WorldWideScience

Sample records for heterodera glycines populations

  1. Evaluation of proteases and protease inhibitors in Heterodera glycines cysts obtained from laboratory and field populations

    Science.gov (United States)

    Proteases and proteases inhibitors were evaluated in a number of preparations of Heterodera glycines cysts obtained from glasshouse cultures (GH) and field (LR) populations. Using a FRET-peptide library comprising 512 peptide substrate pools that detect 4 endoprotease types (aspartic, cysteine, meta...

  2. Effect of Rotation Crops on Heterodera glycines Population Density in a Greenhouse Screening Study.

    Science.gov (United States)

    Warnke, S A; Chen, S Y; Wyse, D L; Johnson, G A; Porter, P M

    2006-09-01

    Crop rotation is a common means of reducing pathogen populations in soil. Several rotation crops have been shown to reduce soybean cyst nematode (Heterodera glycines) populations, but a comprehensive study of the optimal crops is needed. A greenhouse study was conducted to determine the effect of growth and decomposition of 46 crops on population density of H. glycines. Crops were sown in soil infested with H. glycines. Plants were maintained until 75 days after planting, when the soil was mixed, a sample of the soil removed to determine egg density, and shoots and roots chopped and mixed into the soil. After 56 days, soil samples were again taken for egg counts, and a susceptible soybean ('Sturdy') was planted in the soil as a bioassay to determine egg viability. Sunn hemp (Crotalaria juncea), forage pea (Pisum sativum), lab-lab bean (Lablab purpureus), Illinois bundleflower (Desman-thus illinoensis), and alfalfa (Medicago sativa) generally resulted in smaller egg population density in soil or number of cysts formed on soybean in the bioassay than the fallow control. Sunn hemp most consistently showed the lowest numbers of eggs and cysts. As a group, legumes resulted in lower egg population densities than monocots, Brassica species, and other dicots.

  3. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska.

    Science.gov (United States)

    Pérez-Hernández, Oscar; Giesler, Loren J

    2014-06-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm(3) of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group.

  4. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  5. Behavioral differences of Heterodera glycines and Meloidogyne incognita infective juveniles exposed to root extracts in vitro

    Science.gov (United States)

    The in vitro behaviors of infective juveniles (J2) of Heterodera glycines and Meloidogyne incognita were compared in the presence and absence of plant root extracts. In an agar plate attraction-retention assay, H. glycines was 15-fold more responsive to a chemical attractant (CaCl2; P < 0.05) than w...

  6. Protease inhibition by Heterodera glycines cyst content: evidence for effects on the Meloidogyne incognita proteasome

    Science.gov (United States)

    Proteases from Heterodera glycines and Meloidogyne incognita juveniles were inhibited by heat-stable content of H. glycines female cysts (HglCE), and by the plant polyphenol epigallocatechin gallate (EGCG). General protease activities detected using the nematode peptide KSAYMRFa were inhibited by EG...

  7. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  8. Cloning of a Putative Pectate Lyase Gene Expressed in the Subventral Esophageal Glands of Heterodera glycines.

    Science.gov (United States)

    De Boer, J M; Davis, E L; Hussey, R S; Popeijus, H; Smant, G; Baum, T J

    2002-03-01

    We report the cloning of a Heterodera glycines cDNA that has 72% identity at the amino acid level to a pectate lyase from Globodera rostochiensis. In situ hybridizations showed that the corresponding gene (Hg-pel-1) is expressed in the subventral esophageal gland cells of second-stage juveniles. The deduced amino acid sequence of the H. glycines cDNA shows homology to class III pectate lyases of bacterial and fungal origin.

  9. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  10. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection.

    Science.gov (United States)

    Li, Shuang; Chen, Yu; Zhu, Xiaofeng; Wang, Yuanyuan; Jung, Ki-Hong; Chen, Lijie; Xuan, Yuanhu; Duan, Yuxi

    2017-11-14

    Glycine max (soybean) is an extremely important crop, representing a major source of oil and protein for human beings. Heterodera glycines (soybean cyst nematode, SCN) infection severely reduces soybean production; therefore, protecting soybean from SCN has become an issue for breeders. Black soybean has exhibited a different grade of resistance to SCN. However, the underlying mechanism of Huipizhi Heidou resistance against SCN remains elusive. The Huipizhi Heidou (ZDD2315) and race 3 of Heterodera glycines were chosen to study the mechanism of resistance via examination of transcriptomic changes. After 5, 10, and 15days of SCN infection, whole roots were sampled for RNA extraction, and uninfected samples were simultaneously collected as a control. 740, 1413, and 4925 genes were isolated by padj (p-value adjusted)soybean and cyst-nematode interaction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. [Inheritance of resistance to Heterodera glycines race 14 in Huibuzhi black bean].

    Science.gov (United States)

    Wang, Y T; Peng, D L; Chen, S Y

    2000-01-01

    Heterodera glycines is the most serious disease in the world soybean (Glycine max) production. Huibuzhi black bean from Xing County in Shanxi Province, China is one of the most important resistant resources. Using a set of host differentials for soybean cyst nematode and criterion of race classification as well as method of manual inoculation, race 14 was identified as a prevalent one in the soil population of the Experiment Station, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing. A sensitive variety #7 Jidou as a female donor crossed with Huibuzhi black bean. Their offsprings were investigated for resistance to race 14. Two of F1 seedlings demonstrated their resistant. Two populations in F2 including 116 seedlings and 78 seedlings in each one appeared their own separate ratio that was in common: 43R:21S. A genetic hypothesis was proposed that resistance to SCN race 14 in Huibuzhi black bean was controlled by three gene pairs arose. Gene reciprocity existed among them: one recessive epistasis gene pair and two dominant complementary gene pairs. Random 30 families in F3 including 10-15 tested seedlings in each family were screened for resistance to SCN race 14. The segregate ratio, 19R:38Seg.:7S, among F3 families confirmed that the presented genetic hypothesis was correct.

  12. Heterodera glycines cysts contain an extensive array of endoproteases as well as inhibitors of proteases in H. glycines and Meloidogyne incognita infective juvenile stages

    Science.gov (United States)

    Heterodera glycines cysts contain proteases, and inhibitors of protease activities in various nematode species. In this investigation, proteases in H. glycines cysts were identified using a commercially available FRET-peptide library comprising 512 peptide pools qualified to detect up to 4 endoprot...

  13. [Endophytic bacterial diversity of wild soybean (Glycine soja) varieties with different resistance to soybean cyst nematode (Heterodera glycines)].

    Science.gov (United States)

    Wu, Yunpeng; Shi, Fengyu; Hamid, M Imran; Zhu, Yingbo

    2014-08-04

    The aim of this study was to investigate endophytic bacterial diversity of wild soybean varieties with different resistance to soybean cyst nematode(Heterodera glycines) , for deciphering the interactions of soybean cyst nematode with endophytic bacteria. After screening wild soybean varieties against race 3 of H. glycines, we investigated endophytic bacterial diversity in root tissues of wild soybean varieties with different resistance to H. glycines using 16S rDNA cloning library and amplified ribosomal DNA restriction analysis. Endophytic bacteria of wild soybean root belonged to 6 bacterial groups, the clones belonging to group Proteobacteria and Firmicutes were the endophyte dominants in wild soybean with 46.8% and 13.6% of total clones, respectively. Actinobacteria, Bacteroidetes, Acidobacteria, Deincoccus-Thermus and Archaea were less represented. 18.8% of clone sequences were similar to those of uncultured bacteria in the environment. The bacterial diversity was higher in H. glycines-Resistant than -Susceptible wild soybean varieties, and the dominant group was different between H. glycines-Resistant and -Susceptible wild soybean varieties. Mesorhizobium tamadayense, Enterobacter ludwigii and Bacillus megaterium were the main bacterial groups in special operational taxonomic units (OTUs) of H. glycines-Resistant wild soybean variety. By 16S rDNA cloning library and amplified ribosomal DNA restriction analysis, the diversity of dominant group of endophytic bacteria in root tissues has difference among H. glycines-Resistant and -Susceptible wild soybean varieties.

  14. Effects of Some Pesticides on the Growth of ARF18 and Its Pathogenicity to Heterodera glycines

    Science.gov (United States)

    Kim, D. G.; Riggs, R. D.

    1998-01-01

    The effects of 22 pesticides on the mycelial growth and pathogenicity of the biocontrol fungus ARFI8 to Heterodera glycines were tested in vitro. The chemicals were added to agar at 10, 100, and 1,000 ppm a.i.; a block of agar containing the fungus was added to each test concentration; and fungal growth was measured. Subsequently, a block of the fungus on the pesticide-containing agar was used to determine the ability of the fungus to parasitize eggs of H. glycines. Aldicarb, bentazone, and chlorothalonil had little or no effect on fungal growth, whereas benomyl and thiophanate methyl completely inhibited growth of the fungus at 10 ppm. The relative insensitivity of ARF18 to certain pesticides would permit selected use of those pesticides with ARF18 in an integrated control program if the effects on the fungus in the field are similar to results from petri dish studies. PMID:19274211

  15. Development of Heterodera glycines on Soybean Damaged by Soybean Looper and Stem Canker.

    Science.gov (United States)

    Russin, J S; Layton, M B; Boethel, D J; McGawley, E C; Snow, J P; Berggren, G T

    1989-01-01

    Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cysts in soil and roots were reduced on plants with stem cankers. Defoliation by soybean looper larvae had the opposite effect; defoliation levels of 22 and 64% caused stepwise increases in numbers of juveniles and cysts in both roots and soil, whereas numbers of females in roots decreased. In two experiments, stem canker length was reduced 40 and 45% when root systems were colonized by the soybean cyst nematode. The absence of significant interactions among these pests indicates that the effects of soybean cyst nematode, stem canker, and soybean looper on plant growth and each other primarily were additive.

  16. Distribución e identificación de especies hospedantes de Heterodera glycines Ichinohe raza 3 en el Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Varón de Agudelo Francia

    1988-06-01

    Full Text Available Se dividió la parte plana del Valle del Cauca en tres zonas (norte, centro y sur, habiéndose visitado 33 fincas. En la zona norte las malezas con mayor porcentaje de frecuencia y distribución en los cultivos de soya fueron Digitaria horizontalis, Echinochloa colonum y Leptochloa filiformis; en la zona centro Ipomoea hirta, Amaranthus dubius y Echinochloa colonum y en la zona sur predominaron Ipomoea hirta, Portulaca oleracea Cyperus rotundus. Los análisis de muestras de suelo y raíces indicaron que H. glycines se encuentra distribuido en todo el Valle del Cauca, presentando la zona sur (Candelaria, Palmira y Puerto Tejada las mayores poblaciones. Entre las especies evaluadas (malezas, cultivos, leguminosas forrajeras y silvestres, solamente Glycine max y Phaseolus vulgaris se consideraron como susceptibles a H. glycines raza 3. y P. angularis y P. multiflora permitieron muy poca infección y multiplicación del nemátodo.A nematode recognition of Heterodera glycines was focused on crops of soybean. Valle del Cauca was divided in three zones (northen, central and southern and 33 farms were visited. The results of the analysis on samples of soils and roots showe that Heterodera glycines is scattered throughout Valle del Cauca, being the southern zone (Palmira, Candelaria and Puerto Tejada the one having the highest standards in nematode population. Weeds showing a greater frequency percentage were : Digitaria horizontalis, Echinochloa colonum and Leptochloa filiformis, in the northen zone; Ipomoea hirta, Amaranthus dubius and Echinochloa colonum, in the central zone, and Ipomoea hirta, Portulaca oleracea and Cyperus rotundus, in the southern zone , From among the whole species evaluated (weeds, crops, leguminous a n d fodder plants, Glycine max and Phaseolus vulgaris were considered to be susceptible to H. Glycines race 3. Phaseolus angularis y P. multiflora let low population levels.

  17. Ciclo de vida de Heterodera glycines raça 9 em soja no Estado do Maranhão Life cycle of the Heterodera glycines race 9 on soybean in Maranhão State, Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Pereira Cunha

    2008-09-01

    Full Text Available O nematóide de cisto da soja, Heterodera glycines, causa consideráveis reduções de produtividade à cultura da soja. Ocorrem 11 raças do NCS no Brasil e, no Maranhão, há registro somente da raça 9. O objetivo deste trabalho foi estabelecer o ciclo de vida de uma população de H. glycines raça 9, em soja, sob condições de clima tropical. O ensaio foi conduzido em casa-de-vegetação telada, no Campo Experimental da Embrapa Soja, em Balsas, Maranhão. As médias de temperaturas neste período foram de 28,7 °C no solo e 31,7 °C no ar e a média da umidade relativa do ar foi de 49,8 %. Plântulas de soja BRS Sambaíba foram transplantadas para vasos contendo solo areno-argiloso infestado com 4000 ovos de H. glycines raça 9. Foram avaliados os números de fêmeas e de cistos por sistema radicular aos 17, 20, 23, 26, 29 e 32 dias após a infestação. O número médio de fêmeas por sistema radicular de soja aumentou significativamente entre o 17º e o 29º dia após a infestação do solo, diminuindo no 32º dia, quando começaram a surgir os primeiros cistos. Nas condições testadas, H. glycines raça 9 completou o ciclo de vida em 29 dias após a infestação do solo. Desta forma, é possível a ocorrência de 3 a 4 gerações do nematóide durante o ciclo da soja em Balsas, Maranhão.The soybean cyst nematode Heterodera glycines causes great yield losses to soybean in Brazil. There are 11 races occurring in Brazil and, in the Maranhão State, only the race 9 was reported. The objective of this work was to establish the life cycle of a H. glycines race 9 population, on soybean, under tropical weather conditions. The experiment was carried out on a wired greenhouse at Embrapa Soybean - Balsas Experimental Station, Maranhão, Brazil. The average temperature was 28,7 ºC in the soil and 31,7 ºC in the air, and the relative humidity of the air was 49,8 %. Seedlings of soybean cultivar BRS Sambaíba were transferred to pots containing

  18. A Technique for Evaluating Heterodera glycines Development in Susceptible and Resistant Soybean.

    Science.gov (United States)

    Halbrendt, J M; Lewis, S A; Shipe, E R

    1992-03-01

    A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; 'Pickett' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and 'Pickett' but not in PI 209332.

  19. Efeito da temperatura do solo na infectividade e reprodução det Meloidogyne javanica e Heterodera glycines em cultivares de soja Effect of soil temperature on infectivity and reprodution of Meloidogyne javanica and Heterodera glycines in soybean cultivars

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-10-01

    Full Text Available A infectividade e a reprodução de Meloidogyne javanica e de Heterodera glycines, em cultivar suscetível e resistente de soja, diferiram, de acordo com a temperatura do solo. A 28ºC o número de massas de ovos, total de ovos, de fêmeas e a porcentagem de sucesso de parasitismo dos juvenis do segundo estádio (J2 em cada cultivar (suscetível e resistentes de soja infestada com M. javanica foram, significativamente maiores, comparados com as demais temperaturas (32º C, 26º C, 24º C e 20º C. Entretanto, a soma de juvenis do terceiro e quarto estádios (J3 e J4 foi maior em todas as cultivares, quando a temperatura submetida às plantas inoculadas com M. javanica foi de 20º C comparada com as demais temperaturas. A capacidade reprodutiva da fêmea (ovos por fêmea de M. javanica foi sempre maior na cultivar suscetível em cada temperatura testada, porém, significativamente maior na cultivar suscetível colocada a 32º C comparada com as demais temperaturas. Nas relações H. glycines e soja, as temperaturas testadas proporcionaram valores semelhantes para a população total (fêmeas e cistos na cultivar resistente. Na cultivar suscetível, a temperatura de 28º C aumentou significativamente o número de fêmeas, total de fêmeas e cistos e a porcentagem de parasitismo de J2 de H. glycines, comparada com todas as demais temperaturas.The infectivity and reproduction of Meloidogyne javanica and Heterodera glycines in susceptible and resistant soybean cultivars differs according to soil temperatures. At 28ºC the egg-mass number, total eggs, and females, and percentage of parasitism success of second stage juveniles (J2 in each cultivar (susceptible and resistants of infested soybean with M. javanica were significantly greater when compared to other temperatures (32º C, 26º C, 24º C and 20º C. However, the sum of third and fourth juvenile stages (J3 and J4 was greater in all cultivars when M. javanica inoculated plants were submitted to

  20. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Science.gov (United States)

    Peng, Huan; Cui, Jiangkuan; Long, Haibo; Huang, Wenkun; Kong, Lingan; Liu, Shiming; He, Wenting; Hu, Xianqi; Peng, Deliang

    2016-01-01

    Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests

  1. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  2. Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Hu, Yanfeng; You, Jia; Li, Chunjie; Williamson, Valerie M.; Wang, Congli

    2017-01-01

    Plant parasitic nematodes respond to root exudates to locate their host roots. In our studies second stage juveniles of Heterodera glycines, the soybean cyst nematode (SCN), quickly migrated to soybean roots in Pluronic F-127 gel. Roots of soybean and non-host Arabidopsis treated with the ethylene (ET)-synthesis inhibitor aminoethoxyvinylglycine (AVG) were more attractive to SCN than untreated roots, and significantly more nematodes penetrated into roots. Moreover, Arabidopsis ET insensitive mutants (ein2, ein2-1, ein2-5, ein3-1, ein5-1, and ein6) were more attractive than wild-type plants. Conversely, the constitutive triple-response mutant ctr1-1, was less attractive to SCN. While ET receptor gain-of-function mutant ein4-1 attracted more SCN than the wild-type, there were no significant differences in attractiveness between another gain-of-function ET receptor mutant, etr1-3, or the loss-of-function mutants etr1-7 and ers1-3 and the wild type. Expression of the reporter construct EBS: β-glucuronidase (GUS) was detected in Arabidopsis root tips as early as 6 h post infection, indicating that ET signaling was activated in Arabidopsis early by SCN infection. These results suggest that an active ET signaling pathway reduces root attractiveness to SCN in a way similar to that reported for root-knot nematodes, but opposite to that suggested for the sugar beet cyst nematode Heterodera schachtii. PMID:28112257

  3. Comparative analysis of soybean genotype resistance to Heterodera glycines and Meloidogyne species via resistance gene analogs.

    Science.gov (United States)

    Vieira, P M H; Arêdes, F A S; Ferreira, A; Ferreira, M F S

    2016-09-02

    Nematodes are important pests of soybean throughout the world and cause high yield losses. As a control strategy, the identification of resistance genes is an important aim of breeding studies. Plants possess resistance genes (R), which are responsible for the recognition of pathogens and activation of the defense system. R genes and resistance gene analogs (RGAs) possess conserved domains, from which nucleotide-binding site is the most common. Using degenerate primers originating from these domains, it is possible to identify and isolate sequences of R and RGA genes. In this study, soybean genotypes resistant to the nematodes Heterodera glycines, Meloidogyne incognita, M. javanica, and M. enterolobii were compared by the use of RGAs and simple sequence repeat (SSR) markers. Forty-six soybean genotypes were studied, including plant introductions (PIs), commercial crops, and source of resistance genotypes. Thirteen combinations of RGA primers and different SSRs linked to QTLs were used to confirm resistance to soybean cyst nematodes (SCN). Fragments associated with resistance to the studied nematodes were amplified in the source of resistance and PI genotypes. RGA markers were efficient at distinguishing groups of genotypes that were resistant and susceptible to Meloidogyne spp and SCN. Combinations of specific primers were identified through their ability to amplify nucleotide sequences from possible resistance candidate genes. SSR markers contributed to the analysis of SCN race specificity, showing that the QTLs identified by these markers are distinct from those identified by RGA markers.

  4. Soybean Yield and Heterodera glycines Responses to Liquid Swine Manure in Nematode Suppressive Soil and Conducive Soil.

    Science.gov (United States)

    Bao, Yong; Chen, Senyu; Vetsch, Jeffery; Randall, Gyles

    2013-03-01

    The soybean cyst nematode (SCN), Heterodera glycines, is a major factor limiting soybean yield. Experiments were conducted in 2009 and 2010 to determine the effects of liquid swine manure and chemical fertilizer PK on soybean and corn yields, and on SCN population in an SCN-suppressive field (S-Site) and an SCN-conducive field (C-Site) in Minnesota. The experiment was a split-plot design with crop sequences as main plots and fertilizer treatments as subplots. The 2-yr crop sequences were Sus-Sus, Res-Sus, and Corn-Sus, where Sus was SCN-susceptible soybean, and Res was SCN-resistant soybean. The fertilizer treatments were manure, PK, and a nonfertilizer as control. Manure did not reduce SCN egg population density but resulted in 31% lower SCN second-stage juvenile (J2) population density at the S-Site at 45 d after planting (DAP) in 2009. Manure also reduced spiral nematode (Helicotylenchus spp.) population density by 52% compared with PK and nonfertilizer treatments at S-Site at 45 DAP in 2009. The crop sequence of Corn-Sus and Res-Sus reduced the SCN egg and J2 but increased spiral nematode population density at both sites. An increase of 1.4 Mg/ha and 0.5 Mg/ha in yield of susceptible soybean was observed in manure and PK treatments, respectively, at the C-Site in 2009. Corn yield was 2.8 Mg/ha and 5.0 Mg/ha greater when treated with manure than nonfertilizer at the S-Site and C-Site, respectively. This study suggests that soil fertility management may be a useful strategy to alleviate the SCN damage to soybean.

  5. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  6. In vitro proteolysis of nematode FLPs by preparations from the free-living nematode Panagrellus redivivus and two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita)

    Science.gov (United States)

    Proteolytic activities in extracts from three nematodes, the plant parasites Heterodera glycines and Meloidogyne incognita, and the free-living Panagrellus redivivus, were surveyed for substrate preferences using a battery of seven FRET-modified peptide substrates, all derived from members of the la...

  7. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  8. Variations in Host Preference among and within Populations of Heterodera trifolii and Related Species.

    Science.gov (United States)

    Wang, S; Riggs, R D

    1999-12-01

    Seven populations of Heterodera trifolii from Arkansas, Kentucky, Pennsylvania, and Australia plus 3 or 4 single-cyst isolates (SCI) from each population were tested for reproduction on seven species of plants to compare the host preferences among and within populations. Common lespedeza, Kummerowia striata cv. Kobe, was a good host for all populations and isolates. Therefore, a plant was considered to be a host if the number of females produced on it was 10% or more of the number on Kobe. All seven populations reproduced on Trifolium repens and T. pratense. None reproduced on Beta vulgaris or Glycine max. One single-cyst isolate from the Australian population produced a few females on T. pratense. The Australian population maintained on carnation, Dianthus caryophyllus, produced females on carnation but not on curly dock, Rumex crispus. However, its subpopulation maintained on T. repens produced females on R. crispus but not on carnation. Four of the other six populations produced females on R. crispus, and four produced females on carnation. Differences in host range were observed among seven of the mother populations and their SCI, and among isolates within each population. Five host range patterns were found in populations and SCI of H. trifolii. Significant quantitative differences occurred among populations in the numbers of females on most hosts, between isolates and their original populations, and among isolates from the same population. SCI selected from white clover produced fewer females on a series of test hosts and had host ranges the same as or narrower than those of the original populations. However, SCI selected from Kobe lespedeza had more females on some hosts and had host ranges the same as or wider than those of the original populations. The host ranges of all populations and SCI of H. trifolii were different from those of populations and SCI of race 3 of H. glycines and H. lespedezae.

  9. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  10. Specificity, pathogenicity and population dynamics of the endoparasitic nematode Heterodera arenaria in coastal foredune

    NARCIS (Netherlands)

    Stoel, van der C.D.

    2001-01-01

    Key words : Heterodera , plant-parasitic nematodes, soil pathogens, Ammophila arenaria , occurrence, abundance, specificity, population dynamics, life history, pathogenicity, PCR-SSCP,

  11. Optimization of In Vitro Techniques for Distinguishing between Live and Dead Second Stage Juveniles of Heterodera glycines and Meloidogyne incognita.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S

    2016-01-01

    Heterodera glycines (Soybean Cyst nematode, or SCN) and Meloidogyne incognita (Root-Knot nematode, or RKN) are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2) is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were evaluated for the nematode response to see if these compounds can help distinguish between viable from the dead J2. Results indicated that live SCN J2 responded equally (P ≤ 0.05) to 1 μl Na2CO3 and 10 μl NaHCO3 in 100 μl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 μl NaOH in 100 μl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 μl of Na2CO3 indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 μl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 μl of Na2CO3 added to 100 μl suspension of SCN J2 and 1 μl of NaOH added to 100 μl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds.

  12. Optimization of In Vitro Techniques for Distinguishing between Live and Dead Second Stage Juveniles of Heterodera glycines and Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines (Soybean Cyst nematode, or SCN and Meloidogyne incognita (Root-Knot nematode, or RKN are two damaging plant-parasitic nematodes on important field crops. Developing a quick method to distinguish between live and dead SCN and RKN second stage juveniles (J2 is vital for high throughput screening of pesticides or biological compounds against SCN and RKN. The in vitro assays were conducted in 96-well plates to determine the optimum chemical stimulus to distinguish between live and dead SCN and RKN J2. Sodium carbonate (Na2CO3, sodium bicarbonate (NaHCO3, and sodium hydroxide (NaOH were evaluated for the nematode response to see if these compounds can help distinguish between viable from the dead J2. Results indicated that live SCN J2 responded equally (P ≤ 0.05 to 1 μl Na2CO3 and 10 μl NaHCO3 in 100 μl of water at pH = 10. Live SCN J2 responded by twisting their bodies in a curling shape and increasing rate of movements within 2 minutes of exposure. The twisting activity continued for up to 30 minutes. Live RKN J2 responded by increasing activity with the application of 1 μl NaOH in 100 μl of water at pH = 10 also in the 2 minutes to 30 minutes time frame. Furthermore, in growth chamber tests to confirm the infectivity of live SCN. The live SCN as determined by exposure to 1 μl of Na2CO3 indicated 60.5% of the SCN J2 were alive and of those, 29.5% were infective and entered the soybean roots. The 1 μl of NaOH stimulus revealed that 75.2% RKN J2 were alive and of those, 14.9% were infective and entered soybean roots. These results confirmed that 1 μl of Na2CO3 added to 100 μl suspension of SCN J2 and 1 μl of NaOH added to 100 μl suspension of RKN J2 are the effective stimuli for rapidly distinguishing between live and dead SCN and RKN J2 in vitro. SCN and RKN J2 responded differently to different compounds.

  13. A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max.

    Science.gov (United States)

    Klink, Vincent P; Kim, Kyung-Hwan; Martins, Veronica; Macdonald, Margaret H; Beard, Hunter S; Alkharouf, Nadim W; Lee, Seong-Kon; Park, Soo-Chul; Matthews, Benjamin F

    2009-06-01

    Host-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway-compatible hm plant transformation system was developed specifically for these experiments in G. max. Three steps then were taken to identify H. glycines candidate genes. First, a pool of 150 highly conserved H. glycines homologs of genes having lethal mutant phenotypes or phenocopies from the free living nematode Caenorhabditis elegans were identified. Second, annotation of those 150 genes on the Affymetrix soybean GeneChip allowed for the identification of a subset of 131 genes whose expression could be monitored during the parasitic phase of the H. glycines life cycle. Third, a microarray analyses identified a core set of 32 genes with induced expression (>2.0-fold, log base 2) during the parasitic stages of infection. H. glycines homologs of small ribosomal protein 3a and 4 (Hg-rps-3a [accession number CB379877] and Hg-rps-4 [accession number CB278739]), synaptobrevin (Hg-snb-1 [accession number BF014436]) and a spliceosomal SR protein (Hg-spk-1 [accession number BI451523.1]) were tested for functionality in hm expression studies. Effects on H. glycines development were observed 8 days after infection. Experiments demonstrated that 81-93% fewer females developed on transgenic roots containing the genes engineered as tandem inverted repeats. The effect resembles RNA interference. The methodology has been used here as an alternative approach to engineer resistance to H. glycines.

  14. Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers.

    Science.gov (United States)

    Espindola, S M C G; Hamawaki, O T; Oliveira, A P; Hamawaki, C D L; Hamawaki, R L; Takahashi, L M

    2016-03-11

    The soybean cyst nematode (SCN) is a major cause of soybean yield reduction. The objective of this study was to evaluate the efficiency of marker-assisted selection to identify genotypes resistant to SCN race 3 infection, using Sat_168 and Sat-141 resistance quantitative trait loci. The experiment was carried out under greenhouse conditions, using soybean populations originated from crosses between susceptible and resistant parent stock: CD-201 (susceptible) and Foster IAC (resistant), Conquista (susceptible) and S83-30 (resistant), La-Suprema (susceptible) and S57-11 (resistant), and Parecis (susceptible) and S65-50 (resistant). Plants were inoculated with SCN and evaluated according to the female index (FI), those with FI < 10% were classified as resistant to nematode infection. Plants were genotyped for SCN resistance using microsatellite markers Sat-141 and Sat_168. Marker selection efficiency was analyzed by a contingency table, taking into account genotypic versus phenotypic evaluations for each line. These markers were shown to be useful tool for selection of SCN race 3.

  15. Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B(1), B(5), and B(7) in Heterodera glycines.

    Science.gov (United States)

    Craig, James P; Bekal, Sadia; Niblack, Terry; Domier, Leslie; Lambert, Kris N

    2009-12-01

    Heterodera glycines is a nematode that is highly adapted to manipulate and parasitize plant hosts. The molecular players involved in these interactions have only recently begun to be identified. Here, the sequencing of the second stage juvenile transcriptome, followed by a bioinformatic screen for novel genes, identified seven new genes involved in biosynthesis and salvage of vitamins B₁, B₅, and B₇. With no confirmed reports in the literature, each of these biosynthesis pathways is believed to have been lost in multicellular animals. However, eukaryotic-like introns in the genomic sequences of the genes confirmed eukaryotic origin and nematode-specific splice leaders found on five of the cDNAs confirmed their nematode origin. Two of the genes were found to be flanked by known nematode sequences and quantitative polymerase chain reactions on individual nematodes showed similar and consistent amplification between the vitamin B biosynthesis genes and other known H. glycines genes. This further confirmed their presence in the nematode genome. Similarity to bacterial sequences at the amino acid level suggested a prokaryotic ancestry and phylogenetic analysis of the genes supported a likely horizontal gene transfer event, suggesting H. glycines re-appropriated the genes from the prokaryotic kingdom. This finding complements the previous discovery of a vitamin B₆ biosynthesis pathway within the nematode. However, unlike the complete vitamin B₆ pathway, many of these vitamin B pathways appear to be missing the initial enzymes required for full de novo biosynthesis, suggesting that initial substrates in the pathways are obtained exogenously. These partial vitamin B biosynthesis enzymes have recently been identified in other single-celled eukaryotic parasites and on rhizobia symbiosis plasmids, indicating that they may play an important role in host-parasite interactions and survival within the plant environment.

  16. QPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host.

    Science.gov (United States)

    Bakhetia, M; Urwin, P E; Atkinson, H J

    2007-03-01

    Changes in transcript abundance of genes expressed in the three pharyngeal gland cells of Heterodera glycines after host invasion were monitored by quantitative polymerase chain reaction (qPCR) and the consequences of disrupting their expression studied by RNAi treatment prior to invasion. Two transcripts were known to be expressed in the two subventral gland cells (hg-pel and hg-eng-1), a further two in the single dorsal gland cell only (hg-gp and hg-syv46), and a fifth transcript (hg-cm) was expressed by both gland cell types. The qPCR study established that transcripts of hg-syv46 and hg-gp increased in abundance by 2 days postinfection (dpi), with the former remaining the most abundant. The hg-cm transcript level showed minor changes from 0 to 14 dpi but did fall by 21 dpi. In contrast, hg-eng-1 and hg-eng-2 messenger (m)RNA declined by 7 dpi and hg-pel by 14 dpi before it increased at 21 dpi. RNAi-targeting of hg-eng-1 reduced the number of females present on the plants at 10 days. Targeting of hg-gp, hg-cm, and hg-pel caused a change in sexual fate favoring male development on roots. Both effects were evident after targeting hg-syv46. Suppression of hg-eng-1 mRNA levels in second-stage juveniles (J2i) by RNAi was transient, with a recovery by 15 days of incubation in water after treatment. Presoaking H. glycines J2 with double-stranded RNA has value for studying gene function during the nematode's early interaction with a plant.

  17. EFEITO DO ACIBENZOLAR-S-METHYL (BENZOTHIADIAZOLE, COMO INDUTOR DE RESISTÊNCIA SISTÊMICA EM SOJA (Glycine max cv. FTCRISTALINA, SOBRE Heterodera glycines EFFECT OF ACIBENZOLAR-S-METHYL (BENZOTHIADIAZOLE, AS A SOYBEAN SYSTEMIC RESISTANCE INDUCTOR, ON Heterodera glycines

    Directory of Open Access Journals (Sweden)

    André Luiz Martini

    2007-09-01

    Full Text Available

    A resistência sistêmica adquirida consiste em um importante mecanismo de defesa das plantas contra doenças e pode ocorrer naturalmente ou ser induzida através de tratamento químico. O objetivo do presente trabalho foi avaliar o efeito da aplicação do produto acibenzolar -S- methyl (benzothiadiazole, nome comercial: Bion 50 WG, na indução de resistência sistêmica ao nematóide de cisto da soja Heterodera glycines. O experimento foi conduzido, sob condições de casa de vegetação, na Escola de Agronomia da Universidade Federal de Goiás. Utilizaram-se vasos de cerâmica e um solo naturalmente infestado por H. glycines, raça 4, proveniente do município de Chapadão do Céu (GO, e como planta hospedeira a soja ‘FT-Cristalina’. O delineamento experimental foi inteiramente casualizado com cinco tratamentos (1. testemunha; 2. acybenzolar - S- methyl 0,15 g/l em pulverização foliar; 3. acybenzolar - S- methyl 0,30 g/l em pulverizaço foliar; 4. acybenzolar - S- methyl 0,15 g/l rega no solo; 5. acybenzolar - Smethyl 0,30 g/l rega no solo e seis repetições. As aplicações foram feitas aos 15, 30 e 45 dias após semeadura. No final do ciclo da cultura, foram avaliados o número de fêmeas de H. glycines no sistema radicular, o número de cistos por 100 cm3 de solo e o número de ovos por cisto. Não foram observadas diferenças significativas entre os tratamentos, para as variáveis avaliadas. Houve uma tendência de redução tanto do número de fêmeas quando o produto foi aplicado através de rega no solo, quanto do número de cistos, quando a aplicação foi através de rega no solo e na maior concentração do produto.

    PALAVRAS-CHAVE: Resistência sistêmica adquirida; benzothiadiazole; nematóide de cisto da soja.

  18. OCCURRENCE OF SOYBEAN CYST NEMATODE (Heterodera glvcines IN VIANÓPOLIS AND IN RIO VERDE (GO OCORRÊNCIA DO NEMATÓIDE DE CISTO DA SOJA (Heterodera glycines NOS MUNICÍPIOS DE VIANÓPOLIS E RIO VERDE (GO

    Directory of Open Access Journals (Sweden)

    Gilmarcos de Carvalho Corrêa

    2007-09-01

    Full Text Available

    The soybean cyst nematode (Heterodera glycines was found in Goiás State in Chapadão do Céu in 1991-1992. Until 1996-1997, this nematode had spread all over six towns of Goiás State. Samples of soil were collected in Vianópolis and Rio Verde in 1997-1998. Samples from Vianópolis were collected in seed production fields and analised in the Laboratory of Phytopathology of Escola de Agronomia — Universidade Federal de Goiás. Samples collected in Rio Verde were analised in the Laboratory of Phytopathology of ESUCRV - FESURV where the race 3 of H. glycines was identified. Up to now there are eight towns in Goiás State with H. glycines occurrence.

    KEY-WORDS: Glycine max; Heterodera glycines.

    O nematóide de cisto da soja (Heterodera glycines foi encontrado no Estado de Goiás, em Chapadão do Céu, em 1991-1992. Até 1996-1997, este nematóide encontrava-se espalhado por seis cidades do Estado de Goiás. Amostras de solo foram coletadas em Vianópolis e Rio Verde, em 1997-1998. As amostras de Vianópolis foram coletadas em campos de produção de sementes e

  19. Random Amplified Polymorphic DNA Analysis of Heterodera cruciferae and H. schachtii populations.

    Science.gov (United States)

    Caswell-Chen, E P; Williamson, V M; Wu, F F

    1992-09-01

    Heterodera schachtii and H. cruciferae are sympatric in California and frequently occur in the same field upon the same host. We have investigated the use of polymerase chain reaction (PCR) amplification of nematode DNA sequences to differentiate H. schachtii and H. cruciferae and to assess genetic variability within each species. Single, random oligodeoxyribonucleotide primers were used to generate PCR-amplified fragments, termed RAPD (random amplified polymorphic DNA) markers, from genomic DNA of each species. Each of 19 different random primers yielded from 2 to 12 fragments whose size ranged from 200 to 1,500 bp. Reproducible differences in fragment patterns allowed differentiation of the two species with each primer. Similarities and differences among six different geographic populations of H. schachtii were detected. The potential application of RAPD analysis to relationships among nematode populations was assessed through cluster analysis of these six different populations, with 78 scorable markers from 10 different random primers. DNA from single cysts was successfully amplified, and genetic variability was revealed within geographic populations. The use of RAPD markers to assess genetic variability is a simple, reproducible technique that does not require radioisotopes. This powerful new technique can be used as a diagnostic tool and should have broad application in nematology.

  20. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja).

    Science.gov (United States)

    Zhang, Hengyou; Li, Chunying; Davis, Eric L; Wang, Jinshe; Griffin, Joshua D; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30) were identified, with 10 SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  1. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines HG Type 2.5.7 in Wild Soybean (Glycine soja

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2016-08-01

    Full Text Available Soybean cyst nematode (SCN is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean (Glycine max (L. Merr. cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc. accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5, a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30 were identified, with ten SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  2. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe).

    Science.gov (United States)

    Wan, Jinrong; Vuong, Tri; Jiao, Yongqing; Joshi, Trupti; Zhang, Hongxin; Xu, Dong; Nguyen, Henry T

    2015-03-04

    Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most devastating pathogen of soybean. Many gene expression profiling studies have been conducted to investigate the responses of soybean to the infection by this pathogen using primarily the first-generation soybean genome array that covered approximately 37,500 soybean transcripts. However, no study has been reported yet using the second-generation Affymetrix soybean whole-genome transcript array (Soybean WT array) that represents approximately 66,000 predicted soybean transcripts. In the present work, the gene expression profiles of two soybean plant introductions (PIs) PI 437654 and PI 567516C (both resistant to multiple SCN HG Types) and cultivar Magellan (susceptible to SCN) were compared in the presence or absence of the SCN inoculum at 3 and 8 days post-inoculation using the Soybean WT array. Data analysis revealed that the two resistant soybean lines showed distinctive gene expression profiles from each other and from Magellan not only in response to the SCN inoculation, but also in the absence of SCN. Overall, 1,413 genes and many pathways were revealed to be differentially regulated. Among them, 297 genes were constitutively regulated in the two resistant lines (compared with Magellan) and 1,146 genes were responsive to the SCN inoculation in the three lines, with 30 genes regulated both constitutively and by SCN. In addition to the findings similar to those in the published work, many genes involved in ethylene, protein degradation, and phenylpropanoid pathways were also revealed differentially regulated in the present study. GC-rich elements (e.g., GCATGC) were found over-represented in the promoter regions of certain groups of genes. These have not been observed before, and could be new defense-responsive regulatory elements. Different soybean lines showed different gene expression profiles in the presence and absence of the SCN inoculum. Both inducible and constitutive gene expression

  3. Supressividade dos nematóides Meloydogine javanica e Heterodera glycines em soja por adição de lodo de esgoto ao solo Supressiveness of nematodes Meloydogine javanica e Heterodera glycines in soybean by sewage sludge incorporated in the soil

    Directory of Open Access Journals (Sweden)

    Fabio Fernando de Araújo

    2005-08-01

    soilborne plant pathogens and resistance to foliar diseases. However, it may influence negatively the biological and chemical balance in the soil, due to the presence of considerable amounts of available N, soluble salts and heavy metals. The aim of this work was to evaluate the effect of sewage sludge incorporation to the soil and the suppressiveness induction of nematodes (Meloydogine javanica (Treub Chitwood and Heterodera glycines Ichinoe in soybean (Glycine max L.. Experiments were performed in laboratory and in a greenhouse using collected soil in an experimental area of the Embrapa Meio Ambiente, Jaguariúna, SP. This area received successive applications of sewage sludge, originary from the sewage treatment of Barueri and Franca, in São Paulo State, Brazil, during five years (1998-2002. In relation to the suppressiveness induction of nematodes, the sludge did not affect significantly the development of H. glycines in the soil, but reduced the M. javanica reproduction, in the soybean root.

  4. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    various aspects of the theoretical evaluation of the properties of energy deposition associated with the collision of fast ions with glycine and its zwitterions, including differences due to molecular conformation and orientation with respect to the ion beam direction as well as due to the effect...... of surrounding water molecules and the state of target aggregation.    Quantum mechanical calculations, which yield the dipole oscillator strength distribution of glycine are reported. The ease with which energy is absorbed from a fast ion, described by the mean excitation energy and stopping power of glycine...

  5. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  6. Isolamento e avaliação da atividade nematicida de constituintes químicos de Mucuna cinerea contra Meloidogyne incognita e Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Demuner Antonio Jacinto

    2003-01-01

    Full Text Available Phytochemical investigation of the aerial parts and roots of Mucuna cinerea led to the isolation of a mixture of fatty acids, triacylglicerols, beta-sitosterol, stigmasterol, stigmasterol glucoside, daucosterol, asperglaucide (4 and the isoflavonoids prunetin (1, genistein (2, medicarpin (3, daidzein (5, 7-O-alpha-glycopiranosyl daidzein (6. An in vitro bioassay was carried out with compounds 1-4, at the concentration of 50 and 5 mug mL-1 against the phytonematodes M. incognita and H. glycines. Although the four compounds showed some nematocidal property, the most active was (1, causing 70% mortality of M. incognita at the concentration of 50 mug mL-1.

  7. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  8. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

    Science.gov (United States)

    Kuroda, Y; Kaga, A; Tomooka, N; Vaughan, D A

    2006-04-01

    The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size ( 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.

  9. Genetic diversity and natural selection footprints of the glycine amidinotransferase gene in various human populations.

    Science.gov (United States)

    Khan, Asifullah; Tian, Lei; Zhang, Chao; Yuan, Kai; Xu, Shuhua

    2016-01-05

    The glycine amidinotransferase gene (GATM) plays a vital role in energy metabolism in muscle tissues and is associated with multiple clinically important phenotypes. However, the genetic diversity of the GATM gene remains poorly understood within and between human populations. Here we analyzed the 1,000 Genomes Project data through population genetics approaches and observed significant genetic diversity across the GATM gene among various continental human populations. We observed considerable variations in GATM allele frequencies and haplotype composition among different populations. Substantial genetic differences were observed between East Asian and European populations (FST = 0.56). In addition, the frequency of a distinct major GATM haplotype in these groups was congruent with population-wide diversity at this locus. Furthermore, we identified GATM as the top differentiated gene compared to the other statin drug response-associated genes. Composite multiple analyses identified signatures of positive selection at the GATM locus, which was estimated to have occurred around 850 generations ago in European populations. As GATM catalyzes the key step of creatine biosynthesis involved in energy metabolism, we speculate that the European prehistorical demographic transition from hunter-gatherer to farming cultures was the driving force of selection that fulfilled creatine-based metabolic requirement of the populations.

  10. Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses.

    Science.gov (United States)

    Guo, Juan; Liu, Yifei; Wang, Yunsheng; Chen, Jianjun; Li, Yinghui; Huang, Hongwen; Qiu, Lijuan; Wang, Ying

    2012-09-01

    Wild soybean (Glycine soja), a native species of East Asia, is the closest wild relative of the cultivated soybean (G. max) and supplies valuable genetic resources for cultivar breeding. Analyses of the genetic variation and population structure of wild soybean are fundamental for effective conservation studies and utilization of this valuable genetic resource. In this study, 40 wild soybean populations from China were genotyped with 20 microsatellites to investigate the natural population structure and genetic diversity. These results were integrated with previous microsatellite analyses for 231 representative individuals from East Asia to investigate the genetic relationships of wild soybeans from China. Analysis of molecular variance (AMOVA) revealed that 43·92 % of the molecular variance occurred within populations, although relatively low genetic diversity was detected for natural wild soybean populations. Most of the populations exhibited significant effects of a genetic bottleneck. Principal co-ordinate analysis, construction of a Neighbor-Joining tree and Bayesian clustering indicated two main genotypic clusters of wild soybean from China. The wild soybean populations, which are distributed in north-east and south China, separated by the Huang-Huai Valley, displayed similar genotypes, whereas those populations from the Huang-Huai Valley were different. The previously unknown population structure of the natural populations of wild soybean distributed throughout China was determined. Two evolutionarily significant units were defined and further analysed by combining genetic diversity and structure analyses from Chinese populations with representative samples from Eastern Asia. The study suggests that during the glacial period there may have been an expansion route between south-east and north-east China, via the temperate forests in the East China Sea Land Bridge, which resulted in similar genotypes of wild soybean populations from these regions. Genetic

  11. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  12. Morphological and molecular observations on the cereal cyst nematode Heterodera filipjevi from the Volga and South Ural regions of Russia

    Science.gov (United States)

    During 2010-2012, a survey was conducted to determine the distribution and species diversity of the cereal cyst nematode Heterodera filipjevi within the Volga and South Ural regions of the Russian Federation. A total of 270 soil samples were collected. Seven populations of CCN were found in the rhiz...

  13. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Science.gov (United States)

    Ruark, Casey L; Koenning, Stephen R; Davis, Eric L; Opperman, Charles H; Lommel, Steven A; Mitchum, Melissa G; Sit, Tim L

    2017-01-01

    Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines) from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC) and Missouri (MO). The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2), and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO). Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst) and Heterodera schachtii (beet cyst), but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  14. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B.

    Science.gov (United States)

    Winter, Shawn M J; Shelp, Barry J; Anderson, Terry R; Welacky, Tom W; Rajcan, Istvan

    2007-02-01

    Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is the primary disease responsible for yield loss of soybean [Glycine max (L.) Merr.]. Resistant cultivars are an effective management tool; however, the sources currently available have common resistant genes. Glycine soja Sieb. and Zucc., the wild ancestor of domesticated soybean, represents a diverse germplasm pool with known SCN resistance. The objectives of this research were to: (1) determine the genetic variation and inheritance of SCN resistance in a G. max ('S08-80') x G. soja (PI464925B) F (4:5) recombinant inbred line (RIL) population; and (2) identify and evaluate quantitative trait loci (QTL) associated with SCN resistance. Transgressive segregation for resistance was observed, although neither parent was resistant to the Chatham and Ruthven SCN isolates. Broad sense heritability was 0.81 for the Ruthven and 0.91 for the Chatham isolate. Root dry weight was a significant covariate that influenced cyst counts. One RIL [female index (FI) = 5.2 +/- 1.11] was identified as resistant to the Chatham isolate (FI soja, were identified on linkage groups I, K, and O, and individually explained 8, 7 and 5% (LOD = 2.1-2.7) of the total phenotypic variation, respectively. Significant epistatic interactions were found between pairs of SSR markers that individually may or may not have been associated with SCN resistance, which explained between 10 and 15% of the total phenotypic variation. Best-fit regression models explained 21 and 31% of the total phenotypic variation in the RIL population to the Chatham and Ruthven isolates, respectively. The results of this study help to improve the understanding of the genetic control of SCN resistance in soybean caused by minor genes resulting in horizontal resistance. The incorporation of the novel resistance QTL from G. soja could increase the durability of SCN-resistance in soybean cultivars, especially if major gene resistance breaks down.

  15. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L. Merr.] Seed Protein and Oil QTLs

    Directory of Open Access Journals (Sweden)

    Piyaporn Phansak

    2016-06-01

    Full Text Available Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L. Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca. 450 bimorphic SNPs detected per mating. A significant quantitative trait locus (QTL on one or more chromosomes was detected for protein in 35 (73%, and for oil in 25 (52%, of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg–1 and R2 values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed.

