triporphyrin and hexaporphyrin nanorings were further employed as hosts to encapsulate C60 and C70.

  12. Olefin Metathesis With Ruthenium-Arene Catalysts Bearing N-Heterocyclic Carbene Ligands

    Science.gov (United States)

    Delaude, Lionel; Demonceau, Albert

    In this chapter, we summarize the main results of our investigations on the ring-opening metathesis polymerization (ROMP) of cyclooctene catalyzed by various ruthenium (Ru)-arene complexes bearing imidazolin-2-ylidene, imidazolidin- 2-ylidene, or triazolin-5-ylidene ligands. Three major findings emerged from this study. First, we underscored the intervention of a photochemical activation step due to visible light illumination. Second, we established that the presence of an endocyclic double bond in the carbene ligand central heterocycle was not crucial to achieve high catalytic efficiencies. Third, we demonstrated that ortho-metallation of the N-heterocyclic carbene (NHC) ligand by the Ru center led to inactive catalysts.

  13. Divergent Approach to a Family of Tyrosine-Derived Ru-Alkylidene Olefin Metathesis Catalysts.

    Science.gov (United States)

    Gleeson, Ellen C; Wang, Zhen J; Jackson, W Roy; Robinson, Andrea J

    2015-07-17

    A simple and generic approach to access a new family of Ru-alkylidene olefin metathesis catalysts with specialized properties is reported. This strategy utilizes a late stage, utilitarian Hoveyda-type ligand derived from tyrosine, which can be accessed via a multigram-scale synthesis. Further functionalization allows the catalyst properties to be tuned, giving access to modified second-generation Hoveyda-Grubbs-type catalysts. This divergent synthetic approach can be used to access solid-supported catalysts and catalysts that function under solvent-free and aqueous conditions.

  14. A succinct access to ω-hydroxylated jasmonates via olefin metathesis.

    Science.gov (United States)

    Jimenez-Aleman, Guillermo H; Seçinti, Selina; Boland, Wilhelm

    2017-07-14

    In higher plants, jasmonates are lipid-derived signaling molecules that control many physiological processes, including responses to abiotic stress, defenses against insects and pathogens, and development. Among jasmonates, ω-oxidized compounds form an important subfamily. The biological roles of these ω-modified derivatives are not fully understood, largely due to their limited availability. Herein, a brief (two-step), simple and efficient (>80% yield), versatile, gram-scalable, and environmentally friendly synthetic route to ω-oxidized jasmonates is described. The approach utilizes olefin cross-metathesis as the key step employing inexpensive, commercially available substrates and catalysts.

  15. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  16. The Tandem Ring Opening/Ring Closing Metathesis Route to Oxaspirocycles: An Approach to Phelligridin G

    Directory of Open Access Journals (Sweden)

    Dennis L. Wright

    2013-02-01

    Full Text Available Phelligridin G is an unusual natural product that contains an embedded spiro-fused furanone core. We have investigated two furan-based synthetic approaches towards the spirocyclic core structure of this natural product from readily available 2-phenylfurans. Although initial studies involving an oxidative cyclization were unsuccessful, we were ultimately able to access this key system through a sequential intermolecular furan Diels-Alder reaction followed by a metathesis-based reorganization. A related approach led to an expanded C ring to form spiro-fused pyran spirocycles.

  17. Synthesis of 7-Deoxypancratistatin from Carbohydrates by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Håkansson, Anders Eckart; Palmelund, Anders; Holm, H.

    2006-01-01

    -deoxy-5-iodo-D-ribofuranoside in the presence of zinc metal. The first strategy involves a total of only 13 steps from D-ribose and piperonal, but suffers from a low yield in the zinc-mediated reaction between ribofuranoside 9, benzylamine, and bromide 7. The second strategy involves a total of 18 steps...... from D-xylose and piperonal. The former is converted into ribofuranoside 28, which is coupled with bromide 7 in the presence of zinc, and this is followed by ring-closing olefin metathesis. Subsequent Overman rearrangement, dihydroxylation, and deprotection then affords the natural product....

  18. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    A concise synthetic route is described for the synthesis of gabosine A and N. The key step uses a zinc-mediated tandem reaction where methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside is fragmented to give an unsaturated aldehyde which is allylated in the same pot with 3-benzoyloxy-2......-methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  19. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A simple synthetic strategy to C2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies.

  20. Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

  1. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  2. Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst

    Directory of Open Access Journals (Sweden)

    Michel Wong Chi Man

    2010-08-01

    Full Text Available The synthesis of a monosilylated Grubbs-Hoveyda ruthenium alkylidene complex is described, as well as the preparation and characterization of the corresponding material by sol-gel cogelification with tetraethoxysilane (TEOS and the assay of this recyclable supported catalyst in ring-closing diene and enyne metathesis reactions under thermal and microwave conditions.

  3. Poly(dendrimers) with phosphorescent iridium(III) complex-based side chains prepared via ring-opening metathesis polymerization

    NARCIS (Netherlands)

    Lai, W.-Y.; Balfour, M.N.; Levell, J.W.; Bansal, A.K.; Burn, P.L.; Lo, S.-C.; Samuel, I.D.W.

    2012-01-01

    Phosphorescent poly(dendrimers) with a norbornene-derived backbone have been synthesized using ring-opening metathesis polymerization with the Grubbs III catalyst. The dendrimers are comprised of a heteroleptic iridium(III) complex core with two 2-phenylpyridyl ligands and a phenyltriazolyl ligand,

  4. Enantioselective synthesis of benzofurans and benzoxazines via an olefin cross-metathesis-intramolecular oxo-Michael reaction.

    Science.gov (United States)

    Zhang, Jun-Wei; Cai, Quan; Gu, Qing; Shi, Xiao-Xin; You, Shu-Li

    2013-09-11

    Chiral phosphoric acid and Hoveyda-Grubbs II were found to catalyze an olefin cross-metathesis-intramolecular oxo-Michael cascade reaction of the ortho-allylphenols and enones to provide a variety of benzofuran and benzoxazine derivatives in moderate to good yields and enantioselectivity.

  5. Decomposition of Olefin Metathesis Catalysts by Brønsted Base: Metallacyclobutane Deprotonation as a Primary Deactivating Event.

    Science.gov (United States)

    Bailey, Gwendolyn A; Lummiss, Justin A M; Foscato, Marco; Occhipinti, Giovanni; McDonald, Robert; Jensen, Vidar R; Fogg, Deryn E

    2017-11-10

    Brønsted bases of widely varying strength are shown to decompose the metathesis-active Ru intermediates formed by the second-generation Hoveyda and Grubbs catalysts. Major products, in addition to propenes, are base·HCl and olefin-bound, cyclometalated dimers [RuCl(κ(2)-H2IMes-H)(H2C═CHR)]2 Ru-3. These are generated in ca. 90% yield on metathesis of methyl acrylate, styrene, or ethylene in the presence of either DBU, or enolates formed by nucleophilic attack of PCy3 on methyl acrylate. They also form, in lower proportions, on metathesis in the presence of the weaker base NEt3. Labeling studies reveal that the initial site of catalyst deprotonation is not the H2IMes ligand, as the cyclometalated structure of Ru-3 might suggest, but the metallacyclobutane (MCB) ring. Computational analysis supports the unexpected acidity of the MCB protons, even for the unsubstituted ring, and by implication, its overlooked role in decomposition of Ru metathesis catalysts.

