WorldWideScience

Sample records for herg channels expressed

  1. Inhibitory effects and mechanism of dihydroberberine on hERG channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Dahai Yu

    Full Text Available The human ether-a-go-go-related gene (hERG potassium channel conducts rapid delayed rectifier potassium currents (IKr and contributes to phase III cardiac action potential repolarization. Drugs inhibit hERG channels by binding to aromatic residues in hERG helixes. Berberine (BBR has multiple actions, and its hydrogenated derivative dihydroberberine (DHB is a potential candidate for developing new drugs. Previous studies have demonstrated that BBR blocks hERG channels and prolongs action potential duration (APD. Our present study aimed to investigate the effects and mechanism of DHB on hERG channels. Protein expression and the hERG current were analyzed using western blotting and patch-clamp, respectively. DHB inhibited the hERG current concentration-dependently after instantaneous perfusion, accelerated channel inactivation by directly binding tyrosine (Tyr652 and phenylalanine (Phe656, and decreased mature (155-kDa and simultaneously increased immature (135-kDa hERG expression, respectively. This suggests disruption of forward trafficking of hERG channels. Besides, DHB remarkably reduced heat shock protein 90 (Hsp90 expression and its interaction with hERG, indicating that DHB disrupted hERG trafficking by impairing channel folding. Meanwhie, DHB enhanced the expression of cleaved activating transcription factor-6 (ATF-6, a biomarker of unfolded protein response (UPR. Expression of calnexin and calreticulin, chaperones activated by ATF-6 to facilitate channel folding, were also increased, which indicating UPR activation. Additionally, the degradation rate of mature 155-kDa hERG increased following DHB exposure. In conclusion, we demonstrated that DHB acutely blocked hERG channels by binding the aromatic Tyr652 and Phe656. DHB may decrease hERG plasma membrane expression through two pathways involving disruption of forward trafficking of immature hERG channels and enhanced degradation of mature hERG channels. Furthermore, forward trafficking was

  2. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  3. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  4. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Xi Chu

    Full Text Available Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells, and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV. Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively. Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  5. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells

    Science.gov (United States)

    Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122

  6. Data on the construction of a recombinant HEK293 cell line overexpressing hERG potassium channel and examining the presence of hERG mRNA and protein expression

    Directory of Open Access Journals (Sweden)

    Yi Fan Teah

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr and human ether-a-go-go-related gene (hERG expression” (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293 cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.

  7. The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression.

    Science.gov (United States)

    Teah, Yi Fan; Abduraman, Muhammad Asyraf; Amanah, Azimah; Adenan, Mohd Ilham; Sulaiman, Shaida Fariza; Tan, Mei Lan

    2017-09-01

    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and I kr blocker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  9. Improved functional expression of recombinant human ether-a-go-go (hERG K+ channels by cultivation at reduced temperature

    Directory of Open Access Journals (Sweden)

    Hamilton Bruce

    2007-12-01

    Full Text Available Abstract Background HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance. Results Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C. Conclusion Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.

  10. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and hERG......1b, have been shown to be co-expressed in human cardiomyocytes. In this paper, we present the electrophysiological characterization of hERG1a, hERG1b, and co-expressed hERG1a/b channels in a mammalian expression system using the whole-cell patch clamp technique. We also quantified the messenger RNA...... (mRNA) levels of hERG1a and hERG1b in human cardiac tissue, and based on the expressed ratios, we evaluated the resulting currents in Xenopus laevis oocytes. Compared to hERG1a channels, activation was faster for both hERG1b and hERG1a/b channels. The deactivation kinetics was greatly accelerated...

  11. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels.Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action.The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  12. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Science.gov (United States)

    Yan, Meng; Zhang, Kaiping; Shi, Yanhui; Feng, Lifang; Lv, Lin; Li, Baoxin

    2015-01-01

    Berberine (BBR), an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG) potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293) cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652) and phenylalanine (Phe656) in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. PMID:26543354

  13. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  14. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    Directory of Open Access Journals (Sweden)

    Yan M

    2015-10-01

    Full Text Available Meng Yan,1 Kaiping Zhang,1 Yanhui Shi,1 Lifang Feng,1 Lin Lv,1 Baoxin Li1,2 1Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China Abstract: Berberine (BBR, an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293 cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652 and phenylalanine (Phe656 in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. Keywords: berberine, hERG, cavoline-1, cardiotoxicity, LQTS, pharmacological rescue

  15. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    International Nuclear Information System (INIS)

    Long, Yan; Lin, Zuoxian; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2013-01-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC 50 values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds

  16. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  17. Rab11-dependent Recycling of the Human Ether-a-go-go-related Gene (hERG) Channel*

    Science.gov (United States)

    Chen, Jeffery; Guo, Jun; Yang, Tonghua; Li, Wentao; Lamothe, Shawn M.; Kang, Yudi; Szendrey, John A.; Zhang, Shetuan

    2015-01-01

    The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K+ conditions. In the present study, we addressed whether hERG internalization occurs under normal K+ conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K+-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K+ exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K+ medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels. PMID:26152716

  18. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  19. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  20. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  1. Effect of beta-adrenoceptor blockers on human ether-a-go-go-related gene (HERG) potassium channels

    DEFF Research Database (Denmark)

    Dupuis, Delphine S; Klaerke, Dan A; Olesen, Søren-Peter

    2005-01-01

    Patients with congenital long QT syndrome may develop arrhythmias under conditions of increased sympathetic tone. We have addressed whether some of the beta-adrenoceptor blockers commonly used to prevent the development of these arrhythmias could per se block the cardiac HERG (Human Ether....... These data showed that HERG blockade by beta-adrenoceptor blockers occurred only at high micromolar concentrations, which are significantly above the recently established safe margin of 100 (Redfern et al., 2003).......-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) blocked the HERG channel with similar affinity, whereas the beta1-receptor antagonists metoprolol and atenolol showed weak effects. Further, the four compounds blocked HERG channels expressed in a mammalian HEK293 cell line...

  2. In vitro chronic effects on hERG channel caused by the marine biotoxin Yessotoxin.

    Directory of Open Access Journals (Sweden)

    Sara Fernández Ferreiro

    2014-06-01

    Currently, published evidence indicates that hERG channel dysfunction can be due to more than one mechanism for many drugs (Guth, 2007. Alterations of hERG channel trafficking are considered an important factor in hERG-related cardiotoxicity. Actually, a screening study revealed that almost 40% of the drugs that block Ikr have also trafficking effects (Wible et al., 2005. Although YTX does not block hERG channels, it has been historically described as cardiotoxic due to in vivo damage to cardiomyocytes. Our results show that YTX induces a significant increase of hERG channel levels on the extracellular side of the plasma membrane in vitro. YTX causes cell death in many cell lines (Korsnes and Espenes, 2011 and the alterations of surface hERG levels might be related to the apoptotic process. However, annexin-V, a relatively early marker of apoptosis (Vermes et al., 1995, occurs later than the increase of surface hERG. Additionally, staurosporine triggered apoptosis without a simultaneous increase of surface hERG, so events are not necessarily related. Therefore YTX-induced elevated hERG in the plasma membrane seem to be independent of apoptosis. Functional implications of hERG currents have been described after alterations of cell surface hERG density (Guth, 2007. YTX did not cause significant alterations of hERG currents. Furthermore the hERG levels after YTX treatment were duplicated, so the effect on currents should be clearly evidenced if these channels were functional. The hERG channels on the cell surface are regulated by its production, translocation to the plasma membrane and degradation. The increase of extracellular channel could be a consequence of a higher production and externalization or a slower degradation. Higher synthesis in our cell model would not be physiologically relevant but our results demonstrated that the amount of immature hERG is reduced instead of increased. Fully glycosylated hERG seems slightly increased in these conditions but it is

  3. A novel hypothesis for the binding mode of HERG channel blockers

    International Nuclear Information System (INIS)

    Choe, Han; Nah, Kwang Hoon; Lee, Soo Nam; Lee, Han Sam; Lee, Hui Sun; Jo, Su Hyun; Leem, Chae Hun; Jang, Yeon Jin

    2006-01-01

    We present a new docking model for HERG channel blockade. Our new model suggests three key interactions such that (1) a protonated nitrogen of the channel blocker forms a hydrogen bond with the carbonyl oxygen of HERG residue T623; (2) an aromatic moiety of the channel blocker makes a π-π interaction with the aromatic ring of HERG residue Y652; and (3) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. The previous model assumes two interactions such that (1) a protonated nitrogen of the channel blocker forms a cation-π interaction with the aromatic ring of HERG residue Y652; and (2) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. To test these models, we classified 69 known HERG channel blockers into eight binding types based on their plausible binding modes, and further categorized them into two groups based on the number of interactions our model would predict with the HERG channel (two or three). We then compared the pIC 5 value distributions between these two groups. If the old hypothesis is correct, the distributions should not differ between the two groups (i.e., both groups show only two binding interactions). If our novel hypothesis is correct, the distributions should differ between Groups 1 and 2. Consistent with our hypothesis, the two groups differed with regard to pIC 5 , and the group having more predicted interactions with the HERG channel had a higher mean pIC 5 value. Although additional work will be required to further validate our hypothesis, this improved understanding of the HERG channel blocker binding mode may help promote the development of in silico predictions methods for identifying potential HERG channel blockers

  4. Stereoselective inhibition of the hERG1 potassium channel

    Directory of Open Access Journals (Sweden)

    Liliana eSintra Grilo

    2010-11-01

    Full Text Available A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1 channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

  5. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    Science.gov (United States)

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  6. Towards a Structural View of Drug Binding to hERG K+ Channels.

    Science.gov (United States)

    Vandenberg, Jamie I; Perozo, Eduardo; Allen, Toby W

    2017-10-01

    The human ether-a-go-go-related gene (hERG) K + channel is of great medical and pharmaceutical relevance. Inherited mutations in hERG result in congenital long-QT syndrome which is associated with a markedly increased risk of cardiac arrhythmia and sudden death. hERG K + channels are also remarkably susceptible to block by a wide range of drugs, which in turn can cause drug-induced long-QT syndrome and an increased risk of sudden death. The recent determination of the near-atomic resolution structure of the hERG K + channel, using single-particle cryo-electron microscopy (cryo-EM), provides tremendous insights into how these channels work. It also suggests a way forward in our quest to understand why these channels are so promiscuous with respect to drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Local anesthetic interaction with human ether-a-go-go-related gene (HERG) channels: role of aromatic amino acids Y652 and F656

    DEFF Research Database (Denmark)

    Siebrands, Cornelia C; Schmitt, Nicole; Friederich, Patrick

    2005-01-01

    was to determine the effect of the mutations Y652A and F656A in the putative drug binding region of HERG on the inhibition by bupivacaine, ropivacaine, and mepivacaine. METHODS: The authors examined the inhibition of wild-type and mutant HERG channels, transiently expressed in Chinese hamster ovary cells...... by bupivacaine, ropivacaine, and mepivacaine. Whole cell patch clamp recordings were performed at room temperature. RESULTS: Inhibition of HERG wild-type and mutant channels by the different local anesthetics was concentration dependent, stereoselective, and reversible. The sensitivity decreased in the order...... bupivacaine > ropivacaine > mepivacaine for wild-type and mutant channels. The mutant channels were approximately 4-30 times less sensitive to the inhibitory action of the different local anesthetics than the wild-type channel. The concentration-response data were described by Hill functions (bupivacaine...

  8. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.

    Science.gov (United States)

    Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C

    2017-02-10

    Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr and modulates cardiac action potential characteristics.

    Directory of Open Access Journals (Sweden)

    Anders Peter Larsen

    Full Text Available BACKGROUND: The repolarizing cardiac rapid delayed rectifier current, I(Kr, is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr. Marked heterogeneity in the kinetic properties of native I(Kr has been described. We hypothesized that the heterogeneity of native I(Kr can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD and restitution. METHODOLOGY/PRINCIPAL FINDINGS: The results show that the heterogeneity of native I(Kr can be reproduced in heterologous expression systems by differential expression of ERG1a and ERG1b isoforms. Characterization of the macroscopic kinetics of ERG1 currents demonstrated that these were dependent on the relative abundance of ERG1a and ERG1b. Furthermore, we used a computational model of the ventricular cardiomyocyte to show that both APD and the slope of the restitution curve may be modulated by varying the relative abundance of ERG1a and ERG1b. As the relative abundance of ERG1b was increased, APD was gradually shortened and the slope of the restitution curve was decreased. CONCLUSIONS/SIGNIFICANCE: Our results show that differential expression of ERG1 isoforms may explain regional heterogeneity of I(Kr kinetics. The data demonstrate that subunit dependent changes in channel kinetics are important for the functional properties of ERG1 currents and hence I(Kr. Importantly, our results suggest that regional differences in the relative abundance of ERG1 isoforms may represent a potential mechanism underlying the heterogeneity of both APD and APD restitution observed in mammalian hearts.

  10. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  11. The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells.

    Science.gov (United States)

    Fortunato, Angelo

    2017-08-01

    The transition of cells from the epithelial to the mesenchymal state (EMT) plays an important role in tumor progression. EMT allows cells to acquire mobility, stem-like behavior and resistance to apoptosis and drug treatment. These features turn EMT into a central process in tumor biology. Ion channels are attractive targets for the treatment of cancer since they play critical roles in controlling a wide range of physiological processes that are frequently deregulated in cancer. Here, we investigated the role of ether-a-go-go-related 1 (hERG1) ion channels in the EMT of colorectal cancer cells. We studied the epithelial-mesenchymal profile of different colorectal cancer-derived cell lines and the expression of hERG1 potassium channels in these cell lines using real-time PCR. Next, we knocked down hERG1 expression in HCT116 cells using lentivirus mediated RNA interference and characterized the hERG1 silenced cells in vitro and in vivo. Finally, we investigated the capacity of riluzole, an ion channel-modulating drug used in humans to treat amyotrophic lateral sclerosis, to reduce the resistance of the respective colorectal cancer cells to the chemotherapeutic drug cisplatin. We found that of the colorectal cancer-derived cell lines tested, HCT116 showed the highest mesenchymal profile and a high hERG1 expression. Subsequent hERG1 expression knockdown induced a change in cell morphology, which was accompanied by a reduction in the proliferative and tumorigenic capacities of the cells. Notably, we found that hERG1expression knockdown elicited a reversion of the EMT profile in HCT116 cells with a reacquisition of the epithelial-like profile. We also found that riluzole increased the sensitivity of HCT116 cisplatin-resistant cells to cisplatin. Our data indicate that hERG1 plays a role in the EMT of colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells. In addition, we conclude that riluzole may be used in

  12. In Silico Predictions of hERG Channel Blockers in Drug Discovery

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Sørensen, Flemming Steen

    2011-01-01

    The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several ...

  13. A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Korolkova, Yuliya V; Grunnet, Morten

    2003-01-01

    The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1...... had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles...... of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed...

  14. Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study

    Directory of Open Access Journals (Sweden)

    Laura L. Perissinotti

    2018-04-01

    Full Text Available IKr is the rapidly activating component of the delayed rectifier potassium current, the ion current largely responsible for the repolarization of the cardiac action potential. Inherited forms of long QT syndrome (LQTS (Lees-Miller et al., 1997 in humans are linked to functional modifications in the Kv11.1 (hERG ion channel and potentially life threatening arrhythmias. There is little doubt now that hERG-related component of IKr in the heart depends on the tetrameric (homo- or hetero- channels formed by two alternatively processed isoforms of hERG, termed hERG1a and hERG1b. Isoform composition (hERG1a- vs. the b-isoform has recently been reported to alter pharmacologic responses to some hERG blockers and was proposed to be an essential factor pre-disposing patients for drug-induced QT prolongation. Very little is known about the gating and pharmacological properties of two isoforms in heart membranes. For example, how gating mechanisms of the hERG1a channels differ from that of hERG1b is still unknown. The mechanisms by which hERG 1a/1b hetero-tetramers contribute to function in the heart, or what role hERG1b might play in disease are all questions to be answered. Structurally, the two isoforms differ only in the N-terminal region located in the cytoplasm: hERG1b is 340 residues shorter than hERG1a and the initial 36 residues of hERG1b are unique to this isoform. In this study, we combined electrophysiological measurements for HEK cells, kinetics and structural modeling to tease out the individual contributions of each isoform to Action Potential formation and then make predictions about the effects of having various mixture ratios of the two isoforms. By coupling electrophysiological data with computational kinetic modeling, two proposed mechanisms of hERG gating in two homo-tetramers were examined. Sets of data from various experimental stimulation protocols (HEK cells were analyzed simultaneously and fitted to Markov-chain models (M

  15. A molecular switch driving inactivation in the cardiac K+ channel HERG.

    Directory of Open Access Journals (Sweden)

    David A Köpfer

    Full Text Available K(+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+ selectivity filter, has recently been recognized as a major K(+ channel regulatory mechanism. In the K(+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.

  16. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter

    2010-01-01

    The repolarizing cardiac rapid delayed rectifier current, I(Kr), is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr). Marked heterogeneity in the kinetic properties of native I(Kr) has been described. We hypothesized...

  17. Effects of the small molecule HERG activator NS1643 on Kv11.3 channels.

    Directory of Open Access Journals (Sweden)

    Arne Bilet

    Full Text Available NS1643 is one of the small molecule HERG (Kv11.1 channel activators and has also been found to increase erg2 (Kv11.2 currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3 channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At this concentration, steady-state outward current increased by about 80% and the current increase was associated with a significant shift in the voltage dependence of activation to more negative potentials by about 15 mV. In addition, activation kinetics were accelerated, whereas deactivation was slowed. There was no significant effect on the kinetics of inactivation and recovery from inactivation. The strong current-activating agonistic effect of NS1643 did not result from a shift in the voltage dependence of Kv11.3 channel inactivation and was independent from external Na(+ or Ca(2+. At the higher concentration of 20 µM, NS1643 induced clearly less current increase. The left shift in the voltage dependence of activation reversed and the voltage sensitivity of activation dramatically decreased along with a slowing of Kv11.3 channel activation. These data show that, in comparison to other Kv11 family members, NS1643 exerts distinct effects on Kv11.3 channels with especially pronounced partial antagonistic effects at higher concentration.

  18. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  19. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).

    Science.gov (United States)

    Li, Xiao; Zhang, Yuan; Li, Huanhuan; Zhao, Yong

    2017-12-01

    Human ether-a-go-go related gene (hERG) K+ channel plays an important role in cardiac action potential. Blockage of hERG channel may result in long QT syndrome (LQTS), even cause sudden cardiac death. Many drugs have been withdrawn from the market because of the serious hERG-related cardiotoxicity. Therefore, it is quite essential to estimate the chemical blockage of hERG in the early stage of drug discovery. In this study, a diverse set of 3721 compounds with hERG inhibition data was assembled from literature. Then, we make full use of the Online Chemical Modeling Environment (OCHEM), which supplies rich machine learning methods and descriptor sets, to build a series of classification models for hERG blockage. We also generated two consensus models based on the top-performing individual models. The consensus models performed much better than the individual models both on 5-fold cross validation and external validation. Especially, consensus model II yielded the prediction accuracy of 89.5 % and MCC of 0.670 on external validation. This result indicated that the predictive power of consensus model II should be stronger than most of the previously reported models. The 17 top-performing individual models and the consensus models and the data sets used for model development are available at https://ochem.eu/article/103592. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model

    DEFF Research Database (Denmark)

    Peitersen, Torben; Grunnet, Morten; Benson, Alan P

    2008-01-01

    BACKGROUND: Dysfunction or pharmacologic inhibition of repolarizing cardiac ionic currents can lead to fatal arrhythmias. The hERG potassium channel underlies the repolarizing current I(Kr), and mutations therein can produce both long and short QT syndromes (LQT2 and SQT1). We previously reported...

  1. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    Science.gov (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  2. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  3. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available Human ether-à-go-go-related gene (hERG K(+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  4. Irresponsiveness of two retinoblastoma cases to conservative therapy correlates with up- regulation of hERG1 channels and of the VEGF-A pathway

    Directory of Open Access Journals (Sweden)

    La Torre Agostino

    2010-09-01

    Full Text Available Abstract Background Treatment strategies for Retinoblastoma (RB, the most common primary intraocular tumor in children, have evolved over the past few decades and chemoreduction is currently the most popular treatment strategy. Despite success, systemic chemotherapeutic treatment has relevant toxicity, especially in the pediatric population. Antiangiogenic therapy has thus been proposed as a valuable alternative for pediatric malignancies, in particolar RB. Indeed, it has been shown that vessel density correlates with both local invasive growth and presence of metastases in RB, suggesting that angiogenesis could play a pivotal role for both local and systemic invasive growth in RB. We present here two cases of sporadic, bilateral RB that did not benefit from the conservative treatment and we provide evidence that the VEGF-A pathway is significantly up-regulated in both RB cases along with an over expression of hERG1 K+ channels. Case presentation Two patients showed a sporadic, bilateral RB, classified at Stage II of the Reese-Elsworth Classification. Neither of them got benefits from conservative treatment, and the two eyes were enucleated. In samples from both RB cases we studied the VEGF-A pathway: VEGF-A showed high levels in the vitreous, the vegf-a, flt-1, kdr, and hif1-α transcripts were over-expressed. Moreover, both the transcripts and proteins of the hERG1 K+ channels turned out to be up-regulated in the two RB cases compared to the non cancerous retinal tissue. Conclusions We provide evidence that the VEGF-A pathway is up-regulated in two particular aggressive cases of bilateral RB, which did not experience any benefit from conservative treatment, showing the overexpression of the vegf-a, flt-1, kdr and hif1-α transcripts and the high secretion of VEGF-A. Moreover we also show for the first time that the herg1 gene transcripts and protein are over expressed in RB, as occurs in several aggressive tumors. These results further stress

  5. New binding site on common molecular scaffold provides HERG channel specificity of scorpion toxin BeKm-1

    DEFF Research Database (Denmark)

    Korolkova, Yuliya V; Bocharov, Eduard V; Angelo, Kamilla

    2002-01-01

    The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure...... resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located...

  6. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  7. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

    Science.gov (United States)

    Nogawa, Hisashi; Kawai, Tomoyuki

    2014-10-15

    Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.

    Science.gov (United States)

    Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N

    2005-10-01

    Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.

  9. Performance of Machine Learning Algorithms for Qualitative and Quantitative Prediction Drug Blockade of hERG1 channel.

    Science.gov (United States)

    Wacker, Soren; Noskov, Sergei Yu

    2018-05-01

    Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost

  10. Common variants in the hERG (KCNH2) voltage-gated potassium channel are associated with altered fasting and glucose-stimulated plasma incretin and glucagon responses

    DEFF Research Database (Denmark)

    Engelbrechtsen, Line; Mahendran, Yuvaraj; Jonsson, Anna

    2018-01-01

    BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused by a dysfun......BACKGROUND: Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused...... by a dysfunctional Kv11.1 voltage-gated potassium channel. Based on these findings in patients with rare variants in hERG, we hypothesized that common variants in hERG may also lead to alterations in glucose homeostasis. Subsequently, we aimed to evaluate the effect of two common gain-of-function variants in hERG...... in hERG on QT-interval and circulation levels of incretins, insulin and glucagon. The Danish population-based Inter99 cohort (n = 5895) was used to assess the effect of common variants on QT-interval. The Danish ADDITION-PRO cohort was used (n = 1329) to study genetic associations with levels of GLP-1...

  11. The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS domain (residues 26-135 as well as an amphipathic α-helix (residues 13-23 and an initial unstructured segment (residues 2-9. Deletion of residues 2-25, only the unstructured segment (residues 2-9 or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.

  12. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  13. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  14. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  15. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  16. Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating.

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-Trillo

    Full Text Available A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.

  17. An NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome.

    Science.gov (United States)

    Gravel, Andrée E; Arnold, Alexandre A; Dufourc, Erick J; Marcotte, Isabelle

    2013-06-01

    The human ether-a-go-go-related gene (hERG) voltage-gated K(+) channels are located in heart cell membranes and hold a unique selectivity filter (SF) amino acid sequence (SVGFG) as compared to other K(+) channels (TVGYG). The hERG provokes the acquired long QT syndrome (ALQTS) when blocked, as a side effect of drugs, leading to arrhythmia or heart failure. Its pore domain - including the SF - is believed to be a cardiotoxic drug target. In this study combining solution and solid-state NMR experiments we examine the structure and function of hERG's L(622)-K(638) segment which comprises the SF, as well as its role in the ALQTS using reported active drugs. We first show that the SF segment is unstructured in solution with and without K(+) ions in its surroundings, consistent with the expected flexibility required for the change between the different channel conductive states predicted by computational studies. We also show that the SF segment has the potential to perturb the membrane, but that the presence of K(+) ions cancels this interaction. The SF moiety appears to be a possible target for promethazine in the ALQTS mechanism, but not as much for bepridil, cetirizine, diphenhydramine and fluvoxamine. The membrane affinity of the SF is also affected by the presence of drugs which also perturb model DMPC-based membranes. These results thus suggest that the membrane could play a role in the ALQTS by promoting the access to transmembrane or intracellular targets on the hERG channel, or perturbing the lipid-protein synergy. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. In silico analysis of conformational changes induced by mutation of aromatic binding residues: consequences for drug binding in the hERG K+ channel.

    Directory of Open Access Journals (Sweden)

    Kirsten Knape

    Full Text Available Pharmacological inhibition of cardiac hERG K(+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652 substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences.

