Cotangent bundles over all the Hermitian symmetric spaces
International Nuclear Information System (INIS)
Arai, Masato; Baba, Kurando
2016-01-01
We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)
Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics
International Nuclear Information System (INIS)
Mostafazadeh, Ali; Batal, Ahmet
2004-01-01
For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables O α of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian quantization scheme that relates the latter to the ordinary classical position and momentum observables. These allow us to address the problem of determining the conserved probability density and the underlying classical system for pseudo-Hermitian and in particular PT-symmetric quantum systems. As a concrete example we construct the Hermitian Hamiltonian h, the physical observables O α , the localized states and the conserved probability density for the non-Hermitian PT-symmetric square well. We achieve this by employing an appropriate perturbation scheme. For this system, we conduct a comprehensive study of both the kinematical and dynamical effects of the non-Hermiticity of the Hamiltonian on various physical quantities. In particular, we show that these effects are quantum mechanical in nature and diminish in the classical limit. Our results provide an objective assessment of the physical aspects of PT-symmetric quantum mechanics and clarify its relationship with both conventional quantum mechanics and classical mechanics
Representations of locally symmetric spaces
International Nuclear Information System (INIS)
Rahman, M.S.
1995-09-01
Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs
Analytical results for non-Hermitian parity–time-symmetric and ...
Indian Academy of Sciences (India)
Abstract. We investigate both the non-Hermitian parity–time-(PT-)symmetric and Hermitian asymmetric volcano potentials, and present the analytical solution in terms of the confluent Heun function. Under certain special conditions, the confluent Heun function can be terminated as a polynomial, thereby leading to certain ...
Supersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric space
International Nuclear Information System (INIS)
Arai, Masato; Baba, Kurando
2015-01-01
We construct N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the non-compact exceptional Hermitian symmetric spaces M=E 6(−14) /SO(10)×U(1) and E 7(−25) /E 6 ×U(1). In order to construct them we use the projective superspace formalism which is an N=2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N=2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N=1 superfields, once the Kähler potentials of the base manifolds are obtained. We derive the N=1 supersymmetric nonlinear sigma models on the Kähler manifolds M. Then we extend them into the N=2 supersymmetric models with the use of the result in arXiv:1211.1537 developed in the projective superspace formalism. The resultant models are the N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the Hermitian symmetric spaces M. In this work we complete constructing the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces.
Ghatak, Ananya; Das, Tanmoy
2018-01-01
Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.
Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour
International Nuclear Information System (INIS)
Mostafazadeh, Ali
2005-01-01
We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p 2 + x 2 (ix) ν with ν ε (-2, ∞) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an even integer, so that H p 2 ± x 2+ν , and give a proof of the discreteness of the spectrum of H for all ν ε (-2, ∞). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour
Various scattering properties of a new PT-symmetric non-Hermitian potential
International Nuclear Information System (INIS)
Ghatak, Ananya; Mandal, Raka Dona Ray; Mandal, Bhabani Prasad
2013-01-01
We complexify a 1-d potential V(x)=V 0 cosh 2 μ(tanh[(x−μd)/d]+tanh(μ)) 2 which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system
Various scattering properties of a new PT-symmetric non-Hermitian potential
Energy Technology Data Exchange (ETDEWEB)
Ghatak, Ananya, E-mail: gananya04@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Mandal, Raka Dona Ray, E-mail: rakad.ray@gmail.com [Department of Physics, Rajghat Besant School, Varanasi-221001 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)
2013-09-15
We complexify a 1-d potential V(x)=V{sub 0}cosh{sup 2}μ(tanh[(x−μd)/d]+tanh(μ)){sup 2} which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system.
2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to PT -symmetric matrices
International Nuclear Information System (INIS)
Gong Jiangbin; Wang Qinghai
2012-01-01
A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity–time (PT)-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Astrophysical evidence for the non-Hermitian but PT-symmetric Hamiltonian of conformal gravity
International Nuclear Information System (INIS)
Mannheim, P.D.
2013-01-01
In this review we discuss the connection between two seemingly disparate topics, macroscopic gravity on astrophysical scales and Hamiltonians that are not Hermitian but PT symmetric on microscopic ones. In particular we show that the quantum-mechanical unitarity problem of the fourth-order derivative conformal gravity theory is resolved by recognizing that the scalar product appropriate to the theory is not the Dirac norm associated with a Hermitian Hamiltonian but is instead the norm associated with a non-Hermitian but PT-symmetric Hamiltonian. Moreover, the fourth-order theory Hamiltonian is not only not Hermitian, it is not even diagonalizable, being of Jordan-block form. With PT symmetry we establish that conformal gravity is consistent at the quantum-mechanical level. In consequence, we can apply the theory to data, to find that the theory is capable of naturally accounting for the systematics of the rotation curves of a large and varied sample of 138 spiral galaxies without any need for dark matter. The success of the fits provides evidence for the relevance of non-diagonalizable but PT-symmetric Hamiltonians to physics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.
Directory of Open Access Journals (Sweden)
Jun-Qing Li
Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.
20th International Workshop on Hermitian Symmetric Spaces and Submanifolds
Ohnita, Yoshihiro; Zhou, Jiazu; Kim, Byung; Lee, Hyunjin
2017-01-01
This book presents the proceedings of the 20th International Workshop on Hermitian Symmetric Spaces and Submanifolds, which was held at the Kyungpook National University from June 21 to 25, 2016. The Workshop was supported by the Research Institute of Real and Complex Manifolds (RIRCM) and the National Research Foundation of Korea (NRF). The Organizing Committee invited 30 active geometers of differential geometry and related fields from all around the globe to discuss new developments for research in the area. These proceedings provide a detailed overview of recent topics in the field of real and complex submanifolds.
Non-hermitian symmetric N = 2 coset models, Poincare polynomials, and string compactification
International Nuclear Information System (INIS)
Fuchs, J.; Schweigert, C.
1994-01-01
The field identification problem, including fixed point resolution, is solved for the non-hermitian symmetric N = 2 superconformal coset theories. Thereby these models are finally identified as well-defined modular invariant conformal field theories. As an application, the theories are used as subtheories in N = 2 tensor products with c = 9, which in turn are taken as the inner sector of heterotic superstring compactifications. All string theories of this type are classified, and the chiral ring as well as the number of massless generations and anti-generations are computed with the help of the extended Poincare polynomial. Several equivalences between a priori different non-hermitian coset theories show up; in particular there is a level-rank duality for an infinite series of coset theories based on C-type Lie algebras. Further, some general results for generic N = 2 coset theories are proven: a simple formula for the number of identification currents is found, and it is shown that the set of Ramond ground states of any N = 2 coset model is invariant under charge conjugation. (orig.)
Symmetries and conservation laws in non-Hermitian field theories
Alexandre, Jean; Millington, Peter; Seynaeve, Dries
2017-09-01
Anti-Hermitian mass terms are considered, in addition to Hermitian ones, for P T -symmetric complex-scalar and fermionic field theories. In both cases, the Lagrangian can be written in a manifestly symmetric form in terms of the P T -conjugate variables, allowing for an unambiguous definition of the equations of motion. After discussing the resulting constraints on the consistency of the variational procedure, we show that the invariance of a non-Hermitian Lagrangian under a continuous symmetry transformation does not imply the existence of a corresponding conserved current. Conserved currents exist, but these are associated with transformations under which the Lagrangian is not invariant and which reflect the well-known interpretation of P T -symmetric theories in terms of systems with gain and loss. A formal understanding of this unusual feature of non-Hermitian theories requires a careful treatment of Noether's theorem, and we give specific examples for illustration.
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
Theory of non-hermitian localization in one dimension: Localization ...
Indian Academy of Sciences (India)
of the finite depinning field H . The degree of depinning is measured by the averaged .... system [2] shows a direct relationship between the localization length of the ... tight-binding model in a non-hermitian field h, where the discrete sites n, ..... shows that complex eigenvalues do not appear for field strengths less thanh2.
Non-Hermitian optics in atomic systems
Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-04-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.
15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics
Passante, Roberto; Trapani, Camillo
2016-01-01
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
General coupled mode theory in non-Hermitian waveguides.
Xu, Jing; Chen, Yuntian
2015-08-24
In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.
Spontaneous symmetry breaking and the Goldstone theorem in non-Hermitian field theories arXiv
Alexandre, Jean; Millington, Peter; Seynaeve, Dries
We demonstrate the extension to PT-symmetric field theories of the Goldstone theorem, confirming that the spontaneous appearance of a field vacuum expectation value via minimisation of the effective potential in a non-Hermitian model is accompanied by a massless scalar boson. Laying a basis for our analysis, we first show how the conventional quantisation of the path-integral formulation of quantum field theory can be extended consistently to a non-Hermitian model by considering PT conjugation instead of Hermitian conjugation. The extension of the Goldstone theorem to a PT-symmetric field theory is made possible by the existence of a conserved current that does not, however, correspond to a symmetry of the non-Hermitian Lagrangian. In addition to extending the proof of the Goldstone theorem to a PT-symmetric theory, we exhibit a specific example in which we verify the existence of a massless boson at the tree and one-loop levels.
Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
Qi, Bingkun; Zhang, Lingxuan; Ge, Li
2018-03-01
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
Self-hybridization within non-Hermitian localized plasmonic systems
Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu
2018-04-01
The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.
Random matrix ensembles for PT-symmetric systems
International Nuclear Information System (INIS)
Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew
2015-01-01
Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)
Pseudospectra in non-Hermitian quantum mechanics
Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.
2015-10-01
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.
Parity-Time Symmetric Photonics
Zhao, Han
2018-01-17
The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.
Chen, Yong; Yan, Zhenya
2016-03-22
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
Infinite families of (non)-Hermitian Hamiltonians associated with exceptional Xm Jacobi polynomials
International Nuclear Information System (INIS)
Midya, Bikashkali; Roy, Barnana
2013-01-01
Using an appropriate change of variable, the Schrödinger equation is transformed into a second-order differential equation satisfied by recently discovered Jacobi-type X m exceptional orthogonal polynomials. This facilitates the derivation of infinite families of exactly solvable Hermitian as well as non-Hermitian trigonometric Scarf potentials and a finite number of Hermitian and an infinite number of non-Hermitian PT-symmetric hyperbolic Scarf potentials. The bound state solutions of all these potentials are associated with the aforesaid exceptional orthogonal polynomials. These infinite families of potentials are shown to be extensions of the conventional trigonometric and hyperbolic Scarf potentials by the addition of some rational terms characterized by the presence of classical Jacobi polynomials. All the members of a particular family of these ‘rationally extended polynomial-dependent’ potentials have the same energy spectrum and possess translational shape-invariant symmetry. The obtained non-Hermitian trigonometric Scarf potentials are shown to be quasi-Hermitian in nature ensuring the reality of the associated energy spectra. (paper)
Para-Hermitian and para-quaternionic manifolds
International Nuclear Information System (INIS)
Ivanov, S.; Zamkovoy, S.
2003-10-01
A set of canonical para-Hermitian connections on an almost para-Hermitian manifold is defined. A Para-hermitian version of the Apostolov-Gauduchon generalization of the Goldberg-Sachs theorem in General Relativity is given. It is proved that the Nijenhuis tensor of a Nearly para-Kaehler manifolds is parallel with respect to the canonical connection. Salamon's twistor construction on quaternionic manifold is adapted to the para-quaternionic case. A locally conformally hyper-para-Kaehler (hypersymplectic) flat structure with parallel Lee form on the Kodaira-Thurston complex surfaces modeled on S 1 x SL (2, R)-tilde is constructed. Anti-self-dual locally conformally hyper-para-Kaehler (hypersymplectic) neutral metrics with non vanishing Weyl tensor are obtained on the Inoe surfaces. An example of anti-self-dual neutral metric which is not locally conformally hyper-para-Kaehler (hypersymplectic) is constructed. (author)
Para-Hermitian and para-quaternionic manifolds
Energy Technology Data Exchange (ETDEWEB)
Ivanov, S [University of Sofia ' St. Kl. Ohridski' , Faculty of Mathematics and Informatics, Sofia (Bulgaria) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Zamkovoy, S [University of Sofia ' St. Kl. Ohridski' , Faculty of Mathematics and Informatics, Sofia (Bulgaria)
2003-10-01
A set of canonical para-Hermitian connections on an almost para-Hermitian manifold is defined. A Para-hermitian version of the Apostolov-Gauduchon generalization of the Goldberg-Sachs theorem in General Relativity is given. It is proved that the Nijenhuis tensor of a Nearly para-Kaehler manifolds is parallel with respect to the canonical connection. Salamon's twistor construction on quaternionic manifold is adapted to the para-quaternionic case. A locally conformally hyper-para-Kaehler (hypersymplectic) flat structure with parallel Lee form on the Kodaira-Thurston complex surfaces modeled on S{sup 1} x SL (2, R)-tilde is constructed. Anti-self-dual locally conformally hyper-para-Kaehler (hypersymplectic) neutral metrics with non vanishing Weyl tensor are obtained on the Inoe surfaces. An example of anti-self-dual neutral metric which is not locally conformally hyper-para-Kaehler (hypersymplectic) is constructed. (author)
Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis
Freund, Roland W.
1991-01-01
We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Optical Lattice Design Assisted by Non-Hermitian Hamiltonians
International Nuclear Information System (INIS)
Rodríguez-Lara, B M
2016-01-01
A brief introduction to non-Hermitian arrays of coupled waveguides is presented. The PT-symmetric dimer is revisited for the sake of clarity. It belongs to the class of photonic lattices with underlying SO(2,1) symmetry that have been shown to provide all-optical conversion from phase to amplitude. (paper)
Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds
International Nuclear Information System (INIS)
Xi Zhang
2004-07-01
In this paper, we prove the long-time existence of the Hermitian-Einstein flow on a holomorphic vector bundle over a compact Hermitian (non-kaehler) manifold, and solve the Dirichlet problem for the Hermitian-Einstein equations. We also prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete noncompact Hermitian manifolds. (author)
Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.
2012-01-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the
Non-Hermitian Hamiltonians with a real spectrum and their physical ...
Indian Academy of Sciences (India)
We present an evaluation of some recent attempts to understand the role of pseudo-Hermitian and P T -symmetric Hamiltonians in modelling unitary quantum systems and elaborate on a particular physical phenomenon whose discovery originated in the study of complex scattering potentials.
Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation
Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.
2015-01-01
By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.
Faster than Hermitian Quantum Mechanics
International Nuclear Information System (INIS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.
2007-01-01
Given an initial quantum state vertical bar ψ I > and a final quantum state vertical bar ψ F >, there exist Hamiltonians H under which vertical bar ψ I > evolves into vertical bar ψ F >. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time τ? For Hermitian Hamiltonians τ has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, τ can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar ψ I > to vertical bar ψ F > can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing
Olafsson, Gestur; Helgason, Sigurdur
1996-01-01
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Dirichlet problem for Hermitian-Einstein equations over almost Hermitian manifolds
International Nuclear Information System (INIS)
Xi Zhang
2004-07-01
In this paper, we investigate the Dirichlet problem for Hermitian-Einstein equations on complex vector bundle over almost Hermitian manifolds, and we obtain the unique solubility of the Dirichlet problem for Hermitian-Einstein equations. (author)
Non-Hermitian localization in biological networks.
Amir, Ariel; Hatano, Naomichi; Nelson, David R
2016-04-01
We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.
Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 potential
International Nuclear Information System (INIS)
Jones, H.F.; Mateo, J.
2006-01-01
The potential V(x)=-x 4 , which is unbounded below on the real line, can give rise to a well-posed bound state problem when x is taken on a contour in the lower-half complex plane. It is then PT-symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum, and a proof of reality, involving the correspondence between ordinary differential equations and integrable systems, was subsequently constructed for the general class of potentials -(ix) N . For such Hamiltonians the natural PT metric is not positive definite, but a dynamically-defined positive-definite metric can be defined, depending on an operator Q. Further, with the help of this operator an equivalent Hermitian Hamiltonian h can be constructed. This programme has been carried out exactly for a few soluble models, and the first few terms of a perturbative expansion have been found for the potential m 2 x 2 +igx 3 . However, until now, the -x 4 potential has proved intractable. In the present paper we give explicit, closed form expressions for Q and h, which are made possible by a particular parametrization of the contour in the complex plane on which the problem is defined. This constitutes an explicit proof of the reality of the spectrum. The resulting equivalent Hamiltonian has a potential with a positive quartic term together with a linear term
Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere
Yu, Sunkyu; Piao, Xianji; Park, Namkyoo
2018-03-01
An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.
Sparse symmetric preconditioners for dense linear systems in electromagnetism
Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu
2004-01-01
We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
Parity-time symmetry meets photonics: A new twist in non-Hermitian optics
Longhi, Stefano
2017-12-01
In the past decade, the concept of parity-time (PT) symmetry, originally introduced in non-Hermitian extensions of quantum mechanical theories, has come into thinking of photonics, providing a fertile ground for studying, observing, and utilizing some of the peculiar aspects of PT symmetry in optics. Together with related concepts of non-Hermitian physics of open quantum systems, such as non-Hermitian degeneracies (exceptional points) and spectral singularities, PT symmetry represents one among the most fruitful ideas introduced in optics in the past few years. Judicious tailoring of optical gain and loss in integrated photonic structures has emerged as a new paradigm in shaping the flow of light in unprecedented ways, with major applications encompassing laser science and technology, optical sensing, and optical material engineering. In this perspective, I review some of the main achievements and emerging areas of PT -symmetric and non-Hermtian photonics, and provide an outline of challenges and directions for future research in one of the fastest growing research area of photonics.
Hermitian harmonic maps into convex balls
International Nuclear Information System (INIS)
Li Zhenyang; Xi Zhang
2004-07-01
In this paper, we consider Hermitian harmonic maps from Hermitian manifolds into convex balls. We prove that there exist no non-trivial Hermitian harmonic maps from closed Hermitian manifolds into convex balls, and we use the heat flow method to solve the Dirichlet problem for Hermitian harmonic maps when the domain is compact Hermitian manifold with non-empty boundary. The case where the domain manifold is complete(noncompact) is also studied. (author)
Non-Hermitian quantum mechanics and localization in physical systems
International Nuclear Information System (INIS)
Hatano, Naomichi
1998-01-01
Recent studies on a delocalization phenomenon of a non-Hermitian random system is reviewed. The complex spectrum of the system indicates delocalization transition of its eigenfunctions. It is emphasized that the delocalization is related to various physical phenomena such as flux-line pinning in superconductors and population biology of bacteria colony
New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...
Indian Academy of Sciences (India)
We start with quasi-exactly solvable (QES) Hermitian (and hence real) as well as complex P T -invariant, double sinh-Gordon potential and show that even after adding perturbation terms, the resulting potentials, in both cases, are still QES potentials. Further, by using anti-isospectral transformations, we obtain Hermitian as ...
Correlation functions for Hermitian many-body systems: Necessary conditions
International Nuclear Information System (INIS)
Brown, E.B.
1994-01-01
Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at t=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated
On the pseudo-norm in some PT-symmetric potentials
International Nuclear Information System (INIS)
Levai, G.
2005-01-01
Complete text of publication follows. PT-symmetric quantum mechanical systems possess non-hermitian Hamiltonian, still they have some characteristics similar to hermitian problems. The most notable of these is their discrete energy spectrum, which can be partly or completely real. These systems are invariant under the simultaneous action of the P space and T time inversion operations. Perhaps the simplest PT-symmetric Hamiltonian contains a one-dimensional Schroedinger operator with a complex potential satisfying the V*(-x) = V (x) relation. Another typical feature PT-symmetric systems have in common with hermitian problems is that their basis states form an orthogonal set provided that the inner product is redefined as (ψ φ)PT ≡ (ψ Pφ). However, the norm defined by this inner product, the pseudo-norm turned out to possess indefinite sign, and this raised the question of the probabilistic interpretation of PT-symmetric systems. This problem was later put into a more general context when it was found that PT symmetry is a special case of pseudo-hermiticity, and this explains most of the peculiar features of PT-symmetric systems. There have been several attempts to link PT-symmetric, and in general, pseudo- hermitian systems with equivalent hermitian ones, and the sign of the pseudo-norm was found to play an important role in this respect. It is thus essential to evaluate the pseudo- norm for various potentials, especially considering the fact that there are some inconsistencies in the available results. Numerical studies indicated that the sign of the pseudo-norm typically alternates according to the n principal quantum number as (-1) n , and this was later proven for a class of potentials that are written in a polynomial form of ix. However, some potentials of other type did not fit into this line: this was the case for the Scarf II potential, the most well-known exactly solvable PT-symmetric potential. In contrast with the other examples, this potential is
Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Semorádová, Iveta; Růžička, František; Moulla, H.; Leghrib, I.
2017-01-01
Roč. 95, č. 4 (2017), č. článku 042122. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : operators * Hilbert space * non-Hermitian Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
Extension of the CPT theorem to non-Hermitian Hamiltonians and unstable states
Energy Technology Data Exchange (ETDEWEB)
Mannheim, Philip D., E-mail: philip.mannheim@uconn.edu
2016-02-10
We extend the CPT theorem to quantum field theories with non-Hermitian Hamiltonians and unstable states. Our derivation is a quite minimal one as it requires only the time-independent evolution of scalar products, invariance under complex Lorentz transformations, and a non-standard but nonetheless perfectly legitimate interpretation of charge conjugation as an antilinear operator. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter two requirements then force this antilinear symmetry to be CPT, while forcing the Hamiltonian to be real rather than Hermitian. Our work justifies the use of the CPT theorem in establishing the equality of the lifetimes of unstable particles that are charge conjugates of each other. We show that the Euclidean time path integrals of a CPT-symmetric theory must always be real. In the quantum-mechanical limit the key results of the PT symmetry program of Bender and collaborators are recovered, with the C-operator of the PT symmetry program being identified with the linear component of the charge conjugation operator.