  6. Synthesis of 4'α-C Phenyl-Branched Carbocyclic Nucleoside Using Ring-Closing Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Joon Hee; Ko, Ok Hyun [Chosun University, Gwangju(Korea, Republic of)

    2003-09-15

    An efficient synthetic route for preparing novel 4'α-C phenyl branched carbocyclic nucleoside is described. The installation of phenyl group at the 4'-position of carbocyclic nucleoside was successfully accomplished via a sequential [3,3]-sigmatropic rearrangement and ring-closing metathesis (RCM) beginning from simple ketone such as 2-hydroxy acetophenone.

  7. Metathesis of 2-pentene over Mo and W supported mesoporous molecular sieves MCM-41 and SBA-15

    Czech Academy of Sciences Publication Activity Database

    Ibrahim, M. A.; Akhtar, M. N.; Čejka, Jiří; Montanari, E.; Balcar, Hynek; Kubů, Martin; Al-Khattaf, S. S.

    2017-01-01

    Roč. 53, SEP 2017 (2017), s. 119-126 ISSN 1226-086X R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : metathesis * MCM-41 * SBA-15 Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.421, year: 2016

  8. Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts : On the Way to a Tandem Process

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    Herein, we report the successful transformation of a 1(st) generation Grubbs metathesis catalyst into an asymmetric transfer hydrogenation (ATH) catalyst. Upon addition of a chiral amine ligand, an alcohol and a base, the 1(st) generation Hoveyda-Grubbs catalyst (HG-I) was found to promote the

  9. Synthesis of anti-tumour phosphatidylinositol analogues from glucose by the use of ring-closing olefin metathesis

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Skytte, Dorthe M.; Madsen, Robert

    2004-01-01

    -closing metathesis to afford the key conduritol B intermediate 7. This can trifurcate to form three different benzyl-protected myo-inositol headgroups 4-6, which after phosphorylation and attachment of the glycerolipid part give phosphatidylinositols 1-3. Preliminary biological testing against human colon...

  10. A short stereoselective synthesis of (+-(6R,2′S-cryptocaryalactone via ring-closing metathesis

    Directory of Open Access Journals (Sweden)

    Palakodety Radha Krishna

    2009-04-01

    Full Text Available A short stereoselective synthesis of (+-(6R,2′S-cryptocaryalactone was successfully completed. Key steps included the application of Carreira’s asymmetric alkynylation reaction to form a propargylic alcohol and subsequently lactone formation using the powerful ring-closing metathesis reaction.

  11. Metátese de olefinas no Brasil: "Brazil is romping it!" Olefin metathesis in Brazil: Brazil is romping it!

    Directory of Open Access Journals (Sweden)

    José Milton E. Matos

    2007-04-01

    Full Text Available Some aspects of the olefin metathesis reactions are summarized here (types of reactions, mechanism and catalysts. In particular, the research groups that have been working on this chemistry in Brazil are presented. The main goal of this paper is to make this type of reaction more widely known in the Brazilian chemical community.

  12. Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction.

    Science.gov (United States)

    Takii, Koichiro; Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2012-04-21

    A new synthetic route to optically active unsaturated γ- and δ-lactones has been demonstrated via asymmetric allylic carboxylation with a planar-chiral Cp'Ru catalyst and ring-closing metathesis reaction with a Grubbs II catalyst, and successfully applied to the enantioselective synthesis of (R)-(-)-massoialactone. This journal is © The Royal Society of Chemistry 2012

  13. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage

    Directory of Open Access Journals (Sweden)

    Thi X. Thi Luu

    2009-09-01

    Full Text Available Essential oil allylbenzenes from have been converted quickly and efficiently into the corresponding benzaldehydes in good yields by a two-step “green” reaction pathway based on a solventless alkene group isomerization by KF/Al2O3 to form the corresponding 1-arylpropene and a subsequent solventless oxidation of the latter to the corresponding benzaldehyde by KMnO4/CuSO4·5H2O. The assistance by microwave irradiation results in very short reaction times (<15 minutes. The green conversion of eugenol (4-allyl-2-methoxyphenol into vanillin (4-hydroxy-3-methoxybenzaldehyde has been carried out in a similar way, requiring however two additional microwave-assisted synthetic steps for acetylation of the hydroxy group prior to the oxidation reaction, and for the final deacetylation of vanillin acetate (4-acetoxy-3-methoxybenzaldehyde by KF/Al2O3 under solvent-free conditions, respectively.

  14. Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis

    Science.gov (United States)

    Funk, Timothy W.; Berlin, Jacob M.

    2008-01-01

    The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) is reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4bin situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of ≤1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed. PMID:16464082

  15. Dynamic behaviour of tantalum hydride supported on silica or MCM-41 in the metathesis of alkanes

    KAUST Repository

    Soignier, Sophie

    2014-01-01

    The metathesis of ethane and propane catalysed by tantalum hydride supported on silica or MCM-41 was studied under static and dynamic conditions. During the reaction, the rate decreased over time, indicating deactivation of the catalyst. The evolution of the catalytic system and surface species over time was monitored by various physico-chemical methods: FTIR, 13C NMR spectroscopy, elemental analysis and chemical reactivity. A carbonaceous deposit composed of unsaturated hydrocarbyl species was observed by 13C NMR. This deposit was responsible for poisoning of the catalyst. The deactivation of the catalyst proved more severe at higher temperatures and under static rather than dynamic conditions. A partial regeneration of the catalyst could be achieved during a series of repeated runs. Mechanistically, the deconvolution of the products\\' distribution over time indicated the occurrence of hydrogenolysis in the early stages of the reaction, while pure metathesis dominated later on. The hydrogen was supplied by the dehydrogenation of hydrocarbyl surface species involved in the deactivation process. © 2014 The Royal Society of Chemistry.

  16. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions.

    Science.gov (United States)

    Qureshi, Ziyauddin S; Hamieh, Ali; Barman, Samir; Maity, Niladri; Samantaray, Manoja K; Ould-Chikh, Samy; Abou-Hamad, Edy; Falivene, Laura; D'Elia, Valerio; Rothenberger, Alexander; Llorens, Isabelle; Hazemann, Jean-Louis; Basset, Jean-Marie

    2017-01-17

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-Im(Dipp)N] (4) (Im(Dipp) = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [Im(Dipp)NW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-Im(Dipp)N] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-Im(Dipp)N] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  17. Hypercoordinate β-carbon in Grubbs and Schrock olefin metathesis metallacycles.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2015-10-28

    Metallacyclobutane (MCB) intermediates of Grubbs and Schrock olefin metathesis catalysts are well-known for their unusually short single bond-like metal to Cβ distance and unusually long CαCβ distances. From the analysis of structural, bond order, electron density and (13)C NMR data of a large variety of MCB systems, we show that the Cβ of the metallacycle possesses pentacoordinate geometry due to the agostic type interaction of the metal with the CαCβ bonds. The pentacoordination of Cβ to the metal center is characterized by a catastrophe ring critical point (RCP) in the quantum theory of atoms-in-molecule (QTAIM) analysis. Fine tuning of the ligand environment changes the catastrophe point to a fifth bond critical point (BCP) which is clearly brought out in the case of two ruthenium olefin metathesis systems. Several Ru and W agostic MCB complexes exhibiting pentacoordinate Cβ as well as their non-agostic isomers have been reported at the BP86/def2-TZVPP level of DFT. The agostic systems showed a significant bond order between metal and Cβ (0.17-0.36), single bond-like electron density values at the catastrophe RCP/BCP and a significantly large difference in (13)C NMR chemical shift values between Cα and Cβ atoms.