  19. Dynamics of hERG closure allow novel insights into hERG blocking by small molecules.

    Science.gov (United States)

    Schmidtke, Peter; Ciantar, Marine; Theret, Isabelle; Ducrot, Pierre

    2014-08-25

    Today, drug discovery routinely uses experimental assays to determine very early if a lead compound can yield certain types of off-target activity. Among such off targets is hERG. The ion channel plays a primordial role in membrane repolarization and altering its activity can cause severe heart arrhythmia and sudden death. Despite routine tests for hERG activity, rather little information is available for helping medicinal chemists and molecular modelers to rationally circumvent hERG activity. In this article novel insights into the dynamics of hERG channel closure are described. Notably, helical pairwise closure movements have been observed. Implications and relations to hERG inactivation are presented. Based on these dynamics novel insights on hERG blocker placement are presented, compared to literature, and discussed. Last, new evidence for horizontal ligand positioning is shown in light of former studies on hERG blockers.

  20. Endocytosis of HERG is clathrin-independent and involves arf6.

    Directory of Open Access Journals (Sweden)

    Rucha Karnik

    Full Text Available The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.

  1. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    Science.gov (United States)

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  2. Acute alteration of cardiac ECG, action potential, I{sub Kr} and the human ether-a-go-go-related gene (hERG) K{sup +} channel by PCB 126 and PCB 77

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr

    2012-07-01

    Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{sub 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}.

  3. Gating mechanism of Kv11.1 (hERG) K+ channels without covalent connection between voltage sensor and pore domains.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-01

    Kv11.1 (hERG, KCNH2) is a voltage-gated potassium channel crucial in setting the cardiac rhythm and the electrical behaviour of several non-cardiac cell types. Voltage-dependent gating of Kv11.1 can be reconstructed from non-covalently linked voltage sensing and pore modules (split channels), challenging classical views of voltage-dependent channel activation based on a S4-S5 linker acting as a rigid mechanical lever to open the gate. Progressive displacement of the split position from the end to the beginning of the S4-S5 linker induces an increasing negative shift in activation voltage dependence, a reduced z g value and a more negative ΔG 0 for current activation, an almost complete abolition of the activation time course sigmoid shape and a slowing of the voltage-dependent deactivation. Channels disconnected at the S4-S5 linker near the S4 helix show a destabilization of the closed state(s). Furthermore, the isochronal ion current mode shift magnitude is clearly reduced in the different splits. Interestingly, the progressive modifications of voltage dependence activation gating by changing the split position are accompanied by a shift in the voltage-dependent availability to a methanethiosulfonate reagent of a Cys introduced at the upper S4 helix. Our data demonstrate for the first time that alterations in the covalent connection between the voltage sensor and the pore domains impact on the structural reorganizations of the voltage sensor domain. Also, they support the hypothesis that the S4-S5 linker integrates signals coming from other cytoplasmic domains that constitute either an important component or a crucial regulator of the gating machinery in Kv11.1 and other KCNH channels.

  4. Indexing molecules for their hERG liability.

    Science.gov (United States)

    Rayan, Anwar; Falah, Mizied; Raiyn, Jamal; Da'adoosh, Beny; Kadan, Sleman; Zaid, Hilal; Goldblum, Amiram

    2013-07-01

    The human Ether-a-go-go-Related-Gene (hERG) potassium (K(+)) channel is liable to drug-inducing blockage that prolongs the QT interval of the cardiac action potential, triggers arrhythmia and possibly causes sudden cardiac death. Early prediction of drug liability to hERG K(+) channel is therefore highly important and preferably obligatory at earlier stages of any drug discovery process. In vitro assessment of drug binding affinity to hERG K(+) channel involves substantial expenses, time, and labor; and therefore computational models for predicting liabilities of drug candidates for hERG toxicity is of much importance. In the present study, we apply the Iterative Stochastic Elimination (ISE) algorithm to construct a large number of rule-based models (filters) and exploit their combination for developing the concept of hERG Toxicity Index (ETI). ETI estimates the molecular risk to be a blocker of hERG potassium channel. The area under the curve (AUC) of the attained model is 0.94. The averaged ETI of hERG binders, drugs from CMC, clinical-MDDR, endogenous molecules, ACD and ZINC, were found to be 9.17, 2.53, 3.3, -1.98, -2.49 and -3.86 respectively. Applying the proposed hERG Toxicity Index Model on external test set composed of more than 1300 hERG blockers picked from chEMBL shows excellent performance (Matthews Correlation Coefficient of 0.89). The proposed strategy could be implemented for the evaluation of chemicals in the hit/lead optimization stages of the drug discovery process, improve the selection of drug candidates as well as the development of safe pharmaceutical products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Overcoming HERG affinity in the discovery of the CCR5 antagonist maraviroc.

    Science.gov (United States)

    Price, David A; Armour, Duncan; de Groot, Marcel; Leishman, Derek; Napier, Carolyn; Perros, Manos; Stammen, Blanda L; Wood, Anthony

    2006-09-01

    The discovery of maraviroc 17 is described with particular reference to the generation of high selectivity over affinity for the HERG potassium channel. This was achieved through the use of a high throughput binding assay for the HERG channel that is known to show an excellent correlation with functional effects.

  6. Oxycodone is associated with dose-dependent QTc prolongation in patients and low-affinity inhibiting of hERG activity in vitro

    DEFF Research Database (Denmark)

    Fanoe, Søren; Jensen, Gorm Boje; Sjøgren, Per

    2008-01-01

    with the use of these drugs. WHAT THIS PAPER ADDS: This study is the first to show that oxycodone dose is associated with QT prolongation and in vitro blockade of hERG channels expressed in HEK293. Neither morphine nor tramadol doses are associated with the QT interval length. AIMS: During recent years some...... and TdP could be a more general problem associated with the use of these drugs. The aims of this study were to evaluate the association between different opioids and the QTc among patients and measure hERG activity under influence by opioids in vitro. METHODS: One hundred chronic nonmalignant pain...... patients treated with methadone, oxycodone, morphine or tramadol were recruited in a cross-sectional study. The QTc was estimated from a 12-lead ECG. To examine hERG activity in the presence of oxycodone, electrophysiological testing was conducted using Xenopus laevis oocytes and HEK293 cells expressing h...

  7. Homozygous premature truncation of the HERG protein : the human HERG knockout

    NARCIS (Netherlands)

    Hoorntje, T.; Alders, M.; van Tintelen, P.; van der Lip, K.; Sreeram, N.; van der Wal, A.; Mannens, M.; Wilde, A.

    1999-01-01

    Background-In long-QT syndrome (LQTS), heterozygosity for a mutation in 1 of the K(+) channel genes leads to prolongation of the cardiac action potential, because the aberrant protein exhibits "loss of function." HERG, which is involved in LQT2, is the gene encoding the rapid component of the

  8. Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death

    DEFF Research Database (Denmark)

    De Bruin, M L; Pettersson, M; Meyboom, R H B

    2005-01-01

    AIMS: Drug-induced QTc-prolongation, resulting from inhibition of HERG potassium channels may lead to serious ventricular arrhythmias and sudden death. We studied the quantitative anti-HERG activity of pro-arrhythmic drugs as a risk factor for this outcome in day-to-day practice. METHODS...... defined as reports of cardiac arrest, sudden death, torsade de pointes, ventricular fibrillation, and ventricular tachycardia (n = 5591), and compared with non-cases regarding the anti-HERG activity, defined as the effective therapeutic plasma concentration (ETCPunbound) divided by the HERG IC50 value......, of suspected drugs. We identified a significant association of 1.93 (95% CI: 1.89-1.98) between the anti-HERG activity of drugs, measured as log10 (ETCPunbound/IC50), and reporting of serious ventricular arrhythmias and sudden death to the WHO-UMC database. CONCLUSION: Anti-HERG activity is associated...

  9. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  10. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Jamil, Mohd Fadzly Amar [Clinical Research Center, Hospital Seberang Jaya, Kementerian Kesihatan Malaysia, Pulau Pinang (Malaysia); Kollert, Sina [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Adenan, Mohd Ilham [Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan (Malaysia); Wahab, Habibah Abdul [Pharmaceutical Design & Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang (Malaysia); Döring, Frank; Wischmeyer, Erhard [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Tan, Mei Lan, E-mail: tanml@usm.my [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang (Malaysia)

    2016-08-15

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I{sub Kr} current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I{sub K1}, a Kir current mediated by Kir2.1 channel and I{sub KACh}, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC{sub 50} value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I{sub KACh} current with an IC{sub 50} value of 3.32 μM but has no significant effects on I{sub K1}. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I{sub Kr} in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine

  11. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    International Nuclear Information System (INIS)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min; Jamil, Mohd Fadzly Amar; Kollert, Sina; Adenan, Mohd Ilham; Wahab, Habibah Abdul; Döring, Frank; Wischmeyer, Erhard; Tan, Mei Lan

    2016-01-01

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I K1 , a Kir current mediated by Kir2.1 channel and I KACh , a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC 50 value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I KACh current with an IC 50 value of 3.32 μM but has no significant effects on I K1 . Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I Kr in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine inhibits GIRK channel. • Simultaneous

  12. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    Science.gov (United States)

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  13. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  14. Acute and Chronic Toxicity, Cytochrome P450 Enzyme Inhibition, and hERG Channel Blockade Studies with a Polyherbal, Ayurvedic Formulation for Inflammation

    Directory of Open Access Journals (Sweden)

    Debendranath Dey

    2015-01-01

    Full Text Available Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005–1 mg/mL by MTT/formazan method, an acute single dose (2–10 g/kg bodyweight toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15–20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL on six major human cytochrome P450 enzymes and 3H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use.

  15. Early identification of hERG liability in drug discovery programs by automated patch clamp

    Directory of Open Access Journals (Sweden)

    Timm eDanker

    2014-09-01

    Full Text Available Blockade of the cardiac ion channel coded by hERG can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.

  16. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  17. A novel assessment of nefazodone-induced hERG inhibition by electrophysiological and stereochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dae-Seop; Park, Myoung Joo [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Hyang-Ae [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Joo Yun; Chung, Hee-Chung; Yoo, Dae Seok; Chae, Chong Hak [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang-Joon [College of Veterinary Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Ki-Suk [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Bae, Myung Ae, E-mail: mbae@krict.re.kr [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2014-02-01

    Nefazodone was used widely as an antidepressant until it was withdrawn from the U.S. market in 2004 due to hepatotoxicity. We have investigated methods to predict various toxic effects of drug candidates to reduce the failure rate of drug discovery. An electrophysiological method was used to assess the cardiotoxicity of drug candidates. Small molecules, including withdrawn drugs, were evaluated using a patch-clamp method to establish a database of hERG inhibition. Nefazodone inhibited hERG channel activity in our system. However, nefazodone-induced hERG inhibition indicated only a theoretical risk of cardiotoxicity. Nefazodone inhibited the hERG channel in a concentration-dependent manner with an IC{sub 50} of 45.3 nM in HEK-293 cells. Nefazodone accelerated both the recovery from inactivation and its onset. Nefazodone also accelerated steady-state inactivation, although it did not modify the voltage-dependent character. Alanine mutants of hERG S6 and pore region residues were used to identify the nefazodone-binding site on hERG. The hERG S6 point mutants Y652A and F656A largely abolished the inhibition by nefazodone. The pore region mutant S624A mildly reduced the inhibition by nefazodone but T623A had little effect. A docking study showed that the aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions, while an amine interacted with the S624 residue in the pore region. In conclusion, Y652 and F656 in the S6 domain play critical roles in nefazodone binding. - Highlights: • Nefazodone inhibits hERG channels with an IC{sub 50} of 45.3 nM in HEK-293 cells. • Nefazodone blocks hERG channels by binding to the open channels. • Y652 and F656 are important for binding of nefazodone. • The aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions.

  18. Channel properties of Nax expressed in neurons.

    Directory of Open Access Journals (Sweden)

    Masahito Matsumoto

    Full Text Available Nax is a sodium-concentration ([Na+]-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95 through its PSD95/Disc-large/ZO-1 (PDZ-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells.

  19. Overcoming hERG affinity in the discovery of maraviroc; a CCR5 antagonist for the treatment of HIV.

    Science.gov (United States)

    Price, David A; Armour, Duncan; de Groot, Marcel; Leishman, Derek; Napier, Carolyn; Perros, Manos; Stammen, Blanda L; Wood, Anthony

    2008-01-01

    Avoiding cardiac liability associated with blockade of hERG (human ether a go-go) is key for successful drug discovery and development. This paper describes the work undertaken in the discovery of a potent CCR5 antagonist, maraviroc 34, for the treatment of HIV. In particular the use of a pharmacophore model of the hERG channel and a high throughput binding assay for the hERG channel are described that were critical to elucidate SAR to overcome hERG liabilities. The key SAR involves the introduction of polar substituents into regions of the molecule where it is postulated to undergo hydrophobic interactions with the ion channel. Within the CCR5 project there appeared to be no strong correlation between hERG affinity and physiochemical parameters such as pKa or lipophilicity. It is believed that chemists could apply these same strategies early in drug discovery to remove hERG interactions associated with lead compounds while retaining potency at the primary target.

  20. Role of the pH in state-dependent blockade of hERG currents

    Science.gov (United States)

    Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.

    2016-10-01

    Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.

  1. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  2. Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum.

    Science.gov (United States)

    Smith, Jennifer L; Reloj, Allison R; Nataraj, Parvathi S; Bartos, Daniel C; Schroder, Elizabeth A; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Anderson, Corey L; January, Craig T; Delisle, Brian P

    2013-11-01

    KCNH2 encodes Kv11.1 and underlies the rapidly activating delayed rectifier K(+) current (IKr) in the heart. Loss-of-function KCNH2 mutations cause the type 2 long QT syndrome (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channels. Drugs that bind to Kv11.1 and block IKr (e.g., E-4031) can act as pharmacological chaperones to increase the trafficking and functional expression for most LQT2 channels (pharmacological correction). We previously showed that LQT2 channels are selectively stored in a microtubule-dependent compartment within the endoplasmic reticulum (ER). We tested the hypothesis that pharmacological correction promotes the trafficking of LQT2 channels stored in this compartment. Confocal analyses of cells expressing the trafficking-deficient LQT2 channel G601S showed that the microtubule-dependent ER compartment is the transitional ER. Experiments with E-4031 and the protein synthesis inhibitor cycloheximide suggested that pharmacological correction promotes the trafficking of G601S stored in this compartment. Treating cells in E-4031 or ranolazine (a drug that blocks IKr and has a short half-life) for 30 min was sufficient to cause pharmacological correction. Moreover, the increased functional expression of G601S persisted 4-5 h after drug washout. Coexpression studies with a dominant-negative form of Rab11B, a small GTPase that regulates Kv11.1 trafficking, prevented the pharmacological correction of G601S trafficking from the transitional ER. These data suggest that pharmacological correction quickly increases the trafficking of LQT2 channels stored in the transitional ER via a Rab11B-dependent pathway, and we conclude that the pharmacological chaperone activity of drugs like ranolazine might have therapeutic potential.

  3. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  4. Functional characterization of a novel hERG variant in a family with recurrent sudden infant death syndrome: Retracting a genetic diagnosis.

    Science.gov (United States)

    Sergeev, Valentine; Perry, Frances; Roston, Thomas M; Sanatani, Shubhayan; Tibbits, Glen F; Claydon, Thomas W

    2018-03-01

    Long QT syndrome (LQTS) is the most common cardiac ion channelopathy and has been found to be responsible for approximately 10% of sudden infant death syndrome (SIDS) cases. Despite increasing use of broad panels and now whole exome sequencing (WES) in the investigation of SIDS, the probability of identifying a pathogenic mutation in a SIDS victim is low. We report a family-based study who are afflicted by recurrent SIDS in which several members harbor a variant, p.Pro963Thr, in the C-terminal region of the human-ether-a-go-go (hERG) gene, published to be responsible for cases of LQTS type 2. Functional characterization was undertaken due to the variable phenotype in carriers, the discrepancy with published cases, and the importance of identifying a cause for recurrent deaths in a single family. Studies of the mutated ion channel in in vitro heterologous expression systems revealed that the mutation has no detectable impact on membrane surface expression, biophysical gating properties such as activation, deactivation and inactivation, or the amplitude of the protective current conducted by hERG channels during early repolarization. These observations suggest that the p.Pro963Thr mutation is not a monogenic disease-causing LQTS mutation despite evidence of co-segregation in two siblings affected by SIDS. Our findings demonstrate some of the potential pitfalls in post-mortem molecular testing and the importance of functional testing of gene variants in determining disease-causation, especially where the impacts of cascade screening can affect multiple generations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  6. Identification of cyclic nucleotide gated channels using regular expressions

    KAUST Repository

    Zelman, Alice K.

    2013-09-03

    Cyclic nucleotide-gated channels (CNGCs) are nonselective cation channels found in plants, animals, and some bacteria. They have a six-transmembrane/one- pore structure, a cytosolic cyclic nucleotide-binding domain, and a cytosolic calmodulin-binding domain. Despite their functional similarities, the plant CNGC family members appear to have different conserved amino acid motifs within corresponding functional domains than animal and bacterial CNGCs do. Here we describe the development and application of methods employing plant CNGC-specific sequence motifs as diagnostic tools to identify novel candidate channels in different plants. These methods are used to evaluate the validity of annotations of putative orthologs of CNGCs from plant genomes. The methods detail how to employ regular expressions of conserved amino acids in functional domains of annotated CNGCs and together with Web tools such as PHI-BLAST and ScanProsite to identify novel candidate CNGCs in species including Physcomitrella patens. © Springer Science+Business Media New York 2013.

  7. Decreased expression of Kv7 channels in Hirchsprung's disease.

    Science.gov (United States)

    O'Donnell, Anne-Marie; Coyle, David; Puri, Prem

    2017-07-01

    Voltage-dependent K + channels (Kv channels) participate in electrical rhythmicity and smooth muscle responses and are regulated by excitatory and inhibitory neurotransmitters. Kv channels also participate in the interstitial cell of Cajal (ICC) and smooth muscle cell (SMC) responses to neural inputs. The Kv family consists of 12 subfamilies, Kv1-Kv12, with five members of the Kv7 family identified to date: Kv7.1-Kv7.5. A recent study identified the potassium channel Kv7.5 as having a role in the excitability of ICC-IM in the mouse colon. We therefore designed this study to test the hypothesis that Kv7 channels are present in the normal human colon and are reduced in Hirschprung's disease (HSCR). HSCR tissue specimens were collected at the time of pull-through surgery (n=10), while normal control tissue specimens were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Kv7.3-Kv7.5 immunohistochemistry was performed and visualized using confocal microscopy to assess their distribution. Western blot analysis was undertaken to determine Kv7.3-Kv7.5 protein quantification. Kv7.3 and Kv7.4-immunoreactivity was co-localized with neuron and ICC markers, while Kv7.5 was found to be expressed on both ICCs and SMCs. Western blot analysis revealed similar levels of Kv7.3 and Kv7.5 expression in the normal colon and HSCR colon, while Kv7.4 proteins were found to be markedly decreased in ganglionic specimens and decreased further in aganglionic specimens. A deficiency of Kv7.4 channels in the ganglionic and aganglionic bowel may place a role in colonic dysmotility in HSCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Voltage-gated proton channel is expressed on phagosomes

    International Nuclear Information System (INIS)

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-01-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  9. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na v 1.5 sodium and Ca v 1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  10. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  11. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Validation and Clinical Utility of the hERG IC50:Cmax Ratio to Determine the Risk of Drug-Induced Torsades de Pointes: A Meta-Analysis.

    Science.gov (United States)

    Lehmann, David F; Eggleston, William D; Wang, Dongliang

    2018-03-01

    Use of the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG) to predict torsades de pointes (TdP) risk from culprit drugs is neither sensitive nor specific. The ratio of the half-maximum inhibitory concentration of the hERG channel (hERG IC50) to the peak serum concentration of unbound drug (C max ) is used during drug development to screen out chemical entities likely to cause TdP. To validate the use of the hERG IC50:C max ratio to predict TdP risk from a culprit drug by its correlation with TdP incidence. Medline (between 1966 and March 2017) was accessed for hERG IC50 and C max values from the antihistamine, fluoroquinolone, and antipsychotic classes to identify cases of drug-induced TdP. Exposure to a culprit drug was estimated from annual revenues reported by the manufacturer. Inclusion criteria for TdP cases were provision of an ECG tracing that demonstrated QTc prolongation with TdP and normal serum values of potassium, calcium, and magnesium. Cases reported in patients with a prior rhythm disturbance and those involving a drug interaction were excluded. The Meta-Analysis of Observational Studies in Epidemiology checklist was used for epidemiological data extraction by two authors. Negligible risk drugs were defined by an hERG IC50:C max ratio that correlated with less than a 5% chance of one TdP event for every 100 million exposures (relative risk [RR] 1.0). The hERG IC50:C max ratio correlated with TdP risk (0.312; 95% confidence interval 0.205-0.476, pratio of 80 (RR 1.0). The RR from olanzapine is on par with loratadine; ziprasidone is comparable with ciprofloxacin. Drugs with an RR greater than 50 include astemizole, risperidone, haloperidol, and thioridazine. The hERG IC50:C max ratio was correlated with TdP incidence for culprit drugs. This validation provides support for the potential use of the hERG IC50:C max ratio for clinical decision making in instances of drug selection where TdP risk is a concern. © 2018

  13. Sculpting ion channel functional expression with engineered ubiquitin ligases

    Science.gov (United States)

    Kanner, Scott A; Morgenstern, Travis

    2017-01-01

    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  14. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations.

    Science.gov (United States)

    Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu

    2010-11-01

    The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. © 2010 Wiley-Liss, Inc.

  15. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.

    Science.gov (United States)

    Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques

    2013-09-01

    Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.

  16. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Jolene Atia

    2016-04-01

    Full Text Available Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations.

  17. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    Science.gov (United States)

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  18. Identification of cyclic nucleotide gated channels using regular expressions

    KAUST Repository

    Zelman, Alice K.; Dawe, Adam Sean; Berkowitz, Gerald A.

    2013-01-01

    Cyclic nucleotide-gated channels (CNGCs) are nonselective cation channels found in plants, animals, and some bacteria. They have a six-transmembrane/one- pore structure, a cytosolic cyclic nucleotide-binding domain, and a cytosolic calmodulin

  19. TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons.

    Science.gov (United States)

    Memon, Tosifa; Chase, Kevin; Leavitt, Lee S; Olivera, Baldomero M; Teichert, Russell W

    2017-06-14

    The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (K V ) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking K V channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Expression of Water Channel Proteins in Mesembryanthemum crystallinum1

    Science.gov (United States)

    Kirch, Hans-Hubert; Vera-Estrella, Rosario; Golldack, Dortje; Quigley, Francoise; Michalowski, Christine B.; Barkla, Bronwyn J.; Bohnert, Hans J.

    2000-01-01

    We have characterized transcripts for nine major intrinsic proteins (MIPs), some of which function as water channels (aquaporins), from the ice plant Mesembryanthemum crystallinum. To determine the cellular distribution and expression of these MIPs, oligopeptide-based antibodies were generated against MIP-A, MIP-B, MIP-C, or MIP-F, which, according to sequence and functional characteristics, are located in the plasma membrane (PM) and tonoplast, respectively. MIPs were most abundant in cells involved in bulk water flow and solute flux. The tonoplast MIP-F was found in all cells, while signature cell types identified different PM-MIPs: MIP-A predominantly in phloem-associated cells, MIP-B in xylem parenchyma, and MIP-C in the epidermis and endodermis of immature roots. Membrane protein analysis confirmed MIP-F as tonoplast located. MIP-A and MIP-B were found in tonoplast fractions and also in fractions distinct from either the tonoplast or PM. MIP-C was most abundant but not exclusive to PM fractions, where it is expected based on its sequence signature. We suggest that within the cell, MIPs are mobile, which is similar to aquaporins cycling through animal endosomes. MIP cycling and the differential regulation of these proteins observed under conditions of salt stress may be fundamental for the control of tissue water flux. PMID:10806230

  1. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  2. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expresse...

  3. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  4. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  5. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  6. Voltage gated potassium channels expressed in Xenopus laevis(AMPHIBIA oocytes

    Directory of Open Access Journals (Sweden)

    Hedna Chaves

    2003-01-01

    Full Text Available Heterologous expression has been an important tool for structural and functionalcharacterization of proteins. The study of biophysical properties of ion channels,pumps and transporters has been possible thanks to their expression in Xenopuslaevisoocytes. Here we report the expression of two voltage gated channels, Kv1.1and Shaker, in X. laevisoocytes using a method for oocyte extraction, isolation, cul-ture, and microinjection adapted to the latitude and altitude conditions of Bogotá,Colombia.

  7. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  8. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain.

    Directory of Open Access Journals (Sweden)

    Melissa A Fowler

    2007-06-01

    Full Text Available The canonical transient receptor potential (TRPC channels are a family of non-selective cation channels that are activated by increases in intracellular Ca(2+ and G(q/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6-9 weeks. In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS, pyramidal cell layer of the hippocampus (HIP, dentate gyrus (DG, and ventral subiculum (vSUB. TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2-6 of the prefrontal cortex (PFC, motor cortex (MCx, and somatosensory cortex (SCx. TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca(2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors.

  9. A Unified Channel Charges Expression for Analytic MOSFET Modeling

    Directory of Open Access Journals (Sweden)

    Hugues Murray

    2012-01-01

    Full Text Available Based on a 1D Poissons equation resolution, we present an analytic model of inversion charges allowing calculation of the drain current and transconductance in the Metal Oxide Semiconductor Field Effect Transistor. The drain current and transconductance are described by analytical functions including mobility corrections and short channel effects (CLM, DIBL. The comparison with the Pao-Sah integral shows excellent accuracy of the model in all inversion modes from strong to weak inversion in submicronics MOSFET. All calculations are encoded with a simple C program and give instantaneous results that provide an efficient tool for microelectronics users.