Self-dual geometry of generalized Hermitian surfaces
International Nuclear Information System (INIS)
Arsen'eva, O E; Kirichenko, V F
1998-01-01
Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian RK-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chen problem in this class of Hermitian surfaces
Nonlinear PT-symmetric plaquettes
International Nuclear Information System (INIS)
Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe
2012-01-01
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.
2017-12-01
We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.
WKB analysis of PT-symmetric Sturm–Liouville problems
International Nuclear Information System (INIS)
Bender, Carl M; Jones, Hugh F
2012-01-01
Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schrödinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm–Liouville problems, the eigenvalues of the PT-symmetric Sturm–Liouville problem grow like n 2 for large n. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviours of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Heralded Magnetism in Non-Hermitian Atomic Systems
Directory of Open Access Journals (Sweden)
Tony E. Lee
2014-10-01
Full Text Available Quantum phase transitions are usually studied in terms of Hermitian Hamiltonians. However, cold-atom experiments are intrinsically non-Hermitian because of spontaneous decay. Here, we show that non-Hermitian systems exhibit quantum phase transitions that are beyond the paradigm of Hermitian physics. We consider the non-Hermitian XY model, which can be implemented using three-level atoms with spontaneous decay. We exactly solve the model in one dimension and show that there is a quantum phase transition from short-range order to quasi-long-range order despite the absence of a continuous symmetry in the Hamiltonian. The ordered phase has a frustrated spin pattern. The critical exponent ν can be 1 or 1/2. Our results can be seen experimentally with trapped ions, cavity QED, and atoms in optical lattices.
Some remarks on quasi-Hermitian operators
Energy Technology Data Exchange (ETDEWEB)
Antoine, Jean-Pierre, E-mail: jean-pierre.antoine@uclouvain.be [Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Trapani, Camillo, E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123, Palermo (Italy)
2014-01-15
A quasi-Hermitian operator is an operator that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Whereas those metric operators are in general assumed to be bounded, we analyze the structure generated by unbounded metric operators in a Hilbert space. Following our previous work, we introduce several generalizations of the notion of similarity between operators. Then we explore systematically the various types of quasi-Hermitian operators, bounded or not. Finally, we discuss their application in the so-called pseudo-Hermitian quantum mechanics.
Pseudo-Hermitian continuous-time quantum walks
Energy Technology Data Exchange (ETDEWEB)
Salimi, S; Sorouri, A, E-mail: shsalimi@uok.ac.i, E-mail: a.sorouri@uok.ac.i [Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj (Iran, Islamic Republic of)
2010-07-09
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum-mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.
Non-Hermitian photonics based on parity-time symmetry
Feng, Liang; El-Ganainy, Ramy; Ge, Li
2017-12-01
Nearly one century after the birth of quantum mechanics, parity-time symmetry is revolutionizing and extending quantum theories to include a unique family of non-Hermitian Hamiltonians. While conceptually striking, experimental demonstration of parity-time symmetry remains unexplored in quantum electronic systems. The flexibility of photonics allows for creating and superposing non-Hermitian eigenstates with ease using optical gain and loss, which makes it an ideal platform to explore various non-Hermitian quantum symmetry paradigms for novel device functionalities. Such explorations that employ classical photonic platforms not only deepen our understanding of fundamental quantum physics but also facilitate technological breakthroughs for photonic applications. Research into non-Hermitian photonics therefore advances and benefits both fields simultaneously.
Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes
Energy Technology Data Exchange (ETDEWEB)
Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)
2011-10-15
We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.
Hermitian self-dual quasi-abelian codes
Directory of Open Access Journals (Sweden)
Herbert S. Palines
2017-12-01
Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.
Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog
Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh
2013-06-01
In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.
Hermitian versus anti-hermitian one-matrix models and their hierarchies
International Nuclear Information System (INIS)
Hollowood, T.; Miramontes, L.; Pasquinucci, A.; Nappi, C.
1992-01-01
Building on a recent work of C. Crnkovic, M. Douglas and G. Moore, a study of multi-critical multi-cut one-matrix models and their associated sl(2, C) integrable hierarchies, is further pursued. The double-scaling limits of hermitian matrix models with different scaling ansaetze, lead to the KdV hierarchy, to the modified KdV hierarchy and part of the non-linear Schroedinger hierarchy. Instead, the anti-hermitian matrix model, in the 2-arc sector, results in the Zakharov-Shabat hierarchy, which contains both KdV and mKdV as reductions. For all the hierarchies it is found that the Virasoro constraints act on the associated τ-functions. Whereas it is known that the ZS and KdV models lead to the Virasoro constraints of an sl(2, C) vacuum, we find that the mKdV model leads to the Virasoro constraints of a highest-weight state with arbitrary conformal dimension. (orig.)
Balanced Hermitian metrics from SU(2)-structures
International Nuclear Information System (INIS)
Fernandez, M.; Tomassini, A.; Ugarte, L.; Villacampa, R.
2009-01-01
We study the intrinsic geometrical structure of hypersurfaces in six-manifolds carrying a balanced Hermitian SU(3)-structure, which we call balanced SU(2)-structure. We provide sufficient conditions, in terms of suitable evolution equations, which imply that a five-manifold with such structure can be isometrically embedded as a hypersurface in a balanced Hermitian SU(3)-manifold. Any five-dimensional compact nilmanifold has an invariant balanced SU(2)-structure, and we show how some of them can be evolved to give new explicit examples of balanced Hermitian SU(3)-structures. Moreover, for n=3,4, we present examples of compact solvmanifolds endowed with a balanced SU(n)-structure such that the corresponding Bismut connection has holonomy equal to SU(n)
Duality property for a hermitian scalar field
International Nuclear Information System (INIS)
Bisognano, J.J.
1975-01-01
A general hermitian scalar Wightman field is considered. On the Hilbert space of physical states ''natural'' domains for certain complex Lorentz transformations are constructed, and a theorem relating these transformations to the TCP symmetry is stated and proved. Under the additional assumption that the field is ''locally'' essentially self-adjoint, duality is considered for the algebras generated by spectral projections of smeared fields. For a class of unbounded regions duality is proved, and for certain bounded regions ''local'' extensions of the algebras are constructed which satisfy duality. The relationship of the arguments presented to the Tomita--Takesaki theory of modular Hilbert algebras is discussed. A separate analysis for the free field is also given. (auth)
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-01-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941
New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...
Indian Academy of Sciences (India)
Abstract. We start with quasi-exactly solvable (QES) Hermitian (and hence real) as ... the time reversal transformation t → −t and further, one replaces i → −i. One can ..... F M Fernandez, R Guardiola, J Ros and M Znojil, J. Phys. A32, 3105 ...
Decoding Hermitian Codes with Sudan's Algorithm
DEFF Research Database (Denmark)
Høholdt, Tom; Nielsen, Rasmus Refslund
1999-01-01
We present an efficient implementation of Sudan's algorithm for list decoding Hermitian codes beyond half the minimum distance. The main ingredients are an explicit method to calculate so-called increasing zero bases, an efficient interpolation algorithm for finding the Q-polynomial, and a reduct......We present an efficient implementation of Sudan's algorithm for list decoding Hermitian codes beyond half the minimum distance. The main ingredients are an explicit method to calculate so-called increasing zero bases, an efficient interpolation algorithm for finding the Q...
Optical force rectifiers based on PT-symmetric metasurfaces
Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer
2018-05-01
We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.
Non-Hermitian spin chains with inhomogeneous coupling
Energy Technology Data Exchange (ETDEWEB)
Bytsko, Andrei G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2009-11-15
An open U{sub q}(sl{sub 2})-invariant spin chain of spin S and length N with inhomogeneous coupling is investigated as an example of a non-Hermitian (quasi-Hermitian) model. For several particular cases of such a chain, the ranges of the deformation parameter {gamma} are determined for which the spectrum of the model is real. For a certain range of {gamma}, a universal metric operator is constructed and thus the quasi-Hermiticity of the model is established. The constructed metric operator is non-dynamical, its structure is determined only by the symmetry of the model. The results apply, in particular, to all known homogeneous U{sub q}(sl{sub 2})-invariant integrable spin chains with nearest-neighbour interaction. In addition, the most general form of a metric operator for a quasi-Hermitian operator in finite dimensional space is discussed. (orig.)
Non-Hermitian Heisenberg representation
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015
Information Retrieval and Criticality in Parity-Time-Symmetric Systems.
Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito
2017-11-10
By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.
Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators
International Nuclear Information System (INIS)
Wilkie, Joshua; Wong Yinmei
2009-01-01
We use basic physical motivations to develop sufficient conditions for positive semidefiniteness of the reduced density matrix for generalized non-Markovian integrodifferential Lindblad-Kossakowski master equations with Hermitian generators. We show that it is sufficient for the memory function to be the Fourier transform of a real positive symmetric frequency density function with certain properties. These requirements are physically motivated, and are more general and more easily checked than previously stated sufficient conditions. We also explore the decoherence dynamics numerically for some simple models using the Hadamard representation of the propagator. We show that the sufficient conditions are not necessary conditions. We also show that models exist in which the long time limit is in part determined by non-Markovian effects
Moyal products-a new perspective on quasi-Hermitian quantum mechanics
International Nuclear Information System (INIS)
Scholtz, F G; Geyer, H B
2006-01-01
The rationale for introducing non-Hermitian Hamiltonians and other observables is reviewed and open issues identified. We present a new approach based on Moyal products to compute the metric for quasi-Hermitian systems. This approach is not only an efficient method of computation, but also suggests a new perspective on quasi-Hermitian quantum mechanics which invites further exploration. In particular, we present some first results which link the Berry connection and curvature to non-perturbative properties and the metric
International Nuclear Information System (INIS)
Yahiaoui, S A; Bentaiba, M
2012-01-01
In the context of the factorization method, we investigate the pseudo-Hermitian coherent states and their Hermitian counterpart coherent states under the generalized quantum condition in the framework of a position-dependent mass. By considering a specific modification in the superpotential, suitable annihilation and creation operators are constructed in order to reproduce the Hermitian counterpart Hamiltonian in the factorized form. We show that by means of these ladder operators, we can construct a wide range of exactly solvable potentials as well as their accompanying coherent states. Alternatively, we explore the relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterparts, obtained from a similarity transformation, to construct the associated pseudo-Hermitian coherent states. These latter preserve the structure of Perelomov’s states and minimize the generalized position–momentum uncertainty principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model
Yan, Zhenya
2012-11-01
The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Time-invariant PT product and phase locking in PT -symmetric lattice models
Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.
2018-01-01
Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.
Modified Hermitian treatment of Dyson boson expansion theory
International Nuclear Information System (INIS)
Kajiyama, Atsushi
2009-01-01
The Hermitian treatment of the Dyson-type boson expansion theory is reinvestigated with the aid of small-parameter expansion. A naive application of the Hermitization formula sometimes yields an unrealistic phase that spoils the conventional treatment. The complementary use of another formula having the form of the arithmetic mean can avoid that problem. This modification will improve the accuracy of the Hermitian treatment. (author)
Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic
International Nuclear Information System (INIS)
Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene
2007-01-01
We develop an iterative method for finding solutions to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas recently developed by Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on the tangent bundle and a rank three vector bundle on P 2 . In addition, we find a hermitian Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic
Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F. [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, via Musei 41, 25121 Brescia (Italy); Zhang, Y.; Kaplan, L. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States)
2014-10-15
We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.
Improved Power Decoding of One-Point Hermitian Codes
DEFF Research Database (Denmark)
Puchinger, Sven; Bouw, Irene; Rosenkilde, Johan Sebastian Heesemann
2017-01-01
We propose a new partial decoding algorithm for one-point Hermitian codes that can decode up to the same number of errors as the Guruswami–Sudan decoder. Simulations suggest that it has a similar failure probability as the latter one. The algorithm is based on a recent generalization of the power...... decoding algorithm for Reed–Solomon codes and does not require an expensive root-finding step. In addition, it promises improvements for decoding interleaved Hermitian codes....
Stationary states of a PT symmetric two-mode Bose–Einstein condensate
International Nuclear Information System (INIS)
Graefe, Eva-Maria
2012-01-01
The understanding of nonlinear PT symmetric quantum systems, arising for example in the theory of Bose–Einstein condensates in PT symmetric potentials, is widely based on numerical investigations, and little is known about generic features induced by the interplay of PT symmetry and nonlinearity. To gain deeper insights it is important to have analytically solvable toy models at hand. In the present paper the stationary states of a simple toy model of a PT symmetric system previously introduced in [1, 2] are investigated. The model can be interpreted as a simple description of a Bose–Einstein condensate in a PT symmetric double well trap in a two-mode approximation. The eigenvalues and eigenstates of the system can be explicitly calculated in a straightforward manner; the resulting structures resemble those that have recently been found numerically for a more realistic PT symmetric double delta potential. In addition, a continuation of the system is introduced that allows an interpretation in terms of a simple linear matrix model. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Quantum entropy of systems described by non-Hermitian Hamiltonians
International Nuclear Information System (INIS)
Sergi, Alessandro; Zloshchastiev, Konstantin G
2016-01-01
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)
Graph-Based Cooperative Localization Using Symmetric Measurement Equations.
Gulati, Dhiraj; Zhang, Feihu; Clarke, Daniel; Knoll, Alois
2017-06-17
Precise localization is a key requirement for the success of highly assisted or autonomous vehicles. The diminishing cost of hardware has resulted in a proliferation of the number of sensors in the environment. Cooperative localization (CL) presents itself as a feasible and effective solution for localizing the ego-vehicle and its neighboring vehicles. However, one of the major challenges to fully realize the effective use of infrastructure sensors for jointly estimating the state of a vehicle in cooperative vehicle-infrastructure localization is an effective data association. In this paper, we propose a method which implements symmetric measurement equations within factor graphs in order to overcome the data association challenge with a reduced bandwidth overhead. Simulated results demonstrate the benefits of the proposed approach in comparison with our previously proposed approach of topology factors.
Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States
Directory of Open Access Journals (Sweden)
Omar Cherbal
2010-12-01
Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.
Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
The Lp Spectrum of Locally Symmetric Spaces with Small Fundamental Group
International Nuclear Information System (INIS)
Weber, Andreas
2009-01-01
We determine the L p spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M whose universal covering X is a symmetric space of non-compact type with rank one. More precisely, we show that the L p spectra of M and X coincide if the fundamental group of M is small and if the injectivity radius of M is bounded away from zero. In the L 2 case, the restriction on the injectivity radius is not needed
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2017-01-01
Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
EXCEPTIONAL POINTS IN OPEN AND PT-SYMMETRIC SYSTEMS
Directory of Open Access Journals (Sweden)
Hichem Eleuch
2014-04-01
Full Text Available Exceptional points (EPs determine the dynamics of open quantum systems and cause also PT symmetry breaking in PT symmetric systems. From a mathematical point of view, this is caused by the fact that the phases of the wavefunctions (eigenfunctions of a non-Hermitian Hamiltonian relative to one another are not rigid when an EP is approached. The system is therefore able to align with the environment to which it is coupled and, consequently, rigorous changes of the system properties may occur. We compare analytically as well as numerically the eigenvalues and eigenfunctions of a 2 × 2 matrix that is characteristic either of open quantum systems at high level density or of PT symmetric optical lattices. In both cases, the results show clearly the influence of the environment on the system in the neighborhood of EPs. Although the systems are very different from one another, the eigenvalues and eigenfunctions indicate the same characteristic features.
Non-Hermitian Extensions of Wishart Random Matrix Ensembles
International Nuclear Information System (INIS)
Akemann, G.
2011-01-01
We briefly review the solution of three ensembles of non-Hermitian random matrices generalizing the Wishart-Laguerre (also called chiral) ensembles. These generalizations are realized as Gaussian two-matrix models, where the complex eigenvalues of the product of the two independent rectangular matrices are sought, with the matrix elements of both matrices being either real, complex or quaternion real. We also present the more general case depending on a non-Hermiticity parameter, that allows us to interpolate between the corresponding three Hermitian Wishart ensembles with real eigenvalues and the maximally non-Hermitian case. All three symmetry classes are explicitly solved for finite matrix size N x M for all complex eigenvalue correlations functions (and real or mixed correlations for real matrix elements). These are given in terms of the corresponding kernels built from orthogonal or skew-orthogonal Laguerre polynomials in the complex plane. We then present the corresponding three Bessel kernels in the complex plane in the microscopic large-N scaling limit at the origin, both at weak and strong non-Hermiticity with M - N ≥ 0 fixed. (author)
PT-symmetric model with an interplay between kinematical and dynamical non-localities
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 48, č. 19 (2015), s. 195303 ISSN 1751-8113 Institutional support: RVO:61389005 Keywords : non-Hermitian long-range interactions * closed-form constructions of bound states * physical inner products Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015
Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian
International Nuclear Information System (INIS)
Wu Zhaoyan; Yu Ting; Zhou Hongwei
1994-01-01
It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)
Admissible perturbations and false instabilities in PT -symmetric quantum systems
Znojil, Miloslav
2018-03-01
One of the most characteristic mathematical features of the PT -symmetric quantum mechanics is the explicit Hamiltonian dependence of its physical Hilbert space of states H =H (H ) . Some of the most important physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of the innovated perturbation theory to a non-Hermitian but PT -symmetric user-friendly family of J -parametric "discrete anharmonic" quantum Hamiltonians H =H (λ ⃗) is provided. The models are shown to admit the standard probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum, λ ⃗∈D(physical ) . In contradiction to conventional wisdom, the systems are then shown to be stable with respect to admissible perturbations, inside the domain D(physical ), even in the immediate vicinity of the phase-transition boundaries ∂ D(physical ) .
PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics
Fring, Andreas; Jones, Hugh; Znojil, Miloslav
2008-06-01
Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the
Asymptotic properties of solvable PT-symmetric potentials
International Nuclear Information System (INIS)
Levai, G.
2010-01-01
Compete text of publication follows. The introduction of PT-symmetric quantum mechanics generated renewed interest in non-hermitian quantum mechanical systems in the past decade. PT symmetry means the invariance of a Hamiltonian under the simultaneous P space and T time reflection, the latter understood as complex conjugation. Considering the Schroedinger equation in one dimension, this corresponds to a potential with even real and odd imaginary components. This implies a delicate balance of emissive and absorptive regions that eventually manifests itself in properties that typically characterize real potentials, i.e. hermitian systems. These include partly or fully real energy spectrum and conserved (pseudo-)norm. A particularly notable feature of these systems is the spontaneous breakdown of PT symmetry, which typically occurs when the magnitude of the imaginary potential component exceeds a certain limit. At this point the real energy eigenvalues begin to merge pairwise and re-emerge as complex conjugate pairs. Another unusual property of PT-symmetric potentials is that they can, or sometimes have to be defined off the real x axis on trajectories that are symmetric with respect to the imaginary x axis. After more than a decade of theoretical investigations a remarkable recent development was the experimental verification of the existence of PT-symmetric systems in nature and the occurrence of spontaneous PT symmetry breaking in them. The experimental setup was a waveguide containing regions where loss and gain of flux occurred in a set out prescribed by PT symmetry. These experimental developments require the study of PT -symmetric potentials with various asymptotics, in which, furthermore, the complex potential component is finite in its range and/or its magnitude. Having in mind that PT symmetry allows for a wider variety of asymptotic properties than hermeticity, we studied three exactly solvable PT-symmetric potentials and compared their scattering and bound
Higher genus correlators from the hermitian one-matrix model
International Nuclear Information System (INIS)
Ambjoern, J.; Chekhov, L.; Makeenko, Yu.
1992-01-01
We develop an iterative algorithm for the genus expansion of the hermitian NxN one-matrix model (is the Penner model in an external field). By introducing moments of the external field, we prove that the genus g contribution to the m-loop correlator depends only on 3g-2+m lower moments (3g-2 for the partition function). We present the explicit results for the partition function and the one-loop correlator in genus one. We compare the correlators for the hermitian one-matrix model with those at zero momenta for c=1 CFT and show an agreement of the one-loop correlators for genus zero. (orig.)
Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions
Valchev, T. I.
2016-02-01
We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.
Critical statistics for non-Hermitian matrices
International Nuclear Information System (INIS)
Garcia-Garcia, A.M.; Verbaarschot, J.J.M.; Nishigaki, S.M.
2002-01-01
We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical statistics: the asymptotic linear behavior of the number variance is already approached for energy differences of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an open disordered system close to an Anderson transition
Constant-intensity waves and their modulation instability in non-Hermitian potentials
Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2015-07-01
In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
Asymptotic analysis of the local potential approximation to the Wetterich equation
Bender, Carl M.; Sarkar, Sarben
2018-06-01
This paper reports a study of the nonlinear partial differential equation that arises in the local potential approximation to the Wetterich formulation of the functional renormalization group equation. A cut-off-dependent shift of the potential in this partial differential equation is performed. This shift allows a perturbative asymptotic treatment of the differential equation for large values of the infrared cut-off. To leading order in perturbation theory the differential equation becomes a heat equation, where the sign of the diffusion constant changes as the space-time dimension D passes through 2. When D 2 one obtains a backward heat equation whose initial-value problem is ill-posed. For the special case D = 1 the asymptotic series for cubic and quartic models is extrapolated to the small infrared-cut-off limit by using Padé techniques. The effective potential thus obtained from the partial differential equation is then used in a Schrödinger-equation setting to study the stability of the ground state. For cubic potentials it is found that this Padé procedure distinguishes between a -symmetric theory and a conventional Hermitian theory (g real). For an theory the effective potential is nonsingular and has a stable ground state but for a conventional theory the effective potential is singular. For a conventional Hermitian theory and a -symmetric theory (g > 0) the results are similar; the effective potentials in both cases are nonsingular and possess stable ground states.
Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification
Directory of Open Access Journals (Sweden)
Xiaofeng Xue
2016-01-01
Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.
Resolutions of Identity for Some Non-Hermitian Hamiltonians. II. Proofs
Directory of Open Access Journals (Sweden)
Andrey V. Sokolov
2011-12-01
Full Text Available This part is a continuation of the Part I where we built resolutions of identity for certain non-Hermitian Hamiltonians constructed of biorthogonal sets of their eigen- and associated functions for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration are taken with continuous spectrum and the following cases are examined: an exceptional point of arbitrary multiplicity situated on a boundary of continuous spectrum and an exceptional point situated inside of continuous spectrum. In the present work the rigorous proofs are given for the resolutions of identity in both cases.
Freund, Roland
1988-01-01
Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.
A rule of the equilibrium of forces in the Hermitian theory of relativity
International Nuclear Information System (INIS)
Antoci, S.
1987-01-01
When the behaviour of the singularities, which are used to represent masses, charges or currents in exact solutions to the field equations of the Hermitian theory of relativity, is restricted by a no-jump rule, conditions are obtained, which determine the relative positions of masses, charges and currents. Due to these conditions the Hermitian theory of relativity appears to provide a unified description of gravitational, colour and electromagnetic forces. (author)
Higher genus correlators for the hermitian matrix model with multiple cuts
International Nuclear Information System (INIS)
Akemann, G.
1996-01-01
An iterative scheme is set up for solving the loop equation of the hermitian one-matrix model with a multi-cut structure. Explicit results are presented for genus one for an arbitrary but finite number of cuts. Due to the complicated form of the boundary conditions, the loop correlators now contain elliptic integrals. This demonstrates the existence of new universality classes for the hermitian matrix model. The two-cut solution is investigated in more detail, including the double scaling limit. It is shown that in special cases it differs from the known continuum solution with one cut. (orig.)
On the subfield subcodes of Hermitian codes
DEFF Research Database (Denmark)
Pinero, Fernando; Janwa, Heeralal
2014-01-01
We present a fast algorithm using Gröbner basis to compute the dimensions of subfield subcodes of Hermitian codes. With these algorithms we are able to compute the exact values of the dimension of all subfield subcodes up to q ≤ 32 and length up to 215. We show that some of the subfield subcodes ...
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Pseudo-Hermitian quantum dynamics of tachyonic spin-1/2 particles
International Nuclear Information System (INIS)
Jentschura, U D; Wundt, B J
2012-01-01
We investigate the spinor solutions, the spectrum and the symmetry properties of a matrix-valued wave equation whose plane-wave solutions satisfy the superluminal (tachyonic) dispersion relation E 2 = p-vector 2 - m 2 , where E is the energy, p-vector is the spatial momentum and m is the mass of the particle. The equation reads (iγ μ ∂ μ − γ 5 m)ψ = 0, where γ 5 is the fifth current. The tachyonic equation is shown to be CP invariant and T invariant. The tachyonic Hamiltonian breaks parity and is non-Hermitian but fulfils the pseudo-Hermitian property H 5 ( r-vector ) = P H + 5 (- r-vector ) P -1 =P H + 5 ( r-vector ) P -1 , where P is the parity matrix and P is the full parity transformation. The energy eigenvalues and eigenvectors describe a continuous spectrum of plane-wave solutions (which correspond to real eigenvalues for | p-vector |≥m) and evanescent waves, which constitute resonances and anti-resonances with complex-conjugate pairs of resonance eigenvalues (for | p-vector | 5 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Hermitian relativity, chromodynamics and confinement
International Nuclear Information System (INIS)
Treder, H.J.
1983-01-01
The extension of the Riemann metrics of General Relativity to the complex domain (substitution of the symmetry conditions for the fundamental tensor, the affinity and the Ricci curvature by the conditions of hermicity) leads to a 'Generalized Theory of Gravity' (Einstein) describing the Newton-Einstein gravodynamics combined with the chromodynamics of quarks. The interaction of gravodynamics and chromodynamics implied by the Einstein-Schroedinger field equations of the hermitian relativity theory enforces the 'confinement'. The 'confinement' prevents the gravitational potential from divergence which would result in the lack of a Riemann space-time metric
International Nuclear Information System (INIS)
Castro-Alvaredo, Olalla A; Fring, Andreas
2009-01-01
We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry, we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turn out to be unique with the sole assumption that the Dyson map is Hermitian. Finally, we analyse the magnetization of the chain in the z- and x-direction.
Energy Technology Data Exchange (ETDEWEB)
Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
A Boundary Value Problem for Hermitian Monogenic Functions
Directory of Open Access Journals (Sweden)
Ricardo Abreu Blaya
2008-02-01
Full Text Available We study the problem of finding a Hermitian monogenic function with a given jump on a given hypersurface in Ã¢Â„Âm,Ã¢Â€Â‰m=2n. Necessary and sufficient conditions for the solvability of this problem are obtained.
Symmetrized local co-registration optimization for anomalous change detection
Energy Technology Data Exchange (ETDEWEB)
Wohlberg, Brendt E [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory
2009-01-01
The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, based on two images of the scene taken at different times and under different conditions. The actual anomalous changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of the most common and confounding of these incidental differences is due to the misregistration of the images, due to limitations of the registration pre-processing applied to the image pair. We propose a general method to compensate for residual misregistration in any ACD algorithm which constructs an estimate of the degree of 'anomalousness' for every pixel in the image pair. The method computes a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find significant performance improvements in the anomalous change detection ROC curves for a number of real and synthetic data sets.
Wu, Sangwook
2009-03-01
We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.
Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu
2018-05-01
We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.
Locally Rotationally Symmetric Bianchi Type-I Model with Time Varying Λ Term
International Nuclear Information System (INIS)
Tiwari, R. K.; Jha, Navin Kumar
2009-01-01
We investigate the locally rotationally symmetric (LRS) Bianchi type-I cosmological model for stiff matter and a vacuum solution with a cosmological term proportional to R −m (R is the scale factor and m is a positive constant). The cosmological term decreases with time. We obtain that for both the cases the present universe is accelerating with a large fraction of cosmological density in the form of a cosmological term
Toward a Strongly Interacting Scalar Higgs Particle
International Nuclear Information System (INIS)
Shalaby, Abouzeid M.; El-Houssieny, M.
2008-01-01
We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism
Some applicationS of non-Hermitian operators in quantum mechanics and quantum field theory
International Nuclear Information System (INIS)
Recami, E.; Rodrigues, W.A. Jr.; Smrz, P.
1983-01-01
Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some work done in the past in collaboration with A., Agodi, M., Baldo and V.S., Olkhovsky is here reported. Such work led to the introduction of non-Hermitian operators in (classical and relativistic) quantum theory. In particular: (i) the association of unstable states (decaying 'Resonances') with the eigenvectors of non-Hermitian hamiltonians; (ii) the problem of the four position operators for relativistic spin-zero particles are dealth with
Piecewise adiabatic following in non-Hermitian cycling
Gong, Jiangbin; Wang, Qing-hai
2018-05-01
The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.
On the Laws of Total Local Times for -Paths and Bridges of Symmetric Lévy Processes
Directory of Open Access Journals (Sweden)
Masafumi Hayashi
2013-01-01
Full Text Available The joint law of the total local times at two levels for -paths of symmetric Lévy processes is shown to admit an explicit representation in terms of the laws of the squared Bessel processes of dimensions two and zero. The law of the total local time at a single level for bridges is also discussed.
Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
Indian Academy of Sciences (India)
We discuss the relevance of random matrix theory for pseudo-Hermitian systems, and, for Hamiltonians that break parity and time-reversal invariance . In an attempt to understand the random Ising model, we present the treatment of cyclic asymmetric matrices with blocks and show that the nearest-neighbour spacing ...
Calculating the C operator in PT-symmetric quantum mechanics
International Nuclear Information System (INIS)
Bender, C.M.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT-symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory. (author)
Gupta, Samit Kumar
2018-03-01
Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.
Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
Indian Academy of Sciences (India)
Abstract. We discuss the relevance of random matrix theory for pseudo-Hermitian sys- tems, and, for Hamiltonians that break parity P and time-reversal invariance T. In an attempt to understand the random Ising model, we present the treatment of cyclic asym- metric matrices with blocks and show that the nearest-neighbour ...
Quantum centrality testing on directed graphs via P T -symmetric quantum walks
Izaac, J. A.; Wang, J. B.; Abbott, P. C.; Ma, X. S.
2017-09-01
Various quantum-walk-based algorithms have been proposed to analyze and rank the centrality of graph vertices. However, issues arise when working with directed graphs: the resulting non-Hermitian Hamiltonian leads to nonunitary dynamics, and the total probability of the quantum walker is no longer conserved. In this paper, we discuss a method for simulating directed graphs using P T -symmetric quantum walks, allowing probability-conserving nonunitary evolution. This method is equivalent to mapping the directed graph to an undirected, yet weighted, complete graph over the same vertex set, and can be extended to cover interdependent networks of directed graphs. Previous work has shown centrality measures based on the continuous-time quantum walk provide an eigenvectorlike quantum centrality; using the P T -symmetric framework, we extend these centrality algorithms to directed graphs with a significantly reduced Hilbert space compared to previous proposals. In certain cases, this centrality measure provides an advantage over classical algorithms used in network analysis, for example, by breaking vertex rank degeneracy. Finally, we perform a statistical analysis over ensembles of random graphs, and show strong agreement with the classical PageRank measure on directed acyclic graphs.
Energy Technology Data Exchange (ETDEWEB)
Narita, Makoto [Department of Mathematics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China)
2006-12-21
We discuss the strong cosmic censorship conjecture for cosmological spacetimes in the Einstein-Yang-Mills-dilaton system. Locally rotational symmetric Bianchi I spacetimes are considered. We show local and global existence theorems for the system. Asymptotic behaviour for the spacetimes is also investigated. The curvature invariant is blowup at the initial singularities and the spacetimes are future geodesic complete. Thus, the strong cosmic censorship conjecture for the spacetimes holds.
International Nuclear Information System (INIS)
Narita, Makoto
2006-01-01
We discuss the strong cosmic censorship conjecture for cosmological spacetimes in the Einstein-Yang-Mills-dilaton system. Locally rotational symmetric Bianchi I spacetimes are considered. We show local and global existence theorems for the system. Asymptotic behaviour for the spacetimes is also investigated. The curvature invariant is blowup at the initial singularities and the spacetimes are future geodesic complete. Thus, the strong cosmic censorship conjecture for the spacetimes holds
Hermitian-Einstein metrics on parabolic stable bundles
International Nuclear Information System (INIS)
Li Jiayu; Narasimhan, M.S.
1995-12-01
Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs
Locally rotationally symmetric Bianchi type I cosmology in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M.F. [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)
2015-08-15
This manuscript is devoted to the investigation of the Bianchi type I universe in the context of f(R, T) gravity. For this purpose, we explore the exact solutions of locally rotationally symmetric Bianchi type I spacetime. The modified field equations are solved by assuming an expansion scalar θ proportional to the shear scalar σ, which gives A = B{sup n}, where A, B are the metric coefficients and n is an arbitrary constant. In particular, three solutions have been found and physical quantities are calculated in each case. (orig.)
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
International Nuclear Information System (INIS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-01-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided
PT symmetric Aubry–Andre model
International Nuclear Information System (INIS)
Yuce, C.
2014-01-01
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists
PT symmetric Aubry–Andre model
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2014-06-13
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.
Parity-Time Symmetric Photonics
Zhao, Han; Feng, Liang
2018-01-01
The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy
Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
International Nuclear Information System (INIS)
Ovtchinnikov, E.E.
2008-01-01
The paper is concerned with algorithms for computing several extreme eigenpairs of Hermitian problems based on the conjugate gradient method. We analyse computational strategies employed by various algorithms of this kind reported in the literature and identify their limitations. Our criticism is illustrated by numerical tests on a set of problems from electronic structure calculations and acoustics
Exact 2-point function in Hermitian matrix model
International Nuclear Information System (INIS)
Morozov, A.; Shakirov, Sh.
2009-01-01
J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.
Hermitian-to-quasi-Hermitian quantum phase transitions
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
Roč. 97, č. 4 ( 2018 ), č. článku 042117. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum phase transition * PT-symmetric * Herimiticity Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane
Vanichchapongjaroen, Pichet
2018-02-01
We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.
Crossing rule for a PT-symmetric two-level time-periodic system
International Nuclear Information System (INIS)
Moiseyev, Nimrod
2011-01-01
For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.
The symmetric extendibility of quantum states
International Nuclear Information System (INIS)
Nowakowski, Marcin L
2016-01-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)
Inequalities among partial traces of hermitian operators and partial sums of their eigenvalues
International Nuclear Information System (INIS)
Daboul, J.
1990-01-01
Two different proofs of the following inequality are given: Tr sup(k)(H):= sup(k)Σ sub(i=1) h sub(i) :sup(k)Σ sub(i=1)(X sub(i), Hx sub(i))≥ sup(k)Σ sub(i=1)E sub(i), for k = 1,-,N, where H is a Hermitian matrix, the {X sub(i), i = 1,2-,k } are any k orthonormal vectors and the e sub(i) are the eigenvalues of H, ordered according to increasing values. This result is a generalization of the well-known fact, that ground state of a Hamiltonian is given by its lowest eigenvalue, E sub(i). It can also be regarded as a generalization, for Hermitian operators, of the invariance of the trace under unitary transformation. A few consequences of the above result are also derived. (author)
Sub-quadratic decoding of one-point hermitian codes
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter
2015-01-01
We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....
Concrete minimal 3 × 3 Hermitian matrices and some general cases
Directory of Open Access Journals (Sweden)
Klobouk Abel H.
2017-12-01
Full Text Available Given a Hermitian matrix M ∈ M3(ℂ we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ, where ║ · ║ denotes the operator norm. Moreover, we generalize our techniques to some n × n cases.
International Nuclear Information System (INIS)
Kamiya, Noriaki; Sato, Matsuo
2014-01-01
We define Hermitian (ϵ,δ)-Freudenthal-Kantor triple systems and prove a structure theorem. We also give some examples of triple systems that are generalizations of the u(N)⊕u(M) and sp(2N)⊕u(1) Hermitian 3-algebras. We apply a *-generalized Jordan triple system to a field theory and obtain a Chern-Simons gauge theory. We find that the novel Higgs mechanism works, where the Chern-Simons gauge theory reduces to a Yang-Mills theory in a certain limit
Energy Technology Data Exchange (ETDEWEB)
Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)
2009-10-15
Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant
Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction
International Nuclear Information System (INIS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory
International Nuclear Information System (INIS)
Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad
2014-01-01
We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA
A note on Hermitian-Einstein metrics on parabolic stable bundles
International Nuclear Information System (INIS)
Li Jiayu; Narasimhan, M.S.
2000-01-01
Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E' = E-vertical bar M-barbackslashD compatible with the parabolic structure, and whose curvature is square integrable. (author)
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-07-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.
A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem
Directory of Open Access Journals (Sweden)
Juraj Fosin
2013-06-01
Full Text Available The Travelling Salesman Problem (TSP is one of the most studied combinatorial optimization problem which is significant in many practical applications in transportation problems. The TSP problem is NP-hard problem and requires large computation power to be solved by the exact algorithms. In the past few years, fast development of general-purpose Graphics Processing Units (GPUs has brought huge improvement in decreasing the applications’ execution time. In this paper, we implement 2-opt and 3-opt local search operators for solving the TSP on the GPU using CUDA. The novelty presented in this paper is a new parallel iterated local search approach with 2-opt and 3-opt operators for symmetric TSP, optimized for the execution on GPUs. With our implementation large TSP problems (up to 85,900 cities can be solved using the GPU. We will show that our GPU implementation can be up to 20x faster without losing quality for all TSPlib problems as well as for our CRO TSP problem.
Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem
Raman, Aaswath
2010-02-26
We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.
Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem
Raman, Aaswath; Fan, Shanhui
2010-01-01
We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.
Solitons in PT-symmetric potential with competing nonlinearity
International Nuclear Information System (INIS)
Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine
2012-01-01
We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.
Adesso, Gerardo; Illuminati, Fabrizio
2008-10-01
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong
General operator form of the non-local three-nucleon force
Energy Technology Data Exchange (ETDEWEB)
Topolnicki, K. [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland)
2017-09-15
This paper describes a procedure to obtain the general form of the three-nucleon force. The result is an operator form where the momentum space matrix element of the three-nucleon potential is written as a linear combination of 320 isospin-spin-momentum operators and scalar functions of momenta. Any spatial and isospin rotation invariant three-nucleon force can be written in this way and in order for the potential to be Hermitian, symmetric under parity inversion, time reversal and particle exchange, the scalar functions must have definite transformation properties under these discrete operations. A complete list of the isospin-spin-momentum operators and scalar function transformation properties is given. (orig.)
Large-N limit of the two-Hermitian-matrix model by the hidden BRST method
International Nuclear Information System (INIS)
Alfaro, J.
1993-01-01
This paper discusses the large-N limit of the two-Hermitian-matrix model in zero dimensions, using the hidden Becchi-Rouet-Stora-Tyutin method. A system of integral equations previously found is solved, showing that it contained the exact solution of the model in leading order of large N
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
International Nuclear Information System (INIS)
Ndayiragije, F; Van Assche, W
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)
Factorisations for partition functions of random Hermitian matrix models
International Nuclear Information System (INIS)
Jackson, D.M.; Visentin, T.I.
1996-01-01
The partition function Z N , for Hermitian-complex matrix models can be expressed as an explicit integral over R N , where N is a positive integer. Such an integral also occurs in connection with random surfaces and models of two dimensional quantum gravity. We show that Z N can be expressed as the product of two partition functions, evaluated at translated arguments, for another model, giving an explicit connection between the two models. We also give an alternative computation of the partition function for the φ 4 -model.The approach is an algebraic one and holds for the functions regarded as formal power series in the appropriate ring. (orig.)
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...
Positive Eigenvalues of Generalized Words in Two Hermitian Positive Definite Matrices
Hillar, Christopher; Johnson, Charles R.
2005-01-01
We define a word in two positive definite (complex Hermitian) matrices $A$ and $B$ as a finite product of real powers of $A$ and $B$. The question of which words have only positive eigenvalues is addressed. This question was raised some time ago in connection with a long-standing problem in theoretical physics, and it was previously approached by the authors for words in two real positive definite matrices with positive integral exponents. A large class of words that do guarantee positive eig...
Directory of Open Access Journals (Sweden)
Hjalmar Rosengren
2006-12-01
Full Text Available We study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, for such kernels. In subsequent work, these results are applied in combinatorics (enumeration of marked shifted tableaux and number theory (representation of integers as sums of squares.
Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun
2014-06-02
Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).
Some spectral equivalences between Schroedinger operators
International Nuclear Information System (INIS)
Dunning, C; Hibberd, K E; Links, J
2008-01-01
Spectral equivalences of the quasi-exactly solvable sectors of two classes of Schroedinger operators are established, using Gaudin-type Bethe ansatz equations. In some instances the results can be extended leading to full isospectrality. In this manner we obtain equivalences between PT-symmetric problems and Hermitian problems. We also find equivalences between some classes of Hermitian operators
PT-symmetric Quantum Chain Models
Directory of Open Access Journals (Sweden)
M. Znojil
2007-01-01
Full Text Available A review is given of certain tridiagonal N-dimensional non-Hermitian J-parametric real-matrix quantum Hamiltonians H(N. The domains Ɗ(N of reality of their spectra of energies are studied, with particular attention paid to their exceptional-point boundaries ∂Ɗ(N. The strongest admissible couplings are specified in closed form for all N.
International Nuclear Information System (INIS)
Akemann, G.; Bender, M.
2010-01-01
We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.
Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators
International Nuclear Information System (INIS)
Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.
2003-01-01
By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation
PT-symmetric models in curved manifolds
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David; Siegl, Petr
2010-01-01
Roč. 43, č. 48 (2010), 485204/1-485204/30 ISSN 1751-8113 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * SCHRODINGER -TYPE OPERATORS * PSEUDO-HERMITICITY Subject RIV: BA - General Mathematics Impact factor: 1.641, year: 2010
Experiments in PT-symmetric quantum mechanics
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2004-01-01
Roč. 54, č. 1 (2004), s. 151-156 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : quantum mechanics * relativistic kinematics * non-Hermitian observables Subject RIV: BE - Theoretical Physics Impact factor: 0.292, year: 2004
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
International Nuclear Information System (INIS)
Castro, P.G.; Kullock, R.; Toppan, F.
2011-01-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
International Nuclear Information System (INIS)
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-01-01
We present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimal block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer
Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying
2012-07-30
We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.
Non-Hermitian Operator Modelling of Basic Cancer Cell Dynamics
Bagarello, Fabio; Gargano, Francesco
2018-04-01
We propose a dynamical system of tumor cells proliferation based on operatorial methods. The approach we propose is quantum-like: we use ladder and number operators to describe healthy and tumor cells birth and death, and the evolution is ruled by a non-hermitian Hamiltonian which includes, in a non reversible way, the basic biological mechanisms we consider for the system. We show that this approach is rather efficient in describing some processes of the cells. We further add some medical treatment, described by adding a suitable term in the Hamiltonian, which controls and limits the growth of tumor cells, and we propose an optimal approach to stop, and reverse, this growth.