  18. Iron-Catalyzed Olefin Metathesis with Low-Valent Iron Alkylidenes.

    Science.gov (United States)

    Mauksch, Michael; Tsogoeva, Svetlana B

    2017-08-01

    Inspired by recent reports of low-valent iron-complex-catalyzed formal [2+2] cycloaddition of olefins, we demonstrate computationally that with such low-valent iron complexes and with "strong" ligands, the olefin metathesis is also preferred over the undesired cyclopropanation side-reaction, competition already studied by Hoffmann and co-workers almost 40 years ago (J. Am. Chem. Soc. 1981, 103, 5582). The [2+2] cycloaddition step in metathesis propagation, which gives a Chauvin-type metallacyclobutane intermediate, is proposed to proceed either via a planar four-electron Craig-Möbius aromatic [π2s +π2s ] transition-state structure with a low barrier of 4.7 kcal mol(-1) or, alternatively, via a twisted Zimmerman-Möbius aromatic [π2s +π2a ] transition state with a 5.5 kcal mol(-1) activation-energy barrier, with respect to an "encounter" π-complex minimum obtained from an Fe(II) alkylidene and the entering olefin, while the corresponding triplet pathways are all disfavored. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach.

    Science.gov (United States)

    Mangold, Shane L; Grubbs, Robert H

    2015-08-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM.

  20. Z-Selective Olefin Metathesis Processes Catalyzed by a Molybdenum Hexaisopropylterphenoxide Monopyrrolide Complex

    Science.gov (United States)

    Flook, Margaret M.; Jiang, Annie J.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2009-01-01

    The molybdenum-based monoaryloxide monopyrrolide (MAP) species, Mo(NAd)(CHCMe2Ph)(C4H4N)(HIPTO) (2a), which contains “small” imido (Ad = 1-adamantyl) and “large” aryloxide (HIPTO = O-2,6(2,4,6-i-Pr3C6H2)C6H3) ligands, catalyzes Z-selective metathesis reactions as a consequence of intermediate metallacyclobutane species not being able to have a (anti) substituent pointing toward the HIPTO group. ROMP of dicarbomethoxynorbornadiene (DCMNBD) with 2% 2a in toluene leads to >99% cis and >99% syndiotactic poly(DCMNBD), while ROMP of cyclooctene and 1,5-cyclooctadiene (300 equiv)with initiator 2a leads to poly(cyclooctene) and poly(cyclooctadiene) that have cis contents of >99%; all are previously unknown microstructures. Z-selectivity is also observed in the metathesis of cis-4-octene and cis-3-hexene by initiator 2a to give cis-3-heptene. PMID:19462947

  1. Reduction in syllable onsets in the acquisition of Polish: deletion, coalescence, metathesis and gemination.

    Science.gov (United States)

    łukaszewicz, Beata

    2007-02-01

    This paper focuses on four strategies of onset reduction employed by a single child (4;0-4;4) acquiring Polish: deletion, coalescence, metathesis, and gemination. Deletion and coalescence occur in word-initial onsets while metathesis and gemination are restricted to word-medial position. The data, which constitute an intriguing 'conspiracy' case (Kisseberth, 1970), are analysed within OPTIMALITY THEORY (henceforth, OT; Prince & Smolensky, 1993/2004; McCarthy & Prince, 1995) in which all surface-true 'processes' are motivated through the interaction of ranked and violable constraints. The OT account makes it possible to envisage the four strategies as different surface responses to the undominated *COMPLEXOnset which militates against onset clusters. The choice of a particular strategy as well as its restriction to a particular word position is not random but follows from the interplay between *COMPLEXOnset, sonority-based syllable structure constraints (Margin Hierarchy, CONTACT LAW), context-sensitive markedness constraints (CODA CONDITION, *Nasal-Fricative) and faithfulness constraints. The present study confirms previous sonority-based findings, supplies further evidence for universal sonority mechanisms from word-medial clusters, and points to the coexistence of child-specific and abstract adult-based phonological strategies in the child's system.

  2. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin

    2017-01-05

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  3. In Situ Generation of Molybdenum-Based Catalyst for Alkyne Metathesis: Further Developments and Mechanistic Insights

    Directory of Open Access Journals (Sweden)

    Geng Lopez Joaquin

    2016-03-01

    Full Text Available Molybdenum-based catalysts are among the best candidates to achieve alkyne metathesis. They can be either well-defined carbynes, previously synthesized before their use, but also prepared in situ upon using stable molybdenum carbonyl complexes, or high oxidation state molybdenum salts that need a previous alkylation, both type of precursors being “activated” by hydroxyl-containing compounds such as phenols and silanols. This paper is presenting studies made on these systems, directed towards the knowledge of the reaction paths leading to the active species, and in particular to define the essential role of hydroxyl-containing co-catalyst in the formation of the active species, still ill-defined. From an analysis of the byproducts formed during the reaction, as well as of the initial products, reaction paths to access catalytic carbyne species is suggested, where the ligand environment consists of phenoxy (or siloxy groups, typically required and identified to lead to alkyne metathesis in the case of well-defined catalysts.

  4. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  5. Direct measurement of OH radicals from ozonolysis of selected alkenes: a EUPHORE simulation chamber study.

    Science.gov (United States)

    Siese, M; Becker, K H; Brockmann, K J; Geiger, H; Hofzumahaus, A; Holland, F; Mihelcic, D; Wirtz, K

    2001-12-01

    Reactions of ozone with alkenes can be a significant source of hydroxyl radicals in the atmosphere. In the present paper, the formation of OH radicals in the ozonolysis of selected alkenes under atmospheric conditions was directly observed. The experiments were carried out in the European photoreactor EUPHORE (Valencia, Spain). OH radicals were quantitatively detected by means of laser-induced fluorescence (LIF) using a new analytical instrument, which has been constructed on the basis of an existing setup already established in field studies. The OH radicals observed resulted directly from the reaction of ozone with the corresponding alkene. There was no indication that OH radicals were produced in the system by secondary processes. The experimentally observed concentration-time profiles of OH and ozone were excellently described by chemical modeling using explicit reaction mechanisms. The following OH yields were derived: 2,3-dimethyl-2-butene: (1.00 +/- 0.25); 2-methyl-2-butene: (0.89 +/- 0.22); trans-2-butene: (0.75 +/- 0.19); alpha-pinene: (0.91 +/- 0.23). In addition, the experiments carried out were modeled using the Regional Atmospheric Chemistry Mechanism (RACM), an established condensed chemical model applied in tropospheric chemistry. For 2,3-dimethyl-2-butene, 2-methyl-2-butene, and trans-2-butene the calculated concentration-time profiles of OH and ozone are in quite good agreement with the experimental data. However, in the case of alpha-pinene, the model fails for the simulation of OH due to the high grade of mechanism condensation, which results in a poor characterization of the primary reaction products.