  10. BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents.

    OpenAIRE

    Huys, Isabelle; Xu, Chen-Qi; Wang, Cheng-Zhong; Vacher, Hélène; Martin-Eauclaire, Marie-France; Chi, Cheng-Wu; Tytgat, Jan

    2004-01-01

    A novel HERG channel blocker was isolated from the venom of the scorpion Buthus martensi Karsch, sequenced and characterized at the pharmacological level after chemical synthesis. According to the determined amino acid sequence, the cDNA and genomic genes were then cloned. The genomic gene consists of two exons interrupted by an intron of 65 bp at position -6 upstream from the mature toxin. The protein sequence of this toxin was completely identical with that of a known A-type K+ current bloc...

  11. Ion channel gene expressions in infertile men: A case-control study

    Directory of Open Access Journals (Sweden)

    Serkan Carkci

    2017-12-01

    Full Text Available Background: Infertility is described as not receiving pregnancy despite unprotected and regular sexual intercourse in a 1 yr period. It is detected by 15% of the couples. Male and female factor in the etiology may be detected in similar rates. Objective: The present study aims to investigate ion channel gene expression in semen samples of infertile male compared with fertile men. Materials and Methods: A total of 150 men who applied to the urology clinic due to infertility were divided into five equal groups: asthenozoospermia, oligozoospermia, oligoasthenoteratozoospermia, teratozoospermia, and normozoospermia (control. All paticipants were evaluated with Cation Channel Spermia (CatSper 1, 2, 3, 4, Proton Voltage Gated Ion Channel1 (Hv1, Potassium Channel Subfamily U1 (KCNU1, and transmembrane protein (TMEM16A gene expression in semen samples. Results: “CatSper1, 4, HV1, KCNU1, and TMEM16A gene expression were detected higher in the oligozoospermia group compared to the controls. CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the asthenozoospermia group and CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the teratozoospermia group were detected lower compared to the controls. CatSper1, 4, HV1, and TMEM16A gen expression were higher in the oligoasthenoteratozoospermia men than the controls while CatSper3 gen expression was detected as lower.” Conclusion: It was detected that these ion channels have an effect on sperm progressive motility and morphology. It may be considered that mutations in these ion channels may result in infertility

  12. Altered expression of two-pore domain potassium (K2P channels in cancer.

    Directory of Open Access Journals (Sweden)

    Sarah Williams

    Full Text Available Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and subsequently the electrical activity and behaviour of cells in which they are expressed. The K2P family of channels has 15 mammalian members and already 4 members of this family (K2P2.1, K2P3.1, K2P9.1, K2P5.1 have been implicated in cancer. Here we examine the expression of all 15 members of the K2P family of channels in a range of cancer types. This was achieved using the online cancer microarray database, Oncomine (www.oncomine.org. Each gene was examined across 20 cancer types, comparing mRNA expression in cancer to normal tissue. This analysis revealed all but 3 K2P family members (K2P4.1, K2P16.1, K2P18.1 show altered expression in cancer. Overexpression of K2P channels was observed in a range of cancers including breast, leukaemia and lung while more cancers (brain, colorectal, gastrointestinal, kidney, lung, melanoma, oesophageal showed underexpression of one or more channels. K2P1.1, K2P3.1, K2P12.1, were overexpressed in a range of cancers. While K2P1.1, K2P3.1, K2P5.1, K2P6.1, K2P7.1 and K2P10.1 showed significant underexpression across the cancer types examined. This analysis supports the view that specific K2P channels may play a role in cancer biology. Their altered expression together with their ability to impact the function of other ion channels and their sensitivity to environmental stimuli (pO2, pH, glucose, stretch makes understanding the role these channels play in cancer of key importance.

  13. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. Ether à go-go potassium channel expression in soft tissue sarcoma patients

    Directory of Open Access Journals (Sweden)

    Stühmer Walter

    2006-10-01

    Full Text Available Abstract Background The expression of the human Eag1 potassium channel (Kv10.1 is normally restricted to the adult brain, but it has been detected in both tumour cell lines and primary tumours. Our purpose was to determine the frequency of expression of Eag1 in soft tissue sarcoma and its potential clinical implications. Results We used specific monoclonal antibodies to determine the expression levels of Eag1 in soft tissue sarcomas from 210 patients by immunohistochemistry. Eag1 was expressed in 71% of all tumours, with frequencies ranging from 56% (liposarcoma to 82% (rhabdomyosarcoma. We detected differences in expression levels depending on the histological type, but no association was seen between expression of this protein and sex, age, grade or tumour size. Four cell lines derived from relevant sarcoma histological types (fibrosarcoma and rhabdomyosarcoma were tested for Eag1 expression by real-time RT-PCR. We found all four lines to be positive for Eag1. In these cell lines, blockage of Eag1 by RNA interference led to a decrease in proliferation. Conclusion Eag1 is aberrantly expressed in over 70% sarcomas. In sarcoma cell lines, inhibition of Eag1 expression and/or function leads to reduced proliferation. The high frequency of expression of Eag1 in primary tumours and the restriction of normal expression of the channel to the brain, suggests the application of this protein for diagnostic or therapeutic purposes.

  15. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  16. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  17. Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina.

    Directory of Open Access Journals (Sweden)

    Astrid Zayas-Santiago

    Full Text Available Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown.We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus, endowed with both diurnal and nocturnal vision, by (i immunohistochemistry, (ii whole-cell voltage-clamp, and (iii fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications.Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling.Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.

  18. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  19. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.

    Science.gov (United States)

    Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J

    1995-01-01

    cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.

  20. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  1. N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression.

    Science.gov (United States)

    Kashlan, Ossama B; Kinlough, Carol L; Myerburg, Michael M; Shi, Shujie; Chen, Jingxin; Blobner, Brandon M; Buck, Teresa M; Brodsky, Jeffrey L; Hughey, Rebecca P; Kleyman, Thomas R

    2018-03-01

    Epithelial Na + channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αβγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, β-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αβγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na + . The lack of N-linked glycans on the β-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the β-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type β-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the β-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.

  2. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  3. Sequence genomic organization and expression of two channel catfish Ictalurus punctatus Ghrelin receptors

    Science.gov (United States)

    Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration ...

  4. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Kaur, Simarna; George, Constantine

    2006-01-01

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function

  5. Ca2+ Channel Re-localization to Plasma-Membrane Microdomains Strengthens Activation of Ca2+-Dependent Nuclear Gene Expression

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    2015-07-01

    Full Text Available In polarized cells or cells with complex geometry, clustering of plasma-membrane (PM ion channels is an effective mechanism for eliciting spatially restricted signals. However, channel clustering is also seen in cells with relatively simple topology, suggesting it fulfills a more fundamental role in cell biology than simply orchestrating compartmentalized responses. Here, we have compared the ability of store-operated Ca2+ release-activated Ca2+ (CRAC channels confined to PM microdomains with a similar number of dispersed CRAC channels to activate transcription factors, which subsequently increase nuclear gene expression. For similar levels of channel activity, we find that channel confinement is considerably more effective in stimulating gene expression. Our results identify a long-range signaling advantage to the tight evolutionary conservation of channel clustering and reveal that CRAC channel aggregation increases the strength, fidelity, and reliability of the general process of excitation-transcription coupling.

  6. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  7. Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Maria Micaela Molina-Navarro

    Full Text Available BACKGROUND: Dilated cardiomyopathy (DCM is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. METHODS AND RESULTS: Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT. The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples validated the gene expression of SCN2B (p < 0.0001, KCNJ5 (p < 0.05, KCNJ8 (p < 0.05, CLIC2 (p < 0.05, and CACNB2 (p < 0.05. Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. CONCLUSION: This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.

  8. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  9. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  10. Novel insights into the distribution of cardiac HCN channels: an expression study in the mouse heart.

    Science.gov (United States)

    Herrmann, Stefan; Layh, Beate; Ludwig, Andreas

    2011-12-01

    HCN pacemaker channels (I(f) channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I(f) and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking. 2011 Elsevier Ltd. All rights reserved.

  11. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium.

    Science.gov (United States)

    Yu, Weiqun; Hill, Warren G; Apodaca, Gerard; Zeidel, Mark L

    2011-01-01

    The urothelium is proposed to be a sensory tissue that responds to mechanical stress by undergoing dynamic membrane trafficking and neurotransmitter release; however, the molecular basis of this function is poorly understood. Transient receptor potential (TRP) channels are ideal candidates to fulfill such a role as they can sense changes in temperature, osmolarity, and mechanical stimuli, and several are reported to be expressed in the bladder epithelium. However, their complete expression profile is unknown and their cellular localization is largely undefined. We analyzed expression of all 33 TRP family members in mouse bladder and urothelium by RT-PCR and found 22 specifically expressed in the urothelium. Of the latter, 10 were chosen for closer investigation based on their known mechanosensory or membrane trafficking functions in other cell types. Western blots confirmed urothelial expression of TRPC1, TRPC4, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPML1, and polycystins 1 and 2 (PKD1 and PKD2) proteins. We further defined the cellular and subcellular localization of all 10 TRP channels. TRPV2 and TRPM4 were prominently localized to the umbrella cell apical membrane, while TRPC4 and TRPV4 were identified on their abluminal surfaces. TRPC1, TRPM7, and TRPML1 were localized to the cytoplasm, while PKD1 and PKD2 were expressed on the apical and basolateral membranes of umbrella cells as well as in the cytoplasm. The cellular location of TRPV1 in the bladder has been debated, but colocalization with neuronal marker calcitonin gene-related peptide indicated clearly that it is present on afferent neurons that extend into the urothelium, but may not be expressed by the urothelium itself. These findings are consistent with the hypothesis that the urothelium acts as a sentinel and by expressing multiple TRP channels it is likely it can detect and presumably respond to a diversity of external stimuli and suggest that it plays an important role in urothelial signal

  12. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1

    Directory of Open Access Journals (Sweden)

    Lien Moreels

    2017-09-01

    Full Text Available The human ether-à-go-go channel (hEag1 or KV10.1 is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1. The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a

  13. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... was to investigate the functional and molecular expression of BK in the eel intestine, which is a useful experimental model for cell volume regulation research. In the present paper using rat BK channel-specific primer, a RT-PCR signal of 696 pb cDNA was detected in eel intestine, whole nucleotide sequence showed...... high similarity (83%) to the alpha subunit of BK channel family. BK channel protein expression was verified by immunoblotting and confocal microscopy, while the functional role of BK channels in epithelial ion transport mechanisms and cell volume regulation was examined by electrophysiological...

  14. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  15. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  16. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  17. TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium

    International Nuclear Information System (INIS)

    Ueda, Takashi; Yamada, Takahiro; Ugawa, Shinya; Ishida, Yusuke; Shimada, Shoichi

    2009-01-01

    The thermo-transient receptor potential (thermoTRP) subfamily is composed of channels that are important in nociception and thermo-sensing. Here, we show a selective expression of TRPV3 channel in the distal colon throughout the gastrointestinal tract. Expression analyses clearly revealed that TRPV3 mRNA and proteins were expressed in the superficial epithelial cells of the distal colon, but not in those of the stomach, duodenum or proximal colon. In a subset of primary epithelial cells cultured from the distal colon, carvacrol, an agonist for TRPV3, elevated cytosolic Ca 2+ concentration in a concentration-dependent manner. This response was inhibited by ruthenium red, a TRPV channel antagonist. Organotypic culture supported that the carvacrol-responsive cells were present in superficial epithelial cells. Moreover, application of carvacrol evoked ATP release in primary colonic epithelial cells. We conclude that TRPV3 is present in absorptive cells in the distal colon and may be involved in a variety of cellular functions.

  18. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  19. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3......, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels....

  20. Kuifjes katholieke jeugd. De katholieke achtergrond van Hergé. Deel 1 van 2

    NARCIS (Netherlands)

    de Groot, C.N.

    2013-01-01

    Following the launch of Steven Spielberg’s ‘Tintin and the Secret of the Unicorn’, l’Osservore Romano hailed Tintin as a ‘catholic hero’. This article demonstrates that the comic originates, more specifically, in conservative and reactionary milieus in Belgian Catholicism. Hergé (ps. for Georges

  1. Interactions between β-catenin and the HSlo potassium channel regulates HSlo surface expression.

    Directory of Open Access Journals (Sweden)

    Shumin Bian

    Full Text Available The large conductance calcium-activated potassium channel alpha-subunit (Slo is widely distributed throughout the body and plays an important role in a number of diseases. Prior work has shown that Slo, through its S10 region, interacts with β-catenin, a key component of the cytoskeleton framework and the Wnt signaling pathway. However, the physiological significance of this interaction was not clear.Using a combination of proteomic and cell biology tools we show the existence of additional multiple binding sites in Slo, and explore in detail β-catenin interactions with the S10 region. We demonstrate that deletion of this region reduces Slo surface expression in HEK cells, which indicates that interaction with beta-catenin is important for Slo surface expression. This is confirmed by reduced expression of Slo in HEK cells and chicken (Gallus gallus domesticus leghorn white hair cells treated with siRNA to β-catenin. HSlo reciprocally co-immunoprecipitates with β-catenin, indicating a stable binding between these two proteins, with the S10 deletion mutant having reduced binding with β-catenin. We also observed that mutations of the two putative GSK phosphorylation sites within the S10 region affect both the surface expression of Slo and the channel's voltage and calcium sensitivities. Interestingly, expression of exogenous Slo in HEK cells inhibits β-catenin-dependent canonical Wnt signaling.These studies identify for the first time a central role for β-catenin in mediating Slo surface expression. Additionally we show that Slo overexpression can lead to downregulation of Wnt signaling.

  2. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit

    2011-01-01

    patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...

  3. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders

    Directory of Open Access Journals (Sweden)

    Ruolin Ma

    2018-03-01

    Full Text Available Gastrointestinal (GI motility disorders such as irritable bowel syndrome (IBS can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+ channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR, immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.

  4. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    Science.gov (United States)

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  5. Shaker-related voltage-gated K+ channel expression and vasomotor function in human coronary resistance arteries.

    Science.gov (United States)

    Nishijima, Yoshinori; Korishettar, Ankush; Chabowski, Dawid S; Cao, Sheng; Zheng, Xiaodong; Gutterman, David D; Zhang, David X

    2018-01-01

    K V channels are important regulators of vascular tone, but the identity of specific K V channels involved and their regulation in disease remain less well understood. We determined the expression of K V 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. HCAs from patients with and without CAD were assessed for mRNA and protein expression of K V 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of K V 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general K V blocker 4-AP and the selective K V 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive K V channels. K V 1.5, as a major 4-AP-sensitive K V 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive K V channel function. © 2017 John Wiley & Sons Ltd.

  6. Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium

    Science.gov (United States)

    Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har

    2015-01-01

    Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the

  7. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Schulz, Nico

    2010-01-01

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1-...... alpha transgenic mice compared to wild-type mice and TRPV1-/- mice (8.6±1.3mg/g; 5.4±0.3mg/g; and 5.4±0.4mg/g; respectively; p...

  8. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo

    2005-11-01

    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  9. Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Olesen, Søren-Peter; Christ, Torsten

    2009-01-01

    The cardiac action potential is primarily shaped by the orchestrated function of several different types of ion channels and transporters. One of the regional differences believed to play a major role in the progression and stability of the action potential is the transmural gradient of electrica...... cardiac ion channels and transporters which may in part explain the increased susceptibility to arrhythmia in end-state failing hearts....... activity across the ventricular wall. An altered balance in the ionic currents across the free wall is assumed to be a substrate for arrhythmia. A large fraction of patients with heart failure experience ventricular arrhythmia. However, the underlying substrate of these functional changes is not well......-established as expression analyses of human heart failure (HF) are sparse. We have investigated steady-state RNA levels by quantitative polymerase chain reaction of ion channels, transporters, connexin 43, and miR-1 in 11 end-stage HF and seven nonfailing (NF) hearts. The quantifications were performed on endo-, mid...

  10. Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression

    Directory of Open Access Journals (Sweden)

    Mats Wiedemann

    2015-10-01

    Full Text Available The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight. In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h, the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

  11. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis.

    Science.gov (United States)

    Greaves, Erin; Grieve, Kelsey; Horne, Andrew W; Saunders, Philippa T K

    2014-09-01

    Ovarian suppression is a common treatment for endometriosis-associated pelvic pain. Its exact mechanism of action is poorly understood, although it is assumed to reflect reduced production/action of estrogens. The objective of the study was to measure the expression of mRNAs encoded by nociceptive genes in the peritoneum of women with chronic pelvic pain (CPP) with or without endometriosis and to investigate whether estrogens alter nociceptive gene expression in human sensory neurons. The study was performed using human tissue analysis and cell culture. The study was conducted at a university research institute. Peritoneal biopsies were obtained from women with CPP and endometriosis (n = 12), CPP and no endometriosis (n = 10), and no pain or endometriosis (n = 5). Endometriosis lesions were obtained from women with endometriosis (n = 18). mRNAs encoding ion channels (P2RX3, SCN9A, SCN11A, TRPA1, TRPV1) and the neurotransmitter TAC1 were measured in human tissue samples and in human embryonic stem cell-derived sensory neurons treated with estrogens. TRPV1, TRPA1, and SCN11A mRNAs were significantly higher in the peritoneum from women with endometriosis (P endometriosis lesions (P endometriosis (P endometriosis-associated pain. Strategies directly targeting ion channels may offer an alternative option for the management of CPP.

  12. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  13. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  14. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Céline M Bourdin

    Full Text Available Insect voltage-gated sodium (Nav channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation "temperature-induced-paralysis locus E." The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na(+ currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1 strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3'UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1 co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280 in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280. PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be

  16. Novel MGF-based expressions for the average bit error probability of binary signalling over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2014-04-01

    The main idea in the moment generating function (MGF) approach is to alternatively express the conditional bit error probability (BEP) in a desired exponential form so that possibly multi-fold performance averaging is readily converted into a computationally efficient single-fold averaging - sometimes into a closed-form - by means of using the MGF of the signal-to-noise ratio. However, as presented in [1] and specifically indicated in [2] and also to the best of our knowledge, there does not exist an MGF-based approach in the literature to represent Wojnar\\'s generic BEP expression in a desired exponential form. This paper presents novel MGF-based expressions for calculating the average BEP of binary signalling over generalized fading channels, specifically by expressing Wojnar\\'s generic BEP expression in a desirable exponential form. We also propose MGF-based expressions to explore the amount of dispersion in the BEP for binary signalling over generalized fading channels.

  17. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  18. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    Science.gov (United States)

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    Science.gov (United States)

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  20. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    Science.gov (United States)

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  1. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  2. Increased expression of the auxiliary beta(2-subunit of ventricular L-type Ca(2+ channels leads to single-channel activity characteristic of heart failure.

    Directory of Open Access Journals (Sweden)

    Roger Hullin

    2007-03-01

    Full Text Available Increased activity of single ventricular L-type Ca(2+-channels (L-VDCC is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation.By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1 or beta(3 isoforms, beta(2a and beta(2b induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V1.2 also reveal increased single-channel activity and sarcolemmal beta(2 expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase", reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2 expression. Additional evidence for the cause-effect relationship between beta(2-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V1.2 and inducible beta(2 cardiac overexpression. Here in non-failing hearts induction of beta(2-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure.Our study presents evidence of the pathobiochemical relevance of beta(2-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.

  3. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation.

    Directory of Open Access Journals (Sweden)

    Hossain Md Zakir

    Full Text Available Increased expression of the transient receptor potential vanilloid 1 (TRPV1 channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP--induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect

  4. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  5. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  6. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    Science.gov (United States)

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  7. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Majhi

    2015-10-01

    Full Text Available Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8 is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th–5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA. We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.

  8. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    Directory of Open Access Journals (Sweden)

    Cui Zhu

    2016-08-01

    Full Text Available Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11 have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes, goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  9. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    Science.gov (United States)

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.

  10. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    Science.gov (United States)

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development

    Directory of Open Access Journals (Sweden)

    Wu Houdini HT

    2011-12-01

    Full Text Available Abstract Background Calcium signals ([Ca2+]i direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. Findings The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a, fast (ryr3 and both types (ryr1b of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. Conclusions Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types.

  12. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle.

    Science.gov (United States)

    Bowles, D K; Maddali, K K; Ganjam, V K; Rubin, L J; Tharp, D L; Turk, J R; Heaps, C L

    2004-11-01

    Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.

  13. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing...

  14. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 m....... This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes....

  15. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  16. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells.

    Science.gov (United States)

    Gunthorpe, M J; Smith, G D; Davis, J B; Randall, A D

    2001-08-01

    Acid-sensing ion channels (ASICs) are a new and expanding family of proton-gated cation (Na+/Ca2+) channels that are widely expressed in sensory neurons and the central nervous system. Their distribution suggests that they may play a critical role in the sensation of the pain that accompanies tissue acidosis and may also be important in detecting the subtle pH variations that occur during neuronal signalling. Here, using whole-cell patch-clamp electrophysiology and reverse transcriptase-polymerase chain reaction (RT-PCR), we show that HEK293 cells, a commonly used cell line for the expression and characterisation of many ion channels, functionally express an endogenous proton-gated conductance attributable to the activity of human ASIC1a. These data therefore represent the first functional characterisation of hASIC1 and have many important implications for the use of HEK293 cells as a host cell system for the study of ASICs, vanilloid receptor-1 and any other proton-gated channel. With this latter point in mind we have devised a simple desensitisation strategy to selectively remove the contribution of hASIC1a from proton-gated currents recorded from HEK293 cells expressing vanilloid receptor-1.

  17. K-ATP channel expression and pharmacological in vivo and in vitro studies of the K-ATP channel blocker PNU-37883A in rat middle meningeal arteries

    DEFF Research Database (Denmark)

    Ploug, K.B.; Boni, L.J.; Baun, M.

    2008-01-01

    closed cranial window model and in myograph baths, respectively. Key results: Expression studies indicate that inwardly rectifying K+ (Kir)6.1/sulphonylurea receptor (SUR) 2B is the major K-ATP channel complex in rat MMA. PNU-37883A (0.5 mg kg(-1)) significantly inhibited the in vivo dilatory effect...... of levcromakalim (0.025 mg kg(-1)), pinacidil (0.38 mg kg(-1)) and P-1075 (0.016 mg kg(-1)) in rat MMA. In vitro PNU-37883A significantly inhibited the dilatory responses of the three K-ATP channel openers in rat MMA at 10(-7) and 3 x 10(-7) M. Conclusions and implications: We suggest that Kir6.1/SUR2B...

  18. Development of heart failure is independent of K+ channel-interacting protein 2 expression

    Science.gov (United States)

    Speerschneider, Tobias; Grubb, Søren; Metoska, Artina; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B

    2013-01-01

    Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K+ channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K+ current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2−/− mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2−/− mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2−/− control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2−/− mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2−/− with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K+ current. PMID:24099801

  19. Closed-form Capacity Expressions for the α-μ Fading Channel with SC Diversity under Different Adaptive Transmission Strategies

    Science.gov (United States)

    Mohamed, Refaat; Ismail, Mahmoud H.; Newagy, Fatma; Mourad, Heba M.

    2013-03-01

    Stemming from the fact that the α-μ fading distribution is one of the very general fading models used in the literature to describe the small scale fading phenomenon, in this paper, closed-form expressions for the Shannon capacity of the α-μ fading channel operating under four main adaptive transmission strategies are derived assuming integer values for μ. These expressions are derived for the case of no diversity as well as for selection combining diversity with independent and identically distributed branches. The obtained expressions reduce to those previously derived in the literature for the Weibull as well as the Rayleigh fading cases, which are both special cases of the α-μ channel. Numerical results are presented for the capacity under the four adaptive transmission strategies and the effect of the fading parameter as well as the number of diversity branches is studied.

  20. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  1. Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation.

    Science.gov (United States)

    Glasscock, Edward; Voigt, Niels; McCauley, Mark D; Sun, Qiang; Li, Na; Chiang, David Y; Zhou, Xiao-Bo; Molina, Cristina E; Thomas, Dierk; Schmidt, Constanze; Skapura, Darlene G; Noebels, Jeffrey L; Dobrev, Dobromir; Wehrens, Xander H T

    2015-09-01

    Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson's trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility.

  2. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... on vascular diameter in the afferent arteriole. We conclude that voltage-dependent L- and T-type calcium channels are expressed and of functional significance in renal cortical preglomerular vessels, in juxtamedullary efferent arterioles, and in outer medullary vasa recta, but not in cortical efferent...

  3. Kuifjes katholieke jeugd. De katholieke achtergrond van Hergé. Deel 1 van 2

    OpenAIRE

    de Groot, C.N.

    2013-01-01

    Following the launch of Steven Spielberg’s ‘Tintin and the Secret of the Unicorn’, l’Osservore Romano hailed Tintin as a ‘catholic hero’. This article demonstrates that the comic originates, more specifically, in conservative and reactionary milieus in Belgian Catholicism. Hergé (ps. for Georges Rémi) designed Tintin for the children’s weekly of a newspaper that, in this period, shared its main themes with the Catholic fascist movement Rex: anti-communism, anti-capitalism, anti-semitism and t...

  4. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Plummer, Howard K III; Yu, Qiang; Cakir, Yavuz; Schuller, Hildegard M

    2004-01-01

    Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta 2 -adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K + flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  5. Significance of the Centrally Expressed TRP Channel "Painless" in "Drosophila" Courtship Memory

    Science.gov (United States)

    Sakai, Takaomi; Sato, Shoma; Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2013-01-01

    Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the…

  6. PIEZO channel protein naturally expressed in human breast cancer cell MDA-MB-231 as probed by atomic force microscopy

    Science.gov (United States)

    Weng, Yuanqi; Yan, Fei; Chen, Runkang; Qian, Ming; Ou, Yun; Xie, Shuhong; Zheng, Hairong; Li, Jiangyu

    2018-05-01

    Mechanical stimuli drives many physiological processes through mechanically activated channels, and the recent discovery of PIEZO channel has generated great interests in its mechanotransduction. Many previous researches investigated PIEZO proteins by transcribing them in cells that originally have no response to mechanical stimulation, or by forming PIEZO-combined complexes in vitro, and few studied PIEZO protein's natural characteristics in cells. In this study we show that MDA-MB-231, a malignant cell in human breast cancer cell line, expresses the mechanosensitive behavior of PIEZO in nature without extra treatment, and we report its characteristics in response to localized mechanical stimulation under an atomic force microscope, wherein a correlation between the force magnitude applied and the channel opening probability is observed. The results on PIEZO of MDA-MB-231 can help establish a basis of preventing and controlling of human breast cancer cell via mechanical forces.