  16. Pathogenicity and host range of Heterodera arenaria in coastal foredunes

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Van der Putten, W.H.

    2006-01-01

    In coastal foredunes, the cyst nematode Heterodera arenaria has been supposed to play a role in degeneration of the pioneer grass Ammophila arenaria (marram grass). However, recent field surveys and field inoculation experiments suggested that the abundance of this cyst nematode is controlled by the

  17. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Directory of Open Access Journals (Sweden)

    Casey L Ruark

    Full Text Available Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC and Missouri (MO. The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2, and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO. Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst and Heterodera schachtii (beet cyst, but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  18. Effects of Selected Nematicides on Hatching of Heterodera schachtii

    OpenAIRE

    Steele, Arnold E.

    1983-01-01

    Aldicarb, carbofuran, fensulfothion, and phenamiphos were tested in concentrations of 1-100 μg/ml for their effects on hatching of Heterodera schachtii. Exposure of cysts to 1 μg aldicarb or carbofuran/ml stimulated hatch whereas phenamiphos and, to a lesser degree, fensulfothion inhibited hatch. Addition of aldicarb to sugarbeet root diffusate or 4 mM zinc chloride suppressed activities of these hatching agents. Transfer of cysts previously treated with aldicarb or carbofuran to zinc chlorid...

  19. Metagenomic analysis of microbial communities associated with Heterodera glycines in a suppressive soil

    Science.gov (United States)

    Suppressive soil harbors potential biological agents for controlling plant diseases. However, given the rich and complex suppressive factors, the specific mechanisms of disease suppression have been difficult to identify. Also, the relationships between agricultural practices and suppressive factors...

  20. Genetic Diversity and Population Structure: Implications for Conservation of Wild Soybean (Glycine soja Sieb. et Zucc Based on Nuclear and Chloroplast Microsatellite Variation

    Directory of Open Access Journals (Sweden)

    Tingshuang Yi

    2012-10-01

    Full Text Available Wild soybean (Glycine soja Sieb. et Zucc is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs and five chloroplast microsatellite markers (cpSSRs to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC and north China (NC, and the other including northeastern China (NEC, Japan, Korea, MDRY, south China (SC and southwestern China (SWC. Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.

  1. Genetic diversity and population structure: implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation.

    Science.gov (United States)

    He, Shuilian; Wang, Yunsheng; Volis, Sergei; Li, Dezhu; Yi, Tingshuang

    2012-10-03

    Wild soybean (Glycine soja Sieb. et Zucc) is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs) and five chloroplast microsatellite markers (cpSSRs) to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY) was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC) and north China (NC), and the other including northeastern China (NEC), Japan, Korea, MDRY, south China (SC) and southwestern China (SWC). Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.

  2. Control químico del Nematodo quiste Heterodera trifolii en clavel miniatura Chemical control of the cyst nematode, Heterodera trifolii in miniature carnation

    Directory of Open Access Journals (Sweden)

    Marroquin Alicia

    1991-12-01

    Full Text Available Una de las enfermedades en el cultivo del clavel recientemente registradas en Colombia es el nemátodo quiste, Heterodera trifolii. Un aumento del marchitamiento vascular ocasionado por Fusarium oxysporumof. sp. dianthi se ha observado en algunas fincas afectadas por los dos patógenos. La investigación se realizó para evaluar el efecto de varios productos químicos en el control del nemátodo, en un invernadero comercial con clavel miniatura de la variedad Red Baron. Los fumigantes DD-metilisotiocianato, Dazomet y Metan sodio se aplicaron al suelo antes de la siembra, solos y en combinación con tres nemáticidas no fumiqantes Aldicarb, Carbofuran y Oxamil, en tres épocas de aplicación. Los fumigantes fueron máseficientes para la reducción de la población del nemátodo en el suelo que los nematicidasno fumigantes. El mejor tratamiento fue DD-metilisotiocianato con una reducción del 52% de la población de quistes viables y de 38% en la población de larvas en el suelo, un adelanto de 15 días en la cosecha, un aumento del 9% en rendimiento y del 19% en ingresos netos, en comparación con el Testigo no tratado. Entre los nematicidas no fumigantes, los mejores tratamientos fueron Aldicarb y Carbofuran aplicados en el momento de la siembra y Oxamil aplicado 30 días después de la siembra. La combinación de los fumigantes y de los nematicidas no fumigantes no mejoró el control del nemátodo, el rendimiento y la calidad de las flores, pero si aumentó notablemente los costos de producción.
    One of the diseases recently registered on carnation in Colombia is the cystnematode caused by Heterodera trifolii. An increase of the vascular wilt was observed in some farms affected by the two pathogens. A trial was carried out in a commercial greenhouse with miniature carnation of the variety Red Baron. The fumigants DD memethylisothiocianate, Dazomet and Methamsodium applied to the soil before planting were used alone and in combination with

  3. Het aardappelaaltje : (Heterodera rostochiensis Wollenweber), een gevaarlijke parasiet voor de eenzijdige aardappel-cultuur

    NARCIS (Netherlands)

    Oostenbrink, M.

    1950-01-01

    The study on occurrence, biology and significance of H. rostochiensis on potato was the first quantitative study of a plant nematode and laid the basis for regulatory control of this new parasite. Known facts about Heterodera, particularly H. rostochiensis were tabulated

  4. Life cycle and control of the cyst nematode Heterodera goldeni on rice in Egypt

    Science.gov (United States)

    The life cycle and methods for control of the cyst nematode Heterodera goldeni on rice (Oryza sativa) were examined in the greenhouse. Three tests were conducted to study the effects of soil treatments with some plant materials, stems of oyster mushroom (Pleurotus ostreatus), the biocontrol agent Ba...

  5. Histopathology of Brassica oleracea var. capitata subvar. alba infected with Heterodera cruciferae Franklin, 1945 (Tylenchida: Heteroderidae)

    Science.gov (United States)

    Because anatomical changes induced by the cabbage cyst nematode (Heterodera cruciferae) have been insufficiently characterized, here we describe these changes in the root tissues of white head cabbage varieties commonly grown in the Black Sea Region of Turkey, where cabbage-growing areas are heavily...

  6. Molecular characterization of the beet cyst nematode (Heterodera schachtii) resistance locus Hs1

    NARCIS (Netherlands)

    Salentijn, E.M.J.

    1995-01-01

    The white beet cyst nematode (BCN), Heterodera schachtii Schm. is a serious pest in sugar beet ( B. vulgaris L.) cultivation and is widely distributed throughout most of the beet-growing areas in the world (Cooke 1987). The economical losses due to

  7. Interactions of Heterodera daverti, H. goldeni and H. zeae with Meloidogyne incognita on rice

    Science.gov (United States)

    The interactions of the cyst nematodes Heterodera daverti, H. goldeni and H. zeae with the root-knot nematode Meloidogyne incognita on rice (Oryza sativa) cultivars Giza 178 and Sakha 101 were studied in the greenhouse. Inoculation with H. goldeni alone or one week before inoculation with M. incogni...

  8. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    Science.gov (United States)

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  9. Genome-wide association study of soybean cyst nematode (Heterodera glycines Ichinohe) HG type 2.5.7 (race 1) resistance in wild soybean (Glycine soja Sieb. & Zucc.)

    Science.gov (United States)

    Soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Thus far, most of the commercial SCN-resistant soybean cultivars have been developed from very limited resistant germplasm resources. Overuse of these limited resistant sources has resulted in SCN race ...

  10. [Study of genetic diversity and spatial structure of the wild soybean (Glycine soja Sieb. & Zucc.) population from the Ekaterinovka in the south of Primorskii krai].

    Science.gov (United States)

    Tikhonov, A V; Nedoluzhko, A V; Martynov, V V; Dorokhov, D B

    2011-03-01

    Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.

  11. An exponential growth model with decreasing r captures bottom-up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae)

    NARCIS (Netherlands)

    Costamagna, A.C.; Werf, van der W.; Bianchi, F.J.J.A.; Landis, D.A.

    2007-01-01

    1 There is ample evidence that the life history and population dynamics of aphids are closely linked to plant phenology. Based on life table studies, it has been proposed that the growth of aphid populations could be modeled with an exponential growth model, with r decreasing linearly with time.

  12. Environmental adaptation in wild soybeans (Glycine soja) across their native geographic range in northeast Asia

    Science.gov (United States)

    Understanding the genetic basis of adaptive variation and the forces that shape this diversity in natural populations are long-standing goals in evolutionary biology. The wild soybean (Glycine soja), from which domesticated soybeans (Glycine max) were derived, is widely distributed throughout a dive...

  13. Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii).

    Science.gov (United States)

    Budahn, Holger; Peterka, Herbert; Mousa, Magdi Ali Ahmed; Ding, Yunhua; Zhang, Shaosong; Li, Jinbin

    2009-02-01

    The beet cyst nematode (Heterodera schachtii Schmidt) can be controlled biologically in highly infected soils of sugar beet rotations using resistant varieties of oil radish (Raphanus sativus L. ssp. oleiferus DC.) as a green crop. Resistant plants stimulate infective juveniles to invade roots, but prevent them after their penetration to complete the life cycle. The resistance trait has been transferred successfully to susceptible rapeseed by the addition of a complete radish chromosome. The aim of the study was to construct a genetic map for radish and to develop resistance-associated markers. The map with 545 RAPD, dpRAPD, AFLP and SSR markers had a length of 1,517 cM, a mean distance of 2.8 cM and consisted of nine linkage groups having sizes between 120 and 232 cM. Chromosome-specific markers for the resistance-bearing chromosome d and the other eight radish chromosomes, developed previously from a series of rapeseed-radish addition lines, were enclosed as anchor markers. Each of the extra chromosomes in the addition lines could be unambiguously assigned to one of the radish linkage groups. The QTL analysis of nematode resistance was realized in the intraspecific F(2) mapping population derived from a cross between varieties 'Pegletta' (nematode resistant) x 'Siletta Nova' (susceptible). A dominant major QTL Hs1( Rph ) explaining 46.4% of the phenotypic variability was detected in a proximal position of chromosome d. Radish chromosome-specific anchor markers with known map positions were made available for future recombination experiments to incorporate segments carrying desired genes as Hs1( Rph ) from radish into rapeseed by means of chromosome addition lines.

  14. Genome Duplication in Soybean (Glycine Subgenus Soja)

    Science.gov (United States)

    Shoemaker, R. C.; Polzin, K.; Labate, J.; Specht, J.; Brummer, E. C.; Olson, T.; Young, N.; Concibido, V.; Wilcox, J.; Tamulonis, J. P.; Kochert, G.; Boerma, H. R.

    1996-01-01

    Restriction fragment length polymorphism mapping data from nine populations (Glycine max X G. soja and G. max X G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes. PMID:8878696

  15. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained....

  16. Damage potential of Heterodera zeae to Zea mays as affected by edaphic factors

    OpenAIRE

    Krusberg, L.R.; Sardanelli, S.; Grybauskas, A.P.

    1997-01-01

    On a étudié les effets du nématode à kyste du maïs, #Heterodera zeae$, sur la croissance et la récolte en grain du maïs, #Zea mays$, en microparcelles pendant les années 1986-1990. Ces expériences ont été conduites en microparcelles contenant du sol à texture fine ou grossière, avec ou sans engrais minéraux, avec ou sans #H. zeae$. La croissance du maïs (poids sec) et la récolte de grain ont décru de 13 à 73% pendant 4 ans sur 5, en présence de #H. zeae$. L'effet de #H. zeae$ sur les plantes ...

  17. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    Full Text Available The cereal cyst nematode (CCN, Heterodera avenae is a major pest of wheat (Triticum spp that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy revealed fewer glycoside hydrolases (GHs but more glycosyl transferases (GTs and carbohydrate esterases (CEs when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  18. Regulation of hepatic glycine catabolism by glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Jois, M.; Hall, B.; Fewer, K.; Brosnan, J.T.

    1989-02-25

    Glucagon stimulates 14CO2 production from (1-14C) glycine by isolated rat hepatocytes. Maximal stimulation (70%) of decarboxylation of glycine by hepatocytes was achieved when the concentration of glucagon in the medium reached 10 nM; half-maximal stimulation occurred at a concentration of about 2 nM. A lag period of 10 min was observed before the stimulation could be measured. Inclusion of beta-hydroxybutyrate (10 mM) or acetoacetate (10 mM) did not affect the magnitude of stimulation suggesting that the effects of glucagon were independent of mitochondrial redox state. Glucagon did not affect either the concentration or specific activity of intracellular glycine, thus excluding the possibilities that altered concentration or specific activity of intracellular glycine contributes to the observed stimulation. The stimulation of decarboxylation of glycine by glucagon was further studied by monitoring 14CO2 production from (1-14C)glycine by mitochondria isolated from rats previously injected with glucagon. Glycine decarboxylation was significantly stimulated in the mitochondria isolated from the glucagon-injected rats. We suggest that glucagon is a major regulator of hepatic glycine metabolism through the glycine cleavage enzyme system and may be responsible for the increased hepatic glycine removal observed in animals fed high-protein diets.

  19. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Aaqil Khan, Muhammad; Muhammad Imran, Qari; Kang, Sang-Mo; Al-Hosni, Khdija; Jeong, Eun Ju; Lee, Ko Eun; Lee, In-Jung

    2017-01-01

    The plastid genomes of different plant species exhibit significant variation, thereby providing valuable markers for exploring evolutionary relationships and population genetics. Glycine soja (wild soybean) is recognized as the wild ancestor of cultivated soybean (G. max), representing a valuable genetic resource for soybean breeding programmes. In the present study, the complete plastid genome of G. soja was sequenced using Illumina paired-end sequencing and then compared it for the first time with previously reported plastid genome sequences from nine other Glycine species. The G. soja plastid genome was 152,224 bp in length and possessed a typical quadripartite structure, consisting of a pair of inverted repeats (IRa/IRb; 25,574 bp) separated by small (178,963 bp) and large (83,181 bp) single-copy regions, with a 51-kb inversion in the large single-copy region. The genome encoded 134 genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 39 transfer RNA genes, and possessed 204 randomly distributed microsatellites, including 15 forward, 25 tandem, and 34 palindromic repeats. Whole-plastid genome comparisons revealed an overall high degree of sequence similarity between G. max and G. gracilis and some divergence in the intergenic spacers of other species. Greater numbers of indels and SNP substitutions were observed compared with G. cyrtoloba. The sequence of the accD gene from G. soja was highly divergent from those of the other species except for G. max and G. gracilis. Phylogenomic analyses of the complete plastid genomes and 76 shared genes yielded an identical topology and indicated that G. soja is closely related to G. max and G. gracilis. The complete G. soja genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of Glycine species and can be used to identify related species.

  20. Evaluation of Legumes Common to the Pacific Northwest as Hosts for the Pea Cyst Nematode, Heterodera goettingiana

    OpenAIRE

    Tedford, E. C.; Inglis, D. A.

    1999-01-01

    Seventeen leguminous species common to the Pacific Northwest were evaluated as potential hosts of the pea cyst nematode, Heterodera goettingiana, in both greenhouse and field experiments. In all experiments, juveniles of H. goettingiana penetrated roots of these 17 species with the exception of greenhouse-grown chickpea. Nematodes molted and developed into swollen third-stage or fourth-stage juveniles in many of the plants, but cyst development occurred only in the field on green pea, edible ...

  1. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers

    Directory of Open Access Journals (Sweden)

    Makoto eBannai

    2012-04-01

    Full Text Available Approximately 30% of the general population suffers from insomnia. Given that insomnia causes many problems, amelioration of the symptoms is crucial. Recently, we found that a nonessential amino acid, glycine subjectively and objectively improves sleep quality in humans who have difficulty sleeping. We evaluated the effects of glycine on daytime sleepiness, fatigue and performances in sleep-restricted healthy subjects. Sleep was restricted to 25% less than the usual sleep time for three consecutive nights. Before bedtime, 3 g of glycine or placebo were ingested, sleepiness and fatigue were evaluated using the visual analogue scale (VAS and a questionnaire, and performance were estimated by personal computer (PC performance test program on the following day. In subjects given glycine, the VAS data showed a significant reduction in fatigue and a tendency toward reduced sleepiness. These observations were also found via the questionnaire, indicating that glycine improves daytime sleepiness and fatigue induced by acute sleep restriction. PC performance test revealed significant improvement in psychomotor vigilance test. We also measured plasma melatonin and the expression of circadian-modulated genes expression in the rat suprachiasmatic nucleus (SCN to evaluate the effects of glycine on circadian rhythms. Glycine did not show significant effects on plasma melatonin concentrations during either the dark or light period. Moreover, the expression levels of clock genes such as Bmal1 and Per2 remained unchanged. However, we observed a glycine-induced increase in the neuropeptides arginine vasopressin and vasoactive intestinal polypeptide in the light period. Although no alterations in the circadian clock itself were observed, our results indicate that glycine modulated SCN function. Thus, glycine modulates certain neuropeptides in the SCN and this phenomenon may indirectly contribute to improving the occasional sleepiness and fatigue induced by sleep

  2. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  3. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii.

    Science.gov (United States)

    Shanks, Carly M; Rice, J Hollis; Zubo, Yan; Schaller, G Eric; Hewezi, Tarek; Kieber, Joseph J

    2016-01-01

    Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.

  4. De novo asymmetric synthesis and biological analysis of the daumone pheromones in Caenorhabditis elegans and in the soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    The de novo asymmetric total syntheses of daumone 1, daumone 2 and analogs are described. The key steps of our approach are the diastereoselective palladium catalyzed glycosylation reaction, the Noyori reduction of a acetylfuran and a propargyl ketone, which introduce the absolute stereochemistry of...

  5. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Science.gov (United States)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  6. Dispersal strategy of cyst nematodes (Heterodera arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success

    NARCIS (Netherlands)

    Stoel, C.D.; Putten, van der W.H.

    2006-01-01

    Root-feeding nematodes may play an important role in generating spatial and temporal variation in natural plant communities, but little is known about the performance of the nematodes in the plant root zone. We studied the emergence, survival and reproductive success of the cyst nematode Heterodera

  7. Dispersal strategy of cyst nematodes (Heterodera Arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Van der Putten, W.H.

    2006-01-01

    Root-feeding nematodes may play an important role in generating spatial and temporal variation in natural plant communities, but little is known about the performance of the nematodes in the plant root zone. We studied the emergence, survival and reproductive success of the cyst nematode Heterodera

  8. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  9. Population dynamics of host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Stoel, C.D.; Duyts, H.; Putten, van der W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  10. Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Duyts, H.; Van der Putten, W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  11. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  12. Chiral Ramachandran Plots I: Glycine.

    Science.gov (United States)

    Baruch-Shpigler, Yael; Wang, Huan; Tuvi-Arad, Inbal; Avnir, David

    2017-10-24

    Ramachandran plots (RPs) map the wealth of conformations of the polypeptide backbone and are widely used to characterize protein structures. A limitation of the RPs is that they are based solely on two dihedral angles for each amino acid residue and provide therefore only a partial picture of the conformational richness of the protein. Here we extend the structural RP analysis of proteins from a two-dimensional (2D) map to a three-dimensional map by adding the quantitative degree of chirality-the continuous chirality measure (CCM)-of the amino acid residue at each point in the RP. This measure encompasses all bond angles and bond lengths of an amino acid residue. We focus in this report on glycine (Gly) because, due to its flexibility, it occupies a large portion of the 2D map, thus allowing a detailed study of the chirality measure, and in order to evaluate the justification of classically labeling Gly as the only achiral amino acid. We have analyzed in detail 4366 Gly residues extracted from high resolution crystallographic data of 160 proteins. This analysis reveals not only that Gly is practically always conformationally chiral, but that upon comparing with the backbone of all amino acids, the quantitative chirality values of Gly are of similar magnitudes to those of the (chiral) amino acids. Structural trends and energetic considerations are discussed in detail. Generally we show that adding chirality to Ramachandran plots creates far more informative plots that highlight the sensitivity of the protein structure to minor conformational changes.

  13. USE OF GREEN MANURE CROPS AND SUGAR BEET VARIETIES TO CONTROL HETERODERA BETAE.

    Science.gov (United States)

    Raaijmakers, E

    2014-01-01

    Although it is less studied than the white beet cyst nematode (Heterodera schachtii), the yellow beet cyst nematode (H. betae) has been found in many countries in Europe. For example in The Netherlands, France and Spain. H. betae causes yield losses on sandy soils. A high infestation can result in loss of complete plants. In The Netherlands, this nematode is especially found in the south eastern and north eastern part, where it occurs on 18% and 5% of the fields, respectively. From a project of the Dutch Sugar beet Research Institute IRS (SUSY) on factors explaining differences in sugar yield, this nematode was one of the most important factors reducing sugar yields on sandy soils. Until 2008, the only way to control H. betae was by reducing the number of host crops in the crop rotation. Host crops are crops belonging to the families of Cruciferae, Chenopodiaceae, Polygonaceae, Caryophyllaceae and Leguminosea. In order to find more control measures, research was done to investigate the host status of different green manure crops and the resistance and tolerance of different sugar beet varieties to H. betae. White mustard (Sinapis alba) and oil seed radish (Raphanus sativus spp. oleiferus) varieties resistant to H. schachtii were investigated for their resistance against H. betae. A climate room trial and a field trial with white mustard and oil seed radish were conducted in 2007 and 2008, respectively. Results show that H. betae could multiply on susceptible white mustard and susceptible oil seed radish, but not on the H. schachtii resistant varieties. In climate room trials in 2009, 2010 and 2011 and field trials in 2010, 2011 and 2012, the effect of different sugar beet varieties on the multiplication of H. betae and the effect of H. betae on yield at different infestation levels was investigated. Sugar beet varieties with resistance genes to H. schachtii (from Beta procumbens or B. maritima) were selected. Varieties with resistance genes from these sources were

  14. catena-Poly[[[aqua-(glycine-κO)lithium]-μ-glycine-κ(2) O:O'] bromide].

    Science.gov (United States)

    Balakrishnan, T; Ramamurthi, K; Jeyakanthan, J; Thamotharan, S

    2013-01-01

    In the title coordination polymer, {[Li(C2H5NO2)2(H2O)]Br} n , the Li(+) cation is coordinated by three carboxyl-ate O atoms of zwitterionic glycine mol-ecules and by a water mol-ecule, forming a distorted tetra-hedral geometry. One of the two glycine mol-ecules bridges neighbouring complexes, forming an infinite chain parallel to the c axis. Polymeric chains are further linked by extensive hydrogen bonds involving the Br(-) anions and glycine and water mol-ecules, producing a three-dimensional network.

  15. catena-Poly[[[aqua(glycine-κOlithium]-μ-glycine-κ2O:O′] bromide

    Directory of Open Access Journals (Sweden)

    T. Balakrishnan

    2013-01-01

    Full Text Available In the title coordination polymer, {[Li(C2H5NO22(H2O]Br}n, the Li+ cation is coordinated by three carboxylate O atoms of zwitterionic glycine molecules and by a water molecule, forming a distorted tetrahedral geometry. One of the two glycine molecules bridges neighbouring complexes, forming an infinite chain parallel to the c axis. Polymeric chains are further linked by extensive hydrogen bonds involving the Br− anions and glycine and water molecules, producing a three-dimensional network.

  16. Dietary encapsulated glycine influences Clostridium perfringens and Lactobacilli growth in the gastrointestinal tract of broiler chickens.

    Science.gov (United States)

    Dahiya, J P; Hoehler, Dirk; Van Kessel, Andrew G; Drew, Murray D

    2007-06-01

    Three experiments were conducted to determine whether there is a causative relation between dietary glycine concentration and intestinal Clostridium perfringens growth in broiler chickens. Expt. 1 showed that glycine concentrations were higher (P perfringens type A on d 1 and d 14-21 and killed on d 28. In Expt. 2, C. perfringens populations were higher (P perfringens numbers were higher (P perfringens colonization and high intestinal lesion scores were associated with reduced performance (P perfringens growth in the intestinal tract of broiler chickens.

  17. Evaluation of Legumes Common to the Pacific Northwest as Hosts for the Pea Cyst Nematode, Heterodera goettingiana.

    Science.gov (United States)

    Tedford, E C; Inglis, D A

    1999-06-01

    Seventeen leguminous species common to the Pacific Northwest were evaluated as potential hosts of the pea cyst nematode, Heterodera goettingiana, in both greenhouse and field experiments. In all experiments, juveniles of H. goettingiana penetrated roots of these 17 species with the exception of greenhouse-grown chickpea. Nematodes molted and developed into swollen third-stage or fourth-stage juveniles in many of the plants, but cyst development occurred only in the field on green pea, edible dry pea, and faba bean. More H. goettingiana cysts developed on fava bean than on green pea or edible dry pea. In H. goettingiana-infested soils, cropping sequences that include fava bean and pea should be avoided. However, certain legumes, such as winter vetch, may have the potential of serving as trap crops for H. goettingiana in this region.

  18. A weak link in metabolism: the metabolic capacity for glycine ...

    Indian Academy of Sciences (India)

    Prakash

    2009-12-03

    Dec 3, 2009 ... synthesis in strict vegetarian humans (Rebouche and Engel. 1984; Rebouche et al. 1993) is about 0.084 mmol/day, which is insignificant for glycine production. 3.3 Summary of the capability for glycine synthesis. The results of the calculations explained above on the capability for glycine synthesis are ...

  19. A weak link in metabolism: the metabolic capacity for glycine ...

    Indian Academy of Sciences (India)

    In a previous paper, we pointed out that the capability to synthesize glycine from serine is constrained by the stoichiometry of the glycine hydroxymethyltransferase reaction, which limits the amount of glycine produced to be no more than equimolar with the amount of C1 units produced. This constraint predicts a shortage of ...

  20. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    in 't Veld, P.J.A.; in 't Veld, Peter J.A.; Shen, Zheng-Rong; Shen, Z.; Takens, Gijsbert A.J.; Takens, G.A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min

  1. Engineering and characterization of fluorogenic glycine riboswitches.

    Science.gov (United States)

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-07-08

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (k(on)), and dissociation (k(off)) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. k(on) and k(off) were in the order of 10(-3)s(-1) and 10(-2)s(-1), respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    ... Rao P Thanikaivelan. Volume 39 Issue 1 February 2016 pp 223-228 ... The functionalization of Al 2 O 3 nanoparticles with glycine was confirmed by Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction, high-resolution scanning electron microscopy (HRSEM) and energy-dispersive X-ray (EDX) analysis.

  3. Identification of Rotylenchulus reniformis resistant Glycine lines

    Science.gov (United States)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  4. A Novel Glycinate-based Body Wash

    Science.gov (United States)

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  5. Mechanisms and Characterization of Trichoderma longibrachiatum T6 in Suppressing Nematodes (Heterodera avenae) in Wheat.

    Science.gov (United States)

    Zhang, Shuwu; Gan, Yantai; Ji, Weihong; Xu, Bingliang; Hou, Baohong; Liu, Jia

    2017-01-01

    Heterodera avenae is an important soil-borne pathogen that affects field crops worldwide. Chemical nematicides can be used to control the nematode, but they bring toxicity to the environment and human. Trichoderma longibrachiatum has been shown to have the ability to control H. avenae cysts, but detailed microscopic observations and bioassays are lacking. In this study, we used microscopic observations and bioassays to study the effect of T. longibrachiatum T6 (TL6) on the eggs and second stage juveniles (J2s) of H. avenae, and investigate the role of TL6 in inducing the resistance to H. avenae in wheat seedling at physiological and biochemical levels. Microscopic observations recorded that TL6 parasitized on the H. avenae eggs, germinated, and produced a large number of hyphae on the eggs surface at the initial stage, thereafter, the eggs were completely surrounded by dense mycelia and the contents of eggs were lysed at the late stage. Meanwhile, the conidia suspension of TL6 parasitized on the surface of J2s, produced a large number of hyphae that penetrated the cuticle and caused deformation of the nematodes. TL6 at the concentration of 1.5 × 107 conidia ml-1 had the highest rates of parasitism on eggs and J2s, reflected by the highest hatching-inhibition of eggs and the mortality of J2s. In the greenhouse experiments, wheat seedlings treated with TL6 at 1.5 × 107 conidia ml-1 had reduced H. avenae infection, and increased plant growth significantly compared to the control. The cysts and juveniles in soil were reduced by 89.8 and 92.7%, the juveniles and females in roots were reduced by 88.3 and 91.3%, whereas the activity of chitinase and β-1, 3-glucanase, total flavonoids and lignin contents in wheat roots were increased significantly at different stage after inoculation with the eggs and TL6 conidia in comparison to the control. Maximum activity of chitinase and β-1, 3-glucanase were recorded at the 20th and 15th Days after inoculation with TL6 and

  6. Mechanisms and Characterization of Trichoderma longibrachiatum T6 in Suppressing Nematodes (Heterodera avenae) in Wheat

    Science.gov (United States)

    Zhang, Shuwu; Gan, Yantai; Ji, Weihong; Xu, Bingliang; Hou, Baohong; Liu, Jia

    2017-01-01

    Heterodera avenae is an important soil-borne pathogen that affects field crops worldwide. Chemical nematicides can be used to control the nematode, but they bring toxicity to the environment and human. Trichoderma longibrachiatum has been shown to have the ability to control H. avenae cysts, but detailed microscopic observations and bioassays are lacking. In this study, we used microscopic observations and bioassays to study the effect of T. longibrachiatum T6 (TL6) on the eggs and second stage juveniles (J2s) of H. avenae, and investigate the role of TL6 in inducing the resistance to H. avenae in wheat seedling at physiological and biochemical levels. Microscopic observations recorded that TL6 parasitized on the H. avenae eggs, germinated, and produced a large number of hyphae on the eggs surface at the initial stage, thereafter, the eggs were completely surrounded by dense mycelia and the contents of eggs were lysed at the late stage. Meanwhile, the conidia suspension of TL6 parasitized on the surface of J2s, produced a large number of hyphae that penetrated the cuticle and caused deformation of the nematodes. TL6 at the concentration of 1.5 × 107 conidia ml−1 had the highest rates of parasitism on eggs and J2s, reflected by the highest hatching-inhibition of eggs and the mortality of J2s. In the greenhouse experiments, wheat seedlings treated with TL6 at 1.5 × 107 conidia ml−1 had reduced H. avenae infection, and increased plant growth significantly compared to the control. The cysts and juveniles in soil were reduced by 89.8 and 92.7%, the juveniles and females in roots were reduced by 88.3 and 91.3%, whereas the activity of chitinase and β-1, 3-glucanase, total flavonoids and lignin contents in wheat roots were increased significantly at different stage after inoculation with the eggs and TL6 conidia in comparison to the control. Maximum activity of chitinase and β-1, 3-glucanase were recorded at the 20th and 15th Days after inoculation with TL6 and

  7. Mechanisms and Characterization of Trichoderma longibrachiatum T6 in Suppressing Nematodes (Heterodera avenae in Wheat

    Directory of Open Access Journals (Sweden)

    Shuwu Zhang

    2017-09-01

    Full Text Available Heterodera avenae is an important soil-borne pathogen that affects field crops worldwide. Chemical nematicides can be used to control the nematode, but they bring toxicity to the environment and human. Trichoderma longibrachiatum has been shown to have the ability to control H. avenae cysts, but detailed microscopic observations and bioassays are lacking. In this study, we used microscopic observations and bioassays to study the effect of T. longibrachiatum T6 (TL6 on the eggs and second stage juveniles (J2s of H. avenae, and investigate the role of TL6 in inducing the resistance to H. avenae in wheat seedling at physiological and biochemical levels. Microscopic observations recorded that TL6 parasitized on the H. avenae eggs, germinated, and produced a large number of hyphae on the eggs surface at the initial stage, thereafter, the eggs were completely surrounded by dense mycelia and the contents of eggs were lysed at the late stage. Meanwhile, the conidia suspension of TL6 parasitized on the surface of J2s, produced a large number of hyphae that penetrated the cuticle and caused deformation of the nematodes. TL6 at the concentration of 1.5 × 107 conidia ml−1 had the highest rates of parasitism on eggs and J2s, reflected by the highest hatching-inhibition of eggs and the mortality of J2s. In the greenhouse experiments, wheat seedlings treated with TL6 at 1.5 × 107 conidia ml−1 had reduced H. avenae infection, and increased plant growth significantly compared to the control. The cysts and juveniles in soil were reduced by 89.8 and 92.7%, the juveniles and females in roots were reduced by 88.3 and 91.3%, whereas the activity of chitinase and β-1, 3-glucanase, total flavonoids and lignin contents in wheat roots were increased significantly at different stage after inoculation with the eggs and TL6 conidia in comparison to the control. Maximum activity of chitinase and β-1, 3-glucanase were recorded at the 20th and 15th Days after

  8. Efeitos de herbicidas e populações de plantas na nodulação e produção da soja (Glycine max (L. Merril 'Santa Rosa' Effects of herbicides and plant populations on nodulation and yield in soybeans Glycine max (L. Merril 'Santa Rosa'

    Directory of Open Access Journals (Sweden)

    R. Deuber

    1981-12-01

    populations on nodulation and yield in soybean `Santa Rosa' were studied in three Experiments in field conditions and one in greenhouse. Clay and very clay soils were used in the field and very clay and loamy soils in pots. Trifluralin at 0,96 kg/ha and vernolate at 3,60 kg/ha, preplant incorporated; pendimethalin at 1,50 kg/ha, in two experiments, and at 1,25 in a third; alachlor at 2,40 kg; and metribu zin at 0,63 kg in two experiments and at 0,53 kg in a third, preemergence were applied in field conditions. In pots, the same rates were used, except for trifluralin which was applied at 0,86 kg/ha. A check was included in all experiments. All treatments in the field were combined with different plant densities: 200 and 300 thousand in Experiment I, 200, 300 and 400 thousand in Experiment II and 150 and 250 thousand in Experiment III. Three plants per pot were studied in the greenhouse experiment during the first 30 days. No interaction between herbicides and plant populations was observed for any of the studied parameters. The plant density increase caused increase of yield and in the N concentration in grains in two experiments. The different densities caused no change on the number or weight of nodules. Nodulation was affected, in pots, at its beginning, by trifluralin, pendimethalin and vernolate, with reduction of number and weight of nodules. Trifluralin depressed these values also in the field, in one experiment, at flower stage set. Grain yield was enhanced with population increase. Metribuzin reduced yield in one experiment.

  9. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Zhu, Qiang [Department of Physics and Astronomy, High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas NV 89154 USA; Department of Geosciences, Stony Brook University, Stony Brook NY 11794 USA; Hu, Chunhua Tony [Department of Chemistry, New York University, 100 Washington Square East New York NY 10003 USA

    2017-01-18

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of an unknown phase of glycine which was firstly reported by Pyne and Suryanarayanan in 2001. To date, the new phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing a first report on a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution, and the mechanisms of glycine crystallization. GDH may also be the form of glycine that comes to Earth from extraterrestrial sources.

  10. Development and Evaluation of Glycine max Germplasm Lines with Quantitative Resistance to Sclerotinia sclerotiorum.

    Science.gov (United States)

    McCaghey, Megan; Willbur, Jaime; Ranjan, Ashish; Grau, Craig R; Chapman, Scott; Diers, Brian; Groves, Carol; Kabbage, Mehdi; Smith, Damon L

    2017-01-01

    Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen of soybean that can cause significant yield losses to growers when environmental conditions are favorable for the disease. The development of resistant varieties has proven difficult. However, poor resistance in commercial cultivars can be improved through additional breeding efforts and understanding the genetic basis of resistance. The objective of this project was to develop soybean germplasm lines that have a high level of Sclerotinia stem rot resistance to be used directly as cultivars or in breeding programs as a source of improved Sclerotinia stem rot resistance. Sclerotinia stem rot-resistant soybean germplasm was developed by crossing two sources of resistance, W04-1002 and AxN-1-55, with lines exhibiting resistance to Heterodera glycines and Cadophora gregata in addition to favorable agronomic traits. Following greenhouse evaluations of 1,076 inbred lines derived from these crosses, 31 lines were evaluated for resistance in field tests during the 2014 field season. Subsequently, 11 Sclerotinia stem rot resistant breeding lines were moved forward for field evaluation in 2015, and seven elite breeding lines were selected and evaluated in the 2016 field season. To better understand resistance mechanisms, a marker analysis was conducted to identify quantitative trait loci linked to resistance. Thirteen markers associated with Sclerotinia stem rot resistance were identified on chromosomes 15, 16, 17, 18, and 19. Our markers confirm previously reported chromosomal regions associated with Sclerotinia stem rot resistance as well as a novel region of chromosome 16. The seven elite germplasm lines were also re-evaluated within a greenhouse setting using a cut petiole technique with multiple S. sclerotiorum isolates to test the durability of physiological resistance of the lines in a controlled environment. This work presents a novel and comprehensive classical

  11. First Report of the Fig Cyst Nematode, Heterodera fici Kirjanova, on Fig Tree, Ficus carica, in Ontario, Canada.

    Science.gov (United States)

    Sun, Fengcheng; Henry, Neil; Yu, Qing

    2017-06-01

    Although fig trees are a popular ornamental fruit tree in subtropical regions, some hardy species, such as Ficus carica, have been grown in the west coast of British Columbia and southern Ontario in Canada. The fig cyst nematode, Heterodera fici Kirjanova, is a pest on fig plants, and the heavy infestation can cause retarded growth and yellowing of leaves (Maqbool et al., 1987). In the spring of 2016, a sample of rhizosphere from a potted fig (F. carica) seedling was submitted to the Nematology Laboratory, Canadian Food Inspection Agency. The sample was collected from a nursery in Niagara-on-the-Lake, Ontario, Canada, during an inspection to support export certification. The fig trees in the nursery had been grown in the outside fields during the growing seasons and potted and moved to indoor during the winters for last 3 years. The sample was subjected to a nematode extraction process, including decanting and sieving and misting, and lemon-shaped cysts and second-stage juveniles of Heterodera sp. were recovered from the sample examined. The morphological and molecular analyses of the cysts, vulval cone, and second-stage juveniles from both the roots and the crushed cysts identified the species as Heterodera fici Kirjanova. The cysts were characterized by their dark brown color and lemon shape, as well as distinct necks and vulval cones. The vulval cones were observed having an ambifenestrate fenestra (Fig. 1AFig. 1Photomicrographs of Heterodera fici on fig tree from Ontario, Canada. A, B. Cyst vulval cones with the ambifenestrate fenestra in A) and well-developed underbridge and bullae in B). C-E. The second-stage juveniles from a crushed cyst with the whole body in C), the anterior region in D) and the posterior region in E).), dome-shaped bullae scattered around the underbridge plane (Fig. 1B), well-developed underbridge (Fig. 1B), and coarse zig-zag ridges surrounding the fenestra on the surface. The cyst measurements (n = 3) were length 608.7 ± 91.6 (506

  12. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition.

    Science.gov (United States)

    Zhang, Long-Hua; Gong, Neng; Fei, Da; Xu, Lin; Xu, Tian-Le

    2008-02-01

    Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their role in hippocampal function remains unclear. Since the concentration of ambient glycine is determined by the presence of powerful glycine transporter (GlyT), we blocked the reuptake of glycine in hippocampal slices to examine the role of GlyRs. Antagonists of GlyT type 1 (GlyT1) but not that of GlyT type 2 (GlyT2) induced excitatory postsynaptic potential (EPSP)-spike depression, which was reversed by the specific GlyR antagonist strychnine. Moreover, endogenously elevating the glycine concentration with the GlyT1 antagonists facilitated NMDA receptor-dependent long-term potentiation induction, and elicited a strychnine-sensitive chloride current. In addition, impairment of glial function with fluoroacetate blocked the effect of GlyT1 antagonists on the EPSP-spike curve. Furthermore, pretreatment with sarcosine was effective in controlling pentylenetetrazol-induced seizures. These results indicate an essential role of GlyTs in fine-tuning tonic activation of GlyRs and suggest a potential role of GlyR-dependent EPSP-spike depression in hippocampal network stability.

  13. Photostability of glycine to Lyman {alpha} radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira-Rodrigues, A.M. [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ (Brazil); Homem, M.G.P. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Naves de Brito, A. [Universidade de Brasilia (UnB), DF (Brazil); Ponciano, C.R.; Silveira, E.F. da [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2012-07-01

    Full text: The amino acids already detected in Solar System bodies and researched in Interstellar Medium are of particular importance for the chemistry related to the origin of life since they are constituents of all living organisms. To interpret the viability of amino acids in pre-biotic astrochemistry is important to investigate the stability of these compounds in extraterrestrial surroundings. This study investigates, in the laboratory, the stability of glycine to the action of ultraviolet radiation, in spectral region around the wavelength of the Lyman {alpha} line (1216 ) produced by a hydrogen lamp. {sup 252}Cf-PDMS of positive and negative desorbed ions was performed for glycine, before and during the irradiation, and the dependence of the ion desorption yields on the irradiation time is determined. As a result, the relative photostability curves of the molecular and dimer ions are observed to be a single exponential decay with a time constant 376 min for positive desorbed ions and 675 min for negative ones. The photodissociation cross section found for glycine molecule at room temperature, when positive secondary ions are considered, is 17 Mb; this value drops to 9 Mb when negative secondary ions are analyzed. This new methodology offers a complementary way of understanding the photonic interaction in amino acids, allowing discussion on polymerization and/or radiation induced phase transition effects. (author)

  14. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  15. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  16. Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet

    Science.gov (United States)

    Hillnhütter, C.; Sikora, R. A.; Oerke, E. -C.; van Dusschoten, D.

    2012-01-01

    Belowground symptoms of sugar beet caused by the beet cyst nematode (BCN) Heterodera schachtii include the development of compensatory secondary roots and beet deformity, which, thus far, could only be assessed by destructively removing the entire root systems from the soil. Similarly, the symptoms of Rhizoctonia crown and root rot (RCRR) caused by infections of the soil-borne basidiomycete Rhizoctonia solani require the same invasive approach for identification. Here nuclear magnetic resonance imaging (MRI) was used for the non-invasive detection of belowground symptoms caused by BCN and/or RCRR on sugar beet. Excessive lateral root development and beet deformation of plants infected by BCN was obvious 28 days after inoculation (dai) on MRI images when compared with non-infected plants. Three-dimensional images recorded at 56 dai showed BCN cysts attached to the roots in the soil. RCRR was visualized by a lower intensity of the MRI signal at sites where rotting occurred. The disease complex of both organisms together resulted in RCRR development at the site of nematode penetration. Damage analysis of sugar beet plants inoculated with both pathogens indicated a synergistic relationship, which may result from direct and indirect interactions. Nuclear MRI of plants may provide valuable, new insight into the development of pathogens infecting plants below- and aboveground because of its non-destructive nature and the sufficiently high spatial resolution of the method. PMID:21948851

  17. Structure of syncytia induced by Heterodera schachtii Schmidt in roots of susceptible and resistant radish (Raphanus sativus L., var. oleiformis

    Directory of Open Access Journals (Sweden)

    Grażyna Grymaszewska

    2014-01-01

    Full Text Available The structure of syncytia induced by Heterodera schachtii Schmidt in roots of susceptible Raphanus sativus L. cv. "Siletina" and resistant radish cv. "Pegletta" was investigated. In the radish cultivar "Siletina" the syncytia most often appeared in the elongation zone of lateral roots. They were initiated in the procambium and pericycle but also included the parenchyma cells of vascular cylinder. In the susceptible cultivar "Siletina" the cells forming the female's syncytia were subject to hypertrophy. Their cytoplasmic density increased. The cytoplasm contained numerous organella. The proliferation of the smooth endoplasmic reticulum took place. Branched cell wall ingrowths were formed next to the vessels. In the male's syncytia the cells were only slightly increased. Their protoplasts contained few organelles. The cell wall ingrowths were poorly developed. In the syncytia of the resistant cultivar "Pegletta" there was only a slight increase of the cell volume. A well developed system of rough endoplasmic reticulum was observed in the protoplast. Distended ER cisterns contained fine fibrillar material. Material of similar structure also appeared in numerous small vacuoles. In resistant plants only some, not numerous, syncytia spreading in procambium fully developed and functioned long enough for the parasite females to mature. At an advanced stage of infection a well developed system of a rough ER was observed also in those syncytia and numerous vacuoles appeared.

  18. Potential Immune Modularly Role of Glycine in Oral Gingival Inflammation

    Directory of Open Access Journals (Sweden)

    Teresa Schaumann

    2013-01-01

    Full Text Available Gingival epithelial cells (GECs represent a physical barrier against bacteria and are involved in the processes of innate immunity. Recently, an anti-inflammatory and immune-modulatory effect of the amino acid glycine has been demonstrated. However, there is only little information about the immune-modulatory effects of glycine in oral tissues. This study aimed to investigate the existence and role of the glycine receptor in gingival tissue analyzing tissues/cells from extracted human molars via immunohistochemical analysis. In vitro, GECs were challenged by inflammatory conditions with IL-1β alone or in combination with glycine and analyzed for cytokine expression of IL6/IL8 via real-time PCR. On protein level, the effect of nuclear translocalization of NFκB protein p65 was analyzed using immunofluorescence analysis. A distinct proof of the GlyR in oral gingival tissue and keratinocytes could be demonstrated. Isolated challenge of the keratinocytes with IL-1β as well as with glycine resulted in an upregulation of IL6 and IL8 mRNA expression and activation of NFκB pathway. The presence of glycine in combination with the inflammatory stimulus led to a significant decrease in inflammatory parameters. These results indicate a possible anti-inflammatory role of glycine in gingival inflammation and encourage further research on the utility of glycine in the prevention or therapy of inflammatory periodontitis.

  19. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  20. 21 CFR 522.518 - Cupric glycinate injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cupric glycinate injection. 522.518 Section 522.518 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....518 Cupric glycinate injection. (a) Specifications. Each milliliter (mL) of sterile aqueous suspension...

  1. Quantifying the Temperature Dependence of Glycine Betaine RNA Duplex Destabilization

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Menssen, Ryan J.; Kohler, James M.; Schmidt, Elliot C.; Thomas, Alexandra L.

    2013-01-01

    Glycine betaine stabilizes folded protein structure due to its unfavorable thermodynamic interactions with amide oxygen and aliphatic carbon surface area exposed during protein unfolding. However, glycine betaine can attenuate nucleic acid secondary structure stability, although its mechanism of destabilization is not currently understood. In this work we quantify glycine betaine interactions with the surface area exposed during thermal denaturation of nine RNA dodecamer duplexes with guanine-cytosine (GC) contents of 17–100%. Hyperchromicity values indicate increasing glycine betaine molality attenuates stacking. Glycine betaine destabilizes higher GC content RNA duplexes to a greater extent than low GC content duplexes due to greater accumulation at the surface area exposed during unfolding. The accumulation is very sensitive to temperature and displays characteristic entropy-enthalpy compensation. Since the entropic contribution to the m-value (used to quantify GB interaction with the RNA solvent accessible surface area exposed during denaturation) is more dependent on temperature than the enthalpic contribution, higher GC content duplexes with their larger transition temperatures are destabilized to a greater extent than low GC content duplexes. The concentration of glycine betaine at the RNA surface area exposed during unfolding relative to bulk was quantified using the solute partitioning model. Temperature correction predicts a glycine betaine concentration at 25 °C to be nearly independent of GC content, indicating that glycine betaine destabilizes all sequences equally at this temperature. PMID:24219229

  2. Characterization of three novel fatty acid- and retinoid-binding protein genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the cereal cyst nematodes Heterodera avenae and H. filipjevi

    Science.gov (United States)

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinoid-binding (FAR) proteins are nematode-spe...

  3. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  4. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Science.gov (United States)

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  5. Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea

    NARCIS (Netherlands)

    Hol, W.H.G.; Boer, de W.; Termorshuizen, A.J.; Meyer, K.M.; Schneider, J.H.M.; Putten, van der W.H.; Dam, N.M.

    2013-01-01

    Aboveground and belowground herbivore species modify plant defense responses differently. Simultaneous attack can lead to non-additive effects on primary and secondary metabolite composition in roots and shoots. We previously found that aphid (Brevicoryne brassicae) population growth on Brassica

  6. Efecto de la fertilización nitrogenada en la incidencia de Fusarium oxysporum f. sp. Dianthi y Heterodera trifolii g. en clavel Effect of nitrogen fertilization on the incidence of Fusarium oxysporum f. sp. Dianthi and Heterodera trifolii G. in carnation

    Directory of Open Access Journals (Sweden)

    Burbano Luis E.