  6. Effect of a-Heteroatoms on the Formation of Alkene-Derived Monolayers on H-Si(111): A Combined Experimental and Theoretical Study

    NARCIS (Netherlands)

    Gangarapu, S.; Pujari, S.P.; Alon, H.; Rijksen, B.M.G.; Sukenik, C.N.; Zuilhof, H.

    2015-01-01

    We investigate herein whether the reactivity and surface coverage of 1-alkenes toward hydrogen-terminated Si(111) surfaces [H-Si(111)] can be improved by introducing heteroatoms such as oxygen and sulfur at the a-position next to the alkene functional group. To this end, the reactivity of 1-pentene,

  7. Iridium(I)-Catalyzed Intramolecular Hydrocarbonation of Alkenes: Efficient Access to Cyclic Systems Bearing Quaternary Stereocenters.

    Science.gov (United States)

    Fernández, David F; Gulías, Moisés; Mascareñas, José L; López, Fernando

    2017-08-01

    A catalytic, versatile and atom-economical C-H functionalization process that provides a wide variety of cyclic systems featuring methyl-substituted quaternary stereocenters is described. The method relies on the use of a cationic Ir(I) -bisphosphine catalyst, which promotes a carboxamide-assisted activation of an olefinic C(sp(2) )-H bond followed by exo-cyclization to a tethered 1,1-disubstituted alkene. The extension of the method to aromatic and heteroaromatic C-H bonds, as well as developments on an enantioselective variant, are also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In Situ EPR Studies of Reaction Pathways in Titania Photocatalyst-Promoted Alkylation of Alkenes

    Directory of Open Access Journals (Sweden)

    Shona Rhydderch

    2015-03-01

    Full Text Available In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  9. Olefins metathesis, synthesis and properties of homogeneous models of the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst; Methathese des olefines, synthese et proprietes des modeles homogenes du catalyseur Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Doledec, G.

    1999-10-05

    The aim of this work was to synthesize and to study homogeneous models of the rhenium oxide on alumina catalyst in order to better understand the influence of the alumina environment over the activity in olefin metathesis. A series of aluminium complexes (ArO){sub 2}Al-Y have been synthesised, where ArO is a 4-substituted-2,6-di-tert-butyl-phenoxy, or (ArO){sub 2} is a CH{sub 2{sup -}} or S-ortho bridged-4,4'-di-tert-butyl-di-phenoxy, and Y is an alkyl or chlorine ligand. The reaction of (ArO){sub 2}Al-Cl with AgReO{sub 4} led to new complexes (ArO){sub 2}Al-OReO{sub 3} (A). These complexes exhibit a low to moderate activity in metathesis of 2-pentene (TOF = 0,5 min{sup -1} at 25 deg. C in a toluene solution). Complexes (ArO){sub 2}Al-R (R = iBu, Et) react with Re{sub 2}O{sub 7} in THF or dioxane giving type B complexes including oligomeric linkages like O{sub 3}Re-[Al(OAr)-O){sub 2}-ReO{sub 3}. They show a fairly high activity in the metathesis of 2-pentene, with TOF values as high as 100 min{sup -1}. As far as we know, these are the most active rhenium-based homogeneous metathesis catalysts. Complexes type A may be converted into type B complexes upon reaction with (ArO){sub 2}Al-R in an ether solvent. The high activity of B complexes is tentatively related to the Al-O-Al linkages that are molecular in the homogeneous models or present at the surface of the alumina in the heterogeneous catalyst. These results bear out again the role of the Lewis acidity in these catalysts. We used (ArO){sub 2}Al-R complexes to modify the heterogenous catalyst. It appears that it is an excellent way to reduce the rhenium loading without any loss of activity. (author)

  10. Olefin cross metathesis based de novo synthesis of a partially protected L-amicetose and a fully protected L-cinerulose derivative

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2014-05-01

    Full Text Available Cross metathesis of a lactate derived allylic alcohol and acrolein is the entry point to a de novo synthesis of 4-benzoate protected L-amicetose and a cinerulose derivative protected at C5 and C1.

  11. A new synthetic route to nucleosides: dissymmetric construction of a cyclopentene system by double [3,3]-sigmatropic rearrangement and double ring-closing metathesis.

    Science.gov (United States)

    Fang, Zhe; Hong, Joon Hee

    2004-03-18

    [reaction: see text] The dissymmetric synthesis of a carbocyclic nucleoside was achieved by a novel double [3,3]-sigmatropic rearrangement/double ring-closing metathesis strategy with a high stereoselectivity.

  12. A thermally robust ruthenium phosphonium alkylidene catalyst — the effect of more bulky N-heterocyclic carbene ligands on catalyst performance in olefin metathesis reactions

    National Research Council Canada - National Science Library

    Leitao, Erin M; Piers, Warren E; Parvez, Masood

    2013-01-01

    ...) complexes as well as the H 2 IDEP supported complexes. All three phosphonium alkylidenes were evaluated in comparison to the N-Mes derivative and Grubbs second generation catalyst using standard olefin metathesis reactions and conditions...

  13. Design and synthesis of hybrid cyclophanes containing thiophene and indole units via Grignard reaction, Fischer indolization and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available We demonstrate a new synthetic strategy to cyclophanes containing thiophene and indole moieties via Grignard addition, Fischer indolization and ring-closing metathesis as key steps.

  14. Cascade Polymerization via Controlled Tandem Olefin Metathesis/Metallotropic 1,3-Shift Reactions for the Synthesis of Fully Conjugated Polyenynes.

    Science.gov (United States)

    Kang, Cheol; Park, Hyeon; Lee, Jin-Kyung; Choi, Tae-Lim

    2017-08-23

    We demonstrate the first example of cascade polymerization by combining olefin metathesis and metallotropic 1,3-shift reactions to form unique conjugated polyenynes. Rational design of monomers enabled controlled polymerization, and kinetic investigation of the polymerization mechanism was conducted.

  15. Synthesis of gamma,delta-unsaturated-beta-keto lactones via sequential cross metathesis-lactonization: a facile entry to macrolide antibiotic (-)-A26771B.

    Science.gov (United States)

    Gebauer, Julian; Blechert, Siegfried

    2006-03-03

    A simple access to gamma,delta-unsaturated-beta-keto lactones is presented, allowing a rapid total synthesis of the naturally occurring 16-membered macrolide antibiotic (-)-A26771B via cross metathesis, asymmetric dihydroxylation, and lactonization as the key steps.

  16. Sources of C₂-C₄ alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region.

    Science.gov (United States)

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng

    2015-01-01

    Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An Electronic Rationale for Observed Initiation Rates in Ruthenium-Mediated Olefin Metathesis: Charge Donation in Phosphine And N-Heterocyclic Carbene Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-06-01

    Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the slow phosphine dissociation kinetics previously noted for second-generation metathesis precatalysts.

  18. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt.

    Science.gov (United States)

    Iwamoto, Hajime; Tafuku, Shinji; Sato, Yoshihiko; Takizawa, Wataru; Katagiri, Wataru; Tayama, Eiji; Hasegawa, Eietsu; Fukazawa, Yoshimasa; Haino, Takeharu

    2016-01-07

    [5]Catenanes were synthesized by olefin metathesis dimerization. The reaction of pseudorotaxanes, which were derived from a [2]catenane and one equivalent of an ammonium salt bearing two terminal olefins in dichloromethane, with a catalytic amount of Grubbs catalyst afforded linear [5]catenanes in 12% yield. Intermolecular and intramolecular olefin metathesis reactions were controlled by the length of the alkyl chain of the ammonium salts.

