WorldWideScience

Sample records for hermite polynomials

  1. Differential operators associated with Hermite polynomials

    Onyango Otieno, V.P.

    1989-09-01

    This paper considers the boundary value problems for the Hermite differential equation -(e -x2 y'(x))'+e -x2 y(x)=λe -x2 y(x), (x is an element of (-∞, ∞)) in both the so-called right-definite and left-definite cases based partly on a classical approach due to E.C. Titchmarsh. We then link the Titchmarsh approach with operator theoretic results in the spaces L w 2 (-∞, ∞) and H p,q 2 (-∞, ∞). The results in the left-definite case provide an indirect proof of the completeness of the Hermite polynomials in L w 2 (-∞, ∞). (author). 17 refs

  2. Explicit formulae for the generalized Hermite polynomials in superspace

    Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre

    2004-01-01

    We provide explicit formulae for the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement, i.e., the generalized Hermite (or Hi-Jack) polynomials in superspace. The construction relies on the triangular action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamiltonian's eigenfunctions

  3. Zeros of Wronskians of Hermite polynomials and Young diagrams

    Felder, G.; Hemery, A. D.; Veselov, A. P.

    2012-12-01

    For a certain class of partitions, a simple qualitative relation is observed between the shape of the Young diagram and the pattern of zeros of the Wronskian of the corresponding Hermite polynomials. In the case of the two-term Wronskian W(Hn,Hn+k), we give an explicit formula for the asymptotic shape of the zero set as n→∞. Some empirical asymptotic formulas are given for the zero sets of three-term and four-term Wronskians.

  4. Hermite Polynomials and the Inverse Problem for Collisionless Equilibria

    Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.

    2017-12-01

    It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82

  5. On integral and finite Fourier transforms of continuous q-Hermite polynomials

    Atakishiyeva, M. K.; Atakishiyev, N. M.

    2009-01-01

    We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H n (x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.

  6. Squeezed states and Hermite polynomials in a complex variable

    Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.

    2014-01-01

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)

  7. Complex and real Hermite polynomials and related quantizations

    Cotfas, Nicolae; Gazeau, Jean Pierre; Gorska, Katarzyna

    2010-01-01

    It is known that the anti-Wick (or standard coherent state) quantization of the complex plane produces both canonical commutation rule and quantum spectrum of the harmonic oscillator (up to the addition of a constant). In this work, we show that these two issues are not necessarily coupled: there exists a family of separable Hilbert spaces, including the usual Fock-Bargmann space, and in each element in this family there exists an overcomplete set of unit-norm states resolving the unity. With the exception of the Fock-Bargmann case, they all produce non-canonical commutation relation whereas the quantum spectrum of the harmonic oscillator remains the same up to the addition of a constant. The statistical aspects of these non-equivalent coherent state quantizations are investigated. We also explore the localization aspects in the real line yielded by similar quantizations based on real Hermite polynomials.

  8. A new class of generalized polynomials associated with Hermite and Bernoulli polynomials

    M. A. Pathan

    2015-05-01

    Full Text Available In this paper, we introduce a new class of generalized  polynomials associated with  the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by  Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials  B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials  B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials  {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan  are generalized to the one   {_HB}_n^{(α}(x,y,a,b,c which is called  the generalized  polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c  are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials

  9. O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states

    Daboul, Jamil; Mizrahi, Salomon S

    2005-01-01

    Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra

  10. Efficient modeling of photonic crystals with local Hermite polynomials

    Boucher, C. R.; Li, Zehao; Albrecht, J. D.; Ram-Mohan, L. R.

    2014-01-01

    Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (plane wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits

  11. Linear flow of heat in an infinite region and hermite polynomials

    Al-Hawaj, A.Y.

    1991-01-01

    The problem of linear flow of heat in an infinite region occupies a prominent place in the field of conduction of heat in solids. A number of solutions to this problem, have been given from time to time by several mathematicians. The object of this paper is to derive the solutions of the problem of linear flow of heat in an infinite region, which lead to Hermite Polynomials. The author further presents three linear combinations of his solutions and their particular cases. The region (- ∞ < x < ∞) of the problem led him to investigate the solutions of the problem in terms of Hermite Polynomials

  12. Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems

    Aptekarev, A I; Lopez, Guillermo L; Rocha, I A

    2005-01-01

    The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.

  13. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.

  14. Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model

    Desrosiers, P; Mathieu, P; Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre

    2003-01-01

    We present two constructions of the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement. These eigenfunctions are the superspace extension of the generalized Hermite (or Hi-Jack) polynomials. The conserved quantities of the rational supersymmetric model are first related to their trigonometric relatives through a similarity transformation. This leads to a simple expression for the generalized Hermite superpolynomials as a differential operator acting on the corresponding Jack superpolynomials. The second construction relies on the action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamiltonian's eigenfunctions. As an aside, the maximal superintegrability of the supersymmetric rational Calogero-Moser-Sutherland model is demonstrated.

  15. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

    Beheshti, Alireza

    2018-03-01

    The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

  16. A pair of biorthogonal polynomials for the Szegö-Hermite weight function

    N. K. Thakare

    1988-01-01

    Full Text Available A pair of polynomial sequences {Snμ(x;k} and {Tmμ(x;k} where Snμ(x;k is of degree n in xk and Tmμ(x;k is of degree m in x, is constructed. It is shown that this pair is biorthogonal with respect to the Szegö-Hermite weight function |x|2μexp(−x2, (μ>−1/2 over the interval (−∞,∞ in the sense that∫−∞∞|x|2μexp(−x2Snμ(x;kTmμ(x;kdx=0,   ifm≠n                    ≠0,   ifm=nwhere m,n=0,1,2,… and k is an odd positive integer.

  17. Operational matrices with respect to Hermite polynomials and their applications in solving linear dierential equations with variable coecients

    A. Aminataei

    2014-05-01

    Full Text Available In this paper, a new and ecient approach is applied for numerical approximation of the linear dierential equations with variable coecients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansioncoecients for the moments of derivatives of any dierentiable function in terms of the original expansion coecients of the function itself are given in the matrix form. The mainimportance of this scheme is that using this approach reduces solving the linear dierentialequations to solve a system of linear algebraic equations, thus greatly simplifying the problem. In addition, two experiments are given to demonstrate the validity and applicability of the method

  18. Asymptotic behaviour of the zeros of the Jacobi polynomials Psub(n)(chi)sup(at,bt) as t→infinity and limit relations of these polynomials with Hermite polynomials

    Calogero, F.

    1978-01-01

    Let zsub(j)(α, β) be the jth zero of the Jacobi polynomial J sub(n)sup(α,β)(z), and xsub(j) the jth zero of the Hermite polynomial Hsub(n)(x). Then, as t→infinity, zsub(j)(at,bt)=(b-a)/(b+a)+t sup(-1/2)c x sub(j)+t -1 4/3(n+1/2+xsub(j) 2 )(a-b)/(a+b) 2 +0(t sup(-3/2)), with c=(ab)sup(1/2) [(a+b)/2]sup(-3/2) a>0, b>0. This formula implies the limit relation n exclamation mark lim sub(t→infinity) [t sup(-n/2)J sub(n)sup(at,bt) ((b-a)/(b+a)+t sup(-1/2)x)] = [(a+b)c/4]sup(n) Hsub(n)(chi/c). (author)

  19. New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states

    Fan Hong-Yi; Wang Zhen

    2014-01-01

    For directly normalizing the photon non-Gaussian states (e.g., photon added and subtracted squeezed states), we use the method of integration within an ordered product (IWOP) of operators to derive some new bosonic operator-ordering identities. We also derive some new integration transformation formulas about one- and two-variable Hermite polynomials in complex function space. These operator identities and associative integration formulas provide much convenience for constructing non-Gaussian states in quantum engineering. (general)

  20. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  1. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    Marquette, Ian, E-mail: i.marquette@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Quesne, Christiane, E-mail: cquesne@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels (Belgium)

    2016-05-15

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent P{sub IV}, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed X{sub m{sub 1,m{sub 2,…,m{sub k}}}} Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  2. Steerability of Hermite Kernel

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2013-01-01

    Roč. 27, č. 4 (2013), 1354006-1-1354006-25 ISSN 0218-0014 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Hermite polynomials * Hermite kernel * steerability * adaptive filtering Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.558, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387. pdf

  3. A Quadratic Model with Nonpolynomial Terms for Remote Colorimetric Calibration of 3D Laser Scanner Data Based on Piecewise Cubic Hermite Polynomials

    Alessandro Danielis

    2015-01-01

    Full Text Available The processing of intensity data from terrestrial laser scanners has attracted considerable attention in recent years. Accurate calibrated intensity could give added value for laser scanning campaigns, for example, in producing faithful 3D colour models of real targets and classifying easier and more reliable automatic tools. In cultural heritage area, the purely geometric information provided by the vast majority of currently available scanners is not enough for most applications, where indeed accurate colorimetric data is needed. This paper presents a remote calibration method for self-registered RGB colour data provided by a 3D tristimulus laser scanner prototype. Such distinguishing colour information opens new scenarios and problems for remote colorimetry. Using piecewise cubic Hermite polynomials, a quadratic model with nonpolynomial terms for reducing inaccuracies occurring in remote colour measurement is implemented. Colorimetric data recorded by the prototype on certified diffusive targets is processed for generating a remote Lambertian model used for assessing the accuracy of the proposed algorithm. Results concerning laser scanner digitizations of artworks are reported to confirm the effectiveness of the method.

  4. Incomplete 2D Hermite polynomials

    user

    (2008) obtained some implicit summation formulae for I2DHP by using differential ... In Shahwan (2009), the author derived generating functions of I2DHP, ... obtained here will be given an explicit group-theoretic interpretation instead of being.

  5. Discrete Hermite moments and their application in chemometrics

    Honarvar Shakibaei Asli, Barmak; Flusser, Jan

    2018-01-01

    Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: IN - Informatics, Computer Science OBOR OECD: Electrical and electronic engineering Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489186.pdf

  6. Concentric layered Hermite scatterers

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  7. Rotation of 2D orthogonal polynomials

    Yang, B.; Flusser, Jan; Kautský, J.

    2018-01-01

    Roč. 102, č. 1 (2018), s. 44-49 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal polynomials * Recurrent relation * Hermite-like polynomials * Hermite moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf

  8. Hermiticity and gauge invariance

    Treder, H.J.

    1987-01-01

    In the Theory of Hermitian Relativity (HRT) the postulates of hermiticity and gauge invariance are formulated in different ways, due to a different understanding of the idea of hermiticity. However all hermitian systems of equations have to satisfy Einstein's weak system of equations being equivalent to Einstein-Schroedinger equations. (author)

  9. Discrete Hermite moments and their application in chemometrics

    Honarvar Shakibaei Asli, Barmak; Flusser, Jan

    2018-01-01

    Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 R&D Projects: GA ČR GA18-07247S; GA ČR GJ18-26018Y Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Automation and control systems Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489147.pdf

  10. Relations between zeros of special polynomials associated with the Painleve equations

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding relations of roots of polynomials is presented. Our approach allows us to get a number of relations between the zeros of the classical polynomials as well as the roots of special polynomials associated with rational solutions of the Painleve equations. We apply the method to obtain the relations for the zeros of several polynomials. These are: the Hermite polynomials, the Laguerre polynomials, the Yablonskii-Vorob'ev polynomials, the generalized Okamoto polynomials, and the generalized Hermite polynomials. All the relations found can be considered as analogues of generalized Stieltjes relations

  11. Hermite scatterers in an ultraviolet sky

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  12. Fourier-Hermite communications; where Fourier meets Hermite

    Korevaar, C.W.; Kokkeler, Andre B.J.; de Boer, Pieter-Tjerk; Smit, Gerardus Johannes Maria

    A new signal set, based on the Fourier and Hermite signal bases, is introduced. It combines properties of the Fourier basis signals with the perfect time-frequency localization of the Hermite functions. The signal set is characterized by both a high spectral efficiency and good time-frequency

  13. Generalizations of an integral for Legendre polynomials by Persson and Strang

    Diekema, E.; Koornwinder, T.H.

    2012-01-01

    Persson and Strang (2003) evaluated the integral over [−1,1] of a squared odd degree Legendre polynomial divided by x2 as being equal to 2. We consider a similar integral for orthogonal polynomials with respect to a general even orthogonality measure, with Gegenbauer and Hermite polynomials as

  14. Hermit Thrush (Catharus guttatus)

    Wood, Petra; Donovan, Therese M.

    2012-01-01

    With spotted breast and reddish tail, the Hermit Thrush lives up to its name. Although celebrated for its ethereal song, it is mostly a quiet and unobtrusive bird that spends much of its time in the lower branches of the undergrowth or on the forest floor, often seen flicking its wings while perched and quickly raising and slowly lowering its tail. A highly variable species in color and size, the Hermit Thrush's morphological characteristics and plumage have been well studied, with 12-13 subspecies now recognized (see Systematics).This thrush is one of the most widely distributed forest-nesting migratory birds in North America and the only forest thrush whose population has increased or remained stable over the past 20 years. Its extensive breeding range includes the northern hardwood forest, as well as most of the boreal and mountainous coniferous forest areas north of Mexico, with relatively recent expansions into New England and the southern Appalachians. In migration, the species moves to lower elevations and southward, spreading out to winter over much of the southern United States, through Mexico to Guatemala and east to Bermuda. It is the only species of Catharus that winters in North America, switching from a breeding diet of mainly arthropods to a wintering diet heavily supplemented with fruits.Much has been learned about this widely distributed species since the original Birds of North America account of 1996. New information pertaining to its song, migratory behavior, winter territoriality, survival, and diet has been added, as well as many new insights into the potential effects of forest management and other human disturbances. Still lacking are detailed nesting studies, studies of juvenile dispersal, of daily activities and time budgets, and of migratory routes.

  15. Cardinal Basis Piecewise Hermite Interpolation on Fuzzy Data

    H. Vosoughi

    2016-01-01

    Full Text Available A numerical method along with explicit construction to interpolation of fuzzy data through the extension principle results by widely used fuzzy-valued piecewise Hermite polynomial in general case based on the cardinal basis functions, which satisfy a vanishing property on the successive intervals, has been introduced here. We have provided a numerical method in full detail using the linear space notions for calculating the presented method. In order to illustrate the method in computational examples, we take recourse to three prime cases: linear, cubic, and quintic.

  16. Orthogonal polynomials

    Freud, Géza

    1971-01-01

    Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc

  17. The Hermite transform-applications

    Martens, J.B.

    It is demonstrated how the Hermite transform can be used for image coding and analysis. Hierarchical coding structures based on increasingly specified basic patterns, i.e. general 2-D patterns, general 1-D patterns, and specific 1-D patterns such as edges and corners, are presented. In the image

  18. On the Equisummability of Hermite and Fourier Expansions

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  19. Microscopic universality of complex matrix model correlation functions at weak non-Hermiticity

    Akemann, G.

    2002-01-01

    The microscopic correlation functions of non-chiral random matrix models with complex eigenvalues are analyzed for a wide class of non-Gaussian measures. In the large-N limit of weak non-Hermiticity, where N is the size of the complex matrices, we can prove that all k-point correlation functions including an arbitrary number of Dirac mass terms are universal close to the origin. To this aim we establish the universality of the asymptotics of orthogonal polynomials in the complex plane. The universality of the correlation functions then follows from that of the kernel of orthogonal polynomials and a mapping of massive to massless correlators

  20. Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials

    Horozov, Emil

    2016-05-01

    We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.

  1. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  2. Many-body orthogonal polynomial systems

    Witte, N.S.

    1997-03-01

    The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)

  3. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  4. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  5. Adaptive Mesh Iteration Method for Trajectory Optimization Based on Hermite-Pseudospectral Direct Transcription

    Humin Lei

    2017-01-01

    Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.

  6. Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement

    van Diejen, J.F.

    1997-01-01

    Two families (type A and type B) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri-type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type A) and the Laguerre polynomials (type B), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl. (orig.)

  7. Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics

    Engliš, Miroslav; Ali, S. Twareque

    2015-07-01

    Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.

  8. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    Schulze-Halberg, Axel; Roy, Pinaki

    2017-01-01

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  9. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Roy, Pinaki, E-mail: pinaki@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2017-03-15

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  10. Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials

    Oksana Bihun

    2018-01-01

    Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.

  11. Hermiticity of quantum observables versus commutation relations

    Shirokov, M.I.

    2002-01-01

    In order to obtain sum rules and spectral representations the Hermiticity property = of observables is used. It is shown that for certain Ψ and Φ the property turn out to be inconsistent with the commutation relations that contain Α. The known Schwinger paradox is explained by this inconsistency

  12. A probabilistic approach of sum rules for heat polynomials

    Vignat, C; Lévêque, O

    2012-01-01

    In this paper, we show that the sum rules for generalized Hermite polynomials derived by Daboul and Mizrahi (2005 J. Phys. A: Math. Gen. http://dx.doi.org/10.1088/0305-4470/38/2/010) and by Graczyk and Nowak (2004 C. R. Acad. Sci., Ser. 1 338 849) can be interpreted and easily recovered using a probabilistic moment representation of these polynomials. The covariance property of the raising operator of the harmonic oscillator, which is at the origin of the identities proved in Daboul and Mizrahi and the dimension reduction effect expressed in the main result of Graczyk and Nowak are both interpreted in terms of the rotational invariance of the Gaussian distributions. As an application of these results, we uncover a probabilistic moment interpretation of two classical integrals of the Wigner function that involve the associated Laguerre polynomials. (paper)

  13. Irreducible multivariate polynomials obtained from polynomials in ...

    Hall, 1409 W. Green Street, Urbana, IL 61801, USA. E-mail: Nicolae. ... Theorem A. If we write an irreducible polynomial f ∈ K[X] as a sum of polynomials a0,..., an ..... This shows us that deg ai = (n − i) deg f2 for each i = 0,..., n, so min k>0.

  14. Branched polynomial covering maps

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  15. Better polynomials for GNFS

    Bai , Shi; Bouvier , Cyril; Kruppa , Alexander; Zimmermann , Paul

    2016-01-01

    International audience; The general number field sieve (GNFS) is the most efficient algo-rithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the selected polynomials can be modelled in terms of size and root properties. We propose a new kind of polynomials for GNFS: with a new degree of freedom, we further improve the size property. We demonstrate the efficiency of our algorithm by exhibiting a better polynomial tha...

  16. Computing derivative-based global sensitivity measures using polynomial chaos expansions

    Sudret, B.; Mai, C.V.

    2015-01-01

    In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are recognized as accurate techniques, at a rather high computational cost though. The use of polynomial chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The derivative-based global sensitivity measures (DGSMs) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis. - Highlights: • Derivative-based global sensitivity measures (DGSM) have been developed for screening purpose. • Polynomial chaos expansions (PC) are used as a surrogate model of the original computational model. • From a PC expansion the DGSM can be computed analytically. • The paper provides the derivatives of Hermite, Legendre and Laguerre polynomials for this purpose

  17. Hermiticity and CPT in string theory

    Sonoda, Hidenori

    1989-01-01

    In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)

  18. Hermite y la trascendencia de e

    José Manuel Sánchez Muñoz

    2011-04-01

    Full Text Available Este artículo es en parte una traducción de los trabajos que llevó a cabo el francés Charles Hermite para determinar la trascendencia del número e, considerado éste como base de los logaritmos neperianos. Se han realizado algunas simplificaciones en dicha demostración para hacerlamás asequible al lector. Se presenta además una introducción del número e a través de quien inventó su notación, Leonhard Euler.