    1990-12-01

    Full Text Available

    El manejo de la fertilización es uno de los métodos que junto con otras formas de control puede reducir la severidad de algunas enfermedades; en el presente trabajo se evaluó el efecto de la fertilización nitrogenada, utilizando diferentes fuentes de nitrógeno sobre las enfermedades causadas por Fusarium oxysporum f. sp, Dianthi y Heterodera trifolii G. Se emplearon como fuentes de nitrógeno de fosfato de amonio, nitrato de potasio y nitrón 26, y sulfato de potasio como testigo. Al finalizar el ensayo, además de la variación
    de pH, se evaluó potencial de inóculo de Fusarium oxysporum f. sp, Dianthi, el número y viabilidad de los quistes de Heterodera trifolii G., lo mismo que el número de plantas
    enfermas, Los resultados mostraron que los tratamientos
    con nitrato de potasio y sulfato de potasio incrementaron el pH, mintras que el nitrón 26 y el fosfato de amonio acidificaron el suelo. Al final del experimento se presentó
    un menor número de colonias de Fusarium oxysporum f. sp.Dianthi en los suelos tratados con sulfato y nitrato de potasio. El número de quistes y viabilidad de Heterodera trifolii G. no fueron afectados por los tratamientos. El mayor número de tallos florales se obtuvo con el tratamiento de sulfato de potasio y el menor con el de fosfato de amonio.

    Handling the fertilization is one of the methods that among with other controling ways can reduce the strength of some diseases; in this essay it was tested the effeet of the nitrogenated fertilization, using differents nitrogen sources allover the diseases; produced by the Fusarium oxysporum
    f. sp. dianthi and Heterodera trifolii G. Ammonium phosphate, potassium nitrate and Nitron 26 were used as nitrogen sources, and potassium sulfate was used as a paterno At the end of the test, beside of the pH variation, it was evaluated the Fusarium oxysporum f. sp. dianthi inoculus potential,
    the number of eysts and the viability of the

  7. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota

    Science.gov (United States)

    Campbell, James H.; O’Donoghue, Patrick; Campbell, Alisha G.; Schwientek, Patrick; Sczyrba, Alexander; Woyke, Tanja; Söll, Dieter; Podar, Mircea

    2013-01-01

    The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNAGlyUCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNAGlyUCA with glycine in vitro with similar activity compared with normal tRNAGlyUCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNAGlyUCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota. PMID:23509275

  8. Dietary intakes of glutamic acid and glycine are associated with stroke mortality in Japanese adults.

    Science.gov (United States)

    Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Kawachi, Toshiaki; Konishi, Kie; Tsuji, Michiko; Nakamura, Kozue

    2015-04-01

    Dietary intakes of glutamic acid and glycine have been reported to be associated with blood pressure. However, the link between intakes of these amino acids and stroke has not been studied. We aimed to examine the association between glutamic acid and glycine intakes and the risk of mortality from stroke in a population-based cohort study in Japan. The analyses included 29,079 residents (13,355 men and 15,724 women) of Takayama City, Japan, who were aged 35-101 y and enrolled in 1992. Their body mass index ranged from 9.9 to 57.4 kg/m(2). Their diets were assessed by a validated food frequency questionnaire. Deaths from stroke were ascertained over 16 y. During follow-up, 677 deaths from stroke (328 men and 349 women) were identified. A high intake of glutamic acid in terms of a percentage of total protein was significantly associated with a decreased risk of mortality from total stroke in women after controlling for covariates; the HR (95% CI) for the highest vs. lowest quartile was 0.72 (0.53, 0.98; P-trend: 0.03). Glycine intake was significantly associated with an increased risk of mortality from total and ischemic stroke in men without history of hypertension at baseline; the HRs (95% CIs) for the highest vs. lowest tertile were 1.60 (0.97, 2.51; P-trend: 0.03) and 1.88 (1.01, 3.52; P-trend: 0.02), respectively. There was no association between animal or vegetable protein intake and mortality from total and any subtype of stroke. The data suggest that glutamic acid and glycine intakes may be associated with risk of stroke mortality. Given that this is an initial observation, our results need to be confirmed. © 2015 American Society for Nutrition.

  9. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota.

    Science.gov (United States)

    Campbell, James H; O'Donoghue, Patrick; Campbell, Alisha G; Schwientek, Patrick; Sczyrba, Alexander; Woyke, Tanja; Söll, Dieter; Podar, Mircea

    2013-04-02

    The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNA(Gly)UCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNA(Gly)UCA with glycine in vitro with similar activity compared with normal tRNA(Gly)UCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNA(Gly)UCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota.

  10. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: structure-activity relationship studies against cyst nematode Heterodera zeae infective stage larvae.

    Science.gov (United States)

    Faizi, Shaheen; Fayyaz, Shahina; Bano, Samina; Iqbal, Erum Yawar; Lubna; Siddiqi, Humaira; Naz, Aneela

    2011-09-14

    Bioassay-guided isolation studies on the extracts of yellow flowers of Tagetes patula L. against the Heterodera zeae were carried out to identify phytochemicals lethal to this economically important cyst nematode. In vitro investigation of a polar extract and fractions showing activity led to the isolation of phenolic compounds (flavonoids and phenolic acids). In the nonpolar extract, a few fatty acids, their methyl esters, and thiophenes (including α-terthienyl) were detected. In studies of compounds obtained commercially, α-terthienyl and gallic and linoleic acids showed 100% mortality at concentrations of 0.125% after 24 h. Assessment of structure-activity relationships revealed that an increase in the number of hydroxyl groups in phenolic acids increased the activity; with fatty acids, activity depended on chain length and the number and position of double bonds. Crude extracts of the flowers of different colors also have promising activity.

  11. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  12. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  13. Populism

    OpenAIRE

    Abts, Koenraad; Van Kessel, Stijn

    2015-01-01

    Populism is a concept applied to a wide range of political movements and actors across the globe. There is, at the same time, considerable confusion about the attributes and manifestation of populism, as well as its impact on democracy. This contribution identifies the defining elements of the populist ideology and discusses the varieties in which populism manifests itself, for instance as a component of certain party families. We finally discuss various normative interpretations of populism,...

  14. Effect of fungicides and bioagents on number of microorganisms in soil and yield of soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    GAURAV MISHRA

    2014-07-01

    Full Text Available Mishra G, Kumar N, Giri K, Pandey S, Kumar R. 2014. Effect of fungicides and bioagents on number of microorganisms in soil and yield of soybean (Glycine max. Nusantara Bioscience 6: 45-48. In field experiments, the effect of selected fungicides and bioagents on number of soil microorganisms and yield of soybean (Glycine max L. Merill was investigated. The results showed that some of the crop protections preparations applied in the experiment (as seed dressing increased the populations of the examined microorganisms after the harvest of crops. Maximum counts of bacteria were recorded with Thiomethaxam at 3 g kg-1 while Pseudomonas at 3 g kg-1 showed the highest population of fungi, Actinomycetes, B. japonicum, PSB and Pseudomonas. The highest straw and grain yields of 3241.6 and 1439.4 kg ha-1, respectively, were recorded with Pseudomonas at 3 g kg-1.

  15. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages.

    Science.gov (United States)

    Sun, Yuzhe; Mui, Zeta; Liu, Xuan; Yim, Aldrin Kay-Yuen; Qin, Hao; Wong, Fuk-Ling; Chan, Ting-Fung; Yiu, Siu-Ming; Lam, Hon-Ming; Lim, Boon Leong

    2016-12-06

    Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS-phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination.

  16. Glycine-nitrate combustion synthesis of oxide ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Pederson, L.R.; Maupin, G.D.; Bates, J.L.; Thomas, L.E.; Exarhos, G.J. (Pacific Northwest Lab., Richland, WA (United States))

    1990-09-01

    A new combustion synthesis method, the glycine-nitrate process, has been used to prepare oxide ceramic powders, including substituted chromite and manganite powders of high quality. A precursor was prepared by combining glycine with metal nitrates in their appropriate stoichiometric ratios in an aqueous solution. The precursor was heated to evaporate excess water, yielding a viscous liquid. Further heating to about 180[degrees]C caused the precursor liquid to autoignite. Combustion was rapid and self-sustaining, with flame temperatures ranging from 1100 to 1450[degrees]C. The chromite product was compositionally homogeneous with a specific surface area of 32 m[sup 2]/g, while the manganite product was composed of two distinct phases with a 23 m[sup 2]/g surface area after calcination. When compared to similar compositions made using the amorphous citrate process, glycine-nitrate-produced powders had greater compositional uniformity, lower residual carbon levels and smaller particle sizes.

  17. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    National Research Council Canada - National Science Library

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-01-01

    .... Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN...

  18. 77 FR 21532 - Glycine From the People's Republic of China: Preliminary Partial Affirmative Determination of...

    Science.gov (United States)

    2012-04-10

    ... glycine to U.S. Pharmaceutical (USP) grade glycine in India did not substantially transform the glycine in... to be discussed. At the hearing, each party may make an affirmative presentation only on issues raised in that party's case brief and may make rebuttal presentations only on arguments included in that...

  19. Biocompatibility of poly(DL-lactic acid/glycine) copolymers

    NARCIS (Netherlands)

    Schakenraad, J.M.; Dijkstra, Pieter J.

    1991-01-01

    In this review the authors discuss the polymer chemical, physical and cell biological aspects of poly (DL-lactic acid/glycine) copolymers, both in vitro and in vivo. The mechanism and rate of degradation and the degree of foreign body reaction were evaluated as a function of the molecular

  20. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  1. A critical role for glycine transporters in hyperexcitability disorders

    Directory of Open Access Journals (Sweden)

    Robert J Harvey

    2008-03-01

    Full Text Available Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle refl ex, known as hyperekplexia (OMIM 149400. This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and nonsense mutations in the glycine receptor (GlyR α1 subunit gene (GLRA1 on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB and the GlyR clustering proteins gephyrin (GPNH and collybistin (ARHGEF9. Recent studies of the Na+ /Cl--dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899. These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

  2. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Science.gov (United States)

    2010-04-01

    ... therapy. Oral therapy in these cases is too slow. Animals which cannot drink after initial intravenous...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Dextrose/glycine... treatment following intravenous fluid therapy. (2) Dissolve each packet in two quarts of warm water and...

  3. Screening Soybean (Glycine max (L) Merril) lines for morphological ...

    African Journals Online (AJOL)

    23 Screening Soybean (Glycine mtLr: (L) Merril) lines for morphological resistance to the southern green stink bug,. Nezara viridu!a (L) (Hemiptera: Pentatomidae). Table 1. Summary of the A NOVA table for the selected soybean morphological characteristics. (a) Season1 {97a). Plant. Abaxial height trichome density.

  4. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Abstract. Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to ...

  5. Glycine max and Moringa oleifera : nutritional values, processing ...

    African Journals Online (AJOL)

    Soymilk, one of the end-products of Glycine max (soy), is a highly nutritious drink containing a high quality protein which can greatly contribute to strengthen some human body functions. Regarding M. oleifera, it's called “miracle plant” because of the usefulness of all its parts in nutrition, medicine and cosmetic. Therefore ...

  6. Characterization and sequence analysis of cysteine and glycine-rich ...

    African Journals Online (AJOL)

    Cysteine and glycine rich protein, CSRP3 also referred to as the muscle LIM protein (MLP), has been investigated in native Egyptian cattle and buffalo (river buffalo). RNA extraction and cDNA synthesis were conducted from different tissue samples. Primers specific for CSRP3 were designed using known cDNA sequences ...

  7. Classical dynamics simulations of interstellar glycine formation via ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 10. Classical dynamics simulations of interstellar glycine formation via CH₂ = NH + CO + H₂O reaction. YOGESHWARAN KRISHNAN ALLEN VINCENT MANIKANDAN PARANJOTHY. REGULAR ARTICLE Volume 129 Issue 10 October 2017 pp 1571- ...

  8. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    Soybean ( Glycine max ) as a versatile biocatalyst for organic synthesis. ... Most of the obtained alcohols have commercial value as cosmetic fragrances. Although, the enzymes present in soybean (reductase/lipase) has not been defined, the reaction is an important route for the preparation of pure alcohols and carboxylic ...

  9. Melanoidins extinction coefficient in the glucose/glycine Maillard reaction

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2003-01-01

    Melanoidins (brown, nitrogenous polymers and co-polymers) are the final products of the Maillard reaction. The glucose/glycine melanoidins extinction coefficient was determined using C-14-labelled glucose at three different reaction conditions. The absorbance was measured at different wavelengths

  10. Microhydration of protonated glycine: an ab initio family tree.

    Science.gov (United States)

    Michaux, Catherine; Wouters, Johan; Perpète, Eric A; Jacquemin, Denis

    2008-02-28

    The incremental hydration of the glycine cation is investigated using an ab initio approach fully correcting for basis set superposition errors and explicitly incorporating electron-correlation effects. Structures with zero to four surrounding water molecules have been determined. It is demonstrated that the successive aggregates follow a Darwinian family tree, the most stable complexes systematically belonging to the same branch of the tree. In strong contrast with neutral glycine, the direct hydrogen bonding to the glycine cation is favored over bridging water structures. The agreement between experimental and theoretical hydration enthalpies and Gibbs free energies is impressive, as ab initio estimates almost systematically fit the experimental error bars. For GlyH(+)-(H2O) and GlyH(+)-(H2O)3, we show that two structures are generated by the experimental setup. The present approach also resolves most of the previous theory/experiment discrepancies and provides patterns for the evolution of the vibrational spectra: a decrease of the hydrogen-bond stretching frequency indicating second-shell water molecules. Additionally, the impact of bulk solvent solvation is investigated, as four discrete water molecules still do not fully hydrate the protonated glycine.

  11. Soybean performance ( Glycine max (L) Merr ) on tropical soils with ...

    African Journals Online (AJOL)

    Soybean performance ( Glycine max (L) Merr ) on tropical soils with nitrogen and phosphorus fertilization. ... Abstract. Pot trial was conducted to investigate the effects of soil types, nitrogen and phosphorus application on the yield, and nodulation and nutrient uptake of soybean grown on tropical soils. Results showed that ...

  12. Intercrop performance of different varieties of soybean ( Glycine Max ...

    African Journals Online (AJOL)

    Field experiments to investigate intercrop performance of different varieties of soybean (Glycine Max. (L.) Merril) in a cassava (Manihot esculenta Crantz) based cropping system within the derived savannah zone were conducted at Nsukka Utisol in Southeast Nigeria ecological. Two varieties of cassava and six varieties of ...

  13. A critical role for glycine transporters in hyperexcitability disorders.

    Science.gov (United States)

    Harvey, Robert J; Carta, Eloisa; Pearce, Brian R; Chung, Seo-Kyung; Supplisson, Stéphane; Rees, Mark I; Harvey, Kirsten

    2008-01-01

    Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and non-sense mutations in the glycine receptor (GlyR) alpha1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR beta subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na(+)/Cl(-)-dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

  14. Characterization of potassium glycinate for carbon dioxide absorption purposes

    NARCIS (Netherlands)

    Portugal, A. F.; Derks, P. W. J.; Versteeg, G. F.; Magalhaes, F. D.; Mendes, A.

    2007-01-01

    Aqueous solutions of potassium glycinate were characterized for carbon dioxide absorption purposes. Density and viscosity of these solutions, with concentrations ranging from 0.1 to 3 M, were determined at temperatures from 293 to 313 K. Diffusivity of CO2 in solution was estimated applying the

  15. Protective effect of phenylalanine and glycine on chloramphenicol ...

    African Journals Online (AJOL)

    The effect of phenylalanine and glycine on chloramphenicol (CAP) induced bone marrow toxicity in albino rats infected with Klebsiella pneumoniae was investigated. The aim was investigate whether the treatment of the infected rats with either of these amino acids or their combination could reverse the major bone marrow ...

  16. Characterization and sequence analysis of cysteine and glycine-rich ...

    African Journals Online (AJOL)

    Tarek

    2011-04-18

    Apr 18, 2011 ... Cysteine and glycine rich protein, CSRP3 also referred to as the muscle LIM protein (MLP), has been investigated in native Egyptian cattle and buffalo (river buffalo). RNA extraction and cDNA synthesis were conducted from different tissue samples. Primers specific for CSRP3 were designed using known.

  17. Synthetic and mechanistic insight into nosylation of glycine residues

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Sølling, Theis Ivan; Strømgaard, Kristian

    2013-01-01

    The Fukuyama-Mitsunobu alkylation procedure is widely used to introduce alkyl substituents to amino groups in general and N-alkylation of peptides in particular. Here we have investigated the procedure in detail for N-alkylation of peptides with N-terminal glycine residues, based on the observati...... the N(-) residue can become closer to the SO(2) unit. Finally, the mono-nosylated N-terminal glycine could be obtained by careful optimization of the procedure, adding only one equivalent of 2-nitrobenzenesulfonyl chloride.......The Fukuyama-Mitsunobu alkylation procedure is widely used to introduce alkyl substituents to amino groups in general and N-alkylation of peptides in particular. Here we have investigated the procedure in detail for N-alkylation of peptides with N-terminal glycine residues, based on the observation...... that standard conditions lead to substantial bis-nosylation of the glycine amino group. A systematic evaluation of this observation was carried out and it was demonstrated that for peptides with alanine, β-alanine or γ-aminobutyric acid (GABA) as N-terminal residues mono-nosylation was observed under the same...

  18. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the transformation efficiency and proof the capability of whisker supersonic (WSS) method as an alternative option for soybean (Glycine max [L] Merrill) transformation. We compared soybean transformation efficiency obtained by WSS-mediated with that of particle bombardment ...

  19. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  20. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy

    Science.gov (United States)

    Ruff, Karen M.

    2014-01-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform. PMID:25246650

  1. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463.

    Science.gov (United States)

    Lee, Jeong-Dong; Shannon, J Grover; Vuong, Tri D; Nguyen, Henry T

    2009-01-01

    Tolerant soybean (Glycine max [L.] Merr.) cultivars aid in reducing salt damage in problem fields. New genes are important to reduce losses from salt injury. Objectives of this study were to determine inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) PI483463 and to test allelism of tolerance genes from genotypes PI483463 and S-100, a common ancestor of southern in US cultivars. Tolerant (T) PI483463 was crossed to sensitive (S) cultivar Hutcheson to study inheritance. PI483463 (T) was crossed with S-100 (T) to test for allelism. Parents, F(1) plants, F(2) populations, and F(2:3) lines were assayed in a 100 mM salt solution to determine tolerance. F(2) from T x S cross segregated 3(T):1 (S) and the F(2:3) lines responded 1 (T): 2 (segregating):1 (S). F(2) plants from PI483463 (T) x S-100 (T) segregated 15 (T):1 (S) indicating different genes from the 2 sources. Results showed that G. soja line PI483463 had a single dominant gene for salt tolerance, which was different than the gene in G. max line S-100. The symbol, Ncl2, was designated for this new salt tolerance allele.

  2. Effect of different potting systems; inoculation time; nematode density and sources of cereal cyst nematode (Heterodera filipjevi) on juvenile penetration into wheat root system.

    Science.gov (United States)

    Pariyar, S R; Dababat, A A; Nicol, J M; Sikora, R A

    2010-01-01

    Investigations were designed to optimize testing systems for screening wheat breeding lines for resistance to Heterodera filipjevi. The effects of: 1) plant potting systems 2) inoculum level and time of inoculation 3) and type of inoculum of H. filipjevi on detection accuracy were examined in growth chamber experiments in Turkey. The rate of nematode penetration in the highly susceptible variety Bezostaya was used as the base measurement of efficacy. The results showed that the highest level of penetration coupled with high level of germination was obtained in plastic tubes (13 cm long x 3 cm in diam.) when compared to both small flower pots (400 cm3) and smaller plastic tubes (10.2 cm long x 0.8 cm in diam.). The highest rate of nematode penetration into wheat root system was obtained by inoculating the seedlings with 1000 J2 per plant. However, inoculation with 200 J2 at sowing or 200 J2 at sowing plus an additional 200 J2 after germination improved percent penetration when compared to inoculation with 600 or 1000 J2/plant at sowing. The test on the optimum form of inoculum showed that inoculating the seedling with J2's gave the highest rate of nematode penetration over inoculum with eggs or cysts. The results of these experiments demonstrated that screening wheat for resistance can be optimized by raising the seedlings in plastic tubes and inoculating them with 400 J2.

  3. The Beet Cyst Nematode Heterodera schachtii Modulates the Expression of WRKY Transcription Factors in Syncytia to Favour Its Development in Arabidopsis Roots

    Science.gov (United States)

    Ali, Muhammad Amjad; Wieczorek, Krzysztof; Kreil, David P.; Bohlmann, Holger

    2014-01-01

    Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin. PMID:25033038

  4. The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis☆

    Science.gov (United States)

    Elashry, Abdelnaser; Okumoto, Sakiko; Siddique, Shahid; Koch, Wolfgang; Kreil, David P.; Bohlmann, Holger

    2013-01-01

    The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for nematode development. Arabidopsis contains a large number of different amino acid transporters in several gene families but those of the AAP family were found to be especially expressed in syncytia. Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and AAP8 significantly reduced the number of female nematodes developing on these plants. Our study showed that amino acid transport into syncytia is important for the development of the nematodes. PMID:23831821

  5. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  6. Synthesis and Characterization of Copper (II) Complex of Glycine ...

    African Journals Online (AJOL)

    Copper(II)Complex of amino acid was synthesized by refluxing the mixtures of ethanolic solutions of glycine and copper(II)chloride. The complex compound was characterized by melting point (225oC), PH 5.78 at 28oC, moisture content of 5% with a yield of 68%. The compound is insoluble in water but readily soluble in ...

  7. Thermal effects of carbonated hydroxyapatite modified by glycine and albumin

    OpenAIRE

    Gerk, S. A.; Golovanova, O. A.; Kuimova, Marina Valerievna

    2017-01-01

    In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydra...

  8. Glycine receptor mouse mutants: model systems for human hyperekplexia.

    Science.gov (United States)

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-11-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. © 2013 The British Pharmacological Society.

  9. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids.

    Science.gov (United States)

    Badenhorst, Christoffel Petrus Stephanus; Erasmus, Elardus; van der Sluis, Rencia; Nortje, Carla; van Dijk, Alberdina Aike

    2014-08-01

    A number of endogenous and xenobiotic organic acids are conjugated to glycine, in animals ranging from mosquitoes to humans. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, the recently proposed glycine deportation hypothesis states that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilized as neurotransmitters in the central nervous systems of animals. This hypothesis is based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. In this review it will be argued that the major role of glycine conjugation is to dispose of the end products of phenylpropionate metabolism. Furthermore, glucuronidation, which occurs in the endoplasmic reticulum, would not be ideal for the detoxification of free benzoate, which has been shown to accumulate in the mitochondrial matrix. Glycine conjugation, however, prevents accumulation of benzoic acid in the mitochondrial matrix by forming hippurate, a less lipophilic conjugate that can be more readily transported out of the mitochondria. Finally, it will be explained that the glycine conjugation of benzoate, a commonly used preservative, exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated.

  10. Cerebrospinal fluid glycine in nonketotic hyperglycinemic: effect of treatment with sodium benzoate and a ventricular shunt.

    Science.gov (United States)

    Krieger, I; Winbaum, E S; Eisenbrey, A B

    1977-05-01

    In three infants with nonketotic hyperglycinemia, glycine was increased three-to fourfold in plasma, 13- to 28-fold in lumbar spinal fluid, and was higher yet in ventricular fluid. Oral sodium benzoate lowered cerebrospinal fluid (CSF) glycine by greater than 40%, but did not change the abnormal plasma: CSF ratio. An adult control, made hyperglycinemic with oral glycine, had a normal plasma: CSF ratio. Treatment of one patient with sodium benzoate from birth did not prevent mental retardation; the degree of brain stem depression was a function of CSF glycine in another patient. The persistance of glycine elevation in CSF, although therapy maintained normal concentration in plasma, appears to be caused by overproduction in brain and limitation of the high-capacity lumbar spinal reabsorptive mechanism. Treatment through lowering of CNS glycine by use of a ventricular shunt was explored.

  11. Environmental versus geographical effects on genomic variation in wild soybean (Glycine soja) across its native range in northeast Asia.

    Science.gov (United States)

    Leamy, Larry J; Lee, Cheng-Ruei; Song, Qijian; Mujacic, Ibro; Luo, Yan; Chen, Charles Y; Li, Changbao; Kjemtrup, Susanne; Song, Bao-Hua

    2016-09-01

    A fundamental goal in evolutionary biology is to understand how various evolutionary factors interact to affect the population structure of diverse species, especially those of ecological and/or agricultural importance such as wild soybean (Glycine soja). G. soja, from which domesticated soybeans (Glycine max) were derived, is widely distributed throughout diverse habitats in East Asia (Russia, Japan, Korea, and China). Here, we utilize over 39,000 single nucleotide polymorphisms genotyped in 99 ecotypes of wild soybean sampled across their native geographic range in northeast Asia, to understand population structure and the relative contribution of environment versus geography to population differentiation in this species. A STRUCTURE analysis identified four genetic groups that largely corresponded to the geographic regions of central China, northern China, Korea, and Japan, with high levels of admixture between genetic groups. A canonical correlation and redundancy analysis showed that environmental factors contributed 23.6% to population differentiation, much more than that for geographic factors (6.6%). Precipitation variables largely explained divergence of the groups along longitudinal axes, whereas temperature variables contributed more to latitudinal divergence. This study provides a foundation for further understanding of the genetic basis of climatic adaptation in this ecologically and agriculturally important species.

  12. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Agasti, Nityananda, E-mail: nnagasti@gmail.com [Department of Chemistry, University of Delhi, Delhi 110007 (India); Singh, Vinay K. [Department of Chemistry, Sri Aurobindo College, University of Delhi, Delhi 110017 (India); Kaushik, N.K. [Department of Chemistry, University of Delhi, Delhi 110007 (India)

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  13. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32.

    Science.gov (United States)

    Zhang, Shichen; Zhang, Zhongnan; Bales, Carmille; Gu, Cuihua; DiFonzo, Chris; Li, Ming; Song, Qijian; Cregan, Perry; Yang, Zhenyu; Wang, Dechun

    2017-09-01

    Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance. Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F3-derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5-46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5-22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.

  14. Gas-phase lithium cation affinity of glycine.

    Science.gov (United States)

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results.

  15. Creation of certified reference material based on glycine

    Directory of Open Access Journals (Sweden)

    M. P. Krasheninina

    2015-01-01

    Full Text Available The approaches for creating reference materials of glycine with certified values of nitrogen and base material mass fractions GSO 10272-2013 have been presented. Created certified reference material is intended for calibration and graduation of measurement equipments based on the different physical-chemical methods of analysis, as well as for check of error of measurement procedures. Besides GSO 10272-2013 can be used tor evaluating the purity of the components of medicinal preparations in pharmaceutical industry. GSO 10272-2013 will be used as an object for key comparisons in 2015.

  16. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans.

    Science.gov (United States)

    Anderson, Justin E; Kono, Thomas J Y; Stupar, Robert M; Kantar, Michael B; Morrell, Peter L

    2016-04-07

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. Copyright © 2016 Anderson et al.

  17. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars.

    Science.gov (United States)

    Concibido, V C; La Vallee, B; McLaird, P; Pineda, N; Meyer, J; Hummel, L; Yang, J; Wu, K; Delannay, X

    2003-02-01

    The value of exotic germplasm in broadening the genetic base of most crops has been demonstrated many times. However, the difficulties involved in working with exotic germplasm have limited their utility in plant breeding. Unwanted linkages often thwart the successful incorporation of beneficial exotic genes into commercial lines. Thus, the use of exotics in traditional breeding makes the process of crop improvement a tedious, time-consuming and expensive endeavor. The availability of molecular markers makes it possible to isolate specific genomic regions and transfer them into commercial varieties with minimal linkage drag. We found a yield-enhancing quantitative trait locus (QTL) from Glycine soja (Siebold and Zucc.) by evaluating a population of 265 BC(2) individuals from a cross between HS-1 and PI 407305. The yield QTL was located on linkage group B2(U26) of the soybean [Glycine max (L.) Merrill] genetic linkage map. In a 2-year, multi-location study, individuals carrying the PI 407305 haplotype at the QTL locus demonstrated a 9.4% yield advantage over individuals that did not contain the exotic haplotype. When tested in a more uniform "HS-1-like" background in two locations, we observed an 8% yield advantage for lines that carry the PI 407305 haplotype. We further assessed the QTL effect in various elite soybean genetic backgrounds. The yield effect was consistently observed in only two of six genetic backgrounds. Individuals carrying the PI 407305 haplotype at the QTL locus had a 9% yield advantage in yield trials across locations. Despite the limited adaptability of this yield-QTL across genetic backgrounds, this study demonstrates the potential of exotic germplasm for yield enhancement in soybean.

  18. Growth of glycine ethyl ester hydrochloride and its characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, G.; Pari, S., E-mail: sparimyur@gmail.com

    2016-11-15

    Single crystal of glycine ethyl ester hydrochloride by slow evaporation method is reported. The grown crystal characterized by single crystal X-ray diffraction, FT-IR, UV–Vis–NIR and fluorescence spectroscopy. It is established that the crystal falls under the monoclinic system and space group P21/c with the cell parameters as: a=8.565 Å, b=12.943 Å, c=6.272 Å, α=γ=90°, β=103.630º. UV–Vis–NIR spectrum shows indirect allowed transition with a band gap of 5.21 eV and other optical properties are measured. The crystal is also shown to have a high transmittance in the visible region. The third order nonlinear property and optical limiting have been investigated using Z-Scan technique. Complex impedance spectrum measured at the dc conductivity. Dependence of dielectric constant, dielectric loss and ac conductivity on frequency at different temperature of applied ac field is analyzed. The mechanical behavior has been assessed by Vickers microhardness indenter. The thermal behavior of glycine ethyl ester hydrochloride was analyzed using TG/DTA thermal curves. From the thermal study, the material was found to possess thermal stability up to 174 °C. The predicted NLO properties, UV–Vis transmittance and Z-scan studies indicate that is an attractive material for photonics optical limiting applications.

  19. Alpha2 subunit specificity of cyclothiazide inhibition on glycine receptors.

    Science.gov (United States)

    Zhang, Xiao-Bing; Sun, Guang-Chun; Liu, Lu-Ying; Yu, Fang; Xu, Tian-Le

    2008-04-01

    In the mammalian cortex, alpha2 subunit-containing glycine receptors (GlyRs) mediate tonic inhibition, but the precise functional role of this type of GlyRs is difficult to establish because of the lack of subtype-selective antagonist. In this study, we found that cyclothiazide (CTZ), an epileptogenic agent, potently inhibited GlyR-mediated current (I(Gly)) in cultured rat hippocampal neurons. The inhibition was glycine concentration-dependent, suggesting a competitive mechanism. Note that GlyRs containing the alpha2 but not alpha1 or alpha3 subunits, when being heterologously expressed in human embryonic kidney 293T cells, were inhibited by CTZ, indicating subunit specificity of CTZ action. In addition, the degree of CTZ inhibition on I(Gly) in rat spinal neurons declined with time in culture, in parallel with a decline of alpha2 subunit expression, which is known to occur during spinal cord development. Furthermore, site-directed mutagenesis indicates that a single-amino acid threonine at position 59 near the N terminus of the alpha2 subunit confers the specificity of CTZ action. Thus, CTZ is a potent and selective inhibitor of alpha2-GlyRs, and threonine at position 59 plays a critical role in the susceptibility of GlyR to CTZ inhibition.

  20. Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons.

    Directory of Open Access Journals (Sweden)

    Loïs S Miraucourt

    Full Text Available Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCgamma. Selective inhibition of PKCgamma as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCgamma-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCgamma might provide a new tool for alleviating allodynia in the clinical setting.

  1. Oral administration of glycine in the prevention of restenosis after coronary angioplasty. A double blind placebo controlled randomized feasibility trial evaluating safety and efficacy of glycine in the prevention of restenosis after angioplasty

    NARCIS (Netherlands)

    Khan, Muchtiar; Ron van der Wieken, L.; Riezebos, Robert K.; Tijssen, Jan G. P.; Kiemeneij, Ferdinand; Slagboom, Ton; Laarman, Gert-Jan

    2006-01-01

    OBJECTIVES: Evaluation of safety, feasibility, and efficacy of oral administered glycine in prevention of angiographic restenosis six months after percutaneous coronary intervention (PCI). BACKGROUND: The amino acid glycine modulates immunological response and enhances the production of endothelial

  2. Crystal lattice dependency of the free radicals found in irradiated glycine

    NARCIS (Netherlands)

    Bie, M.J.A. de; Braams, R.

    1969-01-01

    The EPR spectra, and hence the stable free radicals, are different for the - or γ-irradiated α-, β- and γ-crystal forms of polycrystalline glycone. Therefore comparisons of the trideutero-glycine EPR spectrum with the EPR spectra of non-deuterated glycine are open to question

  3. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    glycine activation but not during ivermectin activation. This prompted the hypothesis that this signal reports a glycine-mediated conformational change not essential for activation. We tested this by investigating whether the fluorescence signal depended on whether the fluorophore was attached...

  4. Identificatoin and confirmation of resistance against soybean aphid (Aphis glycines) in eight wild soybean lines

    Science.gov (United States)

    The development and use of aphid-resistant soybean (Glycine max) cultivars has been complicated by the presence of multiple virulent biotypes of the soybean aphid (SA, Aphis glycines Matsumura). Ultimately, a variety of unique resistance sources may be needed to develop cultivars with a broad spectr...

  5. Kinetics and mechanism of oxidation of glycine by iron (III)-1, 10 ...

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  6. Stoichiometry of Zn(II)-heparin-glycine complex, determined using data from elemental and thermal analysis

    Science.gov (United States)

    Feofanova, M. A.; Skobin, M. I.; Kryukov, T. V.; Alekseev, V. G.; Ryasenskii, S. S.

    2017-10-01

    Ternary polymer Zn(II)-heparin-glycine complex with the composition {Na3[ZnHepGly]·H2O} n , where Hep4- is the monomer chain of a heparin polyanion and Gly- is the chain of a glycine anion, is isolated in a solid state from a water solution, and is characterized via elemental and thermal analysis.

  7. Hydrogen bond mediated stabilization of the salt bridge structure for the glycine dimer anion

    NARCIS (Netherlands)

    Heiles, S.; Cooper, R.J.; Berden, G.; Oomens, J.; Williams, E.R.

    2015-01-01

    The formation of a salt bridge in deprotonated glycine dimer anions in a solvent-free environment is investigated using both infrared multiple photon dissociation spectroscopy between 600 and 1800 cm(-1) and theory. The zwitterionic and nonzwitterionic forms of glycine in this complex are computed

  8. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  9. THE INCORPORATION OF RADIOACTIVITY FROM GLYCINE-C$sup 14$ BY MAMMALIAN SPERMATOZOA

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.N.

    1962-05-15

    The metabolic pathways of glycine incorporation were investigated by biochemical and radibautographic methods. Results show that glycine is utilized hy bovine spermatoza and is incorporated into all fractions of the sperm cell. Incorporation into the nucleic acid fraction and especially into thymine indicates that there is a turnover in the desoxyribenucleic acid during storage of bovine spermatoza. (C.H.)

  10. Antioxidant and Biological Activities of Proteinaceous Extract from Algerian Glycine max Plant.

    Science.gov (United States)

    Soussi, Nassima; Moulay, Saad; Bachari, Khaldoun; Benmiri, Yamina

    2017-01-01

    Glycine max is commonly used in Algeria for treatment of anemia deficiency and osteoporosis, it ranks first in terms of vegetal proteins. The experiment was aimed at characterizing the proteinaceous Glycine max extract and evaluating its antioxidant, biological and hematological potential. Extraction of proteinaceous materials from Glycine max plant was undertaken using water and n-hexane as extracting media. The isolation of proteins from the crude materials was done, providing the use of ammonium sulfate. The Glycine max proteins were characterized by UV-visible and FT-IR spectroscopy and analyzed by SEM micrograph and x-ray diffraction (XRD). Rheological parameters G' and G'' were assessed. The isolated proteins were tested for their antioxidant, antimicrobial and hemagglutination activities. There was a gelling effect of the protein extract which can be used as an alternative in principally made vaccines with its microbiological and antifungal activities. The proteinaceous extract from Algerian Glycine max would have a potential use in biomedical application.

  11. Glycine Cleavage Powers Photoheterotrophic Growth of Chloroflexus aurantiacus in the Absence of H 2.

    Science.gov (United States)

    He, Lian; Wang, Yaya; You, Le; Khin, Yadana; Tang, Joseph K-H; Tang, Yinjie J

    2015-01-01

    Chloroflexus aurantiacus is an anoxygenic phototrophic bacterium. Its unique CO2 fixation pathway and primitive light-harvesting antenna complexes have attracted extensive research attentions. In this work, we investigated the photoheterotrophic growth of C. aurantiacus J-10-fl using acetate [at 55°C and without H2(g)]. The results indicate that glycine can promote anaerobic biomass production in a minimal medium by threefold to fivefold. Via (13)C-metabolite analysis, we observed that glycine was involved in serine synthesis. Instead of being used as a major carbon source, glycine was degraded to produce C1 units and NAD(P)H. Tracer experiments also suggest that photoheterotrophic cultures growing with a exogenous glycine source exhibited capabilities of assimilating CO2 via multiple routes (including the 3-hydroxypropionate pathway). Finally, glycylglycine, a commonly used culture buffer, also significantly enhanced photoheterotrophic growth of C. aurantiacus, probably due to its thermal or enzymatic breakdown to glycine.

  12. Glycine cleavage powers photoheterotrophic growth of Chloroflexus aurantiacus in the absence of H2

    Directory of Open Access Journals (Sweden)

    Lian eHe

    2015-12-01

    Full Text Available Chloroflexus aurantiacus is an anoxygenic phototrophic bacterium. Its unique CO2 fixation pathway and primitive light-harvesting antenna complexes have attracted extensive research attentions. In this work, we investigated the photoheterotrophic growth of C. aurantiacus J-10-fl using acetate (at 55 oC and without H2(g. The results indicate that glycine can promote anaerobic biomass production in a minimal medium by 3~5 folds. Via 13C-metabolite analysis, we observed that glycine was involved in serine synthesis. Instead of being used as a major carbon source, glycine was degraded to produce C1 units and NAD(PH. Tracer experiments also suggest that photoheterotrophic cultures growing with a exogenous glycine source exhibited capabilities of assimilating CO2 via multiple routes (including the 3-hydroxypropionate pathway. Finally, glycylglycine, a commonly used culture buffer, could also release glycine via thermal or enzymatic degradation to significantly enhance photoheterotrophic growth of C. aurantiacus.

  13. Fast heavy-ion radiation damage of glycine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryosuke [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-12-15

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  14. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.

    Science.gov (United States)

    Lu, Yonghai; Lam, Honming; Pi, Erxu; Zhan, Qinglei; Tsai, Sauna; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-09-11

    Metabolomics is developing as an important functional genomics tool for understanding plant systems' response to genetic and environmental changes. Here, we characterized the metabolic changes of cultivated soybean C08 (Glycine max L. Merr) and wild soybean W05 (Glycine soja Sieb.et Zucc.) under salt stress using MS-based metabolomics, in order to reveal the phenotypes of their eight hybrid offspring (9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590). Total small molecule extracts of soybean seedling leaves were profiled by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Fourier transform mass spectrometry (LC-FT/MS). We found that wild soybean contained higher amounts of disaccharides, sugar alcohols, and acetylated amino acids than cultivated soybean, but with lower amounts of monosaccharides, carboxylic acids, and unsaturated fatty acids. Further investigations demonstrated that the ability of soybean to tolerate salt was mainly based on synthesis of compatible solutes, induction of reactive oxygen species (ROS) scavengers, cell membrane modifications, and induction of plant hormones. On the basis of metabolic phenotype, the salt-tolerance abilities of 9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590 were discriminated. Our results demonstrated that MS-based metabolomics provides a fast and powerful approach to discriminate the salt-tolerance characteristics of soybeans.

  15. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy.

    Science.gov (United States)

    Jiang, Guichang; Yin, Fen; Duan, Jihua; Li, Guangtao

    2015-01-01

    Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. They are completely soluble in water, yielding a clear brown solution. The products were characterized by fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV-Vis), (1)H NMR, (13)C NMR, thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The assembly behavior of water-soluble fullerene-glycine derivatives was investigated by SEM. The results show that the fullerene-glycine derivatives create morphology that is sphere-like. The cytotoxicity to cancer cell lines of the fullerene-glycine derivatives was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and flow cytometry. The results show that fullerene-glycine derivatives exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. The cytotoxicity mechanism of fullerene-glycine derivatives was investigated for the first time. Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. The products were characterized by FTIR, UV-Vis, (1)H NMR, (13)C NMR, TGA, and SEM. The bioactivities of fullerene-glycine derivative materials have been tested, and the results show that compared with the fullerene complex, the fullerene-glycine derivative materials exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. SEM images showed the macrostructure of fullerene-glycine derivative materials was spheres.

  16. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine

    Science.gov (United States)

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% fr...

  17. Proteome data associated with the leaf senescence in Glycine max

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2016-12-01

    Full Text Available The data presented in this article are associated with the article “Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max” (R. Gupta, S.J. Lee, C.W. Min, S.W. Kim, K.-H. Park, D.-W. Bae, et al., 2016 [1]. Leaf senescence is one of the important aspects of the life cycle of a plant that leads to the recycling of nutrients from source to sink cells. To understand the leaf senescence-associated proteins, we used a combination of gel-based 2-DE and 1-DE shotgun proteomic approaches. Here, we display the 2-DE, Mass spectrometry, and Gene ontology data related with the leaf senescence in soybean [1].

  18. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  19. Modulation of gephyrin-glycine receptor affinity by multivalency

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Schindelin, Hermann

    2014-01-01

    Gephyrin is a major determinant for the accumulation and anchoring of glycine receptors (GlyRs) and the majority of γ-aminobutyric acid type A receptors (GABAARs) at postsynaptic sites. Here we explored the interaction of gephyrin with a dimeric form of a GlyR β-subunit receptor-derived peptide......, and isothermal titration calorimetry (ITC) demonstrated that this dimeric ligand is capable of binding simultaneously to two receptor binding sites and that this multivalency results in a 25-fold enhanced affinity. Our study therefore suggests that the oligomeric state of gephyrin and the number of gephyrin......-binding subunits in the pentameric GABAARs and GlyRs together control postsynaptic receptor clustering....

  20. Bioactivities of Novel Metal Complexes Involving B Vitamins and Glycine

    Directory of Open Access Journals (Sweden)

    Fazary Ahmed E.

    2016-01-01

    Full Text Available In this work twelve novel mixed ligand complexes were synthesized. The complexes were formed between a metal ion (Cu(II, Cd(II, Mn(II, Fe(III, Ni(II, Pb(II and vitamins (B 3 and B 9 as primary ligands, and glycine as secondary ligand. Melting points, conductivities, and magnetic susceptibilities of the synthesized complexes were determined and the complexes were subjected to elemental analyses. The presence of coordination water molecules in the complex was also supported by TG/DTG thermal analysis. Full elucidation of the molecular structures for the synthesized mixed ligand complexes were confirmed using detailed spectroscopic IR, 1H-, 13C-NMR, and XRD techniques. In addition, cytotoxic and antioxidant activities of the twelve synthesized solid complexes were tested to evaluate their bioactivities.

  1. Thermal effects of carbonated hydroxyapatite modified by glycine and albumin

    Science.gov (United States)

    Gerk, S. A.; Golovanova, O. A.; Kuimova, M. V.

    2017-01-01

    In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase.

  2. Degradation of glycine and alanine on irradiated quartz.

    Science.gov (United States)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  3. Reduction of glycine particle size by impinging jet crystallization.

    Science.gov (United States)

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Phytoremediation of Lead Polluted Soil by Glycine max L.

    Directory of Open Access Journals (Sweden)

    Sesan Abiodun Aransiola

    2013-01-01

    Full Text Available A study was designed to assess the phytoextraction potential of Glycine max L. for lead (Pb. Pots experiment was conducted. Viable seeds were planted in 5 kg of soil placed in each plastic pot having 0 ppm (control, 5 ppm, 10 ppm, 15 ppm, 20 ppm and 25 ppm of Pb respectively. The study was carried out for a period of 12 weeks under natural conditions. Physicochemical properties of the soil were determined using standard methods. The results revealed that pH, phosphorous and moisture contents increased while nitrogen and organic carbon contents decreased in polluted soil remediated with Glycine max L. compared to the unpolluted soil. Leaf, stem, seeds and roots of the plant were analyzed for Pb uptake after 12 weeks. The plants mopped up substantial concentration of Pb in the above plant biomass of the seeds (4.2 mg/kg, stem (1.37 mg/kg and leaves (3.37 mg/kg compared to concentrations in the roots (1.53 mg/kg. The phytoextraction ability of the plant was assessed in terms of its bioconcentration factor (BCF and translocation factor (TF. It was observed that the levels of Pb in the roots and shoots after 12 weeks showed that more bioavailable pool of Pb was translocated from the root to seeds, leaves and stem in that order. The results obtained suggest that the plant has phytoextraction ability and could be used in restoring soil polluted with Pb.

  5. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures.

    Science.gov (United States)

    Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C

    2018-01-14

    At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.

  6. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  7. Purification and characterization of the glycine receptor of pig spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Graham, D.; Pfeiffer, F.; Simler, R.; Betz, H.

    1985-02-12

    A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10,000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48,000, 58,000, and 93,000. Photoaffinity labeling with (/sup 3/H)strychnine showed that the (/sup 3/H)strychnine binding site is associated with the Mr 48,000 and, to a much lesser extent, the Mr 58,000 polypeptides. (/sup 3/H)Strychnine binding to the purified receptor exhibited a dissociation constant K /sub D/ of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the (/sup 3/H)strychnine-labeled Mr 48,000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.

  8. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems.

    Science.gov (United States)

    Valadez-Bustos, Ma Guadalupe; Aguado-Santacruz, Gerardo Armando; Tiessen-Favier, Axel; Robledo-Paz, Alejandrina; Muñoz-Orozco, Abel; Rascón-Cruz, Quintin; Santacruz-Varela, Amalio

    2016-04-01

    Glycine betaine is a quaternary ammonium compound that accumulates in a large variety of species in response to different types of stress. Glycine betaine counteracts adverse effects caused by abiotic factors, preventing the denaturation and inactivation of proteins. Thus, its determination is important, particularly for scientists focused on relating structural, biochemical, physiological, and/or molecular responses to plant water status. In the current work, we optimized the periodide technique for the determination of glycine betaine levels. This modification permitted large numbers of samples taken from a chlorophyllic cell line of the grass Bouteloua gracilis to be analyzed. Growth kinetics were assessed using the chlorophyllic suspension to determine glycine betaine levels in control (no stress) cells and cells osmotically stressed with 14 or 21% polyethylene glycol 8000. After glycine extraction, different wavelengths and reading times were evaluated in a spectrophotometer to determine the optimal quantification conditions for this osmolyte. Optimal results were obtained when readings were taken at a wavelength of 290 nm at 48 h after dissolving glycine betaine crystals in dichloroethane. We expect this modification to provide a simple, rapid, reliable, and cheap method for glycine betaine determination in plant samples and cell suspension cultures. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures

    Science.gov (United States)

    Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C.

    2018-01-01

    At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.