  7. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat.

    Science.gov (United States)

    Schuhmacher, Laura-Nadine; Smith, Ewan St John

    2016-12-13

    Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and β-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.

  8. High-density expression of Ca2+-permeable ASIC1a channels in NG2 glia of rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Yen-Chu Lin

    Full Text Available NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia.

  9. The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels

    Directory of Open Access Journals (Sweden)

    Anne-Cécile eBoulay

    2015-02-01

    Full Text Available Astrocytes, the most prominent glial cell type in the brain, send specialized processes called endfeet, around blood vessels and express a large molecular repertoire regulating the cerebrovascular system physiology. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein Connexin 43 and 30 (Cx43 and Cx30 allowing in particular for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. In this study, we addressed the specific role of Cx30 at the gliovascular interface. Using an inactivation mouse model for Cx30 (Cx30Δ/Δ, we showed that absence of Cx30 does not affect blood-brain barrier (BBB organization and permeability. However, it results in the cerebrovascular fraction, in a strong upregulation of Sgcg encoding γ-Sarcoglycan (SG, a member of the Dystrophin-associated protein complex (DAPC connecting cytoskeleton and the extracellular matrix. The same molecular event occurs in Cx30T5M/T5M mutated mice, where Cx30 channels are closed, demonstrating that Sgcg regulation relied on Cx30 channel functions. We further characterized the expression of other Sarcoglycan complex (SGC molecules in the cerebrovascular system and showed the presence of α-, β-, δ-, γ-, ε- and ζ- SG, as well as Sarcospan. Their expression was however not modified in Cx30Δ/Δ. These results suggest that a full SGC might be present in the cerebrovascular system, and that expression of one of its member, γ-Sarcoglycan, depends on Cx30 channels. As described in skeletal muscles, the SGC may contribute to membrane stabilization and signal transduction in the cerebrovascular system, which may therefore be regulated by Cx30 channel-mediated functions.

  10. hERG classification model based on a combination of support vector machine method and GRIND descriptors

    DEFF Research Database (Denmark)

    Li, Qiyuan; Jorgensen, Flemming Steen; Oprea, Tudor

    2008-01-01

    and diverse library of 495 compounds. The models combine pharmacophore-based GRIND descriptors with a support vector machine (SVM) classifier in order to discriminate between hERG blockers and nonblockers. Our models were applied at different thresholds from 1 to 40 mu m and achieved an overall accuracy up...

  11. When children express their preferences regarding sales channels: Online or offline or online and offline?

    OpenAIRE

    Boulay, Jacques; Faultrier, Brigitte de; Feenstra, Florence; Muzellec, Laurent

    2014-01-01

    Purpose: The purpose of this paper is to investigate the preferences of children under the age of 12 regarding sales channels: how young consumers perceive online vs offline shopping in terms of advantages and disadvantages. Within a cross channel perspective, it also analyses the connections they make between brick-and-mortar and online stores. Design/methodology/approach: Results are drawn from an exploratory and qualitative study based on a multi-category approach. In all, 62 children (34 ...

  12. Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Rzhepetskyy, Yuriy; Zhang, F. X.; Zamponi, G. W.; Weiss, Norbert

    2016-01-01

    Roč. 468, 11/12 (2016), s. 1837-1851 ISSN 0031-6768 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * T-type channel * Ca(v)3.2 * glucose * N-glycosylation * trafficking Subject RIV: CE - Biochemistry Impact factor: 3.156, year: 2016

  13. Expression of Eag1 K+ channel and ErbBs in human pituitary adenomas: cytoskeleton arrangement patterns in cultured cells.

    Science.gov (United States)

    del Pliego, Margarita González; Aguirre-Benítez, Elsa; Paisano-Cerón, Karina; Valdovinos-Ramírez, Irene; Rangel-Morales, Carlos; Rodríguez-Mata, Verónica; Solano-Agama, Carmen; Martín-Tapia, Dolores; de la Vega, María Teresa; Saldoval-Balanzario, Miguel; Camacho, Javier; Mendoza-Garrido, María Eugenia

    2013-01-01

    Pituitary adenomas can invade surrounded tissue, but the mechanism remains elusive. Ether à go-go-1 (Eag1) potassium channel and epidermal growth factor receptors (ErbB1 and ErbB2) have been associated to invasive phenotypes or poor prognosis in cancer patients. However, cells arrange their cytoskeleton in order to acquire a successful migration pattern. We have studied ErbBs and Eag1 expression, and cytoskeleton arrangements in 11 human pituitary adenomas. Eag1, ErbB1 and ErbB2 expression were studied by immunochemistry in tissue and cultured cells. The cytoskeleton arrangement was analyzed in cultured cells by immunofluorescence. Normal pituitary tissue showed ErbB2 expression and Eag1 only in few cells. However, Eag1 and ErbB2 were expressed in all the tumors analyzed. ErbB1 expression was observed variable and did not show specificity for a tumor characteristic. Cultured cells from micro- and macro-adenomas clinically functional organize their cytoskeleton suggesting a mesenchymal pattern, and a round leucocyte/amoeboid pattern from invasive clinically silent adenoma. Pituitary tumors over-express EGF receptors and the ErbB2 repeated expression suggests is a characteristic of adenomas. Eag 1 was express, in different extent, and could be a therapeutic target. The cytoskeleton arrangements observed suggest that pituitary tumor cells acquire different patterns: mesenchymal, and leucocyte/amoeboid, the last observed in the invasive adenomas. Amoeboid migration pattern has been associated with high invasion capacity.

  14. A Chimeric NaV1.8 Channel Expression System Based on HEK293T Cell Line

    Directory of Open Access Journals (Sweden)

    Xi Zhou

    2018-04-01

    Full Text Available Among the nine voltage-gated sodium channel (NaV subtypes, NaV1.8 is an attractive therapeutic target for pain. The heterologous expression of recombinant NaV1.8 currents is of particular importance for its electrophysiological and pharmacological studies. However, NaV1.8 expresses no or low-level functional currents when transiently transfected into non-neuronal cell lines. The present study aims to explore the molecular determinants limiting its functional expression and accordingly establish a functional NaV1.8 expression system. We conducted screening analysis of the NaV1.8 intracellular loops by constructing NaV chimeric channels and confirmed that the NaV1.8 C-terminus was the only limiting factor. Replacing this sequence with that of NaV1.4, NaV1.5, or NaV1.7 constructed functional channels (NaV1.8/1.4L5, NaV1.8/1.5L5, and NaV1.8/1.7L5, respectively, which expressed high-level NaV1.8-like currents in HEK293T cells. The chimeric channel NaV1.8/1.7L5 displayed much faster inactivation of its macroscopic currents than NaV1.8/1.4L5 and NaV1.8/1.5L5, and it was the most similar to wild-type NaV1.8 expressed in ND7/23 cells. Its currents were very stable during repetitive depolarizations, while its repriming kinetic was different from wild-type NaV1.8. Most importantly, NaV1.8/1.7L5 pharmacologically resembled wild-type NaV1.8 as revealed by testing their susceptibility to two NaV1.8 selective antagonists, APETx-2 and MrVIB. NaV chimeras study showed that at least the domain 2 and domain 4 of NaV1.8 were involved in binding with APETx-2. Our study provided new insights into the function of NaV1.8 intracellular loops, as well as a reliable and convenient expression system which could be useful in NaV1.8 studies.

  15. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: findings from a mouse model and clinical cases of abortion.

    Directory of Open Access Journals (Sweden)

    Min Zhou

    Full Text Available The status of the maternal endometrium is vital in regulating humoral homeostasis and for ensuring embryo implantation. Cystic fibrosis transmembrane conductance regulators (CFTR and epithelial sodium channel alpha subunits (ENaC-α play an important role in female reproduction by maintaining humoral and cell homeostasis. However, it is not clear whether the expression levels of CFTR and ENaC-α in the decidual component during early pregnancy are related with early miscarriage. CBA×DBA/2 mouse mating has been widely accepted as a classical model of early miscarriage. The abortion rate associated with this mating was 33.33% in our study. The decidua of abortion-prone CBA female mice (DBA/2 mated had higher CFTR mRNA and protein expression and lower ENaC-α mRNA and protein expression, compared to normal pregnant CBA mice (BLAB/C mated. Furthermore, increased CFTR expression and decreased ENaC-α expression were observed in the uterine tissue from women with early miscarriage, as compared to those with successful pregnancy. In conclusion, increased CFTR expression and decreased ENaC-α expression in the decidua of early abortion may relate with failure of early pregnancy.

  16. Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line.

    Directory of Open Access Journals (Sweden)

    Pannabecker Thomas L

    2002-03-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 channels are constitutively active water channels that allow rapid transmembrane osmotic water flux, and also serve as cyclic-GMP-gated ion channels. Tetraethylammonium chloride (TEA; 0.05 to 10 mM was shown previously to inhibit the osmotic water permeability of human AQP1 channels expressed in Xenopus oocytes. The purpose of the present study was to determine if TEA blocks osmotic water flux of native AQP1 channels in kidney, and recombinant AQP1 channels expressed in a kidney derived MDCK cell line. We also demonstrate that TEA does not inhibit the cGMP-dependent ionic conductance of AQP1 expressed in oocytes, supporting the idea that water and ion fluxes involve pharmacologically distinct pathways in the AQP1 tetrameric complex. Results TEA blocked water permeability of AQP1 channels in kidney and kidney-derived cells, demonstrating this effect is not limited to the oocyte expression system. Equivalent inhibition is seen in MDCK cells with viral-mediated AQP1 expression, and in rat renal descending thin limbs of Henle's loops which abundantly express native AQP1, but not in ascending thin limbs which do not express AQP1. External TEA (10 mM does not block the cGMP-dependent AQP1 ionic conductance, measured by two-electrode voltage clamp after pre-incubation of oocytes in 8Br-cGMP (10–50 mM or during application of the nitric oxide donor, sodium nitroprusside (2–4 mM. Conclusions TEA selectively inhibits osmotic water permeability through native and heterologously expressed AQP1 channels. The pathways for water and ions in AQP1 differ in pharmacological sensitivity to TEA, and are consistent with the idea of independent solute pathways within the channel structure. The results confirm the usefulness of TEA as a pharmacological tool for the analysis of AQP1 function.

  17. Potassium and calcium channel gene expression in small arteries in porcine and rat models of diet-induced obesity (Poster)

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2014-01-01

    Obesity is an increasing problem worldwide leading to cardiovascular morbidity. Only limited information exists on the transcriptional regulation of arterial K+ and Ca2+ channels in obesity. We quantified, by real-time PCR, mRNA expression of K+ channels and L-type Ca2+ channels (LTCC) in small...... mesenteric (MA), middle cerebral (MCA), and left coronary arteries (LCA) of lean vs. obese rats and minipigs. Male Sprague Dawley rats were fed a high-fat (FAT; N=5), high-fructose (FRUC; N=7), high-fat/high-fructose (FAT/FRUC; N=7) or standard diet (STD; N=7-11) for 28 Weeks. FAT and FAT/FRUC became obese...... increased in OB and OB+DIAB. BKca, IKca, SKca and/or LTCC mRNA was up-regulated in LCA from OB and OB+DIAB (n.s.). Expression of BKca mRNA was increased, whereas IKca mRNA decreased in MCA from OB (n.s.). SKca mRNA was decreased in MA from OB (n.s.). Diet-induced obesity in rats and minipigs lead to complex...

  18. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts.

    Directory of Open Access Journals (Sweden)

    Maki Tsumura

    Full Text Available Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP melastatin subfamily member 8 (TRPM8 and ankyrin subfamily member 1 (TRPA1 channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+ concentration ([Ca(2+]i. Icilin-, WS3-, or WS12-induced [Ca(2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+]i elicited by allyl isothiocyanate (AITC was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+]i increase. Low-temperature stimuli elicited [Ca(2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.

  19. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  20. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function.

    Science.gov (United States)

    Therien, J P Daniel; Baenziger, John E

    2017-03-27

    Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.

  1. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    The KCNQ1 potassium channel associates with various KCNE ancillary subunits that drastically affect channel gating and pharmacology. Co-assembly with KCNE3 produces a current with nearly instantaneous activation, some time-dependent activation at very positive potentials, a linear current-voltage relationship and a 10-fold higher sensitivity to chromanol 293B. KCNQ1:KCNE3 channels are expressed in colonic crypts and mediate basolateral K(+) recycling required for Cl(-) secretion. We have previously reported the female-specific anti-secretory effects of oestrogen via KCNQ1:KCNE3 channel inhibition in colonic crypts. This study was designed to determine whether sex and oestrogen regulate the expression and function of KCNQ1 and KCNE3 in rat distal colon. Colonic crypts were isolated from Sprague-Dawley rats and used for whole-cell patch-clamp and to extract total RNA and protein. Sheets of epithelium were used for short-circuit current recordings. KCNE1 and KCNE3 mRNA and protein abundance were significantly higher in male than female crypts. No expression of KCNE2 was found and no difference was observed in KCNQ1 expression between male and female (at oestrus) colonic crypts. Male crypts showed a 2.2-fold higher level of association of KCNQ1 and KCNE3 compared to female cells. In female colonic crypts, KCNQ1 and KCNE3 protein expression fluctuated throughout the oestrous cycle and 17beta-oestradiol (E2 10 nM) produced a rapid (<15 min) dissociation of KCNQ1 and KCNE3 in female crypts only. Whole-cell K(+) currents showed a linear current-voltage relationship in male crypts, while K(+) currents in colonic crypts isolated from females displayed voltage-dependent outward rectification. Currents in isolated male crypts and epithelial sheets were 10-fold more sensitive to specific KCNQ1 inhibitors, such as chromanol 293B and HMR-1556, than in female. The effect of E2 on K(+) currents mediated by KCNQ1 with or without different beta-subunits was assayed from current

  2. Expression and isotopic labelling of the potassium channel blocker ShK toxin as a thioredoxin fusion protein in bacteria.

    Science.gov (United States)

    Chang, Shih Chieh; Galea, Charles A; Leung, Eleanor W W; Tajhya, Rajeev B; Beeton, Christine; Pennington, Michael W; Norton, Raymond S

    2012-10-01

    The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which play a crucial role in the activation of human effector memory T-cells (T(EM)). Selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. We have established a recombinant peptide expression system in order to generate isotopically-labelled ShK and various ShK analogues for in-depth biophysical and pharmacological studies. ShK was expressed as a thioredoxin fusion protein in Escherichia coli BL21 (DE3) cells and purified initially by Ni²⁺ iminodiacetic acid affinity chromatography. The fusion protein was cleaved with enterokinase and purified to homogeneity by reverse-phase HPLC. NMR spectra of ¹⁵N-labelled ShK were similar to those reported previously for the unlabelled synthetic peptide, confirming that recombinant ShK was correctly folded. Recombinant ShK blocked Kv1.3 channels with a K(d) of 25 pM and inhibited the proliferation of human and rat T lymphocytes with a preference for T(EM) cells, with similar potency to synthetic ShK in all assays. This expression system also enables the efficient production of ¹⁵N-labelled ShK for NMR studies of peptide dynamics and of the interaction of ShK with Kv1.3 channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Brain expression of the water channels Aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema

    DEFF Research Database (Denmark)

    Eefsen, Martin; Jelnes, Peter; Schmidt, Lars E

    2010-01-01

    Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and....../or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally......(6266) (p edema in mice with ALF....

  4. Cloning and functional expression of a plant voltage-dependent chloride channel.

    Science.gov (United States)

    Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C

    1996-01-01

    Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442

  5. Patients with Long QT Syndrome Due to Impaired hERG-encoded Kv11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated with Reactive Hypoglycemia

    DEFF Research Database (Denmark)

    Hyltén-Cavallius, Louise; Iepsen, Eva W; Wewer Albrechtsen, Nicolai J

    2017-01-01

    Background -Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long QT syndrome (LQT2) due to prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and th...

  6. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Friis, Søren; Asmild, Margit

    2003-01-01

    Planar silicon chips with 1-2-microm etched holes (average resistance: 2.04 +/- 0.02 MOmega in physiological buffer, n = 274) have been developed for patch-clamp recordings of whole-cell currents from cells in suspension. An automated 16-channel parallel screening system, QPatch 16, has been deve......-response relationship characterizations of verapamil and rBeKm-1 blockage of hERG currents provided IC(50) values similar to values reported in the literature....

  7. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  8. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  9. A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-07-01

    Analysis of the average binary error probabilities (ABEP) and average capacity (AC) of wireless communications systems over generalized fading channels have been considered separately in past years. This paper introduces a novel moment generating function (MGF)-based unified expression for the ABEP and AC of single and multiple link communications with maximal ratio combining. In addition, this paper proposes the hyper-Fox\\'s H fading model as a unified fading distribution of a majority of the well-known generalized fading environments. As such, the authors offer a generic unified performance expression that can be easily calculated, and that is applicable to a wide variety of fading scenarios. The mathematical formulism is illustrated with some selected numerical examples that validate the correctness of the authors\\' newly derived results. © 1972-2012 IEEE.

  10. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients.

    Science.gov (United States)

    Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping

    2015-01-01

    To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients' blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca(2+) concentration and prevent the AF.

  11. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.

    Science.gov (United States)

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W

    2014-03-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  12. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  13. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis.

    Science.gov (United States)

    Varju, P; Schlett, K; Eisel, U; Madarász, E

    2001-06-01

    NE-7C2 neuroectodermal cells derived from forebrain vesicles of p53-deficient mouse embryos (E9) produce neurons and astrocytes in vitro if induced by all-trans retinoic acid. The reproducible morphological stages of neurogenesis were correlated with the expression of various NMDA receptor subunits. RT-PCR studies revealed that GluRepsilon1 and GluRepsilon4 subunit mRNAs were transcribed by both non-induced and neuronally differentiated cells. GluRepsilon3 subunit mRNAs were not synthesized by NE-7C2 cells and increased numbers of messages from the GluRepsilon2 gene were detected only after neural network formation. The presence of the GluRzeta1 protein was detected throughout neural induction, whereas retinoic acid-induced neuron formation elevated the amount of exon 21 (C1)- and exon 22 (C2)-containing GluRzeta1 mRNAs and resulted in the appearance of exon 5 (N1)-containing transcripts. NMDA-elicited Ca(2+)-signals were detected only in cells displaying neuronal morphology, but preceding the appearance of synapsin-I immunoreactivity. Our findings demonstrated that, in spite of the presence of subunits necessary for channel formation, functional channels were formed by NE-7C2 cells no sooner than the time of neurite maturation. The data show that the cell line provides a suitable model to analyse the mechanisms involved in NMDA receptor gene expression before the appearance of synaptic communication.

  14. Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains*

    Science.gov (United States)

    Smith, Kathryn D.; Gordon, Patricia B.; Rivetta, Alberto; Allen, Kenneth E.; Berbasova, Tetyana; Slayman, Clifford; Strobel, Scott A.

    2015-01-01

    Fluoride is a ubiquitous environmental toxin with which all biological species must cope. A recently discovered family of fluoride export (FEX) proteins protects organisms from fluoride toxicity by removing it from the cell. We show here that FEX proteins in Saccharomyces cerevisiae function as ion channels that are selective for fluoride over chloride and that these proteins are constitutively expressed at the yeast plasma membrane. Continuous expression is in contrast to many other toxin exporters in yeast, and this, along with the fact that two nearly duplicate proteins are encoded in the yeast genome, suggests that the threat posed by fluoride ions is frequent and detrimental. Structurally, eukaryotic FEX proteins consist of two homologous four-transmembrane helix domains folded into an antiparallel dimer, where the orientation of the two domains is fixed by a single transmembrane linker helix. Using phylogenetic sequence conservation as a guide, we have identified several functionally important residues. There is substantial functional asymmetry in the effect of mutation at corresponding sites in the two domains. Specifically, mutations to residues in the C-terminal domain proved significantly more detrimental to function than did similar mutations in the N-terminal domain. Our data suggest particular residues that may be important to anion specificity, most notably the necessity of a positive charge near the end of TMH1 in the C-terminal domain. It is possible that a cationic charge at this location may create an electrostatic well for fluoride ions entering the channel from the cytoplasm. PMID:26055717

  15. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  16. Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system

    International Nuclear Information System (INIS)

    Houtani, Takeshi; Munemoto, Yumi; Kase, Masahiko; Sakuma, Satoru; Tsutsumi, Toshiyuki; Sugimoto, Tetsuo

    2005-01-01

    An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the

  17. Insulin Increases Expression of TRPC6 Channels in Podocytes by a Calcineurin-Dependent Pathway

    DEFF Research Database (Denmark)

    Xia, Shengqiang; Liu, Ying; Li, Xinming

    2016-01-01

    and protein in podocytes. Insulin increased TRPC6 transcripts in a time and dose-dependent manner. The insulin-induced elevation of TRPC6 transcripts was blocked in the presence of tacrolimus, cyclosporine A, and NFAT-inhibitor (each p ANOVA and Bonferroni's multiple comparison test). Transcripts......, cyclosporine A, and NFAT-inhibitor blocked that insulin effect (p ANOVA). Immunofluorescence showed that insulin increased TRPC6-expression on the cell surface. Fluorescence-spectrophotometry and manganese quench experiments indicated that the increased TRPC6-expression after insulin...

  18. Slack channels expressed in sensory neurons control neuropathic pain in mice.

    Science.gov (United States)

    Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim

    2015-01-21

    Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.

  19. Conditional fast expression and function of multimeric TRPV5 channels using Shield-1

    NARCIS (Netherlands)

    Schoeber, Joost P. H.; van de Graaf, Stan F. J.; Lee, Kyu Pil; Wittgen, Hanneke G. M.; Hoenderop, Joost G. J.; Bindels, René J. M.

    2009-01-01

    A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic

  20. Conditional fast expression and function of multimeric TRPV5 channels using Shield-1.

    NARCIS (Netherlands)

    Schoeber, J.P.H.; Graaf, S.F.J. van de; Lee, K.P.; Wittgen, H.G.M.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2009-01-01

    A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic

  1. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  2. Synthesis and biological evaluation of pyrrolidine derivatives as novel and potent sodium channel blockers for the treatment of ischemic stroke.

    Science.gov (United States)

    Seki, Maki; Tsuruta, Osamu; Tatsumi, Ryo; Soejima, Aki

    2013-07-15

    A novel series of pyrrolidine derivatives as Na(+) channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na(+) channels. Structure-activity relationship (SAR) studies of a pyrrolidine analogue 2 led to the discovery of 5e as a potent Na(+) channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound 5e showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that 5e would act as a neuroprotectant for ischemic stroke. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Exact closed form expressions for outage probability of GSC receivers over Rayleigh fading channel subject to self-interference

    KAUST Repository

    Nam, Sungsik

    2010-11-01

    Previous work on performance analyses of generalized selection combining (GSC) RAKE receivers based on the signal to noise ratio focused on the development of methodologies to derive exact closed-form expressions for various performance measures. However, some open problems related to the performance evaluation of GSC RAKE receivers still remain to be solved such that an assessment of the impact of self-interference on the performance of GSC RAKE receivers. To have a full and exact understanding of the performance of GSC RAKE receivers, the outage probability of GSC RAKE receivers needs to be analyzed as closed-form expressions. The major difficulty in this problem is to derive some joint statistics of ordered exponential variates. With this motivation in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for outage probability of GSC RAKE receivers subject to self-interference over independent and identically distributed Rayleigh fading channels. © 2010 IEEE.

  4. An expression for the water-sediment moving layer in unsteady flows valid for open channels and embankments

    Directory of Open Access Journals (Sweden)

    A. M. Berta

    2010-05-01

    Full Text Available During the floods, the effects of sediment transport in river beds are particulary significant and can be studied through the evolution of the water-sediment layer which moves in the lower part of a flow, named "moving layer". Moving layer variations along rivers lead to depositions and erosions and are typically unsteady, but are often tackled with expressions developed for steady (equilibrium conditions. In this paper, we develop an expression for the moving layer in unsteady conditions and calibrate it with experimental data. During laboratory tests, we have in fact reproduced a rapidly changing unsteady flow by the erosion of a granular steep slope. Results have shown a clear tendency of the moving layer, for fixed discharges, toward equilibrium conditions. Knowing the equilibrium achievement has presented many difficulties, being influenced by the choice of the equilibrium expression and moreover by the estimation of the parameters involved (for example friction angle. Since we used only data relevant to hyper-concentrated mono-dimensional flows for the calibration – occurring for slope gradients in the range 0.03–0.20 – our model can be applied both on open channels and on embankments/dams, providing that the flows can be modelled as mono-dimensional, and that slopes and applied shear stress levels fall within the considered ranges.

  5. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.