  19. Scale invariants from Gaussian-Hermite moments

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš

    2017-01-01

    Roč. 132, č. 1 (2017), s. 77-84 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Scale invariants * Gaussian–Hermite moments * Variable modulation * Normalization * Zernike moments Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0466031.pdf

  20. Branched polynomial covering maps

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  1. Pythagorean hodograph spline spirals that match G3 Hermite data from circles

    Li, Zhong; Ait-Haddou, Rachid; Biard, Luc

    2015-01-01

    A construction is given for a G3 piecewise rational Pythagorean hodograph convex spiral which interpolates two G3 Hermite data associated with two non-concentric circles, one being inside the other. The spiral solution is of degree 7 and is the involute of a G2 convex curve, referred to as the evolute solution, with prescribed length, and composed of two PH quartic curves. Conditions for G3 continuous contact with circles are then studied and it turns out that an ordinary cusp at each end of the evolute solution is required. Thus, geometric properties of a family of PH polynomial quartics, allowing to generate such an ordinary cusp at one end, are studied. Finally, a constructive algorithm is described with illustrative examples.

  2. New one-flavor hybrid Monte Carlo simulation method for lattice fermions with γ5 hermiticity

    Ogawa, Kenji

    2011-01-01

    We propose a new method for Hybrid Monte Carlo (HMC) simulations with odd numbers of dynamical fermions on the lattice. It employs a different approach from polynomial or rational HMC. In this method, γ 5 hermiticity of the lattice Dirac operators is crucial and it can be applied to Wilson, domain-wall, and overlap fermions. We compare HMC simulations with two degenerate flavors and (1+1) degenerate flavors using optimal domain-wall fermions. The ratio of the efficiency, (number of accepted trajectories)/(simulation time), is about 3:2. The relation between pseudofermion action of chirally symmetric lattice fermions in four-dimensional (overlap) and five-dimensional (domain-wall) representation are also analyzed.

  3. Pythagorean hodograph spline spirals that match G3 Hermite data from circles

    Li, Zhong

    2015-04-01

    A construction is given for a G3 piecewise rational Pythagorean hodograph convex spiral which interpolates two G3 Hermite data associated with two non-concentric circles, one being inside the other. The spiral solution is of degree 7 and is the involute of a G2 convex curve, referred to as the evolute solution, with prescribed length, and composed of two PH quartic curves. Conditions for G3 continuous contact with circles are then studied and it turns out that an ordinary cusp at each end of the evolute solution is required. Thus, geometric properties of a family of PH polynomial quartics, allowing to generate such an ordinary cusp at one end, are studied. Finally, a constructive algorithm is described with illustrative examples.

  4. Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

    Qiang DU

    2018-04-01

    Full Text Available Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

  5. Axisymmetric MHD equilibrium solver with bicubic Hermite elements

    Luetjens, H.; Bondeson, A.; Roy, A.

    1990-05-01

    A numerical code solving axisymmetric magnetohydrodynamic equilibria with rectangular bicubic Hermite elements has been developed. Two test cases are used for checking the convergence rate of the solution. The mapping of the equilibrium quantities into flux coordinates for magnetohydrodynamic stability calculation is performed by a method which preserves the convergence properties of the cubic Hermite elements. Convergence studies show the behaviour of the stability results when the equilibrium mesh is varied. (author) 13 refs., 3 tabs

  6. Weierstrass polynomials for links

    Hansen, Vagn Lundsgaard

    1997-01-01

    There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from...

  7. Nonnegativity of uncertain polynomials

    Šiljak Dragoslav D.

    1998-01-01

    Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.

  8. Polynomial Heisenberg algebras

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M

    2004-01-01

    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  9. Generalizations of orthogonal polynomials

    Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.

    2005-07-01

    We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.

  10. Superiority of legendre polynomials to Chebyshev polynomial in ...

    In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...

  11. Extended biorthogonal matrix polynomials

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  12. On Symmetric Polynomials

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  13. Evolution of king crabs from hermit crab ancestors

    Cunningham, C. W.; Blackstone, N. W.; Buss, L. W.

    1992-02-01

    KING crabs (Family Lithodidae) are among the world's largest arthropods, having a crab-like morphology and a strongly calcified exoskeleton1-6. The hermit crabs, by contrast, have depended on gastropod shells for protection for over 150 million years5,7. Shell-living has constrained the morphological evolution of hermit crabs by requiring a decalcified asymmetrical abdomen capable of coiling into gastropod shells and by preventing crabs from growing past the size of the largest available shells1-6. Whereas reduction in shell-living and acquisition of a crab-like morphology (carcinization) has taken place independently in several hermit crab lineages, and most dramatically in king crabs1-6, the rate at which this process has occurred was entirely unknown2,7. We present molecular evidence that king crabs are not only descended from hermit crabs, but are nested within the hermit crab genus Pagurus. We estimate that loss of the shell-living habit and the complete carcinization of king crabs has taken between 13 and 25 million years.

  14. Chromatic polynomials for simplicial complexes

    Møller, Jesper Michael; Nord, Gesche

    2016-01-01

    In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r...

  15. Exact solution of Chern-Simons-matter matrix models with characteristic/orthogonal polynomials

    Tierz, Miguel

    2016-01-01

    We solve for finite N the matrix model of supersymmetric U(N) Chern-Simons theory coupled to N f fundamental and N f anti-fundamental chiral multiplets of R-charge 1/2 and of mass m, by identifying it with an average of inverse characteristic polynomials in a Stieltjes-Wigert ensemble. This requires the computation of the Cauchy transform of the Stieltjes-Wigert polynomials, which we carry out, finding a relationship with Mordell integrals, and hence with previous analytical results on the matrix model. The semiclassical limit of the model is expressed, for arbitrary N f , in terms of a single Hermite polynomial. This result also holds for more general matter content, involving matrix models with double-sine functions.

  16. On the equisummability of Hermite and Fourier expansions

    is the Fourier transform on Rn. Let ب ; 2 Nn be the n-dimensional Hermite functions which are eigenfunctions of the Hermite operator H ¼ ہء jxj. 2 with the eigenvalue. ً2j j nق where j j ¼ 1 ءءء n. Let Pk be the orthogonal projection of L 2ًRnق onto the kth eigenspace spanned by ب ; j j ¼ k. More precisely,. Pk fًxق ¼. X j j¼k. Z.

  17. Colouring and knot polynomials

    Welsh, D.J.A.

    1991-01-01

    These lectures will attempt to explain a connection between the recent advances in knot theory using the Jones and related knot polynomials with classical problems in combinatorics and statistical mechanics. The difficulty of some of these problems will be analysed in the context of their computational complexity. In particular we shall discuss colourings and groups valued flows in graphs, knots and the Jones and Kauffman polynomials, the Ising, Potts and percolation problems of statistical physics, computational complexity of the above problems. (author). 20 refs, 9 figs

  18. Additive and polynomial representations

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  19. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    Doha, E H; Ahmed, H M

    2004-01-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed

  20. Temperature and salinity tolerance of adult hermit crabs, Diogenes ...

    1987-11-04

    Nov 4, 1987 ... estuary may not limit the distribution of hermit crabs. Because of their broad tolerance they should be able to survive near the head of the estuary. However, this continuous exposure to low salinity may be intolerable during moult and limit normal growth and metamorphosis, so although there may not be a.

  1. Modulated Hermite series expansions and the time-bandwidth product

    Brinker, den A.C.; Sarroukh, B.E.

    2000-01-01

    The harmonically modulated Hermite series constitute an orthonormal basis in the Hilbert space of square-integrable functions. This basis comprises three free parameters, namely a translation, a modulation, and a scale factor. In practical situations, we are interested in series expansions that are

  2. On the Laurent polynomial rings

    Stefanescu, D.

    1985-02-01

    We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)

  3. Computing the Alexander Polynomial Numerically

    Hansen, Mikael Sonne

    2006-01-01

    Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....

  4. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  5. Stochastic Estimation via Polynomial Chaos

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  6. Polynomial optimization : Error analysis and applications

    Sun, Zhao

    2015-01-01

    Polynomial optimization is the problem of minimizing a polynomial function subject to polynomial inequality constraints. In this thesis we investigate several hierarchies of relaxations for polynomial optimization problems. Our main interest lies in understanding their performance, in particular how

  7. Multivariate Hermite interpolation on scattered point sets using tensor-product expo-rational B-splines

    Dechevsky, Lubomir T.; Bang, Børre; Laksa˚, Arne; Zanaty, Peter

    2011-12-01

    At the Seventh International Conference on Mathematical Methods for Curves and Surfaces, To/nsberg, Norway, in 2008, several new constructions for Hermite interpolation on scattered point sets in domains in Rn,n∈N, combined with smooth convex partition of unity for several general types of partitions of these domains were proposed in [1]. All of these constructions were based on a new type of B-splines, proposed by some of the authors several years earlier: expo-rational B-splines (ERBS) [3]. In the present communication we shall provide more details about one of these constructions: the one for the most general class of domain partitions considered. This construction is based on the use of two separate families of basis functions: one which has all the necessary Hermite interpolation properties, and another which has the necessary properties of a smooth convex partition of unity. The constructions of both of these two bases are well-known; the new part of the construction is the combined use of these bases for the derivation of a new basis which enjoys having all above-said interpolation and unity partition properties simultaneously. In [1] the emphasis was put on the use of radial basis functions in the definitions of the two initial bases in the construction; now we shall put the main emphasis on the case when these bases consist of tensor-product B-splines. This selection provides two useful advantages: (A) it is easier to compute higher-order derivatives while working in Cartesian coordinates; (B) it becomes clear that this construction becomes a far-going extension of tensor-product constructions. We shall provide 3-dimensional visualization of the resulting bivariate bases, using tensor-product ERBS. In the main tensor-product variant, we shall consider also replacement of ERBS with simpler generalized ERBS (GERBS) [2], namely, their simplified polynomial modifications: the Euler Beta-function B-splines (BFBS). One advantage of using BFBS instead of ERBS

  8. Complex Polynomial Vector Fields

    Dias, Kealey

    vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...

  9. Roots of the Chromatic Polynomial

    Perrett, Thomas

    The chromatic polynomial of a graph G is a univariate polynomial whose evaluation at any positive integer q enumerates the proper q-colourings of G. It was introduced in connection with the famous four colour theorem but has recently found other applications in the field of statistical physics...... extend Thomassen’s technique to the Tutte polynomial and as a consequence, deduce a density result for roots of the Tutte polynomial. This partially answers a conjecture of Jackson and Sokal. Finally, we refocus our attention on the chromatic polynomial and investigate the density of chromatic roots...

  10. Polynomials in algebraic analysis

    Multarzyński, Piotr

    2012-01-01

    The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...

  11. Hermite regularization of the lattice Boltzmann method for open source computational aeroacoustics.

    Brogi, F; Malaspinas, O; Chopard, B; Bonadonna, C

    2017-10-01

    The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, which is of interest for aeroacoustic applications. Several solutions have been proposed but are often too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. An original regularized collision operator is proposed, based on the expansion of Hermite polynomials, that greatly improves the accuracy and stability of the LBM without significantly altering its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between this approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial software, while here the entire theoretical framework is implemented using an open source library (palabos).

  12. Study on Meshfree Hermite Radial Point Interpolation Method for Flexural Wave Propagation Modeling and Damage Quantification

    Hosein Ghaffarzadeh

    Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.

  13. General Reducibility and Solvability of Polynomial Equations ...

    General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...

  14. The algorithmic details of polynomials application in the problems of heat and mass transfer control on the hypersonic aircraft permeable surfaces

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable surfaces heat and mass transfer effective control mathematical modeling problems are considered. The analysis of the control (the blowing) constructive and gasdynamical restrictions is carried out for the porous and perforated surfaces. The functions classes allowing realize the controls taking into account the arising types of restrictions are suggested. Estimates of the computational complexity of the W. G. Horner scheme application in the case of using the C. Hermite interpolation polynomial are given.

  15. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    Hampton, Jerrad; Doostan, Alireza

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ 1 -minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy

  16. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    Hampton, Jerrad; Doostan, Alireza

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ1-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.

  17. On some Hermite series identities and their applications to Gabor analysis

    Lemvig, Jakob

    2016-01-01

    We prove some infinite series identities for the Hermite functions. From these identities we disprove the Gabor frame set conjecture for Hermite functions of order (Formula presented.) and (Formula presented.) for (Formula presented.). The results hold not only for Hermite functions, but for two ...... large classes of eigenfunctions of the Fourier transform associated with the eigenvalues (Formula presented.) and i, and the results indicate that the Gabor frame set of all such functions must have a rather complicated structure....

  18. Near infrared face recognition using Zernike moments and Hermite kernels

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo

    2015-01-01

    Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf

  19. Rotation invariants from Gaussian-Hermite moments of color images

    Yang, B.; Suk, Tomáš; Flusser, Jan; Shi, Z.; Chen, X.

    2018-01-01

    Roč. 143, č. 1 (2018), s. 282-291 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Color images * Object recognition * Rotation invariants * Gaussian–Hermite moments * Joint invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748.pdf

  20. 3D rotation invariants of Gaussian-Hermite moments

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2015-01-01

    Roč. 54, č. 1 (2015), s. 18-26 ISSN 0167-8655 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal moments * Gaussian–Hermite moments * 3D moment invariants Subject RIV: IN - Informatics, Computer Science Impact factor: 1.586, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/yang-0438325.pdf

  1. Five Martyr Brothers. First Polish hermits and their worship

    Kinga Blaschke

    2016-12-01

    Full Text Available Brothers Benedict and John, students of Romuald, came to Poland at the invitation of Otto III to convert pagans. Soon the Italian hermits were joined by Polish brothers Isaac and Matthew, who helped them in learning the Slavic language. The hermits, as well as Christinus, well killed in 1003 by thugs who wanted to steal money given by Duke Boleslav to an expedition to Rome, which was aimed at obtaining papal consent for conducting missionary work. Although the hermits died as victims of a robbery, killed by fellow Christians, the pope canonized them as martyrs. Their lives are relatively well-documented: the earliest and the most credible story of the five brothers by Bruno of Querfurt was written as early as five years after their death, although remained unknown until 1883. Another early account is the life of St. Romuald by Piotr Damiani of 1041. The martyrs have been also associated with yet another mysterious work – a gravestone unearthed in 1959 at the external wall of the north Roman apse of the Gniezno Cathedral, considered by most researchers the oldest epigraphic item on the Polish soil. However, the identification of the warriors mentioned in the inscription with 11th century martyrs raises many doubts. The article discusses the above matters, as well as the subject of the development of the worship of the martyr brothers.

  2. Polynomial approximation on polytopes

    Totik, Vilmos

    2014-01-01

    Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

  3. Polynomial intelligent states

    Milks, Matthew M; Guise, Hubert de

    2005-01-01

    The construction of su(2) intelligent states is simplified using a polynomial representation of su(2). The cornerstone of the new construction is the diagonalization of a 2 x 2 matrix. The method is sufficiently simple to be easily extended to su(3), where one is required to diagonalize a single 3 x 3 matrix. For two perfectly general su(3) operators, this diagonalization is technically possible but the procedure loses much of its simplicity owing to the algebraic form of the roots of a cubic equation. Simplified expressions can be obtained by specializing the choice of su(3) operators. This simpler construction will be discussed in detail

  4. Complex Polynomial Vector Fields

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...

  5. Polynomial methods in combinatorics

    Guth, Larry

    2016-01-01

    This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book. Some of the greatest advances in geometric combinatorics and harmonic analysis in recent years have been accompl...

  6. Polynomial representations of GLn

    Green, James A; Erdmann, Karin

    2007-01-01

    The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

  7. Polynomial representations of GLN

    Green, James A

    1980-01-01

    The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

  8. Efficient computation of Laguerre polynomials

    A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2017-01-01

    textabstractAn efficient algorithm and a Fortran 90 module (LaguerrePol) for computing Laguerre polynomials . Ln(α)(z) are presented. The standard three-term recurrence relation satisfied by the polynomials and different types of asymptotic expansions valid for . n large and . α small, are used

  9. Optimization over polynomials : Selected topics

    Laurent, M.; Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon

    2014-01-01

    Minimizing a polynomial function over a region defined by polynomial inequalities models broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic approaches have emerged recently for computing the global minimum, by combining tools from real algebra (sums of

  10. Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit

    Parker, Joseph T.

    2015-02-03

    Copyright © Cambridge University Press 2015. We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in Fourier-Hermite phase space using forwards and backwards propagating Hermite modes recently developed for gyrokinetic theory. We derive a free energy equation that relates the change in the electric field to the net Hermite flux out of the zeroth Hermite mode. In linear Landau damping, decay in the electric field corresponds to forward propagating Hermite modes; in nonlinear damping, the initial decay is followed by a growth phase characterized by the generation of backwards propagating Hermite modes by the nonlinear term. The free energy content of the backwards propagating modes increases exponentially until balancing that of the forward propagating modes. Thereafter there is no systematic net Hermite flux, so the electric field cannot decay and the nonlinearity effectively suppresses Landau damping. These simulations are performed using the fully-spectral 5D gyrokinetics code SpectroGK, modified to solve the 1+1D Vlasov-Poisson system. This captures Landau damping via Hou-Li filtering in velocity space. Therefore the code is applicable even in regimes where phase mixing and filamentation are dominant.

  11. Closed-form expressions for time-frequency operations involving Hermite functions

    Korevaar, C.W.; Oude Alink, M.S.; de Boer, Pieter-Tjerk; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2016-01-01

    The product, convolution, correlation, Wigner distribution function (WDF) and ambiguity function (AF) of two Hermite functions of arbitrary order n and m are derived and expressed as a bounded, weighted sum of n+m Hermite functions. It was already known that these mathematical operations performed

  12. Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit

    Parker, Joseph T.; Dellar, Paul J.

    2015-01-01

    Copyright © Cambridge University Press 2015. We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in Fourier-Hermite phase space using forwards

  13. Shell use and partitioning of two sympatric species of hermit crabs on a tropical mudflat

    Teoh, Hong Wooi; Chong, Ving Ching

    2014-02-01

    Shell use and partitioning of two sympatric hermit crab species (Diogenes moosai and Diogenes lopochir), as determined by shell shape, size and availability, were examined from August 2009 to March 2011 in a tropical mudflat (Malaysia). Shells of 14 gastropod species were used but > 85% comprised shells of Cerithidea cingulata, Nassarius cf. olivaceus, Nassarius jacksonianus, and Thais malayensis. Shell partitioning between hermit crab species, sexes, and developmental stages was evident from occupied shells of different species, shapes, and sizes. Extreme bias in shell use pattern by male and female of both species of hermit crabs suggests that shell shape, which depends on shell species, is the major determinant of shell use. The hermit crab must however fit well into the shell so that compatibility between crab size and shell size becomes crucial. Although shell availability possibly influenced shell use and hermit crab distribution, this is not critical in a tropical setting of high gastropod diversity and abundance.

  14. Discrete linear canonical transforms based on dilated Hermite functions.

    Pei, Soo-Chang; Lai, Yun-Chiu

    2011-08-01

    Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time-frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time-frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.

  15. Squeezing of higher order Hermite-Gauss modes

    Lassen, Mikael Østergaard

    2008-01-01

    The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...

  16. On generalized Fibonacci and Lucas polynomials

    Nalli, Ayse [Department of Mathematics, Faculty of Sciences, Selcuk University, 42075 Campus-Konya (Turkey)], E-mail: aysenalli@yahoo.com; Haukkanen, Pentti [Department of Mathematics, Statistics and Philosophy, 33014 University of Tampere (Finland)], E-mail: mapehau@uta.fi

    2009-12-15

    Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q{sub h}(x) that generalizes the Q-matrix whose powers generate the Fibonacci numbers.

  17. Parallel Construction of Irreducible Polynomials

    Frandsen, Gudmund Skovbjerg

    Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...... of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p....

