WorldWideScience

Sample records for herbivore carnivorous model

  1. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores

    Horiuchi, J.I.; Arimura, G.I.; Ozawa, R.; Shimoda, T.; Dicke, M.; Takabayashi, J.; Nishioka, T.

    2003-01-01

    We tested the response of the herbivorous mite Tetranychus urticae to uninfested lima bean leaves exposed to herbivore-induced conspecific plant volatiles by using a Y-tube olfactometer. First, we confirmed that exposed uninfested leaves next to infested leaves were more attractive to carnivorous

  2. Within-population isotopic niche variability in savanna mammals: disparity between carnivores and herbivores

    Daryl eCodron

    2016-02-01

    Full Text Available Large mammal ecosystems have relatively simple food webs, usually comprising three – and sometimes only two – trophic links. Since many syntopic species from the same trophic level therefore share resources, dietary niche partitioning features prominently within these systems. In African and other subtropical savannas, stable carbon isotopes readily distinguish between herbivore species for which foliage and other parts of dicot plants (13C-depleted C3 vegetation are the primary resource (browsers and those for which grasses (13C-enriched C4 vegetation are staples (grazers. Similarly, carbon isotopes distinguish between carnivore diets that may be richer in either browser, grazer, or intermediate-feeding prey. Here, we investigate levels of carbon and nitrogen isotopic niche variation and niche partitioning within populations (or species of carnivores and herbivores from South African savannas. We emphasize predictable differences in within-population trends across trophic levels: we expect that herbivore populations, which require more foraging effort due to higher intake requirements, are far less likely to display within-population resource partitioning than carnivore populations. Our results reveal generally narrower isotopic niche breadths in herbivore than carnivore populations, but more importantly we find lower levels of isotopic differentiation across individuals within herbivore species. While these results offer some support for our general hypothesis, the current paucity of isotopic data for African carnivores limits our ability to test the complete set of predictions arising from our hypothesis. Nevertheless, given the different ecological and ecophysiological constraints to foraging behaviour within each trophic level, comparisons across carnivores and herbivores, which are possible within such simplified foodwebs, make these systems ideal for developing a process-based understanding of conditions underlying the evolution of

  3. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly

    Kim, Soonok; Cho, Yun Sung; Kim, Hak-Min; Chung, Oksung; Kim, Hyunho; Jho, Sungwoong; Seomun, Hong; Kim, Jeongho; Bang, Woo Young; Kim, Changmu; An, Junghwa; Bae, Chang Hwan; Bhak, Youngjune; Jeon, Sungwon; Yoon, Hyejun

    2016-01-01

    Background: There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. Results: We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorou...

  4. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.

    Kim, Soonok; Cho, Yun Sung; Kim, Hak-Min; Chung, Oksung; Kim, Hyunho; Jho, Sungwoong; Seomun, Hong; Kim, Jeongho; Bang, Woo Young; Kim, Changmu; An, Junghwa; Bae, Chang Hwan; Bhak, Youngjune; Jeon, Sungwon; Yoon, Hyejun; Kim, Yumi; Jun, JeHoon; Lee, HyeJin; Cho, Suan; Uphyrkina, Olga; Kostyria, Aleksey; Goodrich, John; Miquelle, Dale; Roelke, Melody; Lewis, John; Yurchenko, Andrey; Bankevich, Anton; Cho, Juok; Lee, Semin; Edwards, Jeremy S; Weber, Jessica A; Cook, Jo; Kim, Sangsoo; Lee, Hang; Manica, Andrea; Lee, Ilbeum; O'Brien, Stephen J; Bhak, Jong; Yeo, Joo-Hong

    2016-10-11

    There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.

  5. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  6. Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water.

    Pelster, Bernd; Wood, Chris M; Speers-Roesch, Ben; Driedzic, William R; Almeida-Val, Vera; Val, Adalberto

    2015-02-01

    Three closely related characids, Tambaqui (omnivore), black Piranha (carnivore), and Pacu (herbivore), all Serrasalmidae, inhabit the ion-poor, acidic Rio Negro. We compared O2-consumption and N excretion rates in vivo, and sodium, chloride, glucose, and ammonia transport characteristics of gut sac preparations in vitro. The Pacu had a significantly higher weight-specific oxygen consumption, and a lower N/Q ratio than the omnivorous Tambaqui, and a significantly lower urea-N excretion rate than the carnivorous black Piranha, suggesting N-limitation in the herbivorous Pacu. With a value of 2.62 ± 0.15, gut to fork length ratio in the Pacu was about 2.5 times higher than in the black Piranha, and 2.0 times higher than in the Tambaqui. Anterior intestinal activities of three enzymes involved in N-fixation for amino acid synthesis (glutamate dehydrogenase, glutamate-oxaloacetate transferase, and glutamate-pyruvate transferase) were generally greatest in the carnivore and lowest in the herbivore species. In all three species, sodium, chloride, glucose, and ammonia were taken up at high rates from the intestine, resulting in an isosmotic fluid flux. Comparing the area-specific fluid flux of the anterior, mid, and posterior gut sections, no difference was detected between the three sections of the Pacu, while in the Tambaqui, it was highest in the anterior section, and in the black Piranha highest in the middle section. Overall, the area-specific uptake rates for sodium, chloride, glucose, and ammonia of anterior, mid, and posterior sections were similar in all three species, indicating that there is no difference in the area-specific transport rates associated with trophic position. The net ammonia uptake flux from gut interior was not significantly different from the net ammonia efflux to the serosal fluid, so that the ammonia removed from the intestine by the mucosal epithelium was quantitatively transferred through the tissue to the serosal side in all three

  7. Exposure of Lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?

    Choh, Y.; Shimoda, T.; Ozawa, R.; Dicke, M.; Takabayashi, J.

    2004-01-01

    There is increasing evidence that volatiles emitted by herbivore-damaged plants can cause responses in downwind undamaged neighboring plants, such as the attraction of carnivorous enemies of herbivores. One of the open questions is whether this involves an active (production of volatiles) or passive

  8. Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands)

    Hamers, T.H.M.; Berg, van den J.H.J.; Gestel, van C.A.M.; Schooten, van F.J.; Murk, A.J.

    2006-01-01

    A risk assessment was made for a carnivorous and a herbivorous food chain in a heavily polluted natural estuary (Biesbosch), by determining the most critical pollutants and the food chain most at risk. Exposure of food chains to metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated

  9. Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands)

    Hamers, Timo; Berg, Johannes H.J. van den; Gestel, Cornelis A.M. van; Schooten, Frederik-Jan van; Murk, Albertinka J.

    2006-01-01

    A risk assessment was made for a carnivorous and a herbivorous food chain in a heavily polluted natural estuary (Biesbosch), by determining the most critical pollutants and the food chain most at risk. Exposure of food chains to metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) was assessed by analyzing dietary concentrations, internal concentrations, and biomarkers of exposure. Common shrew (Sorex araneus) and bank vole (Clethrionomys glareolus) were selected as representative small mammal species for the carnivorous and herbivorous food chain, respectively, and earthworms (Lumbricus rubellus) and snails (Cepaea nemoralis) as representative prey species for the carnivorous food chain. Metals contributed most to the total risk for small mammals and earthworms. PCBs, but not PAHs, contributed to the overall risk for S. araneus at regularly flooded locations. The carnivorous food chain appeared most at risk given the higher exposure levels and bioaccumulating potency found for contaminants in S. araneus. - In polluted floodplain areas, dietary exposure to metals poses a larger risk for small mammals in a carnivorous than in a herbivorous food chain

  10. Mathematical models for plant-herbivore interactions

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  11. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores

    Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; Scott, Jarrod J.; Emerson, David; McCarthy, James J.; Girguis, Peter R.

    2015-01-01

    Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These simi...

  12. Perspectives provided by leopard and other cat genomes: how diet determined the evolutionary history of carnivores, omnivores, and herbivores

    Kim, Soonok; Cho, Yun Sung; Bhak, Jong; O’Brian, Stephen J.; Yeo, Joo-Hong

    2017-01-01

    Recent advances in genome sequencing technologies have enabled humans to generate and investigate the genomes of wild species. This includes the big cat family, such as tigers, lions, and leopards. Adding the first high quality leopard genome, we have performed an in-depth comparative analysis to identify the genomic signatures in the evolution of felid to become the top predators on land. Our study focused on how the carnivore genomes, as compared to the omnivore or herbivore genomes, shared evolutionary adaptations in genes associated with nutrient metabolism, muscle strength, agility, and other traits responsible for hunting and meat digestion. We found genetic evidence that genomes represent what animals eat through modifying genes. Highly conserved genetically relevant regions were discovered in genomes at the family level. Also, the Felidae family genomes exhibited low levels of genetic diversity associated with decreased population sizes, presumably because of their strict diet, suggesting their vulnerability and critical conservation status. Our findings can be used for human health enhancement, since we share the same genes as cats with some variation. This is an example how wildlife genomes can be a critical resource for human evolution, providing key genetic marker information for disease treatment. PMID:28042784

  13. Influence of free water availability on a desert carnivore and herbivore.

    Kluever, Bryan M; Gese, Eric M; Dempsey, Steven J

    2017-04-01

    Anthropogenic manipulation of finite resources on the landscape to benefit individual species or communities is commonly employed by conservation and management agencies. One such action in arid regions is the construction and maintenance of water developments (i.e., wildlife guzzlers) adding free water on the landscape to buttress local populations, influence animal movements, or affect distributions of certain species of interest. Despite their prevalence, the utility of wildlife guzzlers remains largely untested. We employed a before-after control-impact (BACI) design over a 4-year period on the US Army Dugway Proving Ground, Utah, USA, to determine whether water availability at wildlife guzzlers influenced relative abundance of black-tailed jackrabbits Lepus californicus and relative use of areas near that resource by coyotes Canis latrans , and whether coyote visitations to guzzlers would decrease following elimination of water. Eliminating water availability at guzzlers did not influence jackrabbit relative abundance. Coyote relative use was impacted by water availability, with elimination of water reducing use in areas associated with our treatment, but not with areas associated with our control. Visitations of radio-collared coyotes to guzzlers declined nearly 3-fold following elimination of water. Our study provides the first evidence of a potential direct effect of water sources on a mammalian carnivore in an arid environment, but the ecological relevance of our finding is debatable. Future investigations aimed at determining water effects on terrestrial mammals could expand on our findings by incorporating manipulations of water availability, obtaining absolute estimates of population parameters and vital rates and incorporating fine-scale spatiotemporal data.

  14. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis

    Poecke, R.M.P.; Posthumus, M.A.; Dicke, M.

    2001-01-01

    Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of

  15. Predicting carnivore occurrence with noninvasive surveys and occupancy modeling

    Long, Robert A.; Donovan, Therese M.; MacKay, Paula; Zielinski, William J.; Buzas, Jeffrey S.

    2011-01-01

    Terrestrial carnivores typically have large home ranges and exist at low population densities, thus presenting challenges to wildlife researchers. We employed multiple, noninvasive survey methods—scat detection dogs, remote cameras, and hair snares—to collect detection–nondetection data for elusive American black bears (Ursus americanus), fishers (Martes pennanti), and bobcats (Lynx rufus) throughout the rugged Vermont landscape. We analyzed these data using occupancy modeling that explicitly incorporated detectability as well as habitat and landscape variables. For black bears, percentage of forested land within 5 km of survey sites was an important positive predictor of occupancy, and percentage of human developed land within 5 km was a negative predictor. Although the relationship was less clear for bobcats, occupancy appeared positively related to the percentage of both mixed forest and forested wetland habitat within 1 km of survey sites. The relationship between specific covariates and fisher occupancy was unclear, with no specific habitat or landscape variables directly related to occupancy. For all species, we used model averaging to predict occurrence across the study area. Receiver operating characteristic (ROC) analyses of our black bear and fisher models suggested that occupancy modeling efforts with data from noninvasive surveys could be useful for carnivore conservation and management, as they provide insights into habitat use at the regional and landscape scale without requiring capture or direct observation of study species.

  16. Does litter size variation affect models of terrestrial carnivore extinction risk and management?

    Eleanor S Devenish-Nelson

    Full Text Available Individual variation in both survival and reproduction has the potential to influence extinction risk. Especially for rare or threatened species, reliable population models should adequately incorporate demographic uncertainty. Here, we focus on an important form of demographic stochasticity: variation in litter sizes. We use terrestrial carnivores as an example taxon, as they are frequently threatened or of economic importance. Since data on intraspecific litter size variation are often sparse, it is unclear what probability distribution should be used to describe the pattern of litter size variation for multiparous carnivores.We used litter size data on 32 terrestrial carnivore species to test the fit of 12 probability distributions. The influence of these distributions on quasi-extinction probabilities and the probability of successful disease control was then examined for three canid species - the island fox Urocyon littoralis, the red fox Vulpes vulpes, and the African wild dog Lycaon pictus. Best fitting probability distributions differed among the carnivores examined. However, the discretised normal distribution provided the best fit for the majority of species, because variation among litter-sizes was often small. Importantly, however, the outcomes of demographic models were generally robust to the distribution used.These results provide reassurance for those using demographic modelling for the management of less studied carnivores in which litter size variation is estimated using data from species with similar reproductive attributes.

  17. Aspects of a two-pasture — herbivore model

    Jan Åge Riseth

    2004-04-01

    Full Text Available Pastures for reindeer can be divided into green pastures (mainly herbs and grasses of summer time and more or less snow-covered lichen pastures of winter. Fall and spring pastures have a composition in-between these extremes, but for model purposes bisection is sufficient. For the animals the green-pasture season is an anabolic phase with a physiological building-up of protein reserves, while winter is a catabolic phase where food-intake is reduced and the animals to a considerable extent survive on the accumulated reserves from summer. While protein reserves are stored from summer to winter, lichen pastures are stored from year to year. Grasses and herbs not being grazed are wilting by the end of the growing season, while lichens not grazed can live for many years. This corresponds with fundamental differences in both growth pattern and resilience. The implications of the different features, and their interconnections, are not easy to survey without formal modeling. The point of departure is a simple pasture-herbivore model, well known from the literature building on a set of differential equations. A new two-pasture-herbivore model is developed. The model includes as basic elements the Klein (1968 hypothesis and that a residual lichen biomass is kept ungrazed due to snow-cover protection. Further the annual cycle is divided into four stylized seasons with herd rates of winter survival, spring calving, summer physiological growth and fall slaughtering. Isoclines are derived for summer pasture, winter pasture and herbivores. Stability properties are discussed in relation to various situations of seasonal pasture balance. Empirical examples, particularly that of changes in pasture balance and vegetation cover in Western Finnmark, Norway, are discussed. The article finds that the two-pasture model provides important features of reality, such as the stability aspects of pasture balance, which cannot be displayed by a one-pasture model. It is

  18. Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-01

    Abstract Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant’s competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional–structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant–plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering

  19. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling.

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-24

    Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions

  20. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.

    Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A

    2015-09-01

    1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We

  1. Spatial and functional modeling of carnivore and insectivore molariform teeth.

    Evans, Alistair R; Sanson, Gordon D

    2006-06-01

    The interaction between the two main competing geometric determinants of teeth (the geometry of function and the geometry of occlusion) were investigated through the construction of three-dimensional spatial models of several mammalian tooth forms (carnassial, insectivore premolar, zalambdodont, dilambdodont, and tribosphenic). These models aim to emulate the shape and function of mammalian teeth. The geometric principles of occlusion relating to single- and double-crested teeth are reviewed. Function was considered using engineering principles that relate tooth shape to function. Substantial similarity between the models and mammalian teeth were achieved. Differences between the two indicate the influence of tooth strength, geometric relations between upper and lower teeth (including the presence of the protocone), and wear on tooth morphology. The concept of "autocclusion" is expanded to include any morphological features that ensure proper alignment of cusps on the same tooth and other teeth in the tooth row. It is concluded that the tooth forms examined are auto-aligning, and do not require additional morphological guides for correct alignment. The model of therian molars constructed by Crompton and Sita-Lumsden ([1970] Nature 227:197-199) is reconstructed in 3D space to show that their hypothesis of crest geometry is erroneous, and that their model is a special case of a more general class of models. (c) 2004 Wiley-Liss, Inc.

  2. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite

    Boer, de J.G.; Posthumus, M.A.; Dicke, M.

    2004-01-01

    Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis

  3. Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys

    Karanth, Kota Ullas; Gopalaswamy, Arjun M.; Kumar, Narayanarao Samba; Vaidyanathan, Srinivas; Nichols, James D.; MacKenzie, Darryl I.

    2011-01-01

    1. Assessing spatial distributions of threatened large carnivores at landscape scales poses formidable challenges because of their rarity and elusiveness. As a consequence of logistical constraints, investigators typically rely on sign surveys. Most survey methods, however, do not explicitly address the central problem of imperfect detections of animal signs in the field, leading to underestimates of true habitat occupancy and distribution. 2. We assessed habitat occupancy for a tiger Panthera tigris metapopulation across a c. 38 000-km2 landscape in India, employing a spatially replicated survey to explicitly address imperfect detections. Ecological predictions about tiger presence were confronted with sign detection data generated from occupancy sampling of 205 sites, each of 188 km2. 3. A recent occupancy model that considers Markovian dependency among sign detections on spatial replicates performed better than the standard occupancy model (ΔAIC = 184·9). A formulation of this model that fitted the data best showed that density of ungulate prey and levels of human disturbance were key determinants of local tiger presence. Model averaging resulted in a replicate-level detection probability [inline image] = 0·17 (0·17) for signs and a tiger habitat occupancy estimate of [inline image] = 0·665 (0·0857) or 14 076 (1814) km2 of potential habitat of 21 167 km2. In contrast, a traditional presence-versus-absence approach underestimated occupancy by 47%. Maps of probabilities of local site occupancy clearly identified tiger source populations at higher densities and matched observed tiger density variations, suggesting their potential utility for population assessments at landscape scales. 4. Synthesis and applications. Landscape-scale sign surveys can efficiently assess large carnivore spatial distributions and elucidate the factors governing their local presence, provided ecological and observation processes are both explicitly modelled. Occupancy

  4. Carnivore translocations and conservation: insights from population models and field data for fishers (Martes pennanti.

    Jeffrey C Lewis

    Full Text Available Translocations are frequently used to restore extirpated carnivore populations. Understanding the factors that influence translocation success is important because carnivore translocations can be time consuming, expensive, and controversial. Using population viability software, we modeled reintroductions of the fisher, a candidate for endangered or threatened status in the Pacific states of the US. Our model predicts that the most important factor influencing successful re-establishment of a fisher population is the number of adult females reintroduced (provided some males are also released. Data from 38 translocations of fishers in North America, including 30 reintroductions, 5 augmentations and 3 introductions, show that the number of females released was, indeed, a good predictor of success but that the number of males released, geographic region and proximity of the source population to the release site were also important predictors. The contradiction between model and data regarding males may relate to the assumption in the model that all males are equally good breeders. We hypothesize that many males may need to be released to insure a sufficient number of good breeders are included, probably large males. Seventy-seven percent of reintroductions with known outcomes (success or failure succeeded; all 5 augmentations succeeded; but none of the 3 introductions succeeded. Reintroductions were instrumental in reestablishing fisher populations within their historical range and expanding the range from its most-contracted state (43% of the historical range to its current state (68% of the historical range. To increase the likelihood of translocation success, we recommend that managers: 1 release as many fishers as possible, 2 release more females than males (55-60% females when possible, 3 release as many adults as possible, especially large males, 4 release fishers from a nearby source population, 5 conduct a formal feasibility assessment, and

  5. Carnivorous heterotopias

    Lapina, Linda; Leer, Jonatan

    2016-01-01

    . We argue that these spaces of consumption express nostalgia and longing for authenticity that are simultaneously articulated as progressive and emancipatory. Consequently, these sites represent middle-class masculine counter-spaces – masculine, carnivorous heterotopias where archaic, working class...... and decorations), appeasing a presumed masculine appetite and conveying ideas about masculine, carnivorous bonding/community and a masculine, heterosexual, middle-class gaze. This article examines two manifestations of these celebrations of meat and masculinity: the hotdog restaurant Foderbrættet (‘The Bird Table......’, opened in 2014 and elected as the 2014 Best New Restaurant in Copenhagen) and WarPigs, a Texas-inspired barbecue opened in 2015. We discuss negotiations of masculinity in these meatscapes that challenge contemporary ideals for (sustainable, moderate, wholesome) food consumption and gender performances...

  6. The logistic model-generated carrying capacities for wild herbivores ...

    Jesse

    Under this formulation, both carrying capacity and exchange ratios are endogenously determined (Kinyua and Njoka, 2001), making it possible to empirically estimate the population growth models for Grant's gazelle, Thompson's gazelle and Zebra. (1) for i = 1,…,n-1 j = 1,…,2 and i ≠ j. Here Hit+1, measured in animal units, ...

  7. Carnivorous heterotopias

    Lapina, Linda; Leer, Jonatan

    2016-01-01

    . We argue that these spaces of consumption express nostalgia and longing for authenticity that are simultaneously articulated as progressive and emancipatory. Consequently, these sites represent middle class masculine counter-spaces where archaic, working class modes of doing masculinity (such...... and decorations), appeasing a presumed masculine appetite and conveying ideas about masculine, carnivorous bonding/community and a masculine, heterosexual, middle class gaze. This article examines two manifestations of these celebrations of meat and masculinity: the hotdog restaurant Foderbrættet (‘The Bird Table......’, opened in 2014 and elected as the 2014 Best New Restaurant in Copenhagen) and WarPigs, a Texas-inspired barbecue opened in 2015. We discuss negotiations of masculinity in these meatscapes that challenge contemporary ideals for (sustainable, moderate, wholesome) food consumption and gender performances...

  8. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar.

    Zach J Farris

    Full Text Available The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting affect carnivore occupancy across Madagascar's largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species and domestic dogs (Canis familiaris had higher occupancy than half of the native carnivore species across Madagascar's largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica. Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (mean=90 individuals consumed/year, the ring-tailed vontsira (Galidia elegans (mean=58 consumed/year, and the fosa (Cryptoprocta ferox (mean=31 consumed/year. Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are highest

  9. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar.

    Farris, Zach J; Golden, Christopher D; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M; Kelly, Marcella J

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting) affect carnivore occupancy across Madagascar's largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species) and domestic dogs (Canis familiaris) had higher occupancy than half of the native carnivore species across Madagascar's largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana) occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica). Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (mean=90 individuals consumed/year), the ring-tailed vontsira (Galidia elegans) (mean=58 consumed/year), and the fosa (Cryptoprocta ferox) (mean=31 consumed/year). Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are highest. These various

  10. Neimark-Sacker Bifurcation and Chaos Control in a Fractional-Order Plant-Herbivore Model

    Qamar Din

    2017-01-01

    Full Text Available This work is related to dynamics of a discrete-time 3-dimensional plant-herbivore model. We investigate existence and uniqueness of positive equilibrium and parametric conditions for local asymptotic stability of positive equilibrium point of this model. Moreover, it is also proved that the system undergoes Neimark-Sacker bifurcation for positive equilibrium with the help of an explicit criterion for Neimark-Sacker bifurcation. The chaos control in the model is discussed through implementation of two feedback control strategies, that is, pole-placement technique and hybrid control methodology. Finally, numerical simulations are provided to illustrate theoretical results. These results of numerical simulations demonstrate chaotic long-term behavior over a broad range of parameters. The computation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the model.

  11. Information use by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae), a specialised natural enemy of herbivorous spider mites

    Boer, de J.G.; Dicke, M.

    2005-01-01

    Plants can respond to infestation by herbivores with the emission of specific herbivore-induced plant volatiles. Many carnivorous arthropods that feed on herbivorous prey use these volatiles to locate their prey. Despite the growing amount of research papers on the interactions in tritrophic

  12. Landscape-scale accessibility of livestock to tigers: implications of spatial grain for modeling predation risk to mitigate human-carnivore conflict.

    Miller, Jennifer R B; Jhala, Yadvendradev V; Jena, Jyotirmay; Schmitz, Oswald J

    2015-03-01

    Innovative conservation tools are greatly needed to reduce livelihood losses and wildlife declines resulting from human-carnivore conflict. Spatial risk modeling is an emerging method for assessing the spatial patterns of predator-prey interactions, with applications for mitigating carnivore attacks on livestock. Large carnivores that ambush prey attack and kill over small areas, requiring models at fine spatial grains to predict livestock depredation hot spots. To detect the best resolution for predicting where carnivores access livestock, we examined the spatial attributes associated with livestock killed by tigers in Kanha Tiger Reserve, India, using risk models generated at 20, 100, and 200-m spatial grains. We analyzed land-use, human presence, and vegetation structure variables at 138 kill sites and 439 random sites to identify key landscape attributes where livestock were vulnerable to tigers. Land-use and human presence variables contributed strongly to predation risk models, with most variables showing high relative importance (≥0.85) at all spatial grains. The risk of a tiger killing livestock increased near dense forests and near the boundary of the park core zone where human presence is restricted. Risk was nonlinearly related to human infrastructure and open vegetation, with the greatest risk occurring 1.2 km from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were characterized by denser, patchier, and more complex vegetation with lower visibility than random sites. Risk maps revealed high-risk hot spots inside of the core zone boundary and in several patches in the human-dominated buffer zone. Validation against known kills revealed predictive accuracy for only the 20 m model, the resolution best representing the kill stage of hunting for large carnivores that ambush prey, like the tiger. Results demonstrate that risk models developed at fine spatial grains can offer accurate guidance on landscape attributes livestock should

  13. Straminipilous organisms growing on herbivorous pirapitinga (Piaractus brachypomus and carnivorous piranha (Pygocentrus nattereri from Poland Organismos stramenophila em crescimento na herbívora pirapitinga (Piaractus brachypomus e na carnívora piranha (Pygocentrus nattereri da Polônia

    B. Czeczuga

    2010-05-01

    Full Text Available We investigated the growth of straminipilous organisms on the skin, muscles and liver of herbivorous pirapitinga (Piaractus brachypomus and carnivorous piranha (Pygocentrus nattereri in water of three different eutrophication levels. Sixteen straminipilous organism species were found growing on the investigated body parts of both species of fish used as baits. The higher number of species was found on the baits of carnivorous species (15 when compared with the ones from the herbivorous pirapitinga (10 species. The highest number of straminipilous organisms species developed on the skin of both species of fish. The highest number of species of straminipilous organisms was observed growing in the water of the BiaBa river (middle eutrophication, while the lowest number occurred in the baits of vessels with water from the Dojlidy pond (low eutrophication.Investigamos o crescimento de organismos stramenophila sobre a pele, músculos e fígado da herbívora pirapitinga (Piaractus brachypomus e da carnívora piranha (Pygocentrus nattereri em águas de três diferentes níveis de eutrofização. Dezesseis espécies de organismos stramenophila foram encontradas crescendo sobre as partes do corpo investigadas de ambas as espécies de peixes utilizadas como cobaias. O maior número de espécies foi encontrado em cobaias de espécies carnívoras (15, quando comparado com o da herbívora pirapitinga (10 espécies. A maioria das espécies de organismos stramenophila desenvolveu-se sobre a pele de ambas as espécies de peixes. O maior número de espécies de organismos stramenophila foi observado em crescimento nas águas do rio BiaBa (eutrofização do meio, enquanto o número mais baixo ocorreu em cobaias de vasos com água do lago de Dojlidy (eutrofização baixa.

  14. Energy metabolism and nutrient oxidation in the pregnant mink (Mustela vison) as a model for other carnivores.

    Tauson, A H; Elnif, J; Hansen, N E

    1994-12-01

    The mink is a strict carnivore and a seasonal breeder, which may be used as an experimental model for other carnivores. The present investigation comprised a total of 44 balance experiments, each including a 24-h measurement of heat production by indirect calorimetry, carried out from mating until close to parturition. For observations with a nonprotein respiratory quotient between 0.7 and 1.0 (n = 42), quantitative oxidation of nutrients was calculated. The weight gain of the uterus during pregnancy was studied in 41 females killed either before mating, before implantation, after implantation or in mid or late true gestation, and energy retention was calculated. Heat production did not increase with advancing stage of gestation. Mean energy retention was low and in some individuals with repeated measurements even negative, indicating that part of the energy requirement for pregnancy may be supplied by mobilization of body reserves. This was reflected by a high level (42%) of fat oxidation in relation to total heat production. Protein oxidation accounted for 38% of heat production. The weight gain of the uterus during pregnancy could be described by logarithmic functions. Energy deposition in fetal tissue was low and only averaged approximately 350 kJ 47 d after mating.

  15. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics

    Neuhausler, R.; Robinson, M.; Bruna, M.

    2017-12-01

    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  16. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Van der Putten, W.H.

    2012-01-01

    Invasive non-nativeplant species often harbor fewer herbivorous insects than related nativeplant species. However, little is known about how herbivorous insects on non-nativeplants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  17. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  18. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  19. How does dietary particle size affect carnivore gastrointestinal transit: A dog model.

    De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J

    2018-04-01

    The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.

  20. Modeling the long-term effects of introduced herbivores on the spread of an invasive tree

    Zhang, Bo; DeAngelis, Donald L.; Rayamajhi, Min B.; Botkin, Daniel B.

    2017-01-01

    ContextMelaleuca quinquenervia (Cav.) Blake (hereafter melaleuca) is an invasive tree from Australia that has spread over the freshwater ecosystems of southern Florida, displacing native vegetation, thus threatening native biodiversity. Suppression of melaleuca appears to be progressing through the introduction of insect species, the weevil, Oxiops vitiosa, and the psyllid, Boreioglycaspis melaleucae.ObjectiveTo improve understanding of the possible effects of herbivory on the landscape dynamics of melaleuca in native southern Florida plant communities.MethodsWe projected likely future changes in plant communities using the individual based modeling platform, JABOWA-II, by simulating successional processes occurring in two types of southern Florida habitat, cypress swamp and bay swamp, occupied by native species and melaleuca, with the impact of insect herbivores.ResultsComputer simulations show melaleuca invasion leads to decreases in density and basal area of native species, but herbivory would effectively control melaleuca to low levels, resulting in a recovery of native species. When herbivory was modeled on pure melaleuca stands, it was more effective in stands with initially larger-sized melaleuca. Although the simulated herbivory did not eliminate melaleuca, it decreased its presence dramatically in all cases, supporting the long-term effectiveness of herbivory in controlling melaleuca invasion.ConclusionsThe results provide three conclusions relevant to management: (1) The introduction of insect herbivory that has been applied to melaleuca appears sufficient to suppress melaleuca over the long term, (2) dominant native species may recover in about 50 years, and (3) regrowth of native species will further suppress melaleuca through competition.