    Science.gov (United States)

    Pollema-Mays, Sarah L; Centeno, Maria Virginia; Ashford, Crystle J; Apkarian, A Vania; Martina, Marco

    2013-11-01

    Neuropathic pain is associated with hyperexcitability of DRG neurons. Despite the importance of leakage potassium channels for neuronal excitability, little is known about their cell-specific expression in DRGs and possible modulation in neuropathic pain. Multiple leakage channels are expressed in DRG neurons, including TASK1, TASK3, TRESK, TRAAK, TWIK1, TREK1 and TREK2 but little is known about their distribution among different cell types. Our immunohistochemical studies show robust TWIK1 expression in large and medium size neurons, without overlap with TRPV1 or IB4 staining. TASK1 and TASK3, on the contrary, are selectively expressed in small cells; TASK1 expression closely overlaps TRPV1-positive cells, while TASK3 is expressed in TRPV1- and IB4-negative cells. We also studied mRNA expression of these channels in L4-L5 DRGs in control conditions and up to 4 weeks after spared nerve injury lesion. We found that TWIK1 expression is much higher than TASK1 and TASK3 and is strongly decreased 1, 2 and 4 weeks after neuropathic injury. TASK3 expression, on the other hand, decreases 1 week after surgery but reverts to baseline by 2weeks; TASK1 shows no significant change at any time point. These data suggest an involvement of TWIK1 in the maintenance of the pain condition. © 2013.

  6. Generalized non-Local Resistance Expression and its Application in F/N/F Spintronic Structure with Graphene Channel

    Science.gov (United States)

    Wei, Huazhou; Fu, Shiwei

    We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.

  7. Similar expression patterns of bestrophin-4 and cGMP dependent Ca2+-activated chloride channel activity in the vasculature

    DEFF Research Database (Denmark)

    Bouzinova, Elena V.; Larsen, Per; Matchkov, Vladimir

    2008-01-01

    (abstract by Matchkov et. al) that siRNA mediated downregulation of bestrophin-4 is associated with the disappearance of a recently demonstrated2 cGMP-dependent Ca2+-activated Cl- current in vascular smooth muscle cells (SMCs). Here we study the distribution of bestrophin-4-and cGMP dependent Cl- channel...... expressed epitope) Western blot detected a ~65 kDa band in cell lysates from rat mesenteric small arteries and aorta, which was not seen in pulmonary arteries and when preincubated with the immunizing peptide. The distribution of bestrophin-4 mRNA and protein has a pattern similar to the cGMP-dependent Cl......- current in SMCs of different origins. Immunohistochemistry identified bestrophin-4 both in endothelial and SMCs of the vascular tree in the brain, heart, kidney and mesentery, but not in the lungs. We suggest that bestrophin-4 is important for the cGMP dependent, Ca2+ activated Cl- conductance in many...

  8. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum.

    Science.gov (United States)

    Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan

    2018-02-15

    The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.

  9. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants

    Science.gov (United States)

    Mustapha, Mirna; Fang, Qing; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Camper, Sally A.; Duncan, R. Keith

    2012-01-01

    The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been utilized in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1dw), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated β-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1dw mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1dw mutant outer hair cells and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1dw mice. PMID:19176829

  10. Development of heart failure is independent of K+ channel-interacting protein 2 expression

    DEFF Research Database (Denmark)

    Speerschneider, Tobias; Grubb, Søren; Metoska, Artina

    2013-01-01

    of the transient outward K(+) current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2(-/-) mice. Echocardiography was performed......(-/-) mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2(-/-) control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice...... of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2(-/-) mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice...

  11. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  12. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  13. Electrophysiological and Pharmacological Analyses of Nav1.9 Voltage-Gated Sodium Channel by Establishing a Heterologous Expression System

    Directory of Open Access Journals (Sweden)

    Xi Zhou

    2017-11-01

    Full Text Available Nav1. 9 voltage-gated sodium channel is preferentially expressed in peripheral nociceptive neurons. Recent progresses have proved its role in pain sensation, but our understanding of Nav1.9, in general, has lagged behind because of limitations in heterologous expression in mammal cells. In this work, functional expression of human Nav1.9 (hNav1.9 was achieved by fusing GFP to the C-terminal of hNav1.9 in ND7/23 cells, which has been proved to be a reliable method to the electrophysiological and pharmacological studies of hNav1.9. By using the hNav1.9 expression system, we investigated the electrophysiological properties of four mutations of hNav1.9 (K419N, A582T, A842P, and F1689L, whose electrophysiological functions have not been determined yet. The four mutations significantly caused positive shift of the steady-state fast inactivation and therefore increased hNav1.9 activity, consistent with the phenotype of painful peripheral neuropathy. Meanwhile, the effects of inflammatory mediators on hNav1.9 were also investigated. Impressively, histamine was found for the first time to enhance hNav1.9 activity, indicating its vital role in hNav1.9 modulating inflammatory pain. Taken together, our research provided a useful platform for hNav1.9 studies and new insight into mechanism of hNav1.9 linking to pain.

  14. Potential role of melastatin-related transient receptor potential cation channel subfamily M gene expression in the pathogenesis of urinary bladder cancer.

    Science.gov (United States)

    Ceylan, Gülay Güleç; Önalan, Ebru Etem; Kuloğlu, Tuncay; Aydoğ, Gülten; Keleş, İbrahim; Tonyali, Şenol; Ceylan, Cavit

    2016-12-01

    Urinary bladder cancer is one of the most common malignancies of the urinary tract. Ion channels and calcium homeostasis are involved in almost all basic cellular mechanisms. The transient receptor potential cation channel subfamily M (TRPM) takes its name from the melastatin protein, which is classified as potential tumor suppressor. To the best of our knowledge, there have been no previous studies in the literature investigating the role of these ion channels in bladder cancer. The present study aimed to determine whether bladder cancer is associated with mRNA expression levels of TRPM ion channel genes, and whether there is the potential to conduct further studies to establish novel treatment modalities. The present study included a total of 47 subjects, of whom 40 were bladder cancer patients and 7 were controls. Following the histopathological evaluation for bladder carcinoma, the mRNA and protein expression of TRPM were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in tumor and normal tissues, in order to determine whether there is a difference in the expression of these channels in tumor and normal tissues. Immunoreactivity for TRPM2, TRPM4, TRPM7 and TRPM8 was observed in epithelial bladder cells in the two groups. RT-qPCR revealed a significant increase in TRPM7 expression in bladder cancer tissue compared to the controls (healthy bladder tissue), whereas no differences in TRPM2 or TRPM4 expression levels were observed. There were significant reductions in the expression levels of TRPM5 and TRPM8 in bladder cancer tissues. In the present study, the effects of TRP ion channels on the formation of bladder cancer was investigated. This study is instructive for TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8 and their therapeutic role in bladder cancer. The results support the fact that these gens can be novel targets and can also be tested for during the treatment of bladder cancer.

  15. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  16. Acid-sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons

    Directory of Open Access Journals (Sweden)

    Antonia eGonzález-Garrido

    2015-12-01

    Full Text Available Acid-sensing ion channels (ASICs are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4 that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs. These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations and N,N,N’,N’–tetrakis-(2-piridilmetil-etilendiamina (TPEN increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2 and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  17. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    Science.gov (United States)

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  18. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  19. Modulation of innate and learned sexual behaviors by the TRP channel Painless expressed in the fruit fly brain: behavioral genetic analysis and its implications

    Directory of Open Access Journals (Sweden)

    Shoma eSato

    2014-12-01

    Full Text Available Transient receptor potential (TRP channels have attracted considerable attention because of their vital roles in primary sensory neurons, mediating responses to a wide variety of external environmental stimuli. However, much less is known about how TRP channels in the brain respond to intrinsic signals and are involved in neurophysiological processes that control complex behaviors. Painless (Pain is the Drosophila TRP channel that was initially identified as a molecular sensor responsible for detecting noxious thermal and mechanical stimuli. Here, we review recent behavioral genetic studies demonstrating that Pain expressed in the brain plays a critical role in both innate and learned aspects of sexual behaviors. Several members of the TRP channel superfamily play evolutionarily conserved roles in sensory neurons as well as in other peripheral tissues. It is thus expected that brain TRP channels in vertebrates and invertebrates would have some common physiological functions. Studies of Pain in the Drosophila brain using a unique combination of genetics and physiological techniques should provide valuable insights into the fundamental principles concerning TRP channels expressed in the vertebrate and invertebrate brains.

  20. Altered Expression of a Malate-Permeable Anion Channel, OsALMT4, Disrupts Mineral Nutrition1[OPEN

    Science.gov (United States)

    Delhaize, Emmanuel

    2017-01-01

    Aluminum-activated malate transporters (ALMTs) form a family of anion channels in plants, but little is known about most of its members. This study examined the function of OsALMT4 from rice (Oryza sativa). We show that OsALMT4 is expressed in roots and shoots and that the OsALMT4 protein localizes to the plasma membrane. Transgenic rice lines overexpressing (OX) OsALMT4 released malate from the roots constitutively and had 2-fold higher malate concentrations in the xylem sap than nulls, indicating greater concentrations of malate in the apoplast. OX lines developed brown necrotic spots on the leaves that did not appear on nulls. These symptoms were not associated with altered concentrations of any mineral element in the leaves, although the OX lines had higher concentrations of Mn and B in their grain compared with nulls. While total leaf Mn concentrations were not different between the OX and null lines, Mn concentrations in the apoplast were greater in the OX plants. The OX lines also displayed increased expression of Mn transporters and were more sensitive to Mn toxicity than null plants. We showed that the growth of wild-type rice was unaffected by 100 µm Mn in hydroponics but, when combined with 1 mm malate, this concentration inhibited growth. We conclude that increasing OsALMT4 expression affected malate efflux and compartmentation within the tissues, which increased Mn concentrations in the apoplast of leaves and induced the toxicity symptoms. This study reveals new links between malate transport and mineral nutrition. PMID:29101278

  1. Molecular Expression and Pharmacological Evidence for a Functional Role of Kv7 Channel Subtypes in Guinea Pig Urinary Bladder Smooth Muscle

    Science.gov (United States)

    Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284

  2. Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling.

    Directory of Open Access Journals (Sweden)

    Estefanía Lozano-Velasco

    Full Text Available PITX2 is a homeobox transcription factor involved in embryonic left/right signaling and more recently has been associated to cardiac arrhythmias. Genome wide association studies have pinpointed PITX2 as a major player underlying atrial fibrillation (AF. We have previously described that PITX2 expression is impaired in AF patients. Furthermore, distinct studies demonstrate that Pitx2 insufficiency leads to complex gene regulatory network remodeling, i.e. Wnt>microRNAs, leading to ion channel impairment and thus to arrhythmogenic events in mice. Whereas large body of evidences has been provided in recent years on PITX2 downstream signaling pathways, scarce information is available on upstream pathways influencing PITX2 in the context of AF. Multiple risk factors are associated to the onset of AF, such as e.g. hypertension (HTN, hyperthyroidism (HTD and redox homeostasis impairment. In this study we have analyzed whether HTN, HTD and/or redox homeostasis impact on PITX2 and its downstream signaling pathways. Using rat models for spontaneous HTN (SHR and experimentally-induced HTD we have observed that both cardiovascular risk factors lead to severe Pitx2 downregulation. Interesting HTD, but not SHR, leads to up-regulation of Wnt signaling as well as deregulation of multiple microRNAs and ion channels as previously described in Pitx2 insufficiency models. In addition, redox signaling is impaired in HTD but not SHR, in line with similar findings in atrial-specific Pitx2 deficient mice. In vitro cell culture analyses using gain- and loss-of-function strategies demonstrate that Pitx2, Zfhx3 and Wnt signaling influence redox homeostasis in cardiomyocytes. Thus, redox homeostasis seems to play a pivotal role in this setting, providing a regulatory feedback loop. Overall these data demonstrate that HTD, but not HTN, can impair Pitx2>>Wnt pathway providing thus a molecular link to AF.

  3. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  4. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Vennekens, R.; Müller, D.G.; Prenen, J.; Droogmans, G.; Bindels, R.J.M.; Nilius, B.

    2001-01-01

    1. The epithelial Ca(2+) channel (ECaC) family represents a unique group of Ca(2+)-selective channels that share limited homology to the ligand-gated capsaicin receptors, the osmolarity-sensitive channel OTRPC4, as well as the transient receptor potential family. Southern blot analysis demonstrated

  5. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+-activated K(+ channels.

    Directory of Open Access Journals (Sweden)

    Kiril L Hristov

    Full Text Available Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO, which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM large conductance Ca(2+-activated K(+ (BK channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR, perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.

  6. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner.

    Science.gov (United States)

    Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael

    2017-10-15

    Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels ( I h currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal , Lefty , and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.

  7. hERG blocking potential of acids and zwitterions characterized by three thresholds for acidity, size and reactivity

    DEFF Research Database (Denmark)

    Nikolov, Nikolai Georgiev; Dybdahl, Marianne; Jonsdottir, Svava Osk

    2014-01-01

    with a concordance of 91% by a decision tree based on the rule. Two external validations were performed with sets of 35 and 48 observations, respectively, both showing concordances of 91%. In addition, a global QSAR model of hERG blocking was constructed based on a large diverse training set of 1374 chemicals...... covering all ionization classes, externally validated showing high predictivity and compared to the decision tree. The decision tree was found to be superior for the acids and zwitterionic ampholytes classes....

  8. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  9. Trigonellae Semen Enhances Sperm Motility and the Expression of the Cation Sperm Channel Proteins in Mouse Testes

    Directory of Open Access Journals (Sweden)

    Do Rim Kim

    2015-01-01

    Full Text Available Genetic defects during spermatogenesis can lead to a reduction in sperm motility and cause male infertility. The cation channels of sperm (CatSper play a role in the regulation of hyperactivated sperm motility in mouse testes. The effect of Trigonellae Semen (TS on the male reproductive system and CatSper protein in mouse testes during spermatogenesis was examined. C57BL/c mice were divided into the following five groups: normal, cyclophosphamide- (CP- only treated (control group, and three groups treated with varying concentrations of TS with CP (100, 500, and 1000 mg/kg TS and 100 mg/kg CP. Real-time PCR, western blot analysis, and a testosterone immunoassay were performed to assess CatSper protein levels in the five groups. Additionally, sperm cell counts and motility were examined. Results indicate that sperm motility and sperm counts increased in the TS treated groups in a dose-dependent manner (p<0.01. CatSper levels were also significantly higher in the TS treated groups compared to that of the control group (p<0.001. Therefore, TS treatment could enhance sperm function by promoting spermatogenesis and the expression of CatSper proteins in mouse testes.

  10. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    International Nuclear Information System (INIS)

    Garcia-Becerra, Rocio; Diaz, Lorenza; Camacho, Javier; Barrera, David; Ordaz-Rosado, David; Morales, Angelica; Ortiz, Cindy Sharon; Avila, Euclides; Bargallo, Enrique; Arrecillas, Myrna; Halhali, Ali; Larrea, Fernando

    2010-01-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  11. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels

    Science.gov (United States)

    Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin

    2011-01-01

    Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747

  12. The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Callø, Kirstine; Jespersen, Thomas

    2005-01-01

    H-dependent potentiation by Zn2+ (EC50 = 21.8 microM at pH 7.4), inhibition by acidification (IC50 = 0.75 microM; pKa = 6.1), and regulation by small changes in cell volume. Furthermore, the channels are activated by the anti-convulsant drug retigabine (EC50 = 2.0 microM) and inhibited by the M-current blockers...... and hippocampus. This study shows that murine KCNQ5 channels, in addition to sharing biophysical and pharmacological characteristics with the human ortholog, are tightly regulated by physiological stimuli such as changes in extracellular Zn2+, pH, and tonicity, thus adding to the complex regulation...

  13. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes

    International Nuclear Information System (INIS)

    Choi, J.-S.; Soderlund, David M.

    2006-01-01

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1

  14. "A Nightmare Land, a Place of Death": An Exploration of the Moon as a Motif in Herge's "Destination Moon" (1953) and "Explorers on the Moon" (1954)

    Science.gov (United States)

    Beauvais, Clementine

    2010-01-01

    This article analyses the symbolic meaning of the Moon in two "bande dessinee" books from the Tintin series, Herge's "Destination Moon" ("Objectif Lune," 1953) and its sequel "Explorers on the Moon" ("On a Marche sur la Lune," 1954). It argues that these two volumes stand out in the series for their graphic, narrative and philosophical emphasis on…

  15. Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons

    Directory of Open Access Journals (Sweden)

    Hannah I. Bishop

    2018-01-01

    Full Text Available Voltage-gated K+ (Kv channels play important roles in regulating neuronal excitability. Kv channels comprise four principal α subunits, and transmembrane and/or cytoplasmic auxiliary subunits that modify diverse aspects of channel function. AMIGO-1, which mediates homophilic cell adhesion underlying neurite outgrowth and fasciculation during development, has recently been shown to be an auxiliary subunit of adult brain Kv2.1-containing Kv channels. We show that AMIGO-1 is extensively colocalized with both Kv2.1 and its paralog Kv2.2 in brain neurons across diverse mammals, and that in adult brain, there is no apparent population of AMIGO-1 outside of that colocalized with these Kv2 α subunits. AMIGO-1 is coclustered with Kv2 α subunits at specific plasma membrane (PM sites associated with hypolemmal subsurface cisternae at neuronal ER:PM junctions. This distinct PM clustering of AMIGO-1 is not observed in brain neurons of mice lacking Kv2 α subunit expression. Moreover, in heterologous cells, coexpression of either Kv2.1 or Kv2.2 is sufficient to drive clustering of the otherwise uniformly expressed AMIGO-1. Kv2 α subunit coexpression also increases biosynthetic intracellular trafficking and PM expression of AMIGO-1 in heterologous cells, and analyses of Kv2.1 and Kv2.2 knockout mice show selective loss of AMIGO-1 expression and localization in neurons lacking the respective Kv2 α subunit. Together, these data suggest that in mammalian brain neurons, AMIGO-1 is exclusively associated with Kv2 α subunits, and that Kv2 α subunits are obligatory in determining the correct pattern of AMIGO-1 expression, PM trafficking and clustering.

  16. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3

    DEFF Research Database (Denmark)

    Tian, Yuemin; Bresenitz, Pia; Reska, Anna

    2017-01-01

    Acidic microenvironment is commonly observed in tumour tissues, including glioblastoma (GBM), the most aggressive and lethal brain tumour in adults. Acid sensing ion channels (ASICs) are neuronal voltage-insensitive sodium channels, which are sensors of extracellular protons. Here we studied...

  17. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type Ca(V)1.3 Ca(2+) channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca(2+) channels in immature mouse IHCs under near-physiological recording conditions. Ca(V)1.3 Ca(2+) channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about 70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca(2+) action potential activity characteristic of these immature cells. The Ca(V)1.3 Ca(2+) channels showed a very low open probability (about 0.15 at 20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca(2+) currents indicated that very few Ca(2+) channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca(2+) channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca(2+) channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.

  18. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    Science.gov (United States)

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  19. G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Takanami, Iwao; Inoue, Yoshimasa; Gika, Masatoshi

    2004-01-01

    G-protein inwardly rectifying potassium channel 1 (GIRK1) is thought to play a role in cell proliferation in cancer, and GIRK1 gene expression level may define a more aggressive phenotype. We detected GIRK1 expression in tissue specimens from patients with non-small cell lung cancers (NSCLCs) and assessed their clinical characteristics. Using reverse transcription-polymerase chain reaction (RT-PCR) analyses, we quantified the expression of GIRK1 in 72 patients with NSCLCs to investigate the relationship between GIRK1 expression and clinicopathologic factors and prognosis. In 72 NSCLC patients, 50 (69%) samples were evaluated as having high GIRK1 gene expression, and 22 (31%) were evaluated as having low GIRK1 gene expression. GIRK1 gene expression was significantly associated with lymph node metastasis, stage (p = 0.0194 for lymph node metastasis; p = 0.0207 for stage). The overall and stage I survival rates for patients with high GIRK1 gene expressed tumors was significantly worse than for those individuals whose tumors had low GIRK1 expression (p = 0.0004 for the overall group; p = 0.0376 for stage I). These data indicate that GIRK1 may contribute to tumor progression and GIRK1 gene expression can serve as a useful prognostic marker in the overall and stage I NSCLCs

  20. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  1. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  2. Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres. PMID:19917569

  3. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Selective expression of KCNS3 potassium channel α-subunit in parvalbumin-containing GABA neurons in the human prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Danko Georgiev

    Full Text Available The cognitive deficits of schizophrenia appear to be associated with altered cortical GABA neurotransmission in the subsets of inhibitory neurons that express either parvalbumin (PV or somatostatin (SST. Identification of molecular mechanisms that operate selectively in these neurons is essential for developing targeted therapeutic strategies that do not influence other cell types. Consequently, we sought to identify, in the human cortex, gene products that are expressed selectively by PV and/or SST neurons, and that might contribute to their distinctive functional properties. Based on previously reported expression patterns in the cortex of mice and humans, we selected four genes: KCNS3, LHX6, KCNAB1, and PPP1R2, encoding K(+ channel Kv9.3 modulatory α-subunit, LIM homeobox protein 6, K(+ channel Kvβ1 subunit, and protein phosphatase 1 regulatory subunit 2, respectively, and examined their colocalization with PV or SST mRNAs in the human prefrontal cortex using dual-label in situ hybridization with (35S- and digoxigenin-labeled antisense riboprobes. KCNS3 mRNA was detected in almost all PV neurons, but not in SST neurons, and PV mRNA was detected in >90% of KCNS3 mRNA-expressing neurons. LHX6 mRNA was detected in almost all PV and >90% of SST neurons, while among all LHX6 mRNA-expressing neurons 50% expressed PV mRNA and >44% expressed SST mRNA. KCNAB1 and PPP1R2 mRNAs were detected in much larger populations of cortical neurons than PV or SST neurons. These findings indicate that KCNS3 is a selective marker of PV neurons, whereas LHX6 is expressed by both PV and SST neurons. KCNS3 and LHX6 might be useful for characterizing cell-type specific molecular alterations of cortical GABA neurotransmission and for the development of novel treatments targeting PV and/or SST neurons in schizophrenia.

  5. Expression of K2P5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients.

    Science.gov (United States)

    Bittner, Stefan; Bobak, Nicole; Feuchtenberger, Martin; Herrmann, Alexander M; Göbel, Kerstin; Kinne, Raimund W; Hansen, Anker J; Budde, Thomas; Kleinschnitz, Christoph; Frey, Oliver; Tony, Hans-Peter; Wiendl, Heinz; Meuth, Sven G

    2011-02-11

    CD4+ T cells express K(2P)5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K(2P)5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K(2P)5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Expression levels of K(2P)5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K(2P)5.1. K(2P)5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K(2P)5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K(2P)5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Disease activity in RA patients correlates strongly with K(2P)5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K(2P)5.1 as a potential biomarker for disease activity and differential diagnosis.

  6. Anion-sensitive regions of L-type CaV1.2 calcium channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Norbert Babai

    2010-01-01

    Full Text Available L-type calcium currents (I(Ca are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of I(Ca and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca(2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from approximately 75%-80% to approximately 50% by omitting beta subunits but unaffected by omitting alpha(2delta subunits. Similarly, gluconate inhibition was reduced to approximately 50% by deleting an alpha1 subunit N-terminal region of 15 residues critical for beta subunit interactions regulating open probability. Omitting beta subunits with this mutant alpha1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different beta subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from approximately 75%-80% to approximately 50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to approximately 60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to approximately 25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving beta subunit interactions with the N terminus and a short C terminal region.

  7. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    Science.gov (United States)

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-06-15

    There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  8. Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels

    DEFF Research Database (Denmark)

    Gradel, Anna Katrina Jógvansdóttir; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2018-01-01

    in long-term diet-induced hypertension in rats. Hypothesis: A 28-week diet rich in fat, fructose, or both, will lead to changes in K+ transporter expression and function, which is associated with increased blood pressure and decreased arterial function. Methods and Results: Male Sprague Dawley rats......RNA expression of vascular K+ transporters, and vessel myography in small mesenteric arteries. BW was increased in the High Fat and High Fat/Fruc groups, and SBP was increased in the High Fat/Fruc group. mRNA expression of SKCa, IKCa, and Kir2.1 K+ channels were reduced in the High Fat/Fruc group. Reduced EDH......-type relaxation to acetylcholine was seen in the High Fat and High Fat/Fruc groups. Ba2+-sensitive dilatation to extracellular K+ was impaired in all experimental diet groups. Conclusions: Reduced expression and function of SKCa, IKCa and Kir2.1 channels is associated with elevated blood pressure in rats fed...

  9. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes.

    Science.gov (United States)

    Nagel, Rebecca; Kirschbaum, Frank; Tiedemann, Ralph

    2017-03-01

    In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.

  10. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bo Hyung Lee

    2014-01-01

    Full Text Available The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  11. Tissue Distribution of Kir7.1 Inwardly Rectifying K+ Channel Probed in a Knock-in Mouse Expressing a Haemagglutinin-Tagged Protein

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2018-04-01

    Full Text Available Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb+ currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation

  12. Tissue Distribution of Kir7.1 Inwardly Rectifying K+ Channel Probed in a Knock-in Mouse Expressing a Haemagglutinin-Tagged Protein.

    Science.gov (United States)

    Cornejo, Isabel; Villanueva, Sandra; Burgos, Johanna; López-Cayuqueo, Karen I; Chambrey, Régine; Julio-Kalajzić, Francisca; Buelvas, Neudo; Niemeyer, María I; Figueiras-Fierro, Dulce; Brown, Peter D; Sepúlveda, Francisco V; Cid, L P

    2018-01-01

    Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K + channel present in epithelia where it shares membrane localization with the Na + /K + -pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA) epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb + currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation studies. It

  13. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia.

    Science.gov (United States)

    Wang, N; Kang, H S; Ahmmed, G; Khan, S A; Makarenko, V V; Prabhakar, N R; Nanduri, J

    2016-03-01

    Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH. Copyright © 2016 the American Physiological Society.

  14. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Science.gov (United States)

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  15. Molecular cloning and functional expression of the K+ channel KV7.1 and the regulatory subunit KCNE1 from equine myocardium

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Thomsen, Kirsten B.; Flak, Jon B.