  19. Tuning the properties of α,ω-bis(trialkoxysilyl) telechelic copolyolefins from ruthenium-catalyzed chain-transfer ring-opening metathesis polymerization (ROMP)

    OpenAIRE

    Michel, Xiaolu; Fouquay, Stéphane; Michaud, Guillaume; Simon, Frédéric; Brusson, Jean-Michel; Roquefort, Philippe; Aubry, Thierry; Carpentier, Jean-François; Guillaume, Sophie M.

    2017-01-01

    International audience; The synthesis of low viscosity liquid α,ω-bis(trialkoxysilyl) telechelic copolyolefins (DF) via ring-opening metathesis polymerization (ROMP)/cross metathesis (CM) is reported. Copolymerization of a norbornene-based olefin (NB-OLF = norbornene (NB), ethylidene norbornene (ENB), methyl 5-norbornene-2-carboxylate (NBCOOMe), methyl 5-oxanorbornene-2-carboxylate (oxaNBCOOMe), or dicyclopentadiene (DCPD)) with a monocycloolefin (mOLF = cyclooctene (COE), 1,5-cyclooctadiene ...

  20. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    KAUST Repository

    Riache, Nassima

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  1. The cross-metathesis of methyl oleate with cis-2-butene-1,4-diyl diacetate and the influence of protecting groups

    Directory of Open Access Journals (Sweden)

    Jessica Pérez Gomes

    2011-01-01

    Full Text Available Background: α,ω-Difunctional substrates are useful intermediates for polymer synthesis. An attractive, sustainable and selective (but as yet unused method in the chemical industry is the oleochemical cross-metathesis with preferably symmetric functionalised substrates. The current study explores the cross-metathesis of methyl oleate (1 with cis-2-butene-1,4-diyl diacetate (2 starting from renewable resources and quite inexpensive base chemicals.Results: This cross-metathesis reaction was carried out with several phosphine and N-heterocyclic carbene ruthenium catalysts. The reaction conditions were optimised for high conversions in combination with high cross-metathesis selectivity. The influence of protecting groups present in the substrates on the necessary catalyst loading was also investigated.Conclusions: The value-added methyl 11-acetoxyundec-9-enoate (3 and undec-2-enyl acetate (4 are accessed with nearly quantitative oleochemical conversions and high cross-metathesis selectivity under mild reaction conditions. These two cross-metathesis products can be potentially used as functional monomers for diverse sustainable polymers.

  2. Development of self-healing polymer composites and photoinduced ring-opening metathesis polymerization

    Science.gov (United States)

    Sriram, Suresh Ranganathan

    The design and development of "smart-materials" which are capable of assessing their internal damage and perform self-healing is described. Failure of a material occurs by the induction of cracks. Often cracks are formed deep within the structure where detection is difficult and repair is virtually impossible. Once cracks have formed within polymeric materials, the integrity of the structure is compromised. A composite material can be repaired and its lifetime enhanced by relieving stress concentrations surrounding the crack tip. This thesis reports the novel development of a structural polymeric material with the ability to self-heal cracks by the application of ring opening metathesis polymerization. Self-healing is accomplished by incorporating a microencapsulated healing agent and a catalytic chemical trigger within an epoxy matrix. When the material is damaged, the microcapsules rupture and release the healing agent into the damaged region through capillary action. As the healing agent contacts the catalyst, polymerization is initiated and the damage is repaired. Ring opening metathesis polymerization (ROMP) has been applied towards the development of a self-healing polymer composite. Grubbs' catalyst is embedded in the matrix as a solid and dicyclopentadiene is employed as the healing agent within the microcapsules. Chemical and micromechanical experiments have been performed that illustrate the ROMP based self-healing concept. Experiments on fracture specimens have yielded as much as 75% recovery of virgin toughness. In addition, the development and utility of these easily accessible ruthenium precatalyst, [(p-cymene)RuCl2]2 and tricyclohexylphosphine in performing Photoinduced Ring Opening Metathesis Polymerization (PROMP) is demonstrated. Polymerization of norbornene and dicyclopentadiene has been performed, showing the simplicity and ease of this procedure. The resulting poly(norbornene) shows high trans content (85%) of the ring opened double bonds

  3. Getting ring-closing metathesis off the bench: reaction-reactor matching transforms metathesis efficiency in the assembly of large rings.

    Science.gov (United States)

    Monfette, Sebastien; Eyholzer, Markus; Roberge, Dominique M; Fogg, Deryn E

    2010-10-11

    Reported is the first study of the influence of reactor configuration on the efficiency of a challenging ring-closing metathesis (RCM) reaction. With the intention of increasing the generality of RCM scaleup and reducing its dependence on substrate modification, macrocyclization of an unmodified, low effective-molarity diene was explored using different reactor types, in conjunction with a commercial, homogeneous Grubbs catalyst. Optimized performance is compared for a conventional batch reactor (BR), a continuous plug-flow reactor (PFR), and a continuous stirred-tank reactor (CSTR). In the PFR, maximum conversion is achieved most rapidly, but product yields and selectivity are adversely affected by co-entrapment of ethylene with the catalyst, substrate, and product in the traveling "plug". Use of the CSTR, in which ethylene is efficiently swept out, affords an order-of-magnitude increase in total turnover numbers, and reduces the required catalyst loadings by 25× relative to the BR (to 0.2 mol %), while improving RCM yields and selectivity to quantitative levels. Continuous-flow methodologies that support liberation of the ethylene co-product thus show great promise for industrial uptake of RCM. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    KAUST Repository

    Żukowska, Karolina

    2015-08-20

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  5. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu

    2016-10-14

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  6. Development of a method for the preparation of ruthenium indenylidene-ether olefin metathesis catalysts.

    Science.gov (United States)

    Jimenez, Leonel R; Tolentino, Daniel R; Gallon, Benjamin J; Schrodi, Yann

    2012-05-11

    The reactions between several derivatives of 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and different ruthenium starting materials [i.e., RuCl₂(PPh₃)₃ and RuCl₂(p-cymene)(L), where L is tricyclohexylphosphine di-t-butylmethylphosphine, dicyclohexylphenylphosphine, triisobutylphosphine, triisopropylphosphine, or tri-n-propylphosphine] are described. Several of these reactions allow for the easy, in-situ and atom-economic preparation of olefin metathesis catalysts. Organic precursor 1-(3,5-dimethoxyphenyl)-1-phenyl-prop-2-yn-1-ol led to the formation of active ruthenium indenylidene-ether complexes, while 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and 1-(3,5-dimethoxyphenyl)-1-methyl-prop-2-yn-1-ol did not. It was also found that a bulky and strong σ-donor phosphine ligand was required to impart good catalytic activity to the new ruthenium complexes.