  18. Orthogonal polynomials in transport theories

    Dehesa, J.S.

    1981-01-01

    The asymptotical (k→infinity) behaviour of zeros of the polynomials gsub(k)sup((m)(ν)) encountered in the treatment of direct and inverse problems of scattering in neutron transport as well as radiative transfer theories is investigated in terms of the amplitude antiwsub(k) of the kth Legendre polynomial needed in the expansion of the scattering function. The parameters antiwsub(k) describe the anisotropy of scattering of the medium considered. In particular, it is shown that the asymptotical density of zeros of the polynomials gsub(k)sup(m)(ν) is an inverted semicircle for the anisotropic non-multiplying scattering medium

  19. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

    Duran, Antonio J; Gruenbaum, F Alberto

    2006-01-01

    The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein

  20. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  1. Julia Sets of Orthogonal Polynomials

    Christiansen, Jacob Stordal; Henriksen, Christian; Petersen, Henrik Laurberg

    2018-01-01

    For a probability measure with compact and non-polar support in the complex plane we relate dynamical properties of the associated sequence of orthogonal polynomials fPng to properties of the support. More precisely we relate the Julia set of Pn to the outer boundary of the support, the lled Julia...... set to the polynomial convex hull K of the support, and the Green's function associated with Pn to the Green's function for the complement of K....

  2. An introduction to orthogonal polynomials

    Chihara, Theodore S

    1978-01-01

    Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some

  3. Scattering theory and orthogonal polynomials

    Geronimo, J.S.

    1977-01-01

    The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms

  4. Bannai-Ito polynomials and dressing chains

    Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei

    2012-01-01

    Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.

  5. Birth-death processes and associated polynomials

    van Doorn, Erik A.

    2003-01-01

    We consider birth-death processes on the nonnegative integers and the corresponding sequences of orthogonal polynomials called birth-death polynomials. The sequence of associated polynomials linked with a sequence of birth-death polynomials and its orthogonalizing measure can be used in the analysis

  6. On Multiple Polynomials of Capelli Type

    S.Y. Antonov

    2016-03-01

    Full Text Available This paper deals with the class of Capelli polynomials in free associative algebra F{Z} (where F is an arbitrary field, Z is a countable set generalizing the construction of multiple Capelli polynomials. The fundamental properties of the introduced Capelli polynomials are provided. In particular, decomposition of the Capelli polynomials by means of the same type of polynomials is shown. Furthermore, some relations between their T -ideals are revealed. A connection between double Capelli polynomials and Capelli quasi-polynomials is established.

  7. Derivation of Grad’s Thirteen Regularized Moment Equations Using a Hermite Polynomial Representation of Velocity Distribution Function (Preprint)

    2010-06-16

    B4) Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs...B9) Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs. (15...Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs. (15) and (16), into Eq. (B13) and then dropping all

  8. Niche construction drives social dependence in hermit crabs.

    Laidre, Mark E

    2012-10-23

    Organisms can receive not only a genetic inheritance from their ancestors but also an ecological inheritance, involving modifications their ancestors made to the environment through niche construction. Ecological inheritances may persist as a legacy, potentially generating selection pressures that favor sociality. Yet, most proposed cases of sociality being impacted by an ecological inheritance come from organisms that live among close kin and were highly social before their niche construction began. Here, I show that in terrestrial hermit crabs (Coenobita compressus)--organisms that do not live with kin and reside alone, each in its own shell--niche-construction drives social dependence, such that individuals can only survive in remodeled shells handed down from conspecifics. These results suggest that niche construction can be an important initiator of evolutionary pressures to socialize, even among unrelated and otherwise asocial organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Chromatic polynomials of random graphs

    Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian

    2010-01-01

    Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.

  10. Cosmographic analysis with Chebyshev polynomials

    Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-05-01

    The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.

  11. Time-Frequency Analysis and Hermite Projection Method Applied to Swallowing Accelerometry Signals

    Ervin Sejdić

    2010-01-01

    Full Text Available Fast Hermite projections have been often used in image-processing procedures such as image database retrieval, projection filtering, and texture analysis. In this paper, we propose an innovative approach for the analysis of one-dimensional biomedical signals that combines the Hermite projection method with time-frequency analysis. In particular, we propose a two-step approach to characterize vibrations of various origins in swallowing accelerometry signals. First, by using time-frequency analysis we obtain the energy distribution of signal frequency content in time. Second, by using fast Hermite projections we characterize whether the analyzed time-frequency regions are associated with swallowing or other phenomena (vocalization, noise, bursts, etc.. The numerical analysis of the proposed scheme clearly shows that by using a few Hermite functions, vibrations of various origins are distinguishable. These results will be the basis for further analysis of swallowing accelerometry to detect swallowing difficulties.

  12. Invasive ants compete with and modify the trophic ecology of hermit crabs on tropical islands.

    McNatty, Alice; Abbott, Kirsti L; Lester, Philip J

    2009-05-01

    Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to delta(15) N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in delta(15) N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in

  13. Polynomial weights and code constructions

    Massey, J; Costello, D; Justesen, Jørn

    1973-01-01

    polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.......For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...

  14. Orthogonal Polynomials and Special Functions

    Assche, Walter

    2003-01-01

    The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.

  15. Symmetric functions and orthogonal polynomials

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  16. STABILITY SYSTEMS VIA HURWITZ POLYNOMIALS

    BALTAZAR AGUIRRE HERNÁNDEZ

    2017-01-01

    Full Text Available To analyze the stability of a linear system of differential equations  ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.

  17. On Modular Counting with Polynomials

    Hansen, Kristoffer Arnsfelt

    2006-01-01

    For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...

  18. Global Polynomial Kernel Hazard Estimation

    Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch

    2015-01-01

    This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...

  19. Congruences concerning Legendre polynomials III

    Sun, Zhi-Hong

    2010-01-01

    Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is coprime to $p$. Let $\\{P_n(x)\\}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\\in R_p$ with $m\

  20. Two polynomial division inequalities in

    Goetgheluck P

    1998-01-01

    Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.

  1. Dirichlet polynomials, majorization, and trumping

    Pereira, Rajesh; Plosker, Sarah

    2013-01-01

    Majorization and trumping are two partial orders which have proved useful in quantum information theory. We show some relations between these two partial orders and generalized Dirichlet polynomials, Mellin transforms, and completely monotone functions. These relations are used to prove a succinct generalization of Turgut’s characterization of trumping. (paper)

  2. The modified Gauss diagonalization of polynomial matrices

    Saeed, K.

    1982-10-01

    The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)

  3. Sheffer and Non-Sheffer Polynomial Families

    G. Dattoli

    2012-01-01

    Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.

  4. The finite Fourier transform of classical polynomials

    Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe

    2014-01-01

    The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.

  5. Ongoing movement of the hermit warbler X Townsend's warbler hybrid zone.

    Meade Krosby

    Full Text Available BACKGROUND: Movements of hybrid zones - areas of overlap and interbreeding between species - are difficult to document empirically. This is true because moving hybrid zones are expected to be rare, and because movement may proceed too slowly to be measured directly. Townsend's warblers (Dendroica townsendi hybridize with hermit warblers (D. occidentalis where their ranges overlap in Washington and Oregon. Previous morphological, behavioral, and genetic studies of this hybrid zone suggest that it has been steadily moving into the geographical range of hermit warblers, with the more aggressive Townsend's warblers replacing hermit warblers along ∼2000 km of the Pacific coast of Canada and Alaska. Ongoing movement of the zone, however, has yet to be empirically demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We compared recently sampled hybrid zone specimens to those collected 10-20 years earlier, to test directly the long-standing hypothesis of hybrid zone movement between these species. Newly sampled specimens were more Townsend's-like than historical specimens, consistent with ongoing movement of the zone into the geographical range of hermit warblers. CONCLUSIONS/SIGNIFICANCE: While movement of a hybrid zone may be explained by several possible mechanisms, in this case a wealth of existing evidence suggests that movement is being driven by the competitive displacement of hermit warblers by Townsend's warblers. That no ecological differences have been found between these species, and that replacement of hermit warblers by Townsend's warblers is proceeding downward in latitude and elevation - opposite the directions of range shifts predicted by recent climate change - further support that this movement is not being driven by alternative environmental factors. If the mechanism of competitive displacement is correct, whether this process will ultimately lead to the extinction of hermit warblers will depend on the continued maintenance of the

  6. A Summation Formula for Macdonald Polynomials

    de Gier, Jan; Wheeler, Michael

    2016-03-01

    We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.

  7. A New Generalisation of Macdonald Polynomials

    Garbali, Alexandr; de Gier, Jan; Wheeler, Michael

    2017-06-01

    We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.

  8. Associated polynomials and birth-death processes

    van Doorn, Erik A.

    2001-01-01

    We consider sequences of orthogonal polynomials with positive zeros, and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials, with a view to

  9. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

    Duran, Antonio J [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo (PO BOX) 1160, 41080 Sevilla (Spain); Gruenbaum, F Alberto [Department of Mathematics, University of California, Berkeley, CA 94720 (United States)

    2006-04-07

    The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein.

  10. BSDEs with polynomial growth generators

    Philippe Briand

    2000-01-01

    Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.

  11. Quantum entanglement via nilpotent polynomials

    Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza

    2006-01-01

    We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed

  12. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  13. Special polynomials associated with some hierarchies

    Kudryashov, Nikolai A.

    2008-01-01

    Special polynomials associated with rational solutions of a hierarchy of equations of Painleve type are introduced. The hierarchy arises by similarity reduction from the Fordy-Gibbons hierarchy of partial differential equations. Some relations for these special polynomials are given. Differential-difference hierarchies for finding special polynomials are presented. These formulae allow us to obtain special polynomials associated with the hierarchy studied. It is shown that rational solutions of members of the Schwarz-Sawada-Kotera, the Schwarz-Kaup-Kupershmidt, the Fordy-Gibbons, the Sawada-Kotera and the Kaup-Kupershmidt hierarchies can be expressed through special polynomials of the hierarchy studied

  14. Space complexity in polynomial calculus

    Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil

    2015-01-01

    Roč. 44, č. 4 (2015), s. 1119-1153 ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015 http://epubs.siam.org/doi/10.1137/120895950

  15. Codimensions of generalized polynomial identities

    Gordienko, Aleksei S

    2010-01-01

    It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q + and t element of Z + such that gc n (A)∼Cn t d n as n→∞, where d=PI exp(A) element of Z + . Thus, Amitsur's and Regev's conjectures hold for the codimensions gc n (A) of the generalized polynomial identities. Bibliography: 6 titles.

  16. Stable piecewise polynomial vector fields

    Claudio Pessoa

    2012-09-01

    Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

  17. New families of superintegrable systems from k-step rational extensions, polynomial algebras and degeneracies

    Marquette, Ian

    2015-01-01

    Four new families of two-dimensional quantum superintegrable systems are constructed from k-step extension of the harmonic oscillator and the radial oscillator. Their wavefunctions are related with Hermite and Laguerre exceptional orthogonal polynomials (EOP) of type III. We show that ladder operators obtained from alternative construction based on combinations of supercharges in the Krein-Adler and Darboux Crum (or state deleting and creating) approaches can be used to generate a set of integrals of motion and a corresponding polynomial algebra that provides an algebraic derivation of the full spectrum and total number of degeneracies. Such derivation is based on finite dimensional unitary representations (unirreps) and doesn't work for integrals build from standard ladder operators in supersymmetric quantum mechanics (SUSYQM) as they contain singlets isolated from excited states. In this paper, we also rely on a novel approach to obtain the finite dimensional unirreps based on the action of the integrals of motion on the wavefunctions given in terms of these EOP. We compare the results with those obtained from the Daskaloyannis approach and the realizations in terms of deformed oscillator algebras for one of the new families in the case of 1-step extension. This communication is a review of recent works. (paper)

  18. Comparison Between Polynomial, Euler Beta-Function and Expo-Rational B-Spline Bases

    Kristoffersen, Arnt R.; Dechevsky, Lubomir T.; Laksa˚, Arne; Bang, Børre

    2011-12-01

    Euler Beta-function B-splines (BFBS) are the practically most important instance of generalized expo-rational B-splines (GERBS) which are not true expo-rational B-splines (ERBS). BFBS do not enjoy the full range of the superproperties of ERBS but, while ERBS are special functions computable by a very rapidly converging yet approximate numerical quadrature algorithms, BFBS are explicitly computable piecewise polynomial (for integer multiplicities), similar to classical Schoenberg B-splines. In the present communication we define, compute and visualize for the first time all possible BFBS of degree up to 3 which provide Hermite interpolation in three consecutive knots of multiplicity up to 3, i.e., the function is being interpolated together with its derivatives of order up to 2. We compare the BFBS obtained for different degrees and multiplicities among themselves and versus the classical Schoenberg polynomial B-splines and the true ERBS for the considered knots. The results of the graphical comparison are discussed from analytical point of view. For the numerical computation and visualization of the new B-splines we have used Maple 12.

  19. Do I stand out or blend in? Conspicuousness awareness and consistent behavioural differences in hermit crabs.

    Briffa, Mark; Twyman, Claire

    2011-06-23

    Animals titrate their behaviour against the level of risk and an individual's conspicuousness should influence decisions such as when to flee and for how long to hide. Conspicuousness will vary with variation in substrate colour. Since hermit crabs frequently change the shells they occupy, shell colour will also influence conspicuousness and to be aware of their conspicuousness would require information on both of these factors to be integrated. Reduced boldness in high-contrast shell and substrate combinations compared with situations of low contrast indicates that hermit crabs are aware of current conspicuousness. Differences between individuals remained consistent across conspicuousness levels indicating the presence of animal personalities.

  20. Algebraic polynomials with random coefficients

    K. Farahmand

    2002-01-01

    Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.

  1. Improved multivariate polynomial factoring algorithm

    Wang, P.S.

    1978-01-01

    A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included

  2. Fourier series and orthogonal polynomials

    Jackson, Dunham

    2004-01-01

    This text for undergraduate and graduate students illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Starting with a definition and explanation of the elements of Fourier series, the text follows with examinations of Legendre polynomials and Bessel functions. Boundary value problems consider Fourier series in conjunction with Laplace's equation in an infinite strip and in a rectangle, with a vibrating string, in three dimensions, in a sphere, and in other circumstances. An overview of Pearson frequency functions is followe

  3. Killings, duality and characteristic polynomials

    Álvarez, Enrique; Borlaf, Javier; León, José H.

    1998-03-01

    In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998

  4. Orthogonal polynomials and random matrices

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  5. Introduction to Real Orthogonal Polynomials

    1992-06-01

    uses Green’s functions. As motivation , consider the Dirichlet problem for the unit circle in the plane, which involves finding a harmonic function u(r...xv ; a, b ; q) - TO [q-N ab+’q ; q, xq b. Orthogoy RMotion O0 (bq :q)x p.(q* ; a, b ; q) pg(q’ ; a, b ; q) (q "q), (aq)x (q ; q), (I -abq) (bq ; q... motivation and justi- fication for continued study of the intrinsic structure of orthogonal polynomials. 99 LIST OF REFERENCES 1. Deyer, W. M., ed., CRC

  6. A companion matrix for 2-D polynomials

    Boudellioua, M.S.

    1995-08-01

    In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs

  7. On polynomial solutions of the Heun equation

    Gurappa, N; Panigrahi, Prasanta K

    2004-01-01

    By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)

  8. A new Arnoldi approach for polynomial eigenproblems

    Raeven, F.A.

    1996-12-31

    In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.

  9. Bayer Demosaicking with Polynomial Interpolation.

    Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil

    2016-08-30

    Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.

  10. Fermionic formula for double Kostka polynomials

    Liu, Shiyuan

    2016-01-01

    The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...

  11. Polynomial sequences generated by infinite Hessenberg matrices

    Verde-Star Luis

    2017-01-01

    Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

  12. The principal component analysis method used with polynomial Chaos expansion to propagate uncertainties through critical transport problems

    Rising, M. E.; Prinja, A. K. [Univ. of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM 87131 (United States)

    2012-07-01

    A critical neutron transport problem with random material properties is introduced. The total cross section and the average neutron multiplicity are assumed to be uncertain, characterized by the mean and variance with a log-normal distribution. The average neutron multiplicity and the total cross section are assumed to be uncorrected and the material properties for differing materials are also assumed to be uncorrected. The principal component analysis method is used to decompose the covariance matrix into eigenvalues and eigenvectors and then 'realizations' of the material properties can be computed. A simple Monte Carlo brute force sampling of the decomposed covariance matrix is employed to obtain a benchmark result for each test problem. In order to save computational time and to characterize the moments and probability density function of the multiplication factor the polynomial chaos expansion method is employed along with the stochastic collocation method. A Gauss-Hermite quadrature set is convolved into a multidimensional tensor product quadrature set and is successfully used to compute the polynomial chaos expansion coefficients of the multiplication factor. Finally, for a particular critical fuel pin assembly the appropriate number of random variables and polynomial expansion order are investigated. (authors)

  13. Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): a role for ecological causation.

    Temeles, Ethan J; Miller, Jill S; Rifkin, Joanna L

    2010-04-12

    Unambiguous examples of ecological causation of sexual dimorphism are rare, and the best evidence involves sexual differences in trophic morphology. We show that moderate female-biased sexual dimorphism in bill curvature is the ancestral condition in hermit hummingbirds (Phaethornithinae), and that it is greatly amplified in species such as Glaucis hirsutus and Phaethornis guy, where bills of females are 60 per cent more curved than bills of males. In contrast, bill curvature dimorphism is lost or reduced in a lineage of short-billed hermit species and in specialist Eutoxeres sicklebill hermits. In the hermits, males tend to be larger than females in the majority of species, although size dimorphism is typically small. Consistent with earlier studies of hummingbird feeding performance, both raw regressions of traits and phylogenetic independent contrasts supported the prediction that dimorphism in bill curvature of hermits is associated with longer bills. Some evidence indicates that differences between sexes of hermit hummingbirds are associated with differences in the use of food plants. We suggest that some hermit hummingbirds provide model organisms for studies of ecological causation of sexual dimorphism because their sexual dimorphism in bill curvature provides a diagnostic clue for the food plants that need to be monitored for studies of sexual differences in resource use.

  14. Hermite-Hadamard type inequalities for GA-s-convex functions

    İmdat İşcan

    2014-10-01

    Full Text Available In this paper, The author introduces the concepts of the GA-s-convex functions in the first sense and second sense and establishes some integral inequalities of Hermite-Hadamard type related to the GA-s-convex functions. Some applications to special means of real numbers are also given.

  15. Approximation by some combinations of Poisson integrals for Hermite and Laguerre expansions

    Grażyna Krech

    2013-02-01

    Full Text Available The aim of this paper is the study of a rate of convergence of some combinations of Poisson integrals for Hermite and Laguerre expansions. We are able to achieve faster convergence for our modified operators over the Poisson integrals. We prove also the Voronovskaya type theorem for these new operators.

  16. Boundedness of the Segal-Bargmann Transform on Fractional Hermite-Sobolev Spaces

    Hong Rae Cho

    2017-01-01

    Full Text Available Let s∈R and 2≤p≤∞. We prove that the Segal-Bargmann transform B is a bounded operator from fractional Hermite-Sobolev spaces WHs,pRn to fractional Fock-Sobolev spaces FRs,p.

  17. The problem of electric sources in Einstein's Hermite-symmetric field theory

    Kreisel, E.

    1986-01-01

    The possibility is investigated to introduce a geometric source without A-invariance and Hermite-symmetry breaking of Einstein's Hermitian relativity. It would be very meaningful to interpret a source of this kind as electric current. With this extension Einstein's unitary field theory contains Einstein's gravitation, electromagnetism and the gluonic vacuum of chromodynamics. (author)

  18. Adaptive multiresolution Hermite-Binomial filters for image edge and texture analysis

    Gu, Y.H.; Katsaggelos, A.K.