  10. Modulation of Human Colostrum Phagocyte Activity by the Glycine-Adsorbed Polyethylene Glycol Microspheres

    Directory of Open Access Journals (Sweden)

    Paulo Celso Leventi Guimarães

    2013-01-01

    Full Text Available Colostrum is a secretion that contains immunologically active components, including immunocompetent cells and glycine, which has anti-inflammatory, immunomodulatory, and cytoprotective effects. The aim of this study was to evaluate the adsorption of glycine onto polyethylene glycol (PEG microspheres and to verify the immunomodulatory effect of this nanomaterial on human colostrum phagocytes. The PEG microspheres were evaluated by fluorescence microscopy. The effects of PEG microspheres with adsorbed glycine on viability, superoxide release, phagocytosis, microbicidal activity, and intracellular calcium release of mononuclear (MN and polymorphonuclear (PMN colostrum phagocytes were determined. Fluorescence microscopy analyses revealed that glycine was able to be adsorbed to the PEG microspheres. The PMN phagocytes exposed to glycine-PEG microspheres showed the highest superoxide levels. The phagocytes (both MN and PMN displayed increased microbicidal activity and intracellular calcium release in the presence of PEG microspheres with adsorbed glycine. These data suggest that the adsorption of PEG microspheres with adsorbed glycine was able to stimulate the colostrum phagocytes. This material may represent a possible alternative therapy for future clinical applications on patients with gastrointestinal infections.

  11. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...... NR1 glycine site agonist d-serine and partial agonist HA-966 (3-amino-1-hydroxypyrrolid-2-one), similarly to glycine displaced [(3)H]-glycine monophasically, suggesting a single common binding site. However, neither the partial agonist d-cycloserine nor the antagonist 7-chlorokynurenic acid displaced...... [(3)H]-glycine. Using homology modelling, a model of the NR3A binding pocket was generated which we suggest can be used to identify candidate agonists and antagonists. Our data show that glycine is a ligand, and most probably the endogenous ligand, for native NR3A at a binding site with unique...

  12. Dietary glycine blunts liver injury after bile duct ligation in rats

    Science.gov (United States)

    Froh, Matthias; Zhong, Zhi; Walbrun, Peter; Lehnert, Mark; Netter, Susanne; Wiest, Reiner; Conzelmann, Lars; Gäbele, Erwin; Hellerbrand, Claus; Schölmerich, Jürgen; Thurman, Ronald G

    2008-01-01

    AIM: To investigate the effects of (dietary) glycine against oxidant-induced injury caused by bile duct ligation (BDL). METHODS: Either a diet containing 5% glycine or a standard diet was fed to male Sprague-Dawley (SD) rats. Three days later, BDL or sham-operation was performed. Rats were sacrificed 1 to 3 d after BDL. The influence of deoxycholic acid (DCA) in the presence or absence of glycine on liver cells was determined by measurement of calcium and chloride influx in cultivated Kupffer cells and lactate dehydrogenase (LDH) activity was determined in the supernatant of cultivated hepatocytes. RESULTS: Serum alanine transaminase levels increased to about 600 U/L 1 d after BDL. However, enzyme release was blunted by about two third in rats receiving glycine. Release of the alkaline phosphatase and aspartate aminotransferase was also blocked significantly in the group fed glycine. Focal necrosis was observed 2 d after BDL. Glycine partially blocked the histopathological changes. Incubation of Kupffer cells with DCA led to increased intracellular calcium that could be blocked by incubation with glycine. However, systemic blockage of Kupffer cells with gadolinium chloride had no effects on transaminase release. Incubation of isolated hepatocytes with DCA led to a significant release of LDH after 4 h. This release was largely blocked when incubation with glycine was performed. CONCLUSION: These data indicate that glycine significantly decreased liver injury, most likely by a direct effect on hepatocytes. Kupffer cells do not appear to play an important role in the pathological changes caused by cholestasis. PMID:18932277

  13. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  14. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Dibas, Mohammed I; Lester, Henry A

    2007-01-01

    change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine...... and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus...

  15. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  16. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids

    NARCIS (Netherlands)

    Lozovaya, N.; Yatsenko, N.; Beketov, A.; Tsintsadze, T.; Burnashev, N.

    2005-01-01

    At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR)

  17. Disproportionation of hydrogen peroxide in the presence of coordination compounds of manganese (II) with glycine

    Energy Technology Data Exchange (ETDEWEB)

    Batyr, D.G.; Isak, V.G.; Kil' mininov, S.V.

    1988-01-01

    It has been established that the effective decomposition of hydrogen peroxide takes place in the presence of coordination compounds of manganese (II) with glycine (Gly). The catalytically active species is the complex (MnGly/sub 3/)/sup 2 +/.

  18. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.

    Science.gov (United States)

    Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek

    2016-11-01

    A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.

  19. A genome-wide association study of seed composition traits in wild soybean (Glycine soja).

    Science.gov (United States)

    Leamy, Larry J; Zhang, Hengyou; Li, Changbao; Chen, Charles Y; Song, Bao-Hua

    2017-01-05

    Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in soybean oil are considered optimal for human cardiovascular health and therefore there has considerable interest by breeders in discovering genes affecting the relative concentrations of these fatty acids. Using a genome-wide association (GWA) approach with nearly 30,000 single nucleotide polymorphisms (SNPs), we investigated the genetic basis of protein, oil and all five fatty acid levels in seeds from a sample of 570 wild soybeans (Glycine soja), the progenitor of domesticated soybean, to identify quantitative trait loci (QTLs) affecting these seed composition traits. We discovered 29 SNPs located on ten different chromosomes that are significantly associated with the seven seed composition traits in our wild soybean sample. Eight SNPs co-localized with QTLs previously uncovered in linkage or association mapping studies conducted with cultivated soybean samples, while the remaining SNPs appeared to be in novel locations. Twenty-four of the SNPs significantly associated with fatty acid variation, with the majority located on chromosomes 14 (6 SNPs) and seven (8 SNPs). Two SNPs were common for two or more fatty acids, suggesting loci with pleiotropic effects. We also identified some candidate genes that are involved in fatty acid metabolism and regulation. For each of the seven traits, most of the SNPs produced differences between the average phenotypic values of the two homozygotes of about one-half standard deviation and contributed over 3% of their total variability. This is the first GWA study conducted on seed composition traits solely in wild soybean populations, and a number of QTLs were found that have not been previously discovered. Some of these may be useful to breeders who select for increased protein/oil content or altered fatty acid ratios

  20. Glycine and GABAA Ultra-Sensitive Ethanol Receptors as Novel Tools for Alcohol and Brain Research

    Science.gov (United States)

    Naito, Anna; Muchhala, Karan H.; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Perkins, Daya I.; Alkana, Ronald L.

    2014-01-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABAARs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABAARs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol. PMID:25245406

  1. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  2. Cyclic arginine-glycine-aspartate peptides enhance three-dimensional stem cell osteogenic differentiation.

    Science.gov (United States)

    Hsiong, Susan X; Boontheekul, Tanyarut; Huebsch, Nathaniel; Mooney, David J

    2009-02-01

    The role of morphogens in bone regeneration has been widely studied, whereas the effect of matrix cues, particularly on stem cell differentiation, are less well understood. In this work, we investigated the effects of arginine-glycine-aspartate (RGD) ligand conformation (linear vs cyclic RGD) on primary human bone marrow stromal cell (hBMSC) and D1 stem cell osteogenic differentiation in three-dimensional (3D) culture and compared their response with that of committed MC3T3-E1 preosteoblasts to determine whether the stage of cell differentiation altered the response to the adhesion ligands. Linear RGD densities that promoted osteogenic differentiation of committed cells (MC3T3-E1 preosteoblasts) did not induce differentiation of hBMSCs or D1 stem cells, although matrices presenting the cyclic form of this adhesion ligand enhanced osteoprogenitor differentiation in 3D culture. This may be due to enhanced integrin-ligand binding. These studies indicate that biomaterial design parameters optimized for differentiated cell types may not directly translate to stem cell populations, because less-committed cells may require more instruction than differentiated cells. It is likely that design of synthetic extracellular matrices tailored to promote stem cell differentiation may enhance bone regeneration by transplanted cells.

  3. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes.

    Science.gov (United States)

    Cruz, M; Maldonado-Bernal, C; Mondragón-Gonzalez, R; Sanchez-Barrera, R; Wacher, N H; Carvajal-Sandoval, G; Kumate, J

    2008-08-01

    Amino acids have been shown to stimulate insulin secretion and decrease glycated hemoglobin (A1C) in patients with Type 2 diabetes. In vitro, glycine reduces tumor necrosis factor (TNF)-alpha secretion and increases interleukin-10 secretion in human monocytes stimulated with lipopolysaccharide. The aim of this study was to determine whether glycine modifies the proinflammatory profiles of patients with Type 2 diabetes. Seventy-four patients, with Type 2 diabetes were enrolled in the study. The mean age was 58.5 yr, average age of diagnosis was 5 yr, the mean body mass index was 28.5 kg/m2, the mean fasting glucose level was 175.5 mg/dl and the mean A1C level was 8%. They were allocated to one of two treatments, 5 g/d glycine or 5 g/d placebo, po tid, for 3 months. A1C levels of patients given glycine were significantly lower after 3 months of treatment than those of the placebo group. A significant reduction in TNF-receptor I levels was observed in patients given glycine compared with placebo. There was a decrease of 38% in the interferon (IFN)-gamma level of the group treated with placebo, whereas that of the group treated with glycine increased up to 43%. These data showed that patients treated with glycine had a significant decrease in A1C and in proinflammatory cytokines and also an important increase of IFN-gamma. Treatment with glycine is likely to have a beneficial effect on innate and adaptive immune responses and may help prevent tissue damage caused by chronic inflammation in patients with Type 2 diabetes.

  4. Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals

    Directory of Open Access Journals (Sweden)

    S. Anbu Chudar Azhagan

    2017-05-01

    Full Text Available In the present study, γ-glycine has been crystallized by using zinc acetate dihydrate as an additive for the first time by slow solvent evaporation method. The second harmonic conversion efficiency of γ-glycine crystal was determined using Kurtz and Perry powder technique and was found to be 3.66 times greater than that of standard inorganic material potassium dihydrogen phosphate (KDP. The analytical grade chemicals of glycine and zinc acetate dihydrate were taken in six different molar ratios: 1:0.2, 1:0.4, 1:0.6, 1:0.7, 1:0.8, and 1:0.9 respectively to find out the γ-polymorph of glycine. The lower molar concentration of zinc acetate yield only α-polymorph where as the higher molar concentration of zinc acetate inhibits the γ-polymorph of glycine which was confirmed by single crystal XRD and powder XRD studies. Inductively coupled plasma optical emission spectrometry (ICP-OES was carried out to quantify the concentration of zinc element in the grown glycine single crystals. The concentration of zinc element in the presence of grown γ-glycine single crystal is found to be 0.73 ppm. UV–Visible–NIR transmittance spectra were recorded for the samples to analyse the transparency in visible and near infrared region (NIR. The optical band gap Eg was estimated for γ-glycine single crystal using UV–Visible–NIR study. Functional groups present in the samples were identified by FTIR spectroscopic analysis. Differential scanning calorimetry technique was employed to determine the phase transition, thermal stability and melting point of the grown crystal.

  5. MOLECULAR TARGETS AND MECHANISMS FOR ETHANOL ACTION IN GLYCINE RECEPTORS

    Science.gov (United States)

    Perkins, Daya I.; Trudell, James R.; Crawford, Daniel K.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed. PMID:20399807

  6. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  7. Ultra-fine powders using glycine-nitrate combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Pederson, L.R.; Bates, J.L.; Maupin, G.D.

    1991-05-01

    Fabrication of advanced, multifunctional materials frequently requires the synthesis of complex, ultra-fine powders comprised of a single phase containing several elements (multicomponent) or of several phases that are intimately mixed on a micro-scale (composite). A new combustion synthesis method, the glycine/nitrate process (GNP), is particularly useful for synthesizing ultra-fine, multicomponent oxide powders. Examples discussed include La(Sr)CrO{sub 3} and La(Sr)FeO{sub 3} perovskites and a composite of three phases, NiO, NiFe{sub 2}O{sub 4}, and Cu metal. The GNP consists of two basic steps. First, metal nitrates and a low molecular weight amino acid are dissolved in water. Second, the solution is boiled until it thickens. This viscous liquid ignites and undergoes self-sustaining combustion, producing an ash composed of the oxide product. Most refractory oxides that are composed of a combination of metals having stable nitrates should be possible to synthesize using GNP. 15 refs., 8 figs.

  8. Identification of microRNAs in wild soybean (Glycine soja).

    Science.gov (United States)

    Chen, Rui; Hu, Zheng; Zhang, Hui

    2009-12-01

    MicroRNAs (miRNAs) play important roles in post-transcriptional gene silencing by directing target mRNA cleavage or translational inhibition. Currently, hundreds of miRNAs have been identified in plants, but no report has been published of wild soybean (Glycine soja Sieb). We constructed a small-RNA library consisting of 2 880 sequences with high quality, in which 1 347 were 19-24 nt in length. By utilizing the miRNA, Rfam and domesticated soybean expressed sequence tag database, we have analyzed and predicted the secondary structure of these small RNAs. As a result, 15 conserved miRNA candidates belonging to eight different families and nine novel miRNA candidates comprising eight families were identified in wild soybean seedlings. All these miRNA candidates were validated by northern blot and the novel candidates expressed in a tissue-specific manner. Furthermore, putative target genes were predicted for novel miRNA candidates and two of them were verified by 5'-rapid amplification of cDNA ends experiments. These results provided useful information for miRNA research in wild soybean and plants.

  9. Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Tomonobu M Watanabe

    Full Text Available Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure.

  10. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  11. Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABA(A) receptors.

    Science.gov (United States)

    Ivic, Lidija; Sands, Tristan T J; Fishkin, Nathan; Nakanishi, Koji; Kriegstein, Arnold R; Strømgaard, Kristian

    2003-12-05

    Glycine and gamma-aminobutyric acid, type A (GABA(A)) receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory synaptic transmission in the adult central nervous system. During development, the activation of these receptors leads to membrane depolarization. Ligands for the two receptors have important implications both in disease therapy and as pharmacological tools. Terpene trilactones (ginkgolides and bilobalide) are unique constituents of Ginkgo biloba extracts that have various effects on the central nervous system. We have investigated the relative potency of these compounds on glycine and GABA(A) receptors. We find that most of the ginkgolides are selective and potent antagonists of the glycine receptor. Bilobalide, the single major component in G. biloba extracts, also reduces glycine-induced currents, although to a lesser extent. Both ginkgolides and bilobalide inhibit GABA(A) receptors, with bilobalide demonstrating a more potent effect. Additionally, we provide evidence that open channels are required for glycine receptor inhibition by ginkgolides. Finally, we employ molecular modeling to elucidate the similarities and differences in the structure of the terpene trilactones to account for the pharmacological properties of these compounds and demonstrate a striking similarity between ginkgolides and picrotoxinin, a GABA(A) and recombinant glycine alpha-homomeric receptor antagonist.

  12. A 4-week Repeated Dose Toxicity Study of Glycine in Rats by Gavage Administration.

    Science.gov (United States)

    Shibui, Yusuke; Miwa, Tadashi; Yamashita, Mayumi; Chin, Keigi; Kodama, Terutaka

    2013-12-01

    In order to examine the toxicity profile of glycine, an authorized food additive, a solution of glycine in water for injection was administered orally (via gavage) to male SD rats (Crl:CD(SD)) once daily for 4 weeks at doses of 500, 1000 and 2000 mg/kg/day in a volume of 10 mL/kg. Control animals received vehicle only. No animals died, and no glycine-related changes were observed in body weight, food consumption, water consumption, hematology, organ weight, gross pathological examination or histopathological examination. In urinalysis, daily urinary volume and urinary Cl excretion were significantly higher in the 2000 mg/kg/day dose group, and urine pH and urinary protein showed lower trends in the glycine-treated groups. However, these changes were considered to be of little toxicological significance, because there were no histopathological changes in the kidneys or urinary bladder and no changes in other urinary parameters. As regards blood chemistry, phospholipids were significantly higher in the 2000 mg/kg/day dose group. However, the increase was small and was not considered to be toxicologically significant. In conclusion, none of the animals in any of the glycine-treated groups showed changes that were considered toxicologically significant. Therefore, the no-observed-adverse-effect level of glycine was estimated to be at least 2000 mg/kg/day under the conditions of this study.

  13. Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines)

    Science.gov (United States)

    Wenger, Jacob A; Michel, Andy P

    2013-01-01

    Adaptive evolution of pest insects in response to the introduction of resistant cultivars is well documented and commonly results in virulent (i.e., capable of feeding upon resistant cultivars) insect populations being labeled as distinct biotypes. Phenotypically defined, biotypes frequently remain evolutionarily indistinct, resulting in ineffective application of virulence control measures and shorter durability of resistant cultivars. Here, we utilize an evolutionary framework to discern the genetic relationship between biotypes of the soybean aphid (Aphis glycines, Matsumura). The soybean aphid is invasive in North America and is among the most destructive pests of commercial soybean on the continent. Attempts to breed host-plant-resistant soybean have been hampered by the emergence of virulent aphid biotypes that are unaffected by the plant's resistance mechanism(s). Comparative population genetic analysis of virulent and avirulent (i.e., unable to feed on resistant cultivars) biotypes found populations to be genetically indistinguishable across biotype and geographic distance, with high rates of interpopulation immigration and admixture. The lack of genetic distinction between biotypes coupled with elevated genotypic diversity within all populations suggested virulence has a nongenetic-based or includes a gene complex that is widely distributed throughout soybean aphid populations, which undergo regular dispersal and unimpeded sexual recombination. PMID:24187586

  14. Soybean Glycine Max L Merill Promiscuity Reaction To Indigenous Bradyrhizobia inoculation In Some Ghanaian Soils

    Directory of Open Access Journals (Sweden)

    Phanuel Y. Klogo

    2015-08-01

    Full Text Available ABSTRACT For many tropical countries particularly in Africa Biological Nitrogen Fixation BNF continues to be the most promising alternative or supplement to the use of chemical Nitrogen fertilizers for sustainable Agriculture. In contrast to cowpea that nodulate profusely in tropical soilswith the naturally occurring bradyrhizobia nodulation and nitrogen fixation in the American-type soybean in similar environments has largely depended on inoculating bradyrhizobia into the soil. The development of the Tropical Glycine Cross TGx soybean varieties by IITA has made it possible for these promiscuous varieties to nodulate with the naturally occurring strains belonging to the cowpea Bradyrhizobiumspp. The Most Probable Number MPN technique was used to determine the bradyrhizobial population in these soils. Eighty four Bradyrhizobium isolates obtained from randomly selected nodules on soybean were assessed for effectiveness in nitrogen fixation. Three of the most effective isolates were used in inoculation studies carried out in the greenhouse atthe University of Ghana-Legonon three promiscuous soybean varieties Anidaso TGx 813-6D TGx 1903-8F and TGx 1448-2E and a non- promiscuous genotype Davis in three Ghanaian soil series Toje Chromic cambisols Chichiwere Dystricfluvisol and Bekwai Ferric acrisols. There were tremendous inoculation responses in these soils for both the promiscuous and non-promiscuous cultivars with even the promiscuous ones responding better to inoculation than the non-promiscuous Davis. Inoculation gave rise to significant increases in nodule number nodule dry weight shoot dry weight and total nitrogen accumulation compared to the uninoculated control even intheChichiwere soil series which harboured the highestpopulation of indigenous bradyrhizobia suggesting that the populations of the naturally occurring bradyrhizobia in these soils were either not highly competitive or sufficient for optimum nodulation and nitrogen fixation. For

  15. Economic Injury Levels for Aphis glycines Matsumura (Hemiptera: Aphididae) on the Soybean Aphid Tolerant KS4202 Soybean.

    Science.gov (United States)

    Marchi-Werle, Lia; Baldin, Edson L L; Fischer, Hillary D; Heng-Moss, Tiffany M; Hunt, Thomas E

    2017-10-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive species from Asia that has been the major economic insect pest of soybeans, Glycine max (L.) Merrill, since 2000. While use of soybeans expressing antibiosis and antixenosis is a well-studied strategy to manage this pest, aphid-tolerant soybeans remain underexplored. This study examined the relationship between cumulative aphid-days (CAD) and yield loss in the tolerant soybean KS4202 during two growing seasons to determine the economic injury levels (EILs) for soybean aphids on KS4202. Soybean aphid infestations were initiated during the soybean reproductive stages. A range of CAD treatments (3,000-45,000 CADs) were applied during the growing seasons. Aphid populations reached 45,000 CAD in 2011 and 38,000 CAD in 2013 in plots that were not treated with insecticides. It was estimated that the population doubling time was 9.4 d. In infested plots, soybean yield was reduced by 1.4-13.3%, equivalent to a 3.1% yield loss for every 10,000 CAD. Overall, most CAD treatments did not affect yield parameters, although CAD > 39,000 caused a significant reduction in most yield parameters. The EILs calculated for KS4202 ranged from 526 to 2,050 aphids/plant, which were approximately 2.5-fold higher when compared to EILs previously calculated for susceptible soybean. The adoption of soybean aphid tolerant soybean with higher EILs may help mitigate treatment delay problems by lengthening the treatment lead-time and possibly reduce the number of insecticide applications. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Anatomical Study of Somatic Embryogenesis in Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida Fernando

    2002-09-01

    Full Text Available A comparative anatomical analysis of somatic embryogenesis in two soybean (Glycine max (L. Merrill genotypes was carried out. The somatic embryos were originated from cotyledonary explants obtained from immature zygotic embryos. The medium used for somatic embryogenesis induction was Murashige and Skoog, 1962, salts and Gamborg et al., 1968, vitamins (MSB supplemented with 0.8 mg.L-1 of 2,4-D for genotype PI 123439 and 40 mg.L-1 of 2,4-D for ‘Williams 82’. Globular structures, constituted by meristematic cells, originated from subepidermal cell divisions of the cotyledonary mesophyll. In PI 123439, the globular structures presented tracheary differentiation among meristematic cells and they could follow distinct morphogenetic process depending on their location along the explant. For ‘Williams 82’ it was observed globular structures along the cotyledonary explant surface. They gave rise to somatic embryos. These embryos showed different morphologies and they were classified based on their shape and number of cotyledons. The ability of these morphological types to convert to plantlets was discussed.Realizou-se uma análise anatômica comparativa da embriogênese somática em dois genótipos de soja (Glycine max (L. Merrill. Os embriões somáticos foram obtidos a partir de explantes cotiledonares excisados de embriões zigóticos imaturos do genótipo PI 123439, adaptado às condições tropicais, e ‘Williams 82’. O meio utilizado para indução da embriogênese somática constituiu-se de sais de Murashige e Skoog,1962, e vitaminas de Gamborg et al., 1968 (MSB suplementado com 0,8 mg.L-1 de 2,4-D (PI 123439 e 40 mg.L-1 (‘Williams 82’. Estruturas globulares originaram-se a partir de divisões celulares nas camadas subepidérmicas do mesofilo cotiledonar e foram constituídas por células meristemáticas. No genótipo PI 123439, as estruturas globulares apresentaram diferenciação traqueal entre as células meristemáticas e

  17. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  18. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis.

    Science.gov (United States)

    Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin

    2017-03-01

    To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (gs) and effective quantum efficiency of PSII (ΦPSII) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (Ex) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja.

    Science.gov (United States)

    Ji, Wei; Li, Yong; Li, Jie; Dai, Cui-hong; Wang, Xi; Bai, Xi; Cai, Hua; Yang, Liang; Zhu, Yan-ming

    2006-02-22

    Salinization causes negative effects on plant productivity and poses an increasingly serious threat to the sustainability of agriculture. Wild soybean (Glycine soja) can survive in highly saline conditions, therefore provides an ideal candidate plant system for salt tolerance gene mining. As a first step towards the characterization of genes that contribute to combating salinity stress, we constructed a full-length cDNA library of Glycine soja (50109) leaf treated with 150 mM NaCl, using the SMART technology. Random expressed sequence tag (EST) sequencing of 2,219 clones produced 2,003 cleaned ESTs for gene expression analysis. The average read length of cleaned ESTs was 454 bp, with an average GC content of 40%. These ESTs were assembled using the PHRAP program to generate 375 contigs and 696 singlets. The resulting unigenes were categorized according to the Gene Ontology (GO) hierarchy. The potential roles of gene products associated with stress related ESTs were discussed. We compared the EST sequences of Glycine soja to that of Glycine max by using the blastn algorithm. Most expressed sequences from wild soybean exhibited similarity with soybean. All our EST data are available on the Internet (GenBank_Accn: DT082443-DT084445). The Glycine soja ESTs will be used to mine salt tolerance gene, whose full-length cDNAs will be obtained easily from the full-length cDNA library. Comparison of Glycine soja ESTs with those of Glycine max revealed the potential to investigate the wild soybean's expression profile using the soybean's gene chip. This will provide opportunities to understand the genetic mechanisms underlying stress response of plants.

  20. Vascular endothelial function is improved by oral glycine treatment in aged rats.

    Science.gov (United States)

    Gómez-Zamudio, Jaime H; García-Macedo, Rebeca; Lázaro-Suárez, Martha; Ibarra-Barajas, Maximiliano; Kumate, Jesús; Cruz, Miguel

    2015-06-01

    Glycine has been used to reduce oxidative stress and proinflammatory mediators in some metabolic disorders; however, its effect on the vasculature has been poorly studied. The aim of this work was to explore the effect of glycine on endothelial dysfunction in aged rats. Aortic rings with intact or denuded endothelium were obtained from untreated or glycine-treated male Sprague-Dawley rats at 5 and 15 months of age. Concentration-response curves to phenylephrine (PHE) were obtained from aortic rings incubated with N(G)-nitro-l-arginine methyl ester (l-NAME), superoxide dismutase (SOD), indomethacin, SC-560, and NS-398. Aortic mRNA expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase 4 (NOX-4), cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), tumour necrosis factor (TNF)-α, and interleukin-1 β was measured by real time RT-PCR. The endothelial modulation of the contraction by PHE was decreased in aortic rings from aged rats. Glycine treatment improved this modulator effect and increased relaxation to acetylcholine. Glycine augmented the sensitivity for PHE in the presence of l-NAME and SOD. It also reduced the contraction by incubation with indomethacin, SC-560, and NS-398. Glycine increased the mRNA expression of eNOS and decreased the expression of COX-2 and TNF-α. Glycine improved the endothelium function in aged rats possibly by enhancing eNOS expression and reducing the role of superoxide anion and contractile prostanoids that increase the nitric oxide bioavailability.

  1. Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja

    Directory of Open Access Journals (Sweden)

    Cai Hua

    2006-02-01

    Full Text Available Abstract Background Salinization causes negative effects on plant productivity and poses an increasingly serious threat to the sustainability of agriculture. Wild soybean (Glycine soja can survive in highly saline conditions, therefore provides an ideal candidate plant system for salt tolerance gene mining. Results As a first step towards the characterization of genes that contribute to combating salinity stress, we constructed a full-length cDNA library of Glycine soja (50109 leaf treated with 150 mM NaCl, using the SMART technology. Random expressed sequence tag (EST sequencing of 2,219 clones produced 2,003 cleaned ESTs for gene expression analysis. The average read length of cleaned ESTs was 454 bp, with an average GC content of 40%. These ESTs were assembled using the PHRAP program to generate 375 contigs and 696 singlets. The resulting unigenes were categorized according to the Gene Ontology (GO hierarchy. The potential roles of gene products associated with stress related ESTs were discussed. We compared the EST sequences of Glycine soja to that of Glycine max by using the blastn algorithm. Most expressed sequences from wild soybean exhibited similarity with soybean. All our EST data are available on the Internet (GenBank_Accn: DT082443~DT084445. Conclusion The Glycine soja ESTs will be used to mine salt tolerance gene, whose full-length cDNAs will be obtained easily from the full-length cDNA library. Comparison of Glycine soja ESTs with those of Glycine max revealed the potential to investigate the wild soybean's expression profile using the soybean's gene chip. This will provide opportunities to understand the genetic mechanisms underlying stress response of plants.

  2. A DFT study of adsorption of glycine onto the surface of BC{sub 2}N nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Alireza, E-mail: Alireza.soltani46@yahoo.com [Joints, Bones and Connective Tissue Research Center, Golestan University of Medical Sciences, Gorgan (Iran, Islamic Republic of); Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Azmoodeh, Zivar [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Javan, Masoud Bezi [Physics Department, Faculty of Sciences, Golestan University, Gorgan (Iran, Islamic Republic of); Lemeski, E. Tazikeh [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Karami, Leila [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Glycine adsorption over the pristine BC{sub 2}N nanotubes is investigated by DFT calculations. • Adsorption of glycine in its zwitterionic form is stronger in comparison with the radical form. • Adsorption of glycine from its amine head on adsorbent leads to a significant decrease in the electronic properties. - Abstract: A theoretical study of structure and the energy interaction of amino acid glycine (NH{sub 2}CH{sub 2}COOH) with BC{sub 2}N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC{sub 2}N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC{sub 2}N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  3. Identification of acetyl phosphate as the product of clostridial glycine reductase: Evidence for an acyl enzyme intermediate.

    Science.gov (United States)

    Arkowitz, R A; Abeles, R H

    1989-05-30

    It has been reported [Tanaka, H., & Stadtman, T. C. (1979) J. Biol. Chem. 254, 447-452] that glycine reductase from Clostridium sticklandii catalyzes the reaction glycine + ADP + P(i) + 2(e)- - acetate + ATP + NH(4)+. Glycine reductase consists of three proteins, designated A, B, and C. Only A has been purified to homogeneity. A dithiol serves as an electron donor. We find that ADP is not essential for the reaction and that in its absence acetyl phosphate is formed. Upon further purification of components B and C, an acetate kinase activity can be separated from both proteins. This observation establishes that acetate kinase activity is not an intrinsic property of glycine reductase, and therefore the reaction catalyzed by glycine reductase is glycine + P(i) + 2(e)- - acetyl phosphate + NH(4)+. Experiments with [(14)C]glycine and unlabeled acetate show that free acetate is not a precursor of acetyl phosphate. When glycine labeled with l8(O) is converted to product, l8(O) is lost. The l 8 (O) content of unreacted glycine remains unchanged after approximately 50% is converted to product. We propose that an acyl enzyme, most probably an acetyl enzyme,is an intermediate in the reaction and that the acetyl enzyme reacts with P(i) to form acetyl phosphate. A mechanism is proposed for the formation of the acetyl enzyme.

  4. Glycine antagonist action of 1-aminocyclobutane-1-carboxylate (ACBC) in Xenopus oocytes injected with rat brain mRNA.

    Science.gov (United States)

    Watson, G B; Bolanowski, M A; Baganoff, M P; Deppeler, C L; Lanthorn, T H

    1989-08-22

    ACBC has been reported to have the binding profile of an antagonist at the glycine site of the NMDA receptor. In Xenopus oocytes injected with rat brain mRNA, we have confirmed the antagonist action of ACBC on NMDA responses. ACBC and HA-966, a known glycine antagonist, blocked NMDA responses in a non-competitive manner and blocked the potentiation of NMDA responses by glycine in a competitive manner. We conclude that ACBC blocks NMDA responses via a competitive interaction at the glycine modulatory site.

  5. Probing the Modulation of Acute Ethanol Intoxication by Pharmacological Manipulation of the NMDAR Glycine Co-Agonist Site

    OpenAIRE

    DeBrouse, Lauren; Hurd, Benita; Kiselycznyk, Carly; Plitt, Aaron; Todaro, Alyssa; Mishina, Masayoshi; Grant, Seth G. N.; Camp, Marguerite; Gunduz-Cinar, Ozge; Holmes, Andrew

    2013-01-01

    Background Stimulating the glycineB binding site on the N-methyl-d-aspartate ionotropic glutamate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice. Methods Effects of systemic injection of the glycineB agonist, d-serine, the GlyT-1 glycine transporter inhibitor, ALX-5407, and the glycineB antagonist, L-701,324...

  6. Coorection Of Lipid Peroxydation And Antioxydant Protective System By Mexidol And Glycine In Patients With Acute Ethanol Intoxication

    Directory of Open Access Journals (Sweden)

    R.S. Farshatov

    2009-12-01

    Full Text Available The research goal is to study lipid peroxydation and ferments of antioxidant protection in group of patients with an acute alcohol intoxication and their correction by medicaments with antioxidant activity (mexidol, glycine and their combination. Patients with diagnosis of ethanol toxic action of moderate severity degree were under study. There were 4 groups - receiving standard therapy, standard therapy and glycine, standard therapy and mexidol, patients receiving standard therapy with combination of mexidol and glycine. Clinical condition and changes in system "lipid peroxidation - antioxidant protection» were estimated. The expressed improvement was revealed applying standard therapy with combination of mexidol and glycine

  7. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  8. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A molecule-imprinted polyaniline membrane modified on carbon fiber for detection of glycine.

    Science.gov (United States)

    Zeng, Hongjuan; Wang, Deshun; Yu, Junsheng

    2014-01-01

    A layer of L-glycine-molecule-imprinted polyaniline (LMIP-PANI) polymer film has been modified on a carbon fiber electrode for the determination of L-glycine standard samples and L-glycine in cerebrospinal fluid of wistar mice. It has been found that a linear relationship exists between current and concentration for the glycine standard samples in the range of 0-12 μM by using the LMIP-PANI-modified carbon fiber electrode as a sensor. However, there is no any relationship between current and concentration for the carbon fiber electrode modified with no-glycine-molecule-imprinted polyaniline (NIP-PANI). The MIP-PANI- and NIP-PANI-modified carbon fiber films have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemistry methods. The investigation shows that the MIP-PANI-imprinted carbon fiber electrode will have a potential application in in-situ monitoring neurotransmitter due to its easy fabrication, low cost, bio-compatibility and flexibility.

  10. Chemical and Mechanical Control of Soybean (Glycin max L. Weeds

    Directory of Open Access Journals (Sweden)

    Ebrahim Gholamalipour Alamdari

    2016-10-01

    Full Text Available To evaluate effects of the various concentrations of two herbicides of the trifluralin and Imazethapyr and weeding on weeds control, yield and yield components of soybean (Glycin max L., an experiment was carried out based on randomized complete block design with three replications at the Agriculture Land of Ghravolhaji Village in Kallale district of Golestan province in 2014. Treatments consisted of planting soybean under weeding, without weeding and application of trifluralin and Imazethapyr as 100% trifluralin, 75% trifluralin + 25% Imazethapyr, 50% trifluralin + 50% Imazethapyr, 25% trifluralin + 75% Imazethapyr, 100% pursuit, 100% Imazethapyr + 25% trifluralin, 25% Imazethapyr + 100% trifluralin, 100% Imazethapyr + 50% trifluralin and 50% Imazethapyr + 100% trifluralin. density of each weed, their total density and inhibition percentage were measured. Results showed that the effect of chemical weed control on all traits measured, except seed number per pot, 1000 seed weight, content of chlorophyll a and total chlorophyll, were significant. The highest leaf area, plant height, number of pods per plant, aerial plant dry weight, seed number per plant and seed weight per plant were observed in the treatment of the 100% Imazethapyr (238.67 cm2, weeding (57.69 cm, both treatments of weeding (33.10 and 25% Imazethapyr +100% trifluralin (28.3, both treatment of weeding (163.92 g and 100%  Imazethapyr (163.70 g, weeding (67.10 seed per plant, both treatment of weeding and 100%  Imazethapyr + 50% trifluralin (10.27 seed per plant respectively. The highest seed yield was obtained from weeding treatment (2383 kg/h. Based on the results, the highest content of protein and chlorophyll b in soybean were obtained from weeding treatment. The highest inhibition percentage of weeds was found in the additional treatment of 50% Imazethapyr + 100% trifluralin (75.19 and 100% Imazethapyr + 25% trifluralin (72.86. The lowest and highest total phenols content and

  11. NUTRIENT MANAGEMENT PRACTICES FOR ENHANCING SOYBEAN (Glycine max L. PRODUCTION

    Directory of Open Access Journals (Sweden)

    FARID A. HELLAL

    2013-01-01

    Full Text Available La soya (Glycine max L., es el cultivo de legumbres más importante en el mundo. La magnitud de las pérdidas en el rendimiento de la soya debido a deficiencias varía dependiendo de los nutrientes. Las deficiencias de N, P, Fe, B y S pueden causar pérdidas en rendimiento de hasta 10 %, 29-45 %, 22-90 %, 100 % y 16-30 %, respectivamente, en la soya dependiendo de la fertilidad del suelo, clima y factores intrínsecos a las plantas. La textura de los suelos utilizados en el cultivo de soya varía entre arenosa y arcillosa. La salinidad del suelo es uno de los mayores factores limitantes en la producción del cultivo en regiones semiáridas, y la salinidad por cloro tiene un mayor efecto en la disminución del rendimiento que la salinidad por sulfatos. Los granos de soya son una gran fuente de energía que contienen 40 % de proteína y 19 % de aceite. El éxito del manejo de nutrientes es maximizar la productividad del cultivo mientras se minimizan los impactos ambientales. Las prácticas de manejo de nutrientes balan- ceadas y reguladas en el tiempo contribuyen a un crecimiento sostenido del rendimiento y la calidad, influencian la salud de las plantas y reducen los riesgos ambientales. Una nutrición balanceada con fertilizantes minerales puede ayudar en el manejo integrado de plagas para reducir los daños causados por las infestaciones de pestes y enfermedades y reducir los insumos requeridos para su control. Una fertilización balanceada genera mayores ganancias para los agricultores, no necesariamente por reducción de los insumos. El papel de la educación y la extensión en la difusión del conocimiento actual sobre manejo de nutrientes es crucial, desafiante y continuo.

  12. Distribution and diversity of rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in Northwest China.

    Science.gov (United States)

    Zhao, Liang; Fan, Miaochun; Zhang, Dehui; Yang, Ruiping; Zhang, Feilong; Xu, Lin; Wei, Xiuli; Shen, Yaoyao; Wei, Gehong

    2014-09-01

    A total of 155 nodule isolates that originated from seven sites in Northwest China were characterized by PCR-RFLP of the 16S rRNA gene and sequence analysis of multiple core genes (16S rRNA, recA, atpD, and glnII) in order to investigate the diversity and biogeography of Glycine soja-nodulating rhizobia. Among the isolates, 80 were Ensifer fredii, 19 were Ensifer morelense, 49 were Rhizobium radiobacter, and 7 were putative novel Rhizobium species. The phylogenies of E. fredii and E. morelense isolates in a concatenate tree (assembly of all housekeeping genes) were generally consistent with those in individual gene trees. However, incongruence was found in the phylogenies of the different genes of Rhizobium isolates, indicating that lateral transfer or recombination possibly occurred in these gene loci. Despite their species identity, all the isolates in this study formed a single lineage related to E. fredii in nodAand nifH gene phylogenies, which also indicated that the symbiotic genes were laterally transferred between different species. Biogeographic patterns were found at the species and strain genomic type levels, as revealed by BOXA1R fingerprinting, demonstrating that the evolution of rhizobial populations in different geographic locations was related to soil types, altitude and spatial effects. This study is the first to report that E. morelense, R. radiobacter, and Rhizobium sp. are microsymbionts of G. soja, as well as showing that the diversity of G. soja rhizobia is enhanced and new rhizobia have evolved in Northwest China. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Reduced Fitness of Virulent Aphis glycines (Hemiptera: Aphididae) Biotypes May Influence the Longevity of Resistance Genes in Soybean

    Science.gov (United States)

    Varenhorst, Adam J.; McCarville, Michael T.; O’Neal, Matthew E.

    2015-01-01

    Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America. PMID:26372106

  14. Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean.

    Science.gov (United States)

    Prince, Silvas J; Song, Li; Qiu, Dan; Maldonado Dos Santos, Joao V; Chai, Chenglin; Joshi, Trupti; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Murphy, Mackensie; Krampis, Konstantinos; Tucker, Dominic M; Biyashev, Ruslan; Dorrance, Anne E; Maroof, M A Saghai; Xu, Dong; Shannon, J Grover; Nguyen, Henry T

    2015-02-25

    Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja. Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean. Rare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.

  15. Expression of serine and glycine-related enzymes in phyllodes tumor.

    Science.gov (United States)

    Kwon, J E; Kim, D H; Jung, W-H; Koo, J S

    2014-01-01

    Expression patterns of proteins involved in serine and glycine metabolism, and correlations of these patterns with clinicopathologic factors in phyllodes tumor were investigated. Tissue microarrays were prepared from 203 phyllodes tumors (PT) and stained with antibodies specific for glycine decarboxylase (GLDC), phosphoserine aminotransferase 1 (PSAT1), phosphoserine phosphatase (PSPH), phosphoglycerate dehydrogenase (PHGDH), and serine hydroxymethyltransferase 1 (SHMT1). These immunohistochemical results and clinicopathologic parameters were analyzed for correlation. Numbers of benign, borderline, and malignant tumors were 155, 32, and 16, respectively. Stromal expression of PHGDH, PSAT1, PSPH, SHMT1, and GLDC increased with increasing tumor grade, and epithelial expression of SHMT1 also increased with increasing tumor grade (pphyllodes tumor. glycine, tumor grade, metabolism, phyllodes tumor, serine.

  16. Antisolvent crystallization: Effect of ethanol on batch crystallization of α glycine

    Science.gov (United States)

    El Bazi, Wail; Porte, Catherine; Mabille, Isabelle; Havet, Jean-Louis

    2017-10-01

    This article concerns the crystallization of glycine in a water/antisolvent medium in batch mode. The influence of the presence of ethanol on the crystallization characteristics, saturation and supersaturation limits, and the fundamental mechanisms of nucleation and crystal growth was investigated. The stage controlling growth, diffusion or integration, was determined, and the effect of ethanol on diffusion was analyzed. Results show that increasing the percentage of ethanol in the crystallization medium decreases its solubility, reduces the supersaturation limit and accelerates the nucleation of glycine. The study of ethanol's effect on the growth kinetics of the α-glycine polymorph revealed that the presence of the alcohol slows down crystal growth. This work also made it possible to determine the stage limiting crystal growth at the point of integration with the crystal lattice.

  17. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max

    Science.gov (United States)

    Background: Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gaine...

  18. Adsorption of glycine on cometary dust grains: II—Effect of amorphous water ice

    Science.gov (United States)

    Escamilla-Roa, E.; Moreno, F.

    2013-01-01

    In recent years glycine, the simplest amino acid, has become a topic of great importance in astrobiology owing to its unambiguous detection in comet 81P/Wild 2 dust by Stardust mission. A possible end state for glycine in comets is by forming a molecular bond with some species of cometary dust. Many questions remain about of how glycine survives the extreme conditions prevailing in the interstellar medium (ISM). The detailed chemical interactions occurring on the dust grain surfaces with organic molecules are of great interest, as they shed light on possible routes of life to Earth from extraterrestrial space. In a previous work we simulated the interaction between glycine molecules and a forsterite surface and found that the interaction occurs through a chemisorption process. In this paper, we try to describe a more realistic situation, by adding an ice component to the mixture. We propose two models for that interaction. In the first model, neutral glycine is adsorbed on a mineral surface covered by a thin layer of amorphous ice, while in the second model neutral glycine and ice are adsorbed simultaneously onto the mineral surface. We find that this second model is the most likely scenario, although the particular adsorption process depends on the kind of surface. For a dipolar surface the adsorption proceeds through an associative process. In the case of a non-dipolar surface the adsorption process is both associative and dissociative and the chemisorption process is stronger. For the stable systems, we calculated the infrared frequencies to characterize the most reactive sites in the chemisorption processes. We observed important shifts frequencies that have relationship with the position of the main vibrational modes of the CO and COO- moieties, which react chemically with the mineral surface.

  19. Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate

    Science.gov (United States)

    de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-10-01

    This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.

  20. The Effect of External Usage of Glycine Betaine on Corn (zea mays l. in Drought Condition

    Directory of Open Access Journals (Sweden)

    H. R Miri

    2015-04-01

    Full Text Available Drought is one of the most important factors limiting crop growth and therefore use of practice to reduce its adverse effect is very important. In order to study the effect of glycine betaine on corn under drought condition an experiment was conducted as split-split plot in the base of randomized complete blocks design. The first factor was irrigation interval cycle (4 and 8 days and second factor including different concentrations of glycine betaine (zero, 50 ppm, 100 ppm,150 ppm and third was spraying in two stages (stem elongation stage and before flowering. Analysis of variance showed that effects of three factors on all of traits except for carotenoids were significant. However, foliar application of glycine betaine reduced effect of drought stress conditions on the plant so that extent of chlorophyll (a and b, plant height, yield and 1000 grain weight increased significantly. Spraying by glycine betaine caused improving plant performance in stress conditions, so that in the concentration of 150 ppm produced the highest quality in all of traits that preference was more evident before flowering. By considering these results it could be said that spraying with 150 ppm of glycine betaine before flowering in the condition of stress and without drought stress could improve the extent of chlorophyll (a and b, plant height, yield and yield components. Eventually it could be concluded that external glycine betaine with 150 ppm concentration while spraying before flowering had great positive effects and usage of that material is affected by time of application concentration and more stress severity.

  1. Glycine-Urea Combustion Synthesis for γ- LiAlO2

    Science.gov (United States)

    Wu, M. M.; Wen, Z. Y.; Fan, Z. Z.; Lin, Z. X.

    γ- LiAlO2, is a potential candidate for the use as ceramic separator in molten carbonate fuel cells. A combustion synthesis technique, the glycine-urea-nitrate process was described and investigated in this paper. A combination of the aqueous solution of glycine-urea and metal nitrates was employed as a precursor for the process. Gels were formed while the solutions were evaporated. Further heating caused the precursor to autoignite. The experimental results of phase analysis, particle morphology and particle size analysis indicated that pure γ- LiAlO2 with fine crystalline and high reactivity could be obtained by the combustion technique.

  2. Regional distribution of glycine receptor messenger RNA in the central nervous system of zebrafish.

    Science.gov (United States)

    Imboden, M; Devignot, V; Korn, H; Goblet, C

    2001-01-01

    We report the cloning of the zebrafish beta subunit of the glycine receptor and compare the anatomical distribution of three glycine receptor subunit constituents in adult zebrafish brain (alphaZ1, alphaZ2 and betaZ) to the expression pattern of homologous receptor subunits (alpha1, alpha2 and beta) in the mammalian adult CNS. Non-radioactive hybridization was used to map the distribution of the alphaZ1, alphaZ2 and betaZ glycine receptor subunit messenger RNAs in the adult zebrafish brain. The anterior-posterior expression gradient found in adult zebrafish brain was similar to that reported in mammalian CNS. However, the glycine receptor transcripts, notably the alphaZ1 subunit, were more widely distributed in the anterior regions of the zebrafish than in the adult mammalian brain. The isoform-specific distribution pattern was less regionalized in zebrafish than in the rat mammalian CNS. Nevertheless, there was some regionalization of alphaZ1, alphaZ2 and betaZ transcripts in the diencephalic and mesencephalic nuclei where different sensory and motor centers express either alphaZ1/betaZ or alphaZ2 subunits. In contrast to the widespread distribution of the beta subunit in adult mammalian brain, alphaZ2 messenger RNA presented the widest expression territory of all three glycine receptor subunits tested. alphaZ2 messenger RNA was expressed in the absence of alphaZ1 and betaZ messenger RNA in the outer nuclear layer of the retina, the inferior olive and the raphe of the medulla oblongata, as well as in the nucleus of Cajal of the medulla spinalis. In contrast, an identified central neuron of the reticular formation, the Mauthner cell, expresses all three glycine receptor subunits (alphaZ1, alphaZ2 and betaZ). This report extends the already described glycine receptor expression in the vertebrate CNS and confirms the importance of glycine-mediated inhibition in spinal cord and brainstem.

  3. Mechanism of glycine oxidation catalyzed by pyrroloquinoline quinone in aqueous solution

    Science.gov (United States)

    Uchida, Waka; Wakabayashi, Masamitsu; Ikemoto, Kazuto; Nakano, Masahiko; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-01-01

    The mechanism of glycine oxidation reaction by PQQ in aqueous solution was investigated. A new crystal structure of PQQ under alkaline conditions was referred to calculate on a quantum chemical basis. Two mechanisms are investigated by this calculation: a 'stepwise' mechanism, namely, a nucleophilic attack on C5 or C4 by the nitrogen atom of glycine, and proton and electron transfer to PQQ. The second mechanism is a 'concerted' mechanism, namely, simultaneous reaction, which does not include the nucleophilic attack and include proton and electron transfer to PQQ.

  4. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    associated with the closed-flip transition in the alpha1-glycine receptor. We employed voltage-clamp fluorometry to compare ligand-binding domain conformational changes induced by the following agonists, listed from highest to lowest affinity and efficacy: glycine > beta-alanine > taurine. Voltage...