  7. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  8. Improved Metathesis Lifetime: Chelating Pyridinyl-Alcoholato Ligands in the Second Generation Grubbs Precatalyst

    Directory of Open Access Journals (Sweden)

    Jean I. du Toit

    2014-04-01

    Full Text Available Hemilabile ligands can release a free coordination site “on demand” of an incoming nucleophilic substrate while occupying it otherwise. This is believed to increase the thermal stability and activity of catalytic systems and therefore prevent decomposition via free coordination sites. In this investigation chelating pyridinyl-alcoholato ligands were identified as possible hemilabile ligands for incorporation into the second generation Grubbs precatalyst. The O,N-alcoholato ligands with different steric bulk could be successfully incorporated into the precatalysts. The incorporation of the sterically hindered, hemilabile O,N-ligands improved the thermal stability, activity, selectivity and lifetime of these complexes towards the metathesis of 1-octene. A decrease in the activity of the second generation Grubbs precatalyst was additionally observed after incorporating a hemilabile O,N-ligand with two phenyl groups into the system, while increasing their lifetime.

  9. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    Directory of Open Access Journals (Sweden)

    Karolina Żukowska

    2015-08-01

    Full Text Available Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  10. Iterative Reductive Aromatization/Ring-Closing Metathesis Strategy toward the Synthesis of Strained Aromatic Belts.

    Science.gov (United States)

    Golder, Matthew R; Colwell, Curtis E; Wong, Bryan M; Zakharov, Lev N; Zhen, Jingxin; Jasti, Ramesh

    2016-05-25

    The construction of all sp(2)-hybridized molecular belts has been an ongoing challenge in the chemistry community for decades. Despite numerous attempts, these double-stranded macrocycles remain outstanding synthetic challenges. Prior approaches have relied on late-state oxidations and/or acid-catalyzed processes that have been incapable of accessing the envisaged targets. Herein, we describe the development of an iterative reductive aromatization/ring-closing metathesis approach. Successful syntheses of nanohoop targets containing benzo[k]tetraphene and dibenzo[c,m]pentaphene moieties not only provide proof of principle that aromatic belts can be derived by this new strategy but also represent some of the largest aromatic belt fragments reported to date.

  11. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G.C.; Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1992-06-17

    The development of general approaches to carbon-carbon bond formation represents an important ongoing challenge for synthetic organic chemists. One efficient method for constructing carbon-carbon double bonds, the transition metal alkylidene-catalyzed olefin metathesis reaction, has been the focus of intense interest in recent years from the standpoint of both mechanism and polymer synthesis, in contrast, use of this transformation in organic synthesis has been limited. As part of a broader program directed toward establishing transition metal alkylidenes as versatile reagents for organic chemistry, the authors report the successful application of catalytic olefin methathesis to the generation of a variety of unsaturated oxygen heterocycles. 13 refs., 1 fig., 1 tab.

  12. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey

    Science.gov (United States)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  13. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    Science.gov (United States)

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  14. Olefin metathesis reaction on a MoS/sub 2/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-15

    Olefin metathesis reaction was found to take place on rather pure MoS/sub 2/ evacuated at 450/sup 0/C for several hours. Systematic studies of the isotopic scrambling in ethylene, propylene, 1-butene, and 2-butene on MoS/sub 2/ using microwave spectroscopy are reported. These studies were made using /sup 12/C- and /sup 13/C-labelled compounds and D-labelled compounds. Results indicated that the MoS/sub 2/ catalyst evacuated at 450/sup 0/C has two kinds of active sites, one is effective for the isomerization and the hydrogen isotopic mixing of olefins, and the other is effective for the hydrogenation reaction. This may be explained by assuming different degrees of coordinative unsaturation for the active sites. (BLM)

  15. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Strategy for Hydroxide Exclusion in Nanocrystalline Solid-State Metathesis Products

    Directory of Open Access Journals (Sweden)

    Jiaqi Cheng

    2013-06-01

    Full Text Available We demonstrate a simple strategy to either prevent or enhance hydroxide incorporation in nanocrystalline solid-state metathesis reaction products prepared in ambient environments. As an example, we show that ZnCO3 (smithsonite or Zn5(CO32(OH6 (hydrozincite forms extremely rapidly, in less than two minutes, to form crystalline domains of 11 ±  2 nm and 6 ± 2 nm, respectively. The phase selectivity between these nanocrystalline products is dominated by the alkalinity of the hydrated precursor salts, which may in turn affect the availability of carbon dioxide during the reaction. Thus, unlike traditional aqueous precipitation reactions, our solid-state method offers a way to produce hydroxide-free, nanocrystalline products without active pH control.

  17. Application of ring-closing metathesis macrocyclization to the development of Tsg101-binding antagonists

    Science.gov (United States)

    Liu, Fa; Stephen, Andrew G.; Waheed, Abdul A.; Freed, Eric O.; Fisher, Robert J.; Burke, Terrence R.

    2009-01-01

    HIV-1 viral budding involves binding of the viral Gagp6 protein to the ubiquitin E2 variant domain of the human tumor susceptibility gene 101 protein (Tsg101). Recognition of p6 by Tsg101 is mediated in part by a proline-rich motif that contains the sequence “Pro-Thr-Ala-Pro” (“PTAP”). Using the p6-derived 9-mer sequence “PEPTAPPEE”, we had previously improved peptide binding affinity by employing N-alkylglycine (“peptoid”) residues. The current study applies ring-closing metathesis macrocyclization strategies to Tsg101-binding peptide-peptoid hybrids as an approach to stabilize binding conformations and to observe the effects of such macrocyclization on Tsg101-binding affinity and bioavailability. PMID:19914066

  18. Statistical Ring Opening Metathesis Copolymerization of Norbornene and Cyclopentene by Grubbs’ 1st-Generation Catalyst

    Directory of Open Access Journals (Sweden)

    Christiana Nikovia

    2015-08-01

    Full Text Available Statistical copolymers of norbornene (NBE with cyclopentene (CP were prepared by ring-opening metathesis polymerization, employing the 1st-generation Grubbs’ catalyst, in the presence or absence of triphenylphosphine, PPh3. The reactivity ratios were estimated using the Finemann-Ross, inverted Finemann-Ross, and Kelen-Tüdos graphical methods, along with the computer program COPOINT, which evaluates the parameters of binary copolymerizations from comonomer/copolymer composition data by integrating a given copolymerization equation in its differential form. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies. Finally, the effect of triphenylphosphine on the kinetics of copolymerization, the reactivity ratios, and the kinetics of thermal decomposition were examined.

  19. C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Priya A. Thomas

    2009-11-01

    Full Text Available The efficacyof [bmim][X] ionic liquids (ILs (X = PF6–, BF4– and NTf2– as reaction media for methyl oleate metathesis was compared with that of conventional organic solvents (PhCl, PhMe, DCM and DCE using the well-defined first and second generation Grubbs precatalysts, RuCl2(PCy3(L(=CHPh (L = PCy3 or H2IMes. Best catalytic performance, with excellent selectivity (>98% at moderate reaction temperatures, was achieved in [bmim][X] ILs compared to conventional solvents. The effects of anion, reaction temperature, solvent polarity, solvent viscosity, and ligand-anion interaction on the reaction are also addressed.

  20. Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes and Determination of Emission Ratios

    Science.gov (United States)

    de Gouw, J. A.; Gilman, J. B.; Kim, S.-W.; Lerner, B. M.; Isaacman-VanWertz, G.; McDonald, B. C.; Warneke, C.; Kuster, W. C.; Lefer, B. L.; Griffith, S. M.; Dusanter, S.; Stevens, P. S.; Stutz, J.