    1994-01-01

    A new multiresolution image analysis approach using adaptive Hermite-Binomial filters is presented in this paper. According to the local image structural and textural properties, the analysis filter kernels are made adaptive both in their scales and orders. Applications of such an adaptive filtering

  19. Pollination and breeding system of Canna paniculata(Cannaceae in a montane Atlantic Rainforest: asymmetric dependence on a hermit hummingbird

    Pietro Kiyoshi Maruyama

    2015-03-01

    Full Text Available We studied the pollination biology of Canna paniculata (Cannaceae, a plant species common in the Atlantic Rainforest of southeastern Brazil. The species presents specialized ornithophilous flowers, which in our study area are solely pollinated by the hermit hummingbird Phaethornis eurynome. Although C. paniculata is capable of bearing fruit after self-pollination, it requires pollinators for reproduction. We discuss the importance of hermit hummingbirds for the reproduction of specialized ornithophilous plants such as C. paniculata, including their asymmetric dependence on hermit hummingbirds - core pollinators in Neotropical forest ecosystems.

  20. Polynomials formalism of quantum numbers

    Kazakov, K.V.

    2005-01-01

    Theoretical aspects of the recently suggested perturbation formalism based on the method of quantum number polynomials are considered in the context of the general anharmonicity problem. Using a biatomic molecule by way of example, it is demonstrated how the theory can be extrapolated to the case of vibrational-rotational interactions. As a result, an exact expression for the first coefficient of the Herman-Wallis factor is derived. In addition, the basic notions of the formalism are phenomenologically generalized and expanded to the problem of spin interaction. The concept of magneto-optical anharmonicity is introduced. As a consequence, an exact analogy is drawn with the well-known electro-optical theory of molecules, and a nonlinear dependence of the magnetic dipole moment of the system on the spin and wave variables is established [ru

  1. Polynomial solutions of nonlinear integral equations

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  2. Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...

    Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...

  3. Topological string partition functions as polynomials

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  4. Polynomial solutions of nonlinear integral equations

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  5. A generalization of the Bernoulli polynomials

    Pierpaolo Natalini

    2003-01-01

    Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.

  6. The Bessel polynomials and their differential operators

    Onyango Otieno, V.P.

    1987-10-01

    Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs

  7. Large degree asymptotics of generalized Bessel polynomials

    J.L. López; N.M. Temme (Nico)

    2011-01-01

    textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the

  8. Exceptional polynomials and SUSY quantum mechanics

    Abstract. We show that for the quantum mechanical problem which admit classical Laguerre/. Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional. Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the ...

  9. Connections between the matching and chromatic polynomials

    E. J. Farrell

    1992-01-01

    Full Text Available The main results established are (i a connection between the matching and chromatic polynomials and (ii a formula for the matching polynomial of a general complement of a subgraph of a graph. Some deductions on matching and chromatic equivalence and uniqueness are made.

  10. Laguerre polynomials by a harmonic oscillator

    Baykal, Melek; Baykal, Ahmet

    2014-09-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.

  11. Laguerre polynomials by a harmonic oscillator

    Baykal, Melek; Baykal, Ahmet

    2014-01-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)

  12. On Generalisation of Polynomials in Complex Plane

    Maslina Darus

    2010-01-01

    Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.

  13. Dual exponential polynomials and linear differential equations

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  14. Technique for image interpolation using polynomial transforms

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  15. Factoring polynomials over arbitrary finite fields

    Lange, T.; Winterhof, A.

    2000-01-01

    We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of

  16. Application of polynomial preconditioners to conservation laws

    Geurts, Bernardus J.; van Buuren, R.; Lu, H.

    2000-01-01

    Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of

  17. On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations

    Cima, A.; Gasull, A.; Mañosas, F.

    2017-12-01

    In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.

  18. Matrix product formula for Macdonald polynomials

    Cantini, Luigi; de Gier, Jan; Wheeler, Michael

    2015-09-01

    We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.

  19. Matrix product formula for Macdonald polynomials

    Cantini, Luigi; Gier, Jan de; Michael Wheeler

    2015-01-01

    We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)

  20. Arabic text classification using Polynomial Networks

    Mayy M. Al-Tahrawi

    2015-10-01

    Full Text Available In this paper, an Arabic statistical learning-based text classification system has been developed using Polynomial Neural Networks. Polynomial Networks have been recently applied to English text classification, but they were never used for Arabic text classification. In this research, we investigate the performance of Polynomial Networks in classifying Arabic texts. Experiments are conducted on a widely used Arabic dataset in text classification: Al-Jazeera News dataset. We chose this dataset to enable direct comparisons of the performance of Polynomial Networks classifier versus other well-known classifiers on this dataset in the literature of Arabic text classification. Results of experiments show that Polynomial Networks classifier is a competitive algorithm to the state-of-the-art ones in the field of Arabic text classification.

  1. on the performance of Autoregressive Moving Average Polynomial

    Timothy Ademakinwa

    Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.

  2. Neck curve polynomials in neck rupture model

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-01-01

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  3. Solution of Stochastic Nonlinear PDEs Using Automated Wiener-Hermite Expansion

    Al-Juhani, Amnah

    2014-01-06

    The solution of the stochastic differential equations (SDEs) using Wiener-Hermite expansion (WHE) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In WHE approach, there is no randomness directly involved in the computations. One does not have to rely on pseudo random number generators, and there is no need to solve the SDEs repeatedly for many realizations. Instead, the deterministic system is solved only once. For previous research efforts see [2, 4].

  4. Applying inversion to construct planar, rational spirals that satisfy two-point G(2) Hermite data

    Kurnosenko, A

    2010-01-01

    A method of two-point G(2) Hermite interpolation with spirals is proposed. To construct a sought for curve, the inversion is applied to an arc of some other spiral. To illustrate the method, inversions of parabola are considered in detail. The resulting curve is 4th degree rational. The method allows the matching of a wide range of boundary conditions, including those which require an inflection. Although not all G(2) Hermite data can be matched with a spiral generated from a parabolic arc, introducing one intermediate G(2) data solves the problem. Expanding the method by involving other spirals arcs is also discussed. (C) 2009 Elsevier B.V. All rights reserved.

  5. On the representation of the diffracted field of Hermite-Gaussian modes in an alien basis and the young diffraction principle

    Smirnov, V.N.; Strokovskii, G.A.

    1994-01-01

    An analytical form of expansion coefficients of a diffracted field for an arbitrary Hermite-Gaussian beam in an alien Hermite-Gaussian basis is obtained. A possible physical interpretation of the well-known Young phenomenological diffraction principle and experiments on diffraction of Hermite-Gaussian beams of the lowest types (n = 0 - 5) from half-plane are discussed. The case of nearly homogenous expansion corresponding to misalignment and mismatch of optical systems is also analyzed. 7 refs., 2 figs

  6. Hermite-Hadamard Type Integral Inequalities for Functions Whose Second-Order Mixed Derivatives Are Coordinated (s,m-P-Convex

    Yu-Mei Bai

    2018-01-01

    Full Text Available We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated (s,m-P-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the Hermite-Hadamard type inequalities for coordinated (s,m-P-convex functions in an earlier article.

  7. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  8. Design of high-order rotation invariants from Gaussian-Hermite moments

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2015-01-01

    Roč. 113, č. 1 (2015), s. 61-67 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotationinvariants * Geometric moments * Gaussian–Hermite moments * Recurrentrelation Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.063, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441266.pdf

  9. Multilevel weighted least squares polynomial approximation

    Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren

    2017-01-01

    , obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose

  10. Polynomials in finite geometries and combinatorics

    Blokhuis, A.; Walker, K.

    1993-01-01

    It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.

  11. Polynomial analysis of ambulatory blood pressure measurements

    Zwinderman, A. H.; Cleophas, T. A.; Cleophas, T. J.; van der Wall, E. E.

    2001-01-01

    In normotensive subjects blood pressures follow a circadian rhythm. A circadian rhythm in hypertensive patients is less well established, and may be clinically important, particularly with rigorous treatments of daytime blood pressures. Polynomial analysis of ambulatory blood pressure monitoring

  12. Handbook on semidefinite, conic and polynomial optimization

    Anjos, Miguel F

    2012-01-01

    This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.

  13. Transversals of Complex Polynomial Vector Fields

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...

  14. Generalized catalan numbers, sequences and polynomials

    KOÇ, Cemal; GÜLOĞLU, İsmail; ESİN, Songül

    2010-01-01

    In this paper we present an algebraic interpretation for generalized Catalan numbers. We describe them as dimensions of certain subspaces of multilinear polynomials. This description is of utmost importance in the investigation of annihilators in exterior algebras.

  15. Schur Stability Regions for Complex Quadratic Polynomials

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  16. About the solvability of matrix polynomial equations

    Netzer, Tim; Thom, Andreas

    2016-01-01

    We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.

  17. Two polynomial representations of experimental design

    Notari, Roberto; Riccomagno, Eva; Rogantin, Maria-Piera

    2007-01-01

    In the context of algebraic statistics an experimental design is described by a set of polynomials called the design ideal. This, in turn, is generated by finite sets of polynomials. Two types of generating sets are mostly used in the literature: Groebner bases and indicator functions. We briefly describe them both, how they are used in the analysis and planning of a design and how to switch between them. Examples include fractions of full factorial designs and designs for mixture experiments.

  18. Shell occupation by the South Atlantic endemic hermit crab Loxopagurus loxochelis (Moreira, 1901 (Anomura: Diogenidae

    Israel Fernandes Frameschi

    Full Text Available The evaluation of population characteristics, particularly those of endemic species, aids in population preservation and management. Hermit crabs present an innate behavior of occupying shells, which tends to individual needs and limits their distribution. This study characterized the pattern of occupation of gastropod shells by the hermit Loxopagurus loxochelis in three bays of the southwestern coast of Brazil. Monthly collections were made from January/1998 to December/1999 in the bays Ubatumirim (UBM, Ubatuba (UBA and Mar Virado (MV with a shrimping boat. Overall, ten species of gastropod shells were occupied by L. loxochelis. The shell of Olivancillaria urceus represented 66.8% of those occupied. Morphometric relationships demonstrated a differential occupation of the more abundant shells among demographic groups, where most of the males occupied O. urceus, non-ovigerous females occupied O. urceus and Buccinanops cochlidium, and ovigerous females occupied B. cochlidium and Stramonita haemastoma. Most of the individuals occupied the more abundant shells, considered adequate for the morphology of this hermit crab species. Thus, the studied bays seem to be stable and propitious environments for population perpetuation and the settlement of new individuals.

  19. Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions

    Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie

    2011-01-01

    In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...

  20. Vertex models, TASEP and Grothendieck polynomials

    Motegi, Kohei; Sakai, Kazumitsu

    2013-01-01

    We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)

  1. Relations between Möbius and coboundary polynomials

    Jurrius, R.P.M.J.

    2012-01-01

    It is known that, in general, the coboundary polynomial and the Möbius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will investigate if it is possible that the Möbius polynomial of a matroid, together with the Möbius polynomial of

  2. Special polynomials associated with rational solutions of some hierarchies

    Kudryashov, Nikolai A.

    2009-01-01

    New special polynomials associated with rational solutions of the Painleve hierarchies are introduced. The Hirota relations for these special polynomials are found. Differential-difference hierarchies to find special polynomials are presented. These formulae allow us to search special polynomials associated with the hierarchies. It is shown that rational solutions of the Caudrey-Dodd-Gibbon, the Kaup-Kupershmidt and the modified hierarchy for these ones can be obtained using new special polynomials.

  3. On the Connection Coefficients of the Chebyshev-Boubaker Polynomials

    Paul Barry

    2013-01-01

    Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.

  4. New polynomial-based molecular descriptors with low degeneracy.

    Matthias Dehmer

    Full Text Available In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power.

  5. Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials

    Ait-Haddou, Rachid; Goldman, Ron

    2015-01-01

    We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.

  6. Certain non-linear differential polynomials sharing a non zero polynomial

    Majumder Sujoy

    2015-10-01

    functions sharing a nonzero polynomial and obtain two results which improves and generalizes the results due to L. Liu [Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 56 (2008, 3236-3245.] and P. Sahoo [Uniqueness and weighted value sharing of meromorphic functions, Applied. Math. E-Notes., 11 (2011, 23-32.].

  7. Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials

    Ait-Haddou, Rachid

    2015-06-07

    We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.

  8. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  9. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  10. Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation

    Demina, Maria V; Kudryashov, Nikolai A

    2012-01-01

    Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)

  11. Global sensitivity analysis by polynomial dimensional decomposition

    Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2011-07-15

    This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

  12. Remarks on determinants and the classical polynomials

    Henning, J.J.; Kranold, H.U.; Louw, D.F.B.

    1986-01-01

    As motivation for this formal analysis the problem of Landau damping of Bernstein modes is discussed. It is shown that in the case of a weak but finite constant external magnetic field, the analytical structure of the dispersion relations is of such a nature that longitudinal waves propagating orthogonal to the external magnetic field are also damped, contrary to normal belief. In the treatment of the linearized Vlasov equation it is found convenient to generate certain polynomials by the problem at hand and to explicitly write down expressions for these polynomials. In the course of this study methods are used that relate to elementary but fairly unknown functional relationships between power sums and coefficients of polynomials. These relationships, also called Waring functions, are derived. They are then used in other applications to give explicit expressions for the generalized Laguerre polynomials in terms of determinant functions. The properties of polynomials generated by a wide class of generating functions are investigated. These relationships are also used to obtain explicit forms for the cumulants of a distribution in terms of its moments. It is pointed out that cumulants (or moments, for that matter) do not determine a distribution function

  13. Multilevel weighted least squares polynomial approximation

    Haji-Ali, Abdul-Lateef

    2017-06-30

    Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.

  14. Polynomial chaos functions and stochastic differential equations

    Williams, M.M.R.

    2006-01-01

    The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory

  15. Minimal residual method stronger than polynomial preconditioning

    Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others

    1994-12-31

    Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.

  16. Fast beampattern evaluation by polynomial rooting

    Häcker, P.; Uhlich, S.; Yang, B.

    2011-07-01

    Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.

  17. On the ecology of Coenobita clypeatus in Curaçao with reference to reproduction, water economy and osmoregulation in terrestrial hermit crabs

    Wilde, de P.A.W.J.

    1973-01-01

    1. This paper deals with various aspects of the life-history, ecology, water management and osmoregulation of the West-Indian land hermit crab Coenobita clypeatus (Herbst) in Curaçao, Netherlands Antilles. 2. Land hermit crabs belonging to the family Coenobitidae may be considered as one of the most

  18. Twisted Polynomials and Forgery Attacks on GCM

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey

    2015-01-01

    Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...

  19. Polynomial Vector Fields in One Complex Variable

    Branner, Bodil

    In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....

  20. The chromatic polynomial and list colorings

    Thomassen, Carsten

    2009-01-01

    We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....

  1. Complex centers of polynomial differential equations

    Mohamad Ali M. Alwash

    2007-07-01

    Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.

  2. Differential recurrence formulae for orthogonal polynomials

    Anton L. W. von Bachhaus

    1995-11-01

    Full Text Available Part I - By combining a general 2nd-order linear homogeneous ordinary differential equation with the three-term recurrence relation possessed by all orthogonal polynomials, it is shown that sequences of orthogonal polynomials which satisfy a differential equation of the above mentioned type necessarily have a differentiation formula of the type: gn(xY'n(x=fn(xYn(x+Yn-1(x. Part II - A recurrence formula of the form: rn(xY'n(x+sn(xY'n+1(x+tn(xY'n-1(x=0, is derived using the result of Part I.

  3. Scaling of olfactory antennae of the terrestrial hermit crabs Coenobita rugosus and Coenobita perlatus during ontogeny

    Lindsay D. Waldrop

    2014-08-01

    Full Text Available Although many lineages of terrestrial crustaceans have poor olfactory capabilities, crabs in the family Coenobitidae, including the terrestrial hermit crabs in the genus Coenobita, are able to locate food and water using olfactory antennae (antennules to capture odors from the surrounding air. Terrestrial hermit crabs begin their lives as small marine larvae and must find a suitable place to undergo metamorphosis into a juvenile form, which initiates their transition to land. Juveniles increase in size by more than an order of magnitude to reach adult size. Since odor capture is a process heavily dependent on the size and speed of the antennules and physical properties of the fluid, both the transition from water to air and the large increase in size during ontogeny could impact odor capture. In this study, we examine two species of terrestrial hermit crabs, Coenobita perlatus H. Milne-Edwards and Coenobita rugosus H. Milne-Edwards, to determine how the antennule morphometrics and kinematics of flicking change in comparison to body size during ontogeny, and how this scaling relationship could impact odor capture by using a simple model of mass transport in flow. Many features of the antennules, including the chemosensory sensilla, scaled allometrically with carapace width and increased slower than expected by isometry, resulting in relatively larger antennules on juvenile animals. Flicking speed scaled as expected with isometry. Our mass-transport model showed that allometric scaling of antennule morphometrics and kinematics leads to thinner boundary layers of attached fluid around the antennule during flicking and higher odorant capture rates as compared to antennules which scaled isometrically. There were no significant differences in morphometric or kinematic measurements between the two species.

  4. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  5. Polynomial regression analysis and significance test of the regression function

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  6. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  7. Solution of the neutron transport equation by means of Hermite-Ssub(infinity)-theory

    Brandt, D.; Haelg, W.; Mennig, J.

    1979-01-01

    A stable numerical approximation Hsub(α)-Ssub(infinity) is obtained through the use of Hermite's method of order α(Hsub(α)) in the spatial integration of the ID neutron transport equation. The theory for α = 1 is applied to a one-group shielding problem. Numerical calculations show the new method to converge much faster than earlier versions of Ssub(infinity)-theory. Comparison of H 1 - Ssub(infinity) with the well-known Ssub(N)-code ANISN indicates a large gain in computing time for the former. (Auth.)

  8. Hermite-Pade approximation approach to hydromagnetic flows in convergent-divergent channels

    Makinde, O.D.

    2005-10-01

    The problem of two-dimensional, steady, nonlinear flow of an incompressible conducting viscous fluid in convergent-divergent channels under the influence of an externally applied homogeneous magnetic field is studied using a special type of Hermite-Pade approximation approach. This semi-numerical scheme offers some advantages over solutions obtained by using traditional methods such as finite differences, spectral method, shooting method, etc. It reveals the analytical structure of the solution function and the important properties of overall flow structure including velocity field, flow reversal control and bifurcations are discussed. (author)

  9. Hermite interpolant multiscaling functions for numerical solution of the convection diffusion equations

    Elmira Ashpazzadeh

    2018-04-01

    Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

  10. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  11. Nonclassical Orthogonal Polynomials and Corresponding Quadratures

    Fukuda, H; Alt, E O; Matveenko, A V

    2004-01-01

    We construct nonclassical orthogonal polynomials and calculate abscissas and weights of Gaussian quadrature for arbitrary weight and interval. The program is written by Mathematica and it works if moment integrals are given analytically. The result is a FORTRAN subroutine ready to utilize the quadrature.

  12. Intrinsic Diophantine approximation on general polynomial surfaces

    Tiljeset, Morten Hein

    2017-01-01

    We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...

  13. Quantum Hilbert matrices and orthogonal polynomials

    Andersen, Jørgen Ellegaard; Berg, Christian

    2009-01-01

    Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...

  14. Algebraic polynomial system solving and applications

    Bleylevens, I.W.M.

    2010-01-01

    The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational

  15. Information-theoretic lengths of Jacobi polynomials

    Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)

    2010-07-30

    The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.

  16. Indecomposability of polynomials via Jacobian matrix

    Cheze, G.; Najib, S.