Suo, Hao; Zhao, Xiaoqi; Zhang, Zhiyu; Shi, Rui; Wu, Yanfang; Xiang, Jinmeng; Guo, Chongfeng
2018-05-17
It is essential to simultaneously boost the luminescence intensity and thermometric sensitivity of up-converted optical thermometers towards potential biomedical sensing applications. Herein, the effects of local site symmetry on the up-conversion (UC) emission and thermal sensing ability in trigonal-phased La2O3:Er3+/Yb3+ nanospheres were qualitatively explored using cubic-phased Lu2O3 and Y2O3 with a similar shape and phonon energy as contrasts. Under 980 nm light excitation, much stronger UC emissions were detected in La2O3 samples than that in cubic Lu2O3 and Y2O3 samples, and the possible mechanisms were elaborately proposed using Eu3+ as a luminescent probe. Thermo-responsive emission intensity from 2H11/2/4S3/2 levels was monitored to evaluate the absolute sensitivity of three samples, which strongly depends on the dopant-induced local site symmetric distortions according to the Judd-Ofelt theory. The potentiality of La2O3:Er3+/Yb3+ for sub-tissue thermometry was also validated by ex vivo experiments. Results open a promising avenue for realizing highly sensitive thermometry with a large signal-to-noise ratio in sub-tissues via finely tailoring the local site symmetry.
Non-Hermitian interaction representation and its use in relativistic quantum mechanics
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2017-01-01
Roč. 385, č. 10 (2017), s. 162-179 ISSN 0003-4916 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : unitary quantum systems * non-Hermitian version of Dirac's interaction picture * complete set of time-evolution equations * application in relativistic quantum mechanics * Klein-Gordon example with space-time-dependent mass Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016
Jing, Yan-Fei; Huang, Ting-Zhu; Carpentieri, Bruno; Duan, Yong
An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerlcin discretization of surface integral equations in electromagnetics. The novel variant is naturally
International Nuclear Information System (INIS)
Redi, M.H.; Johnson, J.L.; Klasky, S.; Canik, J.; Dewar, R.L.; Cooper, W.A.
2002-01-01
The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,α,θ k ); s is the edge normalized toroidal flux, α is the field line variable, and θ k is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong 'quantum chaos'. The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G., E-mail: pgcastro@cbpf.b [Universidade Federal de Juiz de Fora (DM/ICE/UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica; Kullock, R.; Toppan, F., E-mail: ricardokl@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
Mapping between Hamiltonians with attractive and repulsive potentials on a lattice
International Nuclear Information System (INIS)
Joglekar, Yogesh N.
2010-01-01
Through a simple and exact analytical derivation, we show that for a particle on a lattice there is a one-to-one correspondence between the spectrum in the presence of an attractive potential V and its repulsive counterpart -V. For a Hermitian potential, this result implies that the number of localized states is the same in both attractive and repulsive cases although these states occur above (below) the band continuum for the repulsive (attractive) case. For a PT-symmetric potential that is odd under parity, our result implies that, in the PT-unbroken phase, the energy eigenvalues are symmetric around zero and that the corresponding eigenfunctions are closely related to each other.
International Nuclear Information System (INIS)
Kullig, Julius; Wiersig, Jan
2016-01-01
In optical microdisk cavities with boundary deformations the backscattering between clockwise and counter-clockwise propagating waves is in general asymmetric. The striking consequence of this asymmetry is that these apparently weakly open systems show pronounced non-Hermitian phenomena. The optical modes appear in non-orthogonal pairs, where both modes copropagate in a preferred sense of rotation, i.e. the modes exhibit a finite chirality. Full asymmetry in the backscattering results in a non-Hermitian degeneracy (exceptional point) where the deviation from closed system evolution is strongest. We study the effects of asymmetric backscattering in ray dynamics. For this purpose, we construct a finite approximation of the Frobenius–Perron operator for deformed microdisk cavities, which describes the dynamics of intensities in phase space. Eigenstates of the Frobenius–Perron operator show nice analogies to optical modes: they come in non-orthogonal copropagating pairs and have a finite chirality. We introduce a new cavity system with a smooth asymmetric boundary deformation where we demonstrate our results and we illustrate the main aspects with the help of a simple analytically solvable 1D model. (paper)
Projective block Lanczos algorithm for dense, Hermitian eigensystems
International Nuclear Information System (INIS)
Webster, F.; Lo, G.C.
1996-01-01
Projection operators are used to effect open-quotes deflation by restrictionclose quotes and it is argued that this is an optimal Lanczos algorithm for memory minimization. Algorithmic optimization is constrained to dense, Hermitian eigensystems where a significant number of the extreme eigenvectors must be obtained reliably and completely. The defining constraints are operator algebra without a matrix representation and semi-orthogonalization without storage of Krylov vectors. other semi-orthogonalization strategies for Lanczos algorithms and conjugate gradient techniques are evaluated within these constraints. Large scale, sparse, complex numerical experiments are performed on clusters of magnetic dipoles, a quantum many-body system that is not block-diagonalizable. Plane-wave, density functional theory of beryllium clusters provides examples of dense complex eigensystems. Use of preconditioners and spectral transformations is evaluated in a preprocessor prior to a high accuracy self-consistent field calculation. 25 refs., 3 figs., 5 tabs
Gyroscopic stabilization and indefimite damped systems
DEFF Research Database (Denmark)
Pommer, Christian
a class of feasibel skew-Hermitian matrices A depending on the choise of M. The theory can be applied to dynamical systems of the form x''(t) + ( dD + g G) x'(t) + K x(t) = 0 where G is a skew symmetric gyrocopic matrix, D is a symmetric indefinite damping matrix and K > 0 is a positive definite stiffness......An important issue is how to modify a given unstable matrix in such a way that the resulting matrix is stable. We investigate in general under which condition a matrix M+A is stable,where M is an arbitrary matrix and A is skew-Hermitian. We show that if trace(M) > 0 it is always possible to find...
Scattering in the PT-symmetric Coulomb potential
Czech Academy of Sciences Publication Activity Database
Levai, G.; Siegl, P.; Znojil, Miloslav
2009-01-01
Roč. 42, č. 29 (2009), 295201/1-295201/9 ISSN 1751-8113 R&D Projects: GA ČR GA202/07/1307; GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * QUANTUM-MECHANICS * EQUATIONS Subject RIV: BE - Theoretical Physics Impact factor: 1.577, year: 2009
International Nuclear Information System (INIS)
Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori
2013-01-01
We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)
On Some Analytic Operator Functions in the Theory of Hermitian Operators
Directory of Open Access Journals (Sweden)
Perch Melik-Adamyan
2014-01-01
Full Text Available A densely defined Hermitian operator $A_0$ with equal defect numbers is considered. Presentable by means of resolvents of a certain maximal dissipative or accumulative extensions of $A_0$, bounded linear operators acting from some defect subspace $\\mfn_\\gamma$ to arbitrary other $\\mfn_\\lambda$ are investigated. With their aid are discussed characteristic and Weyl functions. A family of Weyl functions is described, associated with a given self-adjoint extension of $A_0$. The specific property of Weyl function's factors enabled to obtain a modified formulas of von Neumann. In terms of characteristic and Weyl functions of suitably chosen extensions the resolvent of Weyl function is presented explicitly.
Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting.
Kim, Soo Jin; Kang, Ju-Hyung; Mutlu, Mehmet; Park, Joonsuk; Park, Woosung; Goodson, Kenneth E; Sinclair, Robert; Fan, Shanhui; Kik, Pieter G; Brongersma, Mark L
2018-01-22
The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass
Liu, Jian-Liang; Yu, Chengjie
2017-10-01
In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.
The Optimization on Ranks and Inertias of a Quadratic Hermitian Matrix Function and Its Applications
Directory of Open Access Journals (Sweden)
Yirong Yao
2013-01-01
Full Text Available We solve optimization problems on the ranks and inertias of the quadratic Hermitian matrix function subject to a consistent system of matrix equations and . As applications, we derive necessary and sufficient conditions for the solvability to the systems of matrix equations and matrix inequalities , and in the Löwner partial ordering to be feasible, respectively. The findings of this paper widely extend the known results in the literature.
A method to compute the inverse of a complex n-block tridiagonal quasi-hermitian matrix
International Nuclear Information System (INIS)
Godfrin, Elena
1990-01-01
This paper presents a method to compute the inverse of a complex n-block tridiagonal quasi-hermitian matrix using adequate partitions of the complete matrix. This type of matrix is very usual in quantum mechanics and, more specifically, in solid state physics (e.g., interfaces and superlattices), when the tight-binding approximation is used. The efficiency of the method is analyzed comparing the required CPU time and work-area for different usual techniques. (Author)
E2-quasi-exact solvability for non-Hermitian models
International Nuclear Information System (INIS)
Fring, Andreas
2015-01-01
We propose the notion of E 2 -quasi-exact solvability and apply this idea to find explicit solutions to the eigenvalue problem for a non-Hermitian Hamiltonian system depending on two parameters. The model considered reduces to the complex Mathieu Hamiltonian in a double scaling limit, which enables us to compute the exceptional points in the energy spectrum of the latter as a limiting process of the zeros for some algebraic equations. The coefficient functions in the quasi-exact eigenfunctions are univariate polynomials in the energy obeying a three-term recurrence relation. The latter property guarantees the existence of a linear functional such that the polynomials become orthogonal. The polynomials are shown to factorize for all levels above the quantization condition leading to vanishing norms rendering them to be weakly orthogonal. In two concrete examples we compute the explicit expressions for the Stieltjes measure. (paper)
E2-quasi-exact solvability for non-Hermitian models
Fring, Andreas
2015-04-01
We propose the notion of E2-quasi-exact solvability and apply this idea to find explicit solutions to the eigenvalue problem for a non-Hermitian Hamiltonian system depending on two parameters. The model considered reduces to the complex Mathieu Hamiltonian in a double scaling limit, which enables us to compute the exceptional points in the energy spectrum of the latter as a limiting process of the zeros for some algebraic equations. The coefficient functions in the quasi-exact eigenfunctions are univariate polynomials in the energy obeying a three-term recurrence relation. The latter property guarantees the existence of a linear functional such that the polynomials become orthogonal. The polynomials are shown to factorize for all levels above the quantization condition leading to vanishing norms rendering them to be weakly orthogonal. In two concrete examples we compute the explicit expressions for the Stieltjes measure.
Crypto-Unitary Forms of Quantum Evolution Operators
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2013-01-01
Roč. 52, č. 6 (2013), s. 2038-2045 ISSN 0020-7748 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : PT-symmetric quantum mechanics * time-dependent Schrödinger equation * manifestly time-dependent Hermitian Hamiltonians * Manifestly time-dependent Dyson maps * equivalent time-independent non-Hermitian Hamiltonians Subject RIV: BE - Theoretical Physics Impact factor: 1.188, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs10773-012-1451-9.pdf
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng
2016-01-01
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
Decays of degeneracies in PT-symmetric ring-shaped lattices
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2011-01-01
Roč. 375, č. 39 (2011), s. 3435-3441 ISSN 0375-9601 R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * quantum -mechanics * OBSERVABILITY Subject RIV: BE - Theoretical Physics Impact factor: 1.632, year: 2011
Entanglement in non-Hermitian quantum theory
Indian Academy of Sciences (India)
hope that the entanglement in PT -symmetric quantum theory may provide new ways of processing information in the quantum world. We conclude our .... Similarly, if we have a two-level atom, then an arbitrary superposition of the ground state ...
Wigner-Smith delay times and the non-Hermitian Hamiltonian for the HOCl molecule
International Nuclear Information System (INIS)
Barr, A.M.; Reichl, L.E.
2013-01-01
We construct the scattering matrix for a two-dimensional model of a Cl atom scattering from an OH dimer. We show that the scattering matrix can be written in terms of a non-Hermitian Hamiltonian whose complex energy eigenvalues can be used to compute Wigner-Smith delay times for the Cl-OH scattering process. We compute the delay times for a range of energies, and show that the scattering states with the longest delay times are strongly influenced by unstable periodic orbits in the classical dynamics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Bound states for non-symmetric evolution Schroedinger potentials
Energy Technology Data Exchange (ETDEWEB)
Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx
2001-09-14
We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)
On the remarkable spectrum of a non-Hermitian random matrix model
International Nuclear Information System (INIS)
Holz, D E; Orland, H; Zee, A
2003-01-01
A non-Hermitian random matrix model proposed a few years ago has a remarkably intricate spectrum. Various attempts have been made to understand the spectrum, but even its dimension is not known. Using the Dyson-Schmidt equation, we show that the spectrum consists of a non-denumerable set of lines in the complex plane. Each line is the support of the spectrum of a periodic Hamiltonian, obtained by the infinite repetition of any finite sequence of the disorder variables. Our approach is based on the 'theory of words'. We make a complete study of all four-letter words. The spectrum is complicated because our matrix contains everything that will ever be written in the history of the universe, including this particular paper
Symmetry breaking in the double-well hermitian matrix models
International Nuclear Information System (INIS)
Brower, R.C.; Deo, N.; Jain, S.; Tan, C.I.
1993-01-01
We study symmetry breaking in Z 2 symmetric large N matrix models. In the planar approximation for both the symmetric double-well φ 4 model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients R n and S n that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle θ(x), for each value of x=n/N 4 theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range 0≤l<∞ and a single arbitrary U(1) phase angle. (orig.)
Dynamical correlations for circular ensembles of random matrices
International Nuclear Information System (INIS)
Nagao, Taro; Forrester, Peter
2003-01-01
Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric Hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of Hermitian random matrix models
Reciprocity relation for multichannel coupling kernels
International Nuclear Information System (INIS)
Cotanch, S.R.; Satchler, G.R.
1981-01-01
Assuming time-reversal invariance of the many-body Hamiltonian, it is proven that the kernels in a general coupled-channels formulation are symmetric, to within a specified spin-dependent phase, under the interchange of channel labels and coordinates. The theorem is valid for both Hermitian and suitably chosen non-Hermitian Hamiltonians which contain complex effective interactions. While of direct practical consequence for nuclear rearrangement reactions, the reciprocity relation is also appropriate for other areas of physics which involve coupled-channels analysis
Conservation laws in baroclinic inertial-symmetric instabilities
Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder
2017-04-01
Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.
Quantum star-graph analogues of PT-symmetric square wells
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2012-01-01
Roč. 90, č. 12 (2012), s. 1287-1293 ISSN 0008-4204 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : non-Hermitian interactions * exactly solvable models * quantum graphs * equilateral q-pointed star * Robin boundary condition Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012
Symmetric imaging findings in neuroradiology
International Nuclear Information System (INIS)
Zlatareva, D.
2015-01-01
pathology of vessels. In posterior cranial fossa the findings can involve dentate nuclei as in the cases of infections, metabolic diseases or intoxication with metronidazole. In the latter case the changes are reversible. Postinfectious cerebellitis is another cause for symmetric changes which are localized in white matter. Spinal cord might be symmetrically affected in the case of ischemia, vitamin B12 and vitamin e deficiency, AIDS, cooper deficiency, Friedreich’s ataxia. Symmetric findings in neuroimaging have their specific Ct and MRI characteristics but to narrow the differential diagnosis it is necessary to look for another brain areas involvement or to combine findings with clinics and laboratory data as well as to use MR diffusion, MR spectroscopy, MR angiography or MR venography in the selected case
Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states.
Eltschka, Christopher; Siewert, Jens
2012-01-13
The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.
Fundamental length in quantum theories with PT-symmetric Hamiltonians
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2009-01-01
Roč. 80, č. 4 (2009), 045022/1-045022/20 ISSN 1550-7998 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-Hermitian Hamiltonians * anharmonic-oscillators * noncommutative space Subject RIV: BE - Theoretical Physics Impact factor: 4.922, year: 2009
Characterization of Generalized Young Measures Generated by Symmetric Gradients
De Philippis, Guido; Rindler, Filip
2017-06-01
This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.
Multiphoton ionization of H+2 at critical internuclear separations: non-Hermitian Floquet analysis
International Nuclear Information System (INIS)
Likhatov, P V; Telnov, D A
2009-01-01
We present ab initio time-dependent non-Hermitian Floquet calculations of multiphoton ionization (MPI) rates of hydrogen molecular ions subject to an intense linearly polarized monochromatic laser field with a wavelength of 800 nm. The orientation of the molecular axis is parallel to the polarization vector of the laser field. The MPI rates are computed for a wide range of internuclear separations R with high resolution in R and reproduce resonance and near-threshold structures. We show that enhancement of ionization at critical internuclear separations is related to resonance series with higher electronic states. The effect of two-centre interference on the MPI signal is discussed.
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
International Nuclear Information System (INIS)
Forrester, P.J.; Witte, N.S.
2000-01-01
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)
Photoinduced localization and decoherence in inversion symmetric molecules
Energy Technology Data Exchange (ETDEWEB)
Langer, Burkhard, E-mail: langer@gpta.de [Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany); Ueda, Kiyoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Al-Dossary, Omar M. [Physics Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Becker, Uwe [Physics Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)
2011-04-15
Coherence of particles in form of matter waves is one of the basic properties of nature which distinguishes classical from quantum behavior. This is a direct consequence of the particle-wave dualism. It is the wave-like nature, which gives rise to coherence, whereas particle-like behavior results from decoherence. If two quantum objects are coherently coupled with respect to a particular variable, even over long distances, one speaks of entanglement. The study of entanglement is nowadays one of the most exciting research fields in physics with enormous impact on the most innovative development in information technology, the development of a future quantum computer. The loss of coherence by decoherence processes may occur due to momentum kicks or thermal heating. In this paper we report on a further decoherence process which occurs in dissociating inversion symmetric molecules due to the superposition of orthogonal symmetry states in the excitation along with freezing of the electron tunneling process afterwards.
The BL-QMR algorithm for non-Hermitian linear systems with multiple right-hand sides
Energy Technology Data Exchange (ETDEWEB)
Freund, R.W. [AT& T Bell Labs., Murray Hill, NJ (United States)
1996-12-31
Many applications require the solution of multiple linear systems that have the same coefficient matrix, but differ in their right-hand sides. Instead of applying an iterative method to each of these systems individually, it is potentially much more efficient to employ a block version of the method that generates iterates for all the systems simultaneously. However, it is quite intricate to develop robust and efficient block iterative methods. In particular, a key issue in the design of block iterative methods is the need for deflation. The iterates for the different systems that are produced by a block method will, in general, converge at different stages of the block iteration. An efficient and robust block method needs to be able to detect and then deflate converged systems. Each such deflation reduces the block size, and thus the block method needs to be able to handle varying block sizes. For block Krylov-subspace methods, deflation is also crucial in order to delete linearly and almost linearly dependent vectors in the underlying block Krylov sequences. An added difficulty arises for Lanczos-type block methods for non-Hermitian systems, since they involve two different block Krylov sequences. In these methods, deflation can now occur independently in both sequences, and consequently, the block sizes in the two sequences may become different in the course of the iteration, even though they were identical at the beginning. We present a block version of Freund and Nachtigal`s quasi-minimal residual method for the solution of non-Hermitian linear systems with single right-hand sides.
Symmetrization of Facade Layouts
Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng
2016-01-01
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Nonstandard jump functions for radically symmetric shock waves
International Nuclear Information System (INIS)
Baty, Roy S.; Tucker, Don H.; Stanescu, Dan
2008-01-01
Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.
In some symmetric spaces monotonicity properties can be reduced to the cone of rearrangements
Czech Academy of Sciences Publication Activity Database
Hudzik, H.; Kaczmarek, R.; Krbec, Miroslav
2016-01-01
Roč. 90, č. 1 (2016), s. 249-261 ISSN 0001-9054 Institutional support: RVO:67985840 Keywords : symmetric spaces * K-monotone symmetric Banach spaces * strict monotonicity * lower local uniform monotonicity Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2016 http://link.springer.com/article/10.1007%2Fs00010-015-0379-6
Symmetry breaking in the double-well hermitian matrix models
Brower, R C; Jain, S; Tan, C I; Brower, Richard C.; Deo, Nevidita; Jain, Sanjay; Tan, Chung-I
1993-01-01
We study symmetry breaking in $Z_2$ symmetric large $N$ matrix models. In the planar approximation for both the symmetric double-well $\\phi^4$ model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients $R_n$ and $S_n$ that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle $\\theta(x)$, for each value of $x = n/N < 1$. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well $\\phi^4$ theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range $0 \\le l < \\infty$ and a single arbitrary $U(1)$ phase angle.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak
2018-02-19
Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.
Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth
2015-02-10
Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.
International Nuclear Information System (INIS)
Ye Min; Lu Jing; Zhang Wei; Ding Qian
2005-01-01
The present investigation deals with nonlinear dynamic behavior of a parametrically excited simply supported rectangular symmetric cross-ply laminated composite thin plate for the first time. The governing equation of motion for rectangular symmetric cross-ply laminated composite thin plate is derived by using von Karman equation. The geometric nonlinearity and nonlinear damping are included in the governing equations of motion. The Galerkin approach is used to obtain a two-degree-of-freedom nonlinear system under parametric excitation. The method of multiple scales is utilized to transform the second-order non-autonomous differential equations to the first-order averaged equations. Using numerical method, the averaged equations are analyzed to obtain the steady state bifurcation responses. The analysis of stability for steady state bifurcation responses in laminated composite thin plate is also given. Under certain conditions laminated composite thin plate may have two or multiple steady state bifurcation solutions. Jumping phenomenon occurs in the steady state bifurcation solutions. The chaotic motions of rectangular symmetric cross-ply laminated composite thin plate are also found by using numerical simulation. The results obtained here demonstrate that the periodic, quasi-periodic and chaotic motions coexist for a parametrically excited fore-edge simply supported rectangular symmetric cross-ply laminated composite thin plate under certain conditions
Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms
Efendiev, Yalchin; Galvis, Juan; Lazarov, Raytcho; Willems, Joerg
2012-01-01
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into "local" subspaces and a global "coarse" space is developed. Particular applications of this abstract
The complex Laguerre symplectic ensemble of non-Hermitian matrices
International Nuclear Information System (INIS)
Akemann, G.