  5. Comparing the in vivo glycine fluxes of adolescent girls and adult women during early and late pregnancy

    Science.gov (United States)

    During pregnancy, growth of the fetus depends on an adequate glycine supply because it is needed for synthesis of fetal DNA, collagen, and serine. Since pregnant adolescent girls give birth to lower birth weight babies, it is possible that they do not produce sufficient glycine to meet overall deman...

  6. Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation : An Intervention Study

    NARCIS (Netherlands)

    Irwin, C.; van Reenen, M.; Mason, S.; Mienie, L.J.; Westerhuis, J.A.; Reinecke, C.J.

    2016-01-01

    Benzoic acid is widely used as a preservative in food products and is detoxified in humans through glycine conjugation. Different viewpoints prevail on the physiological significance of the glycine conjugation reaction and concerns have been raised on potential public health consequences following

  7. Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection.

    Science.gov (United States)

    Hossaini, Mehdi; Goos, Jacqueline A C; Kohli, Somesh K; Holstege, Jan C

    2012-01-01

    The ventromedial medulla (VM), subdivided in a rostral (RVM) and a caudal (CVM) part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH) for glycine transporter 2 (GlyT2) and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA) neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM) of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%). After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%), and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%). In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC) throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.

  8. Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection.

    Directory of Open Access Journals (Sweden)

    Mehdi Hossaini

    Full Text Available The ventromedial medulla (VM, subdivided in a rostral (RVM and a caudal (CVM part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH for glycine transporter 2 (GlyT2 and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%. After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%, and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%. In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.

  9. Nutrient Management practices for enhancing Soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    FARID A. HELLAL

    2013-03-01

    Full Text Available percent protein and 19 percent oil in the seeds. The magnitude of soybean yield losses due to nutrient deficiency also varies among the nutrients. Deficiencies of N, P, Fe, B and S nutrients may cause yield losses up to 10 %, 29-45 %, 22-90 %, 100 % and 16-30 %, respectively, in soybean depending on soil fertility, climate and plant factors. Soil salinity is one of the major limiting factors of soybean production in semiarid regions, and chloride salinity has a more depressive effect on yield than sulphate salinity. The goal of nutrient management is to maximize soybean productivity while minimizing environmental consequences. Balanced and timely nutrient management practices applied for soybean contributes to sustainable growth of yield and quality, influences plant health and reduces environmental risks. Balanced nutrition with mineral fertilizers can assist in integrated pest management to reduce damage from infestations of pests and diseases and save inputs required to control them. Balanced fertilization generates higher profits for the farmers, not necessarily through reduced inputs. The role of education and extension in delivering the upto-date knowledge on nutrient management is crucial, challenging, and continuous. La soya (Glycine max L., es el cultivo de legumbres más importante en el mundo. La magnitud de las pérdidas en el rendimientode la soya debido a deficiencias varía dependiendo de los nutrientes. Las deficiencias de N, P, Fe, B y S pueden causar pérdidas en rendimiento de hasta 10 %, 29-45 %, 22-90 %, 100 % y 16-30 %, respectivamente, en la soya dependiendo de la fertilidad del suelo, clima y factores intrínsecos a las plantas. La textura de los suelos utilizados en el cultivo de soya varía entre arenosa y arcillosa. La salinidad del suelo es uno de los mayores factores limitantes en la producción del cultivo en regiones semiáridas, y la salinidad por cloro tiene un mayor efecto en la disminución del

  10. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens.

    Science.gov (United States)

    Liu, Shiming; Kandoth, Pramod K; Warren, Samantha D; Yeckel, Greg; Heinz, Robert; Alden, John; Yang, Chunling; Jamai, Aziz; El-Mellouki, Tarik; Juvale, Parijat S; Hill, John; Baum, Thomas J; Cianzio, Silvia; Whitham, Steven A; Korkin, Dmitry; Mitchum, Melissa G; Meksem, Khalid

    2012-12-13

    Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.

  11. Oral glycine administration attenuates diabetic complications in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Alvarado-Vásquez, Noé; Lascurain, Ricardo; Cerón, Eduarda; Vanda, Beatriz; Carvajal-Sandoval, Guillermo; Tapia, Aurora; Guevara, Jorge; Montaño, Luis Felipe; Zenteno, Edgar

    2006-06-13

    Diabetes mellitus is a disease characterized by impaired glucose metabolism that leads to retinopathy, brain micro-infarcts and other complications. We have previously shown that oral glycine administration to diabetic rats inhibits non-enzymatic glycation of hemoglobin and diminishes renal damage. In this work, we evaluated the capacity of the amino acid glycine (1% w/v, 130 mM) to attenuate diabetic complications in streptozotocin (STZ)-induced diabetic Wistar rats and compared them with non-treated or taurine-treated (0.5% w/v, 40 mM) diabetic rats. Glycine-treated diabetic rats showed an important diminution in the percentage of animals with opacity in lens and microaneurysms in the eyes. Interestingly, there was a diminished expression of O-acetyl sialic acid in brain vessels compared with untreated diabetic rats (Pdiabetic rats showed a better proliferative response to PHA or ConA than those obtained from non-treated diabetic rats (Pcorporal weight loss in comparison with non-treated animals. Our results suggest that administration of glycine attenuates the diabetic complications in the STZ-induced diabetic rat model, probably due to inhibition of the non-enzymatic glycation process.

  12. Quality and yield response of soybean ( Glycine max L. Merrill) to ...

    African Journals Online (AJOL)

    Quality and yield response of soybean (Glycine max L. Merrill) to drought stress in sub–humid environment. Çigdem Demirtas, Senih Yazgan, Burak Nazmi Candogan, Mehmet Sincik, Hakan Büyükcangaz, Abdurrahim Tanju Göksoy ...

  13. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Science.gov (United States)

    2010-04-01

    ... consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine (aminoacetic acid) in food for human consumption. (a) Heretofore, the...

  14. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    Science.gov (United States)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  15. SYNTHESIS OF SOME PROLINE DERIVATIVES BY MEANS OF MICHAEL ADDITIONS OF GLYCINE ESTERS

    NARCIS (Netherlands)

    VANDERWERF, A; KELLOGG, RM

    1991-01-01

    Addition of the Schiff bases derived from reaction of glycine alkyl esters with benzophenoneimine to alpha,beta-unsaturated ketones, followed by hydrogenation of the addition products, leads to 5- or 3,5-substituted prolines. Hydrolysis of the Michael adducts rather than hydrogenation allows

  16. Structural Dynamics of the Glycine-binding Domain of the N-Methyl-d-Aspartate Receptor*

    Science.gov (United States)

    Dolino, Drew M.; Cooper, David; Ramaswamy, Swarna; Jaurich, Henriette; Landes, Christy F.; Jayaraman, Vasanthi

    2015-01-01

    N-Methyl-d-aspartate receptors mediate the slow component of excitatory neurotransmission in the central nervous system. These receptors are obligate heteromers containing glycine- and glutamate-binding subunits. The ligands bind to a bilobed agonist-binding domain of the receptor. Previous x-ray structures of the glycine-binding domain of NMDA receptors showed no significant changes between the partial and full agonist-bound structures. Here we have used single molecule fluorescence resonance energy transfer (smFRET) to investigate the cleft closure conformational states that the glycine-binding domain of the receptor adopts in the presence of the antagonist 5,7-dichlorokynurenic acid (DCKA), the partial agonists 1-amino-1-cyclobutanecarboxylic acid (ACBC) and l-alanine, and full agonists glycine and d-serine. For these studies, we have incorporated the unnatural amino acid p-acetyl-l-phenylalanine for specific labeling of the protein with hydrazide derivatives of fluorophores. The single molecule fluorescence resonance energy transfer data show that the agonist-binding domain can adopt a wide range of cleft closure states with significant overlap in the states occupied by ligands of varying efficacy. The difference lies in the fraction of the protein in a more closed-cleft form, with full agonists having a larger fraction in the closed-cleft form, suggesting that the ability of ligands to select for these states could dictate the extent of activation. PMID:25404733

  17. Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Dolino, Drew M; Cooper, David; Ramaswamy, Swarna; Jaurich, Henriette; Landes, Christy F; Jayaraman, Vasanthi

    2015-01-09

    N-Methyl-D-aspartate receptors mediate the slow component of excitatory neurotransmission in the central nervous system. These receptors are obligate heteromers containing glycine- and glutamate-binding subunits. The ligands bind to a bilobed agonist-binding domain of the receptor. Previous x-ray structures of the glycine-binding domain of NMDA receptors showed no significant changes between the partial and full agonist-bound structures. Here we have used single molecule fluorescence resonance energy transfer (smFRET) to investigate the cleft closure conformational states that the glycine-binding domain of the receptor adopts in the presence of the antagonist 5,7-dichlorokynurenic acid (DCKA), the partial agonists 1-amino-1-cyclobutanecarboxylic acid (ACBC) and L-alanine, and full agonists glycine and D-serine. For these studies, we have incorporated the unnatural amino acid p-acetyl-L-phenylalanine for specific labeling of the protein with hydrazide derivatives of fluorophores. The single molecule fluorescence resonance energy transfer data show that the agonist-binding domain can adopt a wide range of cleft closure states with significant overlap in the states occupied by ligands of varying efficacy. The difference lies in the fraction of the protein in a more closed-cleft form, with full agonists having a larger fraction in the closed-cleft form, suggesting that the ability of ligands to select for these states could dictate the extent of activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Functional characterisation of human glycine receptors in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.

    2005-01-01

    receptors in this assay were found to be in good agreement with those from electrophysiology studies of the receptors expressed in Xenopus oocytes or mammalian cell lines. Hence, this high throughput screening assay will be of great use in future pharmacological studies of glycine receptors, particular...

  19. Preparation and evaluation of glycosylated arginine-glycine-aspartate (RGD) derivatives for integrin targeting.

    NARCIS (Netherlands)

    Kuijpers, B.H.M.; Groothuys, S.; Soede, A.C.; Laverman, P.; Boerman, O.C.; Delft, F.L. van; Rutjes, F.P.J.T.

    2007-01-01

    Arginine-glycine-aspartate (RGD) derivatives were prepared by a combination of solid-phase and solution-phase synthesis for selective targeting of alpha vbeta 3 integrin expressed in tumors. In order to evaluate the value of a triazole moiety as a proposed amide isostere, the side chain glycosylated

  20. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  1. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  2. The whole genome sequence assembly of the soybean aphid, Aphis glycines

    Science.gov (United States)

    Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only two aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, and the Russian wheat aphid, Diuraphis noxia. The soybean aphid (Aphis glycines) is an extreme special...

  3. Newly identified resistance to soybean aphid (Aphis glycines) in soybean plant introduction lines

    Science.gov (United States)

    Host-plant resistance is potentially efficacious in managing the soybean aphid (SA, Aphis glycines Matsumura), a major invasive pest in northern soybean-production regions of North America. However, development of aphid-resistant soybean has been complicated by the presence of virulent SA biotypes,...

  4. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  5. Effets des cultures de soja ( Glycine max ) et de niébé ( Vigna ...

    African Journals Online (AJOL)

    Effets des cultures de soja ( Glycine max ) et de niébé ( Vigna unguiculata ) sur la densité apparente et la teneur en eau des sols et sur la productivité du riz pluvial de plateau sur ferralsol hyperdystrique.

  6. Pengaruh Pemberian Pyraclotrobin Terhadap Efisiensi Penyerapan Nitrogen Dan Kualitas Hasil Tanaman Kedelai (Glycine Max L. Merr.)

    OpenAIRE

    MANSUR, MANSUR; Ashari, Sumeru; Kuswanto, Kuswanto

    2015-01-01

    Kedelai (Glycine max (L.) Merr.) adalah tanaman kacang-kacangan (Leguminosae) yang menjadi komoditas tanaman pangan penting karena tingginya kandungan protein. Penelitian ini dilakukan untuk mengetahui pengaruh pemberian pyraclostrobin terhadap efisiensi penyerapan nitrogen, pertumbuhan tanaman dan hasil tanaman kedelai. Bahan penelitian yang digunakan adalah benih kedelai varietas wilis, pyraclostrobin dan pupuk urea 46% N. Rancangan yang digunakan adalah rancangan tersarang yang terdiri da...

  7. A postmortem study of glycine and its potential precursors in chronic schizophrenics.

    Science.gov (United States)

    Kurumaji, A; Watanabe, A; Kumashiro, S; Semba, J; Toru, M

    1996-09-01

    We have measured the concentrations of glycine and its potential precursors, serine and threonine, in 20 areas of the postmortem brains of chronic schizophrenics and controls using high-performance liquid chromatography by pre-column derivatization with dimethyl-amino-azobenzene sulphonyl chloride. The regional distribution pattern of glycine in the postmortem brains with and without the disease was more similar to that of serine (r = 0.874, P threonine (r = 0.476, P threonine was also observed in the supramarginal cortex and posterior portion of the lateral occipitotemporal cortex of the off-drug group of schizophrenics and in the putamen of all schizophrenics. The highly similar distribution pattern of glycine and serine in the postmortem brains supports the close coupling of synthesis and metabolism between these chemicals in human brains. The increased content of glycine in the orbitofrontal cortex, the reduced level of serine in the putamen and the decrease in threonine in the cerebral cortices, which were prominent in the off-drug schizophrenics, may be involved in the pathophysiology of schizophrenia.

  8. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B 2 ...

    African Journals Online (AJOL)

    The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software. Five parameters ...

  9. Effect of Glycine, Pyruvate, and Resveratrol on the Regeneration Process of Postischemic Intestinal Mucosa

    Directory of Open Access Journals (Sweden)

    Lisa Brencher

    2017-01-01

    Full Text Available Background. Intestinal ischemia is often caused by a malperfusion of the upper mesenteric artery. Since the intestinal mucosa is one of the most rapidly proliferating organs in human body, this tissue can partly regenerate itself after the onset of ischemia and reperfusion (I/R. Therefore, we investigated whether glycine, sodium pyruvate, and resveratrol can either support or potentially harm regeneration when applied therapeutically after reperfusion injury. Methods. I/R of the small intestine was initiated by occluding and reopening the upper mesenteric artery in rats. After 60 min of ischemia and 300 min of reperfusion, glycine, sodium pyruvate, or resveratrol was administered intravenously. Small intestine regeneration was analyzed regarding tissue damage, activity of saccharase, and Ki-67 positive cells. Additionally, systemic parameters and metabolic ones were obtained at selected periods. Results. Resveratrol failed in improving the outcome after I/R, while glycine showed a partial beneficial effect. Sodium pyruvate ameliorated metabolic acidosis, diminished histopathologic tissue injury, and increased cell proliferation in the small intestine. Conclusion. While glycine could improve in part regeneration but not proliferation, sodium pyruvate seems to be a possible therapeutic agent to facilitate proliferation and to support mucosal regeneration after I/R injury to the small intestine.

  10. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms

    DEFF Research Database (Denmark)

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G L

    2013-01-01

    to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated...

  11. 76 FR 5805 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2011-02-02

    ....0033%. Proposed Classification/Use: For control of reniform nematode (Rotylenchulus reniformis) on...%. Proposed Classification/Use: For control of soybean cyst nematode (Heterodera glycines) on soybean. Note..., building materials, adhesives and sealants, ink, textiles, paper coating, functional chemicals, household...

  12. Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice.

    Science.gov (United States)

    Heidari, Reza; Ghanbarinejad, Vahid; Mohammadi, Hamidreza; Ahmadi, Asrin; Ommati, Mohammad Mehdi; Abdoli, Narges; Aghaei, Fatemeh; Esfandiari, Athena; Azarpira, Negar; Niknahad, Hossein

    2017-11-09

    Cholestasis is the stoppage of bile flow which could lead to serious clinical complications if not managed. Cytotoxic bile acids are involved in the pathogenesis of liver injury during cholestasis. There are no promising pharmacological interventions against cholestasis and its associated complications. This study examined the impact of glycine supplementation on liver mitochondria as a major target of bile acids-induced toxicity during cholestasis. Mice underwent BDL operation and received glycine (0.25% and 1% w:v in drinking water). Blood and liver samples were collected at scheduled time intervals (3, 7, and 14 days after BDL surgery). Plasma biomarkers of liver injury, along with markers of oxidative stress in the liver tissue were evaluated. Furthermore, liver mitochondria were isolated, and several mitochondrial indices were assessed. BDL-induced cholestasis was evident in mice as a significant elevation in plasma biomarkers of liver injury. Markers of oxidative stress were significantly increased in the liver of BDL animals. Liver injury was histopathologically evident by tissue necrosis, bile duct proliferation, hydropic changes, inflammation, and fibrosis. Furthermore, high level of reactive oxygen species, lipid peroxidation, depleted glutathione reservoirs, and impaired tissue antioxidant capacity were also detected in the liver of cholestatic mice. An assessment of liver mitochondrial function in BDL animals revealed an inhibition of mitochondrial dehydrogenases activity, collapse of mitochondrial membrane potential, mitochondrial swelling, and increase of reactive oxygen species (ROS), and lipid peroxidation (LPO). Furthermore, a significant decrease in mitochondrial ATP was detected in the liver mitochondria isolated from cholestatic animals. Glycine supplementation (0.25% and 1%) decreased mitochondrial swelling, ROS, and LPO. Moreover, glycine treatment improved mitochondrial membrane potential and restored liver mitochondrial ATP. On the other

  13. Green tea and glycine aid in the recovery of tendinitis of the Achilles tendon of rats.

    Science.gov (United States)

    Vieira, C P; Guerra, F Da Ré; de Oliveira, L P; Almeida, M S; Marcondes, Maria Cristina Cintra; Pimentell, E R

    2015-02-01

    Green tea (GT) is widely used due to its anti-inflammatory properties. Previous studies have shown beneficial effects of a glycine diet on the remodeling process in inflamed tendons. Tendinitis is commonly observed in athletes and is of concern to surgeons due to the slowness of the recovery process. Our hypothesis is that GT + a glycine diet may improve tendinitis. To analyze the effect of GT and/or glycine in the diet on tendinitis. Wistar rats were divided into seven groups (G): control group (C); G1 and G4, tendinitis; G2 and G5, tendinitis supplied with GT; and G3 and G6, tendinitis supplied with GT and a glycine diet for 7 or 21 days, respectively. We performed zymography for metalloproteinase, biochemical, morphological and biomechanics tests. G2, G3 and G5 showed high levels of hydroxyproline in relation to G1, while G4 showed high levels of glycosaminoglycans. High activity of metalloproteinase-2 was detected in G3. The organization of collagen bundles was better in G2 and G3. G5 showed similar birefringence measurements compared with C. G5 withstood a larger load compared with G4. The presence of metalloproteinase-2 indicates that a tissue is undergoing a remodeling process. High birefringence suggests a better organization of collagen bundles. After 21 days, G5 sustained a high load before rupture, unlike G4. The results suggest that GT + a glycine diet has beneficial effects that aid in the recovery process of the tendon after tendinitis.

  14. A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate

    Directory of Open Access Journals (Sweden)

    Okamura Yasushi

    2010-01-01

    Full Text Available Abstract Background Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs. A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. Results A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. Conclusions In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago.

  15. The Influence of Mineral Matrices on the Thermal Behavior of Glycine

    Science.gov (United States)

    Dalai, Punam; Pleyer, Hannes Lukas; Strasdeit, Henry; Fox, Stefan

    2017-12-01

    On the Hadean-Early Archean Earth, the first islands must have provided hot and dry environments for abiotically formed organic molecules. The heat sources, mainly volcanism and meteorite impacts, were also available on Mars during the Noachian period. In recent work simulating this scenario, we have shown that neat glycine forms a black, sparingly water-soluble polymer ("thermomelanoid") when dry-heated at 200 °C under pure nitrogen. The present study explores whether relevant minerals and mineral mixtures can change this thermal behavior. Most experiments were conducted at 200 or 250 °C for 2 or 7 days. The mineral matrices used were phyllosilicates (Ca-montmorillonites SAz-1 and STx-1, Na-montmorillonite SAz-1-Na, nontronite NAu-1, kaolinite KGa-1), salts (NaCl, NaCl-KCl, CaCl2, artificial sea salt, gypsum, magnesite), picritic basalt, and three Martian regolith simulants (P-MRS, S-MRS, JSC Mars-1A). The main analytical method employed was high-performance liquid chromatography (HPLC). Glycine intercalated in SAz-1 and SAz-1-Na was well protected against thermomelanoid formation and sublimation at 200 °C: after 2 days, 95 and 79 %, respectively, had either survived unaltered or been transformed into the cyclic dipeptide (DKP) and linear peptides up to Gly6. The glycine survival rate followed the order SAz-1 > SAz-1-Na > STx-1 ≈ NAu-1 > KGa-1. Very good protection was also provided by artificial sea salt (84 % unaltered glycine after 200 °C for 7 days). P-MRS promoted the condensation up to Gly6, consistent with its high phyllosilicate content. The remaining matrices were less effective in preserving glycine as such or as peptides.

  16. Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Hala M. Abdelmigid

    2017-12-01

    Full Text Available Eucalyptus trees litter plays a crucial role in structuring plant populations and regulating crop quality. To help characterize the allelopathic impact of Eucalyptus plantations and understand the interactions between tree litter and understorey plant populations, we performed two different genomic approaches to determine soybean (Glycine max crop plant response to biotic stress induced by leaf residues of Eucalyptus globulus trees. For assessing cell death, a qualitative method of DNA fragmentation test (comet assay was employed to detect cleavage of the genomic DNA into oligonucleosomal fragments and help to characterize the apoptotic event among the experimental samples. In addition, quantitative method of genome analysis at the transcriptional level also was conducted to investigate the expression responses of soybean genome to allelochemicals. Expression of specific genes, which are responsible for the breakdown of proteins during programmed cell death PCD (cysteine proteases and their inhibitors, was examined using semi-quantitative RT-PCR (sqPCR. Results of both conducted analyses proved significant genetic effects of Eucalyptus leaf residues on soybean crop genome, revealed by steady increase in DNA damage as well as variation in the transcript levels of cysteine proteases and inhibitors. Further detailed studies using more sensitive methods are necessary for a comprehensive understanding of the allelopathic effects of Eucalyptus plantations on crops.

  17. Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors.

    Science.gov (United States)

    Han, Lu; Campanucci, Verónica A; Cooke, James; Salter, Michael W

    2013-08-13

    NMDA receptors are ligand-gated ion channels with essential roles in glutamatergic synaptic transmission and plasticity in the CNS. As co-receptors for glutamate and glycine, gating of the NMDA receptor/channel pore requires agonist binding to the glycine sites, as well as to the glutamate sites, on the ligand-binding domains of the receptor. In addition to channel gating, glycine has been found to prime NMDA receptors for internalization upon subsequent stimulation of glutamate and glycine sites. Here we address the key issue of identifying molecular determinants in the glycine-binding subunit, GluN1, that are essential for priming of NMDA receptors. We found that glycine treatment of wild-type NMDA receptors led to recruitment of the adaptor protein 2 (AP-2), and subsequent internalization after activating the receptors by NMDA plus glycine. However, with a glycine-binding mutant of GluN1 - N710R/Y711R/E712A/A714L - we found that treating with glycine did not promote recruitment of AP-2 nor were glycine-treated receptors internalized when subsequently activated with NMDA plus glycine. Likewise, GluN1 carrying a single point mutation - A714L - did not prime upon glycine treatment. Importantly, both of the mutant receptors were functional, as stimulating with NMDA plus glycine evoked inward currents. Thus, we have identified a single amino acid in GluN1 that is critical for priming of NMDA receptors by glycine. Moreover, we have demonstrated the principle that while NMDA receptor gating and priming share a common requirement for glycine binding, the molecular constraints in GluN1 for gating are distinct from those for priming.

  18. An overlooked effect of glycine betaine on fermentation: prevents caramelization and increases the L-lysine production.

    Science.gov (United States)

    Xu, Jianzhong; Xia, Xiuhua; Zhang, Junlan; Guo, Yanfeng; Zhang, Weiguo

    2014-10-01

    This article focuses on the effects of glycine betaine on preventing caramelization, and increasing DCW and L-lysine production. The additional glycine betaine not only decreased the browning intensity (decreased 4 times), and the concentrations of 5-hydroxymethylfurfural (decreased 7.8 times) and furfural (decreased 12 times), but also increased the availability of glucose (increased 17.5%) for L-lysine production. The DCW and L-lysine production were increased by adding no more than 20 mM glycine betaine, whereas the DCW and L-lysine production were decreased with the reduction of pH values, although pH had a better response to prevent caramelization than did glycine betaine. For L-lysine production, the highest increase (40%) was observed on the media with 20 mM glycine betaine. The crucial enzymes in glycolysis and L-lysine biosynthesis pathway were investigated. The results indicated that additional glycine betaine increases the activity of enzymes in glycolysis, in contrast to the effect of pH. All the results indicated that glycine betaine can be used to prevent caramelization and increase the L-lysine production. By applying this strategy, glucose would not be have to be separated from the culture media during autoclaving so that factories can save production costs and shorten the fermentation period.

  19. Effects of glucose on the uptake and metabolism of glycine in pakchoi (Brassica chinensis L.) exposed to various nitrogen sources.

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Xie, Yinan; Xiao, Han; Tan, Xiaoli; Wu, Lianghuan

    2017-03-02

    Plants can absorb amino acids as a nitrogen (N) source, and glucose is an important part of root rhizodeposition and the soil sugar pool, which participates in the regulation of plant growth and uptake. In pakchoi, the effect of glucose concentration on the glycine N uptake from a nutrient mixture composed of glycine, ammonium, and nitrate, or from a single N solution of glycine alone was studied using specific substrate 15N-labeling and 15N-gas chromatography mass spectrometry. The optimal glucose concentration for plant growth was 4.5 μM or 25 μM when supplied with glycine alone or the N mixture, respectively, and resulted in a >25% increase in seedling biomass. The addition of glucose affected the relative contribution from organic or inorganic sources to overall N uptake. When glucose was added at optimal concentrations, glycine was preferentially used as an N source, while the relative contribution from nitrate was reduced. The limiting step for glycine N contribution was active uptake in the roots in high glucose and single-N-source conditions; however, root metabolism of glycine to serine was limiting in high-glucose and mixed-N-source conditions. The addition of low concentrations of glucose increased the relative uptake of organic nitrogen and reduced the uptake of nitrate, suggesting a feasible way to decrease nitrate content and increase the edible quality of vegetables.

  20. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure.

    Science.gov (United States)

    Díaz-Flores, Margarita; Cruz, Miguel; Duran-Reyes, Genoveva; Munguia-Miranda, Catarina; Loza-Rodríguez, Hilda; Pulido-Casas, Evelyn; Torres-Ramírez, Nayeli; Gaja-Rodriguez, Olga; Kumate, Jesus; Baiza-Gutman, Luis Arturo; Hernández-Saavedra, Daniel

    2013-10-01

    Reactive oxygen species derived from abdominal fat and uncontrolled glucose metabolism are contributing factors to both oxidative stress and the development of metabolic syndrome (MetS). This study was designed to evaluate the effects of daily administration of an oral glycine supplement on antioxidant enzymes and lipid peroxidation in MetS patients. The study included 60 volunteers: 30 individuals that were supplemented with glycine (15 g/day) and 30 that were given a placebo for 3 months. We analysed thiobarbituric acid reactive substances (TBARS) and S-nitrosohemoglobin (SNO-Hb) in plasma; the enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in erythrocytes; and the expression of CAT, GPX, and SOD2 in leukocytes. Individuals treated with glycine showed a 25% decrease in TBARS compared with the placebo-treated group. Furthermore, there was a 20% reduction in SOD-specific activity in the glycine-treated group, which correlated with SOD2 expression. G6PD activity and SNO-Hb levels increased in the glycine-treated male group. Systolic blood pressure (SBP) also showed a significant decrease in the glycine-treated men (p = 0.043). Glycine plays an important role in balancing the redox reactions in the human body, thus protecting against oxidative damage in MetS patients.

  1. Escherichia coli O157:H7 Converts Plant-Derived Choline to Glycine Betaine for Osmoprotection during Pre- and Post-harvest Colonization of Injured Lettuce Leaves

    Directory of Open Access Journals (Sweden)

    Russell A. Scott

    2017-12-01

    Full Text Available Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157 responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05 over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP. The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01 when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9 choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and

  2. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress.

    Science.gov (United States)

    Luo, Qingyun; Yu, Bingjun; Liu, Youliang

    2005-09-01

    High Na+ and Cl- concentrations in soil cause hyperionic and hyperosmotic stress effects, the consequence of which can be plant demise. Ion-specific stress effects of Na+ and Cl- on seedlings of cultivated (Glycine max (L.) Merr) and wild soybean (Glycine soja Sieb. Et Zucc.) were evaluated and compared in isoosmotic solutions of Cl-, Na+ and NaCl. Results showed that under NaCl stress, Cl- was more toxic than Na+ to seedlings of G. max. Injury of six G. max cultivars, including 'Jackson' (salt sensitive) and 'Lee 68' (salt tolerant), was positively correlated with the content of Cl- in the leaves, and negatively with that in the roots. In subsequent research, seedlings of two G. max cultivars (salt-tolerant Nannong 1138-2, and salt-sensitive Zhongzihuangdou-yi) and two G. soja populations (BB52 and N23232) were subjected to isoosmotic solutions of 150mM Na+, Cl- and NaCl, respectively. G. max cv. Nannong 1138-2 and Zhongzihuangdou-yi were damaged much more heavily in the solution of Cl- than in that of Na+. Their Leaves were found to be more sensitive to Cl- than to Na+, and salt tolerance of these two G. max cultivars was mainly due to successful withholding of Cl- in the roots and stems to decrease its content in the leaves. The reverse response to isoosmotic stress of 150 mM Na+ and Cl- was shown in G. soja populations of BB52 and N23232; their leaves were not as susceptible to toxicity of Cl- as that of Na+. Salt tolerance of BB52 and N23232 was mainly due to successful withholding of Na+ in the roots and stems to decrease its content in the leaves. These results indicate that G. soja have advantages over G. max in those traits associated with the mechanism of Cl-tolerance, such as its withholding in roots and vacuoles of leaves. It is possible to use G. soja to improve the salt tolerance of G. max.

  3. Newly developed conventional soybean JTN-5110 has resistance to multiple pathogens

    Science.gov (United States)

    In the United States, combined yield losses in soybean [Glycine max (L.) Merr.] caused by soybean cyst nematode (SCN; Heterodera glycines Ichinohe) and fungal diseases: stem canker (Diaporthe phaseolorum var. meridionalis), Sudden Death Syndrome (SDS; caused by Fusarium solani f. sp. glycines), and ...

  4. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.

    Science.gov (United States)

    Tuyen, D D; Lal, S K; Xu, D H

    2010-07-01

    Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F(6) recombinant inbred line mapping population (n = 112) and an F(2) population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO(3) for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F(6) and the F(2) populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.

  5. Inhibition effect of glycine on molybdenum corrosion during CMP in alkaline H2O2 based abrasive free slurry

    Science.gov (United States)

    Yang, Guang; He, Peng; Qu, Xin-Ping

    2018-01-01

    The inhibitory effect of glycine on corrosion and chemical mechanical polishing (CMP) of Mo in hydrogen peroxide (H2O2) based abrasive-free alkaline slurry has been investigated. Results show that, in H2O2 based slurry, both static etching rate (SER) and removal rate (RR) of Mo during chemical mechanical polishing were reduced by adding glycine and the inhibition efficiency was around 50%. From ex-situ and in-situ open circuit potential (OCP), current density transient and potentiodynamic polarization measurements, it is found that formation of oxides was delayed due to blocked contact between oxidizer and the sample surface by electrostatic adsorption of glycine zwitterion on the surface. Glycine can form complex with MoO3 and promote dissolution of surface oxide, MoO3, resulting in a reduced passivation layer. The slowed oxidation reaction dominates the whole process, resulting inhibited Mo corrosion and leading to a smoother Mo surface.

  6. A known and a novel mutation in the glycine decarboxylase gene in a newborn with classic nonketotic hyperglycinemia.

    Science.gov (United States)

    Beijer, P; Lichtenbelt, K D; Hofstede, F C; Nikkels, P G J; Lemmers, P; de Vries, L S

    2012-06-01

    A term neonate displayed typical features of nonketotic hyperglycinemia (NKH). Conventional magnetic resonance imaging showed corpus callosum hypoplasia and increased signal intensity of the white matter. Magnetic resonance proton spectroscopy revealed high cerebral glycine levels. The liquor/plasma glycine ratio was increased. Genetic testing detected a known and a novel mutation in the glycine decarboxylase gene, leading to the classic form of glycine encephalopathy. Prenatal genetic testing in the subsequent pregnancy showed that this fetus was not affected. As features of neonatal NKH may not be very specific, recognition of the disease may be difficult. An overview of clinical, electroencephalography, and neuroimaging findings is given in this article. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  8. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch......-clamp assay and in [(3)H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site...... of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  9. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics.

    Science.gov (United States)

    Misra, Charu; Kumar, Manish; Sharma, Gajanand; Kumar, Rajendra; Singh, Bhupinder; Katare, Om Prakash; Raza, Kaisar

    2017-05-01

    Glycine-tethered C60-fullerenes were conjugated with N-desmethyl tamoxifen and evaluated for drug delivery benefits. C60-fullerenes were functionalized with glycine, and N-desmethyl tamoxifen was conjugated, employing a linker and characterized for micromeritics, drug loading, drug release and evaluated for cancer cell toxicity, cellular uptake and pharmacokinetics. The nanoconjugate with a drug entrapment efficiency of 82.71 ± 6.23% and a drug loading of 66.01 ± 4.98% was hemocompatibile with appreciable MCF-7 cytotoxicity. The confocal results confirmed enhanced uptake of conjugate. Interestingly, pharmacokinetic outcomes of the conjugate were superior and the area under the curve was enhanced by approximately three-times, whereas the drug clearance was reduced by around five-times, after single intravenous injection. The conjugation assured improved availability of drug in a biological system for prolonged duration as well as in the interiors of target cells with a promise of enhanced efficacy and compatibility.

  10. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    Science.gov (United States)

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. New Molybdenum Epoxidation Catalyst Derived From Nanoporous MCM-41 Supported Glycine Schiff-Base

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2012-03-01

    Full Text Available Covalent grafting of the nanoporous molecular sieve MCM-41 with 3- aminopropyl trimethoxysilane and acetyl acetone (acac successively gave modified MCM-41 (acacAmpMCM-41. Reaction of the resulted material with glycine afforded the corresponding supported glycine Schiff base ligand and subsequent reaction with [bis(acetylacetonatodioxomolybdenum(VI] was lead to molybdenum complex supported on MCM-41 through propyl chain spacer. Characterization of the resulting material was carried out with FT-IR, atomic absorption spectroscopy, powder X-ray diffraction and BET nitrogen sorption methods. The XRD and BET analyses revealed that textural properties of support were preserved during the grafting experiments. The resulted material successfully catalyzed the epoxidation of olefins with  tert-butyl hydroperoxide to the corresponding epoxides.

  12. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.; Chaki, S. H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat (India)

    2016-05-06

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field, UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.

  13. Effect of CO2 Concentration on Glycine and Serine Formation during Photorespiration 1

    Science.gov (United States)

    Snyder, F. W.; Tolbert, N. E.

    1974-01-01

    Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant. PMID:16658736

  14. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci.

    Science.gov (United States)

    Li, Ying-Hui; Li, Wei; Zhang, Chen; Yang, Liang; Chang, Ru-Zhen; Gaut, Brandon S; Qiu, Li-Juan

    2010-10-01

    • The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. • In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. • The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. • G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.

  15. Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan.

    Science.gov (United States)

    Mizuguti, Aki; Ohigashi, Kentaro; Yoshimura, Yasuyuki; Kaga, Akito; Kuroda, Yosuke; Matsuo, Kazuhito

    2010-01-01

    Accumulation of information about natural hybridization between GM soybean (Glycine max) and wild soybean (Glycine soja) is required for risk assessment evaluation and to establish biosafety regulations in Japan. This is particularly important in areas where wild relatives of cultivated soybean are grown (i.e. East Asia including Japan). To collect information on temporal and spatial factors affecting variation in hybridization between wild and GM soybean, a two year hybridization experiment was established that included one wild soybean and five GM soybean cultivars with different maturity dates. Hybridization frequencies ranged from 0 to 0.097%. The maximum hybridization frequency (0.097%) was obtained from wild soybean crossed with GM soybean cv. AG6702RR, which were adjacently cultivated with wild soybean, with 25 hybrids out of 25 741 seedlings tested. Cultivar AG6702RR had the most synchronous flowering period with wild soybean. Ten hybrids out of 25 741 were produced by crossing with cv. AG5905RR, which had the second most synchronous flowering period with wild soybean. Most hybrids were found where GM and wild soybeans were adjacently cultivated, whereas only one hybrid was detected from wild soybean plants at 2 m, 4 m and 6 m from a pollen source (GM soybean). Differences in flowering phenology, isolation distance and presence of buffer plants accounted for half of the variation in hybridization frequency in this study. Temporal and spatial isolation will be effective strategies to minimize hybridization between GM and wild soybean. © ISBR, EDP Sciences.

  16. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Science.gov (United States)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Tang, Yao; Xiao, Yao; Wan, Sen

    2012-08-01

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation.

  17. Intra-molecular cohesion of coils mediated by phenylalanine-glycine motifs in the natively unfolded domain of a nucleoporin

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V; Lau, E Y; Yamada, J; Denning, D P; Patel, S S; Colvin, M E; Rexach, M F

    2007-04-19

    The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and cytoplasm of cells. Its conduit contains a size-selective gate and is populated by a family of NPC proteins that feature long natively-unfolded domains with phenylalanine-glycine repeats. These FG nucleoporins play key roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain from the yeast nucleoporin Nup116. The results show that its FG motifs function as intra-molecular cohesion elements that impart order to the FG domain. The cohesion of coils mediated by FG motifs in the natively unfolded domain of Nup116 supports a type of tertiary structure, a native pre-molten globule, that could become quaternary at the NPC through recruitment of neighboring FG nucleoporins, forming one cohesive meshwork of intertwined filaments capable of gating protein diffusion across the NPC by size exclusion.

  18. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    Science.gov (United States)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml‑1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml‑1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml‑1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity

  19. Glycine-extended gastrin enhances somatostatin release from cultured rabbit fundic D-cells

    OpenAIRE

    Ian LP Beales

    2013-01-01

    The role of the peptide hormone gastrin in stimulating gastric acid secretion is well established. Mature amidated gastrin is processed from larger peptide precursor forms. Increasingly these processing intermediates, such as glycine-extended gastrin (G-Gly) and progastrin, have been shown to have biological activities of their own, often separate and complementary to gastrin. Although G-Gly is synthesized and secreted by gastric antral G-cells, the physiological functions of this putative me...

  20. A Comprehensive Analysis of the Cupin Gene Family in Soybean (Glycine max)

    OpenAIRE

    Wang, Xiaobo; Zhang, Haowei; Gao, Yali; Sun, Genlou; Zhang, Wenming; Qiu, Lijuan

    2014-01-01

    Cupin superfamily of proteins, including germin and germin-like proteins (GLPs) from higher plants, is known to play crucial roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max) incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These Gmcupin proteins were ...

  1. Glycine: A potential coupling agent to bond to helium plasma treated PEEK?

    Science.gov (United States)

    Schmidlin, Patrick R; Eichberger, Marlis; Stawarczyk, Bogna

    2016-02-01

    To test the tensile bond strength (TBS) between two self-adhesive resin composite cements and PEEK after helium plasma treatment and used glycine as a potential coupling agent incorporated in different adhesives. In summary, 896 air-abraded PEEK specimens were fabricated. Half of the specimens were treated with cold active inert helium plasma and the other half were left non-treated. Both groups were then split in two groups: In group 1 (n=256), 64 specimens were pre-treated with: (a) soft-liner liquid, (b) visio.link, (c) Ambarino P60 and (d) no pre-treatment (control), respectively. In group 2 (n=192), specimens were conditioned accordingly, but the adhesive materials were modified by including a commercially available glycine (Air-Flow PERIO). PEEK specimens were then luted using either RelyX Unicem or Clearfil SA Cement and TBS was measured initially and after 14 days water storage combined with 10'000 thermal cycles (16 specimens/subgroup). Fracture type analysis was performed. For statistical analyses Kolmogorov-Smirnov, Shapiro-Wilk tests, 1-, 4-way ANOVA (post hoc: Scheffé), and t-test were used (p0.348). In contrast, a combination between glycine application and Softline/Ambarino P60 allowed for significantly higher initial TBS was measured after helium plasma treatment (p=0.001). However, this effect was no evident after thermo-cycling. All groups conditioned with visio.link showed the highest TBS values. The introduction of amine groups by simple provision of amino acids in the form of glycine can improve the bond strength after helium plasma treatment using different adhesive materials. However, using this simple approach, the method cannot withstand thermal challenge yet. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Nanomolar Levels of Dimethylsulfoniopropionate, Dimethylsulfonioacetate, and Glycine Betaine Are Sufficient To Confer Osmoprotection to Escherichia coli

    OpenAIRE

    Cosquer, Anne; Pichereau, Vianney; Pocard, Jean-Alain; Minet, Jacques; Cormier, Michel; Bernard, Théophile

    1999-01-01

    We combined the use of low inoculation titers (300 ± 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard labor...

  3. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    Science.gov (United States)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2017-06-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  4. Glycine suppresses TNF-α-induced activation of NF-κB in differentiated 3T3-L1 adipocytes.

    Science.gov (United States)

    Blancas-Flores, Gerardo; Alarcón-Aguilar, Francisco J; García-Macedo, Rebeca; Almanza-Pérez, Julio C; Flores-Sáenz, José L; Román-Ramos, Rubén; Ventura-Gallegos, José L; Kumate, Jesús; Zentella-Dehesa, Alejandro; Cruz, Miguel

    2012-08-15

    Glycine strongly reduces the serum levels of pro-inflammatory cytokines and increases the levels of anti-inflammatory cytokines. Recently, glycine has been shown to decrease the expression and secretion of pro-inflammatory adipokines in monosodium glutamate-induced obese (MSG/Ob) mice. It has been postulated that these effects may be explained by a reduction in nuclear factor kappa B (NF-κB) activation. NF-κB is a transcription factor, which is crucial to the inflammatory response. Hasegawa et al. (2011 and 2012) recently reported a glycine-dependent reduction in NF-κB levels. Here, we have investigated the role of glycine in the regulation of NF-κB in differentiated 3T3-L1 adipocytes. The results revealed that pretreatment with glycine interfered with the activation of NF-κB, which has been shown to be stimulated by tumor necrosis factor-alpha (TNF-α). Glycine alone stimulated NF-κB activation in an unusual way such that the inhibitor κB-β (IκB-β) degradation was more significant than that of the inhibitor κB-α (IκB-α) and led to NF-κB complexes comprised of p50 and p65 subunits; IκB-ε degradation did not affect by glycine. These findings suggest that glycine could be used as an alternative treatment for chronic inflammation, which is a hallmark of obesity and other comorbidities, and is characterized by an elevated production of pro-inflammatory cytokines. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nanocrystal Dissolution Kinetics and Solubility Increase Prediction from Molecular Dynamics: The Case of α-, β-, and γ-Glycine.

    Science.gov (United States)

    Parks, Conor; Koswara, Andy; Tung, Hsien-Hsin; Nere, Nandkishor K; Bordawekar, Shailendra; Nagy, Zoltan K; Ramkrishna, Doraiswami

    2017-04-03

    Nanocrystals are receiving increased attention for pharmaceutical applications due to their enhanced solubility relative to their micron-sized counterpart and, in turn, potentially increased bioavailability. In this work, a computational method is proposed to predict the following: (1) polymorph specific dissolution kinetics and (2) the multiplicative increase in the polymorph specific nanocrystal solubility relative to the bulk solubility. The method uses a combination of molecular dynamics and a parametric particle size dependent mass transfer model. The method is demonstrated using a case study of α-, β-, and γ-glycine. It is shown that only the α-glycine form is predicted to have an increasing dissolution rate with decreasing particle size over the range of particle sizes simulated. On the contrary, γ-glycine shows a monotonically increasing dissolution rate with increasing particle size and dissolves at a rate 1.5 to 2 times larger than α- or β-glycine. The accelerated dissolution rate of γ-glycine relative to the other two polymorphs correlates directly with the interfacial energy ranking of γ > β > α obtained from the dissolution simulations, where γ- is predicted to have an interfacial energy roughly four times larger than either α- or β-glycine. From the interfacial energies, α- and β-glycine nanoparticles were predicted to experience modest solubility increases of up to 1.4 and 1.8 times the bulk solubility, where as γ-glycine showed upward of an 8 times amplification in the solubility. These MD simulations represent a first attempt at a computational (pre)screening method for the rational design of experiments for future engineering of nanocrystal API formulations.

  6. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  7. Catalysis in glycine N-methyltransferase: testing the electrostatic stabilization and compression hypothesis.

    Science.gov (United States)

    Soriano, Alejandro; Castillo, Raquel; Christov, Christo; Andrés, Juan; Moliner, Vicente; Tuñón, Iñaki

    2006-12-19

    Glycine N-methyltransferase (GNMT) is an S-adenosyl-l-methionine dependent enzyme that catalyzes glycine transformation to sarcosine. Here, we present a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study of the reaction compared to the counterpart process in water. The process takes place through an SN2 mechanism in both media with a transition state in which the transferring methyl group is placed in between the donor (SAM) and the acceptor (the amine group of glycine). Comparative analysis of structural, electrostatic, and electronic characteristics of the in-solution and enzymatic transition states allows us to get a deeper insight into the origins of the enzyme's catalytic power. We found that the enzyme is able to stabilize the substrate in its more active basic form by means of a positively charged residue (Arg175) placed in the active site. However, the maximum stabilization is attained for the transition state. In this case, the enzyme is able to form stronger hydrogen bonds with the positively charged amine group. Finally, we show that in agreement with previous computational studies on other methyltransferases, there is no computational evidence for the compression hypothesis, as was formulated by Schowen (Hegazi, M. F., Borchardt, R. T., and Schowen, R. L. (1979) J. Am. Chem. Soc. 101, 4359-4365).

  8. The effect of spray drying on sucrose-glycine caramel powder preparation.

    Science.gov (United States)

    Huang, Kai; Zhang, Ping-Jun; Hu, Biao; Yu, Shu-Juan

    2016-05-01

    Caramel is used as food colorant in many parts of the world. However, there have been no studies investigating the effects of spray drying on sucrose and glycine solutions. In this study, model sucrose and glycine solutions at different pH levels (pH 4, 3, 2 and 1) were treated with different inlet air temperatures (160, 180, 200, 220 and 240 °C) for durations of 50 s in the spray drying process. With increasing inlet temperatures and decreasing pH, the morphology of the caramel agglomerates tended to be more scattered; however, the solubility of the caramel decreased. With increasing inlet temperature, the glycine and sucrose contents decreased but the fructose and glucose contents increased. The content of the intermediate products, browning intensity and amount of 5-hydroxymethyl-2-furaldehyde (HMF) increased with increasing inlet temperature and decreasing pH. Therefore, the amount of sucrose degradation and the change in pH can be used to evaluate caramel properties in the spray drying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings

    Directory of Open Access Journals (Sweden)

    SAJJAD MOHARRAMNEJAD

    2015-12-01

    Full Text Available In order to evaluate the fresh weight, RWC, pigment content, total phenolics, proline and glycine betaine responses of maize inbred lines to osmotic stress, a factorial experiment was carried out under laboratory conditions with two maize inbred lines (B73 and MO17 and two osmotic stress levels induced by PEG (control and -0.6 MPa. Fresh weight significantly decreased under drought stress. On the basis of percent inhibition in fresh weight at the osmotic stress MO17 was ranked as tolerant (inhibition 45.30%, and B73 drought sensitive (inhibition more than 50%. Leaf relative water content (RWC was significantly decreased in both inbred lines under osmotic stress. The pigment concentrations were substantially declined in both maize inbreds under osmotic stressed conditions. However, this reduction was less in B73 than MO17. Osmoitc stress declined the levels of total phenolics in both maize inbreds. On the other hand, the osmotic stress markedly enhanced the levels of proline and glycine betaine in both maize inbreds, but this was more pronounced in MO17. The present results showed that osmotic stress retards the growth and some biochemical attributes of maize inbreds. In conclusion, the level of proline and glycine betaine in maize could improve drought tolerance.