    2017-01-01

    To characterize equine KV7.1/KCNE1 currents and compare them to human KV7.1/KCNE1 currents to determine whether KV7.1/KCNE1 plays a similar role in equine and human hearts. Methods mRNA encoding KV7.1 and KCNE1 was isolated from equine hearts, sequenced, and cloned into expression vectors. The channel subunits...... were heterologously expressed in Xenopus laevis oocytes or CHO-K1 cells and characterized using voltage-clamp techniques. Results Equine KV7.1/KCNE1 expressed in CHO-K1 cells exhibited electrophysiological properties that are overall similar to the human orthologs; however, a slower deactivation...

  16. Beyond Gap Junction Channel Function: the Expression of Cx43 Contributes to Aldosterone-Induced Mesangial Cell Proliferation via the ERK1/2 and PKC Pathways

    Directory of Open Access Journals (Sweden)

    Aiqing Zhang

    2015-06-01

    Full Text Available Aims: This study aimed to explore the precise mechanism and signaling pathways of mesangial cell (MC proliferation from a new point of view considering Connexin 43 (Cx43. Methods: MC proliferation was measured by the incorporation of 3H-thymidine (3H-TdR. Cx43 was over-expressed in MC cells using lipofectamine 2000, and the expression level was tested with reverse transcription-polymerase chain reaction (RT-PCR and Western blot analyses. The gap junction channel function was explored by Lucifer Yellow scrape loading and dye transfer (SLDT, and the intracellular calcium concentrations ([Ca2+]i were characterized by confocal microscopy on cells loaded with Fura-3/AM. Results: There was an inverse correlation between Cx43 expression and MC proliferation (P0.05. Our data also showed that the mineralcorticoid receptor (MR antagonist spironolactone, ERK1/2 inhibitor PD98059 and PKC inhibitor GF109203X could attenuate the down-regulation of Cx43 expression in Aldo-induced MC proliferation; however, the PI3K inhibitor LY294002 could block MC proliferation without affecting Cx43 expression at either the mRNA or protein level. In addition, Aldo promoted MC proliferation in parallel with increasing [Ca2+]i (PConclusions: Our study provides preliminary evidence that Cx43 is an important regulator of Aldo-promoted MC proliferation. Furthermore, reduced Cx43 expression promoted MC proliferation independent of the gap junction channel function, and this process might be mediated through the ERK1/2- and PKC-dependent pathways.

  17. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    Science.gov (United States)

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  18. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  19. The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Blom, Sigrid Marie; Schmitt, Nicole; Jensen, Henrik Sindal

    2009-01-01

    Kv7.2-5, is now in clinical trial phase III for the treatment of partial onset seizures. One of the main obstacles in developing Kv7 channel active drugs has been to identify compounds that can discriminate between the neuronal subtypes, a feature that could help diminish side effects and increase...

  20. Decreased expression of transient receptor potential channels in cerebral vascular tissue from patients after hypertensive intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Thilo, Florian; Suess, Olaf; Liu, Ying

    2011-01-01

    , TRPC5, TRPC6, TRPM4, TRPM6, and TRPM7 channels were detected in cerebral vascular tissue by quantitative real-time RT-PCR. Control cerebral vascular tissue was obtained from normotensive patients who underwent neurosurgical operation because of brain tumor. To examine a possible relation between...

  1. Expression and contributions of the Kir2.1 inward-rectifier K+ channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states

    Directory of Open Access Journals (Sweden)

    Doris eLam

    2015-05-01

    Full Text Available When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1 to anti-inflammatory, alternative (M2 and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca2+-dependent. In many cell types, the membrane potential and driving force for Ca2+ influx are regulated by inward-rectifier K+ channels, including Kir2.1, which is prevalent in microglia. However, it is not known whether Kir2.1 expression and contributions are altered in anti-inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca2+ entry, proliferation and migration of rat microglia. Kir2.1 (KCNJ2 transcript expression, current amplitude, and proliferation were comparable in unstimulated microglia and following alternative activation (IL-4 stimulated and acquired deactivation (IL-10 stimulated. To examine functional roles of Kir2.1 in microglia, we first determined that ML133 was more effective than the commonly used blocker, Ba2+; i.e., ML133 was potent (IC50=3.5 M and voltage independent. Both blockers slightly increased proliferation in unstimulated or IL-4 (but not IL-10-stimulated microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more effective. In all three activation states, blocking Kir2.1 with ML133 dramatically reduced Ca2+ influx through Ca2+-release-activated Ca2+ (CRAC channels. Thus, Kir2.1 channel activity is necessary for microglial Ca2+ signaling and migration under resting and anti-inflammatory states but the channel weakly inhibits proliferation.

  2. Synthetic ciguatoxins selectively activate Nav1.8-derived chimeric sodium channels expressed in HEK293 cells.

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-03-20

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Na(v)1.2, Na(v)1.4, and Na(v)1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879-889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Na(v)1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257-262). Thus, we hypothesized that ciguatoxin-induced activation of the Na(v)1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 mum CTX3C preferentially affected the activation process of the Na(v)1.8 channel compared with those of the Na(v)1.2 and Na(v)1.4 channels. Importantly, without stimulation, 0.1 mum CTX3C induced a large leakage current (I (L)). The conductance of the I (L) calculated relative to the maximum conductance (G (max)) was 10 times larger than that of Na(v)1.2 or Na(v)1.4. To determine the molecular domain of Na(v)1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Na(v)1.4 and Na(v)1.8. Chimeras containing the N-terminal half of Na(v)1.8 exhibited a large response similar to wild-type Na(v)1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains.

  3. Synthetic Ciguatoxins Selectively Activate Nav1.8-derived Chimeric Sodium Channels Expressed in HEK293 Cells*

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-01-01

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Nav1.2, Nav1.4, and Nav1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879–889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Nav1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257–262). Thus, we hypothesized that ciguatoxin-induced activation of the Nav1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 μm CTX3C preferentially affected the activation process of the Nav1.8 channel compared with those of the Nav1.2 and Nav1.4 channels. Importantly, without stimulation, 0.1 μm CTX3C induced a large leakage current (IL). The conductance of the IL calculated relative to the maximum conductance (Gmax) was 10 times larger than that of Nav1.2 or Nav1.4. To determine the molecular domain of Nav1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Nav1.4 and Nav1.8. Chimeras containing the N-terminal half of Nav1.8 exhibited a large response similar to wild-type Nav1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains. PMID:19164297

  4. Length and amino acid sequence of peptides substituted for the 5-HT3A receptor M3M4 loop may affect channel expression and desensitization.

    Directory of Open Access Journals (Sweden)

    Nicole K McKinnon

    Full Text Available 5-HT3A receptors are pentameric neurotransmitter-gated ion channels in the Cys-loop receptor family. Each subunit contains an extracellular domain, four transmembrane segments (M1, M2, M3, M4 and a 115 residue intracellular loop between M3 and M4. In contrast, the M3M4 loop in prokaryotic homologues is <15 residues. To investigate the limits of M3M4 loop length and composition on channel function we replaced the 5-HT3A M3M4 loop with two to seven alanine residues (5-HT3A-A(n = 2-7. Mutants were expressed in Xenopus laevis oocytes and characterized using two electrode voltage clamp recording. All mutants were functional. The 5-HT EC(50's were at most 5-fold greater than wild-type (WT. The desensitization rate differed significantly among the mutants. Desensitization rates for 5-HT3A-A(2, 5-HT3A-A(4, 5-HT3A-A(6, and 5-HT3A-A(7 were similar to WT. In contrast, 5-HT3A-A(3 and 5-HT3A-A(5 had desensitization rates at least an order of magnitude faster than WT. The one Ala loop construct, 5-HT3A-A(1, entered a non-functional state from which it did not recover after the first 5-HT application. These results suggest that the large M3M4 loop of eukaryotic Cys-loop channels is not required for receptor assembly or function. However, loop length and amino acid composition can effect channel expression and desensitization. We infer that the cytoplasmic ends of the M3 and M4 segments may undergo conformational changes during channel gating and desensitization and/or the loop may influence the position and mobility of these segments as they undergo gating-induced conformational changes. Altering structure or conformational mobility of the cytoplasmic ends of M3 and M4 may be the basis by which phosphorylation or protein binding to the cytoplasmic loop alters channel function.

  5. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  6. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).

    Science.gov (United States)

    Nakamura, Atsuko; Fukuda, Atsunori; Sakai, Shingo; Tanaka, Yoshiyuki

    2006-01-01

    We isolated two cDNA clones (OsCLC-1 and OsCLC-2) homologous to tobacco CLC-Nt1, which encodes a voltage-gated chloride channel, from rice (Oryza sativa L. ssp. japonica, cv. Nipponbare). The deduced amino acid sequences were highly conserved (87.9% identity with each other). Southern blot analysis of the rice genomic DNA revealed that OsCLC-1 and OsCLC-2 were single-copy genes on chromosomes 4 and 2, respectively. OsCLC-1 was expressed in most tissues, whereas OsCLC-2 was expressed only in the roots, nodes, internodes and leaf sheaths. The level of expression of OsCLC-1, but not of OsCLC-2, was increased by treatment with NaCl. Both genes could partly substitute for GEF1, which encodes the sole chloride channel in yeast, by restoring growth under ionic stress. These results indicate that both genes are chloride channel genes. The proteins from both genes were immunochemically detected in the tonoplast fraction. Tagged synthetic green fluorescent protein which was fused to OsCLC-1 or OsCLC-2 localized in the vacuolar membranes. These results indicate that the proteins may play a role in the transport of chloride ions across the vacuolar membrane. We isolated loss-of-function mutants of both genes from a panel of rice mutants produced by the insertion of a retrotransposon, Tos17, in the exon region, and found inhibition of growth at all life stages.

  7. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, Geneva, NY 14456 (United States)

    2016-01-15

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin

  8. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    Science.gov (United States)

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  9. Restoration of Motor Defects Caused by Loss of Drosophila TDP-43 by Expression of the Voltage-Gated Calcium Channel, Cacophony, in Central Neurons.

    Science.gov (United States)

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-09-27

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43

  10. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    International Nuclear Information System (INIS)

    Wang, Yifan; Li, Shu Jie; Pan, Juncheng; Che, Yongzhe; Yin, Jian; Zhao, Qing

    2011-01-01

    Highlights: → Hv1 is specifically expressed in highly metastatic human breast tumor tissues. → Hv1 regulates breast cancer cytosolic pH. → Hv1 acidifies extracellular milieu. → Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  11. Expression and mutagenesis of the sea anemone toxin Av2 reveals key amino acid residues important for activity on voltage-gated sodium channels.

    Science.gov (United States)

    Moran, Yehu; Cohen, Lior; Kahn, Roy; Karbat, Izhar; Gordon, Dalia; Gurevitz, Michael

    2006-07-25

    Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.

  12. Exact closed form expressions for outage probability of GSC receivers over Rayleigh fading channel subject to self-interference

    KAUST Repository

    Nam, Sungsik; Hasna, Mazen Omar; Alouini, Mohamed-Slim

    2010-01-01

    in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for outage probability of GSC RAKE receivers subject to self-interference over independent and identically distributed Rayleigh fading

  13. Extracellular quaternary ammonium blockade of transient receptor potential vanilloid subtype 1 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2012-01-01

    expressed in Xenopus laevis oocytes, whereas the neutral local anesthetic, benzocaine, does not, suggesting that a titratable amine is required for high-affinity inhibition. Consistent with this possibility, extracellular tetraethylammonium (TEA) and tetramethylammonium application produces potent, voltage...

  14. Impact of Global Cerebral Ischemia on K(+) Channel Expression and Membrane Properties of Glial Cells in the Rat Hippocampus

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Helena; Benešová, Jana; Butenko, Olena; Chvátal, Alexandr; Anděrová, Miroslava

    2010-01-01

    Roč. 57, č. 7 (2010), s. 783-794 ISSN 0197-0186 R&D Projects: GA ČR GA305/09/0717; GA ČR GAP303/10/1338; GA MŠk(CZ) LC554 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390512 Keywords : CNS injury * Patch-clamp * K+ channels Subject RIV: FH - Neurology Impact factor: 3.601, year: 2010

  15. Increased expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in reactive astrocytes following ischemia

    Czech Academy of Sciences Publication Activity Database

    Honsa, Pavel; Pivoňková, Helena; Harantová, Lenka; Butenko, Olena; Kriška, Ján; Džamba, Dávid; Rusňáková, Vendula; Valihrach, Lukáš; Kubista, Mikael; Anděrová, Miroslava

    2014-01-01

    Roč. 62, č. 12 (2014), s. 2004-2021 ISSN 0894-1491 R&D Projects: GA ČR GA13-02154S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/30.0045 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : Astrocytes * focal and global cerebral ischemia * HCN channels Subject RIV: FH - Neurology Impact factor: 6.031, year: 2014

  16. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  17. Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Zvara

    2005-01-01

    Full Text Available Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3 was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2 and the inwardly rectifying potassium channel (Kir2.3 were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  18. Deletion of FoxO1 Leads to Shortening of QRS by Increasing Na+ Channel Activity through Enhanced Expression of both Cardiac NaV1.5 and β3 Subunit

    OpenAIRE

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-01-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na+ channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na+ channel activity in mouse ventricular cardiomyocy...

  19. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis.

    Science.gov (United States)

    Ondrusova, Katarina; Fatehi, Mohammad; Barr, Amy; Czarnecka, Zofia; Long, Wentong; Suzuki, Kunimasa; Campbell, Scott; Philippaert, Koenraad; Hubert, Matthew; Tredget, Edward; Kwan, Peter; Touret, Nicolas; Wabitsch, Martin; Lee, Kevin Y; Light, Peter E

    2017-11-27

    Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words).

  20. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    function (MGF)-based unified expression for the ABEP and AC of single and multiple link communications with maximal ratio combining. In addition, this paper proposes the hyper-Fox's H fading model as a unified fading distribution of a majority of the well

  2. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis

    NARCIS (Netherlands)

    Varju, P; Schlett, K; Eisel, U; Madarasz, E

    NE-7C2 neuroectodermal cells derived from forebrain vesicles of p53-deficient mouse embryos (E9) produce neurons and astrocytes in vitro if induced by all-trans retinoic acid. The reproducible morphological stages of neurogenesis were correlated with the expression of various NMDA receptor subunits.

  3. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1.

    Science.gov (United States)

    Bertin, Samuel; Aoki-Nonaka, Yukari; Lee, Jihyung; de Jong, Petrus R; Kim, Peter; Han, Tiffany; Yu, Timothy; To, Keith; Takahashi, Naoki; Boland, Brigid S; Chang, John T; Ho, Samuel B; Herdman, Scott; Corr, Maripat; Franco, Alessandra; Sharma, Sonia; Dong, Hui; Akopian, Armen N; Raz, Eyal

    2017-09-01

    Transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-1 (TRPV1) are calcium (Ca 2+ )-permeable ion channels mostly known as pain receptors in sensory neurons. However, growing evidence suggests their crucial involvement in the pathogenesis of IBD. We explored the possible contribution of TRPA1 and TRPV1 to T-cell-mediated colitis. We evaluated the role of Trpa1 gene deletion in two models of experimental colitis (ie, interleukin-10 knockout and T-cell-adoptive transfer models). We performed electrophysiological and Ca 2+ imaging studies to analyse TRPA1 and TRPV1 functions in CD4+ T cells. We used genetic and pharmacological approaches to evaluate TRPV1 contribution to the phenotype of Trpa1 -/- CD4+ T cells. We also analysed TRPA1 and TRPV1 gene expression and TRPA1 + TRPV1 + T cell infiltration in colonic biopsies from patients with IBD. We identified a protective role for TRPA1 in T-cell-mediated colitis. We demonstrated the functional expression of TRPA1 on the plasma membrane of CD4+ T cells and identified that Trpa1 -/- CD4+ T cells have increased T-cell receptor-induced Ca 2+ influx, activation profile and differentiation into Th1-effector cells. This phenotype was abrogated upon genetic deletion or pharmacological inhibition of the TRPV1 channel in mouse and human CD4+ T cells. Finally, we found differential regulation of TRPA1 and TRPV1 gene expression as well as increased infiltration of TRPA1 + TRPV1 + T cells in the colon of patients with IBD. Our study indicates that TRPA1 inhibits TRPV1 channel activity in CD4+ T cells, and consequently restrains CD4+ T-cell activation and colitogenic responses. These findings may therefore have therapeutic implications for human IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  5. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    International Nuclear Information System (INIS)

    Fang, Ling; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian; Zhan, Shuxiang; Li, Jun

    2014-01-01

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  6. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  7. Regulation of the voltage-gated Ca2+ channel CaVα2δ-1 subunit expression by the transcription factor Egr-1.

    Science.gov (United States)

    González-Ramírez, Ricardo; Martínez-Hernández, Elizabeth; Sandoval, Alejandro; Gómez-Mora, Kimberly; Felix, Ricardo

    2018-04-23

    It is well known that the Ca V α 2 δ auxiliary subunit regulates the density of high voltage-activated Ca 2+ channels in the plasma membrane and that alterations in their functional expression might have implications in the pathophysiology of diverse human diseases such as neuropathic pain. However, little is known concerning the transcriptional regulation of this protein. We previously characterized the promoter of Ca V α 2 δ, and here we report its regulation by the transcription factor Egr-1. Using the neuroblastoma N1E-115 cells, we found that Egr-1 interacts specifically with its binding site in the promoter, affecting the transcriptional regulation of Ca V α 2 δ. Overexpression and knockdown analysis of Egr-1 showed significant changes in the transcriptional activity of the Ca V α 2 δ promoter. Egr-1 also regulated the expression of Ca V α 2 δ at the level of protein. Also, functional studies showed that Egr-1 knockdown significantly decreases Ca 2+ currents in dorsal root ganglion (DRG) neurons, while overexpression of the transcription factor increased Ca 2+ currents in the F11 cell line, a hybrid of DRG and N18TG2 neuroblastoma cells. Studying the effects of Egr-1 on the transcriptional expression of Ca V α 2 δ could help to understand the regulatory mechanisms of this protein in both health and disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Expression of adenosine triphosphate-sensitive potassium channels in rats with cirrhosis: correlationship with sympathetic activity and renal function

    Directory of Open Access Journals (Sweden)

    Julio Cesar Martins Monte

    2006-12-01

    Full Text Available Objective: The aim of this study was to perform a direct analysis ofKATP mRNA expression by RT-PCR in kidney and isolated aorta fromrats with cirrhosis (induced by carbon tetrachloride and controls.The present study also analyses the relation between induced cirrhosisand urinary excretion of sodium and sympathetic activity in cirrhoticrats. Methods: Rats were placed in metabolic cages and allowedfree access to food and water. Cirrhosis was induced by repeateddoses of carbon tetrachloride by gastric gavage. After some weeks,the kidney and aorta were dissected and utilized for RNA extraction.Blood and urine were analyzed for electrolytes. Renal function wasestimated by creatinine clearance and sodium urinary excretion.Serum catecholamines were measured by HPLC analysis. Results:First, RT-PCR analysis showed that KATP mRNA is expressed in liverwith cirrhosis and intense fibrosis, but not with moderate fibrosis.Second, RT-PCR analysis revealed that KATP mRNA was detectedonly in aorta dissected from rats with cirrhosis. Finally, an enhancedreabsorption of sodium without renal failure suggests a potentialmediator would increase the activity of the sympathetic system.Conclusion: These results suggest that KATP mRNA is expressed incirrhotic rats with sympathetic activation and renal dysfunction. Thischannel might be involved in another route where the vascular tonecan be modulated in cirrhosis.

  9. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC, BDNF, and TrkB mRNA expression in the rat tongue

    Directory of Open Access Journals (Sweden)

    Stähler Frauke

    2009-03-01

    Full Text Available Abstract Background In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC, which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation or 1% (control NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR. Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined. Results In situ hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na+ fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na+ deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na+ deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na+ deprived rats, irrespective of the taste papillae type. Conclusion The findings demonstrate that dietary Na+ deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of

  10. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  11. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  12. The water channel AQP1 is expressed in human atherosclerotic vascular lesions and AQP1 deficiency augments angiotensin II-induced atherosclerosis in mice

    DEFF Research Database (Denmark)

    Wintmo, P.; Johansen, S. H.; Hansen, P. B. L.

    2017-01-01

    Aim: The water channel aquaporin 1 (AQP1) promotes endothelial cell migration. It was hypothesized that AQP1 promotes neovascularization and growth of atherosclerotic plaques. Methods: AQP1 immunoreactivity and protein abundance was examined in human and murine atherosclerotic lesions and aortic...... minipumps for 4 weeks. Results: In human atherosclerotic lesions and AAA, AQP1 immunoreactive protein was associated with intralesional small vessels. In ApoE-/- mouse aorta, APQ1 mRNA levels were increased with time on WD (n = 7-9, P ... increased with time on WD but was not different between ApoE-/- and AQP1-/-ApoE-/- mice at either 8 or 16 weeks (n = 13-15). Baseline blood pressure and ANGII-induced hypertension were not different between genotypes. Conclusion: AQP1 is expressed in atherosclerotic lesion neovasculature in human and mouse...

  13. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  14. Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish.

    Directory of Open Access Journals (Sweden)

    Isabel Cornejo

    2014-09-01

    Full Text Available Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50 value of around 200 nM, being cooperative (n(H = 2 for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new

  15. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts.

    Science.gov (United States)

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2017-12-01

    Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.

  16. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression.

    Science.gov (United States)

    Carmichael, Stephen N; Bron, James E; Taggart, John B; Ireland, Jacqueline H; Bekaert, Michaël; Burgess, Stewart Tg; Skuce, Philip J; Nisbet, Alasdair J; Gharbi, Karim; Sturm, Armin

    2013-06-18

    Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice

  17. TRANSCRIPTIONAL UPREGULATION OF α2δ-1 ELEVATES ARTERIAL SMOOTH MUSCLE CELL CAV1.2 CHANNEL SURFACE EXPRESSION AND CEREBROVASCULAR CONSTRICTION IN GENETIC HYPERTENSION

    Science.gov (United States)

    Bannister, John P.; Bulley, Simon; Narayanan, Damodaran; Thomas-Gatewood, Candice; Luzny, Patrik; Pachuau, Judith; Jaggar, Jonathan H.

    2012-01-01

    A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca2+ (CaV1.2) currents that induces pathological vasoconstriction. CaV1.2 channels are heteromeric complexes comprising a pore forming CaV1.2α1 with auxiliary α2δ and β subunits. Molecular mechanisms that elevate CaV1.2 currents during hypertension and the potential contribution of CaV1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α2δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats (SHR) was associated with an unequal elevation in α2δ-1 and CaV1.2α1 mRNA and protein in cerebral artery myocytes, with α2δ-1 increasing more than CaV1.2α1. Other α2δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive SHR displayed higher surface-localized α2δ-1 and CaV1.2α1 proteins, surface α2δ-1 to CaV1.2α1 ratio (α2δ-1:CaV1.2α1), CaV1.2 current-density and non-inactivating current, and pressure- and - depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α2δ-1 ligand, did not alter α2δ-1 or CaV1.2α1 total protein, but normalized α2δ-1 and CaV1.2α1 surface expression, surface α2δ-1:CaV1.2α1, CaV1.2 current-density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α2δ-1 expression that promotes surface trafficking of CaV1.2 channels in cerebral artery myocytes. This leads to an increase in CaV1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α2δ-1 targeting is a novel strategy that may be used to reverse pathological CaV1.2 channel trafficking to induce cerebrovascular dilation in hypertension. PMID:22949532

  18. Transcriptional upregulation of α2δ-1 elevates arterial smooth muscle cell voltage-dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension.

    Science.gov (United States)

    Bannister, John P; Bulley, Simon; Narayanan, Damodaran; Thomas-Gatewood, Candice; Luzny, Patrik; Pachuau, Judith; Jaggar, Jonathan H

    2012-10-01

    A hallmark of hypertension is an increase in arterial myocyte voltage-dependent Ca2+ (CaV1.2) currents that induces pathological vasoconstriction. CaV1.2 channels are heteromeric complexes composed of a pore-forming CaV1.2α1 with auxiliary α2δ and β subunits. Molecular mechanisms that elevate CaV1.2 currents during hypertension and the potential contribution of CaV1.2 auxiliary subunits are unclear. Here, we investigated the pathological significance of α2δ subunits in vasoconstriction associated with hypertension. Age-dependent development of hypertension in spontaneously hypertensive rats was associated with an unequal elevation in α2δ-1 and CaV1.2α1 mRNA and protein in cerebral artery myocytes, with α2δ-1 increasing more than CaV1.2α1. Other α2δ isoforms did not emerge in hypertension. Myocytes and arteries of hypertensive spontaneously hypertensive rats displayed higher surface-localized α2δ-1 and CaV1.2α1 proteins, surface α2δ-1:CaV1.2α1 ratio, CaV1.2 current density and noninactivating current, and pressure- and depolarization-induced vasoconstriction than those of Wistar-Kyoto controls. Pregabalin, an α2δ-1 ligand, did not alter α2δ-1 or CaV1.2α1 total protein but normalized α2δ-1 and CaV1.2α1 surface expression, surface α2δ-1:CaV1.2α1, CaV1.2 current density and inactivation, and vasoconstriction in myocytes and arteries of hypertensive rats to control levels. Genetic hypertension is associated with an elevation in α2δ-1 expression that promotes surface trafficking of CaV1.2 channels in cerebral artery myocytes. This leads to an increase in CaV1.2 current-density and a reduction in current inactivation that induces vasoconstriction. Data also suggest that α2δ-1 targeting is a novel strategy that may be used to reverse pathological CaV1.2 channel trafficking to induce cerebrovascular dilation in hypertension.

  19. Alterations in expression of Cat-315 epitope of perineuronal nets during normal ageing, and its modulation by an open-channel NMDA receptor blocker, memantine.