2005-01-01
We solve the complex extension of the chiral Gaussian symplectic ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correlation functions of complex eigenvalues are given in terms of the corresponding skew orthogonal polynomials in the complex plane for finite-N, where N is the matrix size or number of eigenvalues, respectively. We also allow for an arbitrary number of complex conjugate pairs of characteristic polynomials in the weight function, corresponding to massive quark flavours in applications to field theory. Explicit expressions are given in the large-N limit at both weak and strong non-Hermiticity for the weight of the Gaussian two-matrix model. This model can be mapped to the complex Dirac operator spectrum with non-vanishing chemical potential. It belongs to the symmetry class of either the adjoint representation or two colours in the fundamental representation using staggered lattice fermions
Non-Hermitian multi-particle systems from complex root spaces
International Nuclear Information System (INIS)
Fring, Andreas; Smith, Monique
2012-01-01
We provide a general construction procedure for antilinearly invariant complex root spaces. The proposed method is generic and may be applied to any Weyl group allowing us to take any element of the group as a starting point for the construction. Worked-out examples for several specific Weyl groups are presented, focusing especially on those cases for which no solutions were found previously. When applied to the defining relations of models based on root systems, this usually leads to non-Hermitian models, which are nonetheless physically viable in a self-consistent sense as they are antilinearly invariant by construction. We discuss new types of Calogero models based on these complex roots. In addition, we propose an alternative construction leading to q-deformed roots. We employ the latter type of roots to formulate a new version of affine Toda field theories based on non-simply laced root systems. These models exhibit on the classical level a strong–weak duality in the coupling constant equivalent to a Lie algebraic duality, which is known for the quantum version of the undeformed case. (paper)
Remote unambiguous discrimination of linearly independent symmetric d-level quantum states
International Nuclear Information System (INIS)
Chen Libing; Liu Yuhua; Tan Peng; Lu Hong
2009-01-01
A set of linearly independent nonorthogonal symmetric d-level quantum states can be discriminated remotely and unambiguously with the aid of two-level Einstein-Podolsky-Rosen (EPR) states. We present a scheme for such a kind of remote unambiguous quantum state discrimination (UD). The probability of discrimination is in agreement with the optimal probability for local unambiguous discrimination among d symmetric states (Chefles and Barnettt 1998 Phys. Lett. A 250 223). This scheme consists of a remote generalized measurement described by a positive operator valued measurement (POVM). This remote POVM can be realized by performing a nonlocal 2d x 2d unitary operation on two spatially separated systems, one is the qudit which is encoded by one of the d symmetric nonorthogonal states to be distinguished and the other is an ancillary qubit, and a conventional local von Neumann orthogonal measurement on the ancilla. By decomposing the evolution process from the initial state to the final state, we construct a quantum network for realizing the remote POVM with a set of two-level nonlocal controlled-rotation gates, and thus provide a feasible physical means to realize the remote UD. A two-level nonlocal controlled-rotation gate can be implemented by using a two-level EPR pair in addition to local operations and classical communications (LOCCs)
Analytical results for non-Hermitian parity–time-symmetric and ...
Indian Academy of Sciences (India)
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current ... Please take note of this change.
Solvable PT-symmetric model with a tunable interspersion of nonmerging levels
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2005-01-01
Roč. 46, č. 6 (2005), 062109 ISSN 0022-2488 R&D Projects: GA AV ČR(CZ) IAA1048302 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-Hermitian Hamiltonians * quantum-mechanics * square-well Subject RIV: BE - Theoretical Physics Impact factor: 1.192, year: 2005
Directory of Open Access Journals (Sweden)
Giuseppe Dattoli
1996-05-01
Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.
Directory of Open Access Journals (Sweden)
Carlos A Bustamante Chaverra
2013-03-01
Full Text Available Un método sin malla es desarrollado para solucionar una versión genérica de la ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Local Hermítica (LHI es empleado para la discretización espacial, y diferentes estrategias son implementadas para solucionar el sistema de ecuaciones no lineales resultante, entre estas iteración de Picard, método de Newton-Raphson y el Método de Homotopía truncado (HAM. En el método LHI las Funciones de Base Radial (RBFs son empleadas para construir una función de interpolación. A diferencia del Método de Kansa, el LHI es aplicado localmente y los operadores diferenciales de las condiciones de frontera y la ecuación gobernante son utilizados para construir la función de interpolación, obteniéndose una matriz de colocación simétrica. El método de Newton-Rapshon se implementa con matriz Jacobiana analítica y numérica, y las derivadas de la ecuación gobernante con respecto al paramétro de homotopía son obtenidas analíticamente. El esquema numérico es veriﬁcado mediante la comparación de resultados con las soluciones analíticas de las ecuaciones de Burgers en una dimensión y Richards en dos dimensiones. Similares resultados son obtenidos para todos los solucionadores que se probaron, pero mejores ratas de convergencia son logradas con el método de Newton-Raphson en doble iteración.A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diﬀusion-reaction equation in two-dim-ensional domains. The Local Hermitian Interpolation (LHI method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM. The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs
International Nuclear Information System (INIS)
Smith, A.E.; Josefsson, T.W.
1994-01-01
An extension to include general inelastic scattering effects is developed for the case of reflection electron diffraction scattering from surfaces. In this extension of work by Lynch and Moodie, it is shown how the resultant non-Hermitian matrix problem can be recast in a form that is suitable for computation. In particular, a computational method is outlined based on techniques developed by Eberlein for matrix diagonalisation using complex rotations and shears. The resultant methods are applied to the problem of Convergent Beam RHEED. 23 refs., 3 figs
On Born's deformed reciprocal complex gravitational theory and noncommutative gravity
International Nuclear Information System (INIS)
Castro, Carlos
2008-01-01
Born's reciprocal relativity in flat spacetimes is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved spacetimes and construct a deformed Born reciprocal general relativity theory in curved spacetimes (without the need to introduce star products) as a local gauge theory of the deformed Quaplectic group that is given by the semi-direct product of U(1,3) with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative generators [Z a ,Z b ]≠0. The Hermitian metric is complex-valued with symmetric and nonsymmetric components and there are two different complex-valued Hermitian Ricci tensors R μν ,S μν . The deformed Born's reciprocal gravitational action linear in the Ricci scalars R,S with Torsion-squared terms and BF terms is presented. The plausible interpretation of Z μ =E μ a Z a as noncommuting p-brane background complex spacetime coordinates is discussed in the conclusion, where E μ a is the complex vielbein associated with the Hermitian metric G μν =g (μν) +ig [μν] =E μ a E-bar ν b η ab . This could be one of the underlying reasons why string-theory involves gravity
International Nuclear Information System (INIS)
Savin, Dmitry V.; Sokolov, Valentin V.; Sommers, Hans-Juergen
2003-01-01
We examine the notion and properties of the non-Hermitian effective Hamiltonian of an unstable system using as an example potential resonance scattering with a fixed angular momentum. We present a consistent self-adjoint formulation of the problem of scattering on a finite-range potential, which is based on the separation of the configuration space into two segments, internal and external. The scattering amplitude is expressed in terms of the resolvent of a non-Hermitian operator H. The explicit form of this operator depends on both the radius of separation and the boundary conditions at this place, which can be chosen in many different ways. We discuss this freedom and show explicitly that the physical scattering amplitude is, nevertheless, unique, although not all choices are equally adequate from the physical point of view. The energy-dependent operator H should not be confused with the non-Hermitian effective Hamiltonian H eff which is usually exploited to describe interference of overlapping resonances. We note that the simple Breit-Wigner approximation is as a rule valid for any individual resonance in the case of few-channel scattering on a flat billiardlike cavity, leaving no room for nontrivial H eff to appear. The physics is appreciably richer in the case of an open chain of L connected similar cavities whose spectrum has a band structure. For a fixed band of L overlapping resonances, the smooth energy dependence of H can be ignored so that the constant LxL submatrix H eff approximately describes the time evolution of the chain in the energy domain of the band and the complex eigenvalues of H eff define the energies and widths of the resonances. We apply the developed formalism to the problem of a chain of L δ barriers, whose solution is also found independently in a closed form. We construct H eff for the two commonly considered types of boundary conditions (Neumann and Dirichlet) for the internal motion. Although the final results are in perfect
A Generalized Family of Discrete PT-symmetric Square Wells
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Wu, J. D.
2013-01-01
Roč. 52, č. 6 (2013), s. 2152-2162 ISSN 0020-7748 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : quantum mechanics * discrete lattices * non-Hermitian Hamiltonians * Hilbert-space metrics * solvable models Subject RIV: BE - Theoretical Physics Impact factor: 1.188, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs10773-013-1525-3.pdf
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
Bilaterally symmetric Fourier approximations of the skull outlines of ...
Indian Academy of Sciences (India)
Present work illustrates a scheme of quantitative description of the shape of the skull outlines of temnospondyl amphibians using bilaterally symmetric closed Fourier curves. Some special points have been identified on the Fourier fits of the skull outlines, which are the local maxima, or minima of the distances from the ...
Superfield Lax formalism of supersymmetric sigma model on symmetric spaces
International Nuclear Information System (INIS)
Saleem, U.; Hassan, M.
2006-01-01
We present a superfield Lax formalism of the superspace sigma model based on the target space G/H and show that a one-parameter family of flat superfield connections exists if the target space G/H is a symmetric space. The formalism has been related to the existence of an infinite family of local and non-local superfield conserved quantities. A few examples have been given to illustrate the results. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Myhr, Geir Ove
2010-11-08
Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the
International Nuclear Information System (INIS)
Myhr, Geir Ove
2010-01-01
Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the
Symmetric Logic Synthesis with Phase Assignment
Benschop, N. F.
2001-01-01
Decomposition of any Boolean Function BF_n of n binary inputs into an optimal inverter coupled network of Symmetric Boolean functions SF_k (k \\leq n) is described. Each SF component is implemented by Threshold Logic Cells, forming a complete and compact T-Cell Library. Optimal phase assignment of input polarities maximizes local symmetries. The "rank spectrum" is a new BF_n description independent of input ordering, obtained by mapping its minterms onto an othogonal n \\times n grid of (transi...
Isomorphism and the #betta#-function of the non-linear sigma model in symmetric spaces
International Nuclear Information System (INIS)
Hikami, S.
1983-01-01
The renormalization group #betta#-function of the non-linear sigma model in symmetric spaces is discussed via the isomorphic relation and the reciprocal relation about a parameter α. The four-loop term is investigated and the symmetric properties of the #betta#-function are studied. The four-loop term in the #betta#-function is shown to be vanishing for the orthogonal Anderson localization problem. (orig.)
Strong orientational coordinates and orientational order parameters for symmetric objects
International Nuclear Information System (INIS)
Haji-Akbari, Amir; Glotzer, Sharon C
2015-01-01
Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)
The problem of electric sources in Einstein's Hermite-symmetric field theory
International Nuclear Information System (INIS)
Kreisel, E.
1986-01-01
The possibility is investigated to introduce a geometric source without A-invariance and Hermite-symmetry breaking of Einstein's Hermitian relativity. It would be very meaningful to interpret a source of this kind as electric current. With this extension Einstein's unitary field theory contains Einstein's gravitation, electromagnetism and the gluonic vacuum of chromodynamics. (author)
PT Symmetry and QCD: Finite Temperature and Density
Directory of Open Access Journals (Sweden)
Michael C. Ogilvie
2009-04-01
Full Text Available The relevance of PT symmetry to quantum chromodynamics (QCD, the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations.
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
Symmetric vectors and algebraic classification
International Nuclear Information System (INIS)
Leibowitz, E.
1980-01-01
The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed
Topological matter, integrable models and fusion rings
International Nuclear Information System (INIS)
Nemeschansky, D.; Warner, N.P.
1992-01-01
We show how topological G k /G k models can be embedded into the topological matter models that are obtained by perturbing the twisted N = 2 supersymmetric, hermitian symmetric, coset models. In particular, this leads to an embedding of the fusion ring of G as a sub-ring of the perturbed, chiral primary ring. The perturbation of the twisted N = 2 model that leads to the fusion ring is also shown to lead to an integrable N = 2 supersymmetric field theory when the untwisted N = 2 superconformal field theory is perturbed by the same operator and its hermitian conjugate. (orig.)
Scattering theory using smeared non-Hermitian potentials
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2009-01-01
Roč. 80, č. 4 (2009), 045009/1-045009/12 ISSN 1550-7998 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : symmetric quantum-mechanics * pseudo-hermiticity * real spectrum Subject RIV: BE - Theoretical Physics Impact factor: 4.922, year: 2009
Unidirectional reflectionless light propagation at exceptional points
Directory of Open Access Journals (Sweden)
Huang Yin
2017-05-01
Full Text Available In this paper, we provide a comprehensive review of unidirectional reflectionless light propagation in photonic devices at exceptional points (EPs. EPs, which are branch point singularities of the spectrum, associated with the coalescence of both eigenvalues and corresponding eigenstates, lead to interesting phenomena, such as level repulsion and crossing, bifurcation, chaos, and phase transitions in open quantum systems described by non-Hermitian Hamiltonians. Recently, it was shown that judiciously designed photonic synthetic matters could mimic the complex non-Hermitian Hamiltonians in quantum mechanics and realize unidirectional reflection at optical EPs. Unidirectional reflectionlessness is of great interest for optical invisibility. Achieving unidirectional reflectionless light propagation could also be potentially important for developing optical devices, such as optical network analyzers. Here, we discuss unidirectional reflectionlessness at EPs in both parity-time (PT-symmetric and non-PT-symmetric optical systems. We also provide an outlook on possible future directions in this field.
The area distribution of two-dimensional random walks and non-Hermitian Hofstadter quantum mechanics
International Nuclear Information System (INIS)
Matveenko, Sergey; Ouvry, Stéphane
2014-01-01
When random walks on a square lattice are biased horizontally to move solely to the right, the probability distribution of their algebraic area can be obtained exactly (Mashkevich and Ouvry 2009 J. Stat. Phys. 137 71). We explicitly map this biased classical random system onto a non-Hermitian Hofstadter-like quantum model where a charged particle on a square lattice coupled to a perpendicular magnetic field hops only to the right. For the commensurate case, when the magnetic flux per unit cell is rational, an exact solution of the quantum model is obtained. The periodicity of the lattice allows one to relate traces of the Nth power of the Hamiltonian to probability distribution generating functions of biased walks of length N. (paper)
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
Mass generation for Abelian spin-1 particles via a symmetric tensor
International Nuclear Information System (INIS)
Dalmazi, D.; Mendonça, E.L.
2012-01-01
In the topologically massive BF model (TMBF) the photon becomes massive via coupling to an antisymmetric tensor, without breaking the U(1) gauge symmetry. There is no need of a Higgs field. The TMBF model is dual to a first-order (in derivatives) formulation of the Maxwell-Proca theory where the antisymmetric field plays the role of an auxiliary field. Since the Maxwell-Proca theory also admits a first-order version which makes use of an auxiliary symmetric tensor, we investigate here a possible generalization of the TMBF model where the photon acquires mass via coupling to a symmetric tensor. We show that it is indeed possible to build up dual models to the Maxwell-Proca theory where the U(1) gauge symmetry is manifest without Higgs field, but after a local field redefinition the vector field eats up the trace of the symmetric tensor and becomes massive. So the explicit U(1) symmetry can be removed unlike the TMBF model.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Energy Technology Data Exchange (ETDEWEB)
Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)
2016-04-21
We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians
International Nuclear Information System (INIS)
Graefe, Eva-Maria; Schubert, Roman
2012-01-01
The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
International Nuclear Information System (INIS)
Cheng, Yi-Xin
1992-01-01
The Schwinger-Dyson loop equations for the hermitian multi-matrix chain models at finite N, are derived from the Ward identities of the partition functional under the infinitesimal field transformations. The constraint operators W n (m) satisfy the w 1+∞ -like algebra up to a linear combination of the lower spin operators. We find that the all the higher spin constraints are reducible to the Virasoro-type constraints for all the matrix chain models. (author)
Symmetric extendibility of quantum states
Nowakowski, Marcin L.
2015-01-01
Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...
International Nuclear Information System (INIS)
Matsuki, Takayuki
1976-01-01
Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)
On symmetric structures of order two
Directory of Open Access Journals (Sweden)
Michel Bousquet
2008-04-01
Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.
Davoudi, Alireza; Shiry Ghidary, Saeed; Sadatnejad, Khadijeh
2017-06-01
Objective. In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner. Approach. The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples. Main results. We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique—leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data. Significance. The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.
Ebrahimi, R.; Zohren, S.
2018-03-01
In this paper we extend the orthogonal polynomials approach for extreme value calculations of Hermitian random matrices, developed by Nadal and Majumdar (J. Stat. Mech. P04001 arXiv:1102.0738), to normal random matrices and 2D Coulomb gases in general. Firstly, we show that this approach provides an alternative derivation of results in the literature. More precisely, we show convergence of the rescaled eigenvalue with largest modulus of a normal Gaussian ensemble to a Gumbel distribution, as well as universality for an arbitrary radially symmetric potential. Secondly, it is shown that this approach can be generalised to obtain convergence of the eigenvalue with smallest modulus and its universality for ring distributions. Most interestingly, the here presented techniques are used to compute all slowly varying finite N correction of the above distributions, which is important for practical applications, given the slow convergence. Another interesting aspect of this work is the fact that we can use standard techniques from Hermitian random matrices to obtain the extreme value statistics of non-Hermitian random matrices resembling the large N expansion used in context of the double scaling limit of Hermitian matrix models in string theory.
Maximal couplings in PT-symmetric chain models with the real spectrum of energies
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2007-01-01
Roč. 40, č. 18 (2007), s. 4863-4875 ISSN 1751-8113 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-hermitian hamiltonians * quantum -mechanics * expectional points Subject RIV: BE - Theoretical Physics Impact factor: 1.680, year: 2007
Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2009-01-01
Roč. 50, č. 12 (2009), 122105/1-122105/19 ISSN 0022-2488 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : bound states * Hermitian matrices * Hilbert spaces Subject RIV: BE - Theoretical Physics Impact factor: 1.318, year: 2009
Integrals of motion in the many-body localized phase
Directory of Open Access Journals (Sweden)
V. Ros
2015-02-01
Full Text Available We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.
Mesotherapy for benign symmetric lipomatosis.
Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku
2010-04-01
Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Geyer, HB.
2007-01-01
Roč. 649, 5-6 (2007), s. 494-494 ISSN 0370-2693 R&D Projects: GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : metrics * quasi-Hermitian * charge Subject RIV: BE - Theoretical Physics Impact factor: 4.189, year: 2007
PT-symmetric planar devices for field transformation and imaging
International Nuclear Information System (INIS)
Valagiannopoulos, C A; Monticone, F; Alù, A
2016-01-01
The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)
On the Ext algebras of parabolic Verma modules and A infinity-structures
DEFF Research Database (Denmark)
Klamt, Angela; Stroppel, Catharina
2012-01-01
We study the Ext-algebra of the direct sum of all parabolic Verma modules in the principal block of the Bernstein–Gelfand–Gelfand category O for the Hermitian symmetric pair (gln+m,gln¿glm) and present the corresponding quiver with relations for the cases n=1,2. The Kazhdan–Lusztig combinatorics ...
Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States
Chen, Li-Bing; Lu, Hong
2018-03-01
Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
Energy Technology Data Exchange (ETDEWEB)
David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi
2008-01-01
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.
Multiparty symmetric sum types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Generalized continuity equations from two-field Schrödinger Lagrangians
Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.
2016-11-01
A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.
Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups
DEFF Research Database (Denmark)
Hilgert, Joachim; Kobayashi, Toshiyuki; Möllers, Jan
2012-01-01
For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g......_C=k_C+p_C is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal-Bargmann transform which...... intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function....
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1985-01-01
Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV
Lee, Myoung-Jae; Jung, Young-Dae
2018-05-01
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.
Localized thermonuclear runaways and volcanoes on degenerate dwarf stars
Energy Technology Data Exchange (ETDEWEB)
Shara, M.M.
1982-10-15
Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2003-01-01
Roč. 36, č. 28 (2003), s. 7825-7838 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : non-Hermitian Hamiltonians * quantum-mechanics Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003
International Nuclear Information System (INIS)
Ramond, P.
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2008-01-01
Roč. 41, č. 24 (2008), 244027/1-244027/16 ISSN 1751-8113 R&D Projects: GA ČR GA202/07/1307; GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : SYMMETRIC QUANTUM -MECHANICS * NON-HERMITIAN HAMILTONIANS * REAL ENERGY-SPECTRA Subject RIV: BE - Theoretical Physics Impact factor: 1.540, year: 2008
Probabilistic cloning of three symmetric states
International Nuclear Information System (INIS)
Jimenez, O.; Bergou, J.; Delgado, A.
2010-01-01
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Classically integrable boundary conditions for symmetric-space sigma models
International Nuclear Information System (INIS)
MacKay, N.J.; Young, C.A.S.
2004-01-01
We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model
A symmetrical rail accelerator
International Nuclear Information System (INIS)
Igenbergs, E.
1991-01-01
This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator
Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader
2018-06-01
We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Characteristic function-based semiparametric inference for skew-symmetric models
Potgieter, Cornelis J.
2012-12-26
Skew-symmetric models offer a very flexible class of distributions for modelling data. These distributions can also be viewed as selection models for the symmetric component of the specified skew-symmetric distribution. The estimation of the location and scale parameters corresponding to the symmetric component is considered here, with the symmetric component known. Emphasis is placed on using the empirical characteristic function to estimate these parameters. This is made possible by an invariance property of the skew-symmetric family of distributions, namely that even transformations of random variables that are skew-symmetric have a distribution only depending on the symmetric density. A distance metric between the real components of the empirical and true characteristic functions is minimized to obtain the estimators. The method is semiparametric, in that the symmetric component is specified, but the skewing function is assumed unknown. Furthermore, the methodology is extended to hypothesis testing. Two tests for a hypothesis of specific parameter values are considered, as well as a test for the hypothesis that the symmetric component has a specific parametric form. A resampling algorithm is described for practical implementation of these tests. The outcomes of various numerical experiments are presented. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
Nachtigal, Noel M.