  10. ζ-Glycine: insight into the mechanism of a polymorphic phase transition

    Directory of Open Access Journals (Sweden)

    Craig L. Bull

    2017-09-01

    Full Text Available Glycine is the simplest and most polymorphic amino acid, with five phases having been structurally characterized at atmospheric or high pressure. A sixth form, the elusive ζ phase, was discovered over a decade ago as a short-lived intermediate which formed as the high-pressure ∊ phase transformed to the γ form on decompression. However, its structure has remained unsolved. We now report the structure of the ζ phase, which was trapped at 100 K enabling neutron powder diffraction data to be obtained. The structure was solved using the results of a crystal structure prediction procedure based on fully ab initio energy calculations combined with a genetic algorithm for searching phase space. We show that the fate of ζ-glycine depends on its thermal history: although at room temperature it transforms back to the γ phase, warming the sample from 100 K to room temperature yielded β-glycine, the least stable of the known ambient-pressure polymorphs.

  11. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  12. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  13. Treatment of bromhidrosis with a glycine-soja sterocomplex topical product.

    Science.gov (United States)

    Gregoriou, Stamatis; Rigopoulos, Dimitrios; Chiolou, Zoe; Papafragkaki, Dafni; Makris, Michalis; Kontochristopoulos, George

    2011-03-01

    Bromhidrosis is a common problem with a severe negative impact on the patient's social and emotional life. The objective of this open-label study was to evaluate the efficacy and safety of a local product with the main active ingredient of glycine-soja sterocomplex in the treatment of local bromhidrosis. Eighteen patients with axillary bromhidrosis and eight patients with bromhidrosis of the genital area were included. Bromhidrosis was evaluated through a sniff test of a worn garment on a four-point scale. Patients applied a glycine-soja sterocomplex topical agent twice daily on the affected areas for 15 days and bromhidrosis was evaluated again. Subjective mean level of bromhidrosis at baseline was 3.50 ± 0.50 and after treatment 1.53 ± 0.51. Mean impact on quality of life at baseline was 3.30 ± 0.48 and after treatment 1.30 ± 0.49. Investigators objective evaluation revealed an improvement in intensity of odor from 3.23 ± 0.83 to 1.53 ± 0.53 and in acceptability of odor from 3.1 ± 1.01 to 1.65 ± 0.76. The glycine-soja sterocomplex topical agent shows encouraging improvement on both the intensity and quality of odor in patients with bromhidrosis and has a profound improvement on the patients' quality of life without any side effects. © 2011 Wiley Periodicals, Inc.

  14. Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Lundgren, Benjamin R; Thornton, William; Dornan, Mark H; Villegas-Peñaranda, Luis Roberto; Boddy, Christopher N; Nomura, Christopher T

    2013-05-01

    Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria.

  15. A glycine zipper motif mediates the formation of toxic β-amyloid oligomers in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Fan Emily Y

    2011-08-01

    Full Text Available Abstract Background The β-amyloid peptide (Aβ contains a Gly-XXX-Gly-XXX-Gly motif in its C-terminal region that has been proposed to form a "glycine zipper" that drives the formation of toxic Aβ oligomers. We have tested this hypothesis by examining the toxicity of Aβ variants containing substitutions in this motif using a neuronal cell line, primary neurons, and a transgenic C. elegans model. Results We found that a Gly37Leu substitution dramatically reduced Aβ toxicity in all models tested, as measured by cell dysfunction, cell death, synaptic alteration, or tau phosphorylation. We also demonstrated in multiple models that Aβ Gly37Leu is actually anti-toxic, thereby supporting the hypothesis that interference with glycine zipper formation blocks assembly of toxic Aβ oligomers. To test this model rigorously, we engineered second site substitutions in Aβ predicted by the glycine zipper model to compensate for the Gly37Leu substitution and expressed these in C. elegans. We show that these second site substitutions restore in vivo Aβtoxicity, further supporting the glycine zipper model. Conclusions Our structure/function studies support the view that the glycine zipper motif present in the C-terminal portion of Aβ plays an important role in the formation of toxic Aβ oligomers. Compounds designed to interfere specifically with formation of the glycine zipper could have therapeutic potential.

  16. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    Science.gov (United States)

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  17. A Reflectron Time-of-Flight Mass Spectrometric Study on the Degradation Pathways of Glycine on Mars in the Presence of Perchlorates and Ionizing Radiation

    Science.gov (United States)

    Góbi, Sándor; Förstel, Marko; Maksyutenko, Pavlo; Kaiser, Ralf I.

    2017-02-01

    The absence of abundant organics on the Martian surface is a much discussed observation. So far, no explanation is completely satisfactory. In this study we aim for a deeper understanding of the degradation processes of organics in the presence of perchlorates that can take place on the Martian surface. Our primary goal is to study the radiation-induced decomposition process of glycine (H2NCH2COOH) in the absence and presence of an oxidizer relevant to the Martian surface—perchlorate anions ({{{ClO}}4}-). Glycine and various samples of glycine-1-13C (+H3NC{{{{H}}}2}13COO-)-magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were exposed to energetic electrons mimicking secondary electrons originating from the interaction of galactic cosmic rays (GCRs) with the Martian regolith. Using isotope-labeled and deuterated pure glycine samples such as glycine-1-13C, glycine-d5 (+D3NCD2COO-), glycine-N,N,N-d3 (+D3NCH2COO-), and glycine-2,2-d2 (+H3NCD2COO-), we can conclude that decarboxylation (carbon dioxide loss) of the glycine molecule is exclusively the first decay step during irradiation regardless of whether perchlorate anions are present or not. In pure glycine samples, the decarboxylation co-product methylamine (CH3NH2) and its radiolytic decay product ammonia could both be detected explicitly for the first time. In the presence of perchlorates, (partial) oxidation of the glycine decarboxylation product CH3NH2 may occur. Because the decarboxylation is an equilibrium reaction and the CH3NH2 is effectively removed from the system by this oxidation, glycine cannot be recycled. Therefore the depletion of the CH3NH2 facilitates the process, resulting in an overall 10-fold increase in the formation rate of carbon dioxide and its elevated concentrations in the perchlorate-containing irradiated samples.

  18. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors.

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R

    2010-03-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.

  19. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc.) for Use in Ecological Risk Assessment of Insect Protected Soybean.

    Science.gov (United States)

    Goto, Hidetoshi; Shimada, Hiroshi; Horak, Michael J; Ahmad, Aqeel; Baltazar, Baltazar M; Perez, Tim; McPherson, Marc A; Stojšin, Duška; Shimono, Ayako; Ohsawa, Ryo

    2016-01-01

    Insect-protected soybean (Glycine max (L.) Merr.) was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc.) is required as one aspect of the environmental risk assessment (ERA) in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2%) caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100%) was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible.

  20. A mutation in the glycine binding pocket of the N-methyl-D-aspartate receptor NR1 subunit alters agonist efficacy.

    Science.gov (United States)

    Wood, M W; VanDongen, H M; VanDongen, A M

    1999-11-10

    Alanine 714 of the NMDA receptor NR1 subunit resides in the glycine binding pocket. The Ala714Leu mutation substantially shifts glycine affinity, but here no effect on antagonism by DCK is detected. Ala714Leu is also found to limit the efficacy of a partial agonist without altering its apparent affinity. The differential sensitivity of Ala714Leu to glycine agonists suggests that alanine 714 may be an intermediary in transducing the ligand binding signal.

  1. Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors

    OpenAIRE

    Han, Lu; Campanucci, Ver?nica A; Cooke, James; Salter, Michael W

    2013-01-01

    Background NMDA receptors are ligand-gated ion channels with essential roles in glutamatergic synaptic transmission and plasticity in the CNS. As co-receptors for glutamate and glycine, gating of the NMDA receptor/channel pore requires agonist binding to the glycine sites, as well as to the glutamate sites, on the ligand-binding domains of the receptor. In addition to channel gating, glycine has been found to prime NMDA receptors for internalization upon subsequent stimulation of glutamate an...

  2. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    Science.gov (United States)

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  3. Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots

    Science.gov (United States)

    2013-01-01

    Background Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is their source of nutrients throughout their life. A transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that gene expression in the syncytium is different from that of the root with thousands of genes upregulated or downregulated. Among the downregulated genes are many which code for defense-related proteins. One gene which is strongly downregulated codes for the ethylene response transcription factor RAP2.6. The genome of Arabidopsis contains 122 ERF transcription factor genes which are involved in a variety of developmental and stress responses. Results Expression of RAP2.6 was studied with RT-PCR and a promoter::GUS line. During normal growth conditions the gene was expressed especially in roots and stems. It was inducible by Pseudomonas syringae but downregulated in syncytia from a very early time point on. Overexpression of the gene enhanced the resistance against H. schachtii which was seen by a lower number of nematodes developing on these plants as well as smaller syncytia and smaller female nematodes. A T-DNA mutant had a reduced RAP2.6 transcript level but this did not further increase the susceptibility against H. schachtii. Neither overexpression lines nor mutants had an effect on P. syringae. Overexpression of RAP2.6 led to an elevated expression of JA-responsive genes during early time points after infection by H. schachtii. Syncytia developing on overexpression lines showed enhanced deposition of callose. Conclusions Our results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6. It seems likely that the nematodes use effectors to actively downregulate the expression of this and other defense-related genes to avoid resistance responses of the host plant. Enhanced resistance of RAP2.6 overexpression lines seemed to be due to enhanced

  4. Desempenho de genótipos de soja-hortaliça de ciclo precoce [Glycine max (L. Merril] em diferentes densidades Performance of genotypes of early-cycle vegetable soybeans [Glycine max (L. Merril] in different densities

    Directory of Open Access Journals (Sweden)

    Hamilton César de O. Charlo

    2008-04-01

    Full Text Available Objetivando-se avaliar o desempenho de dois genótipos de soja-hortaliça de ciclo precoce [Glycine max (L. Merril], em diferentes densidades, foi instalado um ensaio, em área experimental do Setor de Olericultura e Plantas Aromático-Medicinais, pertencente ao Departamento de Produção Vegetal, nas dependências da Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP, Campus de Jaboticabal-SP. O delineamento experimental foi o de parcelas subdivididas, adotando-se nas parcelas os genótipos e nas subparcelas as densidades, com quatro repetições por tratamento. Cada parcela experimental foi constituída por quatro linhas de 4,5m de plantio, com densidades de 20, 10 e 7 plantas por metro e 0,60m nas entrelinhas, sendo consideradas para avaliação 20 plantas por parcela, das duas linhas centrais. As sementes foram semeadas em bandejas de poliestireno expandido de 128 células, contendo substrato Plantmax Hortaliças®. O transplantio ocorreu dez dias após a semeadura, em solo devidamente preparado, conforme recomendações para a cultura. A colheita foi realizada quando os legumes estavam em estádio reprodutivo R6. Avaliaram-se os genótipos JLM010 e CNPSOI quanto às características: número médio de legumes por planta, número médio de sementes por legume, massa fresca de 100 sementes e produtividade estimada de grãos imaturos. Com base nos resultados obtidos concluiu-se que o genótipo JLM010 é o mais recomendado e deve ser plantado na densidade de 7 plantas por metro.With the aim of evaluating the performance of two genotypes of early-cycle soybeans [Glycine max (L. Merril] in different spacings, a study was carried out in the experimental area of the Sector of Vegetable Crops and Aromatic Medicinal Plants, belonging to the Department of Crop Sciences, College of Agricultural and Veterinary Sciences (FCAV-UNESP, Jaboticabal Campus-SP. The experimental design used was the one of subdivided parcels, each parcel representing

  5. Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate.

    Science.gov (United States)

    Arkowitz, R A; Abeles, R H

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + Pi + 2e(-)----acetyl phosphate + NH4+. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. We now demonstrate that protein C catalyzes exchange of [32P]Pi into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, we have isolated acetyl protein C and shown that it is qualitatively catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B [Arkowitz, R. A., & Abeles, R. H. (1990) J. Am. Chem. Soc. 112, 870-872]. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with Pi to give acetyl phosphate. When [14C]acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. At pH 11.5 radioactivity was released with t1/2 = 57 min, comparable to the hydrolysis rate of thioesters. Exposure of 4 N neutralized NH2OH resulted in the complete release of radioactivity. Treatment with KBH4 removes all the radioactivity associated with protein C, resulting in the formation of [14C]ethanol. We conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from [3H]H2O into acetyl phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Arkowitz, R.A.; Abeles, R.H. (Brandeis Univ., Waltham, MA (USA))

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of ({sup 32}P)P{sub i} into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P{sub i} to give acetyl phosphate. When ({sup 14}C)acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH{sub 4} removes all the radioactivity associated with protein C, resulting in the formation of ({sup 14}C)ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from ({sup 3}H)H{sub 2}O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence.

  7. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  8. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  9. Application of Glycine, Tufool and Salicylic Acid in Sugar beet (Beta vulgaris L. under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Kheirkhah

    2016-03-01

    Full Text Available Sugar beet is one of strategic products to supply sugar in water limited areas of Iran. Thus, proper managements to supply enouph water in production of sugar beet is very important. To evaluate the effects of some anti stress substances like salicylic acid, tyuful and glycine to irritigate the effect of early water deficit on suger beet, an experiment based on randomized complete block design with three replications was carried out at the Research Farm of Fariman Sugar Factory in 2013. Treatments consisted of control (without using anti stress substances, with three concentration of salicylic acid (0.1, 0.5, and 1 mM, tyuful with three concentration (0.5, 1 and 1.5 liter per thousand and glycine with three concentration (1, 2 and 3 liters per thousand. The results showed that the effects of anti-stress materials significantly affected the sugar content, root yield, white sugar yield and harmful nitrogen. Highest sugar content (15.65%, root yield (83.82 t.ha-1 and white sugar percentage (11.15% were obtained by using tyuful 1.5 lit/1000. While, the lowest levels of these characters were obtained from control (not using anti stress substances. Maximum harmful nitrogen was produced in control treatment (4.38 and highest level of alkalinity with mean of 3.49 was observed by using 3 lit/1000 of glycine. Our results showed that all of the anti stress substances had positive effects on sugar beet under drought stress condition.

  10. Glycine transporter type 1 occupancy by bitopertin: a positron emission tomography study in healthy volunteers.

    Science.gov (United States)

    Martin-Facklam, Meret; Pizzagalli, Flavia; Zhou, Yun; Ostrowitzki, Susanne; Raymont, Vanessa; Brašić, James R; Parkar, Nikhat; Umbricht, Daniel; Dannals, Robert F; Goldwater, Ron; Wong, Dean F

    2013-02-01

    Deficient N-methyl-D-aspartate (NMDA) receptor transmission is thought to underlie schizophrenia. An approach for normalizing glutamate neurotransmission by enhancing NMDA receptor transmission is to increase glycine availability by inhibiting the glycine transporter type 1 (GlyT1). This study investigated the relationship between the plasma concentration of the glycine reuptake inhibitor bitopertin (RG1678) and brain GlyT1 occupancy. Healthy male volunteers received up to 175 mg bitopertin once daily, for 10-12 days. Three positron emission tomography scans, preceded by a single intravenous infusion of ∼30 mCi [(11)C]RO5013853, were performed: at baseline, on the last day of bitopertin treatment, and 2 days after drug discontinuation. Eighteen subjects were enrolled. At baseline, regional volume of distribution (V(T)) values were highest in the pons, thalamus, and cerebellum (1.7-2.7 ml/cm(3)) and lowest in cortical areas (∼0.8 ml/cm(3)). V(T) values were reduced to a homogeneous level following administration of 175 mg bitopertin. Occupancy values derived by a two-tissue five-parameter (2T5P) model, a simplified reference tissue model (SRTM), and a pseudoreference tissue model (PRTM) were overall comparable. At steady state, the relationship between bitopertin plasma concentration and GlyT1 occupancy derived by the 2T5P model, SRTM, and PRTM exhibited an EC(50) of ∼190, ∼200, and ∼130 ng/ml, respectively. E(max) was ∼92% independently of the model used. Bitopertin plasma concentration was a reliable predictor of occupancy because the concentration-occupancy relationship was superimposable at steady state and 2 days after drug discontinuation. These data allow understanding of the concentration-occupancy-efficacy relationship of bitopertin and support dose selection of future molecules.

  11. The molecular structure, geometry, stability, thermal and fundamental modes of vibration of glycine dimer by DFT methods.

    Science.gov (United States)

    Kishor Kumar, J; Gunasekaran, S; Loganathan, S; Anand, G; Kumaresan, S

    2013-11-01

    Glycine is an important amino acid for building up protein synthesis. Single crystal of glycine dimer was grown from aqueous solution by slow evaporation method. Powder X-ray diffraction analysis confirms the crystalline nature of grown crystal. It is interesting to study the molecular structure of a dimer, having well-defined channels formed through amphoterism bonding between CO⋯H bonds with split-valence basis sets, and the conformer is mirror symmetrical, in which the protonated organic cation plays a significant role to have a dimer pattern. Amphiprotic molecules, like dimeric glycine which can either donate or accept a proton (H(+)) from each other. Optical absorption study reveals that the transparency of the crystal in the entire visible region and the cutoff wavelength was found to be 235nm. Powder SHG test and thermogravimetric analysis shows glycine dimer crystal is optically active and thermally stable. The molecular structure, geometry, stability and theoretical vibrational spectra were calculated for glycine as a monomer and as a dimer linked by the amphoterism hydrogen bonding. The theoretical studies were performed using the B3LYP density functional method with the 6-311G (d,p) basis set. The detailed interpretation of the vibrational spectra has been made on the basis of normal coordinate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Respons Pertumbuhan Dan Produksi Beberapa Varietas Kedelai Hitam (Glycine Max L.) Berdasarkan Ukuran Biji

    OpenAIRE

    Esra Lumbantobing, Esra Lumbantobing; Kardhinata, Emmy Harso; Rosmayati, Rosmayati

    2013-01-01

    Growth Respons and Production of Black Soybean Varieties (Glycine max L.) based on Seed Size.Use of yellow soybeans increases as the limited supply of black soybeans. Farmers to plant turnyellow soybean seed in higher production and larger in size than black soybean seed generally small.Size seed effect toward the utilization of soybean. The large seed size tends to be use as industrial rawmaterials while the size of small seeds use as a seed plant back. The aim of this research is toselectio...

  13. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø

    2008-01-01

    glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools....... For example, 4-propyl NHP5G is an antagonist at the NR1/NR2A subtype but an agonist at the NR1/NR2D subtype. Molecular docking studies indicate that the substituent protrudes into a region that may be further exploited to improve subtype selectivity, thereby opening up a design strategy for ligands which can...

  14. An Analysis of the NEXAFS Spectra of a molecular crystal: alpha-Glycine

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2010-06-18

    The nitrogen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectrum of alpha-crystalline glycine has been calculated for temperatures ranging from 0 K to 450 K. Significant temperature dependent spectral changes are predicted. The calculated room temperature spectrum is in good agreement with experiment. At high temperatures, molecular motions strongly influence the spectrum, as any unique spectrum from an individual instantaneous configuration does not resemble the experimental result or the average calculated spectrum; complex coupled motions in this prototypical molecular crystal underlie the observed spectral changes.

  15. Survival in seawater of Escherichia coli cells grown in marine sediments containing glycine betaine.

    OpenAIRE

    Gauthier, M J; Le Rudulier, D

    1990-01-01

    Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ op...

  16. A theoretical study of the formation of glycine via hydantoin intermediate in outer space environment

    Science.gov (United States)

    Kayanuma, Megumi; Kidachi, Kaori; Shoji, Mitsuo; Komatsu, Yu; Sato, Akimasa; Shigeta, Yasuteru; Aikawa, Yuri; Umemura, Masayuki

    2017-11-01

    As a possible formation mechanism of glycine in astrophysical environments, a reaction path via aminoacetonitrile and hydantoin (2,4-imidazolidinedione), which have been detected in an interstellar cloud and meteorites, respectively, were analyzed using the density functional theory. The formation of hydantoin from aminoacetonitrile via the Bücherer-Bergs reaction and the hydrolysis of hydantoin were investigated. The results showed that the catalytic water molecules significantly lower the reaction barriers for the formation of hydantoin. Although the highest barrier is still too high that the pathway is inactive in an interstellar medium, this reaction would proceed during the heating of the meteorite parent body.

  17. THE EFFECT OF SOME RHIZOBACTERIAN STRAINS ON SOLUBLE PROTEINS CONTENT IN SOYBEANS (GLYCINE MAX L. MERR.

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2007-08-01

    Full Text Available Now it is an accepted fact that plant growth-promoting rhizobacteria (PGPR can increase the productivity of several crops. The main objective of the present study was to find if there are any differences in protein content in the seeds of soybean (Glycine max L. MERR.. Using spectrophotometric methods for analyzing the protein contents and electrophoretic methods for qualitative analysis it was observed that no major modifications occur in protein spectrum. Looking at the quantitative side there was a small improvement in protein quantity.

  18. Glycine max

    African Journals Online (AJOL)

    otoigiakih

    many characteristics contrasting to those of G. max including rampant growth habit, twinning and indeterminate stem, pots shattering, presence of bloom and tiny seeds. Jidou 12, bred at the. Institute of Cereal and Oil crops, Hebei Academy of Agricultural and. Forestry Sciences, Shijiazhuang, China, is an elite variety with ...

  19. Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols

    Science.gov (United States)

    Borghese, Cecilia M.; Blednov, Yuri A.; Quan, Yu; Iyer, Sangeetha V.; Xiong, Wei; Mihic, S. John; Zhang, Li; Lovinger, David M.; Trudell, James R.; Homanics, Gregg E.

    2012-01-01

    Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317–329, 2012). PMID:22037201

  20. Effect of ethylene glycol, urea, and N-methylated glycines on DNA thermal stability: the role of DNA base pair composition and hydration.

    Science.gov (United States)

    Nordstrom, Larisa J; Clark, Chris A; Andersen, Brian; Champlin, Sara M; Schwinefus, Jeffrey J

    2006-08-08

    The accumulation of the cosolutes ethylene glycol, urea, glycine, sarcosine, and glycine betaine at the single-stranded DNA surface exposed upon melting the double helix has been quantified for DNA samples of different guanine-cytosine (GC) content using the local-bulk partitioning model [Record, M. T., Jr., Zhang, W., and Anderson, C. F. (1998) Adv. Protein Chem. 51, 281-353]. Urea and ethylene glycol are both locally accumulated at single-stranded DNA relative to bulk solution. Urea exhibits a stronger affinity for adenine (A) and thymine (T) bases, leading to a greater net dehydration of these bases upon DNA melting; ethylene glycol local accumulation is practically independent of base composition. However, glycine, sarcosine, and glycine betaine are not necessarily locally accumulated at single strands after melting relative to bulk solution, although they are locally accumulated relative to double-stranded DNA. The local accumulation of glycine, sarcosine, and glycine betaine at single strands relative to double-stranded DNA decreases with bulk cosolute molality and increases with GC content for all N-methylated glycines, demonstrating a stronger affinity for G and C bases. Glycine also shows a minimum in melting temperature T(m) at 1-2 m for DNA samples of 50% GC content or less. Increasing ionic strength attenuates the local accumulation of urea, glycine, sarcosine, and glycine betaine and removes the minimum in T(m) with glycine. This attenuation in local accumulation results in counterion release during the melting transition that is dependent on water activity and, hence, cosolute molality.

  1. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    Science.gov (United States)

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-02

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.

  2. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome.

    Science.gov (United States)

    Kim, Moon Young; Lee, Sunghoon; Van, Kyujung; Kim, Tae-Hyung; Jeong, Soon-Chun; Choi, Ik-Young; Kim, Dae-Soo; Lee, Yong-Seok; Park, Daeui; Ma, Jianxin; Kim, Woo-Yeon; Kim, Byoung-Chul; Park, Sungjin; Lee, Kyung-A; Kim, Dong Hyun; Kim, Kil Hyun; Shin, Jin Hee; Jang, Young Eun; Kim, Kyung Do; Liu, Wei Xian; Chaisan, Tanapon; Kang, Yang Jae; Lee, Yeong-Ho; Kim, Kook-Hyung; Moon, Jung-Kyung; Schmutz, Jeremy; Jackson, Scott A; Bhak, Jong; Lee, Suk-Ha

    2010-12-21

    The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G. max (in particular, G. soja var. IT182932). The 48.8-Gb Illumina Genome Analyzer (Illumina-GA) short DNA reads were aligned to the G. max reference genome and a consensus was determined for G. soja. This consensus sequence spanned 915.4 Mb, representing a coverage of 97.65% of the G. max published genome sequence and an average mapping depth of 43-fold. The nucleotide sequence of the G. soja genome, which contains 2.5 Mb of substituted bases and 406 kb of small insertions/deletions relative to G. max, is ∼0.31% different from that of G. max. In addition to the mapped 915.4-Mb consensus sequence, 32.4 Mb of large deletions and 8.3 Mb of novel sequence contigs in the G. soja genome were also detected. Nucleotide variants of G. soja versus G. max confirmed by Roche Genome Sequencer FLX sequencing showed a 99.99% concordance in single-nucleotide polymorphism and a 98.82% agreement in insertion/deletion calls on Illumina-GA reads. Data presented in this study suggest that the G. soja/G. max complex may be at least 0.27 million y old, appearing before the relatively recent event of domestication (6,000∼9,000 y ago). This suggests that soybean domestication is complicated and that more in-depth study of population genetics is needed. In any case, genome comparison of domesticated and undomesticated forms of soybean can facilitate its improvement.

  3. QTL Location and Epistatic Effect Analysis of 100-Seed Weight Using Wild Soybean (Glycine soja Sieb. & Zucc.) Chromosome Segment Substitution Lines.

    Science.gov (United States)

    Xin, Dawei; Qi, Zhaoming; Jiang, Hongwei; Hu, Zhenbang; Zhu, Rongsheng; Hu, Jiahui; Han, Heyu; Hu, Guohua; Liu, Chunyan; Chen, Qingshan

    2016-01-01

    Increasing the yield of soybean (Glycine max L. Merrill) is a main aim of soybean breeding. The 100-seed weight is a critical factor for soybean yield. To facilitate genetic analysis of quantitative traits and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population consisting of 194 chromosome segment substitution lines (CSSLs) was developed. In these lines, different chromosomal segments of the Chinese cultivar Suinong 14 were substituted into the genetic background of wild soybean (Glycine soja Sieb. & Zucc.) ZYD00006. Based on these CSSLs, a genetic map covering the full genome was generated using 121 simple sequence repeat (SSR) markers. In the quantitative trait loci (QTL) analysis, twelve main effect QTLs (qSW-B1-1/2/3, qSW-D1b-1/2, qSW-D2-1/2, qSW-G-1/2/3, qSW-M-2 and qSW-N-2) underlying 100-seed weight were identified in 2011 and 2012. The epistatic effects of pairwise interactions between markers were analyzed in 2011 and 2012. The results clearly demonstrated that these CSSLs could be used to identify QTLs, and that an epistatic analysis was able to detect several sites with important epistatic effects on 100-seed weight. Thus, we identified loci that will be valuable for improving soybean 100-seed weight. These results provide a valuable foundation for identifying the precise location of genes of interest, and for designing cloning and marker-assisted selection breeding strategies targeting the 100-seed weight of soybean.

  4. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P

    2008-01-01

    of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC(50) value and the cation-pi binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-pi interaction between......Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains...... predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe207, and possibly a third, Phe63, are positioned such that they could contribute to a cation-pi interaction with the primary amine of glycine. Here, we test this hypothesis by incorporation of a series...

  5. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes.

    Science.gov (United States)

    Misra, Charu; Thotakura, Nagarani; Kumar, Rajendra; Singh, Bhupinder; Sharma, Gajanand; Katare, O P; Raza, Kaisar

    2017-07-01

    Water dispersible fullerenes were synthesized by tethering with glycine. The glycinated fullerenes were conjugated to docetaxel and characterized using FT-IR and NMR. The nanometric drug-loaded carriers were able to release drug at cancer cell pH, but resisted drug release at plasma pH. The cytotoxicity in MDA MB-231 cells was substantially enhanced as well as the system was well tolerated by erythrocytes. The confocal laser scanning microphotographs confirmed the substantial drug delivery to cytosol as well as nuclei of cancer cells. The developed system not only increased the circulation time of drug, but also decreased its protein binding and substantially enhanced AUC. The glycinated fullerenes can serve as promising "cargo vehicles" for delivery of anti-cancer drugs in safe and effective manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Scientific Opinion on Flavouring Group Evaluation 401 (FGE.401): γ-Glutamyl-valyl-glycine from chemical group 34

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to carry out a safety assessment of one flavouring substance, γ-glutamyl-valyl-glycine [FL-no: 17.038], in the Flavouring Group Evaluation 401 (FGE.401), in accordance...... with the Commission Regulation (EC) No 1331/2008. There is no safety concern with respect to genotoxicity for the flavouring substance. It has been demonstrated that the flavouring substance, which is a tripeptide, will be hydrolysed to the three amino acids L-glutamic acid, L-valine and glycine. As the human...... consumption of these three endogenous amino acids through food is orders of magnitude higher than the anticipated levels of exposure from their use as flavouring substances, the Panel concluded that γ-glutamyl-valyl-glycine [FL-no: 17.038] would be of no safety concern at its estimated level of intake...

  7. Pharmacological PPARα activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat.

    Directory of Open Access Journals (Sweden)

    Anette Ericsson

    Full Text Available The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%, largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra for glycine (45.5 ± 5.8 versus 17.4 ± 2.7 µmol/kg/min and serine (21.0 ± 1.4 versus 12.0 ± 1.0 in WY 14,643 versus control. Arginine was substantially decreased (-62% in plasma with estimated Ra reduced from 3.1 ± 0.3 to 1.2 ± 0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis.

  8. Fe(2+) and Fe(3+) in micromolar concentrations modulate glycine-induced Cl(-) current in rat hippocampal neurons.

    Science.gov (United States)

    Solntseva, E I; Bukanova, J V; Kondratenko, R V; Skrebitsky, V G

    2015-06-01

    The effects of Fe(2+) and Fe(3+) on glycine-activated chloride current (IGly) were studied in rat isolated pyramidal hippocampal neurons using patch-clamp technique in whole-cell configuration. 25, 100 or 500 μM glycine was applied for 600 ms with 40s intervals. Fe(2+) and Fe(3+) were co-applied with glycine in the range of concentrations of 0.01-100 μM. We found that Fe(2+) and Fe(3+) affected IGly in a similar manner. Two types of effects of iron on IGly were observed. In low concentrations (0.1 μM) Fe ions caused an acceleration of the IGly desensitization, and the effect was more pronounced for IGly induced by 100 and 500 μM glycine than by 25 μM glycine. Higher Fe concentrations (1-100 μM) decreased the peak amplitude of IGly with weak influence on its kinetics. The values of IC50 of the effect were close to 10 μM for all glycine concentrations tested. The effect of iron on IGly peak did not depend on the membrane potential. This inhibition was noncompetitive and voltage-independent, suggesting that Fe ions do not exert their action on the agonist binding site of GlyRs or block the channel pore. An important characteristic of both effects of Fe was their progressive development during repetitive Fe applications (use-dependence). Our results suggest an existence of at least two binding sites for Fe ions which vary in affinity and mechanism of action, with the low-affinity site suppressing the activity of the high-affinity one. Physiological implication of our observations is that Fe ions in low micromolar concentrations can suppress tonic inhibition and cause hyperexcitability in hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Glycine on silica: a model system for the study of adsorption and reactivity of aminoacids on extraterrestrial particulate

    Science.gov (United States)

    Lambert, J. F.; Stievano, L.; Costa, D.; Meng, M.; Lomenech, C.

    It is well known that a wide variety of organic compounds have been detected in extraterrestrial environments. Among them, simple aminoacids were often found in meteorites, comets and extraterrestrial particulates. Such materials, which are supposed to be formed and evolved in interstellar space, have therefore become of interest as possible sources for the development of Earth's first biosphere. In order to understand how organic matter can develop in such systems, and, in particular, how oligopeptides can be formed on the surface of such solids starting from simpler molecules, we decided to undertake a study of the adsorption and reactivity of simple aminoacids on finely divided oxide surfaces. Here we report, both from the theoretical and experimental point of view, on the mechanisms of formation of polypeptides starting from glycine, the simplest aminoacid, on the surface of silicon oxide. Glycine was adsorbed on the surface of well-characterised silica both from aqueous solutions under controlled pH and concentration, and from the gas phase. The adsorbed molecules were characterised using middle IR and UV-vis-NIR spectroscopies. The different preparation conditions resulted in different adsorption mechanisms at specific adsorption sites and different states of the adsorbed glycine in agreement with the DFT simulation data. The thermal reactivity of adsorbed/deposited glycine was then investigated by thermogravimetric analysis, in-situ diffuse reflectance IR spectroscopy, and thermoprogrammed desorption coupled with mass spectrometry. Adsorbed glycine molecules react to form peptide bonds at a temperature considerably lower than bulk crystalline α -glycine, mainly producing the cyclic dimer diketopiperazine. These findings are of relevance for the evaluation of prebiotic peptide synthesis scenarii.

  10. Synthesis of tricyclic indole-2-carboxylic [correction of caboxylic] acids as potent NMDA-glycine antagonists.

    Science.gov (United States)

    Katayama, S; Ae, N; Nagata, R

    2001-05-18

    The practical synthesis of a series of tricyclic indole-2-carboxylic acids, 7-chloro-3-arylaminocarbonylmethyl-1,3,4,5-tetrahydrobenz[cd]indole-2-carboxylic acids, as a new class of potent NMDA-glycine antagonists is described. The synthetic route to the key intermediate 12a comprises a regioselective iodination of 4-chloro-2-nitrotoluene, modified Reissert indole synthesis, Jeffery's Heck-type reaction with allyl alcohol, Wittig-Horner-Emmons reaction, and iodination at the indole C-3 position. The key step in the route is an intramolecular cyclization of 12a to give the tricyclic indole structure. Two methods of cyclization, (1) an intramolecular radical cyclization of 12a and (2) a sequence of intramolecular Heck reaction of 12a followed by a 1,4-reduction, were performed. The resulting tricyclic indole diester 13a was selectively hydrolyzed to afford the desired tricyclic indole monocarboxylic acid 16 on a multihundred gram scale without any chromatographic purifications. Optical resolution of 16 to (-)-isomer 17 and (+)-isomer 18 was carried out, and the resulting isomers were derivatized, respectively. Evaluation of the optically active derivatives for affinity to the NMDA-glycine binding site using the radio ligand binding assay with [(3)H]-5,7-dichlorokynurenic acid revealed that the derivatives of (-)-isomer 17 were more potent than the others and that especially substituted anilide (-)-isomer 24 (K(i) = 0.8 nM) showed high affinity.

  11. Facile electrosynthesis and characterization of superparamagnetic nanoparticles coated with cysteine, glycine and glutamine

    Science.gov (United States)

    Aghazadeh, Mustafa; Karimzadeh, Isa; Doroudi, Taher; Ganjali, Mohammad Reza; Kolivand, Peir Hossein; Gharailou, Davoud

    2017-08-01

    A novel and facile strategy has been developed for the preparation of cysteine-, glycine- and glutamine-coated magnetite nanoparticles (MNPs). According to this strategy, Fe3O4 nanoparticles were electrodeposited from an aqueous electrolyte containing a dissolved iron salt and amino acids. A simple deposition mode i.e., constant current and two-electrode set-up was used in the electrosynthesis procedure. The magnetite phase of the deposited nanoparticles was confirmed through XRD and FT-IR analyses. Morphological observations through FE-SEM and TEM confirmed the formation of spherical MNP particles with an average size of 10 nm. The formation of cysteine, glycine and glutamine layers on the surface of the electro-synthesized particles was proved based on FT-IR, DLS and TG data. Vibrating sample magnetometery (VSM) measurements confirmed the prepared iron oxide nanoparticles to have a super-paramagnetic nature, since they exhibit a high saturation magnetization (Ms ≈ 58 emu g-1), as well as, negligible remnant magnetization (Mr) and coercivity (Ce). Based on the obtained results, the proposed platform can be considered as a fast, simple and efficient method for the preparation of surface-coated magnetite nanoparticles.

  12. Hyaluronan hydrogels modified by glycinated Kraft lignin: Morphology, swelling, viscoelastic properties and biocompatibility.

    Science.gov (United States)

    Musilová, Lenka; Mráček, Aleš; Kovalcik, Adriana; Smolka, Petr; Minařík, Antonín; Humpolíček, Petr; Vícha, Robert; Ponížil, Petr

    2018-02-01

    Effects of the addition of water soluble glycinated Kraft lignin (WS/KL) on the mechanical stability and biocompatibility of hyaluronan (NaHy) hydrogels were evaluated in this work. Water soluble lignin was obtained by the modification of Kraft lignin via a Mannich reaction. It was found that WS/KL is highly compatible with hyaluronan due to its improved water solubility, which favours its use in designing new advanced composite hydrogels. The effects of the concentration of WS/KL on morphological, swelling and creep/recovery behaviours of hyaluronan hydrogels were investigated. It was detected that the creep resistance and creep recovery of NaHy hydrogels was improved by the incorporation of up to 3% (w/w) of WS/KL. In contrast, the swelling capacity of hydrogels was decreased. The cytotoxicity tests proved that glycinated KL lignin limits the viability of cells only slightly, and the final hyaluronan/lignin hydrogels were non-toxic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of copper glycine chelate on liver and faecal mineral concentrations, and blood parameters in broilers

    Directory of Open Access Journals (Sweden)

    Małgorzata Kwiecień

    2015-06-01

    Full Text Available The aim of the study was to determine the influence of Cu-glycine chelate on the chemical composition of the liver and blood parameters of broiler chickens. A total of 250 one-day-old Ross 308 male chicks were allotted into 5 groups with 5 replicates of 10 birds each. Rearing of birds lasted 42 days. In the experiment Cu was added to the premix in the form of CuSO4 (16 mg, 8 mg Cu, and in the form of Cu glycine chelate (16 mg, 8 mg, 4 mg Cu. The parameters in the chickens’ blood remained within the range of physiological norms when lower levels of the analyzed elements were added. Adding lower levels of Cu (8 or 4 mg·kg-1 in comparison with the recommended doses (16 mg·kg-1 for broilers, in the form of highly assimilable organic sources, did not reduce the content of minerals Cu, Fe, and Zn in the chickens’ liver, but reduced the faecal Fe, Cu and Zn concentrations compared to CuSO4.

  14. Hydroxyacetonitrile (HOCH2CN) Formation in Astrophysical Conditions. Competition with the Aminomethanol, a Glycine precursor

    Science.gov (United States)

    Danger, G.; Duvernay, F.; Theulé, P.; Borget, F.; Chiavassa, T.

    2012-09-01

    This contribution is focused on the concurrent pathway to the Strecker synthesis of amino acids in an astrophysical-like environment. We indeed use experimental and modeling simulations to investigate the possibility to form the aminomethanol (HOCH2NH2) in concurrence with the hydroxyacetonitrile (HOCH2CN) from ices containing at 40 K formaldehyde (CH2O), ammonia (NH3), and cyanide ion (CN-). We demonstrate using infrared spectroscopy and mass spectrometry that the formation of the aminomethanol (Ea = 4.5 kJ mol-1) is competing with the hydroxyacetonitrile formation (Ea = 3.9 kJ mol-1). The ratio between aminomethanol and hydroxyacetonitrile depends on the initial ratio in the ice between ammonia and cyanide. An increase of cyanide ion provides a decrease in aminomethanol formation. Since the aminomethanol is the first step through the formation of glycine in astrophysical environments, these data are important for understanding the possibility of forming glycine in such environments. Furthermore, using a reduced kinetic model, we evaluate the astrophysical environments in which the aminomethanol and hydroxyacetonitrile can be formed and evolved without degradation. The results suggest that these two molecules could be formed in molecular clouds or protostellar disks, and subsequently incorporated inside comets or asteroids. Therefore, hydroxyacetonitrile and aminomethanol could be formed before the formation of the solar system, which suggests that hydroxyacids and amino acids, such as those detected inside meteorites, have been formed in various astrophysical environments.

  15. Naphtoyl-Glycyl-Glycyl-Glycine: A New Substrate for Angiotensin Converting Enzyme (ACE Assay Using HPLC

    Directory of Open Access Journals (Sweden)

    Mohammad kazem Papan, Niusha Sharifi, Mohsen Zeeb, Seyed Reza Hosseini Sedeh, Massoud Amanlou

    2016-06-01

    Full Text Available Background: Several in vitro assays are used to determine Angiotensin Converting Enzyme (ACE activity. The purpose of the present investigation, was developing a practical and extraction-free chromatographic method to determine ACE activity. Methods: The method relies on UV-detection of Naphthoyl-glycine (NG, which is resulted from enzymatic hydrolysis of the synthetic substrate, Naphthoyl-glycyl-glycyl-glycine (NGGG, applying a reverse phase chromatographic separation. In this regard, experimental conditions for the assay such as Enzyme/Substrate (E/S ratio and incubation time were optimized. Chromatographic separation was performed on a reverse phase C18 column (250 × 4.6 mm, using a mobile phase consisting of acetonitrile/water (20:80, v/v, pH = 5.0 with a flow rate of 2.0 mL/min and a detection wavelength of 280 nm. Results: The optimized Enzyme/Substrate (E/S ratio and incubation time were 10 mU/nmol and 35 min respectively. The results indicated that the calibration curve was linear (r2 = 0.994 and the average recovery (n = 6 of NG was 99.5 ± 1.3% (mean ± RSD. Conclusion: In this study, we introduced a method which is an efficient approach to determine ACE activity due to its sensitive, accurate, and reliable performance with great repeatability.

  16. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    Science.gov (United States)

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors.

    Science.gov (United States)

    Crisp, Sarah J; Balint, Bettina; Vincent, Angela

    2017-06-01

    This review highlights the recent discovery of antibodies to glycine receptor (GlyR-Ab) and discusses the relationship between these antibodies and neurological disorders. Since the initial description in 2008 of antibodies to glycine receptors (GlyR-Abs) in a patient with progressive encephalomyelitis with rigidity and myoclonus (PERM), these antibodies have been found in PERM and in some patients with a variety of stiff person spectrum (SPS) or related disorders. Patients with GlyR-Abs often improve with aggressive immunotherapy, and antibody titres correlate with disease severity. Around 25% of patients have another autoimmune condition and 10-20% have an underlying malignancy. GlyR-Abs bind to extracellular determinants, are mainly Immunoglobulin G1 subclass and induce GlyR internalization in Human embryonic kidney 293 cells, suggesting pathogenicity. The spectrum of neurological disease associated with GlyR-Abs has not been fully characterized, and lower titres may not be syndrome specific, but GlyR-Abs, like antibodies to other neuronal cell-surface antigens, define immunotherapy-responsive disease and are likely to be pathogenic. This distinguishes them from the glutamic acid decarboxylase antibodies that can also be found at high titres in patients with classical stiff person syndrome which is more often chronic and relatively resistant to immunological treatments. Irrespective of the clinical features, GlyR-Abs are helpful in the diagnosis of patients who very often have a subacute, progressive and life-threatening disorder which shows a favourable response to immunotherapy.

  18. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer

    Science.gov (United States)

    Guinn, Emily J.; Pegram, Laurel M.; Capp, Michael W.; Pollock, Michelle N.; Record, M. Thomas

    2011-01-01

    To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients Kp for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. Kp values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH—amide O and amide NH—amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or Kp values. PMID:21930943

  19. Glycine Betaine and Salicylic Acid Induced Modification in Water Relations and Productivity of Drought Wheat Plants

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2014-05-01

    Full Text Available A study of parameters associated with adjustments in internal water balance, namely: diurnal variation in transpiration rate, stomatal opening area, relative water content, water use efficiency, hormonal level of wheat flag leaves in relation to grain yield is presented. Drought induced marked decreases in diurnal and mean daily values of transpiration rate, stomatal pore areas (on upper and lower sides, relative water content, water use efficiency, indole-3-acetic acid (IAA, gibberellic acid (GA3, cytokinins (CKs and grain yield but led to a significant increase in the abscisic acid (ABA concentration in flag leaves of the wheat cultivars. Grain presoaking in salicylic acid or foliar application with glycine betaine alleviated the stress by keeping water within leaves and consequently recover the turgidity of stressed plants by restricting the transpiration rate, stomatal closure, decreasing the ABA level and enhancing the growth promoters particularly (IAA, GA3 & CKs particularly with the sensitive cultivar. Furthermore, the effect was more pronounced with glycine betaine + salicylic acid treatment. The grain yield appeared to be positively correlated with IAA, GA3, CK, RWC, WUEG and WUEB but negatively correlated with ABA, SWD, transpiration rate and stomatal areas on both wheat cultivars.

  20. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity.

    Science.gov (United States)

    Campillo-Brocal, Jonatan Cristian; Lucas-Elio, Patricia; Sanchez-Amat, Antonio

    2013-08-01

    A novel enzyme with lysine-epsilon oxidase activity was previously described in the marine bacterium Marinomonas mediterranea. This enzyme differs from other l-amino acid oxidases in not being a flavoprotein but containing a quinone cofactor. It is encoded by an operon with two genes lodA and lodB. The first one codes for the oxidase, while the second one encodes a protein required for the expression of the former. Genome sequencing of M. mediterranea has revealed that it contains two additional operons encoding proteins with sequence similarity to LodA. In this study, it is shown that the product of one of such genes, Marme_1655, encodes a protein with glycine oxidase activity. This activity shows important differences in terms of substrate range and sensitivity to inhibitors to other glycine oxidases previously described which are flavoproteins synthesized by Bacillus. The results presented in this study indicate that the products of the genes with different degrees of similarity to lodA detected in bacterial genomes could constitute a reservoir of different oxidases. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  1. Study of Glycine and Folic Acid Supplementation to Ameliorate Transfusion Dependence in Congenital SLC25A38 Mutated Sideroblastic Anemia.

    Science.gov (United States)

    LeBlanc, Marissa A; Bettle, Amanda; Berman, Jason N; Price, Victoria E; Pambrun, Chantale; Yu, Zhijie; Tiller, Marilyn; McMaster, Christopher R; Fernandez, Conrad V

    2016-07-01

    Congenital sideroblastic anemia (CSA) is a hematological disorder characterized by the presence of ringed sideroblasts in bone marrow erythroid precursors. Mutations in the erythroid-specific glycine mitochondrial transporter gene SLC25A38 have been found in a subset of patients with transfusion-dependent congenital CSA. Further studies in a zebrafish model identified a promising ameliorative strategy with combined supplementation with glycine and folate. We tested this combination in three individuals with SLC25A38 CSA, with a primary objective to decrease red blood cell transfusion requirements. No significant impact was observed on transfusion requirements or any hematologic parameters. © 2016 Wiley Periodicals, Inc.

  2. Recognition sites of glycine tRNA for glycyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.

    Science.gov (United States)

    Okamoto, Koji; Kuno, Atsushi; Hasegawa, Tsunemi

    2005-01-01

    To elucidate the tRNA recognition sites of glycine tRNA from an extreme thermophilic and aerobic archaeon, Aeropyrum pernix K1, we examined glycylation activities using in vitro mutant glycine tRNA transcripts and recombinant A. pernix glycyl-tRNA synthetase. The recognition nucleotides were determined to be C35 and C36 of anticodon, C2-G71 and G3-C70 base-pairs of acceptor stem. However, discriminator base A73 was not recognized by glycyl-tRNA synthetase.

  3. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  4. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Conclusions: Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine.

  5. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... permafrost thaw, in contrast to surface soil thaw. Conclusions: Our results suggest that both arctic plants and microorganisms acquire amino acids released upon spring and permafrost thaw. Despite indications of more efficient utilization of added substrate in the High Arctic than the Subarctic, we conclude...