  1. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar

    Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting) affect carnivore occupancy across Madagascar’s largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species) and domestic dogs (Canis familiaris) had higher occupancy than half of the native carnivore species across Madagascar’s largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana) occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica). Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (x¯ = 90 individuals consumed/year), the ring-tailed vontsira (Galidia elegans) (x¯ = 58 consumed/year), and the fosa (Cryptoprocta ferox) (x¯ = 31 consumed/year). Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are

  2. Modeling trade-offs between plant fiber and toxins: a framework for quantifying risks perceived by foraging herbivores.

    Camp, Meghan J; Shipley, Lisa A; Johnson, Timothy R; Forbey, Jennifer Sorensen; Rachlow, Janet L; Crowell, Miranda M

    2015-12-01

    When selecting habitats, herbivores must weigh multiple risks, such as predation, starvation, toxicity, and thermal stress, forcing them to make fitness trade-offs. Here, we applied the method of paired comparisons (PC) to investigate how herbivores make trade-offs between habitat features that influence selection of food patches. The method of PC measures utility and the inverse of utility, relative risk, and makes trade-offs and indifferences explicit by forcing animals to make choices between two patches with different types of risks. Using a series of paired-choice experiments to titrate the equivalence curve and find the marginal rate of substitution for one risk over the other, we evaluated how toxin-tolerant (pygmy rabbit Brachylagus idahoensis) and fiber-tolerant (mountain cottontail rabbit Sylviagus nuttallii) herbivores differed in their hypothesized perceived risk of fiber and toxins in food. Pygmy rabbits were willing to consume nearly five times more of the toxin 1,8-cineole in their diets to avoid consuming higher levels of fiber than were mountain cottontails. Fiber posed a greater relative risk for pygmy rabbits than cottontails and cineole a greater risk for cottontails than pygmy rabbits. Our flexible modeling approach can be used to (1) quantify how animals evaluate and trade off multiple habitat attributes when the benefits and risks are difficult to quantify, and (2) integrate diverse risks that influence fitness and habitat selection into a single index of habitat value. This index potentially could be applied to landscapes to predict habitat selection across several scales.

  3. Bobcats (Lynx rufus) as a Model Organism to Investigate the Effects of Roads on Wide-Ranging Carnivores.

    Litvaitis, John A; Reed, Gregory C; Carroll, Rory P; Litvaitis, Marian K; Tash, Jeffrey; Mahard, Tyler; Broman, Derek J A; Callahan, Catherine; Ellingwood, Mark

    2015-06-01

    We are using bobcats (Lynx rufus) as a model organism to examine how roads affect the abundance, distribution, and genetic structure of a wide-ranging carnivore. First, we compared the distribution of bobcat-vehicle collisions to road density and then estimated collision probabilities for specific landscapes using a moving window with road-specific traffic volume. Next, we obtained incidental observations of bobcats from the public, camera-trap detections, and locations of bobcats equipped with GPS collars to examine habitat selection. These data were used to generate a cost-surface map to investigate potential barrier effects of roads. Finally, we have begun an examination of genetic structure of bobcat populations in relation to major road networks. Distribution of vehicle-killed bobcats was correlated with road density, especially state and interstate highways. Collision models suggested that some regions may function as demographic sinks. Simulated movements in the context of the cost-surface map indicated that some major roads may be barriers. These patterns were supported by the genetic structure of bobcats. The sharpest divisions among genetically distinct demes occurred along natural barriers (mountains and large lakes) and in road-dense regions. In conclusion, our study has demonstrated the utility of using bobcats as a model organism to understand the variety of threats that roads pose to a wide-ranging species. Bobcats may also be useful as one of a group of focal species while developing approaches to maintain existing connectivity or mitigate the negative effects of roads.

  4. Cadmium accumulation in herbivorous and carnivorous small mammals: meta-analysis of field data and validation of the bioaccumulation model optomal modeling for ecotoxicological applications

    Veltman, K.; Huijbregts, M.A.J.; Hamers, T.; Wijnhoven, S.; Hendriks, A.J.

    2007-01-01

    Environmental risk assessment procedures often use bioaccumulation as a criterion for hazard identification of a polluted location. Field studies regarding metal concentrations in food chains, however, have provided widely different information, because accumulation is shown to vary between the

  5. Does spatial co-occurrence of carnivores in a Central European agricultural landscape follow the null model?

    Šálek, Martin; Červinka, J.; Padyšáková, E.; Kreisinger, Jakub

    2014-01-01

    Roč. 60, č. 1 (2014), s. 99-107 ISSN 1612-4642 R&D Projects: GA MŠk LC06073 Institutional support: RVO:68081766 Keywords : Carnivores * Co-occurrence * Interspecific competition * Mesopredator release * Agricultural landscape Subject RIV: EG - Zoology Impact factor: 1.634, year: 2014

  6. Using occupancy and population models to assess habitat conservation opportunities for an isolated carnivore population

    Wayne Spencer; Heather Rustigian-Romsos; James Strittholt; Robert Scheller; William Zielinski; Richard Truex

    2011-01-01

    An isolated population of the fisher (Martes pennanti) in the southern Sierra Nevada, California, is threatened by small size and habitat alteration from wildfires, fuels management, and other factors. We assessed the population’s status and conservation options for its habitat using a spatially explicit population model coupled with a...

  7. Carnivore specific bone bioapatite and collagen carbon isotope fractionations: Case studies of modern and fossil grey wolf populations

    Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.

    2006-12-01

    Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter

  8. Plants are not sitting ducks waiting for herbivores to eat them.

    Lev-Yadun, Simcha

    2016-05-03

    There is a common attitude toward plants, accordingly, plants are waiting around to be found and eaten by herbivores. This common approach toward plants is a great underestimation of the huge and variable arsenal of defensive plant strategies. Plants do everything evolution has allowed them to do in order not to be eaten. Therefore, plants are not sitting ducks and many plants outsmart and even exploit many invertebrate and vertebrate herbivores and carnivores for pollination and for seed dispersal, and even carnivores and parasitoids for defense.

  9. Accumulation of organochlorines and brominated flame retardants in estuarine and marine food chains: Field measurements and model calculations

    Veltman, K.; Hendriks, J.; Huijbregts, M.; Leonards, P.E.G.; Heuvel-Greve, van den M.J.; Vethaak, D.

    2005-01-01

    Food chain accumulation of organochlorines and brominated flame retardants in estuarine and marine environments is compared to model estimations and fresh water field data. The food chain consists of herbivores, detritivores and primary and secondary carnivores i.e. fish, fish-eating birds and

  10. Carnivores of Syria

    Marco Masseti

    2009-12-01

    Full Text Available The aim of this research is to outline the local occurrence and recent distribution of carnivores in Syria (Syrian Arab Republic in order to offer a starting point for future studies. The species of large dimensions, such as the Asiatic lion, the Caspian tiger, the Asiatic cheetah, and the Syrian brown bear, became extinct in historical times, the last leopard being reputed to have been killed in 1963 on the Alauwit Mountains (Al Nusyriain Mountains. The checklist of the extant Syrian carnivores amounts to 15 species, which are essentially referable to 4 canids, 5 mustelids, 4 felids – the sand catbeen reported only recently for the first time – one hyaenid, and one herpestid. The occurrence of the Blandford fox has yet to be confirmed. This paper is almost entirely the result of a series of field surveys carried out by the author mainly between 1989 and 1995, integrated by data from several subsequent reports and sightings by other authors.

  11. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges...

  12. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison

    Mayntz, David; Nielsen, Vivi Hunnicke; Sørensen, Allan

    2009-01-01

    Many herbivores and omnivores can balance their intake of macronutrients when faced with nutritionally variable environments. Carnivores, however, are widely believed to optimize their rates of prey capture and energy intake rather than balancing nutrients. We tested nutrient balancing in captive...... target) of the two macronutrients. When given only one food of fixed nutrient composition, mink balanced macronutrient intake relative to the intake target, without showing the excessive energy intake on diets with a low percentage of protein and energy deficit on diets with a high percentage of protein...... previously reported for herbivores and omnivores, including humans. This demonstration of nutrient balancing in a carnivorous mammal indicates that the capacity for nutrient balancing is a more general phenomenon across trophic levels than was hitherto believed to be the case...

  13. Assessing sloth bears as surrogates for carnivore conservation in Sri Lanka

    Ratnayeke, Shyamala; Van Manen, Frank T.

    2012-01-01

    Bears are large, charismatic mammals whose presence often garners conservation attention. Because healthy bear populations typically require large, contiguous areas of habitat, land conservation actions often are assumed to benefit co-occurring species, including other mammalian carnivores. However, we are not aware of an empirical test of this assumption. We used remote camera data from 2 national parks in Sri Lanka to test the hypothesis that the frequency of detection of sloth bears (Melursus ursinus) is associated with greater richness of carnivore species. We focused on mammalian carnivores because they play a pivotal role in the stability of ecological communities and are among Sri Lanka's most endangered species. Seven of Sri Lanka's carnivores are listed as endangered, vulnerable, or near threatened, and little empirical information exists on their status and distribution. During 2002–03, we placed camera traps at 152 sites to document carnivore species presence. We used Poisson regression to develop predictive models for 3 categories of dependent variables: species richness of (1) all carnivores, (2) carnivores considered at risk, and (3) carnivores of least conservation concern. For each category, we analyzed 8 a priori models based on combinations of sloth bear detections, sample year, and study area and used Akaike's information criterion (AICc) to test our research hypothesis. We detected sloth bears at 55 camera sites and detected 13 of Sri Lanka's 14 Carnivora species. Species richness of all carnivores showed positive associations with the number of sloth bear detections, regardless of study area. Sloth bear detections were also positively associated with species richness of carnivores at risk across both study years and study areas, but not with species richness of common carnivores. Sloth bears may serve as a valuable surrogate species whose habitat protection would contribute to conservation of other carnivores in Sri Lanka.

  14. Simplified large African carnivore density estimators from track indices

    Christiaan W. Winterbach

    2016-12-01

    Full Text Available Background The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. Methods We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. Results The Lion on Clay and Low Density on Sand models with intercept were not significant (P > 0.05. The other four models with intercept and the six models thorough origin were all significant (P < 0.05. The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Discussion Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore

  15. Modeling connectivity to identify current and future anthropogenic barriers to movement of large carnivores: A case study in the American Southwest.

    McClure, Meredith L; Dickson, Brett G; Nicholson, Kerry L

    2017-06-01

    This study sought to identify critical areas for puma ( Puma concolor ) movement across the state of Arizona in the American Southwest and to identify those most likely to be impacted by current and future human land uses, particularly expanding urban development and associated increases in traffic volume. Human populations in this region are expanding rapidly, with the potential for urban centers and busy roads to increasingly act as barriers to demographic and genetic connectivity of large-bodied, wide-ranging carnivores such as pumas, whose long-distance movements are likely to bring them into contact with human land uses and whose low tolerance both for and from humans may put them at risk unless opportunities for safe passage through or around human-modified landscapes are present. Brownian bridge movement models based on global positioning system collar data collected during bouts of active movement and linear mixed models were used to model habitat quality for puma movement; then, a wall-to-wall application of circuit theory models was used to produce a continuous statewide estimate of connectivity for puma movement and to identify pinch points, or bottlenecks, that may be most at risk of impacts from current and future traffic volume and expanding development. Rugged, shrub- and scrub-dominated regions were highlighted as those offering high quality movement habitat for pumas, and pinch points with the greatest potential impacts from expanding development and traffic, although widely distributed, were particularly prominent to the north and east of the city of Phoenix and along interstate highways in the western portion of the state. These pinch points likely constitute important conservation opportunities, where barriers to movement may cause disproportionate loss of connectivity, but also where actions such as placement of wildlife crossing structures or conservation easements could enhance connectivity and prevent detrimental impacts before they occur.

  16. Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies

    Kappers, I.F.; Hoogerbrugge, H.; Bouwmeester, H.J.; Dicke, M.

    2011-01-01

    In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the

  17. Carnivore hotspots in Peninsular Malaysia and their landscape attributes

    van Manen, Frank T.

    2018-01-01

    Mammalian carnivores play a vital role in ecosystem functioning. However, they are prone to extinction because of low population densities and growth rates, and high levels of persecution or exploitation. In tropical biodiversity hotspots such as Peninsular Malaysia, rapid conversion of natural habitats threatens the persistence of this vulnerable group of animals. Here, we carried out the first comprehensive literature review on 31 carnivore species reported to occur in Peninsular Malaysia and updated their probable distribution. We georeferenced 375 observations of 28 species of carnivore from 89 unique geographic locations using records spanning 1948 to 2014. Using the Getis-Ord Gi*statistic and weighted survey records by IUCN Red List status, we identified hotspots of species that were of conservation concern and built regression models to identify environmental and anthropogenic landscape factors associated with Getis-Ord Gi* z scores. Our analyses identified two carnivore hotspots that were spatially concordant with two of the peninsula’s largest and most contiguous forest complexes, associated with Taman Negara National Park and Royal Belum State Park. A cold spot overlapped with the southwestern region of the Peninsula, reflecting the disappearance of carnivores with higher conservation rankings from increasingly fragmented natural habitats. Getis-Ord Gi* z scores were negatively associated with elevation, and positively associated with the proportion of natural land cover and distance from the capital city. Malaysia contains some of the world’s most diverse carnivore assemblages, but recent rates of forest loss are some of the highest in the world. Reducing poaching and maintaining large, contiguous tracts of lowland forests will be crucial, not only for the persistence of threatened carnivores, but for many mammalian species in general. PMID:29617402

  18. Carnivore hotspots in Peninsular Malaysia and their landscape attributes.

    Ratnayeke, Shyamala; van Manen, Frank T; Clements, Gopalasamy Reuben; Kulaimi, Noor Azleen Mohd; Sharp, Stuart P

    2018-01-01

    Mammalian carnivores play a vital role in ecosystem functioning. However, they are prone to extinction because of low population densities and growth rates, and high levels of persecution or exploitation. In tropical biodiversity hotspots such as Peninsular Malaysia, rapid conversion of natural habitats threatens the persistence of this vulnerable group of animals. Here, we carried out the first comprehensive literature review on 31 carnivore species reported to occur in Peninsular Malaysia and updated their probable distribution. We georeferenced 375 observations of 28 species of carnivore from 89 unique geographic locations using records spanning 1948 to 2014. Using the Getis-Ord Gi*statistic and weighted survey records by IUCN Red List status, we identified hotspots of species that were of conservation concern and built regression models to identify environmental and anthropogenic landscape factors associated with Getis-Ord Gi* z scores. Our analyses identified two carnivore hotspots that were spatially concordant with two of the peninsula's largest and most contiguous forest complexes, associated with Taman Negara National Park and Royal Belum State Park. A cold spot overlapped with the southwestern region of the Peninsula, reflecting the disappearance of carnivores with higher conservation rankings from increasingly fragmented natural habitats. Getis-Ord Gi* z scores were negatively associated with elevation, and positively associated with the proportion of natural land cover and distance from the capital city. Malaysia contains some of the world's most diverse carnivore assemblages, but recent rates of forest loss are some of the highest in the world. Reducing poaching and maintaining large, contiguous tracts of lowland forests will be crucial, not only for the persistence of threatened carnivores, but for many mammalian species in general.

  19. Carnivore hotspots in Peninsular Malaysia and their landscape attributes

    Ratnayeke, Shyamala; van Manen, Frank T.; Clements, Gopalasamy Reuben; Mohd Kulaimi, Noor Azleen; Sharp, Stuart P.

    2018-01-01

    Mammalian carnivores play a vital role in ecosystem functioning. However, they are prone to extinction because of low population densities and growth rates, and high levels of persecution or exploitation. In tropical biodiversity hotspots such as Peninsular Malaysia, rapid conversion of natural habitats threatens the persistence of this vulnerable group of animals. Here, we carried out the first comprehensive literature review on 31 carnivore species reported to occur in Peninsular Malaysia and updated their probable distribution. We georeferenced 375 observations of 28 species of carnivore from 89 unique geographic locations using records spanning 1948 to 2014. Using the Getis-Ord Gi*statistic and weighted survey records by IUCN Red List status, we identified hotspots of species that were of conservation concern and built regression models to identify environmental and anthropogenic landscape factors associated with Getis-Ord Gi* z scores. Our analyses identified two carnivore hotspots that were spatially concordant with two of the peninsula’s largest and most contiguous forest complexes, associated with Taman Negara National Park and Royal Belum State Park. A cold spot overlapped with the southwestern region of the Peninsula, reflecting the disappearance of carnivores with higher conservation rankings from increasingly fragmented natural habitats. Getis-Ord Gi* z scores were negatively associated with elevation, and positively associated with the proportion of natural land cover and distance from the capital city. Malaysia contains some of the world’s most diverse carnivore assemblages, but recent rates of forest loss are some of the highest in the world. Reducing poaching and maintaining large, contiguous tracts of lowland forests will be crucial, not only for the persistence of threatened carnivores, but for many mammalian species in general.

  20. Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox.

    Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P

    2015-01-01

    Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be

  1. The global distribution of diet breadth in insect herbivores.

    Forister, Matthew L; Novotny, Vojtech; Panorska, Anna K; Baje, Leontine; Basset, Yves; Butterill, Philip T; Cizek, Lukas; Coley, Phyllis D; Dem, Francesca; Diniz, Ivone R; Drozd, Pavel; Fox, Mark; Glassmire, Andrea E; Hazen, Rebecca; Hrcek, Jan; Jahner, Joshua P; Kaman, Ondrej; Kozubowski, Tomasz J; Kursar, Thomas A; Lewis, Owen T; Lill, John; Marquis, Robert J; Miller, Scott E; Morais, Helena C; Murakami, Masashi; Nickel, Herbert; Pardikes, Nicholas A; Ricklefs, Robert E; Singer, Michael S; Smilanich, Angela M; Stireman, John O; Villamarín-Cortez, Santiago; Vodka, Stepan; Volf, Martin; Wagner, David L; Walla, Thomas; Weiblen, George D; Dyer, Lee A

    2015-01-13

    Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

  2. Evaluating herbivore extinction probabilities in Addo Elephant ...

    Abstract. Population extinction evaluations, based on the model developed by Dennis et al. (1991) that did not take density dependence into account and that were based on census data, suggest that many of the herbivore species in Addo Elephant National Park (AENP) are vulnerable to local extinction. As a result of low ...

  3. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  4. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations.

    Xue, Zhengsheng; Zhang, Wenping; Wang, Linghua; Hou, Rong; Zhang, Menghui; Fei, Lisong; Zhang, Xiaojun; Huang, He; Bridgewater, Laura C; Jiang, Yi; Jiang, Chenglin; Zhao, Liping; Pang, Xiaoyan; Zhang, Zhihe

    2015-05-19

    The giant panda evolved from omnivorous bears. It lives on a bamboo-dominated diet at present, but it still retains a typical carnivorous digestive system and is genetically deficient in cellulose-digesting enzymes. To find out whether this endangered mammalian species, like other herbivores, has successfully developed a gut microbiota adapted to its fiber-rich diet, we conducted a 16S rRNA gene-based large-scale structural profiling of the giant panda fecal microbiota. Forty-five captive individuals were sampled in spring, summer, and late autumn within 1 year. Significant intraindividual variations in the diversity and structure of gut microbiota across seasons were observed in this population, which were even greater than the variations between individuals. Compared with published data sets involving 124 gut microbiota profiles from 54 mammalian species, these giant pandas, together with 9 captive and 7 wild individuals investigated previously, showed extremely low gut microbiota diversity and an overall structure that diverged from those of nonpanda herbivores but converged with those of carnivorous and omnivorous bears. The giant panda did not harbor putative cellulose-degrading phylotypes such as Ruminococcaceae and Bacteroides bacteria that are typically enriched in other herbivores, but instead, its microbiota was dominated by Escherichia/Shigella and Streptococcus bacteria. Members of the class Clostridia were common and abundant in the giant panda gut microbiota, but most of the members present were absent in other herbivores and were not phylogenetically related with known cellulolytic lineages. Therefore, the giant panda appears not to have evolved a gut microbiota compatible with its newly adopted diet, which may adversely influence the coevolutionary fitness of this herbivore. The giant panda, an endangered mammalian species endemic to western China, is well known for its unique bamboo diet. Unlike other herbivores that have successfully evolved

  5. The Carnivore Connection Hypothesis: Revisited

    Jennie C. Brand-Miller

    2012-01-01

    Full Text Available The “Carnivore Connection” hypothesizes that, during human evolution, a scarcity of dietary carbohydrate in diets with low plant : animal subsistence ratios led to insulin resistance providing a survival and reproductive advantage with selection of genes for insulin resistance. The selection pressure was relaxed at the beginning of the Agricultural Revolution when large quantities of cereals first entered human diets. The “Carnivore Connection” explains the high prevalence of intrinsic insulin resistance and type 2 diabetes in populations that transition rapidly from traditional diets with a low-glycemic load, to high-carbohydrate, high-glycemic index diets that characterize modern diets. Selection pressure has been relaxed longest in European populations, explaining a lower prevalence of insulin resistance and type 2 diabetes, despite recent exposure to famine and food scarcity. Increasing obesity and habitual consumption of high-glycemic-load diets worsens insulin resistance and increases the risk of type 2 diabetes in all populations.

  6. Can only poorer European countries afford large carnivores?

    Kojola, Ilpo; Hallikainen, Ville; Helle, Timo; Swenson, Jon E

    2018-01-01

    One of the classic approaches in environmental economics is the environmental Kuznets curve, which predicts that when a national economy grows from low to medium levels, threats to biodiversity conservation increase, but they decrease when the economy moves from medium to high. We evaluated this approach by examining how population densities of the brown bear (Ursus arctos), gray wolf (Canis lupus), and Eurasian lynx (Lynx lynx) were related to the national economy in 24 European countries. We used forest proportions, the existence of a compensation system, and country group (former socialist countries, Nordic countries, other countries) as covariates in a linear model with the first- and the second-order polynomial terms of per capita gross domestic product (GDP). Country group was treated as a random factor, but remained insignificant and was ignored. All models concerning brown bear and wolf provided evidence that population densities decreased with increasing GDP, but densities of lynx were virtually independent of GDP. Models for the wolf explained >80% of the variation in densities, without a difference between the models with all independent variables and the model with only GDP. For the bear, the model with GDP alone accounted for 10%, and all three variables 33%, of the variation in densities. Wolves exhibit a higher capacity for dispersal and reproduction than bear or lynx, but still exists at the lowest densities in wealthy European countries. We are aware that several other factors, not available for our models, influenced large carnivore densities. Based on the pronounced differences among large carnivore species in their countrywide relationships between densities and GDP, and a strikingly high relationship for the gray wolf, we suggest that our results reflected differences in political history and public acceptance of these species among countries. The compensation paid for the damages caused by the carnivores is not a key to higher carnivore

  7. Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes.

    Kim, Tania N; Underwood, Nora; Inouye, Brian D

    2013-08-01

    Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol.

  8. First record of entodiniomorph ciliates in a carnivore, the maned wolf (Chrysocyon brachyurus), from Brazil.

    Vynne, Carly; Kinsella, John M

    2009-06-01

    The entodiniomorph ciliates (Ciliophora: Entodiniomorphida) are endosymbiotes widely found in the intestines of herbivorous mammals. These commensals commonly occur in the Artiodactyla and Perissodactyla and have also been described in the Proboscidea, Primates, Rodentia, and Diprotodontia. This study reports the first finding of a ciliate in a member of order Carnivora, the maned wolf (Chrysocyon brachyurus). Fecal samples from wild and captive maned wolves were screened using ethyl acetate sedimentation. Prevalence in fecal samples collected from free-ranging maned wolves in Brazil was 40% (6 of 15). Fecal samples from two of four captive individuals from the St. Louis Zoo also had the same species of ciliate. The largely frugivorous diet of the maned wolf likely explains the occurrence of these normally herbivore-associated endosymbiotes in a carnivore.

  9. Climate and vegetation in a semi-arid savanna: Development of a climate–vegetation response model linking plant metabolic performance to climate and the effects on forage availability for large herbivores

    Armin H. Seydack

    2012-02-01

    Developing the climate–vegetation response model involved three main components, namely (1 defining indicators of forage availability to herbivores (nitrogen productivity, nitrogen quality, carbon-nutrient quality, (2 identifying herbivore species guilds of similar nutritional requirements with respect to these indicators [bulk feeders with tolerance to fibrous herbage (buffalo, waterbuck, bulk feeders with preference for high nitrogen quality forage (short grass preference grazers: blue wildebeest and zebra and selective feeders where dietary items of relatively high carbon-nutrient quality represented key forage resources (selective grazers: sable antelope, roan antelope, tsessebe, eland] and (3 developing a process model where the expected effects of plant metabolic responses to climate on key forage resources were made explicit. According to the climate–vegetation response model both shorter-term transient temperature acclimation pulses and longer-term shifts in plant metabolic functionality settings were predicted to have occurred in response to temperature trends over the past century. These temperature acclimation responses were expected to have resulted in transient pulses of increased forage availability (increased nitrogen- and carbon-nutrient quality, as well as the progressive long-term decline of the carbon-nutrient quality of forage. Conservation implications: The climate–vegetation response model represents a research framework for further studies contributing towards the enhanced understanding of landscape-scale functioning of savanna systems with reference to the interplay between climate, vegetation and herbivore population dynamics. Gains in such understanding can support sound conservation management.

  10. Big cats in our backyards: persistence of large carnivores in a human dominated landscape in India.

    Vidya Athreya

    Full Text Available Protected areas are extremely important for the long term viability of biodiversity in a densely populated country like India where land is a scarce resource. However, protected areas cover only 5% of the land area in India and in the case of large carnivores that range widely, human use landscapes will function as important habitats required for gene flow to occur between protected areas. In this study, we used photographic capture recapture analysis to assess the density of large carnivores in a human-dominated agricultural landscape with density >300 people/km(2 in western Maharashtra, India. We found evidence of a wide suite of wild carnivores inhabiting a cropland landscape devoid of wilderness and wild herbivore prey. Furthermore, the large carnivores; leopard (Panthera pardus and striped hyaena (Hyaena hyaena occurred at relatively high density of 4.8±1.2 (sd adults/100 km(2 and 5.03±1.3 (sd adults/100 km(2 respectively. This situation has never been reported before where 10 large carnivores/100 km(2 are sharing space with dense human populations in a completely modified landscape. Human attacks by leopards were rare despite a potentially volatile situation considering that the leopard has been involved in serious conflict, including human deaths in adjoining areas. The results of our work push the frontiers of our understanding of the adaptability of both, humans and wildlife to each other's presence. The results also highlight the urgent need to shift from a PA centric to a landscape level conservation approach, where issues are more complex, and the potential for conflict is also very high. It also highlights the need for a serious rethink of conservation policy, law and practice where the current management focus is restricted to wildlife inside Protected Areas.

  11. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  12. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  13. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar

    Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore c...

  14. Managing conflict between large carnivores and livestock.

    van Eeden, Lily M; Crowther, Mathew S; Dickman, Chris R; Macdonald, David W; Ripple, William J; Ritchie, Euan G; Newsome, Thomas M

    2018-02-01

    Large carnivores are persecuted globally because they threaten human industries and livelihoods. How this conflict is managed has consequences for the conservation of large carnivores and biodiversity more broadly. Mitigating human-predator conflict should be evidence-based and accommodate people's values while protecting carnivores. Despite much research into human and large-carnivore coexistence strategies, there have been few attempts to document the success of conflict-mitigation strategies on a global scale. We conducted a meta-analysis of global research on conflict mitigation related to large carnivores and humans. We focused on conflicts that arise from the threat large carnivores pose to livestock. We first used structured and unstructured searching to identify replicated studies that used before-after or control-impact design to measure change in livestock loss as a result of implementing a management intervention. We then extracted relevant data from these studies to calculate an overall effect size for each intervention type. Research effort and focus varied among continents and aligned with the histories and cultures that shaped livestock production and attitudes toward carnivores. Livestock guardian animals most effectively reduced livestock losses. Lethal control was the second most effective control, although its success varied the most, and guardian animals and lethal control did not differ significantly. Financial incentives have promoted tolerance of large carnivores in some settings and reduced retaliatory killings. We suggest coexistence strategies be location-specific, incorporate cultural values and environmental conditions, and be designed such that return on financial investment can be evaluated. Improved monitoring of mitigation measures is urgently required to promote effective evidence-based policy. © 2017 Society for Conservation Biology.

  15. Plant defense against insect herbivores

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  16. Anomalous dependence of population growth on the birth rate in the plant-herbivore system

    Cui, Xue M.; Han, Seung K.; Chung, Jean S.

    2010-01-01

    We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.

  17. Construction costs, payback times, and the leaf economics of carnivorous plants.

    Karagatzides, Jim D; Ellison, Aaron M

    2009-09-01

    Understanding how different plant species and functional types "invest" carbon and nutrients is a major goal of plant ecologists. Two measures of such investments are "construction costs" (carbon needed to produce each gram of tissue) and associated "payback times" for photosynthesis to recover construction costs. These measurements integrate among traits used to assess leaf-trait scaling relationships. Carnivorous plants are model systems for examining mechanisms of leaf-trait coordination, but no studies have measured simultaneously construction costs of carnivorous traps and their photosynthetic rates to determine payback times of traps. We measured mass-based construction costs (CC(mass)) and photosynthesis (A(mass)) for traps, leaves, roots, and rhizomes of 15 carnivorous plant species grown under greenhouse conditions. There were highly significant differences among species in CC(mass) for each structure. Mean CC(mass) of carnivorous traps (1.14 ± 0.24 g glucose/g dry mass) was significantly lower than CC(mass) of leaves of 267 noncarnivorous plant species (1.47 ± 0.17), but all carnivorous plants examined had very low A(mass) and thus, long payback times (495-1551 h). Our results provide the first clear estimates of the marginal benefits of botanical carnivory and place carnivorous plants at the "slow and tough" end of the universal spectrum of leaf traits.