1991-01-01
The Lanczos algorithm can be used both for eigenvalue problems and to solve linear systems. However, when applied to non-Hermitian matrices, the classical Lanczos algorithm is susceptible to breakdowns and potential instabilities. In addition, the biconjugate gradient (BCG) algorithm, which is the natural generalization of the conjugate gradient algorithm to non-Hermitian linear systems, has a second source of breakdowns, independent of the Lanczos breakdowns. Here, we present two new results. We propose an implementation of a look-ahead variant of the Lanczos algorithm which overcomes the breakdowns by skipping over those steps where a breakdown or a near-breakdown would occur. The new algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products per step as the classical Lanczos algorithm without look-ahead. Based on the proposed look-ahead Lanczos algorithm, we then present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which avoids the second source of breakdowns in the BCG algorithm. We present details of the new method and discuss some of its properties. In particular, we discuss the relationship between QMR and BCG, showing how one can recover the BCG iterates, when they exist, from the QMR iterates. We also present convergence results for QMR, showing the connection between QMR and the generalized minimal residual (GMRES) algorithm, the optimal method in this class of methods. Finally, we give some numerical examples, both for eigenvalue computations and for non-Hermitian linear systems.
Symmetric metamaterials based on flower-shaped structure
International Nuclear Information System (INIS)
Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.
2013-01-01
We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave
Lovelock black holes with maximally symmetric horizons
Energy Technology Data Exchange (ETDEWEB)
Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)
2011-08-21
We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
International Nuclear Information System (INIS)
Goldscheider, H.G.; Lischewski, R.; Claus, D.; Streibl, W.; Waiblinger, G.; Ulm Univ., Schwendi/Dietenbronn; Ulm Univ.
1980-01-01
Symmetrical calcification of the basal ganglia was found in 2 promille of 8000 computerized tomography (CT) scans. Of 19 cases, only 2 were detectable on conventional skull films. The less prominent calcifications were most often found in the region of the pallidum, the knee of the internal capsule. Also, the lesions were generally symmetrical. Thus these factors must be considered basic morphological characteristics of the pathophysiological process. Additional neurological disorders were present in 6 patients. Neurological symptoms in the remaining 13, when present, depended on the extent of the lesion. The most common finding was tremor, although disturbances of fine motor control, transient lateralizing signs, and seizures were also noted. No particular constellation of symptoms or signs permitted accurate clinical localization of the lesions. (orig./AJ) [de
Symmetric low-voltage powering system for relativistic electronic devices
International Nuclear Information System (INIS)
Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.
2005-01-01
A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver
Linac design algorithm with symmetric segments
International Nuclear Information System (INIS)
Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.
1996-01-01
The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design
Comprehensive asynchronous symmetric rendezvous algorithm in ...
Indian Academy of Sciences (India)
Meenu Chawla
2017-11-10
Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King
2013-04-01
Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.
Relativistic quantum Darwinism in Dirac fermion and graphene systems
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
Quantum Dialogue by Using Non-Symmetric Quantum Channel
International Nuclear Information System (INIS)
Zhan Youbang; Zhang Lingling; Zhang Qunyong; Wang Yuwu
2010-01-01
A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of transmission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping. (general)
Looking for symmetric Bell inequalities
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
On isotropic cylindrically symmetric stellar models
International Nuclear Information System (INIS)
Nolan, Brien C; Nolan, Louise V
2004-01-01
We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model
Geometric inequalities for axially symmetric black holes
International Nuclear Information System (INIS)
Dain, Sergio
2012-01-01
A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)
Quantum Strategies and Local Operations
Gutoski, Gus
2010-02-01
This thesis is divided into two parts. In Part I we introduce a new formalism for quantum strategies, which specify the actions of one party in any multi-party interaction involving the exchange of multiple quantum messages among the parties. This formalism associates with each strategy a single positive semidefinite operator acting only upon the tensor product of the input and output message spaces for the strategy. We establish three fundamental properties of this new representation for quantum strategies and we list several applications, including a quantum version of von Neumann's celebrated 1928 Min-Max Theorem for zero-sum games and an efficient algorithm for computing the value of such a game. In Part II we establish several properties of a class of quantum operations that can be implemented locally with shared quantum entanglement or classical randomness. In particular, we establish the existence of a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. The existence of this ball is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. We also provide characterizations of local operations in terms of linear functionals that are positive and "completely" positive on a certain cone of Hermitian operators, under a natural notion of complete positivity appropriate to that cone. We end the thesis with a discussion of the properties of no-signaling quantum operations.
On the harmonic starlike functions with respect to symmetric ...
African Journals Online (AJOL)
In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Performance limitations of translationally symmetric nonimaging devices
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Minimal local Lagrangians for higher-spin geometry
International Nuclear Information System (INIS)
Francia, Dario; Sagnotti, Augusto
2005-01-01
The Fronsdal Lagrangians for free totally symmetric rank-s tensors φ μ 1 ...μ s rest on suitable trace constraints for their gauge parameters and gauge fields. Only when these constraints are removed, however, the resulting equations reflect the expected free higher-spin geometry. We show that geometric equations, in both their local and non-local forms, can be simply recovered from local Lagrangians with only two additional fields, a rank-(s-3) compensator α μ 1 ...μ s-3 and a rank-(s-4) Lagrange multiplier β μ 1 ...μ s-4 . In a similar fashion, we show that geometric equations for unconstrained rank-n totally symmetric spinor-tensors ψ μ 1 ...μ n can be simply recovered from local Lagrangians with only two additional spinor-tensors, a rank-(n-2) compensator ξ μ 1 ...μ n-2 and a rank-(n-3) Lagrange multiplier λ μ 1 ...μ n-3
Symmetric Imidazolium-Based Paramagnetic Ionic Liquids
2017-11-29
Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.
2008-02-01
The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.
Brito, Irene; Mena, Filipe C
2017-08-01
We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.
Filtering microfluidic bubble trains at a symmetric junction.
Parthiban, Pravien; Khan, Saif A
2012-02-07
We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.
Entangling capabilities of symmetric two-qubit gates
Indian Academy of Sciences (India)
Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.
Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory
International Nuclear Information System (INIS)
Delice, Oezguer
2006-01-01
The static cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
Quasiaxially symmetric stellarators with three field periods
International Nuclear Information System (INIS)
Garabedian, P.; Ku, L.
1999-01-01
Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics
A cascaded three-phase symmetrical multistage voltage multiplier
International Nuclear Information System (INIS)
Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G
2006-01-01
A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM
Energy Technology Data Exchange (ETDEWEB)
Burda, Zdzislaw, E-mail: zdzislaw.burda@agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, PL-30059 Kraków (Poland); Grela, Jacek, E-mail: jacekgrela@gmail.com [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland); Nowak, Maciej A., E-mail: nowak@th.if.uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland); Tarnowski, Wojciech, E-mail: wojciech.tarnowski@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland)
2015-08-15
Following our recent letter, we study in detail an entry-wise diffusion of non-hermitian complex matrices. We obtain an exact partial differential equation (valid for any matrix size N and arbitrary initial conditions) for evolution of the averaged extended characteristic polynomial. The logarithm of this polynomial has an interpretation of a potential which generates a Burgers dynamics in quaternionic space. The dynamics of the ensemble in the large N limit is completely determined by the coevolution of the spectral density and a certain eigenvector correlation function. This coevolution is best visible in an electrostatic potential of a quaternionic argument built of two complex variables, the first of which governs standard spectral properties while the second unravels the hidden dynamics of eigenvector correlation function. We obtain general formulas for the spectral density and the eigenvector correlation function for large N and for any initial conditions. We exemplify our studies by solving three examples, and we verify the analytic form of our solutions with numerical simulations.
Centrioles in Symmetric Spaces
Quast, Peter
2011-01-01
We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Synthesis & Characterization of New bis-Symmetrical Adipoyl ...
African Journals Online (AJOL)
Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...
Looking for symmetric Bell inequalities
Energy Technology Data Exchange (ETDEWEB)
Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)
2010-09-24
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Looking for symmetric Bell inequalities
International Nuclear Information System (INIS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Diagrams for symmetric product orbifolds
International Nuclear Information System (INIS)
Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.
2009-01-01
We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.
The Axially Symmetric One-Monopole
International Nuclear Information System (INIS)
Wong, K.-M.; Teh, Rosy
2009-01-01
We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.
Commutative curvature operators over four-dimensional generalized symmetric
Directory of Open Access Journals (Sweden)
Ali Haji-Badali
2014-12-01
Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.
Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young
2015-09-01
This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.
Morse, David C; Chung, Jun Kyung
2009-06-14
The self-consistent field (SCF) approach to the thermodynamics of dense polymer liquids is based on the idea that short-range correlations in a polymer liquid are almost independent of how monomers are connected into polymers over larger scales. Some limits of this idea are explored in the context of a perturbation theory for symmetric polymer blends. We consider mixtures of two structurally identical polymers, A and B, in which the AB monomer pair interaction differs slightly from the AA and BB interactions by an amount proportional to a parameter alpha. An expansion of the free energy to first order in alpha yields an excess free energy of mixing per monomer of the form alphaz(N)phi(A)phi(B) in both lattice and continuum models, where z(N) is a measure of the number of intermolecular near neighbors per monomer in a one-component (alpha=0) reference liquid with chains of length N. The quantity z(N) decreases slightly with increasing N because the concentration of intramolecular near neighbors is slightly higher for longer chains, creating a slightly deeper intermolecular correlation hole. We predict that z(N)=z(infinity)[1+betaN(-1/2)], where N is an invariant degree of polymerization and beta=(6/pi)(3/2) is a universal coefficient. This and related predictions about the slight N dependence of local correlations are confirmed by comparison to simulations of a continuum bead-spring model and to published lattice Monte Carlo simulations. We show that a renormalized one-loop theory for blends correctly describes this N dependence of local liquid structure. We also propose a way to estimate the effective interaction parameter appropriate for comparisons of simulation data to SCF theory and to coarse-grained theories of corrections to SCF theory, which is based on an extrapolation of perturbation theory to the limit N-->infinity.
Crossing-symmetric solutions to low equations
International Nuclear Information System (INIS)
McLeod, R.J.; Ernst, D.J.
1985-01-01
Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)
Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine
2018-05-01
Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.
Radon transformation on reductive symmetric spaces:Support theorems
DEFF Research Database (Denmark)
Kuit, Job Jacob
2013-01-01
We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....
Axially symmetric Lorentzian wormholes in general relativity
International Nuclear Information System (INIS)
Schein, F.
1997-11-01
The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)
Young—Capelli symmetrizers in superalgebras†
Brini, Andrea; Teolis, Antonio G. B.
1989-01-01
Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1984-01-01
Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics
Radon transformation on reductive symmetric spaces: support theorems
Kuit, J.J.|info:eu-repo/dai/nl/313872589
2011-01-01
In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.
Decomposition of a symmetric second-order tensor
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
Crossing symmetric solution of the Chew-Low equation
International Nuclear Information System (INIS)
McLeod, R.J.; Ernst, D.J.
1982-01-01
An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)
Symmetric webs, Jones-Wenzl recursions and q-Howe duality
DEFF Research Database (Denmark)
Rose, David; Tubbenhauer, Daniel
We define and study the category of symmetric sl2-webs. This category is a combinatorial description of the category of all finite dimensional quantum sl2-modules. Explicitly, we show that (the additive closure of) the symmetric sl2-spider is (braided monoidally) equivalent to the latter. Our mai...... tool is a quantum version of symmetric Howe duality. As a corollary of our construction, we provide new insight into Jones-Wenzl projectors and the colored Jones polynomials....
Entropy generation in natural convection in a symmetrically and uniformly heated vertical channel
Energy Technology Data Exchange (ETDEWEB)
Andreozzi, Assunta [Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Auletta, Antonio [CIRA - Centro Italiano Ricerche Aerospaziali, Via Maiorise 1, 81043 Capua (CE) (Italy); Manca, Oronzio [Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Universita degli Studi di Napoli, Real Casa dell' Annunziata, Via Roma 29, 81031 Aversa (CE) (Italy)
2006-08-15
In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 10{sup 3}=
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.
Resonance fluorescence microscopy via three-dimensional atom localization
Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar
2018-02-01
A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.
Motions of galaxies in the neighborhood of the local group
International Nuclear Information System (INIS)
Faber, S.M.; Burstein, D.
1988-01-01
Two samples of spiral galaxies, as well as elliptical galaxies, are presently used to investigate the velocity field of galaxies relative to the cosmic microwave background to a distance of 3000 km/sec. The velocity-field models optimized include motions due to a spherically-symmetric Great Attractor, a Virgocentric flow, and a Local Anomally of which the Local Group is a part. While the spiral samples are in good agreement with the Great-Attractor-Virgo model for the motion of elliptical galaxies, new observations indicate that the Great Attractor is not spherically symmetric in its inner regions and may require modification of the model. 27 refs
Parallel coupling of symmetric and asymmetric exclusion processes
International Nuclear Information System (INIS)
Tsekouras, K; Kolomeisky, A B
2008-01-01
A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins
Confining but chirally symmetric dense and cold matter
International Nuclear Information System (INIS)
Glozman, L. Ya.
2012-01-01
The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.
Globally conformal invariant gauge field theory with rational correlation functions
Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.
2003-01-01
Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.
Color symmetrical superconductivity in a schematic nuclear quark model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; da Providencia, J.
2010-01-01
In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...
Geometric characteristics of aberrations of plane-symmetric optical systems
International Nuclear Information System (INIS)
Lu Lijun; Deng Zhiyong
2009-01-01
The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
Gravitational theory with the local quadratic Lagrangian
International Nuclear Information System (INIS)
Tentyukov, M.N.
1992-01-01
It is suggested that the vacuum gravitational equations should be derived from the local Lagrangian containing only first-order derivatives. As an example we demonstrate the properties of the derived equations by studying of the exact spherically-symmetric solutions. 23 refs
International Nuclear Information System (INIS)
Popov, Alexander D.
2010-01-01
We consider the Hermitian Yang-Mills (HYM) equations for gauge potentials on a complex vector bundle E over an almost complex manifold X 6 which is the twistor space of an oriented Riemannian manifold M 4 . Each solution of the HYM equations on such X 6 defines a pseudo-holomorphic structure on the bundle E. It is shown that the pull-back to X 6 of any anti-self-dual gauge field on M 4 is a solution of the HYM equations on X 6 . This correspondence allows us to introduce new twistor actions for bosonic and supersymmetric Yang-Mills theories. As examples of X 6 we consider homogeneous nearly Kaehler and nearly Calabi-Yau manifolds which are twistor spaces of S 4 , CP 2 and B 4 , CB 2 (real 4-ball and complex 2-ball), respectively. Various explicit examples of solutions to the HYM equations on these spaces are provided. Applications in flux compactifications of heterotic strings are briefly discussed.
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Distributed Searchable Symmetric Encryption
Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Rings with involution whose symmetric elements are central
Directory of Open Access Journals (Sweden)
Taw Pin Lim
1980-01-01
Full Text Available In a ring R with involution whose symmetric elements S are central, the skew-symmetric elements K form a Lie algebra over the commutative ring S. The classification of such rings which are 2-torsion free is equivalent to the classification of Lie algebras K over S equipped with a bilinear form f that is symmetric, invariant and satisfies [[x,y],z]=f(y,zx−f(z,xy. If S is a field of char ≠2, f≠0 and dimK>1 then K is a semisimple Lie algebra if and only if f is nondegenerate. Moreover, the derived algebra K′ is either the pure quaternions over S or a direct sum of mutually orthogonal abelian Lie ideals of dim≤2.
Optomechanically induced absorption in parity-time-symmetric optomechanical systems
Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.
2017-06-01
We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.
All-optical symmetric ternary logic gate
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Symmetric spaces and the Kashiwara-Vergne method
Rouvière, François
2014-01-01
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's or...
Helically symmetric experiment, (HSX) goals, design and status
International Nuclear Information System (INIS)
Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.
1995-01-01
HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab
Acoustic metamaterials: From local resonances to broad horizons
Ma, Guancong; Sheng, Ping
2016-01-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692
Acoustic metamaterials: From local resonances to broad horizons.
Ma, Guancong; Sheng, Ping
2016-02-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.
Localized lesions in secondary syphillis
International Nuclear Information System (INIS)
Rasid, N.; Syphilis, S.
2008-01-01
The clinical manifestations of secondary syphilis are variable and can mimic many skin diseases, mostly being generalized and symmetrical in distribution. Localized lesions of secondary syphilis are rarely seen in dermatology clinics. We report an unusual presentation wherein a patient had localized lesions over face and soles only. There is a need for increased awareness on the part of physicians to recognize new patterns of syphilitic infection, together with a willingness to consider the diagnosis of syphilis in patients with unusual clinical features. (author)
Symmetric coupling of four spin-1/2 systems
Suzuki, Jun; Englert, Berthold-Georg
2012-06-01
We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Symmetricity analysis of time to peak parameter of indocyanine green dynamics
An, Yuri; Lee, Jungsul; Choi, Chulhee
2013-03-01
We have previously discovered that near-infrared optical imaging of indocyanine green (ICG) signal and analyzing its dynamics can be applied for measurement of blood perfusion rate and detection of Raynaud's phenomenon (RP). Especially, RP is closely associated with abnormal vasomotor responses and can progress to tissue necrosis due to excessively sustained vasoconstriction. Therefore, early detecting of RP is one of important implication to prevent tissue damage from peripheral vascular disorders. In the present study, we propose new analysis and scoring method of symmetricity of Tmax value of left and right extremities. Moreover, this symmetricity analysis can give further information about microvascular insufficiency. For validation of the proposed method, we tested whether the segmental and paired analysis of Tmax value (time-to-peak) of ICG dynamics can be used for sensitive diagnosis of microvascular abnormalities which cannot be detected by conventional methods. From the near-infrared images of diabetes mellitus patients with vascular complications, the trend of asymmetry in Tmax value was observed. We assumed that decreasing local blood perfusion by autonomic nerve dysfunction causes the asymmetric Tmax value of right and left feet. These results collectively indicate that the proposed method can be used as a useful diagnostic tool for RP or other microvascular disorders.
Kinetic-energy distribution for symmetric fission of 236U
International Nuclear Information System (INIS)
Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.
1980-01-01
Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)
International Nuclear Information System (INIS)
Bender, Carl M; Mannheim, Philip D
2008-01-01
The Pais-Uhlenbeck model is a quantum theory described by a higher-derivative field equation. It has been believed for many years that this model possesses ghost states (quantum states of negative norm) and therefore that this model is a physically unacceptable quantum theory. The existence of such ghost states was believed to be attributable to the field equation having more than two derivatives. This paper shows that the Pais-Uhlenbeck model does not possess any ghost states at all and that it is a perfectly acceptable quantum theory. The supposed ghost states in this model arise if the Hamiltonian of the model is (incorrectly) treated as being Dirac Hermitian (invariant under combined matrix transposition and complex conjugation). However, the Hamiltonian is not Dirac Hermitian, but rather it is PT symmetric. When it is quantized correctly according to the rules of PT quantum mechanics, the energy spectrum is real and bounded below and all of the quantum states have positive norm
Strings from position-dependent noncommutativity
International Nuclear Information System (INIS)
Fring, Andreas; Gouba, Laure; Scholtz, Frederik G
2010-01-01
We introduce a new set of noncommutative spacetime commutation relations in two space dimensions. The space-space commutation relations are deformations of the standard flat noncommutative spacetime relations taken here to have position-dependent structure constants. Some of the new variables are non-Hermitian in the most natural choice. We construct their Hermitian counterparts by means of a Dyson map, which also serves to introduce a new metric operator. We propose PT-like symmetries, i.e. antilinear involutory maps, respected by these deformations. We compute minimal lengths and momenta arising in this space from generalized versions of Heisenberg's uncertainty relations and find that any object in this two-dimensional space is string like, i.e. having a fundamental length in one direction beyond which a resolution is impossible. Subsequently, we formulate and partly solve some simple models in these new variables, the free particle, its PT-symmetric deformations and the harmonic oscillator.
Exceptional Points and Dynamical Phase Transitions
Directory of Open Access Journals (Sweden)
I. Rotter
2010-01-01
Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
Symmetric group representations and Z
Adve, Anshul; Yong, Alexander
2017-01-01
We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
An integral conservative gridding--algorithm using Hermitian curve interpolation.
Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K
2008-11-07
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to
An integral conservative gridding-algorithm using Hermitian curve interpolation
International Nuclear Information System (INIS)
Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K
2008-01-01
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to
Hypercyclic operators on algebra of symmetric snalytic functions on $\\ell_p$
Directory of Open Access Journals (Sweden)
Z. H. Mozhyrovska
2016-06-01
Full Text Available In the paper, it is proposed a method of construction of hypercyclic composition operators on $H(\\mathbb{C}^n$ using polynomial automorphisms of $\\mathbb{C}^n$ and symmetric analytic functions on $\\ell_p.$ In particular, we show that an ``symmetric translation'' operator is hypercyclic on a Frechet algebra of symmetric entire functions on $\\ell_p$ which are bounded on bounded subsets.