  6. An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Wood, M W; VanDongen, H M; VanDongen, A M

    1997-02-07

    While attempting to map a central region in the M3-M4 linker of the N-methyl-D-aspartate receptor NR1 subunit, we found that mutation of a single position, Ala-714, greatly reduced the apparent affinity for glycine. Proximal N-glycosylation localized this region to the extracellular space. Glycine affinities of additional Ala-714 mutations correlated with side chain volume. Substitution of alanine 714 with cysteine did not alter glycine sensitivity, although this mutant was rapidly inhibited by dithionitrobenzoate. Glycine protected the A714C mutant from modification by dithionitrobenzoate, whereas the co-agonist L-glutamate was ineffective. These experiments place Ala-714 in the glycine binding pocket of the N-methyl-D-aspartate receptor, a determination not predicted by previous structural models based on bacterial periplasmic binding protein homology.

  7. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1 from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    Directory of Open Access Journals (Sweden)

    Fen Qiao

    Full Text Available Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266, Ha-far-2 (KU877267, Hf-far-1 (KU877268. Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more

  8. The formation of glycine and other complex organic molecules in exploding ice mantles.

    Science.gov (United States)

    Rawlings, J M C; Williams, D A; Viti, S; Cecchi-Pestellini, C; Duley, W W

    2014-01-01

    Complex Organic Molecules (COMs), such as propylene (CH3CHCH2) and the isomers of C2H4O2 are detected in cold molecular clouds (such as TMC-1) with high fractional abundances (Marcelino et al., Astrophys. J., 2007, 665, L127). The formation mechanism for these species is the subject of intense speculation, as is the possibility of the formation of simple amino acids such as glycine (NH2CH2COOH). At typical dark cloud densities, normal interstellar gas-phase chemistries are inefficient, whilst surface chemistry is at best ill defined and does not easily reproduce the abundance ratios observed in the gas phase. Whatever mechanism(s) is/are operating, it/they must be both efficient at converting a significant fraction of the available carbon budget into COMs, and capable of efficiently returning the COMs to the gas phase. In our previous studies we proposed a complementary, alternative mechanism, in which medium- and large-sized molecules are formed by three-body gas kinetic reactions in the warm high density gas phase. This environment exists, for a very short period of time, after the total sublimation of grain ice mantles in transient co-desorption events. In order to drive the process, rapid and efficient mantle sublimation is required and we have proposed that ice mantle 'explosions' can be driven by the catastrophic recombination of trapped hydrogen atoms, and other radicals, in the ice. Repeated cycles of freeze-out and explosion can thus lead to a cumulative molecular enrichment of the interstellar medium. Using existing studies we based our chemical network on simple radical addition, subject to enthalpy and valency restrictions. In this work we have extended the chemistry to include the formation pathways of glycine and other large molecular species that are detected in molecular clouds. We find that the mechanism is capable of explaining the observed molecular abundances and complexity in these sources. We find that the proposed mechanism is easily capable

  9. Functional characterisation of the human alpha1 glycine receptor in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Kristiansen, Uffe

    2004-01-01

    In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput scr...

  10. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products

    DEFF Research Database (Denmark)

    Bykova, Natalia V; Møller, Ian Max; Gardeström, Per

    2014-01-01

    Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative...

  11. Stoichiometry of carbon dioxide release and oxygen uptake during glycine oxidation in mitochondria isolated from spinach (Spinacia oleracea) leaves.

    Science.gov (United States)

    Arron, G P; Spalding, M H; Edwards, G E

    1979-01-01

    Mitochondria isolated from spinach (Spinacia oleracea) leaves oxidized glycine with a stoichiometry of CO2 evolution to O2 uptake of 2 : 1. In the absence of added substrate, the mitochondria exhibited an extremely low endogenous rate of O2 uptake. PMID:534540

  12. Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Yu Omori

    2015-03-01

    Full Text Available This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2 in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain.

  13. Synthesis of alumina powder by the urea-glycine-nitrate combustion process: a mixed fuel approach to nanoscale metal oxides

    Science.gov (United States)

    Sharma, Amit; Rani, Amita; Singh, Ajay; Modi, O. P.; Gupta, Gaurav K.

    2014-03-01

    Main objective of present work is to study the efficiency of mixed fuel towards solution combustion synthesis of alumina powder, which otherwise prepared by single fuel and study of properties of final product with mixed fuel approach. Two different fuels, glycine and urea, along with aluminium nitrates have been used to prepare nanophase alumina powder. Different fuel to oxidizer ratios and different percentage combination of two fuels were used to prepare six samples. In all samples, nanoscale particle size obtained. Parameter which continuously changes the results of various characterisations is percentage combination of two fuels. In case where percentage of urea is higher than glycine reaction takes place with high exothermicity and hence crystallinity in product phase, whereas glycine promotes amorphous character. With mixed fuel approach, crystallinity can be enhanced easily, by calcinations of powder product at low temperature, because due to mixed urea and glycine, there is already some fraction of crystallinity observed. Overall mixed fuel approach has ability to produce nanophase alumina powder with wide range of particles size.

  14. Glycine zinc sulfate pentahydrate: redetermination at 10 K from time-of-flight neutron Laue diffraction

    Directory of Open Access Journals (Sweden)

    A. Dominic Fortes

    2016-10-01

    Full Text Available Single crystals of glycine zinc sulfate pentahydrate [systematic name: hexaaquazinc tetraaquadiglycinezinc bis(sulfate], [Zn(H2O6][Zn(C2H5NO22(H2O4](SO42, have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO6 octahedra on sites of symmetry -1 and two SO4 tetrahedra with site symmetry 1; the octahedra comprise one [tetraaqua-diglycine zinc]2+ ion (centred on one Zn atom and one [hexaaquazinc]2+ ion (centred on the other Zn atom; the glycine zwitterion, NH3+CH2COO−, adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N—H...O hydrogen bonds between the amine and carboxylate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and Uij parameters, which provide accurate internuclear X—H (X = N, O bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

  15. Absolute chirality of the γ-polymorph of glycine: correlation of the absolute structure with the optical rotation.

    Science.gov (United States)

    Ishikawa, Kazuhiko; Tanaka, Masahito; Suzuki, Toshiya; Sekine, Akiko; Kawasaki, Tsuneomi; Soai, Kenso; Shiro, Motoo; Lahav, Meir; Asahi, Toru

    2012-06-18

    Crystal specimens of the γ-polymorph of achiral glycine which crystallize in space groups P31 and P32 as determined by the anomalous X-ray scattering method are shown to be laevorotatory and dextrorotatory, respectively, as determined by optical rotation of the crystals.

  16. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  17. Effects of lipopolysaccharide infusion on arterial levels and transcerebral exchange kinetics of glutamate and glycine in healthy humans

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Taudorf, Sarah; Bailey, Damian M

    2012-01-01

    was calculated by multiplying CBF with the arterial to jugular venous differences. LPS induced a systemic inflammatory response with fever, neutrocytosis, and elevated arterial levels of tumour necrosis factor-α. This was associated with a decrease in the arterial levels of both glutamate and glycine; however...

  18. Fine mapping of the soybean aphid resistance genes Rag6 and Rag3c from glycine soja 85-32

    Science.gov (United States)

    The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2001. Host-plant resistance is known as an ideal management of aphids. Two novel aphid-resistant loci, Rag6 and Rag3c, from the Glycine soja accession 85-32, were previously detected in a 1...

  19. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation.

    Science.gov (United States)

    Sekhar, Rajagopal V; Patel, Sanjeet G; Guthikonda, Anuradha P; Reid, Marvin; Balasubramanyam, Ashok; Taffet, George E; Jahoor, Farook

    2011-09-01

    Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood. We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress. Eight elderly and 8 younger subjects received stable-isotope infusions of [2H(2)]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F(2)-isoprostanes) were measured. Elderly subjects were restudied after 2 wk of glutathione precursor supplementation. Compared with younger control subjects, elderly subjects had markedly lower RBC concentrations of glycine (486.7 ± 28.3 compared with 218.0 ± 23.7 μmol/L; P oxidative stress (304 ± 16 compared with 346 ± 20 Carratelli units; P oxidative stress and F(2)-isoprostanes. No differences in these measures were observed between younger subjects and supplemented elderly subjects. Glutathione deficiency in elderly humans occurs because of a marked reduction in synthesis. Dietary supplementation with the glutathione precursors cysteine and glycine fully restores glutathione synthesis and concentrations and lowers levels of oxidative stress and oxidant damages. These findings suggest a practical and effective approach to decreasing oxidative stress in aging.

  20. Electrochemical studies of Zn underpotential/overpotential deposition on a nickel electrode from non-cyanide alkaline solution containing glycine

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, J.C. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, C.P. 76703 Queretaro (Mexico); Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS-INPG-UJF, BP 75, 38402 Saint-Martin d' Heres Cedex (France); Chainet, E.; Ozil, P. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS-INPG-UJF, BP 75, 38402 Saint-Martin d' Heres Cedex (France); Trejo, G., E-mail: gtrejo@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, C.P. 76703 Queretaro (Mexico); Meas, Y., E-mail: yunnymeas@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, C.P. 76703 Queretaro (Mexico)

    2011-06-30

    Highlights: > Zinc electrodeposition from non-cyanide alkaline solution containing glycine was analyzed. > We examine the underpotential (UPD) zinc process on nickel. > 2D instantaneous nucleation and growth mechanism was found for zinc electrodeposition. - Abstract: In this work we present an electrochemical study of the underpotential deposition (UPD) and overpotential deposition (OPD) of zinc onto nickel electrode (NE) from a non-cyanide alkaline solution containing glycine. The studied parameters were zinc concentration, glycine concentration and scanning rate. The analysis of the experimental data clearly showed the presence of UPD and OPD processes that started at -0.8 V vs. SCE and -1.4 V vs. SCE, respectively. The voltammetric studies also indicate diffusion control of the zinc UPD and OPD processes onto the NE. From the potentiostatic transients we found instantaneous nucleation (2D) mechanisms, which agree to that observed in the AFM study. In order to compare the effect of zinc/glycine concentration, we calculate thermodynamic parameters for the OPD process.

  1. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  2. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be safely...

  3. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Science.gov (United States)

    2010-10-28

    ... and Chiyuen International Trading Ltd., a manufacturer in the PRC of amino acetic acid (i.e., glycine... sweetener/taste enhancer, a buffering agent, re-absorbable amino acid, chemical intermediate, and a metal... allegedly performed by Paras and Salvi, based on the domestic industry's cost of production. See August 19...

  4. Single crystal growth and enhancing effect of glycine on characteristic properties of bis-thiourea zinc acetate crystal

    Science.gov (United States)

    Anis, Mohd; Muley, G. G.

    2016-08-01

    A single crystal of glycine-doped bis-thiourea zinc acetate (G-BTZA) with a dimension of 15 × 6 × 4 mm3 has been grown using the slow solution evaporation technique. The structural parameters of the crystals were determined using the single crystal XRD technique. The increase in optical transparency of the doped BTZA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The improved optical band gap of the G-BTZA crystal is found to be 4.19 eV, and vital optical constants have been calculated using the transmittance data. The influence of glycine on the mechanical parameters of the BTZA crystal has been investigated via microhardness studies. The thermal stability of pure and doped BTZA crystals has been determined by employing the thermogravimetric and differential thermal analysis technique. The improvement in the dielectric properties of the BTZA crystal after the addition of glycine has been evaluated in a temperature range of 30 to 120 °C at a frequency of 100 KHz. The SHG efficiency of the glycine-doped BTZA crystal is found to be much higher than KDP and BTZA crystal material in a Kurtz-Perry powder analysis.

  5. The expression of a naturally occuriing truncated allele of an alpha-SNAP gene suppresses plant parasitic nematode infection

    Science.gov (United States)

    rhg1, defined within a 67 kb region of DNA on chromosome 18, is a major quantitative trait locus (QTL) in Glycine max (soybean) providing defense to the soybean cyst nematode (Heterodera glycines). Transcriptional mapping experiments identified an alpha soluble NSF attachment protein (alpha-SNAP) wi...

  6. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions

    Science.gov (United States)

    Pilling, Sergio; Nair, Binu G.; Escobar, Antonio; Fraser, Helen; Mason, Nigel

    2014-03-01

    Glycine is the simplest proteinaceous amino acid that has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, such species is exposed to several radiation fields at different temperatures. In aqueous solutions, this species appears mainly as zwitterionic glycine (+NH3CH2COO-) however, in solid phase, it may be found in amorphous or crystalline forms. Here, we present an experimental study on the destruction of two zwitterionic glycine crystals ( α- and β-form) at two different temperatures (300 K and 14 K) by 2 keV electrons in an attempt to test the behavior and stability of this molecular species in different space environments. The samples were analyzed in situ by Fourier transform infrared spectrometry at electron fluences. The experiments were carried out under ultra-high vacuum conditions at the Molecular Physics Laboratory at the Open University at Milton Keynes, UK. The dissociation cross section of glycine is approximately 5 times higher for the 14 K samples when compared to the 300 K samples. In contrast, no significant differences emerged between the dissociation cross sections of α- and β-forms of glycine for fixed temperature experiments. We therefore conclude that the destruction cross section is more heavily dependent on temperature than the phase of the condensed glycine material. This may be associated with the opening of additional reaction routes in the frozen samples involving the trapped daughter species (e.g. CO2 and CO). The half-life of studied samples extrapolated to space conditions shows that glycine molecules on the surface of interstellar grains has less survivability and they are highly sensitive to ambient radiations, however, they can survive extended period of time in the solar system like environments. Survivability increases by a factor of 5 if the samples are at 300 K when compared to low temperature experiments at 14

  7. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    H fluctuations during base addition and hence allows for fast GRSO4 precipitation, minimizing byproduct formation. The use of other pH buffers [4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid and 2-amino-2-(hydroxymethyl)-1,3-propanediol] was also tested but failed. Mössbauer spectroscopy, X-ray diffraction......Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...... in the absence of GLY, synthesis failed under similar conditions. Gycine functions as both a pH buffer and a ligand; Fe(II)-GLY complexes serve as a source of base (Fe(II)-GLY+H2O→Fe(II)+H-GLY+OH(-)) during GR formation, supplying about 45% of the total base required for the synthesis. The GLY buffer decreases p...

  8. Pyroelectric properties and conduction mechanism in solution grown glycine sodium nitrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Sinha, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi 7 (India); Yadav, Harsh [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India)

    2015-04-01

    Nonlinear optical “glycine sodium nitrate” transparent single crystals were grown from aqueous solution by the solvent evaporation technique. The ferroelectric transition temperature was determined by dielectric measurement for GSN crystal. Temperature dependent pyroelectric coefficient and figure of merit were measured. The conduction mechanism of GSN crystal has been discussed. The ln σ−E{sup 1/2} characteristic in the high-field region supports dominating the Poole–Frenkel conduction while in the low field region; there are possibility of both Richardson–Schottky and Poole–Frenkel conduction mechanism. The activation energy of GSN crystal was found to be 0.58 eV. A low value of dielectric constant and good value of the figure of merit suggest the GSN crystal more promising for IR sensing applications. Hardness value shows the stability of GSN crystal.

  9. Antioxidant and Antityrosinase Activity of Flemingia macrophylla and Glycine tomentella Roots

    Directory of Open Access Journals (Sweden)

    Bor-Sen Wang

    2012-01-01

    Full Text Available The antioxidant and antityrosinase activities of the water extract of Flemingia macrophylla root (WEFM were investigated. The results showed that WEFM exhibited radical scavenging and reducing activities, as well as ferrous ion chelating property. In addition, WEFM also protected phospholipids against oxidation, indicating that WEFM could protect biomolecules from oxidative damage. Meanwhile, in the range of 50–100 μg/mL, the tyrosinase inhibitory activity of WEFM increased with an increase in sample concentration and was superior to that of the water extract of Glycine tomentella root (WEGT. A high performance liquid chromatography analysis was used to determine the phenolic components, revealing that daidzin, daidzein, genistin, and genistein were present in WEFM and WEGT. Acting as an antioxidant and a tyrosinase inhibitor, these bioactive constituents could contribute to the protective effects of WEFM. Overall, the results showed that WEFM might serve as a natural antioxidant and tyrosinase inhibitor.

  10. Synthesis of Beta-Al2O3 Solid Electrolytes by Glycine-nitrate Combustion

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-fei

    2016-08-01

    Full Text Available Beta-Al2O3 precursor powders were synthesized by glycine-nitrate combustion at a low temperature using metal nitrate and GNP as raw materials. The thermal decomposition mechanism of the gel and the formation process of beta-Al2O3 were investigated by XRD, TG/DSC, SEM, NMR and EIS. The results show that beta-Al2O3 precursor powder with the average size of 42.0nm can be obtained at 1150℃, 150℃ lower than the solid state reaction. The precursor powder has good forming and sintering performance. The sample is calcined at 1620℃, then the Al(Ⅳ and the Al(Ⅵ in the structure of the sample is around δ=45 and δ=-6, respectively. The relative density of the sample is 97.6%. The ionic conductivity at 350℃ is 0.046S·cm-1.

  11. Serine, Glycine and One-carbon Metabolism in Colorectal Cancer Cell in Heterogeneous Microenvironment

    Science.gov (United States)

    Lin, Ke-Chih; Austin, Robert; Ducker, Greg; Sturm, James; Sturm, James

    The up-regulation of serine metabolism associated with one-carbon metabolism has been identified to support cellular biosynthesis and redox maintenance of tumors. The consistently over-expressed one-carbon genes have been targeted for potential drug development. To investigate the biological function of specific enzymes, we had genetic engineered HCT116 cell lines, methylenetetrahydrofolate dehydrogenase (MTHFD) and phosphoglycerate dehydrogenase (PHGDH) deleted cell lines, growing in the artificial microhabitats array with serine and glycine gradient across. The impact of depletion of serine and the blocking of biosynthesis pathway will be shown in terms of cell morphology, proliferation rate, and cell motility. The evolution dynamic and migration rate can also be tracked throughout the experiments.

  12. On the ground and excited state of glycine-glutaric acid: A new organic material

    Science.gov (United States)

    Shkir, Mohd.; Abbas, Haider

    In current work, the experimental and theoretical investigation on glycine-glutaric acid (GGA) has been reported. Single crystals of GGA were grown by slow evaporation solution technique in an aqueous solution. Crystal structure and lattice parameters of GGA were confirmed by powder X-ray diffraction analysis. The ground and excited state properties of GGA were obtained within the framework of density functional theory. The calculated infrared spectrum and the S0 → S1 transition energy were compared with the earlier reported experimental results and found in good agreement. HOMO-LUMO energy gap was calculated by using RHF/6-31G(d,p) and B3LYP/6-31G(d,p) level of theoretical calculations. Dipole moment of GGA obtained by RHF and B3LYP was found 11.84 and 10.87 D respectively.

  13. Antioxidant compound of metanolic extract of Detam 1 Glycine max (L. Merr from ultrasonic extraction

    Directory of Open Access Journals (Sweden)

    Rika Yulia

    2015-11-01

    Full Text Available The objective of this study is to find antioxidant compounds which are contained in methanol extract of Glycine max Detam 1 variety from Ultrasound extraction method. Extraction has done by two solvents; ¬n-hexane solvent to eliminate the soy fat which can affect the analysis result and methanol 80% to take the active compounds in soybean. The result of extraction was concentrated by using Rotary evaporator (BUCHI Rotavapor R-114 and BUCHI Water bath B-480. As the result of this study, there were three antioxidant compounds detected, i.e. Methyl-10-trans,12-cis-octadecadienoate, Methyl 9-cis,11-trans-octadecadienoate, and 9,12-Octadecadinoic acid.

  14. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    Directory of Open Access Journals (Sweden)

    Zuzana Zubáčová

    Full Text Available All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS, which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  15. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    Science.gov (United States)

    Zubáčová, Zuzana; Novák, Lukáš; Bublíková, Jitka; Vacek, Vojtěch; Fousek, Jan; Rídl, Jakub; Tachezy, Jan; Doležal, Pavel; Vlček, Cestmír; Hampl, Vladimír

    2013-01-01

    All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS), which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  16. Glycine receptors in the human substantia nigra as defined by (3H)strychnine binding

    Energy Technology Data Exchange (ETDEWEB)

    de Montis, G.; Beaumont, K.; Javoy-Agid, F.; Agid, Y.; Constandinidis, J.; Lowenthal, A.; Lloyd, K.G.

    1982-03-01

    Specific (3H)strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity KD (3--8 nM) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 nM, respectively) and rat substantia nigra (12 nM). In the human brain the distribution of (3H)strychnine binding (at 10 nM) was: spinal cord . substantia nigra, pars compacta greater than substantia nigra, pars reticulata . inferior olivary nucleus greater than cerebral cortex. The binding capacity (Bmax) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. (3H)Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, (3H)strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. (3H)Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.

  17. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid

    Science.gov (United States)

    Maleeva, Galyna; Peiretti, Franck; Zhorov, Boris S.; Bregestovski, Piotr

    2017-01-01

    Niflumic acid (NFA) is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs) with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2′) increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation. PMID:28559795

  18. Molecular analysis and physicochemical properties of electrophoretic variants of wild soybean Glycine soja storage proteins.

    Science.gov (United States)

    Fukuda, Takako; Maruyama, Nobuyuki; Kanazawa, Akira; Abe, Jun; Shimamoto, Yoshiya; Hiemori, Miki; Tsuji, Hideaki; Tanisaka, Takatoshi; Utsumi, Shigeru

    2005-05-04

    Cultivated soybeans (Glycine max) are derived from wild soybeans (Glycine soja) and can be crossed with them to produce fertile offspring. The latter exhibit greater genetic variation than the former, suggesting a possibility that wild soybeans contain storage proteins with properties different from and better than those of cultivated soybeans. To identify a wild soybean suitable for breeding a new soybean cultivar, we analyzed seed proteins from 390 lines of wild soybeans by electrophoresis. We found some lines containing electrophoretic variants of glycinin and beta-conglycinin subunits: one line containing a small alpha' subunit of beta-conglycinin and two and five lines containing small A3 and large A4 polypeptides of glycinin, respectively. Beta-Conglycinin and glycinin containing such variant subunits exhibited solubility and emulsifying ability similar to those of the predominant types of wild and cultivated soybeans. Glycinins containing small A3 and large A4 gave a shoulder derived from the start of denaturation at a temperature 4 degrees C lower than that of glycinin from the predominant types of wild and cultivated soybeans, although their thermal denaturation midpoint temperatures were very similar to each other. Cloning and sequencing of the predominant and variant subunit cDNAs revealed that the small alpha' and the small A3 lacked 24 amino acid residues in the extension region and four amino acid residues in the hypervariable region, respectively, and that the large A4 did not have an insert corresponding to the difference in the electrophoretic mobility but Arg279 and Gln305 were replaced by glutamine and histidine, respectively, in the hypervariable region. These suggest that small differences even in the hypervariable region can affect the thermal stability, as well as the electrophoretic mobilities, of the proteins.

  19. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.

    Science.gov (United States)

    Ahmad, Mohammad; Ameen, Seema; Siddiqi, Tariq Omar; Khan, Parvez; Ahmad, Altaf

    2016-12-15

    Glycine betaine (GB) is one of the key compatible solutes that accumulate in the cell at exceedingly high level under the conditions of high salinity. It plays a crucial role in the maintenance of osmolarity of the cell without affecting the physiological processes. Analysis of stress-induced physiological conditions in living cells, therefore, requires real-time monitoring of cellular GB level. Glycine Betaine Optical Sensor (GBOS), a genetically-encoded FRET-based nanosensor developed in this study, allows the real-time monitoring of GB levels inside living cells. This nanosensor has been developed by sandwiching GB binding protein (ProX) between the Förster resonance energy transfer (FRET) pair, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Conformational change in ProX, which was used as sensory domain, reported the change in the level of this compatible solute in in vitro and in vivo conditions. Binding of the GB to the sensory domain fetches close to both the fluorescent moieties that result in the form of increased FRET ratio. So, any change in the concentration of GB is correlated with change in FRET ratio. This sensor also reported the GB cellular dynamics in real-time in Escherichia coli cells after the addition of its precursor, choline. The GBOS was also expressed in yeast and mammalian cells to monitor the intracellular GB. Therefore, the GBOS represents a unique FRET-based nanosensor which allows the non-invasive ratiometric analysis of the GB in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid

    Directory of Open Access Journals (Sweden)

    Galyna Maleeva

    2017-05-01

    Full Text Available Niflumic acid (NFA is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2′ increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.

  1. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid.

    Science.gov (United States)

    Maleeva, Galyna; Peiretti, Franck; Zhorov, Boris S; Bregestovski, Piotr

    2017-01-01

    Niflumic acid (NFA) is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs) with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2') increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.

  2. Nitrosation of glycine ethyl ester and ethyl diazoacetate to give the alkylating agent and mutagen ethyl chloro(hydroximino)acetate.

    Science.gov (United States)

    Zhou, Lin; Haorah, James; Chen, Sheng C; Wang, Xiaojie; Kolar, Carol; Lawson, Terence A; Mirvish, Sidney S

    2004-03-01

    Whereas nitrosation of secondary amines produces nitrosamines, amino acids with primary amino groups and glycine ethyl ester were reported to react with nitrite to give unidentified agents that alkylated 4-(p-nitrobenzyl)pyridine to produce purple dyes and be direct mutagens in the Ames test. We report here that treatment of glycine ethyl ester at 37 degrees C with excess nitrite acidified with HCl, followed by ether extraction, gave 30-40% yields of a product identified as ethyl chloro(hydroximino)acetate [ClC(=NOH)COOEt, ECHA] and a 9% yield of ethyl chloroacetate. The ECHA was identical to that synthesized by a known method from ethyl acetoacetate, strongly alkylated nitrobenzylpyridine, and may have arisen by N-nitrosation of glycine ethyl ester to give ethyl diazoacetate, which was C-nitrosated and reacted with chloride to give ECHA. Nitrosation of ethyl diazoacetate also yielded ECHA. Ethyl nitroacetate was not an intermediate as its nitrosation did not produce ECHA. ECHA reacted with aniline to give ethyl (hydroxamino)(phenylimino)acetate [PhN=C(NHOH)CO2Et]. This product was different from ethyl [(phenylamino)carbonyl]carbamate [PhNHC(=O)NHCO2Et], which was synthesized by reacting ethyl isocyanatoformate (OCN.CO2Et) with aniline. ECHA reacted with guanosine to give a derivative, which may have been a guanine-C(=NOH)CO2Et derivative. ECHA showed moderate toxicity and weak but significant mutagenicity without activation in Salmonella typhimurium TA-100 (mean, 1.31 x control value for 12-18 microg/plats) and for V79 mammalian cells (1.5-1.7 x control value for 60-100 microM). In conclusion, gastric nitrosation of glycine derivatives such as peptides with a N-terminal glycine might produce ECHA analogues that alkylate bases of gastric mucosal DNA and thereby initiate gastric cancer.

  3. A Novel Glycinate-based Body Wash: Clinical Investigation Into Ultra-mildness, Effective Conditioning, and Improved Consumer Benefits.

    Science.gov (United States)

    Regan, Jamie; Mollica, Leonel-Maximo; Ananthapadmanabhan, K P

    2013-06-01

    To assess the properties of a novel body wash containing the mild surfactant glycinate. Biochemical and clinical assays. Research laboratories and clinical sites in the United States and Canada. Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = -0.73), rash (-0.56), itch (-0.927), tightness (-0.585), and all eczema (-0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits.

  4. The comparative analysis of antiparkinsonian activity of glycine combined with amantadine in conditions of changing neurosynaptic transmission

    Directory of Open Access Journals (Sweden)

    Mamchur V.I.

    2017-10-01

    Full Text Available Parkinson's disease is traditionally viewed as a disease which affects the human motor sphere. Besides motor manifestations in the clinical picture of the disease, non-motor manifestations with dementia as the most common are present. The purpose of the work – experimental evaluation of the possible antiparkinsonian action of glycine in terms of experimental models of Parkinson's disease equivalents (akinetic-rigid and tremor forms on the background of antiparkinsonian correction by amantadine. Methods: catalepsy model (inhibition of dopaminergic transmission, equivalents of hypokinesia and rigidity states and model of arekolyn tremor (activation of cholinergic transmission that corresponds to parkinsonian tremor on the background of amantadine administration (50 mg/kg, glycine (100 mg/kg and 200 mg/kg and their combined introduction. The research results show a positive dynamic in combined using of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg, which was is determined by the low percentage of animals with symptoms of catalepsy (50-70% with evaluation criteria of 0.5-1.8 points with maximum possible 6 points. Similar results were obtained in terms of activation of the cholinergic system (arekolyn tremor. Glycine at a dose of 100 mg/kg and 200 mg/kg facilitated to optimization of antitremor action of amantadine, that is registered in increased latent period of tremor, reduction of its duration and intensity attenuation almost by 2,1 times in comparison with indicators of the control group. Thus, studied combinations of amantadine with glycine at a dose of 100 mg/kg and 200 mg/kg are promising in studying of their influence on dementia in Parkinson's syndrome, and this study will be continued.

  5. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  6. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    Science.gov (United States)

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-08-26

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hexavalent chromium stress enhances the uptake of nitrate but reduces the uptake of ammonium and glycine in pak choi (Brassica chinensis L.).

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Ma, Jinzhao; Tan, Xiaoli; Xie, Yinan; Xiao, Han; Wu, Lianghuan

    2017-05-01

    Chromium (Cr) pollution affects plant growth and biochemical processes, so, the relative uptake of glycine, nitrate, and ammonium by pak choi (Brassica chinensis) seedlings in treatments with 0mgL(-1) and 10mgL(-1) Cr (VI) were detected by substrate-specific (15)N-labelling in a sterile environment. The short-term uptake of (15)N-labelled sources and (15)N-enriched amino acids were detected by gas chromatography mass spectrometry to explore the mechanism by which Cr stress affects glycine uptake and metabolism, which showing that Cr stress hindered the uptake of ammonium and glycine but increased significantly the uptake of nitrate. Cr stress did not decrease the active or passive uptake of glycine, but it inhibited the conversion of glycine to serine in pak choi roots, indicating that the metabolism of glycine to serine in roots, rather than the root uptake, was the limiting step in glycine contribution to total N uptake in pak choi. Since Cr affects the relative uptake of different N sources, a feasible way to reduce Cr-induced stress is application of selective fertilization, in particular nitrate, in pak choi cultivation on Cr-polluted soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Dungait, Jennifer A.J.; Bol, Roland

    2014-01-01

    PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.......e. incorporated 13 Cin all treatments, whereas fungi had minor or no glycine derived 13 C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO 2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G + bacteria, in an ecosystem subjected...

  9. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane.

    Science.gov (United States)

    Masson, Jean-Baptiste; Dionne, Patrice; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2014-01-07

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). Upon applying these analytical tools to glycine neurotransmitter receptors at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for glycine neurotransmitter receptors, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiological parameters (such as the number of receptors at synapses). Overall, our approach provides a powerful and comprehensive framework with which to analyze biochemical interactions in living cells and to decipher the multiscale dynamics of biomolecules in complex cellular environments. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Final report of CCQM-K130 nitrogen mass fraction measurements in glycine

    Science.gov (United States)

    Medvedevskikh, Maria; Krasheninina, Maria; do Rego, Eliane C. P.; Wollinger, Wagner; Monteiro, Tânia M.; de Carvalho, Lucas J.; Acco Garcia, Steve Ali; Haraldsson, Conny; Rodriguez, M. Alejandra; Rodriguez, Gabriela; Salvo, Karino; Gavrilkin, Vladimir; Kulyk, Sergij; Samuel, Laly

    2017-01-01

    CCQM key comparison K-130 in the field of nitrogen mass fracton has been performed by the Inorganic Analysis Working Group (IAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this key comparison CCQM-K130 is to support National Measurement Institutes (NMIs) and Designated Institutes (DIs) to demonstrate the validity of the procedures the employed for determination of nitrogen mass fraction in glycine. Mass fraction of nitrogen is very important pointer because the results of these measurements are often used for determination of protein mass fraction that is an important indicator of the quality of the vast majority of food products and raw materials, in particular dry milk powder. Proteins-enzymes catalyze chemical reactions, protein along with fats and carbohydrates is one of the indicators characterizing the energy value of food, so its definition is mandatory for all food products. The study material for this key comparison has been selected to be representative as one of the aminoacid - the simplest part of the protein. Glycine is an amino acid, single acid that does not have any isomers (melting point -290 °C specific heat of evaporation - 528,6 J/kg; specific melting heat - 981,1 J/kg; pKa - 2, 34, molar mass - 75,07 g/mol, density - 1,607 g/cm3). Ural Scientific Research Institute for Metrology (UNIIM) acted as the coordinating laboratory of this comparison. Nine NMIs participated in this key comparison and one NMI participated in Pilot study that was condacted in parallel. Report A contains the results of key comparison and pilot study. The results of Pilot study were excluded from the Report B Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM

  11. High-Dose Glycine Treatment of Refractory Obsessive-Compulsive Disorder and Body Dysmorphic Disorder in a 5-Year Period

    Directory of Open Access Journals (Sweden)

    W. Louis Cleveland

    2009-01-01

    Full Text Available This paper describes an individual who was diagnosed with obsessive-compulsive disorder (OCD and body dysmorphic disorder (BDD at age 17 when education was discontinued. By age 19, he was housebound without social contacts except for parents. Adequate trials of three selective serotonin reuptake inhibitors, two with atypical neuroleptics, were ineffective. Major exacerbations following ear infections involving Group A -hemolytic streptococcus at ages 19 and 20 led to intravenous immune globulin therapy, which was also ineffective. At age 22, another severe exacerbation followed antibiotic treatment for H. pylori. This led to a hypothesis that postulates deficient signal transduction by the N-methyl-D-aspartate receptor (NMDAR. Treatment with glycine, an NMDAR coagonist, over 5 years led to robust reduction of OCD/BDD signs and symptoms except for partial relapses during treatment cessation. Education and social life were resumed and evidence suggests improved cognition. Our findings motivate further study of glycine treatment of OCD and BDD.

  12. Effect of Hydroxylamine Sulfate on Volumetric Behavior of Glycine, L-Alanine, and L-Arginine in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-01-01

    Full Text Available The apparent molar volumes of glycine, L-alanine, and L-arginine in aqueous hydroxylamine sulfate solutions have been determined at T=298.15 K and atmospheric pressure. The standard partial molar volumes, V20, corresponding partial molar volumes of transfer, ΔtrV20, and hydration numbers, NH, have been calculated for these α-amino acids from the experimental data. The ΔtrV20 values are positive for glycine, L-alanine, and L-arginine and are all increased with the increase in the concentration of hydroxylamine ions. These parameters obtained from the volumetric data are interpreted in terms of various mixing effects between amino acids and hydroxylamine sulfate in aqueous solutions.

  13. Development of a Competent and Trouble Free DNA Isolation Protocol for Downstream Genetic Analyses in Glycine Species

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Nawaz

    2016-08-01

    Full Text Available Extraction of deoxyribose nucleic acid (DNA from plants is preliminary step in molecular biology. Fast and cost effective genomic DNA isolation from Glycine species for downstream application is a major bottleneck. Here we report a high throughput and trouble free method for genomic DNA extraction from leaf and seeds of Glycine species with high quality and quantity. Protocol reports the optimization by employing different concentrations of CTAB and PVP in extraction buffer. Efficiency of optimized protocol was compared with frequently used DNA extraction methods. Wide adoptability and utility of this protocol was confirmed by DNA extraction from leaves as well as seeds of G. max, G. soja, G. tomentella and G. latifolia. Extracted DNA was successfully subjected to PCR amplification of five microsatellite markers and four putative glycosyltransferase genes. DNA extraction protocol is reproducible, trouble free, rapid and can be adopted for plant molecular biology applications.

  14. Thermodynamics and mechanisms of glycine solvation in aqueous NaCl and KCl solutions at 298.15 K

    Science.gov (United States)

    Roy, S.; Hossain, A.; Mahali, K.; Dolui, B. K.

    2015-11-01

    In the present study the solubility of glycine in aqueous sodium chloride and potassium chloride solution was determined under different experimental conditions using `formol titrimetry' method. The thermodynamic parameters like standard transfer Gibbs energies and entropies have been evaluated at 298.15 K. Other important parameters like molar volume, densities, solvent diameter, etc., of the experimental solutions have also been determined in this study. The above mentioned parameters have been used to determine ∆ t,ch 0 ( i)i.e., chemical effects of the transfer Gibbs energies and T∆ t, ch 0 ( i)i.e., chemical effects of the transfer entropy. The solvation of glycine is influenced by different factors such as nature of the solute, interactions between solute and solvents, etc., which has been explained by different physical and analytical approach.

  15. Pharmaceutical Wastewater Effluent-Source of Contaminants of Emerging Concern: Phytotoxicity of Metronidazole to Soybean (Glycine max).

    Science.gov (United States)

    Yakubu, Okhumode H

    2017-04-02

    Industrial discharge of active pharmaceutical ingredients (APIs) into the environment in some middle- and low-income countries is not sufficiently regulated. The phytotoxicity of metronidazole (FLAGYL)-one of the most commonly used over the counter (OTC) antibiotics, to soybean ( Glycine max ) is investigated. Relative growth rate (RGR) expressed in gram per gram per day (gg -1 d -1 ) was applied to plants destructively harvested at maturity (42 d), to determine the toxicological impact. Differences between mean RGR of the three groups were performed at 0.05 significance level. Multiple comparisons suggest that there was a statistical significant difference among mean RGR for all treatment groups. Metronidazole is toxic to soybean plants ( Glycine max ) based on dose-response criterion. There is a need to enforce treatment of pharmaceutical wastewater effluent by Pharmaceutical Manufacturing Companies (PMCs) before discharge into the environment.

  16. Pharmaceutical Wastewater Effluent—Source of Contaminants of Emerging Concern: Phytotoxicity of Metronidazole to Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Okhumode H. Yakubu

    2017-04-01

    Full Text Available Industrial discharge of active pharmaceutical ingredients (APIs into the environment in some middle- and low-income countries is not sufficiently regulated. The phytotoxicity of metronidazole (FLAGYL—one of the most commonly used over the counter (OTC antibiotics, to soybean (Glycine max is investigated. Relative growth rate (RGR expressed in gram per gram per day (gg−1d−1 was applied to plants destructively harvested at maturity (42 d, to determine the toxicological impact. Differences between mean RGR of the three groups were performed at 0.05 significance level. Multiple comparisons suggest that there was a statistical significant difference among mean RGR for all treatment groups. Metronidazole is toxic to soybean plants (Glycine max based on dose-response criterion. There is a need to enforce treatment of pharmaceutical wastewater effluent by Pharmaceutical Manufacturing Companies (PMCs before discharge into the environment.

  17. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui

    2012-11-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  18. Hydrogen-bond mediated transitional adlayer of glycine on Si(111)7 x 7 at room temperature.

    Science.gov (United States)

    Zhang, L; Chatterjee, A; Ebrahimi, M; Leung, K T

    2009-03-28

    The growth of glycine film by thermal evaporation on Si(111)7 x 7 at room temperature has been studied by X-ray photoemission. In contrast to common carboxylic acids, glycine is found to adsorb on Si(111)7 x 7 dissociatively through cleavage of a N-H bond instead of O-H bond. The intricate evolution of the observed N 1s features at 399.1, 401.4, and 402.2 eV with increasing film thickness demonstrates the existence of a transitional adlayer between the first adlayer and the zwitterionic multilayer. This transitional adlayer is estimated to be 1-2 adlayer thick and is characterized by the presence of intermolecular N...HO hydrogen bond. An intramolecular proton transfer mechanism is proposed to account for the adsorption process through the amino group.

  19. A new allele of flower color gene W1 encoding flavonoid 3'5'-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja.

    Science.gov (United States)

    Takahashi, Ryoji; Dubouzet, Joseph G; Matsumura, Hisakazu; Yasuda, Kentaro; Iwashina, Tsukasa

    2010-07-28

    Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be a useful tool for studies of

  20. Establishment of in vitro soybean aphids, Aphis glycines (Hemiptera: Aphididae): a tool to facilitate studies of aphid symbionts, plant-insect interactions and insecticide efficacy.

    Science.gov (United States)

    Gunadi, Andika; Bansal, Raman; Finer, John J; Michel, Andy

    2017-06-01

    Studies on plant-insect interactions of the soybean aphid, Aphis glycines (Matsumura), can be influenced by environmental fluctuations, status of the host plant and variability in microbial populations. Maintenance of aphids on in vitro-grown plants minimizes environmental fluctuations, provides uniform host materials and permits the selective elimination of aphid-associated microbes for more standardized controls in aphid research. Aphids were reared on sterile, in vitro-grown soybean seedlings germinated on plant tissue culture media amended with a mixture of antimicrobials. For initiation and maintenance of in vitro aphid colonies, single aphids were inoculated onto single in vitro seedlings. After three rounds of transfer of 'clean' aphids to fresh in vitro seedlings, contamination was no longer observed, and aphids performed equally well when compared with those reared on detached leaves. The addition of the insecticides thiamethoxam and chlorantraniliprole to the culture medium confirmed uptake and caused significant mortality to the in vitro aphids. The use of the antimicrobial mixture removed the associated bacteria Arsenophonus but retained Buchnera and Wolbachia within the in vitro aphids. The in vitro aphid system is a novel and highly useful tool to understand insecticidal efficacy and expand our knowledge of tritrophic interactions among plants, insects and symbionts. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. The Effects of Phosphate Solubilizing Rhizobacteria on Soybean (Glycine max. L.) Plants Grown under Insoluble Phosphate Fertilization

    OpenAIRE

    Vladimir Rotaru

    2016-01-01

    The aim of this study was to assess the comparative efficacy of two phosphorus solubilizing rhizobacteria namely Burkholderia cepacia B36 and Enterobacter radicincitans D5/23T combined with insoluble phosphates in soybean (Glycine max. L.). Inoculated plants were grown in sand culture under controlled greenhouse conditions. All the inoculated treatments showed better plant growth and nutrient uptake when compared to uninoculated control. The inoculation with B. cepacia performed better than w...

  2. Noradrenaline, Serotonin, GABA, and Glycine in Cerebrospinal Fluid during Labor Pain: A Cross-Sectional Prospective Study

    OpenAIRE

    Pornpan Chalermkitpanit; Atikun Thonnagith; Phatthanaphol Engsusophon; Somrat Charuluxananan; Sittisak Honsawek

    2017-01-01

    Background and Aims The inhibitory pathways that play a role in spinal modulation include local interneurons and descending control. Clinical data regarding the role of these pathways in acute pain is lacking. Accordingly, the aim of this study was to evaluate cerebrospinal fluid (CSF) levels of noradrenaline, serotonin, gamma-aminobutyric acid (GABA), and glycine in parturients with labor pain compared to those without labor pain. Methods One hundred term uncomplicated pregnant women receivi...

  3. Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form

    Science.gov (United States)

    Portugal, Williamary; Pilling, Sergio; Boduch, Philippe; Rothard, Hermann; Andrade, Diana P. P.

    2014-07-01

    In this work, we studied the stability of the glycine molecule in the crystalline zwitterion form, known as α-glycine (+NH3CH2COO-), under the action of heavy cosmic ray analogues. The experiments were conducted in a high vacuum chamber at the heavy-ion accelerator Grand Accélérateur National d'Ions Lourds (GANIL), in Caen, France. The samples were bombarded at two temperatures (14 and 300 K) by 58Ni11+ ions of 46 MeV, up to a final fluence of 1013 ion cm-2. The chemical evolution of the sample was evaluated in situ using a Fourier Transform Infrared Spectrometer (FTIR). The bombardment at 14 K produced several daughter species, such as OCN-, CO, CO2 and CN-. The results also suggest the appearance of peptide bonds during irradiation, but this must be confirmed by further experiments. The half-life of glycine in the interstellar medium was estimated to be 7.8 × 103 yr (300 K) and 2.8 × 103 yr (14 K). In the Solar system, the values were 8.4 × 102 yr (300 K) and 3.6 × 103 yr (14 K). It is believed that glycine could be present in space environments that suffered aqueous changes, such as the interiors of comets, meteorites and planetesimals. This molecule is present in the proteins of all living beings. Therefore, studying its stability in these environments will provide further understanding of the role of this species in prebiotic chemistry on Earth.

  4. Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina.

    Science.gov (United States)

    Gill, Silje Bakken; Veruki, Margaret Lin; Hartveit, Espen

    2006-09-15

    AII amacrine cells play a crucial role in retinal signal transmission under scotopic conditions. We have used rat retinal slices to investigate the functional properties of inhibitory glycine receptors on AII cells by recording spontaneous IPSCs (spIPSCs) in whole cells and glycine-evoked responses in outside-out patches. Glycinergic spIPSCs displayed fast kinetics with an average 10-90% rise time of approximately 500 mus, and a decay phase best fitted by a double-exponential function with tau(fast) approximately 4.8 ms (97.5% amplitude contribution) and tau(slow) approximately 33 ms. Decay kinetics were voltage dependent. Ultrafast application of brief ( approximately 2-5 ms) pulses of glycine (3 mm) to patches, evoked responses with fast deactivation kinetics best fitted with a double-exponential function with tau(fast) approximately 4.6 ms (85% amplitude contribution) and tau(slow) approximately 17 ms. Double-pulse experiments indicated recovery from desensitization after a 100-ms pulse of glycine with a double-exponential time course (tau(fast) approximately 71 ms and tau(slow) approximately 1713 ms). Non-stationary noise analysis of spIPSCs and patch responses, and directly observed channel gating yielded similar single-channel conductances ( approximately 41 to approximately 47 pS). In addition, single-channel gating occurred at approximately 83 pS. These results suggest that the fast glycinergic spIPSCs in AII cells are probably mediated by alpha1beta heteromeric receptors with a contribution from alpha1 homomeric receptors. We hypothesize that glycinergic synaptic input may target the arboreal dendrites of AII cells, and could serve to shunt excitatory input from rod bipolar cells and transiently uncouple the transcellular current through electrical synapses between AII cells and between AII cells and ON-cone bipolar cells.

  5. Glycine zinc sulfate penta-hydrate: redetermination at 10 K from time-of-flight neutron Laue diffraction.

    Science.gov (United States)

    Fortes, A Dominic; Howard, Christopher M; Wood, Ian G; Gutmann, Matthias J

    2016-10-01

    Single crystals of glycine zinc sulfate penta-hydrate [systematic name: hexa-aqua-zinc tetra-aquadiglycinezinc bis-(sulfate)], [Zn(H2O)6][Zn(C2H5NO2)2(H2O)4](SO4)2, have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO6 octa-hedra on sites of symmetry -1 and two SO4 tetra-hedra with site symmetry 1; the octa-hedra comprise one [tetra-aqua-diglycine zinc]2+ ion (centred on one Zn atom) and one [hexa-aqua-zinc]2+ ion (centred on the other Zn atom); the glycine zwitterion, NH3+CH2COO-, adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N-H⋯O hydrogen bonds between the amine and carboxyl-ate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and Uij parameters, which provide accurate inter-nuclear X-H (X = N, O) bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

  6. A Novel Glycinate-based Body Wash: Clinical Investigation Into Ultra-mildness, Effective Conditioning, and Improved Consumer Benefits

    OpenAIRE

    Regan, Jamie; Mollica, Leonel-Maximo; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); an...

  7. Glycine is used as a transmitter by decrementing expiratory neurons of the ventrolateral medulla in the rat.

    Science.gov (United States)

    Ezure, Kazuhisa; Tanaka, Ikuko; Kondo, Masahiro

    2003-10-01

    The medullary respiratory network involves various types of respiratory neurons. The present study focused on possible inhibitory neurons called decrementing expiratory (E-DEC) neurons and aimed to determine whether their transmitter is glycine or GABA. In Nembutal-anesthetized, neuromuscularly blocked, and artificially ventilated rats we labeled E-DEC neurons with Neurobiotin and processed the tissues for detection of mRNA encoding either glycine transporter 2 (GLYT2) as a marker for glycinergic neurons or glutamic acid decarboxylase isoform 67 (GAD67) as a marker for GABAergic neurons, using in situ hybridization. Of 38 E-DEC neurons that were labeled, cranial motoneurons (n = 14), which were labeled as control, were negative for either GLYT2 mRNA (n = 10) or GAD67 mRNA (n = 4). The other E-DEC neurons (n = 24) were non-motoneurons. Sixteen of them were examined for GLYT2 mRNA, and the majority (11 of 16) was GLYT2 mRNA-positive. The remaining E-DEC neurons (n = 8) were examined for GAD67 mRNA, and all of them were GAD67 mRNA-negative. The GLYT2 mRNA-positive E-DEC neurons were located in the ventrolateral medulla spanning the Bötzinger complex (BOT), the rostral ventral respiratory group (VRG), and the caudal VRG. We conclude that not only E-DEC neurons of the BOT but also many E-DEC neurons of the VRG are inhibitory and use glycine as a transmitter. Although the present negative data cannot rule out completely the release of GABA or co-release of glycine and GABA from E-DEC neurons, several lines of evidence suggest that the glycinergic process is primarily responsible for the phasic inhibition of the respiratory network during the expiratory phase.