  18. Locomotor adaptations in Plio-Pleistocene large carnivores from the Italian Peninsula: Palaeoecological implications

    Carlo MELORO

    2011-06-01

    Full Text Available Mammalian carnivores are rarely considered for environmental reconstructions because they are extremely adaptable and their geographic range is usually large. However, the functional morphology of carnivore long bones can be indicative of locomotor behaviour as well as adaptation to specific kind of habitats. Here, different long bone ratios belonging to a subsample of extant large carnivores are used to infer palaeoecology of a comparative sample of Plio-Pleistocene fossils belonging to Italian paleo-communities. A multivariate long bone shape space reveals similarities between extant and fossil carnivores and multiple logistic regression models suggest that specific indices (the brachial and the Mt/F can be applied to predict adaptations to grassland and tropical biomes. These functional indices exhibit also a phylogenetic signal to different degree. The brachial index is a significant predictor of adaptations to tropical biomes when phylogeny is taken into account, while Mt/F is not correlated anymore to habitat adaptations. However, the proportion of grassland-adapted carnivores in Italian paleo-communities exhibits a negative relationship with mean oxygen isotopic values, which are indicative of past climatic oscillations. As climate became more unstable during the Ice Ages, large carnivore guilds from the Italian peninsula were invaded by tropical/closed-adapted species. These species take advantage of the temperate forest cover that was more spread after 1.0 Ma than in the initial phase of the Quaternary (2.0 Ma when the climate was more arid [Current Zoology 57 (3: 269–283, 2011].

  19. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  20. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  1. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  2. The importance of herbivore interactions for the dynamics of African savanna woodlands : an hypothesis

    Van de Koppel, J; Prins, HHT

    Current hypotheses to explain dynamic transitions between savanna grasslands and woodlands in Africa focus on grazing by elephant or the influence of fire. Using a simple mathematical model, this paper argues that interactions between small herbivores such as impala or buffalo and large herbivores

  3. The relation between herbivore density and relative resource ...

    The relation between kudu density and the relative density of habitat patches in each landscape was significant, with exponential models producing more significant statistics than linear models. Regressions of resource density against animal density are useful to understand 'carrying capacity' for wild herbivores, and ...

  4. Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

    Feng Zhilan

    2009-02-01

    Full Text Available Abstract Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  5. Troublesome toxins: Time to re-think plant-herbivore interactions in vertebrate ecology

    Swihart, R.K.; DeAngelis, D.L.; Feng, Z.; Bryant, J.P.

    2009-01-01

    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  6. The impact of land reform on the status of large carnivores in Zimbabwe

    Samual T. Williams

    2016-01-01

    Full Text Available Large carnivores are decreasing in number due to growing pressure from an expanding human population. It is increasingly recognised that state-protected conservation areas are unlikely to be sufficient to protect viable populations of large carnivores, and that private land will be central to conservation efforts. In 2000, a fast-track land reform programme (FTLRP was initiated in Zimbabwe, ostensibly to redress the racial imbalance in land ownership, but which also had the potential to break up large areas of carnivore habitat on private land. To date, research has focused on the impact of the FTLRP process on the different human communities, while impacts on wildlife have been overlooked. Here we provide the first systematic assessment of the impact of the FTLRP on the status of large carnivores. Spoor counts were conducted across private, resettled and communal land use types in order to estimate the abundance of large carnivores, and to determine how this had been affected by land reform. The density of carnivore spoor differed significantly between land use types, and was lower on resettlement land than on private land, suggesting that the resettlement process has resulted in a substantial decline in carnivore abundance. Habitat loss and high levels of poaching in and around resettlement areas are the most likely causes. The FTLRP resulted in the large-scale conversion of land that was used sustainably and productively for wildlife into unsustainable, unproductive agricultural land uses. We recommended that models of land reform should consider the type of land available, that existing expertise in land management should be retained where possible, and that resettlement programmes should be carefully planned in order to minimise the impacts on wildlife and on people.

  7. An Objective Approach to Determining the Weight Ranges of Prey Preferred by and Accessible to the Five Large African Carnivores

    Clements, Hayley S.; Tambling, Craig J.; Hayward, Matt W.; Kerley, Graham I. H.

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of kno...

  8. Impacts of human recreation on carnivores in protected areas.

    Baker, Angela Darnell; Leberg, Paul L

    2018-01-01

    Mammalian carnivores can be particularly sensitive to human disturbance, even within protected areas (PAs). Our objective was to understand how human disturbance affects carnivore communities in southern Arizona, USA by studying habitat occupancy based on data collected using non-invasive methods in three PAs with different levels of human disturbance. Carnivore occupancy varied based on human disturbance variables (i.e., roads, trails, etc.). Common carnivore species (coyotes, gray foxes, and bobcats) had high occupancy probability in highly disturbed sites, while all other carnivore species had a higher probability of occupancy in low disturbance protected areas. Additionally, overall carnivore diversity was higher in PAs with low human disturbance. Edges of PAs appeared to negatively impact occupancy of nearly all carnivore species. We also found the presence of roads and trails, and not necessarily how much they are used, had a significant negative impact on the occupancy of most carnivore species. Furthermore, the overall level of disturbance within a PA influenced how sensitive carnivores were to human disturbance variables. Carnivores were more sensitive in PAs with higher levels of disturbance and were relatively unaffected by disturbance variables in a PA with low base levels of disturbance. Increased visitation to PAs, expected with the region's high level of population growth, is likely to cause shifts in the carnivore communities favoring species that are less sensitive to disturbance.

  9. Social interactions in a solitary carnivore

    L.Mark ELBROCH; Howard QUIGLEY

    2017-01-01

    In total,177 of 245 terrestrial carnivores are described as solitary,and much of carnivore ecology is built on the assumptions that interactions between adult solitary carnivores are rare.We employed Global Positioning System (GPS) technology and motion-triggered cameras to test predictions of land-tenure territoriality and the resource dispersion hypothesis in a territorial carnivore,the puma Puma concolor.We documented 89 independent GPS interactions,60% of which occurred at puma kills (n=53),59 camera interactions,11 (17%) of which captured courtship behaviors,and 5 other interactions (1 F-F,3 M-F,and 1 M-M).Mean minimum weekly contact rates were 5.5 times higher in winter,the season when elk Cervus elaphus were aggregated at lower elevations and during which puma courtship primarily occurred.In winter,contacts rates were 0.6± 0.3 (standard deviation (SD)) interactions/week vs.0.1 ± 0.1 (SD) interactions/week during summer.The preponderance of interactions at food sources supported the resource dispersion hypothesis,which predicts that resource fluxes can explain temporary social behaviors that do not result in any apparent benefits for the individuals involved.Conspecific tolerance is logical when a prey is so large that the predator that killed it cannot consume it entirely,and thus,the costs of tolerating a conspecific sharing the kill are less than the potential costs associated with defending it and being injured.Puma aggregations at kills numbered as high as 9,emphasizing the need for future research on what explains tolerance among solitary carnivores.

  10. Variation in plant defense suppresses herbivore performance

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  11. Can alien plants support generalist insect herbivores?

    Douglas Tallamy; Meg Ballard; Vincent D' Amico

    2009-01-01

    Rearing experiments were conducted to address two questions relevant to understanding how generalist lepidopteran herbivores interact with alien plants. We reared 10 yellow-striped armyworms (Spodoptera ornithogalli),...

  12. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey

    Amo, L.; Jansen, J.J.; Dam, van N.M.; Dicke, M.; Visser, M.E.

    2013-01-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous

  13. Conservation endocrinology: A noninvasive tool to understand relationships between carnivore colonization and ecological carrying capacity

    Berger, J.; Testa, J.W.; Roffe, T.; Monfort, S.L.

    1999-01-01

    Reproductive technology, especially the diagnosis of pregnancy by radioimmunoassay of fecal steroid metabolites, is an important component of captive propagation, but its role in our understanding of ecological interactions and in situ biological restoration has been more limited. Where large herbivores have been 'released' from predation by the extirpation of carnivores, controversy often exists about possible detrimental effects at the ecosystem level A related concern is that the reestablishment of large carnivores may decrease the availability of prey populations for human subsistence. We suggest that pregnancy assays can be a valuable tool to help distinguish between the roles of predation versus food-imposed limitations on population size and their effects on juvenile recruitment in wild species. We explored this issue through analyses of fecal progestagen concentration (FPC) levels to document pregnancy in moose (Alces alces) in the southern Greater Yellowstone Ecosystem, a site where wolves (Canis lupus) and grizzly bears (Ursus arctos) are recolonizing former habitats after an absence of more than 60 years. Pregnancy was clearly discernible (mean FPC for pregnant and nonpregnant females, respectively: 10.60 vs. 2.57 ??g/g; p endocrinology can be applied to issues involving reproductive events within an ecological context. They also affirm that noninvasive and generally inexpensive endocrinological procedures will be applicable to understanding interactions between recolonizing predators and prey, an issue that will continue to arise because of global restoration efforts, and to the study of rare ungulates in remote systems where data on reproductive events are difficult to obtain.

  14. Feeding niches of four large herbivores in the Hluhluwe Game ...

    Feeding niches of four large herbivores in the Hluhluwe Game Reserve, Natal. ... equus burchelli burchelli; feeding; grass; grasses; habitat; herbivores; hluhluwe game reserve; kwazulu-natal; large herbivores; ... AJOL African Journals Online.

  15. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field

    Poelman, E.H.; Broekgaarden, C.; Loon, van J.J.A.; Dicke, M.

    2008-01-01

    Induction of plant defences by early season herbivores can mediate interspecific herbivore competition. We have investigated plant-mediated competition between three herbivorous insects through studies at different levels of biological integration. We have addressed (i) gene expression; (ii) insect

  16. Asian Eden : large herbivore ecology in India

    Ahrestani, F.S.

    2009-01-01

    The study of large mammalian herbivore ecology has a strong allometric tradition. The
    majority of studies that have helped better understand how body mass affects large herbivore
    ecology in the tropics, from a biological, functional, and ecological perspective, are from
    Africa.

  17. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Matthew E Gompper

    Full Text Available Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York's Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus and fisher (Martes pennanti distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor. Martens (Martes americana were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp. occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild.

  18. Fungal Endophytes: Beyond Herbivore Management

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  19. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific).

    Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel

    2013-01-01

    Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.

  20. Les Néandertaliens étaient-ils essentiellement carnivores ? Résultats préliminaires sur les teneurs en Sr et en Ba de la paléobiocénose mammalienne de Saint-CésaireWere Neandertalians essentially carnivores? Sr and Ba preliminary results of the mammalian palaeobiocoenosis of Saint-Césaire

    Balter, Vincent; Person, Alain; Labourdette, Nathalie; Drucker, Dorothée; Renard, Maurice; Vandermeersch, Bernard

    2001-01-01

    Strontium-calcium (Sr/Ca) and barium-calcium (Ba/Ca) ratios are reduced constantly between diet and bioapatite in mammal organisms. This phenomenon leads to a reduction in the Sr/Ca and Ba/Ca ratios at higher trophic level in predator-prey mammalian communities, and is applied here to the reconstruction of a castelperronian food web, which includes a Neanderthal specimen. Adapted chemical pretreatment allows to isolate bioapatite from diagenetic compounds for analysis of Ca, Sr and Ba. Sr/Ca and Ba/Ca results of the fauna are consistent with trophic predictions. Initial results for the Neandertal suggest that he was mostly carnivorous. Distribution of Ba/Ca values of bones of herbivorous taxa reveals that ruminant animals can be distinguished from non-ruminants. The biosegregation model predicts that the diet of the Neandertal was composed by about 97 % in weight of meat with a weak contribution of vegetable or fish, and that the association of fish and plant is excluded in any proportion.

  1. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  2. Indirect effects of domestic and wild herbivores on butterflies in an African savanna.

    Wilkerson, Marit L; Roche, Leslie M; Young, Truman P

    2013-10-01

    Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.

  3. Learning in Insect Pollinators and Herbivores.

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  4. Wild carnivores (Mammalia) as hosts for ticks (Ixodida) in Panama

    Bermudez, S.E.; Esser, H.J.; Miranda, R.; Moreno, R.S.

    2015-01-01

    This study reports ticks collected from wild carnivores from different habitat types in Panama. We examined 94 individual wild carnivores and we found 87 parasitized by ticks: seven coyotes, six crab-eating foxes, 54 coatis, four raccoons, five ocelots, two pumas, two gray foxes, two skunks, and one

  5. Human behaviour can trigger large carnivore attacks in developed countries.

    Penteriani, Vincenzo; Delgado, María del Mar; Pinchera, Francesco; Naves, Javier; Fernández-Gil, Alberto; Kojola, Ilpo; Härkönen, Sauli; Norberg, Harri; Frank, Jens; Fedriani, José María; Sahlén, Veronica; Støen, Ole-Gunnar; Swenson, Jon E; Wabakken, Petter; Pellegrini, Mario; Herrero, Stephen; López-Bao, José Vicente

    2016-02-03

    The media and scientific literature are increasingly reporting an escalation of large carnivore attacks on humans in North America and Europe. Although rare compared to human fatalities by other wildlife, the media often overplay large carnivore attacks on humans, causing increased fear and negative attitudes towards coexisting with and conserving these species. Although large carnivore populations are generally increasing in developed countries, increased numbers are not solely responsible for the observed rise in the number of attacks by large carnivores. Here we show that an increasing number of people are involved in outdoor activities and, when doing so, some people engage in risk-enhancing behaviour that can increase the probability of a risky encounter and a potential attack. About half of the well-documented reported attacks have involved risk-enhancing human behaviours, the most common of which is leaving children unattended. Our study provides unique insight into the causes, and as a result the prevention, of large carnivore attacks on people. Prevention and information that can encourage appropriate human behaviour when sharing the landscape with large carnivores are of paramount importance to reduce both potentially fatal human-carnivore encounters and their consequences to large carnivores.

  6. Spatial-temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation

    Grilo, C.; Bissonette, J.A.; Santos-Reis, M.

    2009-01-01

    Many carnivores have been seriously impacted by the expansion of transportation systems and networks; however we know little about carnivore response to the extent and magnitude of road mortality, or which age classes may be disproportionately impacted. Recent research has demonstrated that wildlife-vehicle-collisions (WVC) involving carnivores are modulated by temporal and spatial factors. Thus, we investigated road mortality on a guild of small and medium-sized carnivores in southern Portugal using road-kill data obtained from a systematic 36 months monitoring period along highways (260 km) and national roads (314 km) by addressing the following questions: (a) which species and age class are most vulnerable to WVC? (b) are there temporal and/or spatial patterns in road-kill? and (c) which life-history and/or spatial factors influence the likelihood of collisions? We recorded a total of 806 carnivore casualties, which represented an average of 47 ind./100 km/year. Red fox and stone marten had the highest mortality rates. Our findings highlight three key messages: (1) the majority of road-killed individuals were adults of common species; (2) all carnivores, except genets, were more vulnerable during specific life-history phenological periods: higher casualties were observed when red fox and stone marten were provisioning young, Eurasian badger casualties occurred more frequently during dispersal, and higher Egyptian mongoose mortality occurred during the breeding period; and (3) modeling demonstrated that favorable habitat, curves in the road, and low human disturbance were major contributors to the deadliest road segments. Red fox carcasses were more likely to be found on road sections with passages distant from urban areas. Conversely, stone marten mortalities were found more often on national roads with high of cork oak woodland cover; Egyptian mongoose and genet road-kills were found more often on road segments close to curves. Based on our results, two key

  7. Retroviral restriction and dependency factors in primates and carnivores

    Fadel, Hind J.; Poeschla, Eric M.

    2014-01-01

    Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à;-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5alpha, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin. PMID:21715018

  8. Cats and Carbohydrates: The Carnivore Fantasy?

    Adronie Verbrugghe

    2017-11-01

    Full Text Available The domestic cat’s wild ancestors are obligate carnivores that consume prey containing only minimal amounts of carbohydrates. Evolutionary events adapted the cat’s metabolism and physiology to this diet strictly composed of animal tissues and led to unique digestive and metabolic peculiarities of carbohydrate metabolism. The domestic cat still closely resembles its wild ancestor. Although the carnivore connection of domestic cats is well recognised, little is known about the precise nutrient profile to which the digestive physiology and metabolism of the cat have adapted throughout evolution. Moreover, studies show that domestic cats balance macronutrient intake by selecting low-carbohydrate foods. The fact that cats evolved consuming low-carbohydrate prey has led to speculations that high-carbohydrate diets could be detrimental for a cat’s health. More specifically, it has been suggested that excess carbohydrates could lead to feline obesity and diabetes mellitus. Additionally, the chances for remission of diabetes mellitus are higher in cats that consume a low-carbohydrate diet. This literature review will summarise current carbohydrate knowledge pertaining to digestion, absorption and metabolism of carbohydrates, food selection and macronutrient balancing in healthy, obese and diabetic cats, as well as the role of carbohydrates in prevention and treatment of obesity and diabetes mellitus.

  9. The evolution of intelligence in mammalian carnivores.

    Holekamp, Kay E; Benson-Amram, Sarah

    2017-06-06

    Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.

  10. An advanced method to assess the diet of free-ranging large carnivores based on scats.

    Bettina Wachter

    Full Text Available BACKGROUND: The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1. When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2. No previous study controlled for this second bias. METHODOLOGY/PRINCIPAL FINDINGS: Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus, to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. CONCLUSION/SIGNIFICANCE: Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores.

  11. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  12. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  13. Utility of stable isotope analysis in studying foraging ecology of herbivores: Examples from moose and caribou

    Ben-David, Merav; Shochat, Einav; Adams, Layne G.

    2001-01-01

    Recently, researchers emphasized that patterns of stable isotope ratios observed at the individual level are a result of an interaction between ecological, physiological, and biochemical processes. Isotopic models for herbivores provide additional complications because those mammals consume foods that have high variability in nitrogen concentrations. In addition, distribution of amino acids in plants may differ greatly from that required by a herbivore. At northern latitudes, where the growing season of vegetation is short, isotope ratios in herbivore tissues are expected to differ between seasons. Summer ratios likely reflect diet composition, whereas winter ratios would reflect diet and nutrient recycling by the animals. We tested this hypothesis using data collected from blood samples of caribou (Rangifer tarandus) and moose (Alces alces) in Denali National Park and Preserve, Alaska, USA. Stable isotope ratios of moose and caribou were significantly different from each other in late summer-autumn and winter. Also, late summer-autumn and winter ratios differed significantly between seasons in both species. Nonetheless, we were unable to evaluate whether differences in seasonal isotopic ratios were a result of diet selection or a response to nutrient recycling. We believe that additional studies on plant isotopic ratios as related to ecological factors in conjunction with investigations of diet selection by the herbivores will enhance our understanding of those interactions. Also, controlled studies investigating the relation between diet and physiological responses in herbivores will increase the utility of isotopic analysis in studying foraging ecology of herbivores.

  14. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. The Miocene carnivore assemblage of Greece

    Koufos, G. D.

    2011-12-01

    Full Text Available The Miocene carnivore assemblage of Greece includes a great number of taxa, described in numerous articles since the first decades of the 19th Century. The present article is a revision of all these taxa, providing information about their history, localities, age, as well as their stratigraphic distribution and palaeoenvironment. The Early/Middle Miocene carnivore record of Greece is poor as the available fossiliferous sites and material are rare. However, the Late Miocene one is quite rich, including numerous taxa. The Miocene localities with carnivores and their age are given in a stratigraphic table covering the European Mammal zones from MN 4 to MN 13. The type locality, holotype, and some historical and morphological remarks are given for each taxon. Several carnivore taxa were erected from Greek material and new photos of their holotypes are given. The stratigraphic distribution of the Greek carnivore taxa indicates that they are covering the time span from ~19.0-5.3Ma. The majority of the Miocene taxa (Adcrocuta, Hyaenictitherium, Plioviverrops, Protictitherium, Ictitherium, Indarctos, Dinocrocuta, Promephitis disappeared at the end of Miocene. The composition of the Early/Middle Miocene carnivore assemblage of Greece includes mainly viverrids (Lophocyon, Euboictis, while the hyaenids, percrocutids, felids and mustelids are very few. On the contrary the Late Miocene assemblage is richer, including more subfamilies and species; the hyaenids and mustelids dominate, while the viverrids are absent. The Late Miocene carnivore guild structure is similar to that of the modern Serengeti, indicating a relatively open, savannah-like environment.

    La asociación de carnívoros miocenos de Grecia incluye un gran número de taxones, descritos en numerosos artículos desde las primeras décadas del siglo XIX. El presente artículo supone un esfuerzo de síntesis de todos estos taxones, suministrando información sobre su

  16. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large African carnivores.

    Hayley S Clements

    Full Text Available Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points with high rates of detection (75% to 100% of simulations, depending on number of break-points and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point. When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah, 82±3% (leopard, 81±2% (lion, 97±2% (spotted hyaena and 96±2% (wild dog of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore

  17. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large African carnivores.

    Clements, Hayley S; Tambling, Craig J; Hayward, Matt W; Kerley, Graham I H

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species.

  18. Overcoming DNA extraction problems from carnivorous plants

    Fleischmann, Andreas

    2009-12-01

    Full Text Available We tested previously published protocols for DNA isolation from plants with high contents of polyphenols and polysaccharides for several taxa of carnivorous plants. However, we did not get satisfying results with fresh or silica dried leaf tissue obtained from field collected or greenhouse grown plants, nor from herbarium specimens. Therefore, we have developed a simple modified protocol of the commercially available Macherey- Nagel NucleoSpin® Plant kit for rapid, effective and reproducible isolation of high quality genomic DNA suitable for PCR reactions. DNA extraction can be conducted from both fresh and dried leaf tissue of various carnivorous plant taxa, irrespective of high contents of polysaccharides, phenolic compounds and other secondary plant metabolites that interfere with DNA isolation and amplification.

    Probamos algunos protocolos publicados previamente para el aislamiento del ADN de plantas con alto contenido de polifenoles y polisacáridos para varios táxones de plantas carnívoras. Sin embargo, no conseguimos muy buenos resultados ni con tejidos de hojas frescas, ni con tejidos de hojas secadas en gel de sílice obtenidas de plantas colectadas en el campo o cultivadas en los invernaderos, ni de especímenes de herbario. Por lo tanto, hemos desarrollado un protocolo sencillo, modificado del Macherey- Nagel NucleoSpin® Plant kit disponible en el mercado para el aislamiento rápido, eficaz y reproducible de ADN genómico de alta calidad conveniente para la reacción en cadena de la polimerasa. La extracción del ADN se puede realizar en tejidos de hojas frescas o secas de varios táxones de plantas carnívoras, sin importar el grado de contenido de polisacáridos, compuestos fenólicos u otros metabolitos secundarios que interfieren con el aislamiento y la amplificación del ADN.

  19. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats.

    Kalle, Riddhika; Ramesh, Tharmalingam; Qureshi, Qamar; Sankar, Kalyanasundaram

    2013-01-01

    Due to their secretive habits, predicting the pattern of spatial distribution of small carnivores has been typically challenging, yet for conservation management it is essential to understand the association between this group of animals and environmental factors. We applied maximum entropy modeling (MaxEnt) to build distribution models and identify environmental predictors including bioclimatic variables, forest and land cover type, topography, vegetation index and anthropogenic variables for six small carnivore species in Mudumalai Tiger Reserve. Species occurrence records were collated from camera-traps and vehicle transects during the years 2010 and 2011. We used the average training gain from forty model runs for each species to select the best set of predictors. The area under the curve (AUC) of the receiver operating characteristic plot (ROC) ranged from 0.81 to 0.93 for the training data and 0.72 to 0.87 for the test data. In habitat models for F. chaus, P. hermaphroditus, and H. smithii "distance to village" and precipitation of the warmest quarter emerged as some of the most important variables. "Distance to village" and aspect were important for V. indica while "distance to village" and precipitation of the coldest quarter were significant for H. vitticollis. "Distance to village", precipitation of the warmest quarter and land cover were influential variables in the distribution of H. edwardsii. The map of predicted probabilities of occurrence showed potentially suitable habitats accounting for 46 km(2) of the reserve for F. chaus, 62 km(2) for V. indica, 30 km(2) for P. hermaphroditus, 63 km(2) for H. vitticollis, 45 km(2) for H. smithii and 28 km(2) for H. edwardsii. Habitat heterogeneity driven by the east-west climatic gradient was correlated with the spatial distribution of small carnivores. This study exemplifies the usefulness of modeling small carnivore distribution to prioritize and direct conservation planning for habitat specialists in

  20. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Dario Moreira-Arce

    Full Text Available Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in

  1. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  2. Environmental RNAi in herbivorous insects.

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Predators induce interspecific herbivore competition for food in refuge space

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  4. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions

    Plachno, B.J.; Adamec, Lubomír; Kozieradzka-Kiszkurno, M.; Świątek, P.; Kamińska, I.

    2014-01-01

    Roč. 251, č. 6 (2014), s. 1449-1454 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : aquatic carnivorous plants * winter buds * storage functions Subject RIV: EF - Botanics Impact factor: 2.651, year: 2014

  5. Feeding ecology of major carnivorous fish from four eastern Cape ...

    1984-03-29

    Mar 29, 1984 ... Whitfield & Blaber (1978) investigated the feeding ecology of piscivorous ...... Figure 3 Trophic relationships of carnivores (square blocks) in eastern Cape estuaries. ... Key species in the food chain of group A samples (Figures.

  6. Trends in the extinction of carnivores in Madagascar

    Cartagena–Matos, B.

    2017-02-01

    Full Text Available The extinction of top predators, such as mammalian carnivores can lead to dramatic changes in foodweb structure and ecosystem dynamics. Since all native Malagasy terrestrial mammalian carnivores are endemic, their extinction implies a significant loss of biodiversity in Madagascar. Here we review the literature on Madagascar’s mammalian carnivores, aiming to determine which species are most likely to become extinct in the near future in view of the factors threatening their survival. We scored each factor according to its impact on the species. According to our results, the giant–striped mongoose, Galidictis grandidieri, is the most likely species to next become extinct. This is no surprise because this species is considered one of the rarest carnivores in the world, inhabiting only a small, threatened forest ecosystem. Our results emphasize the need for robust data about each species to help and support decision–makers implement conservation measures.

  7. Predators induce interspecific herbivore competition for food in refuge space

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among herbivores is reduced by predators. Here we show the reverse: predators induce interspecific resource competi-tion among herbivores. We found that thrips larvae (Frankliniella occidentalis) use the ...

  8. Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador.

    Zapata-Ríos, Galo; Branch, Lyn C

    2018-01-01

    Although the Andes have long been occupied by people, habitat loss, fragmentation through deforestation, and other human activities such as introduction of invasive species have increased drastically during the past century. The Ecuadorian Andes are considered a biodiversity hotspot. However, the fauna and threats to the region are poorly studied, and understanding of factors that shape the distribution of species in habitats disturbed by human activities is needed to identify and mitigate region-wide threats to wildlife. We evaluated factors associated with patterns of occurrence of Andean carnivores in landscapes of the northern Ecuadorian Andes, particularly habitat loss, fragmentation, and occupancy of domestic dogs, and determined whether thresholds occurred for these factors beyond which carnivore occurrence declined markedly. Five study areas (each 20 x 20 km) were surveyed with a total effort of 2,800 camera trap nights. Occupancies of four of the eight carnivores known from the region were best predicted by occupancy of domestic dogs rather than measures of habitat loss and fragmentation [Andean fox (Pseudalopex culpaeus), puma (Puma concolor), striped hog-nosed skunk (Conepatus semistriatus), and Andean bear (Tremarctos ornatus)]. The two largest carnivores, puma and Andean bear, demonstrated significant threshold responses to the presence of domestic dogs at two sites. Four smaller carnivores were recorded too infrequently to model occupancy, and at least two of these species appear to be in decline. The magnitude of domestic dog impacts on native species in tropical areas like the Ecuadorian Andes currently are not recognized. Results of our study indicate that small and large carnivores are in urgent need of conservation and clearly point to dogs as a significant threat to a broad range of native species.

  9. Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador.

    Galo Zapata-Ríos

    Full Text Available Although the Andes have long been occupied by people, habitat loss, fragmentation through deforestation, and other human activities such as introduction of invasive species have increased drastically during the past century. The Ecuadorian Andes are considered a biodiversity hotspot. However, the fauna and threats to the region are poorly studied, and understanding of factors that shape the distribution of species in habitats disturbed by human activities is needed to identify and mitigate region-wide threats to wildlife. We evaluated factors associated with patterns of occurrence of Andean carnivores in landscapes of the northern Ecuadorian Andes, particularly habitat loss, fragmentation, and occupancy of domestic dogs, and determined whether thresholds occurred for these factors beyond which carnivore occurrence declined markedly. Five study areas (each 20 x 20 km were surveyed with a total effort of 2,800 camera trap nights. Occupancies of four of the eight carnivores known from the region were best predicted by occupancy of domestic dogs rather than measures of habitat loss and fragmentation [Andean fox (Pseudalopex culpaeus, puma (Puma concolor, striped hog-nosed skunk (Conepatus semistriatus, and Andean bear (Tremarctos ornatus]. The two largest carnivores, puma and Andean bear, demonstrated significant threshold responses to the presence of domestic dogs at two sites. Four smaller carnivores were recorded too infrequently to model occupancy, and at least two of these species appear to be in decline. The magnitude of domestic dog impacts on native species in tropical areas like the Ecuadorian Andes currently are not recognized. Results of our study indicate that small and large carnivores are in urgent need of conservation and clearly point to dogs as a significant threat to a broad range of native species.

  10. Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.

    Fagan, William F; Bishop, John G

    2000-02-01

    Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.

  11. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  12. Natal Host Plants Can Alter Herbivore Competition.

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  13. Identifying indicators of illegal behaviour: carnivore killing in human-managed landscapes.