    2017-11-01

    We reanalyze a data set of hydrocarbons in ambient air obtained by gas chromatography-mass spectrometry at a surface site in Pasadena in the Los Angeles basin during the NOAA California Nexus study in 2010. The number of hydrocarbon compounds quantified from the chromatograms is expanded through the use of new peak-fitting data analysis software. We also reexamine hydrocarbon removal processes. For alkanes, small alkenes, and aromatics, the removal is determined by the reaction with hydroxyl (OH) radicals. For several highly reactive alkenes, the nighttime removal by ozone and nitrate (NO3) radicals is also significant. We discuss how this nighttime removal affects the determination of emission ratios versus carbon monoxide (CO) and show that previous estimates based on nighttime correlations with CO were too low. We analyze model output from the Weather Research and Forecasting-Chemistry model for hydrocarbons and radicals at the Pasadena location to evaluate our methods for determining emission ratios from the measurements. We find that our methods agree with the modeled emission ratios for the domain centered on Pasadena and that the modeled emission ratios vary by 23% across the wider South Coast basin. We compare the alkene emission ratios with published results from ambient measurements and from tunnel and dynamometer studies of motor vehicle emissions. We find that with few exceptions the composition of alkene emissions determined from the measurements in Pasadena closely resembles that of motor vehicle emissions.

  1. Human blood and plasma partition coefficients for C4-C8 n-alkanes, isoalkanes, and 1-alkenes.

    Science.gov (United States)

    Mochalski, Paweł; King, Julian; Kupferthaler, Alexander; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2012-06-01

    Human blood:air and plasma:air partition coefficients for C(4)-C(8) n-alkanes, isoalkanes, and 1-alkenes were determined using multiple headspace extraction coupled with solid phase microextraction and gas chromatography. Mean blood:air partition coefficients expressed in the form of dimensionless blood-to-air concentration ratio (g/mL(b)/g/mL(a)) were 0.183, 0.416, 1.08, 2.71, and 5.77 for C(4)-C(8) n-alkanes; 0.079, 0.184, 0.473, 1.3, and 3.18 for C(4)-C(8) isoalkanes; and 0.304, 0.589, 1.32, 3.5, and 7.01 for C(4)-C(8) 1-alkenes, respectively (n = 8). The reported partition coefficient values increased exponentially with boiling points, molecular weights, and the carbon atoms in the particle. The solubility of 1-alkenes in blood was higher than in plasma, whereas the blood:air and plasma:air partition coefficients of n-alkanes and isoalkanes did not differ significantly. Consequently, additional interactions of 1-alkenes with whole blood seem to occur. The presented findings are expected to be particularly useful for assessing the uptake, distribution, and elimination of hydrocarbons in human organism.

  2. Tribology and Stability of Organic Monolayers on CrN: A Comparison among Silane, Phosphate, Alkene, and Alkyne Chemistries

    NARCIS (Netherlands)

    Pujari, S.P.; Li, F.; Regeling, R.; Zuilhof, H.

    2013-01-01

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were

  3. Mechanistic Links in the in-situ Formation of Dinuclear Manganese Catalysts, H2O2 Disproportionation, and Alkene Oxidation

    NARCIS (Netherlands)

    Angelone, Davide; Abdolahzadeh, Shaghayegh; de Boer, Johannes W.; Browne, Wesley R.

    The oxidation of substrates, such as alkenes, with H2O2 and the catalyst [Mn-2(IV)(mu-O)(3)(tmtacn)(2)](2+) (1; tmtacn = 1,4,7-tri-methyl-1,4,7-triazacyclononane) is promoted by the addition of carboxylic acids through the in situ formation of bis-(carboxylato) complexes of the type

  4. Molybdenum-catalyzed conversion of diols and biomass-derived polyols to alkenes using isopropyl alcohol as reductant and solvent

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Rytter; Lupp, Daniel; Gorfo, Ayele Teshome

    2015-01-01

    Chemical processes capable of reducing the high oxygen content of biomass-derived polyols are in demand in order to produce renewable substitutes for chemicals of fossil origin. Deoxydehydration (DODH) is an attractive reaction that in a single step transforms a vicinal diol into an alkene...

  5. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  6. Regioselective Hydration of an Alkene and Analysis of the Alcohol Product by Remote Access NMR: A Classroom Demonstration

    Science.gov (United States)

    Smith, Maureen E.; Johnson, Sara L.; Masterson, Douglas S.

    2013-01-01

    A two-part demonstration was conducted in our first-semester organic chemistry course designed to introduce students to the formation of alcohols, regioselective reactions, and analysis of organic products by NMR analysis. This demonstration utilized the oxymercuration-demercuration sequence to prepare an alcohol from an alkene in a Markovnikov…

  7. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Science.gov (United States)

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  8. Products and Kinetics of the Reactions of an Alkane Monolayer and a Terminal Alkene Monolayer with NO₃ Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Simone; Bertram, Allan K.

    2009-01-27

    The reactions of an alkanethiol and a terminal alkenethiol self-assembled monolayer with NO₃ radicals (in the presence of NO₂ and O₂) were studied. For the alkane monolayer, infrared (IR) spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the formation of organonitrates (RONO₂). The observation of organonitrates is in contrast to the recent X-ray photoelectron spectroscopy (XPS) data, which showed very little nitrogen-containing surface species. The identification of organonitrates may help explain why significant volatilization of the organic chain was not observed in recent studies of alkane monolayer oxidation by NO₃ radicals. The reactive uptake coefficient (g) of NO₃ on alkene monolayers determined in our study is higher than the values obtained in a recent study using liquid and solid alkene bulk films. A possible reason for this difference may be the location of the double bond at the interface. Using the g value determined in our studies, we show that under conditions where NO₃ is high the lifetime of an alkene monolayer in the atmosphere may be short (approximately 20 min). XPS, IR, and ToF-SIMS were used to identify surface functional groups after the oxidation of the alkene monolayers by NO₃. The results are consistent with the formation of C-O, aldehyde/ketone, carboxylic groups, and nitrogen containing species.

  9. Mono lacunary phosphomolybdate supported on MCM-41: synthesis, characterization and solvent free aerobic oxidation of alkenes and alcohols.

    Science.gov (United States)

    Narkhede, Nilesh; Patel, Anjali; Singh, Sukriti

    2014-02-14

    A new catalyst comprising monolacunary phosphomolybdate and MCM-41 was synthesized and characterized by different physicochemical techniques. The catalytic activity was evaluated by carrying out solvent free aerobic oxidation of alkenes and alcohols. The catalyst showed 60% conversion of styrene and 28% conversion of benzyl alcohol. The superiority of the present catalytic system lies in obtaining better conversion under solvent free and aerobic conditions.

  10. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.

    Science.gov (United States)

    Chirik, Paul J

    2015-06-16

    The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group's efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the interplay of the electronic structure of the base metal compounds and their catalytic performance. First generation, aryl-substituted pyridine(diimine) iron dinitrogen catalysts exhibited high turnover frequencies at low catalyst loadings and hydrogen pressures for the hydrogenation of unactivated terminal and disubstituted alkenes. Exploration of structure-reactivity relationships established smaller aryl substituents and more electron donating ligands resulted in improved performance. Second generation iron and cobalt catalysts where the imine donors were replaced by N-heterocyclic carbenes resulted in dramatically improved activity and enabled hydrogenation of more challenging unactivated, tri- and tetrasubstituted alkenes. Optimized cobalt catalysts have been discovered that are among the most active homogeneous hydrogenation catalysts known. Synthesis of enantiopure, C1 symmetric pyridine(diimine) cobalt complexes have enabled rare examples of highly enantioselective

  11. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas

    2016-12-05

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  12. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more.