    2007-12-01

    Uni-multivariate decomposition of polynomials is a special case of absolute factorization. Recently, thanks to the Ruppert's matrix some effective results about absolute factorization have been improved. Here we show that with a jacobian matrix we can get sharper bounds for the special case of uni-multivariate decomposition. (author)

  17. On selfadjoint functors satisfying polynomial relations

    Agerholm, Troels; Mazorchuk, Volodomyr

    2011-01-01

    We study selfadjoint functors acting on categories of finite dimen- sional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint func- tors satisfying several easy relations, in particular, idempotents and square roots of a sum...

  18. Polynomial Variables and the Jacobian Problem

    algebra and algebraic geometry, and ... algebraically, to making the change of variables (X, Y) r--t. (X +p, Y ... aX + bY + p and eX + dY + q are linear polynomials in X, Y. ..... [5] T T Moh, On the Jacobian conjecture and the confipration of roots,.

  19. Function approximation with polynomial regression slines

    Urbanski, P.

    1996-01-01

    Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)

  20. Polynomial stabilization of some dissipative hyperbolic systems

    Ammari, K.; Feireisl, Eduard; Nicaise, S.

    2014-01-01

    Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924

  1. Polynomial Asymptotes of the Second Kind

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  2. Characteristic polynomials of linear polyacenes and their ...

    Coefficients of characteristic polynomials (CP) of linear polyacenes (LP) have been shown to be obtainable from Pascal's triangle by using a graph factorisation and squaring technique. Strong subspectrality existing among the members of the linear polyacene series has been shown from the derivation of the CP's. Thus it ...

  3. Coherent states for polynomial su(2) algebra

    Sadiq, Muhammad; Inomata, Akira

    2007-01-01

    A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit

  4. Bernoulli Polynomials, Fourier Series and Zeta Numbers

    Scheufens, Ernst E

    2013-01-01

    Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent...

  5. Euler Polynomials, Fourier Series and Zeta Numbers

    Scheufens, Ernst E

    2012-01-01

    Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....

  6. Automatic Control Systems Modeling by Volterra Polynomials

    S. V. Solodusha

    2012-01-01

    Full Text Available The problem of the existence of the solutions of polynomial Volterra integral equations of the first kind of the second degree is considered. An algorithm of the numerical solution of one class of Volterra nonlinear systems of the first kind is developed. Numerical results for test examples are presented.

  7. Spectral properties of birth-death polynomials

    van Doorn, Erik A.

    2015-01-01

    We consider sequences of polynomials that are defined by a three-terms recurrence relation and orthogonal with respect to a positive measure on the nonnegative axis. By a famous result of Karlin and McGregor such sequences are instrumental in the analysis of birth-death processes. Inspired by

  8. Spectral properties of birth-death polynomials

    van Doorn, Erik A.

    We consider sequences of polynomials that are defined by a three-terms recurrence relation and orthogonal with respect to a positive measure on the nonnegative axis. By a famous result of Karlin and McGregor such sequences are instrumental in the analysis of birth-death processes. Inspired by

  9. Optimization of Cubic Polynomial Functions without Calculus

    Taylor, Ronald D., Jr.; Hansen, Ryan

    2008-01-01

    In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…

  10. transformation of independent variables in polynomial regression ...

    Ada

    preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...

  11. Inequalities for a Polynomial and its Derivative

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 110; Issue 2. Inequalities for a Polynomial and its Derivative. V K Jain. Volume 110 Issue 2 May 2000 pp 137- ...

  12. Integral Inequalities for Self-Reciprocal Polynomials

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 2. Integral Inequalities for Self-Reciprocal Polynomials. Horst Alzer. Volume 120 Issue 2 April 2010 ...

  13. Density of Real Zeros of the Tutte Polynomial

    Ok, Seongmin; Perrett, Thomas

    2018-01-01

    The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...

  14. Density of Real Zeros of the Tutte Polynomial

    Ok, Seongmin; Perrett, Thomas

    2017-01-01

    The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...

  15. Some Polynomials Associated with the r-Whitney Numbers

    26

    Abstract. In the present article we study three families of polynomials associated with ... [29, 39] for their relations with the Bernoulli and generalized Bernoulli polynomials and ... generating functions in a similar way as in the classical cases.

  16. On an Inequality Concerning the Polar Derivative of a Polynomial

    Abstract. In this paper, we present a correct proof of an -inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund's inequality to the polar derivative of a polynomial.

  17. Sixth- and eighth-order Hermite integrator for N-body simulations

    Nitadori, Keigo; Makino, Junichiro

    2008-10-01

    We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.

  18. Hermite-Gaussian beams with self-forming spiral phase distribution

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  19. 2-variable Laguerre matrix polynomials and Lie-algebraic techniques

    Khan, Subuhi; Hassan, Nader Ali Makboul

    2010-01-01

    The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.

  20. Algebraic limit cycles in polynomial systems of differential equations

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  1. The generalized Yablonskii-Vorob'ev polynomials and their properties

    Kudryashov, Nikolai A.; Demina, Maria V.

    2008-01-01

    Rational solutions of the generalized second Painleve hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painleve hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials

  2. Polynomial selection in number field sieve for integer factorization

    Gireesh Pandey

    2016-09-01

    Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.

  3. Contributions to fuzzy polynomial techniques for stability analysis and control

    Pitarch Pérez, José Luis

    2014-01-01

    The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...

  4. Interlacing of zeros of quasi-orthogonal meixner polynomials | Driver ...

    ... interlacing of zeros of quasi-orthogonal Meixner polynomials Mn(x;β; c) with the zeros of their nearest orthogonal counterparts Mt(x;β + k; c), l; n ∈ ℕ, k ∈ {1; 2}; is also discussed. Mathematics Subject Classication (2010): 33C45, 42C05. Key words: Discrete orthogonal polynomials, quasi-orthogonal polynomials, Meixner

  5. Strong result for real zeros of random algebraic polynomials

    T. Uno

    2001-01-01

    Full Text Available An estimate is given for the lower bound of real zeros of random algebraic polynomials whose coefficients are non-identically distributed dependent Gaussian random variables. Moreover, our estimated measure of the exceptional set, which is independent of the degree of the polynomials, tends to zero as the degree of the polynomial tends to infinity.

  6. On the Lorentz degree of a product of polynomials

    Ait-Haddou, Rachid

    2015-01-01

    In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.

  7. A Determinant Expression for the Generalized Bessel Polynomials

    Sheng-liang Yang

    2013-01-01

    Full Text Available Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.

  8. On the estimation of the degree of regression polynomial

    Toeroek, Cs.

    1997-01-01

    The mathematical functions most commonly used to model curvature in plots are polynomials. Generally, the higher the degree of the polynomial, the more complex is the trend that its graph can represent. We propose a new statistical-graphical approach based on the discrete projective transformation (DPT) to estimating the degree of polynomial that adequately describes the trend in the plot

  9. Zeros and uniqueness of Q-difference polynomials of meromorphic ...

    Meromorphic functions; Nevanlinna theory; logarithmic order; uniqueness problem; difference-differential polynomial. Abstract. In this paper, we investigate the value distribution of -difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials ...

  10. Uniqueness and zeros of q-shift difference polynomials

    In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift ...

  11. Polynomially Riesz elements | Živković-Zlatanović | Quaestiones ...

    A Banach algebra element ɑ ∈ A is said to be "polynomially Riesz", relative to the homomorphism T : A → B, if there exists a nonzero complex polynomial p(z) such that the image Tp ∈ B is quasinilpotent. Keywords: Homomorphism of Banach algebras, polynomially Riesz element, Fredholm spectrum, Browder element, ...

  12. Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials

    Tratnik, M.V.

    1990-01-01

    Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson polynomials are presented. These yield limit cases that are purely continuous in some of the variables and purely discrete in the others, or purely discrete in all the variables. The latter are referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases include the multivariable biorthogonal Hahn and dual Hahn polynomials

  13. Commutators with idempotent values on multilinear polynomials in ...

    Multilinear polynomial; derivations; generalized polynomial identity; prime ring; right ideal. Abstract. Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R , f ( x 1 , … , x n ) a multilinear polynomial over C , ϱ a nonzero right ideal of R and m > 1 a fixed integer such that.

  14. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  15. Degenerate r-Stirling Numbers and r-Bell Polynomials

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  16. Development and Evaluation of Compact Robot Imitating a Hermit Crab for Inspecting the Outer Surface of Pipes

    Naoto Imajo

    2015-01-01

    Full Text Available Terrestrial hermit crabs which are a type of hermit crabs live on land, whereas typical hermit crabs inhabit the sea. They have an ability of climbing a tree vertically. Their claws allow them to hang on the tree. In this study, an outer-pipe inspection robot was developed. Its locomotion mechanism was developed in imitation of the terrestrial hermit crab’s claws. It is equipped with two rimless wheels. Each of the spokes is tipped with a neodymium magnet, which allows the robot to remain attached to even a vertical steel pipe. Moreover, the robot has a mechanism for adjusting the camber angle of the right and left wheels, allowing it to tightly grip pipes with different diameters. Experiments were conducted to check the performance of the robot using steel pipes with different diameters, placed horizontally, vertically, or obliquely. The robot attempted to move a certain distance along a pipe, and its success rate was measured. It was found that the robot could successfully travel along pipes with vertical orientations, although it sometimes fell from oblique or horizontal pipes. The most likely reason for this is identified and discussed. Certain results were obtained in laboratory. Further experiments in actual environment are required.

  17. Mechanisms causing size differences of the land hermit crab Coenobita rugosus among eco-islands in Southern Taiwan.

    Chia-Hsuan Hsu

    Full Text Available Numerous environmental factors can influence body size. Comparing populations in different ecological contexts is one potential approach to elucidating the most critical of such factors. In the current study, we found that the body size of the land hermit crab Coenobita rugosus was significantly larger on Dongsha Island in the South China Sea than on other eco-islands around Southern Taiwan. We hypothesized that this could be due to differences in (1 shell resources, (2 parasite impact, (3 competition, (4 predation, and (5 food. We found no supporting evidence for the first three hypotheses; the shells used by the hermit crabs on Dongsha were in poorer condition than were those used elsewhere, extremely few individuals in the region had ectoparasites, and the density of hermit crabs varied considerably among localities within each island. However, significantly higher percentages of C. rugosus reached age 3 years on Dongsha than at Siziwan bay in Taiwan. Two growth rate indices inferred from size structures suggested faster growth on Dongsha than at Siziwan. The condition index (i.e., the body mass/shield length ratio of C. rugosus was also greater on Dongsha than at Siziwan. Therefore, Dongsha hermit crabs seem to have superior diet and growth performance. Seagrass debris accumulation at the shore of Dongsha was considerable, whereas none was observed at Siziwan or on the other islands, where dicot leaves were the dominant food item for the vegetarian hermit crabs. We then experimentally evaluated the possible role of seagrass as food for C. rugosus. The crabs on Dongsha preferred seagrass to dicot leaves, and their growth increment was faster when they fed on seagrass than when they fed on dicot leaves; no such differences were found in the Siziwan hermit crabs. The aforementioned results are compatible with the food hypothesis explaining the size differences among the islands. The predator hypothesis could explain the greater life span but

  18. Large level crossings of a random polynomial

    Kambiz Farahmand

    1987-01-01

    Full Text Available We know the expected number of times that a polynomial of degree n with independent random real coefficients asymptotically crosses the level K, when K is any real value such that (K2/n→0 as n→∞. The present paper shows that, when K is allowed to be large, this expected number of crossings reduces to only one. The coefficients of the polynomial are assumed to be normally distributed. It is shown that it is sufficient to let K≥exp(nf where f is any function of n such that f→∞ as n→∞.

  19. Sparse DOA estimation with polynomial rooting

    Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren

    2015-01-01

    Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...

  20. On factorization of generalized Macdonald polynomials

    Kononov, Ya.; Morozov, A.

    2016-01-01

    A remarkable feature of Schur functions - the common eigenfunctions of cut-and-join operators from W ∞ - is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U q (SL N ) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization - on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding. (orig.)

  1. Quantum Hurwitz numbers and Macdonald polynomials

    Harnad, J.

    2016-11-01

    Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.

  2. Polynomial chaos representation of databases on manifolds

    Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)

    2017-04-15

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.

  3. Polynomial structures in one-loop amplitudes

    Britto, Ruth; Feng Bo; Yang Gang

    2008-01-01

    A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.

  4. Link polynomial, crossing multiplier and surgery formula

    Deguchi, Tetsuo; Yamada, Yasuhiko.

    1989-01-01

    Relations between link polynomials constructed from exactly solvable lattice models and topological field theory are reviewed. It is found that the surgery formula for a three-sphere S 3 with Wilson lines corresponds to the Markov trace constructed from the exactly solvable models. This indicates that knot theory intimately relates various important subjects such as exactly solvable models, conformal field theories and topological quantum field theories. (author)

  5. Completeness of the ring of polynomials

    Thorup, Anders

    2015-01-01

    Consider the polynomial ring R:=k[X1,…,Xn]R:=k[X1,…,Xn] in n≥2n≥2 variables over an uncountable field k. We prove that R   is complete in its adic topology, that is, the translation invariant topology in which the non-zero ideals form a fundamental system of neighborhoods of 0. In addition we pro...

  6. Moments, positive polynomials and their applications

    Lasserre, Jean Bernard

    2009-01-01

    Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP) . This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones,

  7. Polynomials and identities on real Banach spaces

    Hájek, Petr Pavel; Kraus, M.

    2012-01-01

    Roč. 385, č. 2 (2012), s. 1015-1026 ISSN 0022-247X R&D Projects: GA ČR(CZ) GAP201/11/0345 Institutional research plan: CEZ:AV0Z10190503 Keywords : Polynomials on Banach spaces Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11006743

  8. Eye aberration analysis with Zernike polynomials

    Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.

    1998-06-01

    New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.

  9. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    El Beltagy, Mohamed

    2016-01-06

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  10. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    El Beltagy, Mohamed

    2016-01-01

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  11. Implementation of Associated Hermite FDTD Method in Handling INBCs for Shielding Analysis

    Lihua Shi

    2016-01-01

    Full Text Available For modeling of electrically thin conductive shields, the unconditionally stable Associated Hermite (AH FDTD scheme is combined with the impedance network boundary conditions (INBCs in this paper. The two-port network equations of INBCs in frequency domain are transformed into AH domain to represent the relationship of tangential components of the electric and magnetic fields at faces of the shield. The established AH-INBCs shielding boundaries are incorporated into a set of implicit equations to calculate the expansion coefficients vectors of electromagnetic fields in the computational domain. The method is free of CFL condition and no convolution integral operation for solving the conventional INBCs-FDTD is involved. Numerical example shows that, compared with analytical solutions and conventional FDTD method, the proposed algorithm is efficient and accurate.

  12. A Polynomial Estimate of Railway Line Delay

    Cerreto, Fabrizio; Harrod, Steven; Nielsen, Otto Anker

    2017-01-01

    Railway service may be measured by the aggregate delay over a time horizon or due to an event. Timetables for railway service may dampen aggregate delay by addition of additional process time, either supplement time or buffer time. The evaluation of these variables has previously been performed...... by numerical analysis with simulation. This paper proposes an analytical estimate of aggregate delay with a polynomial form. The function returns the aggregate delay of a railway line resulting from an initial, primary, delay. Analysis of the function demonstrates that there should be a balance between the two...

  13. Conditional Density Approximations with Mixtures of Polynomials

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...

  14. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-01-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines

  15. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  16. Polynomial solutions of the Monge-Ampère equation

    Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)

    2014-11-30

    The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.

  17. Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials

    Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei

    2004-01-01

    We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered

  18. Least squares orthogonal polynomial approximation in several independent variables

    Caprari, R.S.

    1992-06-01

    This paper begins with an exposition of a systematic technique for generating orthonormal polynomials in two independent variables by application of the Gram-Schmidt orthogonalization procedure of linear algebra. It is then demonstrated how a linear least squares approximation for experimental data or an arbitrary function can be generated from these polynomials. The least squares coefficients are computed without recourse to matrix arithmetic, which ensures both numerical stability and simplicity of implementation as a self contained numerical algorithm. The Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal polynomials of fourth degree. A theory for the transformation of the polynomial representation from an arbitrary basis into the familiar sum of products form is presented, together with a specific implementation for fourth degree polynomials. Finally, the computational integrity of this algorithm is verified by reconstructing arbitrary fourth degree polynomials from their values at randomly chosen points in their domain. 13 refs., 1 tab

  19. Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations

    Taiwo, T.A.; Palmiotti, G.

    1997-01-01

    The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab

  20. Note on Generating Orthogonal Polynomials and Their Application in Solving Complicated Polynomial Regression Tasks

    Knížek, J.; Tichý, Petr; Beránek, L.; Šindelář, Jan; Vojtěšek, B.; Bouchal, P.; Nenutil, R.; Dedík, O.

    2010-01-01

    Roč. 7, č. 10 (2010), s. 48-60 ISSN 0974-5718 Grant - others:GA MZd(CZ) NS9812; GA ČR(CZ) GAP304/10/0868 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : polynomial regression * orthogonalization * numerical methods * markers * biomarkers Subject RIV: BA - General Mathematics

  1. Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians

    Ndayiragije, François; Van Assche, Walter

    2013-01-01

    Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to $r>1$ different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Followi...

  2. On Roots of Polynomials and Algebraically Closed Fields

    Schwarzweller Christoph

    2017-10-01

    Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].

  3. Open Problems Related to the Hurwitz Stability of Polynomials Segments

    Baltazar Aguirre-Hernández

    2018-01-01

    Full Text Available In the framework of robust stability analysis of linear systems, the development of techniques and methods that help to obtain necessary and sufficient conditions to determine stability of convex combinations of polynomials is paramount. In this paper, knowing that Hurwitz polynomials set is not a convex set, a brief overview of some results and open problems concerning the stability of the convex combinations of Hurwitz polynomials is then provided.

  4. General quantum polynomials: irreducible modules and Morita equivalence

    Artamonov, V A

    1999-01-01

    In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials

  5. Applications of polynomial optimization in financial risk investment

    Zeng, Meilan; Fu, Hongwei

    2017-09-01

    Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.

  6. Root and Critical Point Behaviors of Certain Sums of Polynomials

    13

    There is an extensive literature concerning roots of sums of polynomials. Many papers and books([5], [6],. [7]) have written about these polynomials. Perhaps the most immediate question of sums of polynomials,. A + B = C, is “given bounds for the roots of A and B, what bounds can be given for the roots of C?” By. Fell [3], if ...

  7. Simulation of aspheric tolerance with polynomial fitting

    Li, Jing; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    The shape of the aspheric lens changes caused by machining errors, resulting in a change in the optical transfer function, which affects the image quality. At present, there is no universally recognized tolerance criterion standard for aspheric surface. To study the influence of aspheric tolerances on the optical transfer function, the tolerances of polynomial fitting are allocated on the aspheric surface, and the imaging simulation is carried out by optical imaging software. Analysis is based on a set of aspheric imaging system. The error is generated in the range of a certain PV value, and expressed as a form of Zernike polynomial, which is added to the aspheric surface as a tolerance term. Through optical software analysis, the MTF of optical system can be obtained and used as the main evaluation index. Evaluate whether the effect of the added error on the MTF of the system meets the requirements of the current PV value. Change the PV value and repeat the operation until the acceptable maximum allowable PV value is obtained. According to the actual processing technology, consider the error of various shapes, such as M type, W type, random type error. The new method will provide a certain development for the actual free surface processing technology the reference value.

  8. Quadratic polynomial interpolation on triangular domain

    Li, Ying; Zhang, Congcong; Yu, Qian

    2018-04-01

    In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.