    St John, Freya A V; Keane, Aidan M; Edwards-Jones, Gareth; Jones, Lauren; Yarnell, Richard W; Jones, Julia P G

    2012-02-22

    Managing natural resources often depends on influencing people's behaviour, however effectively targeting interventions to discourage environmentally harmful behaviours is challenging because those involved may be unwilling to identify themselves. Non-sensitive indicators of sensitive behaviours are therefore needed. Previous studies have investigated people's attitudes, assuming attitudes reflect behaviour. There has also been interest in using people's estimates of the proportion of their peers involved in sensitive behaviours to identify those involved, since people tend to assume that others behave like themselves. However, there has been little attempt to test the potential of such indicators. We use the randomized response technique (RRT), designed for investigating sensitive behaviours, to estimate the proportion of farmers in north-eastern South Africa killing carnivores, and use a modified logistic regression model to explore relationships between our best estimates of true behaviour (from RRT) and our proposed non-sensitive indicators (including farmers' attitudes, and estimates of peer-behaviour). Farmers' attitudes towards carnivores, question sensitivity and estimates of peers' behaviour, predict the likelihood of farmers killing carnivores. Attitude and estimates of peer-behaviour are useful indicators of involvement in illicit behaviours and may be used to identify groups of people to engage in interventions aimed at changing behaviour.

  14. Climate alters response of an endemic island plant to removal of invasive herbivores

    Kathryn, Mceachern A.; Thomson, D.M.; Chess, K.A.

    2009-01-01

    Islands experience higher rates of species extinction than mainland ecosystems, with biological invasions among the leading causes; they also serve as important model systems for testing ideas in basic and applied ecology. Invasive removal programs on islands are conservation efforts that can also be viewed as powerful manipulative experiments, but few data are available to evaluate their effects. We collected demographic and herbivore damage data for Castilleja mollis Pennell, an endangered plant endemic to Santa Rosa Island, California, over a 12-year period before, during, and after the implementation of control for introduced cattle, deer, and elk. We used these long-term data to explore mechanisms underlying herbivore effects, assess the results of herbivore reduction at the scales of both individual plants and populations, and determine how temporal variability in herbivory and plant demography influenced responses to herbivore removals. For individual plants, herbivore effects mediated by disturbance were greater than those of grazing. Deer and elk scraping of the ground substantially increased plant mortality and dormancy and reduced flowering and growth. Stem damage from browsing did not affect survivorship but significantly reduced plant growth and flower production. Herbivore control successfully lowered damage rates, which declined steeply between 1997 and 2000 and have remained relatively low. Castilleja mollis abundances rose sharply after 1997, suggesting a positive effect of herbivore control, but then began to decline steadily again after 2003. The recent decline appears to be driven by higher mean growing season temperatures; interestingly, not only reductions in scraping damage but a period of cooler conditions were significant in explaining increases in C. mollis populations between 1997 and 2002. Our results demonstrate strong effects of introduced herbivores on both plant demography and population dynamics and show that climate

  15. Climate alters response of an endemic island plant to removal of invasive herbivores.

    McEachern, A Kathryn; Thomson, Diane M; Chess, Katherine A

    2009-09-01

    Islands experience higher rates of species extinction than mainland ecosystems, with biological invasions among the leading causes; they also serve as important model systems for testing ideas in basic and applied ecology. Invasive removal programs on islands are conservation efforts that can also be viewed as powerful manipulative experiments, but few data are available to evaluate their effects. We collected demographic and herbivore damage data for Castilleja mollis Pennell, an endangered plant endemic to Santa Rosa Island, California, over a 12-year period before, during, and after the implementation of control for introduced cattle, deer, and elk. We used these long-term data to explore mechanisms underlying herbivore effects, assess the results of herbivore reduction at the scales of both individual plants and populations, and determine how temporal variability in herbivory and plant demography influenced responses to herbivore removals. For individual plants, herbivore effects mediated by disturbance were greater than those of grazing. Deer and elk scraping of the ground substantially increased plant mortality and dormancy and reduced flowering and growth. Stem damage from browsing did not affect survivorship but significantly reduced plant growth and flower production. Herbivore control successfully lowered damage rates, which declined steeply between 1997 and 2000 and have remained relatively low. Castilleja mollis abundances rose sharply after 1997, suggesting a positive effect of herbivore control, but then began to decline steadily again after 2003. The recent decline appears to be driven by higher mean growing season temperatures; interestingly, not only reductions in scraping damage but a period of cooler conditions were significant in explaining increases in C. mollis populations between 1997 and 2002. Our results demonstrate strong effects of introduced herbivores on both plant demography and population dynamics and show that climate

  16. Expansion into an Herbivorous Niche by a Customary Carnivore: Black-Tailed Godwits Feeding on Rhizomes of

    Robin, F.; Piersma, T.; Meunier, F.; Bocher, P.

    2013-01-01

    In expanding populations, individuals may increasingly be forced to use sites of relatively low quality. This process, named the "buffer effect," was previously described for the Black-tailed Godwit (Limosa limosa islandica) in its use of nonbreeding sites in Great Britain and of breeding areas in

  17. Zoonotic intestinal parasites of carnivores: A systematic review in Iran

    Shahabeddin Sarvi

    2018-01-01

    Full Text Available Aim: Parasitic infections, especially of the zoonotic-parasitic type, are the most important health, economic, and social problems in developing countries, including Iran. The aim of this study was to review systematically the available data on gastrointestinal parasites of carnivores in Iran and their ability to infect humans. Materials and Methods: Studies reporting intestinal parasites of carnivores were systematically collected from nine electronic English and Persian databases and Proceedings of Iranian parasitology and veterinary congresses published between 1997 and 2015. A total of 26 studies issued from 1997 to 2015 met the eligibility criteria. Results: The pooled proportion of intestinal parasites of carnivores was estimated as 80.4% (95% confidence interval=70.2-88.8%. The overall prevalence of gastrointestinal parasites in dogs, cats, foxes, and jackals were 57.89%, 90.62%, 89.17%, and 97.32%, respectively. Dipylidium caninum (20.45%, Toxocara spp. (18.81%, Taenia hydatigena (15.28%, Mesocestoides lineatus (11.83%, Echinococcus granulosus (10%, and Toxascaris leonina (8.69% were the most frequently observed parasites. Conclusion: High prevalence rates of zoonotic intestinal parasites of carnivores particularly Echinococcus spp. and Toxocara spp. increase the risk of acquiring zoonotic infections such as cystic hydatid, alveolar cysts, and visceral or ocular larva migrants in Iranian people. Therefore, it is essential for public health centers to develop more effective control strategies to decrease infections rates in carnivores' populations.

  18. CARNIVORE: A Disruption-Tolerant System for Studying Wildlife

    Williams TerrieM

    2011-01-01

    Full Text Available We present CARNIVORE, a system for in situ, unobtrusive monitoring of cryptic, difficult-to-catch/observe wildlife in their natural habitat. CARNIVORE is a network of mobile and static nodes with sensing, processing, storage, and wireless communication capabilities. CARNIVORE's compact, low-power, mobile animal-borne nodes collect sensor data and transmit it to static nodes, which then relay it to the Internet. Depending on the wildlife being studied, the network can be quite sparse and therefore disconnected frequently for arbitrarily long periods of time. To support "disconnected operation", CARNIVORE uses an "opportunistic routing" approach taking advantage of every encounter between nodes (mobile-to-mobile and mobile-to-static to propagate data. With a lifespan of 50–100 days, a CARNIVORE mobile node, outfitted on a collar, collects and transmits 1 GB of data compared to 450 kB of data from comparable commercially available wildlife collars. Each collar records 3-axis accelerometer and GPS data to infer animal behavior and energy consumption.Testing in both laboratory and free-range settings with domestic dogs shows that galloping and trotting behavior can be identified. Data collected from first deployments on mountain lions (Puma concolor near Santa Cruz, CA, USA show that the system is a viable and useful tool for wildlife research.

  19. Sport hunting, predator control and conservation of large carnivores.

    Craig Packer

    Full Text Available Sport hunting has provided important economic incentives for conserving large predators since the early 1970's, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.

  20. Functional constraints on tooth morphology in carnivorous mammals

    Smits Peter D

    2012-08-01

    Full Text Available Abstract Background The range of potential morphologies resulting from evolution is limited by complex interacting processes, ranging from development to function. Quantifying these interactions is important for understanding adaptation and convergent evolution. Using three-dimensional reconstructions of carnivoran and dasyuromorph tooth rows, we compared statistical models of the relationship between tooth row shape and the opposing tooth row, a static feature, as well as measures of mandibular motion during chewing (occlusion, which are kinetic features. This is a new approach to quantifying functional integration because we use measures of movement and displacement, such as the amount the mandible translates laterally during occlusion, as opposed to conventional morphological measures, such as mandible length and geometric landmarks. By sampling two distantly related groups of ecologically similar mammals, we study carnivorous mammals in general rather than a specific group of mammals. Results Statistical model comparisons demonstrate that the best performing models always include some measure of mandibular motion, indicating that functional and statistical models of tooth shape as purely a function of the opposing tooth row are too simple and that increased model complexity provides a better understanding of tooth form. The predictors of the best performing models always included the opposing tooth row shape and a relative linear measure of mandibular motion. Conclusions Our results provide quantitative support of long-standing hypotheses of tooth row shape as being influenced by mandibular motion in addition to the opposing tooth row. Additionally, this study illustrates the utility and necessity of including kinetic features in analyses of morphological integration.

  1. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.

    D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C

    2016-09-01

    The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Human-wildlife conflict as a barrier to large carnivore management and conservation in Turkey

    CHYNOWETH, MARK; ÇOBAN, EMRAH; ALTIN, ÇAĞATAY; ŞEKERCİOĞLU, ÇAĞAN

    2016-01-01

    Large carnivorous mammals are wide-ranging animals and thus frequently come into contact with human settlements in agrarian landscapes. This often generates human-wildlife conflict; carnivores potentially damage livestock, agricultural products, or human well-being. In Turkey, the cooccurrence of eight medium-large carnivore species combined with a burgeoning human population and unsustainable consumption of natural resources increasingly threatens carnivore populations. To better understand ...

  3. Troublemaking carnivores: conflicts with humans in a diverse assemblage of large carnivores

    Andrea T. Morehouse

    2017-09-01

    Full Text Available Human-wildlife conflicts are a global conservation and management challenge. Multipredator systems present added complexity to the resolution of human-wildlife conflicts because mitigation strategies often are species-specific. Documenting the type and distribution of such conflicts is an important first step toward ensuring that subsequent management and mitigation efforts are appropriately targeted. We reviewed 16 years of records of complaints about two species of strict carnivores, wolves (Canis lupus and cougars (Puma concolor, and two species of omnivores, grizzly bears (Ursus arctos and black bears (Ursus americanus in southwestern Alberta and evaluated the temporal and spatial distribution of these complaints. Conflicts were most frequently associated with bears (68.7% of complaint records, reflecting a diversity of conflict types attributable to their omnivorous diets. Although grizzly bears killed and injured livestock, the majority of conflicts with bears were attributable to attractants (grain and dead livestock for grizzly bears, garbage for black bears. In contrast, wolf and cougar incidents were almost exclusively related to killing or injury of livestock. Complaints for both bear species have increased over the past 16 years while cougar and wolf complaints have remained relatively constant. Grizzly bear and cougar conflicts have been expanding into private lands used for agriculture. Although community driven, targeted mitigation measures have helped reduce conflicts with grizzly bears at the site level, conflicts at the broader scale have continued to increase and continued work is necessary. Long-term human-carnivore coexistence clearly is possible, facilitated by continued monitoring and local efforts to mitigate conflicts.

  4. Parasites diversity in carnivorous animals in the territory of Dnipropetrovsk

    О. О. Boyko

    2011-07-01

    Full Text Available In Dnipropetrovsk sity (Ukraine, Dnipropetrovsk region in carnivorous animals 10 species of parasites (helminths and coccidia were found: Uncinaria sp., Ancylostoma sp., Dictyocaulus immitis (Nematoda, Strongylata, Strongyloides stercoralis (Nematoda, Rhabditata, Spirocerca lupi (Nematoda, Spirurata, Toxocara canis (Nematoda, Ascaridata, Trichuris vulpis (Nematoda, Trichurata, Dipylidium caninum (Cestoda, Hymenolepidata, Cystoisospora sp. and Toxoplasma gondii (Sporozoa, Coccidia. In soil S. stercoralisand Uncinaria sp. weredominanted. In most carnivorous animals registered in L. Globa park and T. Shevchenko park the S. stercoralisand Uncinaria sp., Cystoisosporasp. and T. gondii were found.

  5. The role of herbivore- and plant-related experiences in intraspecific host preference of a relatively specialized parasitoid.

    Morawo, Tolulope; Fadamiro, Henry

    2017-09-06

    Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivore-derived cues than plant-derived cues. Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores: (i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. Interestingly, naive parasitoids attacked more soybean-fed than cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Forest carnivore conservation and management in the interior Columbia basin: issues and environmental correlates.

    Gary W. Witmer; Sandra K. Martin; Rodney D. Sayler

    1998-01-01

    Forest carnivores in the Pacific Northwest include 11 medium to large-sized mammalian species of canids, felids, mustelids, and ursids. These carnivores have widely differing status in the region, with some harvested in regulated furbearer seasons, some taken for depredations, and some protected because of rarity. Most large carnivores have declined in numbers or range...

  7. Extensive production of Neospora caninum tissue cysts in a carnivorous marsupial succumbing to experimental neosporosis

    King Jessica S

    2011-06-01

    Full Text Available Abstract Experimental infections of Sminthopsis crassicaudata, the fat-tailed dunnart, a carnivorous marsupial widely distributed throughout the arid and semi-arid zones of Australia, show that this species can act as an intermediate host for Neospora caninum. In contrast to existing models that develop relatively few N. caninum tissue cysts, dunnarts offer a new animal model in which active neosporosis is dominated by tissue cyst production. The results provide evidence for a sylvatic life cycle of N. caninum in Australia between marsupials and wild dogs. It establishes the foundation for an investigation of the impact and costs of neosporosis to wildlife.

  8. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  9. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Marcus Clauss

    Full Text Available Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  10. Large herbivore population performance and climate in a South African semi-arid savanna

    Armin H. Seydack

    2012-02-01

    Interpretation according to a climate–vegetation response model suggested that acclimation of forage plants to increasing temperature had resulted in temperature-enhanced plant productivity, initially increasing food availability and supporting transient synchronous increases in population abundance of both blue wildebeest and zebra, and selective grazers. As acclimation of plants to concurrently rising minimum (nocturnal temperature (Tmin took effect, adjustments in metabolic functionality occurred involving accelerated growth activity at the cost of storage-based metabolism. Growth-linked nitrogen dilution and reduced carbon-nutrient quality of forage then resulted in phases of subsequently declining herbivore populations. Over the long term (1910–2010, progressive plant functionality shifts towards accelerated metabolic growth rather than storage priority occurred in response to Tmin rising faster than maximum temperature (Tmax, thereby cumulatively compromising the carbon-nutrient quality of forage, a key resource for selective grazers. The results of analyses thus revealed consistency between herbivore population trends and levels of forage quantity and quality congruent with expected plant metabolic responses to climate effects. Thus, according to the climate-vegetation response model, climate effects were implicated as the ultimate cause of large herbivore population performance in space and over time. Conservation implications: In its broadest sense, the objective of this study was to contribute towards the enhanced understanding of landscape-scale functioning of savanna systems with regard to the interplay between climate, vegetation and herbivore population dynamics.

  11. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.

    Miller, Tom E X; Tyre, Andrew J; Louda, Svata M

    2006-11-01

    Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.

  12. Functional characteristics of traps of aquatic carnivorous Utricularia species

    Adamec, Lubomír

    2011-01-01

    Roč. 95, č. 3 (2011), 226-233 ISSN 0304-3770 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional research plan: CEZ:AV0Z60050516 Keywords : aquatic carnivorous plants * trap thickness measurements * water pumping Subject RIV: EF - Botanics Impact factor: 1.516, year: 2011

  13. Zoonotic intestinal parasites of carnivores: A systematic review in Iran

    Sarvi, Shahabeddin; Daryani, Ahmad; Sharif, Mehdi; Rahimi, Mohammad Taghi; Kohansal, Mohammad Hasan; Mirshafiee, Siavash; Siyadatpanah, Abolghasem; Hosseini, Seyed-Abdollah; Gholami, Shirzad

    2018-01-01

    Aim: Parasitic infections, especially of the zoonotic-parasitic type, are the most important health, economic, and social problems in developing countries, including Iran. The aim of this study was to review systematically the available data on gastrointestinal parasites of carnivores in Iran and their ability to infect humans. Materials and Methods: Studies reporting intestinal parasites of carnivores were systematically collected from nine electronic English and Persian databases and Proceedings of Iranian parasitology and veterinary congresses published between 1997 and 2015. A total of 26 studies issued from 1997 to 2015 met the eligibility criteria. Results: The pooled proportion of intestinal parasites of carnivores was estimated as 80.4% (95% confidence interval=70.2-88.8%). The overall prevalence of gastrointestinal parasites in dogs, cats, foxes, and jackals were 57.89%, 90.62%, 89.17%, and 97.32%, respectively. Dipylidium caninum (20.45%), Toxocara spp. (18.81%), Taenia hydatigena (15.28%), Mesocestoides lineatus (11.83%), Echinococcus granulosus (10%), and Toxascaris leonina (8.69%) were the most frequently observed parasites. Conclusion: High prevalence rates of zoonotic intestinal parasites of carnivores particularly Echinococcus spp. and Toxocara spp. increase the risk of acquiring zoonotic infections such as cystic hydatid, alveolar cysts, and visceral or ocular larva migrants in Iranian people. Therefore, it is essential for public health centers to develop more effective control strategies to decrease infections rates in carnivores’ populations. PMID:29479158

  14. Dipylidium caninum (Cyclophyllidea, Dipylidiidae) in a wild carnivore from Brazil.

    Vieira, Fabiano M; Luque, José L; Lima, Sueli de Souza; Neto, Antonio H A de Moraes; Muniz-Pereira, Luís C

    2012-01-01

    We report Dipylidium caninum for the first time in a wild carnivore in Brazil, the crab-eating fox (Cerdocyon thous). Presence of the cestode could be the consequence of anthropogenic expansion into natural habitats of this host, as this parasite has only previously been reported in domestic hosts in Brazil.

  15. Large carnivores in the Carpathian Mountains: status and conservation problems

    Okarma, H.; Dovchanych, Y.; Findo, S.; Ionescu, O.; Koubek, Petr; Szemethy, L.

    2002-01-01

    Roč. 59, - (2002), s. 33-39 ISSN 0078-3250 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : carnivores * conservation * Carpathians Subject RIV: EG - Zoology

  16. Efficacy of 22Na turnover in ecopbysiological studies of carnivores

    Efficacy of 22Na turnover in ecopbysiological studies of carnivores. loS. Wilkinson and J.D. Skinner*. Mammal Research Institute, University of Pretoria, Pretoria, 0002 Republic of South Africa. Received 8 December 1986; accepted 11 August 1987. 22Na turnover rates gave overestimates of mean 23Na intake in both ...

  17. Determination of carnivores prey base by scat analysis in Samburu ...

    Administrator

    This study determined the prey base for four main carnivores found in Samburu community group ranches and ... a result of the hydrolysis of protein that acts as cement for the keratin ... prey component between predator species that may be attributed to ... causing ever-closer interaction between humans and wildlife. This is ...

  18. Postcopulatory sexual selection influences baculum evolution in primates and carnivores.

    Brindle, Matilda; Opie, Christopher

    2016-12-14

    The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. © 2016 The Authors.

  19. Annual elk calf survival in a multiple carnivore system

    Eacker, Daniel R.; Hebblewhite, Mark; Proffitt, Kelly M.; Jimenez, Benjamin S.; Mitchell, Michael S.; Robinson, Hugh S.

    2016-01-01

    The realized effect of multiple carnivores on juvenile ungulate recruitment may depend on the carnivore assemblage as well as compensation from forage and winter weather severity, which may mediate juvenile vulnerability to predation in ungulates. We used a time-to-event approach to test for the effects of risk factors on annual elk (Cervus canadensis) calf survival and to estimate cause-specific mortality rates for 2 elk populations in adjacent study areas in the southern Bitterroot Valley, Montana, USA, during 2011–2014. We captured and radio-tagged 286 elk calves: 226 neonates, and 60 6-month-old calves. Summer survival probability was less variable than winter (P = 0.12) and averaged 0.55 (95% CI = 0.47–0.63), whereas winter survival varied more than summer and significantly across study years (P = 0.003) and averaged 0.73 (95% CI = 0.64–0.81). During summer, elk calf survival increased with biomass of preferred forage biomass, and was slightly lower following winters with high precipitation; exposure to mountain lion (Puma concolor) predation risk was unimportant. In contrast, during winter, we found that exposure to mountain lion predation risk influenced survival, with a weak negative effect of winter precipitation. We found no evidence that forage availability or winter weather severity mediated vulnerability to mountain lion predation risk in summer or winter (e.g., an interaction), indicating that the effect of mountain lion predation was constant regardless of spatial variation in forage or weather. Mountain lions dominated known causes of elk calf mortality in summer and winter, with estimated cause-specific mortality rates of 0.14 (95% CI = 0.09–0.20) and 0.12 (95% CI = 0.07–0.18), respectively. The effect of carnivores on juvenile ungulate recruitment varies across ecological systems depending on relative carnivore densities. Mountain lions may be the most important carnivore for ungulates, especially where grizzly

  20. A spatially integrated framework for assessing socioecological drivers of carnivore decline.

    Gálvez, Nicolás; Guillera-Arroita, Gurutzeta; St John, Freya A V; Schüttler, Elke; Macdonald, David W; Davies, Zoe G

    2018-05-01

    Habitat loss, fragmentation and degradation are key threats to the long-term persistence of carnivores, which are also susceptible to direct persecution by people. Integrating natural and social science methods to examine how habitat configuration/quality and human-predator relations may interact in space and time to effect carnivore populations within human-dominated landscapes will help prioritise conservation investment and action effectively.We propose a socioecological modelling framework to evaluate drivers of carnivore decline in landscapes where predators and people coexist. By collecting social and ecological data at the same spatial scale, candidate models can be used to quantify and tease apart the relative importance of different threats.We apply our methodological framework to an empirical case study, the threatened güiña ( Leopardus guigna ) in the temperate forest ecoregion of southern Chile, to illustrate its use. Existing literature suggests that the species is declining due to habitat loss, fragmentation and persecution in response to livestock predation. Data used in modelling were derived from four seasons of camera-trap surveys, remote-sensed images and household questionnaires.Occupancy dynamics were explained by habitat configuration/quality covariates rather than by human-predator relations. Güiñas can tolerate a high degree of habitat loss (>80% within a home range). They are primarily impacted by fragmentation and land subdivision (larger farms being divided into smaller ones). Ten per cent of surveyed farmers ( N  = 233) reported illegally killing the species over the past decade. Synthesis and applications . By integrating ecological and social data, collected at the same spatial scale, within a single modelling framework, our study demonstrates the value of an interdisciplinary approach to assessing the potential threats to a carnivore. It has allowed us to tease apart effectively the relative importance of different potential

  1. A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae)

    Uesugi, A.; Poelman, E.H.; Kessler, A.

    2013-01-01

    Plant-induced responses to multiple herbivores can mediate ecological interactions among herbivore species, thereby influencing herbivore community composition in nature. Several studies have indicated high specificity of induced responses to different herbivore species. In addition, there may be

  2. Biogeographical region and host trophic level determine carnivore endoparasite richness in the Iberian Peninsula.

    Rosalino, L M; Santos, M J; Fernandes, C; Santos-Reis, M

    2011-05-01

    We address the question of whether host and/or environmental factors might affect endoparasite richness and distribution, using carnivores as a model. We reviewed studies published in international peer-reviewed journals (34 areas in the Iberian Peninsula), describing parasite prevalence and richness in carnivores, and collected information on site location, host bio-ecology, climate and detected taxa (Helminths, Protozoa and Mycobacterium spp.). Three hypotheses were tested (i) host based, (ii) environmentally based, and (iii) hybrid (combination of environmental and host). Multicollinearity reduced candidate variable number for modelling to 5: host weight, phylogenetic independent contrasts (host weight), mean annual temperature, host trophic level and biogeographical region. General Linear Mixed Modelling was used and the best model was a hybrid model that included biogeographical region and host trophic level. Results revealed that endoparasite richness is higher in Mediterranean areas, especially for the top predators. We suggest that the detected parasites may benefit from mild environmental conditions that occur in southern regions. Top predators have larger home ranges and are likely to be subjected to cascading effects throughout the food web, resulting in more infestation opportunities and potentially higher endoparasite richness. This study suggests that richness may be more affected by historical and regional processes (including climate) than by host ecological processes.

  3. Carnivore activity in the Sima de los Huesos (Atapuerca, Spain) hominin sample

    Sala, Nohemi; Arsuaga, Juan Luis; Martínez, Ignacio; Gracia-Téllez, Ana

    2014-08-01

    The Sima de los Huesos (SH) site is the largest accumulation of human remains from the Middle Pleistocene known to date. Studies in the last two decades have proposed different hypotheses to explain carnivore activity in the SH human sample. This study provides new data in order to test these different interpretations, and therefore to understand the role of the carnivores in site formation at SH. Carnivores are usually not the origin of large accumulations of hominin fossils in the Eurasian record. The results show that marks of carnivore activity in the SH sample appear very infrequently, which we interpret as indicating that carnivore activity was very sporadic at the site. This is in stark contrast with previous studies. The comparison of bone modification patterns at SH to actualistic carnivore data allows us to suggest that bears were likely to have been the carnivore responsible for the modification observed on both human and bear fossils.

  4. Financial costs of large carnivore translocations--accounting for conservation.

    Florian J Weise

    Full Text Available Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars. Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23, and $2,108 per leopard (n = 6. One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%, followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4% of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown with a strong species bias. Four leopards (66.7% were successfully translocated but only eight of the 20 cheetahs (40.0% with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  5. Filarioid infections in wild carnivores: a multispecies survey in Romania.

    Ionică, Angela Monica; Matei, Ioana Adriana; D'Amico, Gianluca; Ababii, Jana; Daskalaki, Aikaterini Alexandra; Sándor, Attila D; Enache, Dorin Valter; Gherman, Călin Mircea; Mihalca, Andrei Daniel

    2017-07-13

    Filarioids are vector-borne parasitic nematodes of vertebrates. In Europe, eight species of filarioids, including zoonotic species, have been reported mainly in domestic dogs, and occasionally in wild carnivores. In Romania, infections with Dirofilaria spp. and Acanthocheilonema reconditum are endemic in domestic dogs. Despite the abundant populations of wild carnivores in the country, their role in the epidemiology of filarioid parasites remains largely unknown. The aim of the present study was to assess the host range, prevalence and distribution of filarioid infections in wild carnivores present in Romania. Between May 2014 and February 2016, 432 spleen samples originating from 14 species of wild carnivores have been tested for the presence of DNA of three species of filarioids (D. immitis, D. repens and A. reconditum). Overall 14 samples (3.24%) were molecularly positive. The most prevalent species was D. immitis (1.62%), accounting for 50% (n = 7) of the positive animals. The prevalence of D. repens was 1.39%, while that of A. reconditum was 0.23%. No co-infections were detected. Dirofilaria immitis DNA was detected in five golden jackals, Canis aureus (7.58%), one red fox, Vulpes vulpes (0.33%), and one wildcat, Felis silvestris (10%). The presence of D. repens DNA was detected in two red foxes (0.66%), two golden jackals (3.03%), one grey wolf (7.14%), and one least weasel, Mustela nivalis (33.33%). Acanthocheilonema reconditum DNA was found only in one red fox (0.33%). The present study provides molecular evidence of filarial infections in wild carnivore species in Romania, suggesting their potential epidemiological role and reports a new host species for D. repens.

  6. Financial costs of large carnivore translocations--accounting for conservation.

    Weise, Florian J; Stratford, Ken J; van Vuuren, Rudolf J

    2014-01-01

    Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  7. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  9. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  10. Insect herbivores should follow plants escaping their relatives

    Yguel, B.; Bailey, R.I.; Villemant, C.; Brault, A.; Jactel, H.; Prinzing, A.

    2014-01-01

    Neighboring plants within a local community may be separated by many millions of years of evolutionary history, potentially reducing enemy pressure by insect herbivores. However, it is not known how the evolutionary isolation of a plant affects the fitness of an insect herbivore living on such a

  11. Global environmental controls of diversity in large herbivores

    Olff, Han; Ritchie, Mark E.; Prins, Herbert H.T.

    2002-01-01

    Large mammalian herbivores occupy half of the earth's land surface and are important both ecologically and economically, but their diversity is threatened by human activities. We investigated how the diversity of large herbivores changes across gradients of global precipitation and soil fertility.

  12. Avoidance and tolerance to avian herbivores in aquatic plants

    Hidding, A.

    2009-01-01

    Tolerance and avoidance are the two contrasting strategies that plants may adopt to cope with herbivores. Tolerance traits define the degree to which communities remain unaffected by herbivory. Trade-offs between herbivore avoidance and competitive strength and between avoidance and colonization

  13. Evaluating herbivore management outcomes and associated vegetation impacts

    Rina C.C. Grant

    2011-05-01

    Conservation implications: In rangeland, optimising herbivore numbers to achieve the management objectives without causing unacceptable or irreversible change in the vegetation is challenging. This manuscript explores different avenues to evaluate herbivore impact and the outcomes of management approaches that may affect vegetation.

  14. Effects of large herbivores on grassland arthropod diversity

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  15. Response of different-sized herbivores to fire history

    Hagenah, N.; Cromsigt, J.P.G.M.; Olff, H.; Prins, H.H.T.

    2006-01-01

    Retrieve original file from: http://edepot.wur.nl/121801 High herbivore densities and re-occurring fires are natural phenomenons that determine the structure and functioning of African savannas. Traditional burning practices have been intensified over the past years due to increased herbivore

  16. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Chihiro Takahata

    Full Text Available When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF. Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  17. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  18. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches.