    Science.gov (United States)

    Yamada, Jun; Ohgomori, Tomohiro; Jinno, Shozo

    2017-06-15

    The perineuronal net (PNN), a specialized aggregate of the extracellular matrix, is involved in neuroprotection against oxidative stress, which is now recognized as a major contributor to age-related decline in brain functions. In this study, we investigated the age-related molecular changes of PNNs using monoclonal antibody Cat-315, which recognizes human natural killer-1 (HNK-1) glycan on aggrecan-based PNNs. Western blot analysis showed that the expression levels of Cat-315 epitope in the hippocampus were higher in middle-aged (MA, 12-month-old) mice than in young adult (YA, 2-month-old) mice. Although there were no differences in the expression levels of Cat-315 epitope between old age (OA, 20-month-old) and MA mice, Cat-315 immunoreactivity was also detected in astrocytes of OA mice. To focus on Cat-315 epitope in PNNs, we used YA and MA mice in the following experiments. Optical disector analysis showed that there were no differences in the numbers of Cat-315-positive (Cat-315 + ) PNNs between YA and MA mice. Fluorescence intensity analysis indicated that Cat-315 immunoreactivity in PNNs increased with age in the dorsal hippocampus, which is mainly involved in cognitive functions. Administration of an open-channel blocker of NMDA receptor, memantine, reduced the expression levels of Cat-315 epitope in the hippocampus. Furthermore, the numbers of glutamatergic and GABAergic terminals colocalized with Cat-315 epitope around parvalbumin-positive neurons were decreased by memantine. These findings provide novel insight into the involvement of PNNs in normal brain ageing, and suggest that memantine may counteract the age-related alterations in expression levels of Cat-315 epitope via regulation of its subcellular localization. © 2017 Wiley Periodicals, Inc.

  20. Estudio electrofisiológico de canales Herg en células de cáncer de colón

    OpenAIRE

    Granja del Río, Alejandra

    2013-01-01

    En el presente estudio, mostramos que en las células de colon normales (NCM460) y en las tumorales (HT29) las principales corrientes activadas por voltaje son corrientes de K+. Sin embargo, el hallazgo más interesante fue mostrar que, en contraste con las células normales de colon, las células tumorales, al parecer, expresan corrientes de K+ activadas por voltaje que podrían ser mediadas por canales herg. Departamento de Bioquímica y Biología Molecular y Fisiología Máster en Investigaci...

  1. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations.

    Science.gov (United States)

    DeMarco, Kevin R; Bekker, Slava; Clancy, Colleen E; Noskov, Sergei Y; Vorobyov, Igor

    2018-01-01

    Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state) or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel K v 11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic) and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD) simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety pharmacology

  2. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations

    Directory of Open Access Journals (Sweden)

    Kevin R. DeMarco

    2018-02-01

    Full Text Available Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel Kv11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety

  3. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  4. Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.).

    Science.gov (United States)

    Chen, Jianqing; Yin, Hao; Gu, Jinping; Li, Leiting; Liu, Zhe; Jiang, Xueting; Zhou, Hongsheng; Wei, Shuwei; Zhang, Shaoling; Wu, Juyou

    2015-01-01

    The cyclic nucleotide-gated channel (CNGC) family is involved in the uptake of various cations, such as Ca(2+), to regulate plant growth and respond to biotic and abiotic stresses. However, there is far less information about this family in woody plants such as pear. Here, we provided a genome-wide identification and analysis of the CNGC gene family in pear. Phylogenetic analysis showed that the 21 pear CNGC genes could be divided into five groups (I, II, III, IVA and IVB). The majority of gene duplications in pear appeared to have been caused by segmental duplication and occurred 32.94-39.14 million years ago. Evolutionary analysis showed that positive selection had driven the evolution of pear CNGCs. Motif analyses showed that Group I CNGCs generally contained 26 motifs, which was the greatest number of motifs in all CNGC groups. Among these, eight motifs were shared by each group, suggesting that these domains play a conservative role in CNGC activity. Tissue-specific expression analysis indicated that functional diversification of the duplicated CNGC genes was a major feature of long-term evolution. Our results also suggested that the P-S6 and PBC & hinge domains had co-evolved during the evolution. These results provide valuable information to increase our understanding of the function, evolution and expression analyses of the CNGC gene family in higher plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari......The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased......M. Application of NS1643 also resulted in a prolonged postrepolarization refractory time. Finally, cardiomyocytes exposed to NS1643 resisted reactivation by small depolarizing currents mimicking early afterdepolarizations. In conclusion, HERG channel activation by small molecules such as NS1643 increases...

  6. Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer.

    Science.gov (United States)

    Innamaa, A; Jackson, L; Asher, V; van Schalkwyk, G; Warren, A; Keightley, A; Hay, D; Bali, A; Sowter, H; Khan, R

    2013-11-01

    Aberrant expression of potassium (K(+)) channels contributes to cancer cell proliferation and apoptosis, and K(+) channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis. The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry. Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.

  7. Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes

    Science.gov (United States)

    Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi

    2018-03-01

    The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.

  8. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    Science.gov (United States)

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  9. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  10. Inhibitory effects of telmisartan on culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes from Xinjiang Kazakh patients with hypertension

    Directory of Open Access Journals (Sweden)

    Sha-Sha Huang

    2016-10-01

    Full Text Available Introduction: Activation of T lymphocytes, for which potassium channels are essential, is involved in the development of hypertension. In this study, we explored the inhibitory effects of telmisartan on the culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes derived from Xinjiang Kazakh patients with hypertension. Methods: CD4+ T-cell samples from hypertensive Kazakh patients and healthy Kazakh people were divided into healthy control, case control, telmisartan, and 4-aminopytidine groups. Changes in the expression levels of interleukin (IL-6 and IL-17 in the blood of the healthy control and case control subjects were detected by enzyme-linked immunosorbent assay. Peripheral blood CD4+ T lymphocytes were first activated and proliferated in vitro and then incubated for 0, 24, and 48 h under various treatment conditions. Thereafter, changes in CD4+ T-lymphocytic proliferation were determined using Cell Counting Kit-8 and microscope photography. Changes in messenger RNA (mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes were detected using real-time quantitative polymerase chain reaction and Western blots, respectively. Results: The IL-6 and IL-17 expression levels were significantly higher in the blood of the hypertensive Kazakh patients than in the healthy Kazakh people. Telmisartan inhibited T-lymphocytic proliferation, as well as the mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes, and the inhibitory effects were time-dependent, with the strongest inhibition observed after 48 h and significantly weaker inhibition observed after 24 h of treatment. Conclusions: Telmisartan may potentially regulate hypertensive inflammatory responses by inhibiting T-lymphocytic proliferation and Kv1.3 potassium channel expression in CD4+ T lymphocytes.

  11. Clusters of Cl- channels in CFTR-expressing em>Sf>9 cells switch spontaneously between slow and fast gating modes

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Price, E. M.; Gabriel, S. E.

    1996-01-01

    channel. Excised outside-out patches of CFTR-infected and forskolin-stimulated cells exhibited wave-like gating kinetics of well-resolved current transitions. All-point Gaussian distributions revealed contributions from several (five to nine) identical channels. Such channels, in excised outside...

  12. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers.

    Directory of Open Access Journals (Sweden)

    Raveendra Anangi

    Full Text Available The K(v1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v1.3 blockers have potential for treatment of autoimmune diseases. Several K(v1.3 channel blockers have been characterized from scorpion venom, all of which have an α/β scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v1.3 blockers using margatoxin (MgTx and agitoxin-2 (AgTx2 as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L. NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V1.3 (IC(50 values of 201±39 pM and 97 ± 3 pM for recombinant AgTx2 and MgTx, respectively. Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of

  13. Derived (mutated)-types of TRPV6 channels elicit greater Ca²+ influx into the cells than ancestral-types of TRPV6: evidence from Xenopus oocytes and mammalian cell expression system.

    Science.gov (United States)

    Sudo, Yuka; Matsuo, Kiyotaka; Tetsuo, Tomoyuki; Tsutsumi, Satoshi; Ohkura, Masamichi; Nakai, Junichi; Uezono, Yasuhito

    2010-01-01

    The frequency of the allele containing three derived nonsynonymous SNPs (157C, 378M, 681M) of the gene encoding calcium permeable TRPV6 channels expressed in the intestine has been increased by positive selection in non-African populations. To understand the nature of these SNPs, we compared the properties of Ca²+ influx of ancestral (in African populations) and derived-TRPV6 (in non-African populations) channels with electrophysiological, Ca²+-imaging, and morphological methods using both the Xenopus oocyte and mammalian cell expression systems. Functional electrophysiological and Ca²+-imaging analyses indicated that the derived-TRPV6 elicited more Ca²+ influx than the ancestral one in TRPV6-expressing cells where both channels were equally expressed in the cells. Ca²+-inactivation properties in the ancestral- and derived-TRPV6 were almost the same. Furthermore, fluorescence resonance energy transfer (FRET) analysis showed that both channels have similar multimeric formation properties, suggesting that derived-TRPV6 itself could cause higher Ca²+ influx. These findings suggest that populations having derived-TRPV6 in non-African areas may absorb higher Ca²+ from the intestine than ancestral-TRPV6 in the African area.

  14. Caco-2 Permeability Studies and In Vitro hERG Liability Assessment of Tryptanthrin and Indolinone.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Moradi-Afrapoli, Fahimeh; Verjee, Sheela; Butterweck, Veronika; Hebeisen, Simon; Hettich, Timm; Schlotterbeck, Götz; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-08-01

    Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolinone (indolinone) were recently isolated from Isatis tinctoria as potent anti-inflammatory and antiallergic alkaloids, and shown to inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, and mast cell degranulation at low µM to nM concentrations. To assess their suitability for oral administration, we screened the compounds in an in vitro intestinal permeability assay using human colonic adenocarcinoma cells. For exact quantification of the compounds, validated UPLC-MS/MS methods were used. Tryptanthrin displayed high permeability (apparent permeability coefficient > 32.0 × 10(-6) cm/s) across the cell monolayer. The efflux ratio below 2 ( 10 µM) and indolinone (IC50 of 24.96 µM). The analysis of compounds using various in silico methods confirmed favorable pharmacokinetic properties, as well as a slight inhibition of the human ether-a-go-go-related gene potassium channel at micromolar concentrations. Georg Thieme Verlag KG Stuttgart · New York.

  15. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K......+ channels may be targets for neuroprotective, anti-epileptic and anti-nociceptive compounds. The importance of these channels is underscored by the fact that four out of five KCNQ channel subtypes are involved in severe human diseases. However, the pharmacology of the KCNQ channels is yet poorly understood...... as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  16. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    Science.gov (United States)

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to

  17. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    Science.gov (United States)

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  18. Expression of the Small Conductance Ca(2+)-Activated Potassium Channel Subtype 3 (SK3) in Rat Uterus after Stimulation with 17β-Estradiol

    DEFF Research Database (Denmark)

    Rahbek, Mette; Nazemi, Sasan; Odum, Lars

    2014-01-01

    the expression of SK3 in the uterus of rats stimulated with 17β-estradiol and progesterone in order to get an in depth understanding of the rat uterine SK3. Using immunohistochemistry SK3 was localized to the glandular and luminal endometrial lamina epitheliali. Furthermore, a weak signal was observed...... in the myometrium. Using Western blot the protein level of SK3 was found to increase in uteri from animals treated with 17β-estradiol, an effect that was not reflected at the mRNA level. The levels of mRNA for SK3 were significantly lower in the uterus of 17β-estradiol-treated animals than in the uterus...... of ovariectomized animals. We conclude that the SK channels are present in the endometrial epithelium, and possibly also in the myometrium of the rat uterus. Furthermore, the hormonal effect on SK3 caused by 17β-estradiol includes divergent regulation at mRNA and protein levels....

  19. Soluble adenylyl cyclase in vascular endothelium: gene expression control of epithelial sodium channel-α, Na+/K+-ATPase-α/β, and mineralocorticoid receptor.

    Science.gov (United States)

    Schmitz, Boris; Nedele, Johanna; Guske, Katrin; Maase, Martina; Lenders, Malte; Schelleckes, Michael; Kusche-Vihrog, Kristina; Brand, Stefan-Martin; Brand, Eva

    2014-04-01

    The Ca(2+)- and bicarbonate-activated soluble adenylyl cyclase (sAC) has been identified recently as an important mediator of aldosterone signaling in the kidney. Nuclear sAC has been reported to stimulate cAMP response element-binding protein 1 phosphorylation via protein kinase A, suggesting an alternative cAMP pathway in the nucleus. In this study, we analyzed the sAC as a potential modulator of endothelial stiffness in the vascular endothelium. We determined the contribution of sAC to cAMP response element-mediated transcriptional activation in vascular endothelial cells and kidney collecting duct cells. Inhibition of sAC by the specific inhibitor KH7 significantly reduced cAMP response element-mediated promoter activity and affected cAMP response element-binding protein 1 phosphorylation. Furthermore, KH7 and anti-sAC small interfering RNA significantly decreased mRNA and protein levels of epithelial sodium channel-α and Na(+)/K(+)-ATPase-α. Using atomic force microscopy, a nano-technique that measures stiffness and deformability of living cells, we detected significant endothelial cell softening after sAC inhibition. Our results suggest that the sAC is a regulator of gene expression involved in aldosterone signaling and an important regulator of endothelial stiffness. Additional studies are warranted to investigate the protective action of sAC inhibitors in humans for potential clinical use.

  20. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers.

    Science.gov (United States)

    Laedermann, Cédric J; Pertin, Marie; Suter, Marc R; Decosterd, Isabelle

    2014-03-11

    Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured

  1. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  2. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  3. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes.

    Science.gov (United States)

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos; Kollarik, Marian

    2014-11-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%-95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65-75%). ASIC1, ASIC2, and ASIC3 were expressed in 65-75%, 55-70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. Copyright © 2014 the American Physiological Society.

  4. Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening.

    Directory of Open Access Journals (Sweden)

    Zeineb Es-Salah-Lamoureux

    2010-05-01

    Full Text Available hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening.Tetramethylrhodamine-5-maleimide (TMRM fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449 in the S1-S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the V((1/2 of activation to -27.5+/-2.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1-S2 linker cysteines with valines allowed unobstructed recording of S3-S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-V(ON, with V((1/2 (,1 = -37.8+/-1.7 mV, and V((1/2 (,2 = 43.5+/-7.9 mV. The first phase, V((1/2 (,1, was approximately 20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-V((1/2 = -18.3+/-1.2 mV, and relatively unchanged in a non-inactivating E519C:S620T mutant (V((1/2 = -34.4+/-1.5 mV, suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarization (V((1/2 = -20.6+/-1.2, k = 11.4 mV and L520C quenching during depolarization (V((1/2 = -26.8+/-1.0, k = 13.3 mV matched the respective voltage dependencies of hERG ionic tails, and deactivation time constants from -40 to -110 mV, suggesting they detected pore-S4 rearrangements related to ionic current flow during pore opening and closing.THE DATA INDICATE: 1 that rapid environmental changes occur at the

  5. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  6. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  7. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels.

    Science.gov (United States)

    Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T

    2008-10-31

    The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.

  8. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic

    2013-01-01

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium...... channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results...... as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant...

  9. Impaired Inactivation of L-Type Ca2+ Current as a Potential Mechanism for Variable Arrhythmogenic Liability of HERG K+ Channel Blocking Drugs.

    Directory of Open Access Journals (Sweden)

    Jae Gon Kim

    Full Text Available The proarrhythmic effects of new drugs have been assessed by measuring rapidly activating delayed-rectifier K+ current (IKr antagonist potency. However, recent data suggest that even drugs thought to be highly specific IKr blockers can be arrhythmogenic via a separate, time-dependent pathway such as late Na+ current augmentation. Here, we report a mechanism for a quinolone antibiotic, sparfloxacin-induced action potential duration (APD prolongation that involves increase in late L-type Ca2+ current (ICaL caused by a decrease in Ca2+-dependent inactivation (CDI. Acute exposure to sparfloxacin, an IKr blocker with prolongation of QT interval and torsades de pointes (TdP produced a significant APD prolongation in rat ventricular myocytes, which lack IKr due to E4031 pretreatment. Sparfloxacin reduced peak ICaL but increased late ICaL by slowing its inactivation. In contrast, ketoconazole, an IKr blocker without prolongation of QT interval and TdP produced reduction of both peak and late ICaL, suggesting the role of increased late ICaL in arrhythmogenic effect. Further analysis showed that sparfloxacin reduced CDI. Consistently, replacement of extracellular Ca2+ with Ba2+ abolished the sparfloxacin effects on ICaL. In addition, sparfloxacin modulated ICaL in a use-dependent manner. Cardiomyocytes from adult mouse, which is lack of native IKr, demonstrated similar increase in late ICaL and afterdepolarizations. The present findings show that sparfloxacin can prolong APD by augmenting late ICaL. Thus, drugs that cause delayed ICaL inactivation and IKr blockage may have more adverse effects than those that selectively block IKr. This mechanism may explain the reason for discrepancies between clinically reported proarrhythmic effects and IKr antagonist potencies.

  10. MiRNA-135a regulates the expression of small conductance calcium-activated potassium (SK3) channels in epilepsy-like conditions

    NARCIS (Netherlands)

    Honrath, Birgit; Norwood, Braxton; Tanrioever, Gaye; Kuter, Katarzyna; Henshall, David C; Aksel-Aksoy, Ayla; Schratt, Gerhard; Pasterkamp, Jeroen; Dencher, Norbert A.; Nieweg, Katja; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    Background Excessive and hypersynchronous neuronal discharges are key characteristics in the pathophysiology of neurological disorders such as epilepsy. Owing to their ability of regulating neuronal excitability, small conductance calcium-activated potassium (SK) channels have been implicated in

  11. A Ca(v)3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Proft, Juliane; Campiglio, M.; Flucher, B. E.; Weiss, Norbert

    2016-01-01

    Roč. 10, č. 5 (2016), s. 346-354 ISSN 1933-6950 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : Ca(v)3 * 2 channel * Stac adaptor protein * trafficking * T-type calcium channel Subject RIV: CE - Biochemistry Impact factor: 2.042, year: 2016

  12. Workshop on Gas Channels

    Science.gov (United States)

    2013-02-07

    Effect of pressure on gas permeability. In Fish … Different channels or splice variants at different depth.  HRE (hypoxia-response elements): which...proteins unexpectedly have HREs . HIF-1.  Shear stress:  expression of NOS  Are different splice variants used under different conditions?  Size

  13. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  14. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    Science.gov (United States)

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-03

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  15. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  16. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.

    Science.gov (United States)

    Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D

    2004-08-06

    Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.

  17. TRP Channels in Human Prostate

    Directory of Open Access Journals (Sweden)

    Carl Van Haute

    2010-01-01

    Full Text Available This review gives an overview of morphological and functional characteristics in the human prostate. It will focus on the current knowledge about transient receptor potential (TRP channels expressed in the human prostate, and their putative role in normal physiology and prostate carcinogenesis. Controversial data regarding the expression pattern and the potential impact of TRP channels in prostate function, and their involvement in prostate cancer and other prostate diseases, will be discussed.

  18. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  19. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Khisti, Ashish; Alouini, Mohamed-Slim

    2017-01-01

    -main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  20. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Khisti, Ashish; Alouini, Mohamed-Slim

    2016-01-01

    -main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  1. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease

    DEFF Research Database (Denmark)

    Vanderwinden, Jean-Marie; Rumessen, Jüri J; de Kerchove d'Exaerde, Alban

    2002-01-01

    The apamin-sensitive component of the inhibitory response of the gastrointestinal musculature involves the small conductance Ca(2+)-activated K(+) channel SK3. Kit-immunoreactive (ir) interstitial cells of Cajal appear to be involved in nitrergic inhibition while the role of the recently describe...

  2. Expression of BKCa channels and the modulatory ß-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels contribute to electrical impulses, proper signal transmission of information and regulation of neurotransmitter release. Migraine has been proposed to be a trigeminovascular disease involving the sensory trigeminal pathways and the c...

  3. Different expressions of high voltage-activated Ca2+ channel types in the rostral reticular thalamic nucleus of the absence epileptic WAG/Rij rat.

    NARCIS (Netherlands)

    Bovenkamp-Janssen, M.C. van de; Scheenen, W.J.J.M.; Kuijpers-Kwant, F.J.; Kozicz, L.T.; Veening, J.G.; Luijtelaar, E.L.J.M. van; McEnery, M.W.; Roubos, E.W.

    2004-01-01

    In the WAG/Rij rat, a model for human absence epilepsy, spike-wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca(2+) channels play a central role in the initiation and maintenance of

  4. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  5. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  6. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  7. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.

    Science.gov (United States)

    Ishihara, Keiko; Ehara, Tsuguhisa

    2004-04-01

    The strong inward rectifier K(+) current, I(K1), shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward I(K1) is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K(+) channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current-voltage (I-V) relationships of Kir2.1, obtained with 5-10 microm spermine or 10-100 microm spermidine, were similar to the steady-state outward I-V relationship of I(K1), showing a peak at a level that is approximately 20 mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1 microm spermine/spermidine or 0.1 microm spermine, respectively. In the chord conductance-voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5-10 microm spermine or 10-100 microm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1-10 microm

  8. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    International Nuclear Information System (INIS)

    Nilsson, Mats F; Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma; Cebers, Gvido; Hellmold, Heike; Gustafson, Anne-Lee; Webster, William S

    2013-01-01

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development

  9. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  10. Molecular mechanisms underlying the pilsicainide-induced stabilization of hERG proteins in transfected mammalian cells

    Directory of Open Access Journals (Sweden)

    Takeshi Onohara, MD

    2017-06-01

    Conclusions: Pilsicainide penetrates the plasma membrane, stabilizes WT-hERG proteins by acting as a chemical chaperone, and enhances WT-hERG channel currents. This mechanism could also be applicable to modulations of certain mutant-hERG proteins.

  11. Development of multitissue microfluidic dynamic array for assessing changes in gene expression associated with channel catfish appetite, growth, metabolism, and intestinal health

    Science.gov (United States)

    Large-scale, gene expression methods allow for high throughput analysis of physiological pathways at a fraction of the cost of individual gene expression analysis. Systems, such as the Fluidigm quantitative PCR array described here, can provide powerful assessments of the effects of diet, environme...

  12. Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2.

    Science.gov (United States)

    Montgomery, Benjamin C S; Mewes, Jacqueline; Davidson, Chelsea; Burshtyn, Deborah N; Stafford, James L

    2009-04-01

    Channel catfish leukocyte immune-type receptors (IpLITRs) are immunoglobulin superfamily (IgSF) members believed to play a role in the control and coordination of cellular immune responses in teleost. Putative stimulatory and inhibitory IpLITRs are co-expressed by different types of catfish immune cells (e.g. NK cells, T cells, B cells, and macrophages) but their signaling potential has not been determined. Following cationic polymer-mediated transfections into human cell lines we examined the surface expression, tyrosine phosphorylation, and phosphatase recruitment potential of two types of putative inhibitory IpLITRs using 'chimeric' expression constructs and an epitope-tagged 'native' IpLITR. We also cloned and expressed the teleost Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2 and examined their expression in adult tissues and developing zebrafish embryos. Co-immunoprecipitation experiments support the inhibitory signaling potential of distinct IpLITR-types that bound both SHP-1 and SHP-2 following the phosphorylation of tyrosine residues within their cytoplasmic tail (CYT) regions. Phosphatase recruitment by IpLITRs represents an important first step in understanding their influence on immune cell effector functions and suggests that certain inhibitory signaling pathways are conserved among vertebrates.

  13. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  14. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-05-01

    Full Text Available We examined the function of OsALMT4 in rice (Oryza sativa L. which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments.

  15. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    OpenAIRE

    Jie Liu; Jie Liu; Muyun Xu; Gonzalo M. Estavillo; Emmanuel Delhaize; Rosemary G. White; Meixue Zhou; Peter R. Ryan

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ...

  16. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking.

    Science.gov (United States)

    Sakakibara, Akiko; Sakakibara, Shunsuke; Kusumoto, Junya; Takeda, Daisuke; Hasegawa, Takumi; Akashi, Masaya; Minamikawa, Tsutomu; Hashikawa, Kazunobu; Terashi, Hiroto; Komori, Takahide

    2017-01-01

    Transient receptor potential cation channel (subfamily V, members 1-4) (TRPV1-4) are expressed in skin and neurons and activated by external stimuli in normal mucosae of all oral cavity sites. The oral cavity is exposed to various stimuli, including temperature, mechanical stimuli, chemical substances, and changes in pH, and, notably, the risk factors for oncogenic transformation in oral squamous epithelium are the same as the external stimuli received by TRPV1-4 receptors. Hence, we examined the relationship between oral squamous cell carcinoma (SCC) and TRPV1-4 expression. Oral SCC patients (n = 37) who underwent surgical resection were included in this study. We investigated the expression of TRPV1-4 by immunohistochemical staining and quantification of TRPV1-4 mRNA in human oral mucosa. In addition, we compared the TRPV1-4 levels in mucosa from patients with SCC to those in normal oral mucosa. The receptors were expressed in oral mucosa at all sites (tongue, buccal mucosa, gingiva, and oral floor) and the expression was stronger in epithelia from patients with SCC than in normal epithelia. Furthermore, alcohol consumption and tobacco use were strongly associated with the occurrence of oral cancer and were found to have a remarkable influence on TRPV1-4 receptor expression in normal oral mucosa. In particular, patients with a history of alcohol consumption demonstrated significantly higher expression levels. Various external stimuli may influence the behavior of cancer cells. Overexpression of TRPV1-4 is likely to be a factor in enhanced sensitivity to external stimuli. These findings could contribute to the establishment of novel strategies for cancer therapy or prevention.

  17. Cloning and expression of the translocator protein (18 kDa), voltage-dependent anion channel, and diazepam binding inhibitor in the gonad of largemouth bass (Micropterus salmoides) across the reproductive cycle.