  8. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A previously proposed kinetic model for the glucose/glycine Maillard reaction pathways has been validated by changing the initial pH (4.8, 5.5, 6.0, 6.8 and 7.5) of the reaction and reactant initial concentrations (1:2 and 2:1 molar ratios were compared to the 1:1 ratio). The model consists of 10

  9. Reduction in the level of intracellular myo-inositol in cultured soybean (Glycine max) cells inhibits cell division.

    OpenAIRE

    Biffen, M; Hanke, D E

    1990-01-01

    Although myo-inositol is included in media for the successful growth of plant tissues, the actual requirement of most tissues, including soybean (Glycine max) callus in suspension culture, for myo-inositol has not been demonstrated. We have made use of deoxyglucose to reduce intracellular levels of myo-inositol. Deoxyglucose is phosphorylated to deoxyglucose 6-phosphate, which inhibits L-myo-inositol 1-phosphate synthase, an important enzyme in the synthesis of myo-inositol. Addition of deoxy...

  10. Pharmaceutical Wastewater Effluent—Source of Contaminants of Emerging Concern: Phytotoxicity of Metronidazole to Soybean (Glycine max)

    OpenAIRE

    Yakubu, Okhumode H.

    2017-01-01

    Industrial discharge of active pharmaceutical ingredients (APIs) into the environment in some middle- and low-income countries is not sufficiently regulated. The phytotoxicity of metronidazole (FLAGYL)—one of the most commonly used over the counter (OTC) antibiotics, to soybean (Glycine max) is investigated. Relative growth rate (RGR) expressed in gram per gram per day (gg−1d−1) was applied to plants destructively harvested at maturity (42 d), to determine the toxicological impact. Difference...

  11. Microsecond Simulations Indicate that Ethanol Binds between Subunits and Could Stabilize an Open-State Model of a Glycine Receptor

    OpenAIRE

    Murail, Samuel; Wallner, Björn; Trudell, James R.; Bertaccini, Edward; Lindahl, Erik

    2011-01-01

    Cys-loop receptors constitute a superfamily of ion channels gated by ligands such as acetylcholine, serotonin, glycine, and γ-aminobutyric acid. All of these receptors are thought to share structural characteristics, but due to high sequence variation and limited structure availability, our knowledge about allosteric binding sites is still limited. These sites are frequent targets of anesthetic and alcohol molecules, and are of high pharmacological importance. We used molecular simulations to...

  12. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation1234

    Science.gov (United States)

    Patel, Sanjeet G; Guthikonda, Anuradha P; Reid, Marvin; Balasubramanyam, Ashok; Taffet, George E; Jahoor, Farook

    2011-01-01

    Background: Aging is associated with oxidative stress, but underlying mechanisms remain poorly understood. Objective: We tested whether glutathione deficiency occurs because of diminished synthesis and contributes to oxidative stress in aging and whether stimulating glutathione synthesis with its precursors cysteine and glycine could alleviate oxidative stress. Design: Eight elderly and 8 younger subjects received stable-isotope infusions of [2H2]glycine, after which red blood cell (RBC) glutathione synthesis and concentrations, plasma oxidative stress, and markers of oxidant damage (eg, F2-isoprostanes) were measured. Elderly subjects were restudied after 2 wk of glutathione precursor supplementation. Results: Compared with younger control subjects, elderly subjects had markedly lower RBC concentrations of glycine (486.7 ± 28.3 compared with 218.0 ± 23.7 μmol/L; P glutathione (2.08 ± 0.12 compared with 1.12 ± 0.18 mmol/L RBCs; P glutathione fractional (83.14 ± 6.43% compared with 45.80 ± 5.69%/d; P glutathione concentration, a 78.8% higher fractional synthesis rate, a 230.9% higher absolute synthesis rate, and significantly lower plasma oxidative stress and F2-isoprostanes. No differences in these measures were observed between younger subjects and supplemented elderly subjects. Conclusions: Glutathione deficiency in elderly humans occurs because of a marked reduction in synthesis. Dietary supplementation with the glutathione precursors cysteine and glycine fully restores glutathione synthesis and concentrations and lowers levels of oxidative stress and oxidant damages. These findings suggest a practical and effective approach to decreasing oxidative stress in aging. PMID:21795440

  13. Radical Scavenging and DNA Cleavage Inhibitory Activities of 2,3-Dihydroxybenzoyl Glycine Obtained from Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Jayesh J. Ahire

    2013-03-01

    Full Text Available A catecholate type of iron chelator (siderophore; 2,3-dihydroxybenzoyl glycine (DHBG was produced by Bacillus sp. under i ron stress conditions. Pure DHBG was subjected for DPPH ( α,α−Diphenyl−β− Picrylhydrazyl radical scavenging activity and radical induced DNA cleavage inhibition assay. In results, DHBG showed the highest radical scavenging effect and DNA cleavage inhibition activity when it was free from iron. This study revealed antioxidative potential of iron chelator DHBG; and its probable mechanism.

  14. Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I - Reaction mechanism

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Marcelis, A.T.M.; Boekel, van M.A.J.S.

    2003-01-01

    The fate of the Amadori compound N-(1-deoxy--fructos-1-yl)-glycine (DFG) was studied in aqueous model systems as a function of pH and temperature. The samples were heated at 100 and 120 °C with initial reaction pH of 5.5 and 6.8. Special attention was paid to the formation of the free amino acid,

  15. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site

    DEFF Research Database (Denmark)

    Kvist, Trine; Steffensen, Thomas Bielefeldt; Greenwood, Jeremy R

    2013-01-01

    glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21-63 nm at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40...

  16. Simulation, planning, and optimization of redox processes involving the catalytic disproportionation of H/sub 2/O/sub 2/ by manganese(II) complexes with glycine

    Energy Technology Data Exchange (ETDEWEB)

    Batyr, D.G.; Isak, V.G.; Kil' mininov, S.V.; Kharitonov, Yu.Ya.

    1987-11-01

    The applicability of the use of a method for the simulation, planning, and optimization of chemical processes has been demonstrated in the example case of the manganese(II)-glycine-hydrogen peroxide redox system. Theoretical calculations based on experimental data have made it possible to present a mechanism for the catalase-mediated decomposition of hydrogen peroxide in the presence of coordination compounds of manganese(II) with glycine.

  17. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  18. Glycine supplementation during calorie restriction accelerates fat loss and protects against further muscle loss in obese mice.

    Science.gov (United States)

    Caldow, Marissa K; Ham, Daniel J; Godeassi, Daniel P; Chee, Annabel; Lynch, Gordon S; Koopman, René

    2016-10-01

    Calorie restriction (CR) reduces co-morbidities associated with obesity, but also reduces lean mass thereby predisposing people to weight regain. Since we demonstrated that glycine supplementation can reduce inflammation and muscle wasting, we hypothesized that glycine supplementation during CR would preserve muscle mass in mice. High-fat fed male C57BL/6 mice underwent 20 days CR (40% reduced calories) supplemented with glycine (1 g/kg/day; n = 15, GLY) or l-alanine (n = 15, ALA). Body composition and glucose tolerance were assessed and hindlimb skeletal muscles and epididymal fat were collected. Eight weeks of a high-fat diet (HFD) induced obesity and glucose intolerance. CR caused rapid weight loss (ALA: 20%, GLY: 21%, P fat mass (ALA: 41%, GLY: 49% P fat mass (14%, p fat mass (26%, P muscle mass (4%, P fat mass (pre CR) and the mRNA expression of genes involved in inflammation (r = 0.51 to 0.68, P muscle mass and stimulating loss of adipose tissue. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    Science.gov (United States)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  20. Effect of dextrose, valine, glycine and thiamine on growth rate of Lactobacillus acidophillus incubated at various temperatures

    Directory of Open Access Journals (Sweden)

    A.R Monadi Sefidan

    2014-05-01

    Full Text Available In numerous studies the beneficial impacts of probiotics on human health have been documented. Hence, there is a strong trend for the production of such foods and dairy products in particular, by many of the food processing establishments. In this regard, one of the major perequisites is to recognize the optimum conditions affecting the growth of probiotic organisms. This study aimed to investigate the impact of various concentrations of dextrose, valine, glycine and thiamine as well as different incubation temperatures on growth rate of Lactobacillus acidophillus in steril milk. In order to locate the ideal temperature, L. acidophillus was incubated at 38 °C, 40 °C, 42 °C and 44 °C. Moreover, thiamine (0, 5, 10 and 15 ppm, dextrose (0, 0.4, 0.6, 0.8 and 1%, glycine and valine (0, 30, 60, 90 and 120 ppm was added to steril milk. The acidity of milk-as an indication of bacterial activity-was measured periodically during 0, 1, 2, 3, 4 and 5 h of incubation. In comparison with the other temperatures, the activity of L. acidophillus was found significantly (P < 0.05 higher at 42 °C. According to the results, addition of dextrose, valine, glycine did not accelerate the production of acidic components; however, it seems that these substances could enhance the potency of L. acidophillus to produce gas and proteolytic enzymes.

  1. Role of glycine in nociceptive and non-nociceptive bladder reflexes and pudendal afferent inhibition of these reflexes in cats.

    Science.gov (United States)

    Rogers, Marc J; Shen, Bing; Reese, Jeremy N; Xiao, Zhiying; Wang, Jicheng; Lee, Andy; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-09-01

    This study examined the role of glycinergic transmission in nociceptive and non-nociceptive bladder reflexes and in inhibition of these reflexes by pudendal nerve stimulation (PNS). Cystometrograms (CMGs) were performed in α-chloralose anesthetized cats by intravesical infusion of saline or 0.25% acetic acid (AA) to trigger, respectively, non-nociceptive or nociceptive bladder reflexes. PNS at 2 or 4 times threshold (T) intensity for inducing anal twitch was used to inhibit the bladder reflexes. Strychnine (a glycine receptor antagonist) was administered in cumulative doses (0.001-0.3 mg/kg, i.v.) at 60-120 min intervals. Strychnine at 0.001-0.3 mg/kg significantly (P nociceptive bladder reflex. This is attributable to inhibition by glycine of another inhibitory mechanism. Glycine also has a minor role in PNS inhibition of the nociceptive bladder reflex. Neurourol. Urodynam. 35:798-804, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Degradation of Glyphosate by Mn-Oxide May Bypass Sarcosine and Form Glycine Directly after C-N Bond Cleavage.

    Science.gov (United States)

    Li, Hui; Wallace, Adam F; Sun, Mingjing; Reardon, Patrick; Jaisi, Deb P

    2018-02-06

    Glyphosate is the active ingredient of the common herbicide Roundup. The increasing presence of glyphosate and its byproducts has raised concerns about its potential impact on the environment and human health. In this research, we investigated abiotic pathways of glyphosate degradation as catalyzed by birnessite under aerobic and neutral pH conditions to determine whether certain pathways have the potential to generate less harmful intermediate products. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) were utilized to identify and quantify reaction products, and density functional theory (DFT) calculations were used to investigate the bond critical point (BCP) properties of the C-N bond in glyphosate and Mn(IV)-complexed glyphosate. We found that sarcosine, the commonly recognized precursor to glycine, was not present at detectable levels in any of our experiments despite the fact that its half-life (∼13.6 h) was greater than our sampling intervals. Abiotic degradation of glyphosate largely followed the glycine pathway rather than the AMPA (aminomethylphosphonic acid) pathway. Preferential cleavage of the phosphonate adjacent C-N bond to form glycine directly was also supported by our BCP analysis, which revealed that this C-N bond was disproportionately affected by the interaction of glyphosate with Mn(IV). Overall, these results provide useful insights into the potential pathways through which glyphosate may degrade via relatively benign intermediates.

  3. Composition of the essential oil of Cynanchum mongolicum (Asclepiadaceae) and insecticidal activities against Aphis glycines (Hemiptera: Aphidiae).

    Science.gov (United States)

    Yang, Wang; Zhao, An; Congai, Zhen; Qizhi, Liu; Wangpeng, Shi

    2014-01-01

    Farmers have applied Cynanchum mongolicum (Maxim) to control crop pests. The aim of this study was to analyze composition of essential oil from C. mongolicum, evaluate insecticidal activities against Aphis glycines, and lethal doses. Essential oil from C. mongolicum was efficiently extracted by steam distillation. The main components of the oil were analyzed with a gas chromatography/mass spectrometry (GC/MS) system, and the insecticidal activity of the essential oil on soybean aphids Aphis glycines was tested using a variety of methods. The components of the essential oil from C. mongolicum mainly included terpenes and ester compounds, of which (Z)-3-Hexen-1-ol acetate, cis-3-hexenyl isovalerate, α-farnesene, and β-caryophyllene accounted for 15.8, 10.4, 8.4, and 5.5%, respectively. With 1- and 2-day exposure, the essential oil showed pronounced contact toxicity (median lethal concentration (LC50) =37.8 and 38.4 μL/mL, respectively), weak fumigant toxicity (LC50 = 139.7 and 139.9 μL/L, respectively). The essential oil showed strong deterrent activity on soybean aphids in 2 and 4 h. The essential oil of C. mongolicum contained insecticidal components and possessed contact toxicity and deterrent activity to A. glycines.

  4. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture.

    Science.gov (United States)

    Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki

    2015-05-28

    The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol(-1). On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol(-1). The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  5. Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6.

    Science.gov (United States)

    Janssen, Freek J; Deng, Hui; Baggelaar, Marc P; Allarà, Marco; van der Wel, Tom; den Dulk, Hans; Ligresti, Alessia; van Esbroeck, Annelot C M; McGuire, Ross; Di Marzo, Vincenzo; Overkleeft, Herman S; van der Stelt, Mario

    2014-08-14

    sn-1-Diacylglycerol lipase α (DAGL-α) is the main enzyme responsible for the production of the endocannabinoid 2-arachidonoylglycerol in the central nervous system. Glycine sulfonamides have recently been identified by a high throughput screening campaign as a novel class of inhibitors for this enzyme. Here, we report on the first structure-activity relationship study of glycine sulfonamide inhibitors and their brain membrane proteome-wide selectivity on serine hydrolases with activity-based protein profiling (ABPP). We found that (i) DAGL-α tolerates a variety of biaryl substituents, (ii) the sulfonamide is required for inducing a specific orientation of the 2,2-dimethylchroman substituent, and (iii) a carboxylic acid is essential for its activity. ABPP revealed that the sulfonamide glycine inhibitors have at least three off-targets, including α/β-hydrolase domain 6 (ABHD6). Finally, we identified LEI-106 as a potent, dual DAGL-α/ABHD6 inhibitor, which makes this compound a potential lead for the discovery of new molecular therapies for diet-induced obesity and metabolic syndrome.

  6. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  7. Disruption of an intersubunit electrostatic bond is a critical step in glycine receptor activation.

    Science.gov (United States)

    Todorovic, Jelena; Welsh, Brian T; Bertaccini, Edward J; Trudell, James R; Mihic, S John

    2010-04-27

    Proper regulation of neurotransmission requires that ligand-activated ion channels remain closed until agonist binds. How channels then open remains poorly understood. Glycine receptor (GlyR) gating is initiated by agonist binding at interfaces between adjacent subunits in the extracellular domain. Aspartate-97, located at the alpha1 GlyR interface, is a conserved residue in the cys-loop receptor superfamily. The mutation of D97 to arginine (D97R) causes spontaneous channel opening, with open and closed dwell times similar to those of maximally activated WT GlyR. Using a model of the N-terminal domain of the alpha1 GlyR, we hypothesized that an arginine-119 residue was forming intersubunit electrostatic bonds with D97. The D97R/R119E charge reversal restored this interaction, stabilizing channels in their closed states. Cysteine substitution shows that this link occurs between adjacent subunits. This intersubunit electrostatic interaction among GlyR subunits thus contributes to the stabilization of the closed channel state, and its disruption represents a critical step in GlyR activation.

  8. Factors underlying genotypic differences in the induction of photosynthesis in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Soleh, Mochamad Arief; Tanaka, Yu; Nomoto, Yuko; Iwahashi, Yu; Nakashima, Keiichiro; Fukuda, Yasuko; Long, Stephen P; Shiraiwa, Tatsuhiko

    2016-03-01

    Crop leaves are subject to continually changing light levels in the field. Photosynthetic efficiency of a crop canopy and productivity will depend significantly on how quickly a leaf can acclimate to a change. One measure of speed of response is the rate of photosynthesis increase toward its steady state on transition from low to high light. This rate was measured for seven genotypes of soybean [Glycine max (L.) Merr.]. After 10 min of illumination, cultivar 'UA4805' (UA) had achieved a leaf photosynthetic rate (Pn ) of 23.2 μmol · m(-2)  · s(-1) , close to its steady-state rate, while the slowest cultivar 'Tachinagaha' (Tc) had only reached 13.0 μmol · m(-2)  · s(-1) and was still many minutes from obtaining steady state. This difference was further investigated by examining induction at a range of carbon dioxide concentrations. Applying a biochemical model of limitations to photosynthesis to the responses of Pn to intercellular CO2 concentration (Ci ), it was found that the speed of apparent in vivo activation of ribulose-1:5-bisphosphate carboxylase/oxygenase (Rubisco) was responsible for this difference. Sequence analysis of the Rubisco activase gene revealed single nucleotide polymorphisms that could relate to this difference. The results show a potential route for selection of cultivars with increased photosynthetic efficiency in fluctuating light. © 2015 John Wiley & Sons Ltd.

  9. A novel poly (glycine biosensor towards the detection of indigo carmine: A voltammetric study

    Directory of Open Access Journals (Sweden)

    Jamballi Gangadharappa Gowda Manjunatha

    2018-01-01

    Full Text Available The electrochemical behavior of indigo carmine (IC at poly (glycine modified carbon paste electrode (PGMCPE was investigated by cyclic and differential pulse voltammetry. The oxidation peak of IC was observed in phosphate buffer of pH 6.5. The influence of different pH, scan rate, and concentration were analyzed. The probable reaction mechanism involved in the oxidation of IC was also proposed. Results showed that PGMCPE a remarkable electrocatalytic activity for the oxidation of IC under optimal conditions. The electrocatalytic response of the sensor was proportional to the IC concentration in the range of (2 × 10−6–1 × 10−5 M and (1.5 × 10−5–6 × 10−5 M with a limit of detection 11 × 10−8 M and limit of quantification 3.6 × 10−7 M. The modified electrode demonstrated many advantages such as simple preparation, high sensitivity, low detection of limit, excellent catalytic activity, short response time, and remarkable antifouling property toward IC and its oxidation product.

  10. Effect of methanol spraying on yield and yield components of soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    M. Mirakhori

    2016-04-01

    Full Text Available In order to evaluate the application of methanol on yield and yield components of soybean (Glycine max L., var. L 17 in field conditions, experiments were conducted based on a randomized complete block design with three replications at the Field Research from Faculty of Agricultural of Islamic Azad University Karaj, Iran, during 2008. Sprayed aqueous solutions were zero (control, 7, 14, 21, 28 and 35% (v/v methanol by there times during growth season of soybean with 15 days intervals on shoot of soybean. In this study soybean grain yield, biomass HI, 1000 grain weigh, height plants, number of branch, diameter of stem, number of pod on plant, number of hollow pod were measured. Results of the experiment indicated that there are significant differences (p>0.05 between sprayed of solution methanol on all parameters. Results also showed the effect of aqueous solution 14, 21 and 28% (v/v methanol on measured parameters was greater than other treatments. Foliar application of 14% and 21%, (v/v methanol increased leaf area index, crop growth rate, pod growth rate, leaf area duration, pod yield, seed yield, weight of 1000 kernel, mature pods per plants. The lowest grain yield obtained in control plots and 35% (v/v methanol treatments.

  11. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol.

    Science.gov (United States)

    Maguire, Edward P; Mitchell, Elizabeth A; Greig, Scott J; Corteen, Nicole; Balfour, David J K; Swinny, Jerome D; Lambert, Jeremy J; Belelli, Delia

    2014-04-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory 'phasic' post-synaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and, to a lesser extent, by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a 'tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization, and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviorally relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal, and by taurine, an ingredient of certain 'energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol.

  12. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  13. Molecular hydrogen messengers can lead to structural infidelity: A cautionary tale of protonated glycine

    Science.gov (United States)

    Masson, Antoine; Williams, Evan R.; Rizzo, Thomas R.

    2015-09-01

    The effects of tagging protonated glycine with either He or between 1 and 14 H2 molecules on the infrared photodissociation spectra and the ion structure were investigated. Differences in the IR spectra with either a single He atom or H2 molecule attached indicate that even a single H2 molecule can affect the frequencies of some vibrational bands of this simple ion. The protonation site is the preferred location of the tag with He and with up to two H2 molecules, but evidence for H2 attachment to the hydrogen atom of the uncharged carboxylic acid is observed for ions tagged with three or more H2 molecules. This results in a 55 cm-1 red shift in the carboxylic acid OH stretch, and evidence for some structural isomers where the hydrogen bond between the protonated nitrogen and the carbonyl oxygen is partially broken; as a result H2 molecules attached to this site are observed. These results are supported by theory, which indicates that H2 molecules can effectively break this weak hydrogen bond with three or more H2 molecules. These results indicate that large spectral shifts as a result of H2 molecules attaching to sites remote from the charge can occur and affect stretching frequencies as a result of charge transfer, and that tagging with multiple H2 molecules can change the structure of the ion itself.

  14. Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies

    Science.gov (United States)

    Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin

    2017-05-01

    Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.

  15. Influence of Glycine and Arginine on Cylindrospermopsin Production and aoa Gene Expression in Aphanizomenon ovalisporum

    Directory of Open Access Journals (Sweden)

    Ángel Barón-Sola

    2017-11-01

    Full Text Available Arginine (Arg and glycine (Gly seem to be the only substrates accepted by the amidinotransferase that catalyze the first step of the synthesis pathway of the cyanotoxin cylindrospermopsin (CYN, leading to guanidinoacetate (GAA. Here, the effect of these amino acids on the production of CYN in cultures of the cylindrospermopsin-producing strain, Aphanizomenon ovalisporum UAM-MAO, has been studied. Arg clearly increased CYN content, the increment appearing triphasic along the culture. On the contrary, Gly caused a decrease of CYN, observable from the first day on. Interestingly, the transcript of the gene ntcA, key in nitrogen metabolism control, was also enhanced in the presence of Arg and/or Gly, the trend of the transcript oscillations being like that of aoa/cyr. The inhibitory effect of Gly in CYN production seems not to result from diminishing the activity of genes considered involved in CYN synthesis, since Gly, as Arg, enhance the transcription of genes aoaA-C and cyrJ. On the other hand, culture growth is affected by Arg and Gly in a similar way to CYN production, with Arg stimulating and Gly impairing it. Taken together, our data show that the influence of both Arg and Gly on CYN changes seems not to be due to a specific effect on the first step of CYN synthesis; it rather appears to be the result of changes in the physiological cell status.

  16. Inhibition of the corrosion of mild steel in hydrochloric acid by isatin and isatin glycine

    Directory of Open Access Journals (Sweden)

    B.I. Ita

    2006-12-01

    Full Text Available The inhibition of corrosion of mild steel in hydrochloric acid by isatin glycine (ING and isatin (IN at 30-60 oC and concentrations of 0.0001 M to 0.0005 M was studied via weight loss method. At the highest inhibitor concentration studied ING exhibited inhibition efficiency of 87% while IN exhibited 84% at 60 oC. A chemical adsorption mechanism was proposed on the basis of the temperature effect and obtained average activation energy values of 143.9 kJ/mol for ING and 118.5 kJ/mol for IN. The two inhibitors were confirmed to obey the Langmuir adsorption isotherm equation at the concentrations studied. Also a first-order type of mechanism was proposed from the kinetic treatment of the result. The difference in the inhibitory properties of the inhibitors was explained in terms of the difference in their molecular structures and solubility rather than difference in molecular weights alone.

  17. Influence of Glycine and Arginine on Cylindrospermopsin Production and aoa Gene Expression in Aphanizomenon ovalisporum.

    Science.gov (United States)

    Barón-Sola, Ángel; Fernández Del Campo, Francisca; Sanz-Alférez, Soledad

    2017-11-01

    Arginine (Arg) and glycine (Gly) seem to be the only substrates accepted by the amidinotransferase that catalyze the first step of the synthesis pathway of the cyanotoxin cylindrospermopsin (CYN), leading to guanidinoacetate (GAA). Here, the effect of these amino acids on the production of CYN in cultures of the cylindrospermopsin-producing strain, Aphanizomenon ovalisporum UAM-MAO, has been studied. Arg clearly increased CYN content, the increment appearing triphasic along the culture. On the contrary, Gly caused a decrease of CYN, observable from the first day on. Interestingly, the transcript of the gene ntcA , key in nitrogen metabolism control, was also enhanced in the presence of Arg and/or Gly, the trend of the transcript oscillations being like that of aoa / cyr . The inhibitory effect of Gly in CYN production seems not to result from diminishing the activity of genes considered involved in CYN synthesis, since Gly, as Arg, enhance the transcription of genes aoaA-C and cyrJ. On the other hand, culture growth is affected by Arg and Gly in a similar way to CYN production, with Arg stimulating and Gly impairing it. Taken together, our data show that the influence of both Arg and Gly on CYN changes seems not to be due to a specific effect on the first step of CYN synthesis; it rather appears to be the result of changes in the physiological cell status.

  18. Effect of Hypergravity and Phytohormones on Isoflavonoid Accumulation in Soybean ( Glycine max. L.) Callus

    Science.gov (United States)

    Downey, Peter J.; Levine, Lanfang H.; Musgrave, Mary E.; McKeon-Bennett, Michelle; Moane, Siobhán

    2013-02-01

    The objective of this study was to explore the potential interaction between gravity and growth hormones on isoflavonoid accumulation. Soybean callus ( Glycine max (L.) Merr. cv. `Acme') was grown in the dark for 16 days at 22 °C in a growth medium supplemented with four different combinations of phytohormones and subjected to 4- g and 8- g forces simulated in a centrifuge and 1- g in an adjacent stationary control. Isoflavonoid aglycones and their glycoside concentrations (daidzein, genistein, daidzin, 6″-O-malonyl-7-O-glucosyl daidzein, genistin, 6″-O-malonyl-7-O-glucosyl genistein) were determined in the resulting tissues. Although gravity had no significant impact on callus growth, increasing gravity reduced isoflavonoid accumulation in three out of the four phytohormone-supplemented culture media. The ratio of the auxin naphthalene acetic acid (NAA) to the cytokinin benzylaminopurine (BAP) was found to have profound effect on both callus growth and isoflavonoid accumulation. The cytokinin BAP promoted callus tissue growth, but reduced callus isoflavonoid suggesting the isoflavonoid accumulation was not keeping pace with the cell growth in the elevated concentration of BAP. On the other hand, NAA had little or no effect on callus growth, but greatly enhanced isoflavonoid accumulation. Interactive effects of gravity and hormone on isoflavonoid accumulation were evident and its implication to the mechanism by which gravity exerts the effect on plant secondary metabolites is discussed.

  19. A comprehensive analysis of the Cupin gene family in soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Xiaobo Wang

    Full Text Available Cupin superfamily of proteins, including germin and germin-like proteins (GLPs from higher plants, is known to play crucial roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These Gmcupin proteins were phylogenetically clustered into ten distinct subgroups among which the gene structures were highly conserved. Eighteen pairs (52.2% of duplicate paralogous genes were preferentially retained in duplicated regions of the soybean genome. The distributions of GmCupin genes implied that long segmental duplications contributed significantly to the expansion of the GmCupin gene family. According to the RNA-seq data analysis, most of the Gmcupins were differentially expressed in tissue-specific expression pattern and the expression of some duplicate genes were partially redundant while others showed functional diversity, suggesting the Gmcupins have been retained by substantial subfunctionalization during soybean evolutionary processes. Selective analysis based on single nucleotide polymorphisms (SNPs in cultivated and wild soybeans revealed sixteen Gmcupins had selected site(s, with all SNPs in Gmcupin10.3 and Gmcupin07.2 genes were selected sites, which implied these genes may have undergone strong selection effects during soybean domestication. Taken together, our results contribute to the functional characterization of Gmcupin genes in soybean.

  20. A comprehensive analysis of the Cupin gene family in soybean (Glycine max).

    Science.gov (United States)

    Wang, Xiaobo; Zhang, Haowei; Gao, Yali; Sun, Genlou; Zhang, Wenming; Qiu, Lijuan

    2014-01-01

    Cupin superfamily of proteins, including germin and germin-like proteins (GLPs) from higher plants, is known to play crucial roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max) incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These Gmcupin proteins were phylogenetically clustered into ten distinct subgroups among which the gene structures were highly conserved. Eighteen pairs (52.2%) of duplicate paralogous genes were preferentially retained in duplicated regions of the soybean genome. The distributions of GmCupin genes implied that long segmental duplications contributed significantly to the expansion of the GmCupin gene family. According to the RNA-seq data analysis, most of the Gmcupins were differentially expressed in tissue-specific expression pattern and the expression of some duplicate genes were partially redundant while others showed functional diversity, suggesting the Gmcupins have been retained by substantial subfunctionalization during soybean evolutionary processes. Selective analysis based on single nucleotide polymorphisms (SNPs) in cultivated and wild soybeans revealed sixteen Gmcupins had selected site(s), with all SNPs in Gmcupin10.3 and Gmcupin07.2 genes were selected sites, which implied these genes may have undergone strong selection effects during soybean domestication. Taken together, our results contribute to the functional characterization of Gmcupin genes in soybean.

  1. [Clinical observation of glycine powder air-polishing during periodontal maintenance phase].

    Science.gov (United States)

    Zhao, Yibing; He, Lu; Meng, Huanxin

    2015-09-01

    To evaluate the clinical effect of the 65 µm glycine powder air-polishing (GPAP) and ultrasonic scaling during periodontal maintenance phase. Twenty-three patients at the age of 28-72 (8 males and 15 females) who were systematically healthy were involved in this study. According to splitting-mouth design, one side of a mouth was randomly assigned to the experiment group with 65 µm GPAP therapy, while the other side was the control group with ultrasonic scaling therapy. The clinical parameters including probing depth (PD), bleeding index (BI), gingival recession (Rec), plaque index (PLI), staining index (SI) were recorded. The patients' perception of treatment was assessed by visual analogue scale (VAS). The treatment time was recorded and compared between the two groups. Both of the two methods had good clinical effects. PD, BI and PLI of the two groups 12 weeks after treatment were better than those at baseline (P periodontal maintenance phase. 65 µm GPAP had the advantage of more comfort and less time consuming.

  2. Effect of glycine propionyl-L-carnitine on aerobic and anaerobic exercise performance.

    Science.gov (United States)

    Smith, Webb A; Fry, Andrew C; Tschume, Lesley C; Bloomer, Richard J

    2008-02-01

    The purpose of this study was to evaluate the effect of glycine propionyl-L-carnitine (GPLC) supplementation and endurance training for 8 wk on aerobic- and anaerobic-exercise performance in healthy men and women (age 18-44 yr). Participants were randomly assigned to 1 of 3 groups: placebo (n=9), 1 g/d GPLC (n=11), or 3 g/d GPLC (n=12), in a double-blind fashion. Muscle carnitine (vastus lateralis), VO(2peak), exercise time to fatigue, anaerobic threshold, anaerobic power, and total work were measured at baseline and after an 8-wk aerobic-training program. There were no statistical differences (p> .05) between or within the 3 groups for any performance-related variable or muscle carnitine concentrations after 8 wk of supplementation and training. These results suggest that up to 3 g/d GPLC for 8 wk in conjunction with aerobic-exercise training is ineffective for increasing muscle carnitine content and has no significant effects on aerobic- or anaerobic-exercise performance.

  3. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    Science.gov (United States)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  4. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhong

    Full Text Available Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA against Aphis glycines Matsumura, the soybean aphid (SA was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL, peroxidase (POX, polyphenol oxidase (PPO, chitinase (CHI, and β-1, 3-glucanase (GLU in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  5. Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.).

    Science.gov (United States)

    Shen, Qi; Zhao, Jinming; Du, Caifu; Xiang, Yang; Cao, Jinxuan; Qin, Xinrong

    2012-01-01

    In plants, powdery-mildew-resistance locus o (Mlo) genes encode proteins that are calmodulin-binding proteins involved in a variety of cellular processes. However, systematic characterization of this gene family in soybean (Glycine max L. Merr.) has not been yet reported. In this study, we identified MLO domain-contained members in soybean and examined their expression under phytohormone treatment and abiotic stress conditions. A total of 20 soybean Mlo genes were identified (GmMlo1-20), which are distributed on 13 chromosomes, and display diverse exon-intron structures. Phylogenetic analysis indicated that the Mlo family can be classified into four subfamilies. Sequence comparison was used to reveal the conserved calmodulin-binding domain (CaMBD) in GmMLO proteins. The expression of GmMlo genes was influenced by various phytohormone treatments and abiotic stresses, suggesting that these Mlo genes have various roles in the response of soybean to environmental stimuli. Promoter sequence analysis revealed an overabundance of stress and/or phytohormone-related cis-elements in GmMlo genes. These data provide important clues for elucidating the functions of genes of the Mlo gene family.

  6. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration.

    Science.gov (United States)

    Xie, Ming; Liu, Zhiying; Xu, Yanhua

    2010-09-15

    Nanofiltration (NF) was investigated for the removal of glyphosate in the neutralization liquor produced by the glycine-dimethylphosphit process. The Desal-5 DK membrane was chosen as the most suitable membrane for the NF process when compared to the DL and NTR7450 membranes according to retention of glyphosate and the permeate flux. The effects of applied pressure, temperature, and feed pH on the performances of the DK membrane were investigated. An applied pressure of 2 MPa was found to be optimum since a high glyphosate rejection of 95.5% was obtained with a high flux of 7.32 L/(hm(2)); temperature had a slight impact on the retention of glyphosate with an increase in flux; both the minimum glyphosate retention and maximum permeate flux were achieved when the feed pH was around the isoelectric point of the DK membrane. In batch NF, the permeate flux decreased gradually but glyphosate rejection remained higher than 90%. After 8h of NF, glyphosate recovery from the neutralization liquor reached 89.6% with an average permeate flux of around 4 L/(hm(2)). Moreover, membrane surface crystallization induced by concentration polarization probably caused the flux to decline during the process of batch NF. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Thermoluminescence of Novel Zinc Oxide Nanophosphors Obtained by Glycine-Based Solution Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    V. R. Orante-Barrón

    2015-01-01

    Full Text Available High-dose thermoluminescence dosimetry properties of novel zinc oxide nanophosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ~500 nm and ~2 μm were obtained by annealing the synthesized ZnO at 900°C during 2 h in air. X-ray diffraction patterns indicate the presence of the ZnO hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of ZnO obtained after being exposed to beta radiation consists of two maxima: one located at ~149°C and another at ~308°C, the latter being the dosimetric component of the curve. The integrated TL fading displays an asymptotic behavior for times longer than 16 h between irradiation and the corresponding TL readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy. Such features place synthesized ZnO as a promising material for high-dose radiation dosimetry applications.

  8. Quantifying the temperature dependence of glycine-betaine RNA duplex destabilization.

    Science.gov (United States)

    Schwinefus, Jeffrey J; Menssen, Ryan J; Kohler, James M; Schmidt, Elliot C; Thomas, Alexandra L

    2013-12-23

    Glycine-betaine (GB) stabilizes folded protein structure because of its unfavorable thermodynamic interactions with amide oxygen and aliphatic carbon surface area exposed during protein unfolding. However, GB can attenuate nucleic acid secondary structure stability, although its mechanism of destabilization is not currently understood. Here we quantify GB interactions with the surface area exposed during thermal denaturation of nine RNA dodecamer duplexes with guanine-cytosine (GC) contents of 17-100%. Hyperchromicity values indicate increasing GB molality attenuates stacking. GB destabilizes higher-GC-content RNA duplexes to a greater extent than it does low-GC-content duplexes due to greater accumulation at the surface area exposed during unfolding. The accumulation is very sensitive to temperature and displays characteristic entropy-enthalpy compensation. Since the entropic contribution to the m-value (used to quantify GB interaction with the RNA solvent-accessible surface area exposed during denaturation) is more dependent on temperature than is the enthalpic contribution, higher-GC-content duplexes with their larger transition temperatures are destabilized to a greater extent than low-GC-content duplexes. The concentration of GB at the RNA surface area exposed during unfolding relative to bulk was quantified using the solute-partitioning model. Temperature correction predicts a GB concentration at 25 °C to be nearly independent of GC content, indicating that GB destabilizes all sequences equally at this temperature.

  9. Early history of glycine receptor biology in mammalian spinal cord circuits

    Directory of Open Access Journals (Sweden)

    Robert J Callister

    2010-05-01

    Full Text Available In this review we provide an overview of key in vivo experiments, undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission, that GlyRs are chloride channels, are involved in reciprocal and recurrent spinal inhibition, are selectively blocked by strychnine, and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale’s hypothesis (regarding the chemical unity of nerve cells and their terminals to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries.

  10. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1 from Glycine max

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2014-03-01

    Full Text Available Brassinosteroids (BRs constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.

  11. Enteromorpha intestinalis Derived Seaweed Liquid Fertilizers as Prospective Biostimulant for Glycine max

    Directory of Open Access Journals (Sweden)

    Chetna Mathur

    2015-12-01

    Full Text Available ABSTRACT In the present study, the potential of seaweed liquid fertilizer (SLF of marine algae Enteromorpha intestinalis was evaluated for its effect on seed germination, yield, biochemical parameters and pigment characteristics of Glycine maxE. intestinalis was collected form Mandapam coast of Gulf of Mannar, Tamil Nadu, and the dried seaweeds were used for the preparation of SLF. G. max seeds were germinated with four different concentrations (20, 40, 60, and 100% of SLF; its growth and yield parameters were evaluated and compared with chemical fertilizer and control. The morphological and bio-chemical parameters such as seed germination (100%, root (6.6cm and shoot length (5.4 cm, carbohydrates (0.098 mg/g, protein (0.56 mg/g, pigment (0.444 mg/g chl a; 1.073 mg/g chl b; 3.70 mg/g carotenoids of the plant was found maximum at a concentration of 60% SLF. The phenol content (3.25 mg/g was maximum in 40% SLF. The GC-MS analysis of SLF revealed the presence of notable benzoic compounds involved in plant growth promotion. Results showed thatE. intestinalis derived SLF was potential biostimulant forG. max. Thus, marine algae based fertilizer could be an effective and alternate to the chemical fertilizers emphasizing the need for systematic evaluation programme for SLF on various crops.

  12. Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

    Science.gov (United States)

    Powell, W.; Morgante, M.; Doyle, J. J.; McNicol, J. W.; Tingey, S. V.; Rafalski, A. J.

    1996-01-01

    A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants. PMID:8889540

  13. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment.

    Science.gov (United States)

    Ge, Ying; Li, Yong; Zhu, Yan-Ming; Bai, Xi; Lv, De-Kang; Guo, Dianjing; Ji, Wei; Cai, Hua

    2010-07-26

    Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of saline-alkaline stress transcriptome is mostly focused on saline (NaCl) stress and only limited information on alkaline (NaHCO3) stress is available. Using Affymetrix Soybean GeneChip, we conducted transcriptional profiling on Glycine soja roots subjected to 50 mmol/L NaHCO3 treatment. In a total of 7088 probe sets, 3307 were up-regulated and 5720 were down-regulated at various time points. The number of significantly stress regulated genes increased dramatically after 3 h stress treatment and peaked at 6 h. GO enrichment test revealed that most of the differentially expressed genes were involved in signal transduction, energy, transcription, secondary metabolism, transporter, disease and defence response. We also detected 11 microRNAs regulated by NaHCO3 stress. This is the first comprehensive wild soybean root transcriptome analysis under alkaline stress. These analyses have identified an inventory of genes with altered expression regulated by alkaline stress. The data extend the current understanding of wild soybean alkali stress response by providing a set of robustly selected, differentially expressed genes for further investigation.

  14. Secondary metabolites from Glycine soja and their growth inhibitory effect against Spodoptera litura.

    Science.gov (United States)

    Zhou, Yan-Ying; Luo, Shi-Hong; Yi, Ting-Shuang; Li, Chun-Huan; Luo, Qian; Hua, Juan; Liu, Yan; Li, Sheng-Hong

    2011-06-08

    The wild soybean (Glycine soja Sieb. et Zucc) has been reported to be relatively resistant to insect and pathogenic pests. However, the responsible secondary metabolites in the aerial part of this important plant are largely unknown. From the aerial part of G. soja, 13 compounds were isolated and identified, including seven isoflavonoids (1-7), a cyclitol (8), two sterol derivatives (9 and 10), and three triterpenoids (11-13). Compound 7 is a new isoflavonoid, and compounds 9 and 10 are reported as natural products for the first time. The growth inhibitory activity of 1, 3, 4, and 8 against the larvae of Spodoptera litura was investigated. The most abundant isoflavonoid in the aerial part of G. soja, daidzein (1), which could not be metabolized by S. litura, was found to inhibit the insect larvae growth significantly in 3 days after feeding diets containing the compound. Compounds 3, 4, and 8, which could be partially or completely metabolized, were inactive. Our results suggested that the isoflavonoid daidzein (1) might function as a constitutive defense component in G. soja against insect pests.

  15. Modulation of sensorimotor gating in prepulse inhibition by conditional brain glycine transporter 1 deletion in mice

    Science.gov (United States)

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K.

    2010-01-01

    Inhibition of glycine transporter 1 (GlyT1) augments N-methyl-D-aspartate receptor (NMDAR)-mediated transmission and represents a potential antipsychotic drug target according to the NMDAR hypofunction hypothesis of schizophrenia. Preclinical evaluation of GlyT1 inhibiting drugs using the prepulse inhibition (PPI) test, however, has yielded mixed outcomes. Here, we tested for the first time the impact of two conditional knockouts of GlyT1 on PPI expression. Complete deletion of GlyT1 in the cerebral cortices confers resistance to PPI disruption induced by the NMDAR blocker MK-801 (0.2mg/kg, i.p.) without affecting PPI expression in unchallenged conditions. In contrast, restricting GlyT1 deletion to neurons in forebrain including the striatum significantly attenuated PPI, and the animals remained sensitive to the PPI-disruptive effect of MK-801 at the same dose. These results demonstrate in mice that depending on the regional and/or cell-type specificity, deletion of the GlyT1 gene could yield divergent effects on PPI. PMID:20647165

  16. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.).

    Science.gov (United States)

    Zhang, Gaiyun; Chen, Ming; Chen, Xueping; Xu, Zhaoshi; Guan, Shan; Li, Lian-Cheng; Li, Aili; Guo, Jiaming; Mao, Long; Ma, Youzhi

    2008-01-01

    Members of the ERF transcription factor family play important roles in regulating gene expression in response to biotic and abiotic stresses. In soybean (Glycine max L.), however, only a few ERF genes have been studied so far. In this study, 98 unigenes that contained a complete AP2/ERF domain were identified from 63,676 unique sequences in the DFCI Soybean Gene Index database. The phylogeny, gene structures, and putative conserved motifs in soybean ERF proteins were analysed, and compared with those of Arabidopsis and rice. The members of the soybean ERF family were divided into 12 subgroups, similar to the case for Arabidopsis. AP2/ERF domains were conserved among soybean, Arabidopsis, and rice. Outside the AP2/ERF domain, many soybean-specific conserved motifs were detected. Expression analysis showed that nine unigenes belonging to six ERF family subgroups were induced by both biotic/abiotic stresses and hormone treatment, suggesting that they were involved in cross-talk between biotic and abiotic stress-responsive signalling pathways. Overexpression of two full-length genes from two different subgroups enhanced the tolerances to drought, salt stresses, and/or pathogen infection of the tobacco plants. These results will be useful for elucidating ERF gene-associated stress response signalling pathways in soybean.

  17. A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study.

    Science.gov (United States)

    Manjunatha, Jamballi Gangadharappa Gowda

    2018-01-01

    The electrochemical behavior of indigo carmine (IC) at poly (glycine) modified carbon paste electrode (PGMCPE) was investigated by cyclic and differential pulse voltammetry. The oxidation peak of IC was observed in phosphate buffer of pH 6.5. The influence of different pH, scan rate, and concentration were analyzed. The probable reaction mechanism involved in the oxidation of IC was also proposed. Results showed that PGMCPE a remarkable electrocatalytic activity for the oxidation of IC under optimal conditions. The electrocatalytic response of the sensor was proportional to the IC concentration in the range of (2 × 10-6-1 × 10-5 M) and (1.5 × 10-5-6 × 10-5 M) with a limit of detection 11 × 10-8 M and limit of quantification 3.6 × 10-7 M. The modified electrode demonstrated many advantages such as simple preparation, high sensitivity, low detection of limit, excellent catalytic activity, short response time, and remarkable antifouling property toward IC and its oxidation product. Copyright © 2017. Published by Elsevier B.V.

  18. Improving nuclease activity of copper(II)-terpyridine complex through solubilizing and charge effects of glycine.

    Science.gov (United States)

    Zhou, Wen; Wang, Xiaoyong; Hu, Ming; Guo, Zijian

    2013-04-01

    Copper complexes are potential metallonucleases that may find application in biotechnology and molecular biology. In this study, a ternary copper-terpyridine complex [Cu(ttpy)(Gly)(NO3)](NO3)·H2O (1) (ttpy=4'-p-tolyl-2,2':6,2″-terpyridine) is synthesized and characterized by X-ray crystallography and ESI-MS as an artificial nuclease. Glycine (Gly) is introduced into the complex to enhance the water-solubility and electrostatic affinity for the nucleic acid target. The interaction between complex 1 and DNA has been studied by spectroscopy and gel electrophoresis, using a structural analog [Cu(ttpy)(NO3)2] (2) as the reference. Complex 1 demonstrates an increased DNA binding ability and oxidative cleavage activity towards supercoiled pBR322 DNA as compared with complex 2. The enhanced water-solubility and positive charge of complex 1 may facilitate its access to DNA and formation of hydrogen bonds with the sugar-phosphate backbone. The results indicate that carefully positioned auxiliary groups in a copper complex can significantly affect the substrate binding or activation ability and consequently the nuclease efficiency of the complex. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine

    Directory of Open Access Journals (Sweden)

    Detlev eBoison

    2016-04-01

    Full Text Available Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epileptic seizures. However, the current armamentarium of antiepileptic drugs is not effective in over 30% of patients, does not affect the comorbidities of epilepsy, and does not prevent the development and progression of epilepsy (epileptogenesis. Prevention of epilepsy and its progression remains the Holy Grail for epilepsy research and therapy development, requiring novel conceptual advances to find a solution to this urgent medical need. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In particular, global DNA hypermethylation appears to be associated with chronic epilepsy. Clinical as well as experimental evidence demonstrates that epilepsy and its progression can be prevented by biochemical manipulations and those that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This mini-review will discuss epigenetic mechanisms implicated in epileptogenesis and biochemical interactions between adenosine and glycine as a conceptual advance to understand the contribution of maladaptive changes in biochemistry as a major contributing factor to the development of epilepsy. New findings based on biochemical manipulation of the DNA methylome suggest that (i epigenetic mechanisms play a functional role in epileptogenesis, and (ii therapeutic reconstruction of the epigenome is an effective antiepileptogenic therapy.

  20. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    Full Text Available The primary gestagen of elephants is 5α-dihydroprogesterone (DHP, which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR. Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD, we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.