    Brown, Marion B; Schlacher, Thomas A; Schoeman, David S; Weston, Michael A; Huijbers, Chantal M; Olds, Andrew D; Connolly, Rod M

    2015-10-01

    Species composition is expected to alter ecological function in assemblages if species traits differ strongly. Such effects are often large and persistent for nonnative carnivores invading islands. Alternatively, high similarity in traits within assemblages creates a degree of functional redundancy in ecosystems. Here we tested whether species turnover results in functional ecological equivalence or complementarity, and whether invasive carnivores on islands significantly alter such ecological function. The model system consisted of vertebrate scavengers (dominated by raptors) foraging on animal carcasses on ocean beaches on two Australian islands, one with and one without invasive red foxes (Vulpes vulpes). Partitioning of scavenging events among species, carcass removal rates, and detection speeds were quantified using camera traps baited with fish carcasses at the dune-beach interface. Complete segregation of temporal foraging niches between mammals (nocturnal) and birds (diurnal) reflects complementarity in carrion utilization. Conversely, functional redundancy exists within the bird guild where several species of raptors dominate carrion removal in a broadly similar way. As predicted, effects of red foxes were large. They substantially changed the nature and rate of the scavenging process in the system: (1) foxes consumed over half (55%) of all carrion available at night, compared with negligible mammalian foraging at night on the fox-free island, and (2) significant shifts in the composition of the scavenger assemblages consuming beach-cast carrion are the consequence of fox invasion at one island. Arguably, in the absence of other mammalian apex predators, the addition of red foxes creates a new dimension of functional complementarity in beach food webs. However, this functional complementarity added by foxes is neither benign nor neutral, as marine carrion subsidies to coastal red fox populations are likely to facilitate their persistence as exotic

  19. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    Poelman, E.H.; Loon, van J.J.A.; Dam, van N.M.; Vet, L.E.M.; Dicke, M.

    2010-01-01

    2. Here we studied the effect of early-season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to

  20. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    Poelman, E.H.; van Loon, J.J.A.; Van Dam, N.M.; Dicke, M.; Vet, L.E.M.

    2010-01-01

    1. Plant responses to herbivore attack may have community-wide effects on the composition of the plant-associated insect community. Thereby, plant responses to an early-season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of

  1. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    Danner, H.; Desurmont, G.A.; Cristescu, S.M.; Dam, N.M. van

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of

  2. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.).

    Rasmann, Sergio; Agrawal, Anurag A; Cook, Susan C; Erwin, Alexis C

    2009-09-01

    Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically

  3. Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation

    Jie Yu

    2018-06-01

    Full Text Available Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection. A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.

  4. Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh.

    Chloe Inskip

    Full Text Available Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris, is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the 'Wildlife Stakeholder Acceptance Capacity' concept, to explore villagers' tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers' beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.

  5. Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh.

    Inskip, Chloe; Carter, Neil; Riley, Shawn; Roberts, Thomas; MacMillan, Douglas

    2016-01-01

    Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the 'Wildlife Stakeholder Acceptance Capacity' concept, to explore villagers' tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers' beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide.

  6. Urban warming trumps natural enemy regulation of herbivorous pests.

    Dale, Adam G; Frank, Steven D

    Trees provide ecosystem services that counter negative effects of urban habitats on human and environmental health. Unfortunately, herbivorous arthropod pests are often more abundant on urban than rural trees, reducing tree growth, survival, and ecosystem services. Previous research where vegetation complexity was reduced has attributed elevated urban pest abundance to decreased regulation by natural enemies. However, reducing vegetation complexity, particularly the density of overstory trees, also makes cities hotter than natural habitats. We ask how urban habitat characteristics influence an abiotic factor, temperature, and a biotic factor, natural enemy abundance, in regulating the abundance of an urban forest pest, the gloomy scale, (Melanaspis tenebricosa). We used a map of surface temperature to select red maple trees (Acer rubrum) at warmer and cooler sites in Raleigh, North Carolina, USA. We quantified habitat complexity by measuring impervious surface cover, local vegetation structural complexity, and landscape scale vegetation cover around each tree. Using path analysis, we determined that impervious surface (the most important habitat variable) increased scale insect abundance by increasing tree canopy temperature, rather than by reducing natural enemy abundance or percent parasitism. As a mechanism for this response, we found that increasing temperature significantly increases scale insect fecundity and contributes to greater population increase. Specifically, adult female M. tenebricosa egg sets increased by approximately 14 eggs for every 1°C increase in temperature. Climate change models predict that the global climate will increase by 2–3°C in the next 50–100 years, which we found would increase scale insect abundance by three orders of magnitude. This result supports predictions that urban and natural forests will face greater herbivory in the future, and suggests that a primary cause could be direct, positive effects of warming on herbivore

  7. A simple visual estimation of food consumption in carnivores.

    Katherine R Potgieter

    Full Text Available Belly-size ratings or belly scores are frequently used in carnivore research as a method of rating whether and how much an animal has eaten. This method provides only a rough ordinal measure of fullness and does not quantify the amount of food an animal has consumed. Here we present a method for estimating the amount of meat consumed by individual African wild dogs Lycaon pictus. We fed 0.5 kg pieces of meat to wild dogs being temporarily held in enclosures and measured the corresponding change in belly size using lateral side photographs taken perpendicular to the animal. The ratio of belly depth to body length was positively related to the mass of meat consumed and provided a useful estimate of the consumption. Similar relationships could be calculated to determine amounts consumed by other carnivores, thus providing a useful tool in the study of feeding behaviour.

  8. Nomenclatural review of long digital forelimb flexors in carnivores.

    Spoor, C F; Badoux, D M

    1986-12-01

    A hitherto-unknown atavistic muscle in the dog initiated a review of the literature on the homologies and nomenclature of the forelimb flexors in carnivores and man. A consequence is that we recommend a revision of the nomenclature in the Nomina Anatomica Veterinaria (Ithaca, New York, 1983) so that it is in agreement with the Nomina Anatomica (Wilkins, Baltimore, 1983). This revision mainly consists of the incorporation of the terms M. palmaris longus and Mm. flexores breves manus.

  9. A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants

    Gaume, Laurence; Forterre, Yoel

    2007-01-01

    International audience; Background : The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key...

  10. Recent host range expansion of canine distemper virus and variation in its receptor, the signaling lymphocyte activation molecule, in carnivores.

    Ohishi, Kazue; Suzuki, Rintaro; Maeda, Taro; Tsuda, Miwako; Abe, Erika; Yoshida, Takao; Endo, Yasuyuki; Okamura, Maki; Nagamine, Takashi; Yamamoto, Hanae; Ueda, Miya; Maruyama, Tadashi

    2014-07-01

    The signaling lymphocyte activation molecule (SLAM) is a receptor for morbilliviruses. To understand the recent host range expansion of canine distemper virus (CDV) in carnivores, we determined the nucleotide sequences of SLAMs of various carnivores and generated three-dimensional homology SLAM models. Thirty-four amino acid residues were found for the candidates binding to CDV on the interface of the carnivore SLAMs. SLAM of the domestic dog (Canis lupus familiaris) were similar to those of other members of the suborder Caniformia, indicating that the animals in this group have similar sensitivity to dog CDV. However, they were different at nine positions from those of felids. Among the nine residues, four of domestic cat (Felis catus) SLAM (72, 76, 82, and 129) and three of lion (Panthera leo persica) SLAM (72, 82, and 129) were associated with charge alterations, suggesting that the felid interfaces have lower affinities to dog CDV. Only the residue at 76 was different between domestic cat and lion SLAM interfaces. The domestic cat SLAM had threonine at 76, whereas the lion SLAM had arginine, a positively charged residue like that of the dog SLAM. The cat SLAM with threonine is likely to have lower affinity to CDV-H and to confer higher resistance against dog CDV. Thus, the four residues (72, 76, 82, and 129) on carnivore SLAMs are important for the determination of affinity and sensitivity with CDV. Additionally, the CDV-H protein of felid strains had a substitution of histidine for tyrosine at 549 of dog CDV-H and may have higher affinity to lion SLAM. Three-dimensional model construction is a new risk assessment method of morbillivirus infectivity. Because the method is applicable to animals that have no information about virus infection, it is especially useful for morbillivirus risk assessment and wildlife conservation.

  11. Detecting changes in insect herbivore communities along a pollution gradient

    Eatough Jones, Michele; Paine, Timothy D.

    2006-01-01

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area

  12. Detecting changes in insect herbivore communities along a pollution gradient

    Eatough Jones, Michele [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: michele.eatough@ucr.edu; Paine, Timothy D. [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: timothy.paine@ucr.edu

    2006-10-15

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area.

  13. Impact of herbivores on nitrogen cycling : contrasting effects of small and large species

    Bakker, ES; Olff, H; Boekhoff, M; Gleichman, JM; Berendse, F

    Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an

  14. Impact of herbivores on nitrogen cycling: contrasting effects of small and large species

    Bakker, E.S.; Olff, H.; Boekhoff, M.; Gleichman, J.M.; Berendse, F.

    2004-01-01

    Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an

  15. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  16. Replacement of moist ingredients in the feed training of carnivorous fish

    Ana Lúcia Salaro

    2012-10-01

    Full Text Available The study evaluated the replacement of bovine heart by gelatin in the feed training of carnivorous fish, using giant trahira (Hoplias lacerdae as an experimental model. A completely randomized design with four treatments and five repetitions was employed. The treatments were composed of wet ingredients beef heart (control, gelatin diluted in water, gelatin diluted in beef heart broth, and gelatin diluted in water mixed with fish meal. The fish (3.22±0.03 cm and 0.57±0.01 g were conditioned to accept industrialized diets by the technique of gradual feed ingredients transition in the diet. Gains in weight and length, efficiency of feed training, specific growth rate, cannibalism, mortality and survival rates were evaluated. There was significant difference in weight and length gains and specific growth rate, whereby the use of bovine heart gave the best results. Greater efficiency of feed training was observed for fish fed diets containing beef heart and gelatin diluted in water mixed with fish meal. The high survival rates and the absence of significant differences among treatments for rates of cannibalism, mortality and survival indicate the feasibility of using gelatin as a moist ingredient in the feed training of carnivorous fish.

  17. Shoot, shovel and shut up: cryptic poaching slows restoration of a large carnivore in Europe.

    Liberg, Olof; Chapron, Guillaume; Wabakken, Petter; Pedersen, Hans Christian; Hobbs, N Thompson; Sand, Håkan

    2012-03-07

    Poaching is a widespread and well-appreciated problem for the conservation of many threatened species. Because poaching is illegal, there is strong incentive for poachers to conceal their activities, and consequently, little data on the effects of poaching on population dynamics are available. Quantifying poaching mortality should be a required knowledge when developing conservation plans for endangered species but is hampered by methodological challenges. We show that rigorous estimates of the effects of poaching relative to other sources of mortality can be obtained with a hierarchical state-space model combined with multiple sources of data. Using the Scandinavian wolf (Canis lupus) population as an illustrative example, we show that poaching accounted for approximately half of total mortality and more than two-thirds of total poaching remained undetected by conventional methods, a source of mortality we term as 'cryptic poaching'. Our simulations suggest that without poaching during the past decade, the population would have been almost four times as large in 2009. Such a severe impact of poaching on population recovery may be widespread among large carnivores. We believe that conservation strategies for large carnivores considering only observed data may not be adequate and should be revised by including and quantifying cryptic poaching.

  18. Locating human-wildlife interactions: landscape constructions andresponses to large carnivore conservation in India and Norway

    Ghosal, Sunetro; Skogen, Ketil; Krishnan, Siddhartha

    2015-01-01

    - People’s reactions to large carnivores take many forms, ranging from support and coexistence to resistance and conflict. While these reactions are the outcome of many different factors, in this paper we specifically explore the link between social constructions of landscapes and divergent responses to large carnivore presence. We compare case studies from four different landscapes shared by people and large carnivores, in India and Norway. We use social construction of landsc...

  19. An insect-feeding guild of carnivorous plants and spiders: does optimal foraging lead to competition or facilitation?

    Crowley, Philip H; Hopper, Kevin R; Krupa, James J

    2013-12-01

    Carnivorous plants and spiders, along with their prey, are main players in an insect-feeding guild found on acidic, poorly drained soils in disturbed habitat. Darwin's notion that these plants must actively attract the insects they capture raises the possibility that spiders could benefit from proximity to prey hotspots created by the plants. Alternatively, carnivorous plants and spiders may deplete prey locally or (through insect redistribution) more widely, reducing each other's gain rates from predation. Here, we formulate and analyze a model of this guild, parameterized for carnivorous sundews and lycosid spiders, under assumptions of random movement by insects and optimal foraging by predators. Optimal foraging here involves gain maximization via trap investment (optimal web sizes and sundew trichome densities) and an ideal free distribution of spiders between areas with and without sundews. We find no facilitation: spiders and sundews engage in intense exploitation competition. Insect attraction by plants modestly increases sundew gain rates but slightly decreases spider gain rates. In the absence of population size structure, optimal spider redistribution between areas with and without sundews yields web sizes that are identical for all spiders, regardless of proximity to sundews. Web-building spiders have higher gain rates than wandering spiders in this system at high insect densities, but wandering spiders have the advantage at low insect densities. Results are complex, indicating that predictions to be tested empirically must be based on careful quantitative assessment.

  20. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  1. Phytohormone mediation of interactions between herbivores and plant pathogens

    Lazebnik, J.; Frago, E.; Dicke, M.; Loon, van J.J.A.

    2014-01-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in

  2. Biomass and Abundance of Herbivorous Fishes on Coral Reefs off ...

    effects of fishing intensity, reef geomorphology and benthic cover. Distance from the .... on herbivorous fish communities relevant to the proposed ... fragments, nearshore coastal fringing reefs ..... Over-fishing and coral bleaching pose the most ...

  3. Herbivores and nutrients control grassland plant diversity via light limitation

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  4. assimilation efficiency in two herbivores, oreochromis niloticus and ...

    Preferred Customer

    ABSTRACT: The abilities of two herbivorous animals (Oreochromis niloticus and the larva ... improved lyses of algal cells. ... Thus, more studies to understand how these and other factors affect ... as plant cells are surrounded by cell wall, and.

  5. Intrinsic and extrinsic factors influencing large African herbivore movements

    Venter, J.A.; Prins, H.H.T.; Mashanova, A.; Boer, de W.F.; Slotow, R.

    2015-01-01

    Understanding environmental as well as anthropogenic factors that influence large herbivore ecological patterns and processes should underpin their conservation and management. We assessed the influence of intrinsic, extrinsic environmental and extrinsic anthropogenic factors on movement behaviour

  6. Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore.

    Eschtruth, Anne K; Battles, John J

    2009-04-01

    The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white-tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white-tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on

  7. A conserved pattern in plant-mediated interactions between herbivores

    Lu Jing; Robert Christelle A. M.; Lou Yonggen; Erb Matthias

    2016-01-01

    Abstract Plant?mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varyi...

  8. Herbivore-induced blueberry volatiles and intra-plant signaling.

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  9. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  10. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  11. Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions

    Branco, P.; Stomp, M.; Egas, M.; Huisman, J.

    2010-01-01

    Nutrient limitation determines the primary production and species composition of many ecosystems. Here we apply an adaptive dynamics approach to investigate evolution of the ecological stoichiometry of primary producers and its implications for plant‐herbivore interactions. The model predicts a

  12. A rule of thumb in mammalian herbivores?

    Augner; Provenza; Villalba

    1998-08-01

    In two experiments on appetitive learning we conditioned lambs, Ovis aries, to particular concentrations of a flavour by mixing the flavour with an energy-rich food that complemented their energy-poor diet. The lambs were subsequently offered energy-rich food with five different concentrations of the flavour (the concentration to which they were conditioned, two higher concentrations, and two lower concentrations). At these tests, the lambs consistently preferred the weaker flavours. This finding stands in contrast to earlier results on generalization gradients. In a third experiment, similarly designed to the other two, we tested for effects of a strong flavour on the behaviour of lambs when they were offered a novel nutritious food. Half of the lambs were offered unadulterated wheat, and the others strongly flavoured wheat. We found that the flavour in itself was initially aversive. We propose that the lambs' avoidance of foods with strong flavours may be an expression of a rule of thumb of the type 'given a choice, avoid food with strong flavours'. Such a rule could be part of a risk-averse foraging strategy displayed by mammalian herbivores, and which could be of particular importance when they encounter unfamiliar foods. Copyright 1998 The Association for the Study of Animal Behaviour

  13. The use of 65Zn for estimating populations of carnivores

    Kruuk, H.; Parrish, T.

    1980-01-01

    Carnivore populations are difficult to measure by conventional methods. We have developed a new method which involves catching one or more individuals from a population and injecting them with the isotope 65 Zn. The radio-isotope appears in the faeces and assuming that the proportion of labelled to unlabelled faeces will equal the proportion of labelled to unlabelled individuals it is possible to estimate the size of the population. We have shown that the method gives an accurate estimate for a population of captive badgers of known size and we have used it in the field to estimate the size of wild badger populations. (author)

  14. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.

  15. Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA

    William J Zielinski; Richard L Truex; Fredrick V. Schlexer; Lori A. Campbell; Carlos Caroll

    2005-01-01

    Malammalian carnivores are considered particularly sensitive indicators of environmental change. Information on the distribution of carnivores from the early 1900s provides a unique opportunity to evaluate changes in their distributions over a 75-year period during which the influence of human uses of forest resources in California greatly increased. We present...

  16. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  17. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  18. Carnivore repatriation and holarctic prey: narrowing the deficit in ecological effectiveness.

    Berger, Joel

    2007-08-01

    The continuing global decline of large carnivores has catalyzed great interest in reintroduction to restore populations and to reestablish ecologically functional relationships. I used variation in the distribution of four Holarctic prey species and their behavior as proxies to investigate the pace and intensity by which responses are lost or reinvigorated by carnivore repatriation. By simulating the presence of wolves (Canis lupus), tigers (Panthera tigris), and brown bears (Ursus arctos) at 19 transcontinental sites, I assayed three metrics of prey performance in areas with no large terrestrial carnivores (the polar islands of Greenland and Svalbard), extant native carnivores (Eastern Siberian Shield, boreal Canada, and Alaska); and repatriated carnivores (the Yellowstone region and Rocky Mountains). The loss and reestablishment of large carnivores changed the ecological effectiveness of systems by (1) dampening immediate group benefits, diminishing awareness, and diminishing flight reaction in caribou (Rangifer tarandus) where predation was eliminated and (2) reinstituting sensitivity to carnivores by elk (Cervus elaphus) and moose (Alces alces) in the Yellowstone region to levels observed in Asian elk when sympatric with Siberian tigers and wolves or in Alaskan moose sympatric with wolves. Behavioral compensation to reintroduced carnivores occurred within a single generation, but only the vigilance reaction of bison (Bison bison) in Yellowstone exceeded that of their wolf-exposed conspecifics from boreal Canada. Beyond these overt responses by prey, snow depth and distance to suitably vegetated habitat was related to heightened vigilance in moose and elk, respectively, but only at sites with carnivores. These findings are insufficient to determine whether similar patterns might apply to other species or in areas with alien predators, and they suggest that the presumed excessive vulnerability of naïve prey to repatriated carnivores may be ill-founded. Although

  19. Effects of urbanization on carnivore species distribution and richness

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  20. Bovine tuberculosis in free-ranging carnivores from Michigan.

    Bruning-Fann, C S; Schmitt, S M; Fitzgerald, S D; Fierke, J S; Friedrich, P D; Kaneene, J B; Clarke, K A; Butler, K L; Payeur, J B; Whipple, D L; Cooley, T M; Miller, J M; Muzo, D P

    2001-01-01

    During a survey of carnivores and omnivores for bovine tuberculosis conducted in Michigan (USA) since 1996, Mycobacterium bovis was cultured from lymph nodes pooled from six coyotes (Canis latrans) (four adult female, two adult male), two adult male raccoons (Procyon lotor), one adult male red fox (Vulpes vulpes), and one 1.5-yr-old male black bear (Ursus americanus). One adult, male bobcat (Felis rufus) with histologic lesions suggestive of tuberculosis was negative on culture but positive for organisms belonging to the Mycobacterium tuberculosis complex when tested by polymerase chain reaction. All the tuberculous animals were taken from three adjoining counties where M. bovis is known to be endemic in the free-ranging white-tailed deer (Odocoileus virginianus) population. There were two coyotes, one raccoon, one red fox, and one bobcat infected in Alpena county. Montmorency County had two coyotes and one raccoon with M. bovis. Two coyotes and a bear were infected from Alcona County. These free-ranging carnivores/omnivores probably became infected with M. bovis through consumption of tuberculous deer. Other species included in the survey were opossum (Didelphis virginiana), gray fox (Urocyon cinereoargenteus), and badger (Taxidea taxus); these were negative for M. bovis.

  1. Decoupled form and function in disparate herbivorous dinosaur clades

    Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.

    2016-05-01

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  2. Decoupled form and function in disparate herbivorous dinosaur clades.

    Lautenschlager, Stephan; Brassey, Charlotte A; Button, David J; Barrett, Paul M

    2016-05-20

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  3. Macroevolution of plant defenses against herbivores in the evening primroses.

    Johnson, Marc T J; Ives, Anthony R; Ahern, Jeffrey; Salminen, Juha-Pekka

    2014-07-01

    Plant species vary greatly in defenses against herbivores, but existing theory has struggled to explain this variation. Here, we test how phylogenetic relatedness, tradeoffs, trait syndromes, and sexual reproduction affect the macroevolution of defense. To examine the macroevolution of defenses, we studied 26 Oenothera (Onagraceae) species, combining chemistry, comparative phylogenetics and experimental assays of resistance against generalist and specialist herbivores. We detected dozens of phenolic metabolites within leaves, including ellagitannins (ETs), flavonoids, and caffeic acid derivatives (CAs). The concentration and composition of phenolics exhibited low to moderate phylogenetic signal. There were clear negative correlations between multiple traits, supporting the prediction of allocation tradeoffs. There were also positively covarying suites of traits, but these suites did not strongly predict resistance to herbivores and thus did not act as defensive syndromes. By contrast, specific metabolites did correlate with the performance of generalist and specialist herbivores. Finally, that repeated losses of sex in Oenothera was associated with the evolution of increased flavonoid diversity and altered phenolic composition. These results show that secondary chemistry has evolved rapidly during the diversification of Oenothera. This evolution has been marked by allocation tradeoffs between traits, some of which are related to herbivore performance. The repeated loss of sex appears also to have constrained the evolution of plant secondary chemistry, which may help to explain variation in defense among plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Are carnivore digestive separation mechanisms revealed on structure-rich diets?: Faecal inconsistency in dogs (Canis familiaris fed day old chicks.

    Annelies De Cuyper

    Full Text Available Pronounced variations in faecal consistency have been described anecdotally for some carnivore species fed a structure-rich diet. Typically two faecal consistencies are distinguished, namely hard and firm versus liquid and viscous faeces. It is possible that a separation mechanism is operating in the carnivore digestive tract, as in many herbivore species. Six beagle dogs were fed two experimental diets in a cross-over design of 7 days. Test diets consisted of chunked day old chicks differing only in particle size (fine = 7.8 mm vs coarse = 13 mm in order to vary dietary structure. Digestive retention time was measured using titanium oxide (TiO2 as marker. The total faecal output was scored for consistency and faecal fermentation profiles were evaluated through faecal short-chain fatty acid (SCFA and ammonia (NH3 analyses. A total of 181 faecal samples were collected. Dietary particle size did not affect faecal consistency, fermentative end products nor mean retention time (MRT. However, a faecal consistency dichotomy was observed with firm faeces (score 2-2.5 and soft faeces (score 4-4.5 being the most frequently occurring consistencies in an almost alternating pattern in every single dog. Firm and soft faeces differed distinctively in fermentative profiles. Although the structure difference between diets did not affect the faecal dichotomy, feeding whole prey provoked the occurrence of the latter which raises suspicion of a digestive separation mechanism in the canine digestive tract. Further faecal characterisation is however required in order to unravel the underlying mechanism.

  5. High-Arctic Plant-Herbivore Interactions under Climate Influence

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    This chapter focuses on a 10-year data series from Zackenberg on the trophic interactions between two characteristic arctic plant species, arctic willow Salix arctica and mountain avens Dryas octopetala, and three herbivore species covering the very scale of size present at Zackenberg, namely......, the moth Sympistis zetterstedtii, the collared lemming Dicrostonyx groenlandicus and the musk ox Ovibos moschatus. Data from Zackenberg show that timing of snowmelt, the length of the growing season and summer temperature are the basic variables that determine the phenology of flowering and primary...... production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...

  6. Combined effects of arthropod herbivores and phytopathogens on plant performance

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  7. Multi-factor climate change effects on insect herbivore performance

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO...... suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under...... the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen...

  8. Distance and sex determine host plant choice by herbivorous beetles.

    Daniel J Ballhorn

    Full Text Available Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores?We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials.Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged

  9. Do herbivores eavesdrop on ant chemical communication to avoid predation?

    David J Gonthier

    Full Text Available Strong effects of predator chemical cues on prey are common in aquatic and marine ecosystems, but are thought to be rare in terrestrial systems and specifically for arthropods. For ants, herbivores are hypothesized to eavesdrop on ant chemical communication and thereby avoid predation or confrontation. Here I tested the effect of ant chemical cues on herbivore choice and herbivory. Using Margaridisa sp. flea beetles and leaves from the host tree (Conostegia xalapensis, I performed paired-leaf choice feeding experiments. Coating leaves with crushed ant liquids (Azteca instabilis, exposing leaves to ant patrolling prior to choice tests (A. instabilis and Camponotus textor and comparing leaves from trees with and without A. instabilis nests resulted in more herbivores and herbivory on control (no ant-treatment relative to ant-treatment leaves. In contrast to A. instabilis and C. textor, leaves previously patrolled by Solenopsis geminata had no difference in beetle number and damage compared to control leaves. Altering the time A. instabilis patrolled treatment leaves prior to choice tests (0-, 5-, 30-, 90-, 180-min. revealed treatment effects were only statistically significant after 90- and 180-min. of prior leaf exposure. This study suggests, for two ecologically important and taxonomically diverse genera (Azteca and Camponotus, ant chemical cues have important effects on herbivores and that these effects may be widespread across the ant family. It suggests that the effect of chemical cues on herbivores may only appear after substantial previous ant activity has occurred on plant tissues. Furthermore, it supports the hypothesis that herbivores use ant chemical communication to avoid predation or confrontation with ants.

  10. Are pumas subordinate carnivores, and does it matter?

    Elbroch, L Mark; Kusler, Anna

    2018-01-01

    Interspecific competition affects species fitness, community assemblages and structure, and the geographic distributions of species. Established dominance hierarchies among species mitigate the need for fighting and contribute to the realized niche for subordinate species. This is especially important for apex predators, many of which simultaneous contend with the costs of competition with more dominant species and the costs associated with human hunting and lethal management. Pumas are a widespread solitary felid heavily regulated through hunting to reduce conflicts with livestock and people. Across their range, pumas overlap with six apex predators (gray wolf, grizzly bear, American black bear, jaguar, coyote, maned wolf), two of which (gray wolf, grizzly bear) are currently expanding in North America following recovery efforts. We conducted a literature search to assess whether pumas were subordinate or dominant with sympatric apex predators, as well as with three felid mesocarnivores with similar ecology (ocelot, bobcat, Canada lynx). We also conducted an analysis of the spatial distributions of pumas and their dominant sympatric competitors to estimate in what part of their range, pumas are dominant versus subordinate. We used 64 sources to assess dominance among pumas and other apex predators, and 13 sources to assess their relationships with felid mesocarnivores. Evidence suggested that wolves, grizzly bears, black bears, and jaguars are dominant over pumas, but that pumas are dominant over coyotes and maned wolves. Evidence suggested that pumas are also dominant over all three felid mesocarnivores with which they share range. More broadly, pumas are subordinate to at least one other apex carnivore in 10,799,252 (47.5%) of their 22,735,268 km 2 range across North and South America. Subordinate pumas change their habitat use, suffer displacement at food sources, likely experience increased energetic demands from harassment, exhibit increased starvation, and

  11. Ticks (Acari: Ixodida) on wild carnivores in Brazil.

    Labruna, Marcelo B; Jorge, Rodrigo S P; Sana, Dênis A; Jácomo, Anah Tereza A; Kashivakura, Cyntia K; Furtado, Mariana M; Ferro, Claudia; Perez, Samuel A; Silveira, Leandro; Santos, Tarcísio S; Marques, Samuel R; Morato, Ronaldo G; Nava, Alessandra; Adania, Cristina H; Teixeira, Rodrigo H F; Gomes, Albério A B; Conforti, Valéria A; Azevedo, Fernando C C; Prada, Cristiana S; Silva, Jean C R; Batista, Adriana F; Marvulo, Maria Fernanda V; Morato, Rose L G; Alho, Cleber J R; Pinter, Adriano; Ferreira, Patrícia M; Ferreira, Fernado; Barros-Battesti, Darci M

    2005-01-01

    The present study reports field data of ticks infesting wild carnivores captured from July 1998 to September 2004 in Brazil. Additional data were obtained from one tick collection and from previous published data of ticks on carnivores in Brazil. During field work, a total of 3437 ticks were collected from 89 Cerdocyon thous (crab-eating fox), 58 Chrysocyon brachyurus (maned wolf), 30 Puma concolor (puma), 26 Panthera onca (jaguar), 12 Procyon cancrivorus (crab-eating raccoon), 4 Speothos venaticus (bush dog), 6 Pseudalopex vetulus (hoary fox), 6 Nasua nasua (coati), 6 Leopardus pardalis (ocelot), 2 Leopardus tigrinus (oncilla), 1 Leopardus wiedii (margay), 1 Herpailurus yagouaroundi (jaguarundi), 1 Oncifelis colocolo (pampas cat), 1 Eira barbara (tayara), 1 Galictis vittata (grison), 1 Lontra longicaudis (neotropical otter), and 1 Potus flavus (kinkajou). Data obtained from the Acari Collection IBSP included a total of 381 tick specimens collected on 13 C. thous, 8 C. brachyurus, 3 P. concolor, 10 P. onca, 3 P. cancrivorus, 4 N. nasua, 1 L. pardalis, 1 L. wiedii, 4 H. yagouaroundi, 1 Galictis cuja (lesser grison), and 1 L. longicaudis. The only tick-infested carnivore species previously reported in Brazil, for which we do not present any field data are Pseudalopex gymnocercus (pampas fox), Conepatus chinga (Molina's hog-nosed skunk), and Conepatus semistriatus (striped hog-nosed skunk). We report the first tick records in Brazil on two Felidae species (O. colocolo, H. yagouaroundi), two Canidae species (P. vetulus, S. venaticus), one Procyonidae species (P. flavus) and one Mustelidae (E. barbara). Tick infestation remains unreported for 5 of the 26 Carnivora species native in Brazil: Oncifelis geoffroyi (Geoffroy's cat), Atelocynus microtis (short-eared dog), Pteronura brasiliensis (giant otter), Mustela africana (Amazon weasel), and Bassaricyon gabbii (olingo). Our field data comprise 16 tick species represented by the genera Amblyomma (12 species), Ixodes (1

  12. Are pumas subordinate carnivores, and does it matter?

    L. Mark Elbroch

    2018-01-01

    Full Text Available Background Interspecific competition affects species fitness, community assemblages and structure, and the geographic distributions of species. Established dominance hierarchies among species mitigate the need for fighting and contribute to the realized niche for subordinate species. This is especially important for apex predators, many of which simultaneous contend with the costs of competition with more dominant species and the costs associated with human hunting and lethal management. Methods Pumas are a widespread solitary felid heavily regulated through hunting to reduce conflicts with livestock and people. Across their range, pumas overlap with six apex predators (gray wolf, grizzly bear, American black bear, jaguar, coyote, maned wolf, two of which (gray wolf, grizzly bear are currently expanding in North America following recovery efforts. We conducted a literature search to assess whether pumas were subordinate or dominant with sympatric apex predators, as well as with three felid mesocarnivores with similar ecology (ocelot, bobcat, Canada lynx. We also conducted an analysis of the spatial distributions of pumas and their dominant sympatric competitors to estimate in what part of their range, pumas are dominant versus subordinate. Results We used 64 sources to assess dominance among pumas and other apex predators, and 13 sources to assess their relationships with felid mesocarnivores. Evidence suggested that wolves, grizzly bears, black bears, and jaguars are dominant over pumas, but that pumas are dominant over coyotes and maned wolves. Evidence suggested that pumas are also dominant over all three felid mesocarnivores with which they share range. More broadly, pumas are subordinate to at least one other apex carnivore in 10,799,252 (47.5% of their 22,735,268 km2 range across North and South America. Discussion Subordinate pumas change their habitat use, suffer displacement at food sources, likely experience increased energetic demands

  13. Combined effects of patch size and plant nutritional quality on local densities of insect herbivores

    Bukovinszky, T.; Gols, R.; Kamp, A.; De Oliveira-Domingues, F.; Hambäck, P.A.; Jongema, Y.; Bezemer, T.M.; Dicke, M.; Van Dam, N.M.; Harvey, J.A.