Two new eigenvalue localization sets for tensors and theirs applications
Directory of Open Access Journals (Sweden)
Zhao Jianxing
2017-10-01
Full Text Available A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Qi (J. Symbolic Comput., 2005, 40, 1302-1324 and Li et al. (Numer. Linear Algebra Appl., 2014, 21, 39-50. As an application, a weaker checkable sufficient condition for the positive (semi-definiteness of an even-order real symmetric tensor is obtained. Meanwhile, an S-type E-eigenvalue localization set for tensors is given and proved to be tighter than that presented by Wang et al. (Discrete Cont. Dyn.-B, 2017, 22(1, 187-198. As an application, an S-type upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.
A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...
African Journals Online (AJOL)
In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
International Nuclear Information System (INIS)
Toppan, Francesco
2004-06-01
Relying upon the division-algebra classification of Clifford algebras and spinors, a classification of generalized supersymmetries (or, with a slight abuse of language, 'generalized super translations') is provided. In each given space-time the maximal, saturated, generalized supersymmetry, compatible with the division-algebra constraint that can be consistently imposed on spinors and on superalgebra generators, is furnished. Constraining the superalgebra generators in both the complex and the quaternionic cases gives rise to the two classes of constrained hermitian and holomorphic generalized supersymmetries. In the complex case these two classes of generalized supersymmetries can be regarded as complementary. The quaternionic holomorphic supersymmetry only exists in certain space-time dimensions and can admit at most a single bosonic scalar central charge. The results here presented pave the way for a better understanding of the various M algebra-type of structures which can be introduced in different space-time signatures and in association with different division algebras, as well as their mutual relations. In a previous work, e.g., the introduction of a complex holomorphic generalized supersymmetry was shown to be necessary in order to perform the analytic continuation of the standard M-theory to the 11-dimensional Euclidean space. As an application of the present results, it is shown that the above algebra also admits a 12-dimensional, Euclidean, F-algebra presentation. (author)
Dehghan, Mehdi; Hajarian, Masoud
2012-08-01
A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.
From a world-sheet supersymmetry to the Dirac equation
International Nuclear Information System (INIS)
Mankoc Borstnik, N.
1991-10-01
Starting from a classical action for a point particle with a local world-sheet supersymmetry, the Dirac equation follows with operators α-vector, β-vector γ-vector being defined in the Grassmann space as differential operators and having all the properties of the corresponding Dirac matrices except that α-vector and β-vector are anti-Hermitian rather than Hermitian. Such a particle interacts with an external field as expected. (author). 7 refs
Directory of Open Access Journals (Sweden)
Joong-Han Yoon
2013-01-01
Full Text Available A triple-band rectangular ring, open-ended monopole antenna with symmetric L strips for wireless local area network (WLAN/Worldwide Interoperability of Microwave Access (WiMAX applications is proposed. The proposed antenna consists of two symmetric folded arms and L strips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.
Symmetric Pin Diversion Detection using a Partial Defect Detector (PDET)
International Nuclear Information System (INIS)
Sitaraman, S.; Ham, Y.S.
2009-01-01
Since the signature from the Partial Defect Detector (PDET) is principally dependent on the geometric layout of the guide tube locations, the capability of the technique in detecting symmetric diversion of pins needs to be determined. The Monte Carlo simulation study consisted of cases where pins were removed in a symmetric manner and the resulting signatures were examined. In addition to the normalized gamma-to-neutron ratios, the neutron and gamma signatures normalized to their maximum values, were also examined. Examination of the shape of the three curves as well as of the peak-to-valley differences in excess of the maximum expected in intact assemblies, indicated pin diversion. A set of simulations with various symmetric patterns of diversion were examined. The results from these studies indicated that symmetric diversions as low as twelve percent could be detected by this methodology
Stability of transparent spherically symmetric thin shells and wormholes
International Nuclear Information System (INIS)
Ishak, Mustapha; Lake, Kayll
2002-01-01
The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations
Multiple symmetrical lipomatosis (Madelung's disease) - a case report
International Nuclear Information System (INIS)
Vieira, Marcelo Vasconcelos; Abreu, Marcelo de; Furtado, Claudia Dietz; Silveira, Marcio Fleck da; Furtado, Alvaro Porto Alegre; Genro, Carlos Horacio; Grazziotin, Rossano Ughini
2001-01-01
Multiple symmetrical lipomatosis (Madelung's disease) is a rare disorder characterized by deep accumulation of fat tissue, involving mainly the neck, shoulders and chest. This disease is associated with heavy alcohol intake and it is more common in men of Mediterranean origin. This disease can cause severe aesthetic deformities and progressive respiratory dysfunction. We report a case of a patient with multiple symmetrical lipomatosis and describe the clinical and radiological features of this disorder. (author)
Duality, phase structures, and dilemmas in symmetric quantum games
International Nuclear Information System (INIS)
Ichikawa, Tsubasa; Tsutsui, Izumi
2007-01-01
Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided
Karro, J E; Peifer, M; Hardison, R C; Kollmann, M; von Grünberg, H H
2008-02-01
The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.
Launching transverse-electric Localized Waves from a circular waveguide
Salem, Mohamed; Niver, Edip
2011-01-01
Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes
Energy localization in maximally entangled two- and three-qubit phase space
International Nuclear Information System (INIS)
Pashaev, Oktay K; Gurkan, Zeynep N
2012-01-01
Motivated by the Möbius transformation for symmetric points under the generalized circle in the complex plane, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. In terms of these states, we construct the maximally entangled complete set of two-qubit coherent states, which in the limiting cases reduces to the Bell basis. A specific property of our symmetric coherent states is that they never become unentangled for any value of ψ from the complex plane. Entanglement quantifications of our states are given by the reduced density matrix and the concurrence determinant, and it is shown that our basis is maximally entangled. Universal one- and two-qubit gates in these new coherent state basis are calculated. As an application, we find the Q symbol of the XY Z model Hamiltonian operator H as an average energy function in maximally entangled two- and three-qubit phase space. It shows regular finite-energy localized structure with specific local extremum points. The concurrence and fidelity of quantum evolution with dimerization of double periodic patterns are given. (paper)
Anomalous real spectra of non-Hermitian quantum graphs in a strong-coupling regime
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2010-01-01
Roč. 43, č. 33 (2010), 335303/1-335303/14 ISSN 1751-8113 R&D Projects: GA ČR GA202/07/1307; GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : SYMMETRIC HAMILTONIANS * SPONTANEOUS BREAKDOWN * PERTURBATION-THEORY Subject RIV: BE - Theoretical Physics Impact factor: 1.641, year: 2010
Symmetric Key Authentication Services Revisited
Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.
2004-01-01
Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area
Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry
Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping
2018-05-01
We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.
Symmetric nuclear matter with Skyrme interaction
International Nuclear Information System (INIS)
Manisa, K.; Bicer, A.; Atav, U.
2010-01-01
The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.
Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.
Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng
2016-02-24
A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Is the Universe matter-antimatter symmetric
International Nuclear Information System (INIS)
Alfven, H.
1976-09-01
According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation
Multiple Symmetric Lipomatosis: A Review of 3 Cases
Directory of Open Access Journals (Sweden)
Emilio Mevio
2012-01-01
Full Text Available Multiple symmetrical lipomatosis, or Madelung's disease, is a rare disease of unknown etiology. It is characterized by the presence of loose adipose tissue deposits localized in the cervical region and in the upper body. The neoformations grow slowly and their initial consequence is purely esthetic. They can, however, lead to compression of the laryngotacheal area and of the esophagus. This disease usually affects middle-aged males from the Mediterranean area with a history of alcohol abuse. Although most cases have been sporadic, a few authors have indicated that the disorder may be hereditary. It is thought that this pathology originates from an alteration in lipid metabolism. Since the patients were asymptomatic temperance and diet was proposed, surgical removal of the lipomatose mass is the treatment of choice in case of complications due to fat mass compression on upper aerodigestive tract. The authors present three cases of Madelung's disease with different and particular manifestations.
FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE
SIERKSMA, G; TIJSSEN, GA
This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M.
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
The symmetric longest queue system
van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan
1997-01-01
We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue
International Nuclear Information System (INIS)
Kar, Susmita; Bhattacharyya, S.P.
2011-01-01
Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.
Overlap-free symmetric D 0 Lwords
Directory of Open Access Journals (Sweden)
Anna Frid
2001-12-01
Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.
Flat synchronizations in spherically symmetric space-times
International Nuclear Information System (INIS)
Herrero, Alicia; Morales-Lladosa, Juan Antonio
2010-01-01
It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.
Introduction to left-right symmetric models
International Nuclear Information System (INIS)
Grimus, W.
1993-01-01
We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)
Positive projections of symmetric matrices and Jordan algebras
DEFF Research Database (Denmark)
Fuglede, Bent; Jensen, Søren Tolver
2013-01-01
An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....
Nilpotent orbits in real symmetric pairs and stationary black holes
Energy Technology Data Exchange (ETDEWEB)
Dietrich, Heiko [School of Mathematical Sciences, Monash University, VIC (Australia); De Graaf, Willem A. [Department of Mathematics, University of Trento, Povo (Italy); Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Sezione di Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino (Italy)
2017-02-15
In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL{sub 2}(R)){sup 4} acting on the fourth tensor power of the natural 2-dimensional SL{sub 2}(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nilpotent orbits in real symmetric pairs and stationary black holes
International Nuclear Information System (INIS)
Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario
2017-01-01
In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Symmetrical parahiliar infiltrated, cough and dyspnoea
International Nuclear Information System (INIS)
Giraldo Estrada, Horacio; Escalante, Hector
2004-01-01
It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated
Quaternionic Kaehler and hyperkaehler manifolds with torsion and twistor spaces
International Nuclear Information System (INIS)
Ivanov, Stefan; Minchev, Ivan
2001-12-01
The target space of a (4,0) supersymmetric two-dimensional sigma model with Wess-Zumino term has a connection with totally skew-symmetric torsion and holonomy contained in Sp(n)Sp(l) (resp. Sp(n)), QKT (resp. HKT)-spaces. We study the geometry of QKT, HKT manifold and their twistor spaces. We show that the Swann bundle of a QKT manifold admits a HKT structure with special symmetry if and only if the twistor space of the QKT manifold admits an almost hermitian structure with totally skew-symmetric Nijenhuis tensor, thus connecting two structures arising from quantum field theories and supersymmetric sigma models with Wess- Zumino term. We discovered that a HKT manifold has always co-closed Lee form. Applying this property to compact HKT manifold we get information about the plurigenera. (author)
Quantum jumps on Anderson attractors
Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.
2018-01-01
In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.
Exploring plane-symmetric solutions in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)
2016-02-15
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.
Integrability and symmetric spaces. II- The coset spaces
International Nuclear Information System (INIS)
Ferreira, L.A.
1987-01-01
It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt
Some curvature properties of quarter symmetric metric connections
International Nuclear Information System (INIS)
Rastogi, S.C.
1986-08-01
A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)
Color-symmetric superconductivity in a phenomenological QCD model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; Providencia, J. da
2009-01-01
In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?
Directory of Open Access Journals (Sweden)
Leili Shahriyari
Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David; Siegl, Petr; Železný, Jakub
2014-01-01
Roč. 8, č. 1 (2014), s. 255-281 ISSN 1661-8254 R&D Projects: GA MŠk LC06002; GA MŠk LC527; GA ČR GAP203/11/0701 Grant - others:GA ČR(CZ) GD202/08/H072 Institutional support: RVO:61389005 Keywords : Sturm-Liouville operators * non-symmetric Robin boundary conditions * similarity to normal or self-adjoint operators * discrete spectral operator * complex symmetric operator * PT-symmetry * metric operator * C operator * Hilbert- Schmidt operators Subject RIV: BE - Theoretical Physics Impact factor: 0.545, year: 2014
Ferromagnetically coupled local moments along an extended line defect in graphene
White, Carter T.; Vasudevan, Smitha; Gunlycke, Daniel
2011-03-01
Recently an extended line defect was observed composed of octagonal and pentagonal carbon rings embedded in a graphene sheet [Nat. Nanotech. 5, 326 (2010)]. We report results of studies we have made of this defect using both first-principles and semi-empirical methods. Two types of boundary-localized states arising from the defect are identified. The first (second) type has eigenstates with wavefunctions that are anti- symmetric (symmetric) with respect to a mirror plane that is perpendicular to the graphene sheet and passes through the line defect center line. The boundary-localized anti-symmetric states are shown to be intimately connected to the zigzag edge states of semi-infinite graphene. They exhibit little dispersion along the defect line and lie close to the Fermi level giving rise to a spontaneous spin polarization along the defect once electron-electron interactions are included at the level of a mean field approximation to a Hubbard Model. Within this approach, symmetry requires that the principal moments couple ferromagnetically both along and across the line defect leading to approximately 2/3 more up than down spin electrons per defect repeat unit. This work was supported by ONR, directly and through NRL.
Introduction to orthogonal, symplectic and unitary representations of finite groups
Riehm, Carl R
2011-01-01
Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea
Classifying spaces of degenerating polarized Hodge structures
Kato, Kazuya
2009-01-01
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem
Solution of Schroedinger Equation for Two-Dimensional Complex Quartic Potentials
International Nuclear Information System (INIS)
Singh, Ram Mehar; Chand, Fakir; Mishra, S. C.
2009-01-01
We investigate the quasi-exact solutions of the Schroedinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x 1 + ip 3 , y = x 2 + ip 4 , p x = p 1 + ix 3 , p y = p 2 + ix 4 . Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetric one, are also worked out. (general)
Photon Propagation through Linearly Active Dimers
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2017-06-01
Full Text Available We provide an analytic propagator for non-Hermitian dimers showing linear gain or losses in the quantum regime. In particular, we focus on experimentally feasible realizations of the PT -symmetric dimer and provide their mean photon number and second order two-point correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon spatially-entangled states. We show that each configuration produces a particular signature that might signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially entangled sources to mention a few possible applications.
Energy Technology Data Exchange (ETDEWEB)
Faryad, Muhammad, E-mail: muhammad.faryad@lums.edu.pk [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)
2017-02-19
Mathematical statements of the Huygens principle relate the electric and magnetic field phasors at an arbitrary location in a source-free region enclosed by a surface to the tangential components of the electric and magnetic field phasors over that surface, via the dyadic Green functions applicable to the linear homogeneous medium occupying that region. We have mathematically formulated the Huygens principle for the electric and magnetic field phasors when the permittivity and permeability dyadics of the medium are symmetric, the symmetric parts of the two magnetoelectric dyadics of the medium are negative of each other, and both magnetoelectric dyadics also contain anti-symmetric terms. We have also formulated the Huygens principle for the electric (resp. magnetic) field phasor in a medium whose permittivity (resp. permeability) is scalar, the permeability (resp. permittivity) is symmetric, the symmetric parts of the two magnetoelectric dyadics reduce to dissimilar scalars, and anti-symmetric parts of the two magnetoelectric dyadics are identical. - Highlights: • The Huygens principle was formulated for bianistropic mediums when the permittivity and permeability dyadics of the medium are symmetric. • The formulation covers isotropic, biisotropic, and gyrotropic-like uniaxial mediums for which the Huygens principle is already available. • The formulation also covers new mediums like biaxial, chiro-omega, pseudo chiral, gyrotropic-like biaxial, and Lorentz reciprocal mediums.
Remitting seronegative symmetrical synovitis with pitting edema (RS3PE syndrome
Directory of Open Access Journals (Sweden)
Neslihan Gokcen
2017-03-01
Full Text Available Remitting seronegative symmetrical synovitis with pitting edema is a rare rheumatological disorder that presents with symmetrical hand and/or foot edema resembling rheumatoid arthritis. It is generally seen in male patients in older age, but atypical cases in different age groups have been documented. Although no clear mechanism has been described, certain genetic and environmental factors have been suggested for etiopathogenesis. Medical treatment is mainly focused on glucocorticoid therapy. This article aims to discuss the Remitting seronegative symmetrical synovitis with pitting edema syndrome and to review the current literature. [Cukurova Med J 2017; 42(1.000: 147-154
Theorem on axially symmetric gravitational vacuum configurations
Energy Technology Data Exchange (ETDEWEB)
Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare
1977-01-24
A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.
Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime
International Nuclear Information System (INIS)
Cao, Tun; Zhang, Lei; Xiao, Zai-peng; Huang, Hui
2013-01-01
Fano resonance (FR) is routinely observed in three-dimensional symmetric metamaterials (MMs) consisting of elliptical nanoholes array (ENA) embedding through metal–dielectric–metal (MDM) multilayers. It is shown theoretically that a square periodic ENA perforating through MDM layers produces an FR response in the near infrared regime. This FR response is attributed to the interplay between the bright modes and dark modes, where the bright modes originate from the electric resonance (localized surface plasmon resonance) caused by the ENA and the dark modes are due to the magnetic resonance (inductive–capacitive resonance) induced by the MDM multilayers. Notably, one can achieve a narrower FR when the elliptical nanoholes occupy the sites of a rectangular lattice, owing to the interaction of the magnetic resonances with the enhanced electric resonances. Moreover, a higher varying degree of the lattice constant along the horizontal direction allows for an FR with a higher value of the quality factor and the tuning of the amplitude and the resonant frequency of the transparency window. Such an FR created by the interference among the magnetic and electric dipolar resonances opens up an alternative way of forming a sharp FR in the symmetric multilayer MMs, and could be exploited for sensing. (paper)
The discrete dynamics of symmetric competition in the plane.
Jiang, H; Rogers, T D
1987-01-01
We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.
International Nuclear Information System (INIS)
Momma, Toshiyuki; Yokoshima, Tokihiko; Nara, Hiroki; Gima, Yuhei; Osaka, Tetsuya
2014-01-01
Graphical abstract: - Highlights: • Impedance of lithium ion battery and symmetric cells were analyzed. • Anode symmetric cells and cathode one were prepared with ca. 7 × 7 cm 2 electrodes. • Except for R ct in cathode, electrochemical parameters did not change by reassembling. • Fitting data for symmetric cell were found to be useful for full cell analysis. • Electrochemical parameters of battery were traced during cycling degradation. - Abstract: Symmetric cells were prepared with a newly designed separable cell module, which enabled ca. 70 mm by 70 mm electrode sheets to be used for a pouch type 5 Ah class Li-ion battery (LIB). Impedance analysis of the LIB as a full cell state was successfully performed with electrochemical parameters obtained by an impedance analysis of symmetric cells of anodes and cathodes obtained from the operated Li-ion batteries. While the charge transfer resistance of the cathode was found to increase after reassembling the cells symmetrically, other electrochemical parameters were found not to change when comparing the values obtained for full cells with symmetric cells. Eelectrodes degraded by charge/discharge cycling of the battery were also investigated, and the parameter change caused by the degradation was confirmed
International Nuclear Information System (INIS)
Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh
2011-01-01
We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.
Tackling the premature convergence problem in Monte-Carlo localization
Kootstra, Gert; de Boer, Bart
Monte-Carlo localization uses particle filtering to estimate the position of the robot. The method is known to suffer from the loss of potential positions when there is ambiguity present in the environment. Since many indoor environments are highly symmetric, this problem of premature convergence is
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Non-symmetric bi-stable flow around the Ahmed body
International Nuclear Information System (INIS)
Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A.
2016-01-01
Highlights: • The non-symmetric bi-stable flow around the Ahmed body is investigated experimentally. • Bi-stability, described for symmetric flow by Cadot and co-workers, was found in nonsymmetric flow also. • The flow field randomly switches between two states. • The flow is subject to a spanwise instability identified by Cadot and co-workers for symmetric flow. • Aerodynamic forces fluctuate strongly due to the bi-stability. - Abstract: The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 10"6. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.
Layer-Mean Quantities, Local Conservation Laws, and Vorticity
International Nuclear Information System (INIS)
Camassa, R.; Levermore, C.D.
1997-01-01
We derive local conservation laws for layer-mean quantities in two general settings. When applied to Euler flows, the first of these settings yields well-known local conservation laws for quantities averaged between material surfaces. The second, however, leads to new local conservation laws for quantities involving the vorticity that are averaged between arbitrary surfaces. These produce the crucial vorticity conservation laws in shallow water models that admit nonhydrostatic and noncolumnar motion. Moreover, they seem to lie outside the Hamiltonian paradigm of fluid dynamics. The formalism generalizes to skew-symmetric matrix fields; applications to electromagnetism are suggested. copyright 1997 The American Physical Society
Pawlak, Mariusz; Ben-Asher, Anael; Moiseyev, Nimrod
2018-01-09
We present a simple expression and its derivation for reaction rate coefficients for cold anisotropic collision experiments based on adiabatic variational theory and time-independent non-Hermitian scattering theory. We demonstrate that only the eigenenergies of the resulting one-dimensional Schrödinger equation for different complex adiabats are required. The expression is applied to calculate the Penning ionization rate coefficients of an excited metastable helium atom with molecular hydrogen in an energy range spanning from hundreds of kelvins down to the millikelvin regime. Except for trivial quantities like the masses of the nuclei and the bond length of the diatomic molecule participating in the collision, one needs as input data only the complex potential energy surface (CPES). In calculations, we used recently obtained ab initio CPES by D. Bhattacharya et al. ( J. Chem. Theory Comput. 2017 , 13 , 1682 - 1690 ) without fitting parameters. The results show good accord with current measurements ( Nat. Phys. 2017 , 13 , 35 - 38 ).
Ltaief, Hatem; Luszczek, Piotr R.; Haidar, Azzam; Dongarra, Jack
2012-01-01
This paper proposes an efficient implementation of the generalized symmetric eigenvalue problem on multicore architecture. Based on a four-stage approach and tile algorithms, the original problem is first transformed into a standard symmetric
Spherically symmetric Einstein-aether perfect fluid models
Energy Technology Data Exchange (ETDEWEB)
Coley, Alan A.; Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Sandin, Patrik, E-mail: aac@mathstat.dal.ca, E-mail: genly.leon@ucv.cl, E-mail: patrik.sandin@aei.mpg.de, E-mail: lattaj@mathstat.dal.ca [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam (Germany)
2015-12-01
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.