    Science.gov (United States)

    Doperalski, Nicholas J; Martyniuk, Christopher J; Prucha, Melinda S; Kroll, Kevin J; Denslow, Nancy D; Barber, David S

    2011-08-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression.

    Science.gov (United States)

    Kwan, Patrick; Poon, Wai Sang; Ng, Ho-Keung; Kang, David E; Wong, Virginia; Ng, Ping Wing; Lui, Colin H T; Sin, Ngai Chuen; Wong, Ka S; Baum, Larry

    2008-11-01

    Many antiepileptic drugs (AEDs) prevent seizures by blocking voltage-gated brain sodium channels. However, treatment is ineffective in 30% of epilepsy patients, which might, at least in part, result from polymorphisms of the sodium channel genes. We investigated the association of AED responsiveness with genetic polymorphisms and correlated any association with mRNA expression of the neuronal sodium channels. We performed genotyping of tagging and candidate single nucleotide polymorphisms (SNPs) of SCN1A, 2A, and 3A in 471 Chinese epilepsy patients (272 drug responsive and 199 drug resistant). A total of 27 SNPs were selected based on the HapMap database. Genotype distributions in drug-responsive and drug-resistant patients were compared. SCN2A mRNA was quantified by real-time PCR in 24 brain and 57 blood samples. Its level was compared between patients with different genotypes of an SCN2A SNP found to be associated with drug responsiveness. SCN2A IVS7-32A>G (rs2304016) A alleles were associated with drug resistance (odds ratio = 2.1, 95% confidence interval: 1.2-3.7, P=0.007). Haplotypes containing the IVS7-32A>G allele A were also associated with drug resistance. IVS7-32A>G is located within the putative splicing branch site for splicing exons 7 and 9. PCR of reverse-transcribed RNA from blood or brain of patients with different IVS7-32A>G genotypes using primers in exons 7 and 9 showed no skipping of exon 8, and real-time PCR showed no difference in SCN2A mRNA levels among genotypes. Results of this study suggest an association between SCN2A IVS7-32A>G and AED responsiveness, without evidence of an effect on splicing or mRNA expression.

  19. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan......In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known...... to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...

  20. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  1. Substance P Activates Ca2+-Permeable Nonselective Cation Channels through a Phosphatidylcholine-Specific Phospholipase C Signaling Pathway in nNOS-Expressing GABAergic Neurons in Visual Cortex.

    Science.gov (United States)

    Endo, Toshiaki; Yanagawa, Yuchio; Komatsu, Yukio

    2016-02-01

    To understand the functions of the neocortex, it is essential to characterize the properties of neurons constituting cortical circuits. Here, we focused on a distinct group of GABAergic neurons that are defined by a specific colocalization of intense labeling for both neuronal nitric oxide synthase (nNOS) and substance P (SP) receptor [neurokinin 1 (NK1) receptors]. We investigated the mechanisms of the SP actions on these neurons in visual cortical slices obtained from young glutamate decarboxylase 67-green fluorescent protein knock-in mice. Bath application of SP induced a nonselective cation current leading to depolarization that was inhibited by the NK1 antagonists in nNOS-immunopositive neurons. Ruthenium red and La(3+), transient receptor potential (TRP) channel blockers, suppressed the SP-induced current. The SP-induced current was mediated by G proteins and suppressed by D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), but not by inhibitors of phosphatidylinositol-specific PLC, adenylate cyclase or Src tyrosine kinases. Ca(2+) imaging experiments under voltage clamp showed that SP induced a rise in intracellular Ca(2+) that was abolished by removal of extracellular Ca(2+) but not by depletion of intracellular Ca(2+) stores. These results suggest that SP regulates nNOS neurons by activating TRP-like Ca(2+)-permeable nonselective cation channels through a PC-PLC-dependent signaling pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K channels may be of importance....

  3. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene and the Regulatory Subunit KCNE2 from Equine Myocardium.

    Directory of Open Access Journals (Sweden)

    Philip Juul Pedersen

    Full Text Available The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death--conditions known as congenital or acquired Long QT syndrome (LQTS, respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively. Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS.

  5. Effect of heat stress on the gene expression of ion transporters/channels in the uterus of laying hens during eggshell formation.

    Science.gov (United States)

    Bahadoran, Shahab; Dehghani Samani, Amir; Hassanpour, Hossein

    2018-01-01

    Heat stress is a problem in laying hens as it decreases egg quality by decreasing eggshell mineralization. Heat stress alters gene expression, hence our aim was to investigate effects of heat stress on gene expression of ion transport elements involving in uterine mineralization (TRPV6, CALB1, ITPR3, SCNN1G, SLC4A4, KCNJ15, SLC4A9, and CLCN2) by real time quantitative PCR. Forty 23-week-old White Leghorn laying hens were housed in two rooms. The control group (n = 20) was maintained at 21-23 °C, and the heat stress group (n = 20) was exposed to 36-38 °C for 8 weeks. All parameters of egg quality including egg weight, surface area, volume, and eggshell weight, thickness, ash weight, and calcium content were decreased in the heat stress group compared to the control group (by 26.9%, 32.7%, 44.1%, 38.4%, 31.7%, 39.4%, and 11.1%, respectively). Total plasma calcium was decreased by 13.4%. Levels of ITPR3, SLC4A4, and SLC4A9 transcripts in the uterine lining were decreased in the heat stress group compared to the control group (by 61.4%, 66.1%, and 66.1%, respectively). CALB1 transcript level was increased (by 34.2 fold) in the heat stress group of hens compared to controls. TRPV6, SCNN1G, KCNJ15, and CLCN2 transcript levels did not significantly differ between control and heat stress groups of laying hens. It is concluded that the down-expression of ITPR3, SLC4A4, and SLC4A9 genes may impair transportation of Cl - , HCO 3 - , and Na + in eggshell mineralization during heat stress. Increased CALB1 gene expression may increase resistance of uterine cells to detrimental effects of heat stress.

  6. Quantification of the functional expression of the Ca(2+) -activated K(+) channel KCa 3.1 on microglia from adult human neocortical tissue

    DEFF Research Database (Denmark)

    Blomster, Linda V; Strøbaek, Dorte; Hougaard, Charlotte

    2016-01-01

    by full inhibition upon co-application with NS6180, a highly selective KCa 3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed KCa 3.1, and the difference in current between full activation and inhibition (ΔKCa 3.1) was estimated at 292 ± 48 pA at -40 mV (n = 75), which equals...... in neuropathological processes. GLIA 2016;64:2065-2078....

  7. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  8. Separation of Particles in Channels Rotary Engine

    Directory of Open Access Journals (Sweden)

    Zyatikov Pavel

    2015-01-01

    Full Text Available The article considers the separation of particles in channels with different relative length. It is shown that the intensity of turbulence at the inlet section of the channel varies considerably in its length. The dependence of the turbulence damping along the channel expressing by fraction of the distance is shown. The ratio of the particle separation efficiency out the gas flow in the rotor channel is defined. The values of particle separation efficiency in the channel for the angle α=π/4 in turbulent aerosol flow is shows, including without mixing the particles.

  9. CO-independent modification of K+ channels by tricarbonyldichlororuthenium(II) dimer (CORM-2).

    Science.gov (United States)

    Gessner, Guido; Sahoo, Nirakar; Swain, Sandip M; Hirth, Gianna; Schönherr, Roland; Mede, Ralf; Westerhausen, Matthias; Brewitz, Hans Henning; Heimer, Pascal; Imhof, Diana; Hoshi, Toshinori; Heinemann, Stefan H

    2017-11-15

    Although toxic when inhaled in high concentrations, the gas carbon monoxide (CO) is endogenously produced in mammals, and various beneficial effects are reported. For potential medicinal applications and studying the molecular processes underlying the pharmacological action of CO, so-called CO-releasing molecules (CORMs), such as tricabonyldichlororuthenium(II) dimer (CORM-2), have been developed and widely used. Yet, it is not readily discriminated whether an observed effect of a CORM is caused by the released CO gas, the CORM itself, or any of its intermediate or final breakdown products. Focusing on Ca 2+ - and voltage-dependent K + channels (K Ca 1.1) and voltage-gated K + channels (Kv1.5, Kv11.1) relevant for cardiac safety pharmacology, we demonstrate that, in most cases, the functional impacts of CORM-2 on these channels are not mediated by CO. Instead, when dissolved in aqueous solutions, CORM-2 has the propensity of forming Ru(CO) 2 adducts, preferentially to histidine residues, as demonstrated with synthetic peptides using mass-spectrometry analysis. For K Ca 1.1 channels we show that H365 and H394 in the cytosolic gating ring structure are affected by CORM-2. For Kv11.1 channels (hERG1) the extracellularly accessible histidines H578 and H587 are CORM-2 targets. The strong CO-independent action of CORM-2 on Kv11.1 and Kv1.5 channels can be completely abolished when CORM-2 is applied in the presence of an excess of free histidine or human serum albumin; cysteine and methionine are further potential targets. Off-site effects similar to those reported here for CORM-2 are found for CORM-3, another ruthenium-based CORM, but are diminished when using iron-based CORM-S1 and absent for manganese-based CORM-EDE1. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulin-secreting cells.

    Science.gov (United States)

    Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik

    2018-05-01

    Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely

  11. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  12. Channel Modeling

    Science.gov (United States)

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  13. Channeling experiment

    International Nuclear Information System (INIS)

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  14. Channel Simulation in Quantum Metrology

    Directory of Open Access Journals (Sweden)

    Laurenza Riccardo

    2018-04-01

    Full Text Available In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  15. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2009-01-01

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPAR-γ). Although nifedipine did not affect expression levels of PPAR-γ, it increased the PPAR-γ transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-γ activation.

  16. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  17. Chloride channels in the plasma membrane of a foetal Drosophila cell line, S2

    DEFF Research Database (Denmark)

    Asmild, Margit; Willumsen, Niels J.

    2000-01-01

    S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp......S2 cells, Cl- Channels, Expression system, Drosophila, Inward rectifier, Outward rectifier, Patch clamp...

  18. The Effects of Arterial Blood Pressure Reduction on Endocan and Soluble Endothelial Cell Adhesion Molecules (CAMs and CAMs Ligands Expression in Hypertensive Patients on Ca-Channel Blocker Therapy

    Directory of Open Access Journals (Sweden)

    Refmir Tadzic

    2013-04-01

    Full Text Available Background/Aims: To determine the effect of arterial blood pressure (BP reduction on endocan and soluble cell adhesion molecules' (sCAM plasma concentration and expression of their ligands on circulatory leukocyte subpopulations. Methods: 24 hypertensive subjects of both sexes (age: 53±8 yrs were treated with Ca-channel blocker, amlodipin (5-10 mg/day for 8 weeks; to reach BP≤139/89mmHg. The serum sCAMs and endocan concentrations were determined by ELISA kits. Level of ICAM/VCAM ligands on leukocytes was assessed by flow cytometry. Paired t-test, or t-test were used as appropriate, with Pearson's correlation calculated; pResults: sICAM-1 and sVCAM-1 were decreased (p≤0.001 and p=0.002, respectively, while E-selectin concentration was increased after amlodipin treatment (P=0.014. CD11a/LFA-1 (ICAM-1 and endocan ligand was significantly increased in all three cell types with BP decrease. CD15 and CD49d/VLA-4 (VCAM-1 ligand did not change after the treatment. There was significant positive correlation of systolic and diastolic BP with ICAM-1 and VCAM-1, and significant negative correlation of systolic BP with CD11a/LFA-1. Endocan significantly positively correlated with ICAM-1. Conclusions: The increased expression of ICAM/VACM ligands, together with decrease of sCAMs and endocan suggests the de-activation of endothelium with reduction in BP, decreasing the adherence of circulatory leukocytes to endothelium; subsequently decreasing the risk for development of atherosclerosis.

  19. Molecular cloning and functional expression of the Equine K+ channel KV11.1 (Ether à Go-Go-related/KCNH2 gene) and the regulatory subunit KCNE2 from equine myocardium

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Thomsen, Kirsten Brolin; Olander, Emma Rie

    2015-01-01

    and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents...... were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account...... for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect...

  20. Ergodic Capacity for the SIMO Nakagami- Channel

    Directory of Open Access Journals (Sweden)

    Vagenas EfstathiosD

    2009-01-01

    Full Text Available This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output wireless systems operating in a Nakagami- fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC, equal gain combining (EGC, selection combining (SC, and switch and stay (SSC diversity systems operating in Nakagami- fading channels. Also, the ergodic capacity of a SIMO system in a Nakagami- fading channel without any diversity technique is derived. The latter scenario is further investigated for a large amount of receive antennas. Finally, numerical results are presented for illustration.

  1. Roughness coefficients for stream channels in Arizona

    Science.gov (United States)

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

    When water flows in an open channel, energy is lost through friction along the banks and bed of the channel and through turbulence within the channel. The amount of energy lost is governed by channel roughness, which is expressed in terms of a roughness coefficient. An evaluation of the roughness coefficient is necessary in many hydraulic computations that involve flow in an open channel. Owing to the lack of satisfactory quantitative procedure, the ability of evaluate roughness coefficients can be developed only through experience; however, a basic knowledge of the methods used to assign the coefficients and the factors affecting them will be a great help. One of the most commonly used equations in open-channel hydraulics is that of Manning. The Manning equation is       1.486

  2. Genetic Perturbations Suggest a Role of the Resting Potential in Regulating the Expression of the Ion Channels of the KCNA and HCN families in Octopus Cells of the Ventral Cochlear Nucleus

    Science.gov (United States)

    Cao, Xiao-Jie; Oertel, Donata

    2017-01-01

    Low-voltage-activated K+ (gKL) and hyperpolarization-activated mixed cation conductances (gh) mediate currents, IKL and Ih, through channels of the Kv1 (KCNA) and HCN families respectively and give auditory neurons the temporal precision required for signaling information about the onset, fine structure, and time of arrival of sounds. Being partially activated at rest, gKL and gh contribute to the resting potential and shape responses to even small subthreshold synaptic currents. Resting gKL and gh also affect the coupling of somatic depolarization with the generation of action potentials. To learn how these important conductances are regulated we have investigated how genetic perturbations affect their expression in octopus cells of the ventral cochlear nucleus (VCN). We report five new findings: First, the magnitude of gh and gKL varied over more than two-fold between wild type strains of mice. Second, average resting potentials are not different in different strains of mice even in the face of large differences in average gKL and gh. Third, IKL has two components, one being α-dendrotoxin (α-DTX)-sensitive and partially inactivating and the other being α-DTX-insensitive, tetraethylammonium (TEA)-sensitive, and non-inactivating. Fourth, the loss of Kv1.1 results in diminution of the α-DTX-sensitive IKL, and compensatory increased expression of an α-DTX-insensitive, tetraethylammonium (TEA)-sensitive IKL. Fifth, Ih and IKL are balanced at the resting potential in all wild type and mutant octopus cells even when resting potentials vary in individual cells over nearly 10 mV, indicating that the resting potential influences the expression of gh and gKL. The independence of resting potentials on gKL and gh shows that gKL and gh do not, over days or weeks, determine the resting potential but rather that the resting potential plays a role in regulating the magnitude of either or both gKL and gh. PMID:28065805

  3. Pannexin-1 channels in epilepsy.

    Science.gov (United States)

    Aquilino, Mark S; Whyte-Fagundes, Paige; Zoidl, Georg; Carlen, Peter L

    2017-09-05

    Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K + . Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  5. Generic theory for channel sinuosity.

    Science.gov (United States)

    Lazarus, Eli D; Constantine, José Antonio

    2013-05-21

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.

  6. Trade-off capacities of the quantum Hadamard channels

    International Nuclear Information System (INIS)

    Bradler, Kamil; Hayden, Patrick; Touchette, Dave; Wilde, Mark M.

    2010-01-01

    Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable for the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.

  7. TRPV6 channels.

    Science.gov (United States)

    Fecher-Trost, Claudia; Weissgerber, Petra; Wissenbach, Ulrich

    2014-01-01

    TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al

  8. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco

    2015-03-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and

  9. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors.

    Science.gov (United States)

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic. Copyright 2009 Wiley-Liss, Inc.

  10. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  11. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  12. Quantum Stackelberg Duopoly Game in Depolarizing Channel

    International Nuclear Information System (INIS)

    Zhu Xia; Kuang Leman

    2008-01-01

    In this paper, we investigate the quantum Stackelberg duopoly (QSD) game in the noise environment with the depolarizing channel expressed by the Kraus-operator representation. It is found that the presence of the damping in the depolarizing channel always leads to the decrease of the quantities of the moves and payoffs of the two players in the QSD game. It is indicated that under certain conditions the first-mover advantage in the QSD game can be weakened due to the presence of the damping in the depolarizing channel.

  13. PIP2 modulation of slick and slack K+ channels

    DEFF Research Database (Denmark)

    Tejada, Maria de los Angeles; Jensen, Lars Jørn; Klærke, Dan Arne

    2012-01-01

    Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we...... provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2......). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently...

  14. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  15. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  16. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  17. KCNQ1 channels sense small changes in cell volume

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; MacAulay, Nanna

    2003-01-01

    Many important physiological processes involve changes in cell volume, e.g. the transport of salt and water in epithelial cells and the contraction of cardiomyocytes. In this study, we show that voltage-gated KCNQ1 channels, which are strongly expressed in epithelial cells or cardiomyocytes......, and KCNQ4 channels, expressed in hair cells and the auditory tract, are tightly regulated by small cell volume changes when co-expressed with aquaporin 1 water-channels (AQP1) in Xenopus oocytes. The KCNQ1 and KCNQ4 current amplitudes precisely reflect the volume of the oocytes. By contrast, the related...... KCNQ2 and KCNQ3 channels, which are prominently expressed in neurons, are insensitive to cell volume changes. The sensitivity of the KCNQ1 and KCNQ4 channels to cell volume changes is independent of the presence of the auxiliary KCNE1-3 subunits, although modulated by KCNE1 in the case of KCNQ1...

  18. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  19. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  20. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  1. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  2. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  3. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  4. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  5. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  6. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present

  7. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  8. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  9. Altered expression of the voltage-gated calcium channel subunit alpha(2)delta-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    Czech Academy of Sciences Publication Activity Database

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C. S.; Jiruška, Přemysl; Jefferys, J. G. R.; Dolphin, A. C.

    2014-01-01

    Roč. 283, Dec (2014), s. 124-137 ISSN 0306-4522 R&D Projects: GA MZd(CZ) NT14489 Institutional support: RVO:67985823 Keywords : calcium channel * dorsal root ganglion (DRG) * alpha2delta subunit * epilepsy * neuropathic pain * reactive gliosis Subject RIV: FH - Neurology Impact factor: 3.357, year: 2014

  10. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  11. Calcium Channel Blockers

    Science.gov (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  12. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  13. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  14. Effective capacity of correlated MISO channels

    KAUST Repository

    Zhong, Caijun

    2011-06-01

    This paper presents an analytical performance investigation of the capacity limits of correlated multiple-input single-output (MISO) channels in the presence of quality-of-service (QoS) requirements. Exact closed-form expression for the effective capacity of correlated MISO channels is derived. In addition, simple expressions are obtained at the asymptotic high and low signal-to-noise ratio (SNR) regimes, which provide insights into the impact of various system parameters on the effective capacity of the system. Also, a complete characterization of the impact of spatial correlation on the effective capacity is provided with the aid of a majorization theory result. The findings suggest that antenna correlation reduce the effective capacity of the channels. Moreover, a stringent QoS requirement causes a significant reduction in the effective capacity but this can be effectively alleviated by increasing the number of antennas. © 2011 IEEE.

  15. Gabapentin Modulates HCN4 Channel Voltage-Dependence

    Directory of Open Access Journals (Sweden)

    Han-Shen Tae

    2017-08-01

    Full Text Available Gabapentin (GBP is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+ or calretinin positive (CR+ inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM caused a hyperpolarizing shift in the voltage of half activation (V1/2 thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.

  16. Effects of hypersonic field and anharmonic interactions on channelling radiation

    International Nuclear Information System (INIS)

    George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G

    2007-01-01

    The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably

  17. Diffraction of radiation from channelled charged particles

    International Nuclear Information System (INIS)

    Baryshevskij, V.G.; Grubich, A.O.; Dubovskaya, I.Ya.

    1978-01-01

    An explicit expression for cross-section and radiation spectrum at diffraction is calculated. It is shown that photons emitted by channelled particles form a typical diffraction pattern which contains information about the crystal structure. It is also shown that the change of the longitudinal energy of the particle caused by the radiation braking becomes important when the particle energy is increased. (author)

  18. Effective capacity of correlated MISO channels

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2011-01-01

    This paper presents an analytical performance investigation of the capacity limits of correlated multiple-input single-output (MISO) channels in the presence of quality-of-service (QoS) requirements. Exact closed-form expression for the effective

  19. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.

  20. Omni channel fashion shopping

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; van Delft, L.; Borgers, A.W.J.; Pantano, E.

    2015-01-01

    This chapter gives insight into consumers' online and offline fashion shopping behavior, consumers' omni-channel usage during the shopping process, and consumer fashion shopper segments. Based on a literature review, omni-channel shopping behavior during the shopping process was operationalized.

  1. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  2. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  3. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  4. Role of T-type channels in vasomotor function

    DEFF Research Database (Denmark)

    Kuo, Ivana Y-T; Howitt, Lauren; Sandow, Shaun L

    2014-01-01

    Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of i...

  5. Radiation at planar channeling of relativistic electrons in thick crystals

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1983-01-01

    The distribution kinetics with respect to the transverse energy at electron channeling is discussed. The asymptotic expressions for the radiation intensity into a given collimator at electron channeling in thick crystals are derived. An optimal thickness at which the radiation output is maximal is found. The spectral distribution of the radiation intensity is analysed for the case of a single diamond crystal. (author)

  6. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  7. OPRA capacity bounds for selection diversity over generalized fading channels

    KAUST Repository

    Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    , lower and upper bounds on OPRA capacity for selection diversity scheme are presented. These bounds hold for variety of fading channels including log-normal and generalized Gamma distributed models and have very simple analytic expressions for easy

  8. Novel Leishmania and Malaria Potassium Channels: Candidate Therapeutic Targets

    National Research Council Canada - National Science Library

    McDonald, Thomas V

    2005-01-01

    .... major and T. cruzi). Using a combination of cultured mammalian cells and Xenopus oocytes for heterologous expression we have evidence that 2 channels from malaria [PFK1 & PFK22] and Leishmania [LMK1 & LMK2] generate K+...

  9. Estrogen, progesterone, and genistein differentially regulate levels of expression of α-, β-, and γ-epithelial sodium channel (ENaC) and α-sodium potassium pump (Na⁺/K⁺-ATPase) in the uteri of sex steroid-deficient rats.

    Science.gov (United States)

    Chinigarzadeh, Asma; Muniandy, Sekaran; Salleh, Naguib

    2015-10-01

    Estrogen, progesterone, and genistein could induce changes in uterine fluid volume and Na(+) concentration. Progesterone upregulates expression of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase which contributed toward these changes. However, effects of estrogen and genistein were unknown. This study therefore investigated changes in expression of these proteins in the uterus under estrogen, progesterone, and genistein influences to further understand mechanisms underlying sex steroids and phytoestrogen effects on uterine fluid Na(+) regulation. In this study, uteri of ovariectomized female rats receiving 7-day treatment with genistein (25, 50, and 100 mg/kg/day), estrogen (0.8 × 10(-4) mg/kg/day), or progesterone (4 mg/kg/day) were harvested, and expression levels of α-, β-, and γ-ENaC proteins and messenger RNAs (mRNAs) and α-Na(+)/K(+)-ATPase protein were determined by Western blotting (proteins) and real-time polymerase chain reaction (mRNA). Meanwhile, distribution of α-, β-, and γ-ENaC and α-Na(+)/K(+)-ATPase proteins in the uterus was identified by immunohistochemistry. Our findings indicated that expression of α-, β-, and γ-ENaC proteins and mRNAs and α-Na(+)/K(+)-ATPase protein were enhanced under progesterone influence. Lower expressions were noted under estrogen and genistein influences compared to progesterone. Under estrogen, progesterone, and genistein influences, α- and β-ENaC were distributed at apical membrane and γ-ENaC was distributed at apical and basolateral membranes of uterine luminal epithelia. Under progesterone influence, α-Na(+)/K(+)-ATPase was highly expressed at basolateral membrane. In conclusion, high expression of α-, β-, and γ-ENaC and α-Na(+)/K(+)-ATPase under progesterone influence would contribute toward increased uterine fluid Na(+) reabsorption, whereas lesser expression of these proteins under estrogen and genistein influences would contribute toward lower reabsorption of uterine fluid Na

  10. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun; Jin, Shi; Wong, Kaikit; Alouini, Mohamed-Slim; Ratnarajah, Tharm

    2010-01-01

    . Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband

  11. Novel asymptotic results on the high-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework

  12. Analysis of D2D Communications over Gamma/Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    Z. Hussain

    2018-04-01

    Full Text Available In this paper, we investigate the outage probability, channel capacity and symbol error rate (SER performance of device-to-device (D2D communication systems. The D2D communication system is affected by several co-channel interferers. Gamma fading channel is considered for the D2D communication system. The channel for the co-channel interference is assumed to be Nakagami faded. An expression for the probability density function (PDF of the signal-to-interference ratio (SIR is presented. The PDF is a function of distances between various devices in the D2D system, path-loss, channel fading conditions and signal powers. Based on the PDF expression, we present the expressions for the outage, channel capacity and SER. With the help of numerical results the performance of D2D communication system is discussed under various conditions of interference, path-loss and channel fading.

  13. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  14. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  15. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  16. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  17. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal

    2017-03-13

    We investigate the problem of secure broadcasting over fast fading channels with imperfect main channel state information (CS