    2010-01-01

    Plant–insect interactions occur in spatially heterogeneous habitats. Understanding how such interactions shape density distributions of herbivores requires knowledge on how variation in plant traits (e.g. nutritional quality) affects herbivore abundance through, for example, affecting movement rates

  14. Fish, Benthic and Urchin Survey Data from Kahekili Herbivore Fisheries Management Area (HFMA), Maui since 2008

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2009, the state of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA) in West Maui. Fishing for herbivores (parrotfishes, surgeonfishes,...

  15. Herbaceous forage and selection patterns by ungulates across varying herbivore assemblages in a South African savanna

    Treydte, A.C.; Baumgartner, S.; Heitkonig, I.M.A.; Grant, C.C.; Getz, W.M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African

  16. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Quinn Colin F

    2010-08-01

    Full Text Available Abstract Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis and the two-spotted spider mite (Tetranychus urticae. Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1 were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1. Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the

  17. Effects of large herbivores on grassland arthropod diversity.

    van Klink, R; van der Plas, F; van Noordwijk, C G E Toos; WallisDeVries, M F; Olff, H

    2015-05-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  18. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  19. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    William Oki Wong

    2015-05-01

    Full Text Available Archaeamphora longicervia H.Q.Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1 an innermost larval chamber with a distinctive outer wall; (2 an intermediate zone of nutritive tissue; and (3 an outermost zone of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the formerly reported gymnosperm Liaoningocladus boii G.Sun et al. from the Yixian Formation.

  20. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

    Rodriguez-Saona, Cesar R; Frost, Christopher J

    2010-01-01

    A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

  1. Advances in reproductive science for wild carnivore conservation.

    Comizzoli, P; Crosier, A E; Songsasen, N; Gunther, M Szykman; Howard, J G; Wildt, D E

    2009-07-01

    Knowledge about reproduction is critical for predicting the viability of wildlife populations in nature and for managing breeding programmes in captivity. Intensive species-based studies are the priority, because reproductive mechanisms are extraordinarily diverse, even within the same taxonomic family. Carnivores deserve more attention as such species are highly vulnerable to environmental change and human persecution. The present review provides contemporary illustrations of how reproductive science is contributing to understand unique reproductive mechanisms that are both of fundamental and applied interest. In the case of the endangered African wild dog (Lycaon pictus) free-living in South Africa, non-invasive faecal corticosteroid assessments have yielded new insights about the impact of animal relocation and reintroduction on adaptive responses, reproductive fitness and survival. For the maned wolf (Chrysocyon brachyurus), advances have been made in characterizing and comparing reproductive traits in free-ranging vs captive individuals. For the cheetah (Acinonyx jubatus), recent studies have focused on the cryosensitivity of sperm and the ability to develop a field-friendly sperm cryo-method. The by-product has been a large-scale frozen repository of sperm from wild-caught cheetahs useful for infusing new genes into ex situ populations. Finally, rigorous, multi-disciplinary and cross-institutional reproductive studies of the black-footed ferret (Mustela nigripes), including the use of artificial insemination, have contributed to the remarkable recovery and restoration of this species, once on the brink of extinction. In summary, advances in reproductive science are not necessarily related to 'assisted breeding'. However, understanding the unique ways of carnivore reproduction greatly contributes to species management and conservation.

  2. Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    Belliure, B.; Janssen, A.; Sabelis, M.W.

    2008-01-01

    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown

  3. Large herbivores as a driving force of woodland-grassland cycles

    Cornelissen, Perry

    2017-01-01

    This thesis examines the mutual interactions between the population dynamics of large herbivores and wood-pasture cycles in eutrophic wetlands. Therefore, habitat use and population dynamics of large herbivores, the effects of large herbivores on vegetation development, and the mutual

  4. Large herbivores that strive mightily but eat and drink as friends

    Boer, de W.F.; Prins, H.H.T.

    1990-01-01

    Grazing in patches of Cynodon dactylon and of Sporobolus spicatus by four large herbivores, and the interaction between these sedentary herbivores was studied in Lake Manyara National Park, northern Tanzania. The herbivores were the African buffalo, Syncerus caffer; the African elephan, Loxodonta

  5. The importance of phenology in studies of plant-herbivore-parasitoid interactions

    Fei, Minghui

    2016-01-01

    Thesis title: The importance of phenology in studies of plant-herbivore-parasitoid interactions Author: Minghui Fei Abstract As food resources of herbivorous insects, the quality and quantity of plants can directly affect the performance of herbivorous insects and indirectly affect

  6. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada

    2013-01-01

    Background Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Results Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Conclusions Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the

  7. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada.

    Mallon, Jordan C; Evans, David C; Ryan, Michael J; Anderson, Jason S

    2013-04-04

    Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the herbivores in terms of relative

  8. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  9. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  10. Aquatic herbivores facilitate the emission of methane from wetlands

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on

  11. Experimental evidence for herbivore limitation of the treeline.

    Speed, James D M; Austrheim, Gunnar; Hester, Alison J; Mysterud, Atle

    2010-11-01

    The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.

  12. Resilience in plant-herbivore networks during secondary succession.

    Edith Villa-Galaviz

    Full Text Available Extensive land-use change in the tropics has produced a mosaic of successional forests within an agricultural and cattle-pasture matrix. Post-disturbance biodiversity assessments have found that regeneration speed depends upon propagule availability and the intensity and duration of disturbance. However, reestablishment of species interactions is still poorly understood and this limits our understanding of the anthropogenic impacts upon ecosystem resilience. This is the first investigation that evaluates plant-herbivore interaction networks during secondary succession. In particular we investigated succession in a Mexican tropical dry forest using data of caterpillar associations with plants during 2007-2010. Plant-herbivore networks showed high resilience. We found no differences in most network descriptors between secondary and mature forest and only recently abandoned fields were found to be different. No significant nestedness or modularity network structure was found. Plant-herbivore network properties appear to quickly reestablish after perturbation, despite differences in species richness and composition. This study provides some valuable guidelines for the implement of restoration efforts that can enhance ecological processes such as the interaction between plants and their herbivores.

  13. Immune defence strategies of generalist and specialist insect herbivores

    Barthel, A.; Kopka, I.; Vogel, H.; Zipfel, P.; Heckel, D.G.; Groot, A.T.

    2014-01-01

    Ecological immunology examines the adaptive responses of animals to pathogens in relation to other environmental factors and explores the consequences of trade-offs between investment in immune function and other life-history traits. Among species of herbivorous insects, diet breadth may vary

  14. Asymmetric impacts of two herbivore ecotypes on similar host plants

    Ecotypes may arise following allopatric separation from source populations. The simultaneous transfer of an exotic plant to a novel environment, along with its stenophagous herbivore, may complicate more traditional patterns of divergence from the plant and insect source populations. We evaluated ...

  15. Dietary patterns of two herbivorous rodents: and Parotomys brantsii ...

    Frequency of occurrence of plant species in the diets were compared with availability of the plants in the rodents' habitats. Both rodents are generalist herbivores, eating plants species in proportion to the availability in their habitats. Dietary patterns, diversity of diet and degree of overlap between rodent's diets are a function ...

  16. Ecology of Arabidopsis thaliana : local adaptation and interaction with herbivores

    Mosleh Arany, A.

    2006-01-01

    As first step the impact of herbivory and abiotic factors on population dynamics of Arabidopsis thaliana were studied. Ceutorhynchus atomus and C. contractus were identified as the major insect herbivores on A. thaliana population, reducing seed production by more than 40%. Mortality from February

  17. Resource partitioning between large herbivores in Hustai National Park, Mongolia

    Sietses, D.J.; Faupin, G.; Boer, de W.F.; Jong, de C.B.; Henkens, R.J.H.G.; Usukhjargal, D.; Batbaatar, T.

    2009-01-01

    Re-introduced Przewalski horses in Hustai National Park, Mongolia could suffer from food competition with other herbivore species through food resource depletion. Diet composition of the Przewalski horse (Equus ferus przewalskii), red deer (Cervus elaphus) and four livestock species (sheep, goat,

  18. Are exotic herbivores better competitors? A meta-analysis.

    Radville, Laura; Gonda-King, Liahna; Gómez, Sara; Kaplan, Ian; Preisser, Evan L

    2014-01-01

    Competition plays an important role in structuring the community dynamics of phytophagous insects. As the number and impact of biological invasions increase, it has become increasingly important to determine whether competitive differences exist between native and exotic insects. We conducted a meta-analysis to test the hypothesis that native/ exotic status affects the outcome of herbivore competition. Specifically, we used data from 160 published studies to assess plant-mediated competition in phytophagous insects. For each pair of competing herbivores, we determined the native range and coevolutionary history of each herbivore and host plant. Plant-mediated competition occurred frequently, but neither native nor exotic insects were consistently better competitors. Spatial separation reduced competition in native insects but showed little effect on exotics. Temporal separation negatively impacted native insects but did not affect competition in exotics. Insects that coevolved with their host plant were more affected by interspecific competition than herbivores that lacked a coevolutionary history. Insects that have not coevolved with their host plant may be at a competitive advantage if they overcome plant defenses. As native/exotic status does not consistently predict outcomes of competitive interactions, plant-insect coevolutionary history should be considered in studies of competition.

  19. Eutrophication Modeling Using Variable Chlorophyll Approach

    Abdolabadi, H.; Sarang, A.; Ardestani, M.; Mahjoobi, E.

    2016-01-01

    In this study, eutrophication was investigated in Lake Ontario to identify the interactions among effective drivers. The complexity of such phenomenon was modeled using a system dynamics approach based on a consideration of constant and variable stoichiometric ratios. The system dynamics approach is a powerful tool for developing object-oriented models to simulate complex phenomena that involve feedback effects. Utilizing stoichiometric ratios is a method for converting the concentrations of state variables. During the physical segmentation of the model, Lake Ontario was divided into two layers, i.e., the epilimnion and hypolimnion, and differential equations were developed for each layer. The model structure included 16 state variables related to phytoplankton, herbivorous zooplankton, carnivorous zooplankton, ammonium, nitrate, dissolved phosphorus, and particulate and dissolved carbon in the epilimnion and hypolimnion during a time horizon of one year. The results of several tests to verify the model, close to 1 Nash-Sutcliff coefficient (0.98), the data correlation coefficient (0.98), and lower standard errors (0.96), have indicated well-suited model’s efficiency. The results revealed that there were significant differences in the concentrations of the state variables in constant and variable stoichiometry simulations. Consequently, the consideration of variable stoichiometric ratios in algae and nutrient concentration simulations may be applied in future modeling studies to enhance the accuracy of the results and reduce the likelihood of inefficient control policies.

  20. Large-scale evaluation of carnivore road mortality: the effect of landscape and local scale characteristics

    Červinka, J.; Riegert, J.; Grill, S.; Šálek, Martin

    2015-01-01

    Roč. 60, č. 3 (2015), s. 233-243 ISSN 2199-2401 Institutional support: RVO:68081766 Keywords : Carnivores * Landscape characteristics * Linear structures * Local characteristics * Road mortality * Temporal pattern Subject RIV: EH - Ecology, Behaviour

  1. The ecology of large carnivores in the highlands of northern Ethiopia

    Yirga, Gidey; De Iongh, Hans H.; Leirs, Herwig

    2013-01-01

    The degradation and fragmentation of the northern Ethiopian highlands has resulted in frequent encounters of large carnivores with humans and their livestock. We interviewed 500 randomly selected households to estimate economic impact of livestock predation by spotted hyaena (Crocuta crocuta...

  2. Living with large carnivores: predation on livestock by the snow leopard (Uncia uncia)

    Bagchi, S.; Mishra, C.

    2006-01-01

    Livestock predation by large carnivores and their retaliatory persecution by pastoralists are worldwide conservation concerns. Poor understanding of the ecological and social underpinnings of this human¿wildlife conflict hampers effective conflict management programs. The endangered snow leopard

  3. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis

    Pavlovič, A.; Krausko, M.; Libiaková, M.; Adamec, Lubomír

    2014-01-01

    Roč. 113, č. 1 (2014), s. 69-78 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : carnivorous plants * fruit flies * digestive enzymes Subject RIV: EF - Botanics Impact factor: 3.654, year: 2014

  4. ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.

    Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V

    2014-01-01

    A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects

  5. Etude du régime alimentaire des carnivores par des techniques moléculaires

    Shehzad , Wasim

    2011-01-01

    Information on food webs is central to understand ecosystem functioning. It also provides information of ecosystem stability by evaluating the resource availability and use. Obtaining information on the diet can be critical especially when dealing with elusive carnivores, which are difficult to observe. However, these large carnivores are keystone species that influence the ecosystem through trophic cascades and maintain biodiversity. Thus, precise knowledge of their diet is a prerequisite fo...

  6. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives.

    Schröder, Christiane; Bleidorn, Christoph; Hartmann, Stefanie; Tiedemann, Ralph

    2009-12-15

    Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.

  7. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  8. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran.

    Vafae Eslahi, Aida; Kia, Eshrat Beigom; Mobedi, Iraj; Sharifdini, Meysam; Badri, Milad; Mowlavi, Gholamreza

    2017-01-01

    Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Fifty road killed carnivores including 27 stray dogs ( Canis familiaris ), 11 golden jackals ( Canis aureus ) and 12 stray cats ( Felis catus ) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum , Toxocara cati , Toxocara canis , Toxascaris leonine , Ancylostoma caninum , Ancylostoma tubaeforme , Dirofilaria immitis , Dioctophyma renale , Dipylidum caninum , Echinococcus granulosus , Mesocestoides spp ., Taenia hydatigena, Taenia hydatigera , Joyuxiella spp. , Spirometra spp. are reported herein. The prevalent occurrence of zoonotic helminthes such as T. canis , T. cati , T. leonina , E. granulosus , D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province.

  9. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran

    Aida VAFAE ESLAHI

    2017-06-01

    Full Text Available Background: Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran.Methods: Fifty road killed carnivores including 27 stray dogs (Canis familiaris, 11 golden jackals (Canis aureus and 12 stray cats (Felis catus were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation.Results: About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66% were found naturally infected with helminthic parasites. Dipylidum caninum, Toxocara cati, Toxocara canis, Toxascaris leonine, Ancylostoma caninum, Ancylostoma tubaeforme, Dirofilaria immitis, Dioctophyma renale, Dipylidum caninum, Echinococcus granulosus, Mesocestoides spp., Taenia hydatigena, Taenia hydatigera, Joyuxiella spp., Spirometra spp. are reported herein.Conclusion: The prevalent occurrence of zoonotic helminthes such as T. canis, T. cati, T. leonina, E. granulosus, D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province.

  10. Responses of Herbivorous Fishes and Benthos to 6 Years of Protection at the Kahekili Herbivore Fisheries Management Area, Maui.

    Ivor D Williams

    Full Text Available In response to concerns about declining coral cover and recurring macroalgal blooms, in 2009 the State of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA. Within the KHFMA, herbivorous fishes and sea urchins are protected, but other fishing is allowed. As part of a multi-agency monitoring effort, we conducted surveys at KHFMA and comparison sites around Maui starting 19 months before closure, and over the six years since implementation of herbivore protection. Mean parrotfish and surgeonfish biomass both increased within the KHFMA (by 139% [95%QR (quantile range: 98-181%] and 28% [95%QR: 3-52%] respectively. Most of those gains were of small-to-medium sized species, whereas large-bodied species have not recovered, likely due to low levels of poaching on what are preferred fishery targets in Hawaii. Nevertheless, coincident with greater biomass of herbivores within the KHFMA, cover of crustose coralline algae (CCA has increased from ~2% before closure to ~ 15% in 2015, and macroalgal cover has remained low throughout the monitoring period. Strong evidence that changes in the KHFMA were a consequence of herbivore management are that (i there were no changes in biomass of unprotected fish families within the KHFMA; and that (ii there were no similar changes in parrotfish or CCA at comparison sites around Maui. It is not yet clear how effective herbivore protection might eventually be for the KHFMA's ultimate goal of coral recovery. Coral cover declined over the first few years of surveys-from 39.6% (SE 1.4% in 2008, to 32.9% (SE 0.8% in 2012, with almost all of that loss occurring by 2010 (1 year after closure, i.e. before meaningful herbivore recovery had occurred. Coral cover subsequently stabilized and may have slightly increased from 2012 through early 2015. However, a region-wide bleaching event in 2015 had already led to some coral mortality by the time surveys were conducted in late 2015, at which time cover had

  11. Mapping Forage Resources Using Earth Observation Data: A Case Study to Assess the Relationship Between Herbaceous and Woody Cover Components as Determinants of Large Herbivore Distribution in Sub-Saharan Africa

    Hanan, N. P.; Kahiu, M. N.

    2016-12-01

    Grazing systems are important for survival of humans, livestock and wildlife in Sub-Saharan Africa (SSA). They are mainly found in the arid and semi-arid regions and are characterized by naturally occurring tree-grass vegetation mixtures ("savannas"), low and erratic rainfall, low human populations, and scanty water resources. Due to the scarce population and perceived low resource base they have been marginalized for decades, if not centuries. However, their economic and environmental significance, particularly their role as foraging lands for livestock and wildlife cannot be underrated. SSA natural grazing systems comprise a significant source of livelihood, where millions of people depend on pastoralism as a source of food and income. Further, the African savannas support diverse flora and charismatic large herbivore and carnivore guilds. The above considerations motivate a more detailed study of the composition, temporal and spatial variability of foraging resources in SSA arid and semi-arid regions. We have therefore embarked on a research to map Africa foraging resources by partitioning MODIS total leaf area index (LAIA) time series into its woody (LAIW) and herbaceous (LAIH) constituents as proxies for grazing and browsing resources, respectively. Using the portioned LAI estimates we will develop a case study to assess how forage resources affect distribution and abundance of large herbivores in Africa. In our case study we explore two separate but related hypothesis: i) small and medium sized mammalian herbivore numbers will peak at intermediate biomass (LAIH for grazers and LAIW for browsers), since they optimize on forage quantity and quality. Conversely, large-body mammalian herbivores have the ability to process high quantity-low quality food, hence, we hypothesize that ii) larger herbivores will tend to be more common in high forage areas irrespective of forage quality. We will use LAIH and LAIW retrievals to compute annual average leaf area duration

  12. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores

    Amanda R. Meier

    2018-04-01

    Full Text Available Multitrophic species interactions are shaped by both top-down and bottom-up factors. Belowground symbionts of plants, such as arbuscular mycorrhizal fungi (AMF, can alter the strength of these forces by altering plant phenotype. For example, AMF-mediated changes in foliar toxin and nutrient concentrations may influence herbivore growth and fecundity. In addition, many specialist herbivores sequester toxins from their host plants to resist natural enemies, and the extent of sequestration varies with host plant secondary chemistry. Therefore, by altering plant phenotype, AMF may affect both herbivore performance and their resistance to natural enemies. We examined how inoculation of plants with AMF influences toxin sequestration and performance of two specialist herbivores feeding upon four milkweed species (Asclepias incarnata, A. curassavica, A. latifolia, A. syriaca. We raised aphids (Aphis nerii and caterpillars (Danaus plexippus on plants for 6 days in a fully factorial manipulation of milkweed species and level of AMF inoculation (zero, medium, and high. We then assessed aphid and caterpillar sequestration of toxins (cardenolides and performance, and measured defensive and nutritive traits of control plants. Aphids and caterpillars sequestered higher concentrations of cardenolides from plants inoculated with AMF across all milkweed species. Aphid per capita growth rates and aphid body mass varied non-linearly with increasing AMF inoculum availability; across all milkweed species, aphids had the lowest performance under medium levels of AMF availability and highest performance under high AMF availability. In contrast, caterpillar survival varied strongly with AMF availability in a plant species-specific manner, and caterpillar growth was unaffected by AMF. Inoculation with AMF increased foliar cardenolide concentrations consistently among milkweed species, but altered aboveground biomasses and foliar phosphorous concentrations in a plant

  13. Parasites of domestic and wild animals in South Africa. XLIV. Fleas (Insecta : Siphonaptera : Pulicidae collected from 15 carnivore species

    I.G. Horak

    2004-11-01

    Full Text Available Fleas were collected from 61 wild carnivores belonging to 13 species in various nature reserves and on farms, two feral domestic cats in a nature reserve and a domestic dog in the city of Johannesburg. Eleven flea species, including two subspecies of one of these, belonging to six genera were recovered. Amongst these only Ctenocephalides felis felis and Ctenocephalides felis strongylus are considered specific parasites of carnivores. The remaining ten species normally infest the prey animals of the various carnivores.

  14. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature

    Meredith C. Schuman

    2018-06-01

    Full Text Available The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA. Among these, the conjugate jasmonoyl isoleucine (JA-Ile has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1, following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6 are much better defended even than a mildly jasmonate-deficient line (asLOX3. The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to

  15. Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula.

    Kruse, Jörg; Gao, Peng; Honsel, Anne; Kreuzwieser, Jürgen; Burzlaff, Tim; Alfarraj, Saleh; Hedrich, Rainer; Rennenberg, Heinz

    2014-03-01

    Plant carnivory represents an exceptional means to acquire N. Snap traps of Dionaea muscipula serve two functions, and provide both N and photosynthate. Using (13)C/(15)N-labelled insect powder, we performed feeding experiments with Dionaea plants that differed in physiological state and N status (spring vs. autumn plants). We measured the effects of (15)N uptake on light-saturated photosynthesis (A(max)), dark respiration (R(D)) and growth. Depending on N status, insect capture briefly altered the dynamics of R(D)/A(max), reflecting high energy demand during insect digestion and nutrient uptake, followed by enhanced photosynthesis and growth. Organic N acquired from insect prey was immediately redistributed, in order to support swift renewal of traps and thereby enhance probability of prey capture. Respiratory costs associated with permanent maintenance of the photosynthetic machinery were thereby minimized. Dionaea's strategy of N utilization is commensurate with the random capture of large prey, occasionally transferring a high load of organic nutrients to the plant. Our results suggest that physiological adaptations to unpredictable resource availability are essential for Dionaea's success with regards to a carnivorous life style.

  16. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Hotti, Hannu; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Rischer, Heiko

    2017-01-01

    Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  17. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Hannu Hotti

    Full Text Available Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  18. Carnivore fecal chemicals suppress feeding by Alpine goats (Capra hircus).

    Weldon, P J; Graham, D P; Mears, L P

    1993-12-01

    The efficacy of carnivore and ungulate fecal chemicals in suppressing the feeding behavior of Alpine goats (Capra hircus) was examined. In the first four experiments, goats were offered food covered with paper strips treated with fecal extracts of the Bengal tiger, Siberian tiger, African lion, and brown bear, respectively; food covered with solvent-treated and untreated (plain) papers served as controls in each experiment. Goats made fewer head entries into, and ate less food from, buckets containing fecal extracts. In the fifth experiment, goats were offered food covered with paper strips treated with fecal extracts of the puma, Dorcas gazelle, white-bearded gnu, and conspecifics; food covered with solvent-treated and plain papers again served as controls. The amounts of food consumed from buckets containing puma, gazelle, gnu, and solvent treatments were statistically indistinguishable, but less food was consumed from them than from buckets containing the goat-scented or plain papers. No significant differences among treatments were detected with respect to head entries. Field experiments are needed on the use of predator-derived chemicals to reduce damage by goats to vegetation.

  19. Feliform carnivores have a distinguished constitutive innate immune response

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  20. Evidence for competition between carnivorous plants and spiders.

    Jennings, David E; Krupa, James J; Raffel, Thomas R; Rohr, Jason R

    2010-10-07

    Several studies have demonstrated that competition between disparate taxa can be important in determining community structure, yet surprisingly, to our knowledge, no quantitative studies have been conducted on competition between carnivorous plants and animals. To examine potential competition between these taxa, we studied dietary and microhabitat overlap between pink sundews (Drosera capillaris) and wolf spiders (Lycosidae) in the field, and conducted a laboratory experiment examining the effects of wolf spiders on sundew fitness. In the field, we found that sundews and spiders had a high dietary overlap with each other and with the available arthropod prey. Associations between sundews and spiders depended on spatial scale: both sundews and spiders were found more frequently in quadrats with more abundant prey, but within quadrats, spiders constructed larger webs and located them further away from sundews as the total sundew trapping area increased, presumably to reduce competition. Spiders also constructed larger webs when fewer prey were available. In the laboratory, our experiment revealed that spiders can significantly reduce sundew fitness. Our findings suggest that members of the plant and animal kingdoms can and do compete.

  1. Further observations on rangiferine brucellosis in Alaskan carnivores.

    Neiland, K A

    1975-01-01

    Antibodies against rangiferine brucellosis, Brucella suis type 4, are commonly found in the serum of various domestic and wild alaskian carnivores which feed on caribou, Rangifer tarandus granti, arctic Alaska. Sled dogs from five native villages on the range of the Artic caribou herd, but not from two villages on the the range of the Porcupine caribou herd, are commonly infected. Wolves (Canis lupus) and red foxes (Vulpes fulva) are less commonly infected. About 90% of the grizzly bears (Ursus arctos horribilis) associated with the Artic caribou herd and 30% of those associated with the porcupine caribou herd show serologic signs of exposure to Brucella, presumalby the enzootic strain present in Alaska caribou. This is the first evidence of natural Brucella infection in bears. It is concluded that infection of predators by enzootic strains of Brucella present in prey species (e.g., ruminants) is common to many areas of the world. Evidence from the literature and unpublished experimental data suggest that such infections may intefere with reproduction in wild species, but additional study is needed to clearly resolve this question.

  2. Expansion into an herbivorous niche by a customary carnivore : Black-tailed godwits feeding on rhizomes of Zostera at a newly established wintering site

    Robin, Frederic; Piersma, Theunis; Meunier, Francis; Bocher, Pierrick

    In expanding populations, individuals may increasingly be forced to use sites of relatively low quality. This process, named the "buffer effect," was previously described for the Black-tailed Godwit (Limosa limosa islandica) in its use of nonbreeding sites in Great Britain and of breeding areas in

  3. Global climate change and above- belowground insect herbivore interactions.

    Scott Wesley McKenzie

    2013-10-01

    Full Text Available Predicted changes to the Earth’s climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.

  4. High-Arctic Plant-Herbivore Interactions under Climate Influence

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...... by both the timing of onset and the duration of winter snow-cover. Musk oxen significantly reduced the productivity of arctic willow, while high densities of collared lemmings during winter reduced the production of mountain averts flowers in the following summer. Under a deep snow-layer scenario, climate...... and the previous year's density of musk oxen had a negative effect on the present year's production of arctic willow. Previous year's primary production of arctic willow, in turn, significantly affected the present year's density of musk oxen positively. Climatic factors that affect primary production of plants...

  5. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants.