  9. On factorization of generalized Macdonald polynomials

    Kononov, Ya. [Landau Institute for Theoretical Physics, Chernogolovka (Russian Federation); HSE, Math Department, Moscow (Russian Federation); Morozov, A. [ITEP, Moscow (Russian Federation); Institute for Information Transmission Problems, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2016-08-15

    A remarkable feature of Schur functions - the common eigenfunctions of cut-and-join operators from W{sub ∞} - is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U{sub q}(SL{sub N}) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization - on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding. (orig.)

  10. Positive trigonometric polynomials and signal processing applications

    Dumitrescu, Bogdan

    2017-01-01

    This revised edition is made up of two parts: theory and applications. Though many of the fundamental results are still valid and used, new and revised material is woven throughout the text. As with the original book, the theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The programming environment has also evolved, and the books examples are changed accordingly. The applications section is organized as a collection of related problems that use systematically the theoretical results. All the problems are brought to a semi-definite programming form, ready to be solved with algorithms freely available, like those from the libraries SeDuMi, CVX and Pos3Poly. A new chapter discusses applications in super-resolution theory, where Bounded Real Lemma for trigonometric polynomials is an important tool. This revision is written to be more appealing and easier to use for new readers. < Features updated information on LMI...

  11. On factorization of generalized Macdonald polynomials

    Kononov, Ya.; Morozov, A.

    2016-08-01

    A remarkable feature of Schur functions—the common eigenfunctions of cut-and-join operators from W_∞ —is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U_q(SL_N) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization—on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding.

  12. From sequences to polynomials and back, via operator orderings

    Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 (United States); De Angelis, Valerio, E-mail: vdeangel@xula.edu [Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125 (United States); Vignat, Christophe, E-mail: vignat@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA and L.S.S. Supelec, Universite d' Orsay (France)

    2013-12-15

    Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.

  13. On Multiple Interpolation Functions of the -Genocchi Polynomials

    Jin Jeong-Hee

    2010-01-01

    Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.

  14. Current advances on polynomial resultant formulations

    Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar

    2017-08-01

    Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.

  15. Connection coefficients between Boas-Buck polynomial sets

    Cheikh, Y. Ben; Chaggara, H.

    2006-07-01

    In this paper, a general method to express explicitly connection coefficients between two Boas-Buck polynomial sets is presented. As application, we consider some generalized hypergeometric polynomials, from which we derive some well-known results including duplication and inversion formulas.

  16. Mathematical Use Of Polynomials Of Different End Periods Of ...

    This paper focused on how polynomials of different end period of random numbers can be used in the application of encryption and decryption of a message. Eight steps were used in generating information on how polynomials of different end periods of random numbers in the application of encryption and decryption of a ...

  17. On the Lorentz degree of a product of polynomials

    Ait-Haddou, Rachid

    2015-01-01

    In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence

  18. Exponential time paradigms through the polynomial time lens

    Drucker, A.; Nederlof, J.; Santhanam, R.; Sankowski, P.; Zaroliagis, C.

    2016-01-01

    We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard problems. Our approach is based on polynomial time reductions to succinct versions of problems solvable in polynomial time. We use this viewpoint to explore and compare the power of paradigms such as

  19. On polynomial selection for the general number field sieve

    Kleinjung, Thorsten

    2006-12-01

    The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.

  20. A Combinatorial Proof of a Result on Generalized Lucas Polynomials

    Laugier Alexandre

    2016-09-01

    Full Text Available We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.

  1. Animating Nested Taylor Polynomials to Approximate a Function

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  2. Some Results on the Independence Polynomial of Unicyclic Graphs

    Oboudi Mohammad Reza

    2018-05-01

    Full Text Available Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x=∑k=0ns(G,kxk$I(G,x = \\sum\

  3. Generalized Freud's equation and level densities with polynomial

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.

  4. Higher order branching of periodic orbits from polynomial isochrones

    B. Toni

    1999-09-01

    Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.

  5. Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations

    Sørensen, Dan Erik Krarup

    1996-01-01

    We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...

  6. q-analogue of the Krawtchouk and Meixner orthogonal polynomials

    Campigotto, C.; Smirnov, Yu.F.; Enikeev, S.G.

    1993-06-01

    The comparative analysis of Krawtchouk polynomials on a uniform grid with Wigner D-functions for the SU(2) group is presented. As a result the partnership between corresponding properties of the polynomials and D-functions is established giving the group-theoretical interpretation of the Krawtchouk polynomials properties. In order to extend such an analysis on the quantum groups SU q (2) and SU q (1,1), q-analogues of Krawtchouk and Meixner polynomials of a discrete variable are studied. The total set of characteristics of these polynomials is calculated, including the orthogonality condition, normalization factor, recurrent relation, the explicit analytic expression, the Rodrigues formula, the difference derivative formula and various particular cases and values. (R.P.) 22 refs.; 2 tabs

  7. Primitive polynomials selection method for pseudo-random number generator

    Anikin, I. V.; Alnajjar, Kh

    2018-01-01

    In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.

  8. Orthogonal polynomials derived from the tridiagonal representation approach

    Alhaidari, A. D.

    2018-01-01

    The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.

  9. Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians

    Ndayiragije, F; Van Assche, W

    2013-01-01

    Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)

  10. Polynomial fuzzy model-based approach for underactuated surface vessels

    Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav

    2018-01-01

    The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...

  11. A note on some identities of derangement polynomials.

    Kim, Taekyun; Kim, Dae San; Jang, Gwan-Woo; Kwon, Jongkyum

    2018-01-01

    The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255-258, 1978, Clarke and Sved in Math. Mag. 66(5):299-303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1-11 2018. A derangement is a permutation that has no fixed points, and the derangement number [Formula: see text] is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r -derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.

  12. Analysis of the finescale timing of repeated signals: does shell rapping in hermit crabs signal stamina?

    Briffa; Elwood

    2000-01-01

    Hermit crabs, Pagurus bernhardus, sometimes exchange shells after a period of shell rapping, when the initiating or attacking crab brings its shell rapidly and repeatedly into contact with the shell of the noninitiator or defender in a series of bouts. Bouts are separated by pauses, and raps within bouts are separated by very short periods called 'gaps'. Since within-contest variation is missed when signals are studied by averaging performance rates over entire contests, we analysed the fine within-bout structure of this repeated, aggressive signal. We found that the pattern is consistent with high levels of fatigue in initiators. The duration of the gaps between individual raps increased both within bouts and from bout to bout, and we conclude that this activity is costly to perform. Furthermore, long pauses between bouts is correlated with increased vigour of rapping in the subsequent bout, which suggests that the pause allows for recovery from fatigue induced by rapping. These between-bout pauses may be assessed by noninitiators and provide a signal of stamina. Copyright 2000 The Association for the Study of Animal Behaviour.

  13. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  14. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  15. Parallel iterative solution of the Hermite Collocation equations on GPUs II

    Vilanakis, N; Mathioudakis, E

    2014-01-01

    Hermite Collocation is a high order finite element method for Boundary Value Problems modelling applications in several fields of science and engineering. Application of this integration free numerical solver for the solution of linear BVPs results in a large and sparse general system of algebraic equations, suggesting the usage of an efficient iterative solver especially for realistic simulations. In part I of this work an efficient parallel algorithm of the Schur complement method coupled with Bi-Conjugate Gradient Stabilized (BiCGSTAB) iterative solver has been designed for multicore computing architectures with a Graphics Processing Unit (GPU). In the present work the proposed algorithm has been extended for high performance computing environments consisting of multiprocessor machines with multiple GPUs. Since this is a distributed GPU and shared CPU memory parallel architecture, a hybrid memory treatment is needed for the development of the parallel algorithm. The realization of the algorithm took place on a multiprocessor machine HP SL390 with Tesla M2070 GPUs using the OpenMP and OpenACC standards. Execution time measurements reveal the efficiency of the parallel implementation

  16. Stability of nonlinear Vlasov-Poisson equilibria through spectral deformation and Fourier-Hermite expansion.

    Siminos, Evangelos; Bénisti, Didier; Gremillet, Laurent

    2011-05-01

    We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, N. When the advection term in the Vlasov equation is dominant, the convergence with N of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced by Crawford and Hislop [Ann. Phys. (NY) 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase-space vortices, compare our results with numerical simulations of the Vlasov-Poisson system, and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed. © 2011 American Physical Society

  17. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.

    Waldrop, Lindsay D; Koehl, M A R

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. © 2016 The Author(s).

  18. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  19. vs. a polynomial chaos-based MCMC

    Siripatana, Adil

    2014-08-01

    Bayesian Inference of Manning\\'s n coefficient in a Storm Surge Model Framework: comparison between Kalman lter and polynomial based method Adil Siripatana Conventional coastal ocean models solve the shallow water equations, which describe the conservation of mass and momentum when the horizontal length scale is much greater than the vertical length scale. In this case vertical pressure gradients in the momentum equations are nearly hydrostatic. The outputs of coastal ocean models are thus sensitive to the bottom stress terms de ned through the formulation of Manning\\'s n coefficients. This thesis considers the Bayesian inference problem of the Manning\\'s n coefficient in the context of storm surge based on the coastal ocean ADCIRC model. In the first part of the thesis, we apply an ensemble-based Kalman filter, the singular evolutive interpolated Kalman (SEIK) filter to estimate both a constant Manning\\'s n coefficient and a 2-D parameterized Manning\\'s coefficient on one ideal and one of more realistic domain using observation system simulation experiments (OSSEs). We study the sensitivity of the system to the ensemble size. we also access the benefits from using an in ation factor on the filter performance. To study the limitation of the Guassian restricted assumption on the SEIK lter, 5 we also implemented in the second part of this thesis a Markov Chain Monte Carlo (MCMC) method based on a Generalized Polynomial chaos (gPc) approach for the estimation of the 1-D and 2-D Mannning\\'s n coe cient. The gPc is used to build a surrogate model that imitate the ADCIRC model in order to make the computational cost of implementing the MCMC with the ADCIRC model reasonable. We evaluate the performance of the MCMC-gPc approach and study its robustness to di erent OSSEs scenario. we also compare its estimates with those resulting from SEIK in term of parameter estimates and full distributions. we present a full analysis of the solution of these two methods, of the

  20. Topological quantum information, virtual Jones polynomials and Khovanov homology

    Kauffman, Louis H

    2011-01-01

    In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)

  1. Constructing general partial differential equations using polynomial and neural networks.

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dynamics of polynomial Chaplygin gas warm inflation

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Chaudhary, Shahid [Sharif College of Engineering and Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)

    2017-11-15

    In the present work, we study the consequences of a recently proposed polynomial inflationary potential in the context of the generalized, modified, and generalized cosmic Chaplygin gas models. In addition, we consider dissipative effects by coupling the inflation field to radiation, i.e., the inflationary dynamics is studied in the warm inflation scenario. We take into account a general parametrization of the dissipative coefficient Γ for describing the decay of the inflaton field into radiation. By studying the background and perturbative dynamics in the weak and strong dissipative regimes of warm inflation separately for the positive and negative quadratic and quartic potentials, we obtain expressions for the most relevant inflationary observables as the scalar power spectrum, the scalar spectral, and the tensor-to-scalar ratio. We construct the trajectories in the n{sub s}-r plane for several expressions of the dissipative coefficient and compare with the two-dimensional marginalized contours for (n{sub s}, r) from the latest Planck data. We find that our results are in agreement with WMAP9 and Planck 2015 data. (orig.)

  3. Global sensitivity analysis using polynomial chaos expansions

    Sudret, Bruno

    2008-01-01

    Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices

  4. Global sensitivity analysis using polynomial chaos expansions

    Sudret, Bruno [Electricite de France, R and D Division, Site des Renardieres, F 77818 Moret-sur-Loing Cedex (France)], E-mail: bruno.sudret@edf.fr

    2008-07-15

    Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices.

  5. Polynomial Chaos Surrogates for Bayesian Inference

    Le Maitre, Olivier

    2016-01-06

    The Bayesian inference is a popular probabilistic method to solve inverse problems, such as the identification of field parameter in a PDE model. The inference rely on the Bayes rule to update the prior density of the sought field, from observations, and derive its posterior distribution. In most cases the posterior distribution has no explicit form and has to be sampled, for instance using a Markov-Chain Monte Carlo method. In practice the prior field parameter is decomposed and truncated (e.g. by means of Karhunen- Lo´eve decomposition) to recast the inference problem into the inference of a finite number of coordinates. Although proved effective in many situations, the Bayesian inference as sketched above faces several difficulties requiring improvements. First, sampling the posterior can be a extremely costly task as it requires multiple resolutions of the PDE model for different values of the field parameter. Second, when the observations are not very much informative, the inferred parameter field can highly depends on its prior which can be somehow arbitrary. These issues have motivated the introduction of reduced modeling or surrogates for the (approximate) determination of the parametrized PDE solution and hyperparameters in the description of the prior field. Our contribution focuses on recent developments in these two directions: the acceleration of the posterior sampling by means of Polynomial Chaos expansions and the efficient treatment of parametrized covariance functions for the prior field. We also discuss the possibility of making such approach adaptive to further improve its efficiency.

  6. Scattering amplitudes from multivariate polynomial division

    Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2012-11-15

    We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.

  7. q-Bernoulli numbers and q-Bernoulli polynomials revisited

    Kim Taekyun

    2011-01-01

    Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80

  8. Generalized Freud's equation and level densities with polynomial potential

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  9. Learning Read-constant Polynomials of Constant Degree modulo Composites

    Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt

    2011-01-01

    Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...

  10. Surface-sediment and hermit-crab contamination by butyltins in southeastern Atlantic estuaries after ban of TBT-based antifouling paints.

    Sant'Anna, B S; Santos, D M; Marchi, M R R; Zara, F J; Turra, A

    2014-05-01

    Butyltin (BT) contamination was evaluated in hermit crabs from 25 estuaries and in sediments from 13 of these estuaries along about 2,000 km of the Brazilian coast. BT contamination in hermit crabs ranged from 2.22 to 1,746 ng Sn g(-1) of DBT and 1.32 to 318 ng Sn g(-1) of TBT. In sediment samples, the concentration also varied widely, from 25 to 1,304 ng Sn g(-1) of MBT, from 7 to 158 ng Sn g(-1) of DBT, and from 8 to 565 ng Sn g(-1) of TBT. BTs are still being found in surface sediments and biota of the estuaries after the international and Brazilian bans, showing heterogeneous distribution among and within estuaries. Although hermit crabs were previously tested as an indicator of recent BT contamination, the results indicate the presence of contamination, probably from resuspension of BTs from deeper water of the estuary.

  11. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  12. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  13. A summation procedure for expansions in orthogonal polynomials

    Garibotti, C.R.; Grinstein, F.F.

    1977-01-01

    Approximants to functions defined by formal series expansions in orthogonal polynomials are introduced. They are shown to be convergent even out of the elliptical domain where the original expansion converges

  14. Classification of complex polynomial vector fields in one complex variable

    Branner, Bodil; Dias, Kealey

    2010-01-01

    This paper classifies the global structure of monic and centred one-variable complex polynomial vector fields. The classification is achieved by means of combinatorial and analytic data. More specifically, given a polynomial vector field, we construct a combinatorial invariant, describing...... the topology, and a set of analytic invariants, describing the geometry. Conversely, given admissible combinatorial and analytic data sets, we show using surgery the existence of a unique monic and centred polynomial vector field realizing the given invariants. This is the content of the Structure Theorem......, the main result of the paper. This result is an extension and refinement of Douady et al. (Champs de vecteurs polynomiaux sur C. Unpublished manuscript) classification of the structurally stable polynomial vector fields. We further review some general concepts for completeness and show that vector fields...

  15. Skew-orthogonal polynomials and random matrix theory

    Ghosh, Saugata

    2009-01-01

    Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...

  16. Numerical Simulation of Polynomial-Speed Convergence Phenomenon

    Li, Yao; Xu, Hui

    2017-11-01

    We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.

  17. Fast parallel computation of polynomials using few processors

    Valiant, Leslie; Skyum, Sven

    1981-01-01

    It is shown that any multivariate polynomial that can be computed sequentially in C steps and has degree d can be computed in parallel in 0((log d) (log C + log d)) steps using only (Cd)0(1) processors....

  18. Guts of surfaces and the colored Jones polynomial

    Futer, David; Purcell, Jessica

    2013-01-01

    This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have p...

  19. Solving polynomial systems using no-root elimination blending schemes

    Barton, Michael

    2011-01-01

    Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however

  20. Optimal stability polynomials for numerical integration of initial value problems

    Ketcheson, David I.; Ahmadia, Aron

    2013-01-01

    We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step

  1. An algebraic approach to the non-symmetric Macdonald polynomial

    Nishino, Akinori; Ujino, Hideaki; Wadati, Miki

    1999-01-01

    In terms of the raising and lowering operators, we algebraically construct the non-symmetric Macdonald polynomials which are simultaneous eigenfunctions of the commuting Cherednik operators. We also calculate Cherednik's scalar product of them

  2. An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem

    Ephremidze, Lasha

    2010-01-01

    A very simple and short proof of the polynomial matrix spectral factorization theorem (on the unit circle as well as on the real line) is presented, which relies on elementary complex analysis and linear algebra.

  3. Force prediction in cold rolling mills by polynomial methods

    Nicu ROMAN

    2007-12-01

    Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.

  4. Entanglement entropy and the colored Jones polynomial

    Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar

    2018-05-01

    We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.

  5. Quasi-topological Ricci polynomial gravities

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  6. Invariant hyperplanes and Darboux integrability of polynomial vector fields

    Zhang Xiang

    2002-01-01

    This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties

  7. Interpretation of stream programs: characterizing type 2 polynomial time complexity

    Férée , Hugo; Hainry , Emmanuel; Hoyrup , Mathieu; Péchoux , Romain

    2010-01-01

    International audience; We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named well-founded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity including the Basic Feasible Functions (BFF). These charac- terizations provide a new insight on the complexity of stream programs. Finally, we adapt these results to functions over th...

  8. The Combinatorial Rigidity Conjecture is False for Cubic Polynomials

    Henriksen, Christian

    2003-01-01

    We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....

  9. Vanishing of Littlewood-Richardson polynomials is in P

    Adve, Anshul; Robichaux, Colleen; Yong, Alexander

    2017-01-01

    J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation...

  10. Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials

    N. Stojanovic; N. Stamenkovic; I. Krstic

    2016-01-01

    A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approx...

  11. Non-existence criteria for Laurent polynomial first integrals

    Shaoyun Shi

    2003-01-01

    Full Text Available In this paper we derived some simple criteria for non-existence and partial non-existence Laurent polynomial first integrals for a general nonlinear systems of ordinary differential equations $\\dot x = f(x$, $x \\in \\mathbb{R}^n$ with $f(0 = 0$. We show that if the eigenvalues of the Jacobi matrix of the vector field $f(x$ are $\\mathbb{Z}$-independent, then the system has no nontrivial Laurent polynomial integrals.

  12. Raising and Lowering Operators for Askey-Wilson Polynomials

    Siddhartha Sahi

    2007-01-01

    Full Text Available In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.

  13. Bounds and asymptotics for orthogonal polynomials for varying weights

    Levin, Eli

    2018-01-01

    This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals.  Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics.  This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .

  14. Polynomial fuzzy observer designs: a sum-of-squares approach.

    Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O

    2012-10-01

    This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.

  15. Families of superintegrable Hamiltonians constructed from exceptional polynomials

    Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc

    2012-01-01

    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)

  16. Lower bounds for the circuit size of partially homogeneous polynomials

    Le, Hong-Van

    2017-01-01

    Roč. 225, č. 4 (2017), s. 639-657 ISSN 1072-3374 Institutional support: RVO:67985840 Keywords : partially homogeneous polynomials * polynomials Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) https://link.springer.com/article/10.1007/s10958-017-3483-4

  17. Euler Polynomials and Identities for Non-Commutative Operators

    De Angelis, V.; Vignat, C.