Solving symmetric-definite quadratic lambda-matrix problems without factorization
International Nuclear Information System (INIS)
Scott, D.S.; Ward, R.C.
1982-01-01
Algorithms are presented for computing some of the eigenvalues and their associated eigenvectors of the quadratic lambda-matrix M lambda 2 C lambda + K. M, C, and K are assumed to have special symmetry-type properties which insure that theory analogous to the standard symmetric eigenproblem exists. The algorithms are based on a generalization of the Rayleigh quotient and the Lanczos method for computing eigenpairs of standard symmetric eigenproblems. Monotone quadratic convergence of the basic method is proved. Test examples are presented
Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization
Jentschura, Ulrich; Noble, Jonathan
2014-03-01
We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.
Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers
International Nuclear Information System (INIS)
Zhou Zheng; Zhang Li-Juan; Zhu Bo
2015-01-01
We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)
Calculation of the coherent transport properties of a symmetric spin nanocontact
International Nuclear Information System (INIS)
Bourahla, B.; Khater, A.; Tigrine, R.
2009-01-01
A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.
A cosmological problem for maximally symmetric supergravity
International Nuclear Information System (INIS)
German, G.; Ross, G.G.
1986-01-01
Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)
Genuine tripartite entangled states with a local hidden-variable model
International Nuclear Information System (INIS)
Toth, Geza; Acin, Antonio
2006-01-01
We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states
Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor
Energy Technology Data Exchange (ETDEWEB)
Aggarwal, Leena; Sekhon, Jagmeet S.; Arora, Ashima; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali (IISER M), Sector 81, S. A. S. Nagar, Manauli PO-140306 (India); Guin, Satya N.; Negi, Devendra S.; Datta, Ranjan; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in [New Chemistry Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064 (India)
2014-09-15
It is thought that the proposed new family of multi-functional materials, namely, the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. Therefore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching, we show that the recently discovered thermoelectric semiconductor AgSbSe{sub 2} has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as AgSbSe{sub 2} crystalizes in cubic rock-salt structure with centro-symmetric space group (Fm–3m), and therefore, no ferroelectricity is expected. However, from high resolution transmission electron microscopy measurement, we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in AgSbSe{sub 2} and gives rise to the observed ferroelectricity. Stereochemically active 5S{sup 2} lone-pair of Sb may also give rise to local structural distortion thereby creating ferroelectricity in AgSbSe{sub 2}.
Sobolev spaces on bounded symmetric domains
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910
Harmonic analysis on reductive symmetric spaces
Ban, E.P. van den; Schlichtkrull, H.
2000-01-01
We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported
Fast weighted centroid algorithm for single particle localization near the information limit.
Fish, Jeremie; Scrimgeour, Jan
2015-07-10
A simple weighting scheme that enhances the localization precision of center of mass calculations for radially symmetric intensity distributions is presented. The algorithm effectively removes the biasing that is common in such center of mass calculations. Localization precision compares favorably with other localization algorithms used in super-resolution microscopy and particle tracking, while significantly reducing the processing time and memory usage. We expect that the algorithm presented will be of significant utility when fast computationally lightweight particle localization or tracking is desired.
Analog/RF performance of two tunnel FETs with symmetric structures
Chen, Shupeng; Liu, Hongxia; Wang, Shulong; Li, Wei; Wang, Qianqiong
2017-11-01
In this paper, the radio frequency and analog performance of two tunnel field-effect transistors with symmetric structures are analyzed. The symmetric U-shape gate tunnel field-effect transistor (SUTFET) and symmetric tunnel field-effect transistor (STFET) are investigated by Silvaco Atlas simulation. The basic electrical properties and the parameters related to frequency and analog characteristics are analyzed. Due to the lower off-state leakage current, the STFET has better power consumption performance. The SUTFET obtains larger operating current (242 μA/μm), transconductance (490 μS/μm), output conductance (494 μS/μm), gain bandwidth product (3.2 GHz) and cut-off frequency (27.7 GHz). The simulation result of these two devices can be used as a guideline for their analog/RF applications.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling
Ma, Yinji; Yao, Xuefeng; Zhang, Danwen
2015-03-01
In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Ltaief, Hatem
2012-01-01
This paper proposes an efficient implementation of the generalized symmetric eigenvalue problem on multicore architecture. Based on a four-stage approach and tile algorithms, the original problem is first transformed into a standard symmetric eigenvalue problem by computing the Cholesky factorization of the right hand side symmetric definite positive matrix (first stage), and applying the inverse of the freshly computed triangular Cholesky factors to the original dense symmetric matrix of the problem (second stage). Calculating the eigenpairs of the resulting problem is then equivalent to the eigenpairs of the original problem. The computation proceeds by reducing the updated dense symmetric matrix to symmetric band form (third stage). The band structure is further reduced by applying a bulge chasing procedure, which annihilates the extra off-diagonal entries using orthogonal transformations (fourth stage). More details on the third and fourth stage can be found in Haidar et al. [Accepted at SC\\'11, November 2011]. The eigenvalues are then calculated from the tridiagonal form using the standard LAPACK QR algorithm (i.e., DTSEQR routine), while the complex and challenging eigenvector computations will be addressed in a companion paper. The tasks from the various stages can concurrently run in an out-of-order fashion. The data dependencies are cautiously tracked by the dynamic runtime system environment QUARK, which ensures the dependencies are not violated for numerical correctness purposes. The obtained tile four-stage generalized symmetric eigenvalue solver significantly outperforms the state-of-the-art numerical libraries (up to 21-fold speed up against multithreaded LAPACK with optimized multithreaded MKL BLAS and up to 4-fold speed up against the corresponding routine from the commercial numerical software Intel MKL) on four sockets twelve cores AMD system with a 24000×24000 matrix size. © 2012 The authors and IOS Press. All rights reserved.
Dynamical analysis of cylindrically symmetric anisotropic sources in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Azmat, Hina [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Noureen, Ifra [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)
2017-03-15
In this paper, we have analyzed the stability of cylindrically symmetric collapsing object filled with locally anisotropic fluid in f(R, T) theory, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. Modified field equations and dynamical equations are constructed in f(R, T) gravity. The evolution or collapse equation is derived from dynamical equations by performing a linear perturbation on them. The instability range is explored in both the Newtonian and the post-Newtonian regimes with the help of an adiabatic index, which defines the impact of the physical parameters on the instability range. Some conditions are imposed on the physical quantities to secure the stability of the gravitating sources. (orig.)
(Anti)symmetric multivariate exponential functions and corresponding Fourier transforms
International Nuclear Information System (INIS)
Klimyk, A U; Patera, J
2007-01-01
We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found
PT-symmetric ladders with a scattering core
Energy Technology Data Exchange (ETDEWEB)
D' Ambroise, J. [Department of Mathematics, Amherst College, Amherst, MA 01002-5000 (United States); Lepri, S. [CNR – Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305 (United States)
2014-08-01
We consider a PT-symmetric chain (ladder-shaped) system governed by the discrete nonlinear Schrödinger equation where the cubic nonlinearity is carried solely by two central “rungs” of the ladder. Two branches of scattering solutions for incident plane waves are found. We systematically construct these solutions, analyze their stability, and discuss non-reciprocity of the transmission associated with them. To relate the results to finite-size wavepacket dynamics, we also perform direct simulations of the evolution of the wavepackets, which confirm that the transmission is indeed asymmetric in this nonlinear system with the mutually balanced gain and loss. - Highlights: • We model a PT-symmetric ladder system with cubic nonlinearity on two central rungs. • We examine non-reciprocity and stability of incident plane waves. • Simulations of wavepackets confirm our results.
Symmetric voltage-controlled variable resistance
Vanelli, J. C.
1978-01-01
Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.
International Nuclear Information System (INIS)
Guang-Ming Zhang; Lu Yu
1998-10-01
We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)
Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement
International Nuclear Information System (INIS)
Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong
2005-01-01
We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value
Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry.
Kootstra, Gert; de Boer, Bart; Schomaker, Lambert R B
2011-03-01
Most bottom-up models that predict human eye fixations are based on contrast features. The saliency model of Itti, Koch and Niebur is an example of such contrast-saliency models. Although the model has been successfully compared to human eye fixations, we show that it lacks preciseness in the prediction of fixations on mirror-symmetrical forms. The contrast model gives high response at the borders, whereas human observers consistently look at the symmetrical center of these forms. We propose a saliency model that predicts eye fixations using local mirror symmetry. To test the model, we performed an eye-tracking experiment with participants viewing complex photographic images and compared the data with our symmetry model and the contrast model. The results show that our symmetry model predicts human eye fixations significantly better on a wide variety of images including many that are not selected for their symmetrical content. Moreover, our results show that especially early fixations are on highly symmetrical areas of the images. We conclude that symmetry is a strong predictor of human eye fixations and that it can be used as a predictor of the order of fixation.
The Mathematics of Symmetrical Factorial Designs
Indian Academy of Sciences (India)
The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.
Solution of generalized shifted linear systems with complex symmetric matrices
International Nuclear Information System (INIS)
Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo
2012-01-01
We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.
A comparison of lower bounds for the symmetric circulant traveling salesman problem
de Klerk, E.; Dobre, C.
2011-01-01
When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The
A class of non-symmetric band determinants with the Gaussian q ...
African Journals Online (AJOL)
A class of symmetric band matrices of bandwidth 2r+1 with the binomial coefficients entries was studied earlier. We consider a class of non-symmetric band matrices with the Gaussian q-binomial coefficients whose upper bandwith is s and lower bandwith is r. We give explicit formulæ for the determinant, the inverse (along ...
Asymptotic expansions for Toeplitz operators on symmetric spaces of general type
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav; Upmeier, H.
2015-01-01
Roč. 367, č. 1 (2015), s. 423-476 ISSN 0002-9947 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : symmetric space * symmetric domain * Berezin quantization Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2015 http://www.ams.org/journals/tran/2015-367-01/S0002-9947-2014-06130-8/
Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles
Binder, Moritz; Barthel, Thomas
2017-05-01
Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.
La formule des traces locale tordue
Moeglin, Colette
2018-01-01
A note to readers: This book is in French. The text has two chapters. The first one, written by Waldspurger, proves a twisted version of the local trace formula of Arthur over a local field. This formula is an equality between two expressions, one involving weighted orbital integrals, the other one involving weighted characters. The authors follow Arthur's proof, but the treatement of the spectral side is more complicated in the twisted situation. They need to use the combinatorics of the "Morning Seminar". The authors' local trace formula has the same consequences as in Arthur's paper on elliptic characters. The second chapter, written by Moeglin, gives a symmetric form of the local trace formula as in Arthur's paper on Fourier Transform of Orbital integral and describes any twisted orbital integral, in the p-adic case, as integral of characters.
Symmetrized neutron transport equation and the fast Fourier transform method
International Nuclear Information System (INIS)
Sinh, N.Q.; Kisynski, J.; Mika, J.
1978-01-01
The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations
Invariant subspaces in some function spaces on symmetric spaces. II
International Nuclear Information System (INIS)
Platonov, S S
1998-01-01
Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1
Wu, Jiaye; Yang, Xiangbo
2017-10-30
In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.
Tailoring Spectral Properties of Binary PT-Symmetric Gratings by Duty-Cycle Methods
DEFF Research Database (Denmark)
Lupu, Anatole T.; Benisty, Henri; Lavrinenko, Andrei
2016-01-01
We explore the frequency selective functionalities of a nonuniform PT-symmetric Bragg grating with modulated complex index profile. We start by assessing the possibility to achieve an efficient apodization of the PT-symmetric Bragg grating spectral response by using direct adaptations of the conv...
Symmetric scrolled packings of multilayered carbon nanoribbons
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Maximum-confidence discrimination among symmetric qudit states
International Nuclear Information System (INIS)
Jimenez, O.; Solis-Prosser, M. A.; Delgado, A.; Neves, L.
2011-01-01
We study the maximum-confidence (MC) measurement strategy for discriminating among nonorthogonal symmetric qudit states. Restricting to linearly dependent and equally likely pure states, we find the optimal positive operator valued measure (POVM) that maximizes our confidence in identifying each state in the set and minimizes the probability of obtaining inconclusive results. The physical realization of this POVM is completely determined and it is shown that after an inconclusive outcome, the input states may be mapped into a new set of equiprobable symmetric states, restricted, however, to a subspace of the original qudit Hilbert space. By applying the MC measurement again onto this new set, we can still gain some information about the input states, although with less confidence than before. This leads us to introduce the concept of sequential maximum-confidence (SMC) measurements, where the optimized MC strategy is iterated in as many stages as allowed by the input set, until no further information can be extracted from an inconclusive result. Within each stage of this measurement our confidence in identifying the input states is the highest possible, although it decreases from one stage to the next. In addition, the more stages we accomplish within the maximum allowed, the higher will be the probability of correct identification. We will discuss an explicit example of the optimal SMC measurement applied in the discrimination among four symmetric qutrit states and propose an optical network to implement it.
Data security in wireless local area network
International Nuclear Information System (INIS)
Kishk, A.M.A
2010-01-01
The ever increasing demand for performance and data security improvement in wireless local area network (W LAN) has motivated increasing the difficulties to crack the system by man-in -the middle attacks. There are two primary and main objectives of this thesis to enhance data security in WLAN. The first objective is the enhancement of identities-exchange and key-exchange during authentication process. The second objective is the investigation of a proposed symmetrical encryption algorithm based on key-updating to enhance the performance of data-security in WLAN. The current asymmetrical encryption algorithms are used to authenticate the devices in WLAN to each other. They are used to exchange the identities and the keys in a secret channel during the authentication process. This thesis investigates the problems of identities- exchange. The enhancement of the identities-exchange and key-exchange stages during the authentication process has been suggested and studied in the thesis to solve the drawbacks of the traditional asymmetrical encryption algorithms.Next the investigation of a proposed symmetrical encryption to encrypt the data during the data exchange process gives a new approach to increase the difficulties to the man in the middle attacks to crack the system.The key updating with each packet is the new approach to solve the problem of the fixed key used to encrypt / decrypt the data with all packets in WLAN.A Comparative study between the proposed symmetrical encryption algorithms and the other algorithms is presented in the thesis. Proposed symmetrical encryption algorithm is applied on a text, voice, and image messages as practical applications of the proposed symmetrical encryption algorithm. Finally, the man-in-the middle attacks can broadcast noise signals in WLAN channels to prevent the data to reach correctly to the end-user. The quality of the received image is measured for the proposed and the traditional symmetrical encryption algorithms to
The symmetric MSD encoder for one-step adder of ternary optical computer
Kai, Song; LiPing, Yan
2016-08-01
The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.
Quantum work relations and response theory in parity-time-symmetric quantum systems
Wei, Bo-Bo
2018-01-01
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Are average and symmetric faces attractive to infants? Discrimination and looking preferences.
Rhodes, Gillian; Geddes, Keren; Jeffery, Linda; Dziurawiec, Suzanne; Clark, Alison
2002-01-01
Young infants prefer to look at faces that adults find attractive, suggesting a biological basis for some face preferences. However, the basis for infant preferences is not known. Adults find average and symmetric faces attractive. We examined whether 5-8-month-old infants discriminate between different levels of averageness and symmetry in faces, and whether they prefer to look at faces with higher levels of these traits. Each infant saw 24 pairs of female faces. Each pair consisted of two versions of the same face differing either in averageness (12 pairs) or symmetry (12 pairs). Data from the mothers confirmed that adults preferred the more average and more symmetric versions in each pair. The infants were sensitive to differences in both averageness and symmetry, but showed no looking preference for the more average or more symmetric versions. On the contrary, longest looks were significantly longer for the less average versions, and both longest looks and first looks were marginally longer for the less symmetric versions. Mean looking times were also longer for the less average and less symmetric versions, but those differences were not significant. We suggest that the infant looking behaviour may reflect a novelty preference rather than an aesthetic preference.
Directory of Open Access Journals (Sweden)
Shuihua Wang
2015-01-01
Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.
The 1/ N Expansion of Tensor Models with Two Symmetric Tensors
Gurau, Razvan
2018-06-01
It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.
Elastic-plastic analysis of an axi-symmetric problem by a finite element method
International Nuclear Information System (INIS)
Isozaki, Toshikuni
1984-06-01
Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)
Symmetric bends how to join two lengths of cord
Miles, Roger E
1995-01-01
A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o
Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems
International Nuclear Information System (INIS)
Scott, D.S.; Ward, R.C.
1981-01-01
Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices
The use of symmetrized valence and relative motion coordinates for crystal potentials
DEFF Research Database (Denmark)
McMurry, H. L.; Hansen, Flemming Yssing
1980-01-01
Symmetrized valence coordinates are linear combinations of conventional valence coordinates which display the symmetry of a set of atoms bound by the valence bonds. Relative motion coordinates are relative translations, or relative rotations, of two or more strongly bonded groups of atoms among...... which relatively weak forces act. They are useful for expressing interactions between molecules in molecular crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates defined by these procedures possess elements of symmetry in common with the bonding...... interaction constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily zero. They may be small, also, for coordinates which belong to different representations of the local symmetry when this is not the same as for the crystal. Procedures are given for defining...
Compact invariant sets of the static spherically symmetric Einstein-Yang-Mills equations
International Nuclear Information System (INIS)
Starkov, Konstantin E.
2010-01-01
In this Letter we obtain results concerning compact invariant sets of the static spherically symmetric Einstein-Yang-Mills (EYM) equations with help of studies of its localization. Let a be a cosmological constant and s be another parameter entering into these equations which is used for considering the physical time as a temporal variable, with s=1, while s=-1 is used for considering the physical time as a spatial variable. We show that in case s=1; a 0 the set of all compact invariant sets consists of two equilibrium points only. Further, we state that in cases s=-1; a 0 there are only two equilibrium points and there are no periodic orbits. In addition, we prove that in the last two cases there are neither homoclinic orbits nor heteroclinic orbits as well.
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
Rovibrational states of Wigner molecules in spherically symmetric confining potentials
Energy Technology Data Exchange (ETDEWEB)
Cioslowski, Jerzy [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany)
2016-08-07
The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.
Complex group algebras of the double covers of the symmetric and alternating group
DEFF Research Database (Denmark)
Bessenrodt, Christine; Nguyen, Hung Ngoc; Olsson, Jørn Børling
2015-01-01
We prove that the double covers of the alternating and symmetric groups are determined by their complex group algebras......We prove that the double covers of the alternating and symmetric groups are determined by their complex group algebras...
Exotic fermions in the left-right symmetric model
International Nuclear Information System (INIS)
Choi, J.; Volkas, R.R.
1992-01-01
A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab
Tourist Demand Reactions: Symmetric or Asymmetric across the Business Cycle?
Bronner, Fred; de Hoog, Robert
2017-09-01
Economizing and spending priorities on different types of vacations are investigated during two periods: an economic downturn and returning prosperity. Two nation-wide samples of vacationers are used: one during a downturn, the other one at the start of the recovery period. Through comparing the results, conclusions can be drawn about symmetric or asymmetric tourist demand across the business cycle. The main summer holiday has an asymmetric profile: being fairly crisis-resistant during a recession and showing considerable growth during an expansion. This does not apply to short vacations and day trips, each having a symmetric profile: during a recession they experience substantial reductions and during expansion comparable growth. So when talking about tourist demand in general , one cannot say that it is symmetric or asymmetric across the business cycle: it depends on the type of vacation. Differences in tourist demand are best explained by the role of Quality-of-Life for vacationers.
Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.
Dorsaz, N; Foffi, G
2010-03-17
We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.
Exact solution of equations for proton localization in neutron star matter
Kubis, Sebastian; Wójcik, Włodzimierz
2015-11-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.
Exact solutions of the spherically symmetric multidimensional ...
African Journals Online (AJOL)
The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...
Hardware Realization of Chaos Based Symmetric Image Encryption
Barakat, Mohamed L.
2012-01-01
This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations
Maximally Symmetric Composite Higgs Models.
Csáki, Csaba; Ma, Teng; Shu, Jing
2017-09-29
Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.
Determination of symmetrical index for 3H in river waters
International Nuclear Information System (INIS)
Jankovic, M.; Todorovic, D.; Jankovic, B.; Nikolic, J.; Sarap, N.
2011-01-01
The paper presents the results of determining the symmetric index, which describes the magnitude of the tritium content changes with time, for samples of Sava and Danube river waters and Mlaka creek water. The results cover the period from 2003 to 2008. It was shown that the value of the symmetric index is the highest for Mlaka samples, which is in accordance with the fact that in these samples the highest concentration of tritium was found in comparison with samples of the Sava and Danube. [sr
Song, Hongwei; Yang, Minghui; Guo, Hua
2016-10-01
Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.
A Derandomized Algorithm for RP-ADMM with Symmetric Gauss-Seidel Method
Xu, Jinchao; Xu, Kailai; Ye, Yinyu
2017-01-01
For multi-block alternating direction method of multipliers(ADMM), where the objective function can be decomposed into multiple block components, we show that with block symmetric Gauss-Seidel iteration, the algorithm will converge quickly. The method will apply a block symmetric Gauss-Seidel iteration in the primal update and a linear correction that can be derived in view of Richard iteration. We also establish the linear convergence rate for linear systems.
Symmetric and asymmetric nuclear matter in the relativistic approach
International Nuclear Information System (INIS)
Huber, H.; Weber, F.; Weigel, M.K.
1995-01-01
Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations
The critical current of point symmetric Josephson tunnel junctions
International Nuclear Information System (INIS)
Monaco, Roberto
2016-01-01
Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.
Optimality and stability of symmetric evolutionary games with applications in genetic selection.
Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun
2015-06-01
Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.