    Zhang, Zhijie; Pan, Xiaoyun; Blumenthal, Dana; van Kleunen, Mark; Liu, Mu; Li, Bo

    2018-04-01

    Invasive alien plants are likely to be released from specialist herbivores and at the same time encounter biotic resistance from resident generalist herbivores in their new ranges. The Shifting Defense hypothesis predicts that this will result in evolution of decreased defense against specialist herbivores and increased defense against generalist herbivores. To test this, we performed a comprehensive meta-analysis of 61 common garden studies that provide data on resistance and/or tolerance for both introduced and native populations of 32 invasive plant species. We demonstrate that introduced populations, relative to native populations, decreased their resistance against specialists, and increased their resistance against generalists. These differences were significant when resistance was measured in terms of damage caused by the herbivore, but not in terms of performance of the herbivore. Furthermore, we found the first evidence that the magnitude of resistance differences between introduced and native populations depended significantly on herbivore origin (i.e., whether the test herbivore was collected from the native or non-native range of the invasive plant). Finally, tolerance to generalists was found to be higher in introduced populations, while neither tolerance to specialists nor that to simulated herbivory differed between introduced and native plant populations. We conclude that enemy release from specialist herbivores and biotic resistance from generalist herbivores have contrasting effects on resistance evolution in invasive plants. Our results thus provide strong support for the Shifting Defense hypothesis. © 2018 by the Ecological Society of America.

  6. Landscape suitability in Botswana for the conservation of its six large African carnivores.

    Hanlie E K Winterbach

    Full Text Available Wide-ranging large carnivores often range beyond the boundaries of protected areas into human-dominated areas. Mapping out potentially suitable habitats on a country-wide scale and identifying areas with potentially high levels of threats to large carnivore survival is necessary to develop national conservation action plans. We used a novel approach to map and identify these areas in Botswana for its large carnivore guild consisting of lion (Panthera leo, leopard (Panthera pardus, spotted hyaena (Crocuta crocuta, brown hyaena (Hyaena brunnea, cheetah (Acinonyx jubatus and African wild dog (Lycaon pictus. The habitat suitability for large carnivores depends primarily on prey availability, interspecific competition, and conflict with humans. Prey availability is most likely the strongest natural determinant. We used the distribution of biomass of typical wild ungulate species occurring in Botswana which is preyed upon by the six large carnivores to evaluate the potential suitability of the different management zones in the country to sustain large carnivore populations. In areas where a high biomass of large prey species occurred, we assumed interspecific competition between dominant and subordinated competitors to be high. This reduced the suitability of these areas for conservation of subordinate competitors, and vice versa. We used the percentage of prey biomass of the total prey and livestock biomass to identify areas with potentially high levels of conflict in agricultural areas. High to medium biomass of large prey was mostly confined to conservation zones, while small prey biomass was more evenly spread across large parts of the country. This necessitates different conservation strategies for carnivores with a preference for large prey, and those that can persist in the agricultural areas. To ensure connectivity between populations inside Botswana and also with its neighbours, a number of critical areas for priority management actions exist

  7. Landscape suitability in Botswana for the conservation of its six large African carnivores.

    Winterbach, Hanlie E K; Winterbach, Christiaan W; Somers, Michael J

    2014-01-01

    Wide-ranging large carnivores often range beyond the boundaries of protected areas into human-dominated areas. Mapping out potentially suitable habitats on a country-wide scale and identifying areas with potentially high levels of threats to large carnivore survival is necessary to develop national conservation action plans. We used a novel approach to map and identify these areas in Botswana for its large carnivore guild consisting of lion (Panthera leo), leopard (Panthera pardus), spotted hyaena (Crocuta crocuta), brown hyaena (Hyaena brunnea), cheetah (Acinonyx jubatus) and African wild dog (Lycaon pictus). The habitat suitability for large carnivores depends primarily on prey availability, interspecific competition, and conflict with humans. Prey availability is most likely the strongest natural determinant. We used the distribution of biomass of typical wild ungulate species occurring in Botswana which is preyed upon by the six large carnivores to evaluate the potential suitability of the different management zones in the country to sustain large carnivore populations. In areas where a high biomass of large prey species occurred, we assumed interspecific competition between dominant and subordinated competitors to be high. This reduced the suitability of these areas for conservation of subordinate competitors, and vice versa. We used the percentage of prey biomass of the total prey and livestock biomass to identify areas with potentially high levels of conflict in agricultural areas. High to medium biomass of large prey was mostly confined to conservation zones, while small prey biomass was more evenly spread across large parts of the country. This necessitates different conservation strategies for carnivores with a preference for large prey, and those that can persist in the agricultural areas. To ensure connectivity between populations inside Botswana and also with its neighbours, a number of critical areas for priority management actions exist in the

  8. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  9. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  10. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  11. A latex metabolite benefits plant fitness under root herbivore attack

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  12. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  13. Quantitative effects of cyanogenesis on an adapted herbivore.

    Ballhorn, D J; Heil, M; Pietrowski, A; Lieberei, R

    2007-12-01

    Plant cyanogenesis means the release of gaseous hydrogen cyanide (HCN) in response to cell damage and is considered as an effective defense against generalist herbivores. In contrast, specialists are generally believed not to be affected negatively by this trait. However, quantitative data on long-term effects of cyanogenesis on specialists are rare. In this study, we used lima bean accessions (Fabaceae: Phaseolus lunatus L.) with high quantitative variability of cyanogenic features comprising cyanogenic potential (HCNp; concentration of cyanogenic precursors) and cyanogenic capacities (HCNc; release of gaseous HCN per unit time). In feeding trials, we analyzed performance of herbivorous Mexican bean beetle (Coleoptera: Coccinellidae: Epilachna varivestis Mulsant) on selected lines characterized by high (HC-plants) and low HCNp (LC-plants). Larval and adult stages of this herbivore feed on a narrow range of legumes and prefer cyanogenic lima bean as host plant. Nevertheless, we found that performance of beetles (larval weight gain per time and body mass of adult beetles) was significantly affected by lima bean HCNp: Body weight decreased and developmental period of larvae and pupae increased on HC-plants during the first generation of beetles and then remained constant for four consecutive generations. In addition, we found continuously decreasing numbers of eggs and larval hatching as inter-generational effects on HC-plants. In contrast to HC-plants, constantly high performance was observed among four generations on LC-plants. Our results demonstrate that Mexican bean beetle, although preferentially feeding on lima bean, is quantitatively affected by the HCNp of its host plant. Effects can only be detected when considering more than one generation. Thus, cyanide-containing precursors can have negative effects even on herbivores adapted to feed on cyanogenic plants.

  14. Distribution of herbivorous fish is frozen by low temperature

    Vejříková, Ivana; Vejřík, Lukáš; Syväranta, J.; Kiljunen, M.; Čech, Martin; Blabolil, Petr; Vašek, Mojmír; Sajdlová, Zuzana; Chung, S.H.T.; Šmejkal, Marek; Frouzová, Jaroslava; Peterka, Jiří

    2016-01-01

    Roč. 6, December (2016), č. článku 39600. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA MŠk(CZ) 7F14316 Institutional support: RVO:60077344 Keywords : herbivorous ectotherms * latitudinal gradient * macrophytes * Scardinius erythrophthalmus * global warming Subject RIV: EG - Zoology Impact factor: 4.259, year: 2016

  15. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  16. Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores.

    Anstett, Daniel N; Chen, Wen; Johnson, Marc T J

    2016-08-01

    Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.

  17. Bottom-up resource limitation: the ecosystem energy balance predicts the quality of nutrition in a herbivore prey population

    Fernandez, Nestor; Garcia, Monica; Gil, Esperanza

    2014-01-01

    by measuring the dynamics in diet quality for the European rabbit, a key prey in Mediterranean communities. Rabbit nutrition was measured in six habitats throughout a year using faecal nitrogen (FN) content, an indicator of the levels of ingested protein. Then we tested the accuracy for predicting diet quality...... of the herbivore diet has been insufficiently tested. We hypothesized that in drylands, where water availability is a prime control of ecosystem functioning, remote sensing indicators of vegetation drought stress are critical to predict the nutritional quality of herbivore habitats. This hypothesis was analyzed...... contributed to explain the dynamics of diet quality: models including either TVDI or Hr shower a better fit than those exclusively based in EVI (R2 = 0.43—0.60). Whereas FN showed a positive relationship with EVI, the effect of TVDI and Hr was negative. Extracting the temporal component further allowed us...

  18. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution.

    Zanno, Lindsay E; Makovicky, Peter J

    2011-01-04

    Interpreting key ecological parameters, such as diet, of extinct organisms without the benefit of direct observation or explicit fossil evidence poses a formidable challenge for paleobiological studies. To date, dietary categorizations of extinct taxa are largely generated by means of modern analogs; however, for many species the method is subject to considerable ambiguity. Here we present a refined approach for assessing trophic habits in fossil taxa and apply the method to coelurosaurian dinosaurs--a clade for which diet is particularly controversial. Our findings detect 21 morphological features that exhibit statistically significant correlations with extrinsic fossil evidence of coelurosaurian herbivory, such as stomach contents and a gastric mill. These traits represent quantitative, extrinsically founded proxies for identifying herbivorous ecomorphology in fossils and are robust despite uncertainty in phylogenetic relationships among major coelurosaurian subclades. The distribution of these features suggests that herbivory was widespread among coelurosaurians, with six major subclades displaying morphological evidence of the diet, and that contrary to previous thought, hypercarnivory was relatively rare and potentially secondarily derived. Given the potential for repeated, independent evolution of herbivory in Coelurosauria, we also test for repetitive patterns in the appearance of herbivorous traits within sublineages using rank concordance analysis. We find evidence for a common succession of increasing specialization to herbivory in the subclades Ornithomimosauria and Oviraptorosauria, perhaps underlain by intrinsic functional and/or developmental constraints, as well as evidence indicating that the early evolution of a beak in coelurosaurians correlates with an herbivorous diet.

  19. Large herbivores surf waves of green-up during spring

    Merkle, Jerod A.; Monteith, Kevin L.; Aikens, Ellen O.; Hayes, Matthew M.; Hersey, Kent R.; Middleton, Arthur D.; Oates, Brendan A.; Sawyer, Hall; Scurlock, Brandon M.; Kauffman, Matthew J.

    2016-01-01

    The green wave hypothesis (GWH) states that migrating animals should track or ‘surf’ high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1–3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG—supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.

  20. Persistence of canine distemper virus in the Greater Yellowstone ecosystem's carnivore community.

    Almberg, Emily S; Cross, Paul C; Smith, Douglas W

    2010-10-01

    Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50000-100000 individuals for moderate persistence (> 50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding adjustments

  1. Persistence of canine distemper virus in the Greater Yellowstone Ecosystem's carnivore community

    Almberg, E.S.; Cross, P.C.; Smith, D.W.

    2010-01-01

    Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50 000-100 000 individuals for moderate persistence (>50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding

  2. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve.

    Wendy E Morrison

    2011-03-01

    Full Text Available Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp. preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of

  3. Carbon transfer in a herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer

    De Laender, F.; Van Oevelen, D.; Soetaert, K.E.R.; Middelburg, J.J.

    2010-01-01

    We compare carbon budgets between a herbivore-dominated and a microbial loop-dominated food web and examine the implications of food web structure for fish production. We use the southern Barents Sea as a case study and inverse modelling as an analysis method. In spring, when the system was

  4. Carbon transfer in herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer

    De Laender, F.; Oevelen, D. van; Soetaert, K.; Middelburg, J.J.

    2010-01-01

    We compared carbon budgets between a herbivore-dominated and a microbial loopdominated food web and examined the implications of food web structure for fish production. We used the southern Barents Sea as a case study and inverse modelling as an analysis method. In spring, when the system was

  5. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Ulappa, Amy C.; Kelsey, Rick G.; Frye, Graham G.; Rachlow, Janet L.; Shipley, Lisa A.; Bond, Laura; Pu, Xinzhu; Forbey, Jennifer Sorensen

    2015-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites, PSMs) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to other plants. Pygmy rabbits (Brachylagus idahoensis) are dietary specialists that feed on sagebrush (Artemisia spp.) and forage on specific plants more than others within a foraging patch. We predicted that the plants with evidence of heavy foraging (browsed plants) would be of higher dietary quality than plants that were not browsed (unbrowsed). We used model selection to determine which phytochemical variables best explained the difference between browsed and unbrowsed plants. Higher crude protein increased the odds that plants would be browsed by pygmy rabbits and the opposite was the case for certain PSMs. Additionally, because pygmy rabbits can occupy foraging patches (burrows) for consecutive years, their browsing may influence the nutritional and PSM constituents of plants at the burrows. In a post hoc analysis, we did not find a significant relationship between phytochemical concentrations, browse status and burrow occupancy length. We concluded that pygmy rabbits use nutritional and chemical cues while making foraging decisions. PMID:26366011

  6. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  7. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs

    Zanno, Lindsay E.; Makovicky, Peter J.

    2013-01-01

    The correlation between large body size and digestive efficiency has been hypothesized to have driven trends of increasing mass in herbivorous clades by means of directional selection. Yet, to date, few studies have investigated this relationship from a phylogenetic perspective, and none, to our knowledge, with regard to trophic shifts. Here, we reconstruct body mass in the three major subclades of non-avian theropod dinosaurs whose ecomorphology is correlated with extrinsic evidence of at least facultative herbivory in the fossil record—all of which also achieve relative gigantism (more than 3000 kg). Ordinary least-squares regressions on natural log-transformed mean mass recover significant correlations between increasing mass and geological time. However, tests for directional evolution in body mass find no support for a phylogenetic trend, instead favouring passive models of trait evolution. Cross-correlation of sympatric taxa from five localities in Asia reveals that environmental influences such as differential habitat sampling and/or taphonomic filtering affect the preserved record of dinosaurian body mass in the Cretaceous. Our results are congruent with studies documenting that behavioural and/or ecological factors may mitigate the benefit of increasing mass in extant taxa, and suggest that the hypothesis can be extrapolated to herbivorous lineages across geological time scales. PMID:23193135

  8. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium.

    Brody, Alison K; Palmer, Todd M; Fox-Dobbs, Kena; Doak, Dan F

    2010-02-01

    In African savannas, vertebrate herbivores are often identified as key determinants of plant growth, survivorship, and reproduction. However, plant reproduction is likely to be the product of responses to a suite of abiotic and biotic factors, including nutrient availability and interactions with antagonists and mutualists. In a relatively simple system, we examined the role of termites (which act as ecosystem engineers--modifying physical habitat and creating islands of high soil fertility), vertebrate herbivores, and symbiotic ants, on the fruiting success of a dominant plant, Acacia drepanolobium, in East African savannas. Using observational data, large-scale experimental manipulations, and analysis of foliar N, we found that Acacia drepanolobium trees growing at the edge of termite mounds were more likely to reproduce than those growing farther away, in off-mound soils. Although vertebrate herbivores preferentially used termite mounds as demonstrated by dung deposits, long-term exclusion of mammalian grazers did not significantly reduce A. drepanolobium fruit production. Leaf N was significantly greater in trees growing next to mounds than in those growing farther away, and this pattern was unaffected by exclusion of vertebrates. Thus, soil enrichment by termites, rather than through dung and urine deposition by large herbivores, is of primary importance to fruit production near mounds. Across all mound-herbivore treatment combinations, trees that harbored Crematogaster sjostedti were more likely to fruit than those that harbored one of the other three ant species. Although C. sjostedti is less aggressive than the other ants, it tends to inhabit large, old trees near termite mounds which are more likely to fruit than smaller ones. Termites play a key role in generating patches of nutrient-rich habitat important to the reproductive success of A. drepanolobium in East African savannas. Enhanced nutrient acquisition from termite mounds appears to allow plants to

  9. Analysis of ZP1 gene reveals differences in zona pellucida composition in carnivores.

    Moros-Nicolás, C; Leza, A; Chevret, P; Guillén-Martínez, A; González-Brusi, L; Boué, F; Lopez-Bejar, M; Ballesta, J; Avilés, M; Izquierdo-Rico, M J

    2018-01-01

    The zona pellucida (ZP) is an extracellular envelope that surrounds mammalian oocytes. This coat participates in the interaction between gametes, induction of the acrosome reaction, block of polyspermy and protection of the oviductal embryo. Previous studies suggested that carnivore ZP was formed by three glycoproteins (ZP2, ZP3 and ZP4), with ZP1 being a pseudogene. However, a recent study in the cat found that all four proteins were expressed. In the present study, in silico and molecular analyses were performed in several carnivores to clarify the ZP composition in this order of mammals. The in silico analysis demonstrated the presence of the ZP1 gene in five carnivores: cheetah, panda, polar bear, tiger and walrus, whereas in the Antarctic fur seal and the Weddell seal there was evidence of pseudogenisation. Molecular analysis showed the presence of four ZP transcripts in ferret ovaries (ZP1, ZP2, ZP3 and ZP4) and three in fox ovaries (ZP2, ZP3 and ZP4). Analysis of the fox ZP1 gene showed the presence of a stop codon. The results strongly suggest that all four ZP genes are expressed in most carnivores, whereas ZP1 pseudogenisation seems to have independently affected three families (Canidae, Otariidae and Phocidae) of the carnivore tree.

  10. Space use of African wild dogs in relation to other large carnivores.

    Angela M Darnell

    Full Text Available Interaction among species through competition is a principle process structuring ecological communities, affecting behavior, distribution, and ultimately the population dynamics of species. High competition among large African carnivores, associated with extensive diet overlap, manifests in interactions between subordinate African wild dogs (Lycaon pictus and dominant lions (Panthera leo and spotted hyenas (Crocuta crocuta. Using locations of large carnivores in Hluhluwe-iMfolozi Park, South Africa, we found different responses from wild dogs to their two main competitors. Wild dogs avoided lions, particularly during denning, through a combination of spatial and temporal avoidance. However, wild dogs did not exhibit spatial or temporal avoidance of spotted hyenas, likely because wild dog pack sizes were large enough to adequately defend their kills. Understanding that larger carnivores affect the movements and space use of other carnivores is important for managing current small and fragmented carnivore populations, especially as reintroductions and translocations are essential tools used for the survival of endangered species, as with African wild dogs.

  11. Use of an action-selection framework for human-carnivore conflict in the Bangladesh Sundarbans.

    Barlow, Adam C D; Greenwood, Christina J; Ahmad, Ishtiaq U; Smith, James L D

    2010-10-01

    Human-carnivore conflict is manifested in the death of humans, livestock, and carnivores. The resulting negative local attitudes and retribution killings imperil the future of many endangered carnivores. We tailored existing management tools to create a framework to facilitate the selection of actions to alleviate human-carnivore conflict and applied the framework to the human-tiger conflict in the Bangladesh Sundarbans. We identified potential actions that consider previous management efforts, local knowledge, cost-effectiveness, fieldwork experience of authors and project staff, previous research on tiger ecology by the authors, and recommendations from human-carnivore conflict studies in other countries. Our framework includes creation of a profile to improve understanding of the nature of the conflict and its underlying causality. Identified actions include deterrents, education, direct tiger management, and response teams. We ranked actions by their potential to reduce conflict and the monetary cost of their implementation. We ranked tiger-response teams and monitoring problem tigers as the two best actions because both had relatively high impact and cost-effectiveness. We believe this framework could be used under a wide range of human-wildlife conflict situations because it provides a structured approach to selection of mitigating actions. © 2010 Society for Conservation Biology.

  12. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage.

    Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta

    2017-01-01

    Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  13. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Gaume, Laurence; Forterre, Yoel

    2007-11-21

    The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera) flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  14. A viscoelastic deadly fluid in carnivorous pitcher plants.

    Laurence Gaume

    Full Text Available BACKGROUND: The carnivorous plants of the genus Nepenthes, widely distributed in the Asian tropics, rely mostly on nutrients derived from arthropods trapped in their pitcher-shaped leaves and digested by their enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms and its mechanism of trapping has long intrigued scientists. The slippery inner surfaces of the pitchers, which can be waxy or highly wettable, have so far been considered as the key trapping devices. However, the occurrence of species lacking such epidermal specializations but still effective at trapping insects suggests the possible implication of other mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of insect bioassays, high-speed video and rheological measurements, we show that the digestive fluid of Nepenthes rafflesiana is highly viscoelastic and that this physical property is crucial for the retention of insects in its traps. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements. CONCLUSIONS/SIGNIFICANCE: This finding challenges the common classification of Nepenthes pitchers as simple passive traps and is of great adaptive significance for these tropical plants, which are often submitted to high rainfalls and variations in fluid concentration. The viscoelastic trap constitutes a cryptic but potentially widespread adaptation of Nepenthes species and could be a homologous trait shared through common ancestry with the sundew (Drosera flypaper plants. Such large production of a highly viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the plant kingdom and suggests novel applications for pest control.

  15. Reproductive biology and pollination of the carnivorous Genlisea violacea (Lentibulariaceae).

    Aranguren, Y; Płachno, B J; Stpiczyńska, M; Miranda, V F O

    2018-05-01

    Genlisea violacea is a Brazilian endemic carnivorous plant species distributed in the cerrado biome, mainly in humid environments, on sandy and oligotrophic soil or wet rocks. Studies on reproductive biology or pollination in the Lentibulariaceae are notably scarce; regarding the genus Genlisea, the current study is the first to show systematic and standardised research on reproductive biology from field studies to describe the foraging of visiting insects and determine the effective pollinators of Genlisea. We studied two populations of G. violacea through the observation of flower visitors for 4 months of the rainy and dry seasons. Stigmatic receptivity, pollen viability, and breeding system were evaluated together with histochemistry and morphological analyses of flowers. The flowers showed stigmatic receptivity of 100% in open buds and mature flowers, reducing to 80% for senescent flowers. Nearly 80% of pollen grains are viable, decreasing to 40-45% after 48 h. Nectar is produced by glandular trichomes inside the spur. Two bee species are effective pollinators: one of the genus Lasioglossum (subgenus Dialictus: Halictidae) and the other of the genus Ceratina (subgenus Ceratinula: family Apidae). Moreover, bee-like flies of the Syrphidae family may also be additional pollinators. Genlisea violacea is an allogamous and self-compatible species. The differences in flower-visiting fauna for both populations can be attributed to factors such as climate, anthropogenic effect, seasonal factors related to insects and plants, as well as the morphological variation of flowers in both populations. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  16. Carnivore-caused livestock mortality in Trans-Himalaya.

    Namgail, Tsewang; Fox, Joseph L; Bhatnagar, Yash Veer

    2007-04-01

    The loss of livestock to wild predators is an important livelihood concern among Trans-Himalayan pastoralists. Because of the remoteness and inaccessibility of the region, few studies have been carried out to quantify livestock depredation by wild predators. In the present study, we assessed the intensity of livestock depredation by snow leopard Uncia uncia, Tibetan wolf Canis lupus chanku, and Eurasian lynx Lynx l. isabellina in three villages, namely Gya, Rumtse, and Sasoma, within the proposed Gya-Miru Wildlife Sanctuary in Ladakh, India. The three villages reported losses of 295 animals to these carnivores during a period of 2.5 years ending in early 2003, which represents an annual loss rate of 2.9% of their livestock holdings. The Tibetan wolf was the most important predator, accounting for 60% of the total livestock loss because of predation, followed by snow leopard (38%) and lynx (2%). Domestic goat was the major victim (32%), followed by sheep (30%), yak (15%), and horse (13%). Wolves killed horses significantly more and goats less than would be expected from their relative abundance. Snow leopards also killed horses significantly more than expected, whereas they killed other livestock types in proportion to their abundance. The three villages combined incurred an estimated annual monetary loss of approximately $USD 12,120 amounting to approximately $USD 190/household/y. This relatively high total annual loss occurred primarily because of depredation of the most valuable livestock types such as yak and horse. Conservation actions should initially attempt to target decrease of predation on these large and valuable livestock species.

  17. Risk avoidance in sympatric large carnivores: reactive or predictive?

    Broekhuis, Femke; Cozzi, Gabriele; Valeix, Marion; McNutt, John W; Macdonald, David W

    2013-09-01

    1. Risks of predation or interference competition are major factors shaping the distribution of species. An animal's response to risk can either be reactive, to an immediate risk, or predictive, based on preceding risk or past experiences. The manner in which animals respond to risk is key in understanding avoidance, and hence coexistence, between interacting species. 2. We investigated whether cheetahs (Acinonyx jubatus), known to be affected by predation and competition by lions (Panthera leo) and spotted hyaenas (Crocuta crocuta), respond reactively or predictively to the risks posed by these larger carnivores. 3. We used simultaneous spatial data from Global Positioning System (GPS) radiocollars deployed on all known social groups of cheetahs, lions and spotted hyaenas within a 2700 km(2) study area on the periphery of the Okavango Delta in northern Botswana. The response to risk of encountering lions and spotted hyaenas was explored on three levels: short-term or immediate risk, calculated as the distance to the nearest (contemporaneous) lion or spotted hyaena, long-term risk, calculated as the likelihood of encountering lions and spotted hyaenas based on their cumulative distributions over a 6-month period and habitat-associated risk, quantified by the habitat used by each of the three species. 4. We showed that space and habitat use by cheetahs was similar to that of lions and, to a lesser extent, spotted hyaenas. However, cheetahs avoided immediate risks by positioning themselves further from lions and spotted hyaenas than predicted by a random distribution. 5. Our results suggest that cheetah spatial distribution is a hierarchical process, first driven by resource acquisition and thereafter fine-tuned by predator avoidance; thus suggesting a reactive, rather than a predictive, response to risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  18. Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea.

    Cisneros, Juan Carlos; Abdala, Fernando; Atayman-Güven, Saniye; Rubidge, Bruce S; Şengörc, A M Celâl; Schultz, Cesar L

    2012-01-31

    The medial Permian (~270-260 Ma: Guadalupian) was a time of important tetrapod faunal changes, in particular reflecting a turnover from pelycosaurian- to therapsid-grade synapsids. Until now, most knowledge on tetrapod distribution during the medial Permian has come from fossils found in the South African Karoo and the Russian Platform, whereas other areas of Pangaea are still poorly known. We present evidence for the presence of a terrestrial carnivorous vertebrate from the Middle Permian of South America based on a complete skull. Pampaphoneus biccai gen. et sp. nov. was a dinocephalian "mammal-like reptile" member of the Anteosauridae, an early therapsid predator clade known only from the Middle Permian of Russia, Kazakhstan, China, and South Africa. The genus is characterized, among other features, by postorbital bosses, short, bulbous postcanines, and strongly recurved canines. Phylogenetic analysis indicates that the Brazilian dinocephalian occupies a middle position within the Anteosauridae, reinforcing the model of a global distribution for therapsids as early as the Guadalupian. The close phylogenetic relationship of the Brazilian species to dinocephalians from South Africa and the Russian Platform suggests a closer faunistic relationship between South America and eastern Europe than previously thought, lending support to a Pangaea B-type continental reconstruction.

  19. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  20. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  1. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  2. Herbivore grazing—or trampling? Trampling effects by a large ungulate in cold high- latitude ecosystems

    Heggenes, Jan; Odland, Arvid; Chevalier, Tomas; Ahlberg, Jörgen; Berg, Amanda; Larsson, Håkan; Bjerketvedt, Dag Kjartan

    2017-01-01

    Mammalian herbivores have important top-down effects on ecological processes and landscapes by generating vegetation changes through grazing and trampling. For free-ranging herbivores on large landscapes, trampling is an important ecological factor. However, whereas grazing is widely studied, low-intensity trampling is rarely studied and quantified. The cold-adapted northern tundra reindeer (Rangifer tarandus) is a wide-ranging keystone herbivore in large open alpine and Arctic ecosystems. Re...

  3. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  4. Recolonizing carnivores and naïve prey: conservation lessons from Pleistocene extinctions.

    Berger, J; Swenson, J E; Persson, I L

    2001-02-09

    The current extinction of many of Earth's large terrestrial carnivores has left some extant prey species lacking knowledge about contemporary predators, a situation roughly parallel to that 10,000 to 50,000 years ago, when naive animals first encountered colonizing human hunters. Along present-day carnivore recolonization fronts, brown (also called grizzly) bears killed predator-naive adult moose at disproportionately high rates in Scandinavia, and moose mothers who lost juveniles to recolonizing wolves in North America's Yellowstone region developed hypersensitivity to wolf howls. Although prey that had been unfamiliar with dangerous predators for as few as 50 to 130 years were highly vulnerable to initial encounters, behavioral adjustments to reduce predation transpired within a single generation. The fact that at least one prey species quickly learns to be wary of restored carnivores should negate fears about localized prey extinction.

  5. Carnivore use of avocado orchards across an agricultural-wildland gradient.

    Theresa M Nogeire

    Full Text Available Wide-ranging species cannot persist in reserves alone. Consequently, there is growing interest in the conservation value of agricultural lands that separate or buffer natural areas. The value of agricultural lands for wildlife habitat and connectivity varies as a function of the crop type and landscape context, and quantifying these differences will improve our ability to manage these lands more effectively for animals. In southern California, many species are present in avocado orchards, including mammalian carnivores. We examined occupancy of avocado orchards by mammalian carnivores across agricultural-wildland gradients in southern California with motion-activated cameras. More carnivore species were detected with cameras in orchards than in wildland sites, and for bobcats and gray foxes, orchards were associated with higher occupancy rates. Our results demonstrate that agricultural lands have potential to contribute to conservation by providing habitat or facilitating landscape connectivity.

  6. Carnivore use of avocado orchards across an agricultural-wildland gradient

    Nogeire, Theresa M.; Davis, Frank W.; Duggan, Jennifer M.; Crooks, Kevin R.; Boydston, Erin E.

    2013-01-01

    Wide-ranging species cannot persist in reserves alone. Consequently, there is growing interest in the conservation value of agricultural lands that separate or buffer natural areas. The value of agricultural lands for wildlife habitat and connectivity varies as a function of the crop type and landscape context, and quantifying these differences will improve our ability to manage these lands more effectively for animals. In southern California, many species are present in avocado orchards, including mammalian carnivores. We examined occupancy of avocado orchards by mammalian carnivores across agricultural-wildland gradients in southern California with motion-activated cameras. More carnivore species were detected with cameras in orchards than in wildland sites, and for bobcats and gray foxes, orchards were associated with higher occupancy rates. Our results demonstrate that agricultural lands have potential to contribute to conservation by providing habitat or facilitating landscape connectivity.