    2015-01-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...

  18. Conference on Commutative rings, integer-valued polynomials and polynomial functions

    Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions

    2014-01-01

    This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: ·    Homological dimensions of Prüfer-like rings ·    Quasi complete rings ·    Total graphs of rings ·    Properties of prime ideals over various rings ·    Bases for integer-valued polynomials ·    Boolean subrings ·    The portable property of domains ·    Probabilistic topics in Intn(D) ·    Closure operations in Zariski-Riemann spaces of valuation domains ·    Stability of do...

  19. An overview on polynomial approximation of NP-hard problems

    Paschos Vangelis Th.

    2009-01-01

    Full Text Available The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.

  20. Imaging characteristics of Zernike and annular polynomial aberrations.

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  1. Polynomial asymptotic stability of damped stochastic differential equations

    John Appleby

    2004-08-01

    Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.

  2. Okounkov's BC-Type Interpolation Macdonald Polynomials and Their q=1 Limit

    Koornwinder, T.H.

    2015-01-01

    This paper surveys eight classes of polynomials associated with A-type and BC-type root systems: Jack, Jacobi, Macdonald and Koornwinder polynomials and interpolation (or shifted) Jack and Macdonald polynomials and their BC-type extensions. Among these the BC-type interpolation Jack polynomials were

  3. [Biology and ecology of the terrestrial hermit crab coenobita scaevola forskål of the Red Sea].

    Niggemann, Renate

    1968-06-01

    The terrestrial hermit crab Coenobita scaevola is very common on the coast of the Red Sea. The species depends on the sea for its source of food (wrack-fauna), source of drinking-water and water for moistening gills and abdomen. Only in the supra-litoral zone they find gastropod shells to protect their abdomen against insolation, desiccation and mechanical damage. Coenobita scaevola stays in one place for a long time if good living conditions are available. The time of activity of the juveniles differs from one place to another. Some are diurnal, others are nocturnal. There is no evident relation to the ecological factors. Most of the adults are nocturnal. No Coenobita could be collected in Barber traps. The avoidance of such traps by arthropodes has never been observed before. Coenobita scaevola can live for quite a long time under water of sufficient temperature and salinity. The osmotic regulation of the land-hermit crab differs from that of other shore animals. Coenobita can tolerate a wide range of blood concentrations (25-70‰). It controls the concentration of its blood by selecting water of the appropriate salinity.The static problems of Coenobita are solved by regular movement of the legs and special articulation of the legs.As Coenobita scaevola is a phylogenetically young land animal it carries many inhabitants of marine and terrestrial origin.

  4. Effects of visual and chemical cues on orientation behavior of the Red Sea hermit crab Clibanarius signatus

    Tarek Gad El-Kareem Ismail

    2012-03-01

    Full Text Available Directional orientation of Clibanarius signatus toward different targets of gastropod shells was studied in a circular arena upon exposure to background seawater, calcium concentrations and predatory odor. Directional orientation was absent when crabs were presented with the white background alone. Each shell was tested in different positions (e.g., anterior, posterior, upside-down, lateral. Adult crabs were tested without their gastropod shells, and orientation varied with concentration and chemical cue. With calcium, orientation increased as concentration increased up to a maximum attraction percentage and then attraction became stable. In the case of predator cues, some individuals swim away from the target toward the opposite direction representing a predator avoidance response. Whenever, the blind hermit crab C. signatus was exposed to a shell target combined with calcium or predator cues, the majority of them stop moving or move in circles around the arena center. The others exhibited uniform orientation distribution. The responsiveness was higher with calcium cues than predator cues. Thus in the absence of vision, individual hermit crabs were able to detect both calcium and predator cues and have different response regarding them.

  5. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  6. Evaluating the Performance of Polynomial Regression Method with Different Parameters during Color Characterization

    Bangyong Sun

    2014-01-01

    Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.

  7. Discriminants and functional equations for polynomials orthogonal on the unit circle

    Ismail, M.E.H.; Witte, N.S.

    2000-01-01

    We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle

  8. Shell occupation by the hermit crab Dardanus insignis (Decapoda, Diogenidae from the north Coast of São Paulo state, Brazil

    I. F. Frameschi

    Full Text Available Abstract The pattern of shell occupation by the hermit crab Dardanus insignis (Saussure, 1858 from the subtropical region of southeastern coast of Brazil was investigated in the present study. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from monthly collections conducted during two years (from January 1998 to December 1999. Individuals were categorized according to sex and gonadal maturation, weighed and measured with respect to their cephalothoracic shield length (CSL and wet weight (CWW. Shells were measured regarding their aperture width (SAW, dry weight (SDW and internal volume (SIV. A total of 1086 hermit crabs was collected, occupying shells of 11 gastropod species. Olivancillaria urceus (Roding, 1798 was most commonly used by the hermit crab D. insignis, followed by Buccinanops cochlidium (Dillwyn, 1817, and Stramonita haemastoma (Linnaeus, 1767. The highest determination coefficients (r2 > 0.50, p < 0.01 were recorded particularly in the morphometric relationships between CSL vs. CWW and SAW vs. SIV, which are important indication that in this D. insignis population the great majority the animals occupied adequate shells during the two years analysed. The high number of used shell species and relative plasticity in pattern of shell utilization by smaller individuals of D. insignis indicated that occupation is influenced by the shell availability, while larger individuals demonstrated more specialized occupation in Tonna galea (Linnaeus, 1758 shell.

  9. On the velocity space discretization for the Vlasov-Poisson system: comparison between implicit Hermite spectral and Particle-in-Cell methods

    E. Camporeale (Enrico); G.L. Delzanno; B.K. Bergen; J.D. Moulton

    2016-01-01

    htmlabstractWe describe a spectral method for the numerical solution of the Vlasov–Poisson system where the velocity space is decomposed by means of an Hermite basis, and the configuration space is discretized via a Fourier decomposition. The novelty of our approach is an implicit time

  10. The anatomy of the king crab Hapalogaster mertensii Brandt, 1850 (Anomura: Paguroidea: Hapalogastridae): new insights into the evolutionary transformation of hermit crabs into king crabs

    Keiler, J.; Richter, S.; Wirkner, C.S.

    2015-01-01

    The emergence of king crabs from a hermit crab-like ancestor is one of the most curious events in decapod evolution. King crabs comprise two taxa, Lithodidae and Hapalogastridae, and while lithodids have formed the focus of various anatomical studies, the internal anatomy of hapalogastrids has never

  11. Egg production and shell relationship of the land hermit crab Coenobita scaevola (Anomura: Coenobitidae from Wadi El-Gemal, Red Sea, Egypt

    Wafaa S. Sallam

    2012-03-01

    Full Text Available The aim of the present study is to characterize the fecundity of the land hermit crab Coenobita scaevola as well as the influence of shell type on fecundity using morphometric relationships. Hermit crabs were collected monthly from January to December 2007 from the protected area of Wadi El-Gemal, at Marsa Alam on the Red Sea, and ovigerous females were selected. Hermit crab wet weight and the gastropod shell weight were recorded. The number of eggs carried by females of several sizes (CL, carapace length, stages of development and egg size were determined. Shells of eight gastropod species were occupied by ovigerous females of C. scaevola. Shells of Nerita undata was the most occupied (65.7%, particularly by individuals falling within the size range 5.0–7.0 mm CL. Only 35 berried females were recorded during May, July and September and the mean fecundity was 679.8 ± 140 eggs. Fecundity was found positively correlated with crab size and shell dimensions. The relationship between fecundity and the internal volume of the occupied shell was ranked as the most correlated. The impact of shell utilization on hermit crab fecundity is discussed.

  12. Hermit crab (Decapoda, Anomura attraction to dead gastropod baits in an infralittoral algae bank

    Juarez C. B. Pezzuti

    2002-06-01

    Full Text Available Hermit crabs use gastropod shells as shelter and are adapted to follow chemical cues released from tissues of dead or injured gastropods as a way to find new and more adequate shells. The species composition, crab size, shell types adequacy and physical condition were compared between attracted individuals and crabs collected in previous samples. The previous sampling was carried out in five areas before each experiment. Then, five baits of crushed gastropods in nylon net bags were installed in these areas. Three samples were taken at 30min intervals, capturing all crabs within a circle of 60cm diameter. Attraction of hermit crabs was tested for four different gastropod baits to verify specificity of the chemical cues. Clibanarius antillensis, Pagurus brevidactylus and Paguristes tortugae were collected in the study area. Pagurus brevidactylus, the smallest species, turned out to be more attracted than the 2 other species. The results showed that attracted crabs utilized more gastropod shell types than that collected in previous samples, however shell utilization pattern did not differ between them. Attracted animals were slightly smaller (shield length than those collected in the previous samples but did not present significant differences in shell adequacy and condition. The four experimental baits attracted the crabs in similar ways not indicating a specific response from the crabs. The fact that attracted animals were smaller suggested that the attraction to dead gastropods might enable the acquisition of a new and larger shell and, consequently, chains of shell exchange between the attracted crabs.Ermitões utilizam conchas de gastrópodes para abrigo. Conchas novas e mais adequadas podem ser encontradas pelos ermitões pois estes são atraídos por substâncias químicas liberadas pelos tecidos de gastrópodes feridos ou mortos. A adequação, condição e tipo das conchas e a composição de espécies e o tamanho dos ermitões foram

  13. PLOTNFIT.4TH, Data Plotting and Curve Fitting by Polynomials

    Schiffgens, J.O.

    1990-01-01

    1 - Description of program or function: PLOTnFIT is used for plotting and analyzing data by fitting nth degree polynomials of basis functions to the data interactively and printing graphs of the data and the polynomial functions. It can be used to generate linear, semi-log, and log-log graphs and can automatically scale the coordinate axes to suit the data. Multiple data sets may be plotted on a single graph. An auxiliary program, READ1ST, is included which produces an on-line summary of the information contained in the PLOTnFIT reference report. 2 - Method of solution: PLOTnFIT uses the least squares method to calculate the coefficients of nth-degree (up to 10. degree) polynomials of 11 selected basis functions such that each polynomial fits the data in a least squares sense. The procedure incorporated in the code uses a linear combination of orthogonal polynomials to avoid 'i11-conditioning' and to perform the curve fitting task with single-precision arithmetic. 3 - Restrictions on the complexity of the problem - Maxima of: 225 data points per job (or graph) including all data sets 8 data sets (or tasks) per job (or graph)

  14. Multivariate Local Polynomial Regression with Application to Shenzhen Component Index

    Liyun Su

    2011-01-01

    Full Text Available This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Takens' Theorem, are considered. To fit the stock index series, the single series changes into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series based on multivariate local polynomial model is compared with univariate predictor with the same Shenzhen stock index data. The numerical results obtained by Shenzhen component index show that the prediction mean squared error of the multivariate predictor is much smaller than the univariate one and is much better than the existed three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squared error is smaller than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time series is a useful tool for stock market price prediction.

  15. Polynomial algebra of discrete models in systems biology.

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  16. Nuclear-magnetic-resonance quantum calculations of the Jones polynomial

    Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.

    2010-01-01

    The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.

  17. A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories

    Narkawicz, Anthony; Munoz, Cesar

    2015-01-01

    In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.

  18. Local polynomial Whittle estimation of perturbed fractional processes

    Frederiksen, Per; Nielsen, Frank; Nielsen, Morten Ørregaard

    We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory component...... of the signal by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also in‡ate the asymptotic variance of the long memory estimate by a multiplicative constant. We show that the estimator is consistent for d 2 (0; 1), asymptotically normal...... for d ε (0, 3/4), and if the spectral density is infinitely smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, pn. A Monte Carlo study reveals that the LPWN estimator performs well in the presence of a serially correlated perturbation term...

  19. Fractional order differentiation by integration with Jacobi polynomials

    Liu, Dayan

    2012-12-01

    The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.

  20. Synchronization of generalized Henon map using polynomial controller

    Lam, H.K.

    2010-01-01

    This Letter presents the chaos synchronization of two discrete-time generalized Henon map, namely the drive and response systems. A polynomial controller is proposed to drive the system states of the response system to follow those of the drive system. The system stability of the error system formed by the drive and response systems and the synthesis of the polynomial controller are investigated using the sum-of-squares (SOS) technique. Based on the Lyapunov stability theory, stability conditions in terms of SOS are derived to guarantee the system stability and facilitate the controller synthesis. By satisfying the SOS-based stability conditions, chaotic synchronization is achieved. The solution of the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. A simulation example is given to illustrate the merits of the proposed polynomial control approach.

  1. The Kauffman bracket and the Jones polynomial in quantum gravity

    Griego, J.

    1996-01-01

    In the loop representation the quantum states of gravity are given by knot invariants. From general arguments concerning the loop transform of the exponential of the Chern-Simons form, a certain expansion of the Kauffman bracket knot polynomial can be formally viewed as a solution of the Hamiltonian constraint with a cosmological constant in the loop representation. The Kauffman bracket is closely related to the Jones polynomial. In this paper the operation of the Hamiltonian on the power expansions of the Kauffman bracket and Jones polynomials is analyzed. It is explicitly shown that the Kauffman bracket is a formal solution of the Hamiltonian constraint to third order in the cosmological constant. We make use of the extended loop representation of quantum gravity where the analytic calculation can be thoroughly accomplished. Some peculiarities of the extended loop calculus are considered and the significance of the results to the case of the conventional loop representation is discussed. (orig.)

  2. Polynomial chaos expansion with random and fuzzy variables

    Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.

    2016-06-01

    A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.

  3. Fractional order differentiation by integration with Jacobi polynomials

    Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid; Laleg-Kirati, Taous-Meriem

    2012-01-01

    The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.

  4. Real zeros of classes of random algebraic polynomials

    K. Farahmand

    2003-01-01

    Full Text Available There are many known asymptotic estimates for the expected number of real zeros of an algebraic polynomial a0+a1x+a2x2+⋯+an−1xn−1 with identically distributed random coefficients. Under different assumptions for the distribution of the coefficients {aj}j=0n−1 it is shown that the above expected number is asymptotic to O(logn. This order for the expected number of zeros remains valid for the case when the coefficients are grouped into two, each group with a different variance. However, it was recently shown that if the coefficients are non-identically distributed such that the variance of the jth term is (nj the expected number of zeros of the polynomial increases to O(n. The present paper provides the value for this asymptotic formula for the polynomials with the latter variances when they are grouped into three with different patterns for their variances.

  5. a Unified Matrix Polynomial Approach to Modal Identification

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  6. Euler polynomials and identities for non-commutative operators

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  7. Local polynomial Whittle estimation covering non-stationary fractional processes

    Nielsen, Frank

    to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....

  8. The algebra of Weyl symmetrised polynomials and its quantum extension

    Gelfand, I.M.; Fairlie, D.B.

    1991-01-01

    The Algebra of Weyl symmetrised polynomials in powers of Hamiltonian operators P and Q which satisfy canonical commutation relations is constructed. This algebra is shown to encompass all recent infinite dimensional algebras acting on two-dimensional phase space. In particular the Moyal bracket algebra and the Poisson bracket algebra, of which the Moyal is the unique one parameter deformation are shown to be different aspects of this infinite algebra. We propose the introduction of a second deformation, by the replacement of the Heisenberg algebra for P, Q with a q-deformed commutator, and construct algebras of q-symmetrised Polynomials. (orig.)

  9. Skew-orthogonal polynomials, differential systems and random matrix theory

    Ghosh, S.

    2007-01-01

    We study skew-orthogonal polynomials with respect to the weight function exp[-2V (x)], with V (x) = Σ K=1 2d (u K /K)x K , u 2d > 0, d > 0. A finite subsequence of such skew-orthogonal polynomials arising in the study of Orthogonal and Symplectic ensembles of random matrices, satisfy a system of differential-difference-deformation equation. The vectors formed by such subsequence has the rank equal to the degree of the potential in the quaternion sense. These solutions satisfy certain compatibility condition and hence admit a simultaneous fundamental system of solutions. (author)

  10. Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials

    N. Stojanovic

    2016-09-01

    Full Text Available A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth are shown to be a special cases of proposed approximation method.

  11. Weierstrass method for quaternionic polynomial root-finding

    Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana

    2018-01-01

    Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.

  12. Orthogonal polynomials on the unit circle part 2 spectral theory

    Simon, Barry

    2013-01-01

    This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po

  13. Orthogonal polynomials on the unit circle part 1 classical theory

    2009-01-01

    This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po

  14. The neighbourhood polynomial of some families of dendrimers

    Nazri Husin, Mohamad; Hasni, Roslan

    2018-04-01

    The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.

  15. Gaussian polynomials and content ideal in trivial extensions

    Bakkari, C.; Mahdou, N.

    2006-12-01

    The goal of this paper is to exhibit a class of Gaussian non-coherent rings R (with zero-divisors) such that wdim(R) = ∞ and fPdim(R) is always at most one and also exhibits a new class of rings (with zerodivisors) which are neither locally Noetherian nor locally domain where Gaussian polynomials have a locally principal content. For this purpose, we study the possible transfer of the 'Gaussian' property and the property 'the content ideal of a Gaussian polynomial is locally principal' to various trivial extension contexts. This article includes a brief discussion of the scopes and limits of our result. (author)

  16. M-Polynomial and Related Topological Indices of Nanostar Dendrimers

    Mobeen Munir

    2016-09-01

    Full Text Available Dendrimers are highly branched organic macromolecules with successive layers of branch units surrounding a central core. The M-polynomial of nanotubes has been vastly investigated as it produces many degree-based topological indices. These indices are invariants of the topology of graphs associated with molecular structure of nanomaterials to correlate certain physicochemical properties like boiling point, stability, strain energy, etc. of chemical compounds. In this paper, we first determine M-polynomials of some nanostar dendrimers and then recover many degree-based topological indices.

  17. On the Lojasiewicz exponent at infinity of real polynomials

    Ha Huy Vui; Pham Tien Son

    2007-07-01

    Let f : R n → R be a nonconstant polynomial function. In this paper, using the information from 'the curve of tangency' of f, we provide a method to determine the Lojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Lojasiewicz exponent at infinity is finite or not. Then, we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Lojasiewicz exponent at infinity of f with the problem of computing the global optimum of f is also established. (author)

  18. A new species of Pagurus (Crustacea: Decapoda: Paguridae, new records and a redescription of hermit crabs from the Mexican Pacific

    Manuel Ayón-Parente

    2012-09-01

    Full Text Available New records are provided for three species of little-known pagurids. All the material reported was collected by the R/V “El Puma” in the central Gulf of California during the GUAYTEC II cruise. New material is reported for Iridopagurus haigae García-Gómez, 1983, Enallopagurus spinicarpus (Glassell, 1937, and Solenopagurus diomedeae (Faxon, 1893, and these two latter species are redescribed. A new species of hermit crab of the genus Pagurus Fabricius, 1775, is described and illustrated in detail. Among the eastern Pacific species of Pagurus, this new species resembles Pagurus meloi Lemaitre and Cruz Castaño, 2004, P. imarpe Haig, 1974 and P. delsolari Haig, 1974, but differs from these three species in the armature and setation of the chelipeds and second and third pereopods, the shape and armature of the telson, and the number of rows of scales on pereopodal rasp and the presence of a preungual process.