    Science.gov (United States)

    Hoveyda, Amir H; Malcolmson, Steven J; Meek, Simon J; Zhugralin, Adil R

    2010-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations.

  13. Fast tandem ring-opening/ring-closing metathesis polymerization from a monomer containing cyclohexene and terminal alkyne.

    Science.gov (United States)

    Park, Hyeon; Choi, Tae-Lim

    2012-05-02

    We report extremely fast tandem ring-opening/ring-closing metathesis polymerization of a monomer containing two rather unreactive functional groups: cyclohexene and a terminal alkyne. When a third-generation Grubbs catalyst was used at low temperature, this tandem polymerization produced polymers with controlled molecular weights and narrow polydispersity indices. To explain this extremely fast polymerization, its reaction mechanism was studied. This new type of controlled polymerization allowed for the preparation of block copolymers using other conventional living metathesis polymerizations. The diene on the backbone of the polymer was postfunctionalized by sequential Diels-Alder and aza-Diels-Alder reactions, which led to selective functionalization depending on the stereochemistry of the diene. © 2012 American Chemical Society

  14. ``Greener Shade of Ruthenium'': New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis

    Science.gov (United States)

    Michrowska, Anna; Gulajski, Lukasz; Grela, Karol

    The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of electron-withdrawing groups (EWGs) without detriment to catalysts stability. This principle can be used not only to increase the catalyst activity, but also to alter its physical-chemical properties, such as solubility in given medium or affinity to silica gel. An example of novel immobilisation strategy, based on this concept is presented. The ammonium-tagged Hoveyda-type catalysts can be successfully applied in aqueous media as well as in ionic liquids (IL). Substitution of a benzylidene fragment can be used not only to immobilize the organometallic complex in such media, but also to increase its catalytic activity by electronic activation. The high stability and good application profiles of such modified catalysts in conjunction with their facile removal from organic products can be expected to offer new opportunities in green applications of olefin metathesis.

  15. Grubbs-Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids.

    Science.gov (United States)

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang; Buchmeiser, Michael R

    2015-01-01

    The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH-2-(2-PrO)-C6H4))(2+) (OTf(-))2] (Ru-2, H2ITapMe2 = 1,3-bis(2',6'-dimethyl-4'-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf(-) = CF3SO3 (-)) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM(+)][BF4 (-)]. The structure of Ru-2 was confirmed by single crystal X-ray analysis.

  16. Nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in olefin metathesis: a computational study.

    Science.gov (United States)

    Pazio, A; Woźniak, K; Grela, K; Trzaskowski, B

    2015-12-14

    We used the density functional theory to evaluate the suitability of nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in ruthenium-based metathesis catalysts. We demonstrate that these analogues induce only minor structural changes in Hoveyda-Grubbs-like precatalysts, but have major impact on precatalyst initiation. Nitrenium ion-modified precatalysts are characterized by a weak Ru-N bond resulting in a relatively strong Ru-O bond and large free energy barriers for initiation, making them good candidates for efficient latent Ru-based catalysts. On the other hand the trivalent boron ligand, bearing a formal -1 charge, binds strongly to the ruthenium ion, weakening the Ru-O bond and facilitating its dissociation, to promote fast reaction initiation. We show that the calculated bond dissociation energy of the Ru-C/N/B bond may serve as an accurate indicator of the Ru-O bond strength and the rate of metathesis initiation.

  17. Donor/Acceptor-Stabilized 1-Silaketene: Reversible [2+2] Cycloaddition with Pyridine and Evolution by an Olefin Metathesis Reaction.

    Science.gov (United States)

    Reyes, Morelia Lopez; Troadec, Thibault; Rodriguez, Ricardo; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Kato, Tsuyoshi

    2016-07-11

    The reaction of silacyclopropylidene 1 with benzaldehyde generates a 1-silaketene complex 2 by a formal atomic silicon insertion into the C=O bond of the aldehyde. The highly reactive 1-silaketene 2 undergoes a reversible [2+2] cycloaddition with pyridine to give sila-β-lactam 3. Of particular interest, in the presence of 4-dimethylaminopyridine (DMAP), 1-silaketene complex 2 evolves through an intramolecular olefin metathesis reaction, generating a new 1-silaketene complex 8 and cis-stilbene. Theoretical studies suggest that the reaction proceeds through the formation of a transient silacyclobutanone, a four-membered-ring intermediate, similar to that proposed by Chauvin and co-workers for the transition-metal-based olefin metathesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst.

    Science.gov (United States)

    Merle, Nicolas; Le Quéméner, Frédéric; Bouhoute, Yassine; Szeto, Kai C; De Mallmann, Aimery; Barman, Samir; Samantaray, Manoja K; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Basset, Jean-Marie

    2017-02-15

    The well-defined silica-supported molybdenum oxo alkyl species (≡SiO-)MoO(CH2tBu)3 was selectively prepared by grafting of MoO(CH2tBu)3Cl onto partially dehydroxylated silica (silica700) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO3/SiO2 olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  19. Ene-yne Cross-Metathesis for the Preparation of 2,3-Diaryl-1,3-dienes

    Directory of Open Access Journals (Sweden)

    Meriem K. Abderrezak

    2017-11-01

    Full Text Available Ene-yne cross-metathesis from alkynes and ethylene is a useful method to produce substituted conjugated butadiene derivatives. If this method has been used with aliphatic alkynes, it has however never been used starting from diarylacetylenes as internal alkynes. We show that the ene-yne cross-metathesis catalyzed by the second generation Hoveyda ruthenium catalyst provides the 2,3-diarylbuta-1,3-dienes under 3 atm of ethylene at 100 °C. The scope and limitations of the reaction have been evaluated starting from unsymmetrical functionalized diarylacetylene derivatives hence leading to unsymmetrical 2,3-diarylbuta-1,3-dienes in a straightforward and environmentally acceptable manner.

  20. Acyclic Diene Metathesis (ADMET Polymerization for Precise Synthesis of Defect-Free Conjugated Polymers with Well-Defined Chain Ends

    Directory of Open Access Journals (Sweden)

    Tahmina Haque

    2015-03-01

    Full Text Available This accounts introduces unique characteristics by adopting the acyclic diene metathesis (ADMET polymerization for synthesis of conjugated polymers, poly(arylene vinylenes, known as promising molecular electronics. The method is more suitable than the other methods in terms of atom efficiency affording defect-free, stereo-regular (exclusive trans polymers with well-defined chain ends; the resultant polymers possess better property than those prepared by the conventional methods. The chain ends (vinyl group in the resultant polymer prepared by ruthenium-carbene catalyst(s can be modified by treating with molybdenum-alkylidene complex (olefin metathesis followed by addition of various aldehyde (Wittig type cleavage, affording the end-functionalized polymers exclusively. An introduction of initiating fragment, the other conjugated segment, and one-pot synthesis of end-functionalized block copolymers, star shape polymers can be achieved by adopting this methodology.