  19. Runge-Kutta and Hermite Collocation for a biological invasion problem modeled by a generalized Fisher equation

    Athanasakis, I E; Papadopoulou, E P; Saridakis, Y G

    2014-01-01

    Fisher's equation has been widely used to model the biological invasion of single-species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods

  20. Reality of Energy Spectra in Multi-dimensional Hamiltonians Having Pseudo Hermiticity with Respect to the Exchange Operator

    Nanayakkara, Asiri

    2005-01-01

    The pseudo Hermiticity with respect to the exchange operators of N-D complex Hamiltonians is investigated. It is shown that if an N-D Hamiltonian is pseudo Hermitian and any eigenfunction of it retains π α T symmetry then the corresponding eigen value is real, where π α is an exchange operator with respect to the permutation α of coordinates and T is the time reversal operator. We construct a special class of N-D pseudo Hermitian Hamiltonians with respect to exchange operators from both N/2-D and N-D general complex Hamiltonians. Examples are presented for Hamiltonians with πT symmetry (π:x↔y, p x ↔p y ) and the reality of these systems are investigated.

  1. Generalized treatment of point reactor kinetics driven by random reactivity fluctuations via the Wiener-Hermite functional method

    Behringer, K.

    1991-02-01

    In a recent paper by Behringer et al. (1990), the Wiener-Hermite Functional (WHF) method has been applied to point reactor kinetics excited by Gaussian random reactivity noise under stationary conditions, in order to calculate the neutron steady-state value and the neutron power spectral density (PSD) in a second-order (WHF-2) approximation. For simplicity, delayed neutrons and any feedback effects have been disregarded. The present study is a straightforward continuation of the previous one, treating the problem more generally by including any number of delayed neutron groups. For the case of white reactivity noise, the accuracy of the approach is determined by comparison with the exact solution available from the Fokker-Planck method. In the numerical comparisons, the first-oder (WHF-1) approximation of the PSD is also considered. (author) 4 figs., 10 refs

  2. Application of the Wiener-Hermite functional method to point reactor kinetics driven by random reactivity fluctuations

    Behringer, K.; Pineyro, J.; Mennig, J.

    1990-06-01

    The Wiener-Hermite functional (WHF) method has been applied to the point reactor kinetic equation excited by Gaussian random reactivity noise under stationary conditions. Delayed neutrons and any feedback effects are disregarded. The neutron steady-state value and the power spectral density (PSD) of the neutron flux have been calculated in a second order (WHF-2) approximation. Two cases are considered: in the first case, the noise source is low-pass white noise. In both cases the WHF-2 approximation of the neutron PSDs leads to relatively simple analytical expressions. The accuracy of the approach is determined by comparison with exact solutions of the problem. The investigations show that the WHF method is a powerful approximative tool for studying the nonlinear effects in the stochastic differential equation. (author) 5 figs., 29 refs

  3. The use of Gauss-Hermite quadrature in the determination of the molecular weight distribution of linear polymers by rheometry

    T. M. Farias

    2013-12-01

    Full Text Available The molecular weight distribution (MWD and its parameters are of the fundamental importance in the characterization of polymers. Therefore, the development of techniques for faster MWD determination is a relevant issue. This paper aims at implementing one of the relaxation models from double reptation theory proposed in the literature and analyzing the numeric strategy for the evaluation of the integrals appearing in the relaxation model. The inverse problem, i.e., the determination of the MWD from rheological data using a specified relaxation model and an imposed distribution function was approximated. Concerning the numerical strategy for the evaluation of the integrals appearing in the relaxation models, the use of Gauss-Hermite quadrature using a new change of variables was proposed. In the test of samples of polyethylene with polydispersities less than 10, the application of this methodology led to MWD curves which provided a good fit of the experimental SEC data.

  4. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae, a crustacean with a good aerial sense of smell

    Hansson Bill S

    2008-06-01

    Full Text Available Abstract Background During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of Coenobita clypeatus (Herbst, 1791; Anomura, Coenobitidae, a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase. Results The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that C. clypeatus has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusion In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes, superficially similar to the lamellae in the secondary olfactory centers of C. clypeatus. More detailed analyses with

  5. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad

    2013-01-01

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers

  6. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2013-11-15

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.

  7. Morphology and histochemistry of the aesthetasc-associated epidermal glands in terrestrial hermit crabs of the genus Coenobita (Decapoda: Paguroidea.

    Oksana Tuchina

    Full Text Available Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs. Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses. We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics

  8. Spatial distribution and shell utilization in three sympatric hermit crabs at non-consolidated sublittoral of estuarine-bay complex in São Vicente, São Paulo, Brazil

    Sant'Anna, Bruno S. [UNESP; Zangrande, Cilene M. [UNESP; Reigada, Álvaro L.D. [UNESP; Severino-Rodrigues, Evandro

    2006-01-01

    The objective of the present study was to characterize the spatial distribution and shell utilization of three hermit crab species in the estuarine-bay complex of São Vicente, São Paulo State, Brazil. Monthly samples were done throughout two years, in the non-consolidated sub-littoral at the estuarine-bay complex. The environmental factors, such as temperature, salinity and depth, were measured every month. The three hermit crab species, Clibanarius vittatus, Loxopagurus loxochelis and Isoche...

  9. Application of grafted polynomial function in forecasting cotton ...

    A study was conducted to forecast cotton production trend with the application of a grafted polynomial function in Nigeria from 1985 through 2013. Grafted models are used in econometrics to embark on economic analysis involving time series. In economic time series, the paucity of data and their availability has always ...

  10. A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection

    Takano, Y.; Sotirov, R.

    2010-01-01

    We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on

  11. On Dual Gabor Frame Pairs Generated by Polynomials

    Christensen, Ole; Rae Young, Kim

    2010-01-01

    We provide explicit constructions of particularly convenient dual pairs of Gabor frames. We prove that arbitrary polynomials restricted to sufficiently large intervals will generate Gabor frames, at least for small modulation parameters. Unfortunately, no similar function can generate a dual Gabo...

  12. Learning Mixtures of Polynomials of Conditional Densities from Data

    L. López-Cruz, Pedro; Nielsen, Thomas Dyhre; Bielza, Concha

    2013-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique for hybrid Bayesian networks with continuous and discrete variables. We propose two methods for learning MoP ap- proximations of conditional densities from data. Both approaches are based on learning MoP approximatio...

  13. Root and critical point behaviors of certain sums of polynomials

    Seon-Hong Kim

    2018-04-24

    Apr 24, 2018 ... Root and critical point behaviors of certain sums of polynomials. SEON-HONG KIM1,∗. , SUNG YOON KIM2, TAE HYUNG KIM2 and SANGHEON LEE2. 1Department of Mathematics, Sookmyung Women's University, Seoul 140-742, Korea. 2Gyeonggi Science High School, Suwon 440-800, Korea.

  14. Computational Technique for Teaching Mathematics (CTTM): Visualizing the Polynomial's Resultant

    Alves, Francisco Regis Vieira

    2015-01-01

    We find several applications of the Dynamic System Geogebra--DSG related predominantly to the basic mathematical concepts at the context of the learning and teaching in Brasil. However, all these works were developed in the basic level of Mathematics. On the other hand, we discuss and explore, with DSG's help, some applications of the polynomial's…

  15. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  16. QCD analysis of structure functions in terms of Jacobi polynomials

    Krivokhizhin, V.G.; Kurlovich, S.P.; Savin, I.A.; Sidorov, A.V.; Skachkov, N.B.; Sanadze, V.V.

    1987-01-01

    A new method of QCD-analysis of singlet and nonsinglet structure functions based on their expansion in orthogonal Jacobi polynomials is proposed. An accuracy of the method is studied and its application is demonstrated using the structure function F 2 (x,Q 2 ) obtained by the EMC Collaboration from measurements with an iron target. (orig.)

  17. Representations for the extreme zeros of orthogonal polynomials

    van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.

    2009-01-01

    We establish some representations for the smallest and largest zeros of orthogonal polynomials in terms of the parameters in the three-terms recurrence relation. As a corollary we obtain representations for the endpoints of the true interval of orthogonality. Implications of these results for the

  18. Superiority of Bessel function over Zernicke polynomial as base ...

    Abstract. Here we describe the superiority of Bessel function as base function for radial expan- sion over Zernicke polynomial in the tomographic reconstruction technique. The causes for the superiority have been described in detail. The superiority has been shown both with simulated data for Kadomtsev's model for ...

  19. Simplified polynomial representation of cross sections for reactor calculation

    Dias, A.M.; Sakai, M.

    1985-01-01

    It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.) [pt

  20. A fast numerical test of multivariate polynomial positiveness with applications

    Augusta, Petr; Augustová, Petra

    2018-01-01

    Roč. 54, č. 2 (2018), s. 289-303 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : stability * multidimensional systems * positive polynomials * fast Fourier transforms * numerical algorithm Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 0.379, year: 2016 https://www.kybernetika.cz/content/2018/2/289/paper.pdf

  1. Computing Tutte polynomials of contact networks in classrooms

    Hincapié, Doracelly; Ospina, Juan

    2013-05-01

    Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network

  2. Fast Parallel Computation of Polynomials Using Few Processors

    Valiant, Leslie G.; Skyum, Sven; Berkowitz, S.

    1983-01-01

    It is shown that any multivariate polynomial of degree $d$ that can be computed sequentially in $C$ steps can be computed in parallel in $O((\\log d)(\\log C + \\log d))$ steps using only $(Cd)^{O(1)} $ processors....

  3. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    Alim, Murad

    2009-07-13

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  4. Riesz transforms and Lie groups of polynomial growth

    Elst, ter A.F.M.; Robinson, D.W.; Sikora, A.

    1999-01-01

    Let G be a Lie group of polynomial growth. We prove that the second-order Riesz transforms onL2(G; dg) are bounded if, and only if, the group is a direct product of a compact group and a nilpotent group, in which case the transforms of all orders are bounded.

  5. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials

    Freund, Roland

    1989-01-01

    Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.

  6. Polynomial constitutive model for shape memory and pseudo elasticity

    Savi, M.A.; Kouzak, Z.

    1995-01-01

    This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs

  7. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation

    Sheng-Cheng Huang

    2017-01-01

    Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.

  8. A Genetic algorithm for evaluating the zeros (roots) of polynomial ...

    This paper presents a Genetic Algorithm software (which is a computational, search technique) for finding the zeros (roots) of any given polynomial function, and optimizing and solving N-dimensional systems of equations. The software is particularly useful since most of the classic schemes are not all embracing.

  9. Global sensitivity analysis using sparse grid interpolation and polynomial chaos

    Buzzard, Gregery T.

    2012-01-01

    Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.

  10. Simplified polynomial digital predistortion for multimode software defined radios

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    a simplified approach using polynomial digital predistortion in the intermediated frequency (IF) domain. It is fully implementable in software and no hardware changes are required on the digital or analog platform. The adaptation algorithm selected was Least Mean Squares because of its relevant simplicity...

  11. Polynomial kernels for deletion to classes of acyclic digraphs

    Mnich, Matthias; van Leeuwen, E.J.

    2017-01-01

    We consider the problem to find a set X of vertices (or arcs) with |X| ≤ k in a given digraph G such that D = G − X is an acyclic digraph. In its generality, this is Directed Feedback Vertex Set (or Directed Feedback Arc Set); the existence of a polynomial kernel for these problems is a notorious

  12. Lie-theoretic generating relations of two variable Laguerre polynomials

    Khan, Subuhi; Yasmin, Ghazala

    2002-07-01

    Generating relations involving two variable Lagneire polynonuals L n (x, y) are derived. The process involves the construction of a three dimensional Lie algebra isomorphic to special linear algebra sl(2) with the help of Weisner's method by giving suitable interpretations to the index n of the polynomials L n (x, y). (author)

  13. Differentiation by integration using orthogonal polynomials, a survey

    Diekema, E.; Koornwinder, T.H.

    2012-01-01

    This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such formulas. We give some results in greater generality than in the literature. Notably we

  14. Tsallis p, q-deformed Touchard polynomials and Stirling numbers

    Herscovici, O.; Mansour, T.

    2017-01-01

    In this paper, we develop and investigate a new two-parametrized deformation of the Touchard polynomials, based on the definition of the NEXT q-exponential function of Tsallis. We obtain new generalizations of the Stirling numbers of the second kind and of the binomial coefficients and represent two new statistics for the set partitions.

  15. Optimum short-time polynomial regression for signal analysis

    A Sreenivasa Murthy

    the Proceedings of European Signal Processing Conference. (EUSIPCO) 2008. ... In a seminal paper, Savitzky and Golay [4] showed that short-time polynomial modeling is ...... We next consider a linearly frequency-modulated chirp with an exponentially .... 1 http://www.physionet.org/physiotools/matlab/ECGwaveGen/.

  16. on the performance of Autoregressive Moving Average Polynomial

    Timothy Ademakinwa

    estimated using least squares and Newton Raphson iterative methods. To determine the order of the ... r is the degree of polynomial while j is the number of lag of the ..... use a real time series dataset, monthly rainfall and temperature series ...

  17. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  18. Szegö Kernels and Asymptotic Expansions for Legendre Polynomials

    Roberto Paoletti

    2017-01-01

    Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].

  19. Computation of rectangular source integral by rational parameter polynomial method

    Prabha, Hem

    2001-01-01

    Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively

  20. A polynomial optimization approach to constant rebalanced portfolio selection

    Takano, Y.; Sotirov, R.

    2012-01-01

    We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on

  1. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    Alim, Murad

    2009-01-01

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  2. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5

  3. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-01-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  4. Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror

    Long, CS

    2012-04-01

    Full Text Available , are routinely and conveniently described using Zernike polynomials. A Rayleigh-Ritz structural model, which uses Zernike polynomials directly to describe the displacements, is proposed in this paper. The proposed formulation produces a numerically inexpensive...

  5. Application of Chybeshev Polynomials in Factorizations of Balancing and Lucas-Balancing Numbers

    Prasanta Kumar Ray

    2012-01-01

    Full Text Available In this paper, with the help of orthogonal polynomial especially Chybeshev polynomials of first and second kind, number theory and linear algebra intertwined to yield factorization of the balancing and Lucas-balancing numbers.

  6. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno

    2016-09-15

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input

  7. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    Konakli, Katerina; Sudret, Bruno

    2016-01-01

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input

  8. A high-order q-difference equation for q-Hahn multiple orthogonal polynomials

    Arvesú, J.; Esposito, Chiara

    2012-01-01

    A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....

  9. Some properties of generalized self-reciprocal polynomials over finite fields

    Ryul Kim

    2014-07-01

    Full Text Available Numerous results on self-reciprocal polynomials over finite fields have been studied. In this paper we generalize some of these to a-self reciprocal polynomials defined in [4]. We consider some properties of the divisibility of a-reciprocal polynomials and characterize the parity of the number of irreducible factors for a-self reciprocal polynomials over finite fields of odd characteristic.

  10. The tropical African hermit crab Pagurus mbizi (Crustacea, Decapoda, Paguridae in the Western Mediterranean Sea: a new alien species or filling gaps in the knowledge of the distribution?

    J. E. GARCIA RASO

    2013-12-01

    Full Text Available We report the first occurrence in the European Mediterranean Sea of a tropical Atlantic hermit crab, Pagurus mbizi (Forest, 1955, based on the capture of twenty specimens (all sizes and ovigerous females collected along the northern shores of the Alboran Sea, which proof the existence of a well-established population of this species, and the importance of this geographic area as a transitional and settlement zone for Atlantic species, which makes the Alboran Sea one of the richest marine biodiversity areas in the Mediterranean Sea. Some morphological comparative data with the closely related hermit crab Pagurus pubescentulus are given. In addition, data on its habitat and geographical distribution, as well as the probable pathways of introduction, are commented.

  11. Limit cycles bifurcating from the periodic annulus of cubic homogeneous polynomial centers

    Jaume Llibre

    2015-10-01

    Full Text Available We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any cubic homogeneous polynomial center when it is perturbed inside the class of all polynomial differential systems of degree n.

  12. Bernoulli numbers and polynomials from a more general point of view

    Dattoli, G.; Cesarano, C.; Lorenzutta, S.

    2000-01-01

    In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials [it

  13. On associated polynomials and decay rates for birth-death processes

    van Doorn, Erik A.

    2001-01-01

    We consider sequences of orthogonal polynomials and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials. In particular, we relate the supports of the

  14. On associated polynomials and decay rates for birth-death processes

    van Doorn, Erik A.

    2003-01-01

    We consider sequences of orthogonal polynomials and pursue the question of how (partial) knowledge of the orthogonalizing measure for the associated polynomials can lead to information about the orthogonalizing measure for the original polynomials. In particular, we relate the supports of the two

  15. A note on the zeros of Freud-Sobolev orthogonal polynomials

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  16. Design and Use of a Learning Object for Finding Complex Polynomial Roots

    Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime

    2013-01-01

    Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…

  17. An integrative approach-using field and laboratory data to characterize shell utilization and selection pattern by the hermit crab Pagurus criniticornis (Paguridae from Anchieta Island, Brazil

    Fernando L. Mantelatto

    Full Text Available Abstract The aim of this study was to characterize the pattern of gastropod shell occupation in the field and selection of shell size and type under laboratory conditions by the hermit crab Pagurus criniticornis (Dana, 1852, inhabiting the infralittoral area of Anchieta Island, São Paulo, Brazil. Hermit crabs were obtained monthly during 1999 by SCUBA diving. For experiments under laboratory conditions, samplings were performed in 2002. The hermit crabs occupied 16 species of gastropods shells. Cerithium atratum (Born, 1778 was the most occupied shell (89.31%, followed by Morula nodulosa (4.73% (Adams, 1845. No difference was observed in the pattern of occupation between males and females. The equations that best demonstrated the relationship between hermit crabs and their shells were those that involved Shell Wet Weight (SWW and Shell Internal Volume (SIV. The laboratory experiments were in accordance to the pattern of occupation observed in the field; the mean value of SAI (Shell Adequacy Index recorded to the population studied was 1.13 with a trend to increase this value in the last size classes. The results obtained corroborate with the hypothesis of the occupation process of shells governed not only by availability of shells, but also by its architecture. In addition, the shell stock in the area is one another important condition related to the exhibited pattern of shell occupation by P. criniticornis, and allows the stable coexistence among the island assemblage. The pattern of occupation observed promotes a high reproductive profile for the population studied, maximizing the populational growth.

  18. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  19. Introduction to the spectral theory of polynomial operator pencils

    Markus, A S

    1988-01-01

    This monograph contains an exposition of the foundations of the spectral theory of polynomial operator pencils acting in a Hilbert space. Spectral problems for polynomial pencils have attracted a steady interest in the last 35 years, mainly because they arise naturally in such diverse areas of mathematical physics as differential equations and boundary value problems, controllable systems, the theory of oscillations and waves, elasticity theory, and hydromechanics. In this book, the author devotes most of his attention to the fundamental results of Keldysh on multiple completeness of the eigenvectors and associate vectors of a pencil, and on the asymptotic behavior of its eigenvalues and generalizations of these results. The author also presents various theorems on spectral factorization of pencils which grew out of known results of M. G. Kreibreven and Heinz Langer. A large portion of the book involves the theory of selfadjoint pencils, an area having numerous applications. Intended for mathematicians, resea...

  20. Design of a polynomial ring based symmetric homomorphic encryption scheme

    Smaranika Dasgupta

    2016-09-01

    Full Text Available Security of data, especially in clouds, has become immensely essential for present-day applications. Fully homomorphic encryption (FHE is a great way to secure data which is used and manipulated by untrusted applications or systems. In this paper, we propose a symmetric FHE scheme based on polynomial over ring of integers. This scheme is somewhat homomorphic due to accumulation of noise after few operations, which is made fully homomorphic using a refresh procedure. After certain amount of homomorphic computations, large ciphertexts are refreshed for proper decryption. The hardness of the scheme is based on the difficulty of factorizing large integers. Also, it requires polynomial addition which is computationally cost effective. Experimental results are shown to support our claim.