  7. Herders’ ecological knowledge and carnivore predation on livestock investigations in Makgadikgadi and Nxai national parks, Botswana

    Lucas P. Rutina

    2017-07-01

    Full Text Available Botswana is one of the countries in Southern Africa that pay compensation for human properties damaged by wildlife. Before compensation is paid, a thorough investigation on determining wildlife species that have caused the damage is mandatory. Because of insufficient resources by the Department of Wildlife and National Parks, the initial investigation is carried out by herders. Three basic indicators are used to determine carnivore predation; sighting the carnivore at the kill, tracks of the predator and examining the carcasses. In this study, we tested herders’ knowledge on the above three indicators. The study was conducted in a communal area around Makgadikgadi and Nxai national parks, Botswana, where the main activities practiced by the local communities is pastoral farming. In general, there was a significant association between reported and perceived incidents of predation for all carnivores at all distances from protected areas. Herders were able to identify the large carnivores visually. But they had difficulties in identifying carnivore tracks and kill characteristics. The results demonstrate the importance of involvement of local communities in human–wildlife conflict management. However, more education regarding identification of carnivore tracks and kill behaviour is needed for herders in the study area. Conservation implications: Based on the results of this study, this calls for a change in the management of human–wildlife conflict (HWC and administration of the compensation scheme. Decentralising HWC to local communities using existing government structures that exist at local level will not only supplement the inadequate resources by the Department of Wildlife and National Parks (DWNP to effectively mitigate the problem, but also empower local communities’ participation in wildlife management.

  8. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica.

    Nawa Sugiyama

    Full Text Available From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1-550, one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma's zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24 and felids (n = 29.

  9. Patterns of Livestock Predation by Carnivores: Human-Wildlife Conflict in Northwest Yunnan, China

    Li, Xueyou; Buzzard, Paul; Chen, Yongchun; Jiang, Xuelong

    2013-12-01

    Alleviating human-carnivore conflict is central to large carnivore conservation and is often of economic importance, where people coexist with carnivores. In this article, we report on the patterns of predation and economic losses from wild carnivores preying on livestock in three villages of northern Baima Xueshan Nature Reserve, northwest Yunnan during a 2-year period between January 2010 and December 2011. We analyzed claims from 149 households that 258 head of livestock were predated. Wolves ( Canis lupus) were responsible for 79.1 % of livestock predation; Asiatic black bears ( Selenarctos thibetanus) and dholes ( Cuon alpinus) were the other predators responsible. Predation frequency varied between livestock species. The majority of livestock killed were yak-cattle hybrids or dzo (40.3 %). Wolves killed fewer cattle than expected, and more donkeys and horses than expected. Wolves and bears killed more adult female and fewer adult male livestock than expected. Intensified predation in wet season coincided with livestock being left to graze unattended in alpine meadows far away from villages. On average, carnivore attacks claimed 2.1 % of range stock annually. This predation represented an economic loss of 17 % (SD = 14 %) of the annual household income. Despite this loss and a perceived increase in carnivore conflict, a majority of the herders (66 %) still supported the reserve. This support is primarily due to the benefits from the collection of nontimber resources such as mushrooms and medicinal plants. Our study also suggested that improvement of husbandry techniques and facilities will reduce conflicts and contribute to improved conservation of these threatened predators.

  10. A citizen science based survey method for estimating the density of urban carnivores

    Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W.; Mill, Aileen C.; Smith, Graham C.; Tolhurst, Bryony A.

    2018-01-01

    Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980’s. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on

  11. Locating Human-Wildlife Interactions: Landscape Constructions and Responses to Large Carnivore Conservation in India and Norway

    Sunetro Ghosal

    2015-01-01

    Full Text Available People′s reactions to large carnivores take many forms, ranging from support and coexistence to resistance and conflict. While these reactions are the outcome of many different factors, in this paper we specifically explore the link between social constructions of landscapes and divergent responses to large carnivore presence. We compare case studies from four different landscapes shared by people and large carnivores, in India and Norway. We use social construction of landscapes as a key concept to explore responses to large carnivores in the context of ecological, economic, social, and cultural changes in these areas. Based on this comparison, we argue that the process of change is complex, with a plurality of responses from the groups affected by it. The response to large carnivore presence is influenced by many different factors, of which the interpretation of change-particularly landscape change-plays a significant role.

  12. Review - Host specificity of insect herbivores in tropical forests

    Novotný, Vojtěch; Basset, Y.

    2005-01-01

    Roč. 272, č. 1568 (2005), s. 1083-1090 ISSN 0962-8452 R&D Projects: GA AV ČR(CZ) IAA6007106; GA ČR(CZ) GD206/03/H034; GA ČR(CZ) GA206/04/0725; GA MŠk(CZ) ME 646 Grant - others:US Nationals Science Foundation(US) DEB-02-11591; Darwin Initiative for the Survival of Species(US) 162/10/030 Institutional research plan: CEZ:AV0Z50070508 Keywords : food web * herbivore guild * host plant range Subject RIV: EH - Ecology, Behaviour Impact factor: 3.510, year: 2005

  13. Coral Reef Ecosystem Data from the 2010-2011 Kahekili Herbivore Fisheries Management Area, West Maui, Herbivore Enhancement as a Tool for Reef Restoration Project (NODC Accession 0082869)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research targets the Hawaii Coral Reef Initiative (HCRI) Priority Area A: Kahekili, Maui: Herbivore Fisheries Management Area (KHFMA). The project goal was to...

  14. The distribution of large herbivore hotspots in relation to environmental and anthropogenic correlates in the Mara region of Kenya

    Bhola, Nina; Ogutu, Joseph O.; Said, Mohamed Y.; Piepho, Hans-Peter; Olff, Han; Fryxell, John

    2012-01-01

    1. The distributions of large herbivores in protected areas and their surroundings are becoming increasingly restricted by changing land use, with adverse consequences for wildlife populations. 2. We analyse changes in distributions of herbivore hotspots to understand their environmental and

  15. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.

    Wetzel, William C; Thaler, Jennifer S

    2016-04-01

    Variability in plant chemistry has long been believed to suppress populations of insect herbivores by constraining herbivore resource selection behavior in ways that make herbivores more vulnerable to predation. The focus on behavior, however, overlooks the pervasive physiological effects of plant variability on herbivores. Here we propose the plant variability-gut acclimation hypothesis, which posits that plant chemical variability constrains herbivore anti-predator defenses by frequently requiring herbivores to acclimate their guts to changing plant defenses and nutrients. Gut acclimation, including changes to morphology and detoxification enzymes, requires time and nutrients, and we argue these costs will constrain how and when herbivores can mount anti-predator defenses. A consequence of this hypothesis is stronger top-down control of herbivores in heterogeneous plant populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Getting prepared for future attack : induction of plant defences by herbivore egg deposition and consequences for the insect community

    Pashalidou, F.G.

    2015-01-01

    Plants have evolved intriguing defences against insect herbivores. Compared to constitutive Plants have evolved intriguing defences against insect herbivores. Compared to constitutive defences that are always present, plants can respond with inducible defences when they are attacked. Insect

  17. Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data

    Rokaya, Maan Bahadur; Dostálek, T.; Münzbergová, Z.

    2016-01-01

    Roč. 77, nov (2016), s. 168-175 ISSN 1146-609X Institutional support: RVO:67179843 Keywords : Anti-herbivore defence * Altitude * Herbivore damage * Himalayan region * Lamiaceae Subject RIV: EF - Botanics Impact factor: 1.652, year: 2016

  18. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years...

  19. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  20. Plant traits and plant biogeography control the biotic resistance provided by generalist herbivores

    Grutters, B.M.C.; Roijendijk, Yvonne; Verberk, W.C.E.P.; Bakker, E.S.

    2017-01-01

    1.Globalization and climate change trigger species invasions and range shifts, which reshuffle communities at an exceptional rate and expose plant migrants to unfamiliar herbivores. Dominant hypotheses to predict plant success are based on evolutionary novelty: either herbivores are maladapted to

  1. Native herbivore exerts contrasting effects on fire regime and vegetation structure

    Jose L. Hierro; Kenneth L. Clark; Lyn C. Branch; Diego Villarreal

    2011-01-01

    Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus...

  2. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    Kant, M.R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B.C.J.; Villarroel, C.A.; Ataide, L.M.S.; Dermauw, W.; Glas, J.J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R.C.; Sabelis, M.W.; Alba, J.M.

    2015-01-01

    BACKGROUND: Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their

  3. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  4. Herbivore species and density affect vegetation-structure patchiness in salt marshes

    Nolte, Stefanie; Esselink, Peter; Smit, Christian; Bakker, Jan P.

    2014-01-01

    The importance of spatial patterns for ecosystem functioning and biodiversity has long been recognized in ecology. Grazing by herbivores is an important mechanism leading to spatial patterns in the vegetation structure. How different herbivore species and their densities affect vegetation-structure

  5. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores

    Thaler, J.S.; Farag, M.A.; Paré, P.W.; Dicke, M.

    2002-01-01

    Plants employ a variety of defence mechanisms, some of which act directly by having a negative effect on herbivores and others that act indirectly by attracting natural enemies of herbivores. In this study we asked if a common jasmonate-signalling pathway links the regulation of direct and indirect

  6. Aboveground vertebrate and invertebrate herbivore impacts on net N mineralization in subalpine grasslands

    Anita C. Risch; Martin Schutz; Martijn L. Vandegehuchte; Wim H. van der Putten; Henk Duyts; Ursina Raschein; Dariusz J. Gwiazdowicz; Matt D. Busse; Deborah S. Page-Dumroese; Stephan Zimmerman

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate...

  7. Distributional congruence of mammalian herbivores in the Trans-Himalayan Mountains

    Namgail, T.; Wieren, van S.E.; Prins, H.H.T.

    2013-01-01

    Large-scale distribution and diversity patterns of mammalian herbivores, especially less charismatic species in alpine environments remain little understood. We studied distributional congruence of mammalian herbivores in the Trans-Himalayan region of Ladakh to see if the distributions of less

  8. Challenges in the nutrition and management of herbivores in the temperate zone

    Vuuren, van A.M.; Chilibroste, P.

    2013-01-01

    The expected higher global demand for animal proteins and the competition for starch and sugars between food, fuel and feed seem to favour herbivores that convert solar energy captured in fibrous plants into animal products. However, the required higher production level of herbivores questions the

  9. Herbivore effects on productivity vary by guild: cattle increase mean productivity while wildlife reduce variability.

    Charles, Grace K; Porensky, Lauren M; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2017-01-01

    Wild herbivores and livestock share the majority of rangelands worldwide, yet few controlled experiments have addressed their individual, additive, and interactive impacts on ecosystem function. While ungulate herbivores generally reduce standing biomass, their effects on aboveground net primary production (ANPP) can vary by spatial and temporal context, intensity of herbivory, and herbivore identity and species richness. Some evidence indicates that moderate levels of herbivory can stimulate aboveground productivity, but few studies have explicitly tested the relationships among herbivore identity, grazing intensity, and ANPP. We used a long-term exclosure experiment to examine the effects of three groups of wild and domestic ungulate herbivores (megaherbivores, mesoherbivore wildlife, and cattle) on herbaceous productivity in an African savanna. Using both field measurements (productivity cages) and satellite imagery, we measured the effects of different herbivore guilds, separately and in different combinations, on herbaceous productivity across both space and time. Results from both productivity cage measurements and satellite normalized difference vegetation index (NDVI) demonstrated a positive relationship between mean productivity and total ungulate herbivore pressure, driven in particular by the presence of cattle. In contrast, we found that variation in herbaceous productivity across space and time was driven by the presence of wild herbivores (primarily mesoherbivore wildlife), which significantly reduced heterogeneity in ANPP and NDVI across both space and time. Our results indicate that replacing wildlife with cattle (at moderate densities) could lead to similarly productive but more heterogeneous herbaceous plant communities in rangelands. © 2016 by the Ecological Society of America.

  10. Aboveground and belowground mammalian herbivores regulate the demography of deciduous woody species in conifer forests

    Bryan A. Endress; Bridgett J. Naylor; Burak K. Pekin; Michael J. Wisdom

    2016-01-01

    Mammalian herbivory can have profound impacts on plant population and community dynamics. However, our understanding of specific herbivore effects remains limited, even in regions with high densities of domestic and wild herbivores, such as the semiarid conifer forests of western North America. We conducted a seven-year manipulative experiment to evaluate the effects...

  11. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  12. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness.

    Alexandria M Warneke

    Full Text Available Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure-the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores.

  13. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea.

    Jonathan P Green

    Full Text Available Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates and abundance of specialist lepidopteran (Pieris rapae and hemipteran (Brevicoryne brassicae herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  14. Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots

    Anderson, T. Michael; Hopcraft, J. Grant C.; Eby, Stephanie; Ritchie, Mark; Grace, James B.; Olff, Han; Young, T.P.

    Mechanistic explanations of herbivore spatial distribution have focused largely on either resource-related (bottom-up) or predation-related (top-down) factors. We studied direct and indirect influences on the spatial distributions of Serengeti herbivore hotspots, defined as temporally stable areas

  15. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen. Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  16. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore

    Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have ...

  17. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?

    Iason, Glenn R.; O'Reilly-Wapstra, Julianne M.; Brewer, Mark J.; Summers, Ron W.; Moore, Ben D.

    2011-01-01

    A central issue in our understanding of the evolution of the diversity of plant secondary metabolites (PSMs) is whether or not compounds are functional, conferring an advantage to the plant, or non-functional. We examine the hypothesis that the diversity of monoterpene PSMs within a plant species (Scots pine Pinus sylvestris) may be explained by different compounds acting as defences against high-impact herbivores operating at different life stages. We also hypothesize that pairwise coevolution, with uncorrelated interactions, is more likely to result in greater PSM diversity, than diffuse coevolution. We tested whether up to 13 different monoterpenes in Scots pine were inhibitory to herbivory by slugs (Arion ater), bank voles (Clethrionomys glareolus), red deer (Cervus elaphus) and capercaillie (Tetrao urogallus), each of which attack trees at a different life stage. Plants containing more α-pinene were avoided by both slugs and capercaillie, which may act as reinforcing selective agents for this dominant defensive compound. Herbivory by red deer and capercaillie were, respectively, weakly negatively associated with δ3-carene, and strongly negatively correlated with the minor compound β-ocimene. Three of the four herbivores are probably contributory selective agents on some of the terpenes, and thus maintain some, but by no means all, of the phytochemical diversity in the species. The correlated defensive function of α-pinene against slugs and capercaillie is consistent with diffuse coevolutionary processes. PMID:21444308

  18. Adaptive divergence in resistance to herbivores in Datura stramonium

    Guillermo Castillo

    2015-11-01

    Full Text Available Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations of Datura stramonium, we compared the degree of phenotypic differentiation (PST of leaf resistance traits (trichome density, atropine and scopolamine concentration against neutral genetic differentiation (FST at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher than FST across the range of trait heritability values. In contrast, genetic differentiation in trichome density was different from FST only when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits in D. stramonium.

  19. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake

    Adamec, Lubomír

    2002-01-01

    Roč. 155, - (2002), s. 89-100 ISSN 0028-646X R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z6005908 Keywords : terrestrial carnivorous plant s * utilization of prey * mineral nutrient re-utilization * leaf nutrient supply Subject RIV: EF - Botanics Impact factor: 2.945, year: 2002

  20. Iridoid and caffeoyl phenylethanoid glycosides of the endangered carnivorous plant Pinguicula lusitanica L. (Lentibulariaceae)

    Grevenstuk, T.; Hooft, van der J.J.J.; Vervoort, J.J.M.; Waard, de P.; Romano, A.

    2009-01-01

    This work reports for the first time the identification of the major compounds of Pinguicula lusitanica, an endangered carnivorous plant species, using minimal amounts of plant material. A methanol extract was prepared from in vitro cultured plantlets and analyzed by HPLC–SPE–NMR/HPLC–MS. Three

  1. Usability of large carnivore as a keystone species in Eastern Black ...

    The aim of the study was to investigate the keystone species property of Brown bear (Ursus arctos), Wolf (Canis lupus) and Eurasian lynx (Lynx lynx). The main selecting criteria for keystone species can be summarized as top predator or large carnivore important prey species or provide key resources and species having ...

  2. Notes on some smaller carnivores from the Kalahari Gemsbok National Park

    M. G. L Mills

    1984-12-01

    Full Text Available Notes on relative densities, habitat choice, food and foraging, social organisation and anti-predatory behaviour of certain small and medium-sized carnivores are presented. Possible mechanisms of niche separation and the evolution of different anti- predatory behaviours are briefly discussed.

  3. Foliar mineral nutrient uptake in carnivorous plants: What do we know and what should we know?

    Adamec, Lubomír

    2013-01-01

    Roč. 4, č. 10 (2013), s. 1-3 ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:67985939 Keywords : terrestrial and aquatic carnivorous plant s * stimulation of root nutrient uptake * Utricularia traps Subject RIV: EF - Botanics Impact factor: 3.637, year: 2013

  4. A new carnivorous sponge, Chondrocladia robertballardi sp. nov. (Porifera: Cladorhizidae) from two Northeast Atlantic seamounts

    Cristobo, J.; Rios, P.; Pomponi, S.A.; Xavier, J.R.

    2015-01-01

    Carnivorous sponges (Porifera: Cladorhizidae) are a particularly interesting group of species typically occurring in deep-sea habitats. In this study a new species, Chondrocladia (Chondrocladia) robertballardi sp. nov., is described from specimens collected on two large north-east Atlantic seamounts

  5. Quite a few reasons for calling carnivores 'the most wonderful plants in the world'

    Król, E.; Plancho, B. J.; Adamec, Lubomír; Stolarz, M.; Dziubińska, H.; Trebacz, K.

    2012-01-01

    Roč. 109, č. 1 (2012), s. 47-64 ISSN 0305-7364 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : carnivorous plants * gland functioning * plant excitability Subject RIV: EF - Botanics Impact factor: 3.449, year: 2012

  6. Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation

    Adamec, Lubomír

    2005-01-01

    Roč. 49, č. 2 (2005), s. 247-255 ISSN 0006-3134 R&D Projects: GA AV ČR(CZ) IAA6005909 Institutional research plan: CEZ:AV0Z6005908 Keywords : terrestrial carnivorous plants * soil anoxia * Genlisea traps Subject RIV: EF - Botanics Impact factor: 0.792, year: 2005

  7. Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same?

    Ellison, A. M.; Adamec, Lubomír

    2011-01-01

    Roč. 120, č. 11 (2011), 1721-1731 ISSN 0030-1299 Institutional research plan: CEZ:AV0Z60050516 Keywords : terrestrial and aquatic carnivorous plants * photosynthesis * mineral nutrition Subject RIV: EF - Botanics Impact factor: 3.061, year: 2011

  8. Carnivore re-colonisation: Reality, possibility and a non-equilibrium century for grizzly bears in the southern Yellowstone ecosystem

    Pyare, Sanjay; Cain, S.; Moody, D.; Schwartz, C.; Berger, J.

    2004-01-01

    Most large native carnivores have experienced range contractions due to conflicts with humans, although neither rates of spatial collapse nor expansion have been well characterised. In North America, the grizzly bear (Ursus arctos) once ranged from Mexico northward to Alaska, however its range in the continental USA has been reduced by 95-98%. Under the U. S. Endangered Species Act, the Yellowstone grizzly bear population has re-colonised habitats outside Yellowstone National Park. We analysed historical and current records, including data on radio-collared bears, (1) to evaluate changes in grizzly bear distribution in the southern Greater Yellowstone Ecosystem (GYE) over a 100-year period, (2) to utilise historical rates of re-colonisation to project future expansion trends and (3) to evaluate the reality of future expansion based on human limitations and land use. Analysis of distribution in 20-year increments reflects range reduction from south to north (1900-1940) and expansion to the south (1940-2000). Expansion was exponential and the area occupied by grizzly bears doubled approximately every 20 years. A complementary analysis of bear occurrence in Grand Teton National Park also suggests an unprecedented period of rapid expansion during the last 20-30 years. The grizzly bear population currently has re-occupied about 50% of the southern GYE. Based on assumptions of continued protection and ecological stasis, our model suggests total occupancy in 25 years. Alternatively, extrapolation of linear expansion rates from the period prior to protection suggests total occupancy could take > 100 years. Analyses of historical trends can be useful as a restoration tool because they enable a framework and timeline to be constructed to pre-emptively address the social challenges affecting future carnivore recovery. ?? 2004 The Zoological Society of London.

  9. Increasing game prices may alter farmers’ behaviours towards leopards (Panthera pardus and other carnivores in South Africa

    Tara J. Pirie

    2017-05-01

    Full Text Available Human-carnivore conflict occurs globally, particularly in regions where large carnivores predate livestock. Retaliatory killings do occur, and although predation of livestock by carnivores happens, losses from other factors such as disease or injury can be misattributed because of landowner perceptions. Game farming for both trophy hunting and eco-tourism is becoming increasingly common in South Africa, and there has been a rapid increase in the cost of game animals (in some species as much as five-fold between 2010 and 2015. This could result in an increase in conflict between commercial game farmers and carnivores. We conducted two questionnaire surveys of farmers in 2010 and 2015 to investigate this. We asked if there had been changes in farming practices, perceived predator activity, perceived amount of livestock and commercial game losses, and actions taken towards carnivores in a South African farming community. We found no significant change in farming types in the area or losses of livestock between the years. However, there was a significant increase in perceived commercial game losses reported, even though protection of game had increased. Actions taken towards carnivores by livestock/game farmers were also significantly more negative in 2015 compared to farmers growing crops, but there was no such difference in 2010. We suggest that these changes could be a result of the increase in game prices over that period, leading to greater financial losses when an animal is predated, which in turn could increase the likelihood of retaliatory killings of carnivores.

  10. Recent advances in plant-herbivore interactions [version 1; referees: 2 approved

    Deron E. Burkepile

    2017-02-01

    Full Text Available Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1 plant defense theory, (2 herbivore diversity and ecosystem function, (3 predation risk aversion and herbivory, and (4 how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally

  11. Examining the occupancy–density relationship for a low-density carnivore

    Linden, Daniel W.; Fuller, Angela K.; Royle, J. Andrew; Hare, Matthew P.

    2017-01-01

    The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools.For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions.Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution.We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous

  12. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Millett, J., E-mail: j.millett@lboro.ac.uk [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Foot, G.W. [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Svensson, B.M. [Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala (Sweden)

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  13. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Millett, J.; Foot, G.W.; Svensson, B.M.

    2015-01-01

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  14. Geo-spatial aspects of acceptance of illegal hunting of large carnivores in Scandinavia.

    Gangaas, Kristin E; Kaltenborn, Bjørn P; Andreassen, Harry P

    2013-01-01

    Human-carnivore conflicts are complex and are influenced by: the spatial distribution of the conflict species; the organisation and intensity of management measures such as zoning; historical experience with wildlife; land use patterns; and local cultural traditions. We have used a geographically stratified sampling of social values and attitudes to provide a novel perspective to the human - wildlife conflict. We have focused on acceptance by and disagreements between residents (measured as Potential Conflict Index; PCI) towards illegal hunting of four species of large carnivores (bear, lynx, wolf, wolverine). The study is based on surveys of residents in every municipality in Sweden and Norway who were asked their opinion on illegal hunting. Our results show how certain social values are associated with acceptance of poaching, and how these values differ geographically independent of carnivore abundance. Our approach differs from traditional survey designs, which are often biased towards urban areas. Although these traditional designs intend to be representative of a region (i.e. a random sample from a country), they tend to receive relatively few respondents from rural areas that experience the majority of conflict with carnivores. Acceptance of poaching differed significantly between Norway (12.7-15.7% of respondents) and Sweden (3.3-4.1% of respondents). We found the highest acceptance of illegal hunting in rural areas with free-ranging sheep and strong hunting traditions. Disagreements between residents (as measured by PCI) were highest in areas with intermediate population density. There was no correlation between carnivore density and either acceptance of illegal hunting or PCI. A strong positive correlation between acceptance of illegal hunting and PCI showed that areas with high acceptance of illegal hunting are areas with high potential conflict between people. Our results show that spatially-stratified surveys are required to reveal the large scale

  15. Determinants of persistence and tolerance of carnivores on Namibian ranches: implications for conservation on Southern African private lands.

    Peter Andrew Lindsey

    Full Text Available Changing land use patterns in southern Africa have potential to dramatically alter the prospects for carnivore conservation. Understanding these influences is essential for conservation planning. We interviewed 250 ranchers in Namibia to assess human tolerance towards and the distribution of large carnivores. Cheetahs (Acinonyx jubatus, leopards (Panthera pardus and brown hyaenas (Hyaena brunnea were widely distributed on Namibian farmlands, spotted hyaenas (Crocuta crocuta had a narrower distribution, and wild dogs (Lycaon pictus and lions (Panthera leo are largely limited to areas near source populations. Farmers were most tolerant of leopards and least tolerant of lions, wild dogs and spotted hyaenas. Several factors relating to land use correlated consistently with carnivore-presence and landowner tolerance. Carnivores were more commonly present and/or tolerated where; wildlife diversity and biomass were higher; income from wildlife was higher; income from livestock was lower; livestock biomass was lower; in conservancies; game fencing was absent; and financial losses from livestock depredation were lower. Efforts to create conditions whereby the costs associated with carnivores are lowest, and which confer financial value to them are likely to be the most effective means of promoting carnivore conservation. Such conditions are achieved where land owners pool land to create conservancies where livestock are replaced with wildlife (or where livestock husbandry is improved and where wildlife generates a significant proportion of ranch income. Additional measures, such as promoting improved livestock husbandry and educational outreach efforts may also help achieve coexistence with carnivores. Our findings provide insights into conditions more conducive to the persistence of and tolerance towards large carnivores might be increased on private (and even communal lands in Namibia, elsewhere in southern and East Africa and other parts of the world

  16. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  17. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  18. Geographic mosaic of plant evolution: extrafloral nectary variation mediated by ant and herbivore assemblages.

    Anselmo Nogueira

    Full Text Available Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT. Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant-EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1 a population with smaller ants (Crematogaster crinosa matched with low abundance of EFNs; and (2 seven populations with bigger ants (Camponotus species matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated

  19. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India

    Karanth, Krithi K.

    2016-01-01

    Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km2 landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.

  20. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  1. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  2. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – Application to the jaguar (Panthera onca)

    Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard

    2018-01-01

    Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (conservation actions. PMID:29579129

  4. Impact of two specialist insect herbivores on reproduction of horse nettle, Solanum carolinense.

    Wise, Michael J; Sacchi, Christopher F

    1996-10-01

    The frequency of coevolution as a process of strong mutual interaction between a single plant and herbivore species has been questioned in light of more commonly observed, complex relationships between a plant and a suite of herbivore species. Despite recognition of the possibility of diffuse coevolution, relatively few studies have examined ecological responses of plants to herbivores in complex associations. We studied the impact of two specialist herbivores, the horse nettle beetle, Leptinotarsa juncta, and the eggplant flea beetle, Epitrix fuscula, on reproduction of their host, Solanum carolinense. Our study involved field and controlled-environment experimental tests of the impact on sexual and potential asexual reproduction of attack by individuals of the two herbivore species, individually and in combination. Field tests demonstrated that under normal levels of phytophagous insect attack, horse nettle plants experienced a reduction in fruit production of more than 75% compared with plants from which insects were excluded. In controlled-environment experiments using enclosure-exclosure cages, the horse nettle's two principal herbivores, the flea beetle and the horse nettle beetle, caused decreases in sexual reproduction similar to those observed in the field, and a reduction in potential asexual reproduction, represented by root biomass. Attack by each herbivore reduced the numbers of fruits produced, and root growth, when feeding in isolation. When both species were feeding together, fruit production, but not root growth, was lower than when either beetle species fed alone. Ecological interactions between horse nettle and its two primary herbivores necessary for diffuse coevolution to occur were evident from an overall analysis of the statistical interactions between the two herbivores for combined assessment of fruit and vegetative traits. For either of these traits alone, the interactions necessary to promote diffuse coevolution apparently were lacking.

  5. Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales

    Cuautle, M.; Parra-Tabla, V.

    2014-02-01

    Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.

  6. Interactions among predators and plant specificity protect herbivores from top predators.

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  7. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  8. Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes.

    Kelly, Emily L A; Eynaud, Yoan; Clements, Samantha M; Gleason, Molly; Sparks, Russell T; Williams, Ivor D; Smith, Jennifer E

    2016-12-01

    Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.

  9. Large carnivores, moose, and humans: A changing paradigm of predator management in the 21st century

    Schwartz, Charles C.; Swenson, J.E.; Miller, Sterling D.

    2003-01-01

    We compare and contrast the evolution of human attitudes toward large carnivores between Europe and North America. In general, persecution of large carnivores began much earlier in Europe than North America. Likewise, conservation programs directed at restoration and recovery appeared in European history well before they did in North America. Together, the pattern suggests there has been an evolution in how humans perceive large predators. Our early ancestors were physically vulnerable to large carnivores and developed corresponding attitudes of respect, avoidance, and acceptance. As civilization evolved and man developed weapons, the balance shifted. Early civilizations, in particular those with pastoral ways, attempted to eliminate large carnivores as threats to life and property. Brown bears (Ursus arctos) and wolves (Canis lupus) were consequently extirpated from much of their range in Europe and in North America south of Canada. Efforts to protect brown bears began in the late 1880s in some European countries and population reintroductions and augmentations are ongoing. They are less controversial than in North America. On the other hand, there are no wolf introductions, as has occurred in North America, and Europeans have a more negative attitude towards wolves. Control of predators to enhance ungulate harvest varies. In Western Europe, landowners own the hunting rights to ungulates. In the formerly communistic Eastern European countries and North America, hunting rights are held in common, although this is changing in some Eastern European countries. Wolf control to increase harvests of moose (Alces alces) occurs in parts of North America and Russia; bear control for similar reasons only occurs in parts of North America. Surprisingly, bears and wolves are not controlled to increase ungulates where private landowners have the hunting rights in Europe, although wolves were originally exterminated from these areas. Both the inability of scientific research to

  10. Population ecology of the endangered aquatic carnivorous macrophyte Aldrovanda vesiculosa at a naturalised site in North America

    Cross, A. T.; Skates, L. M.; Adamec, Lubomír; Hammond, C. M.; Sheridan, P. M.; Dixon, K. W.

    2015-01-01

    Roč. 60, č. 9 (2015), s. 1772-1783 ISSN 0046-5070 Institutional support: RVO:67985939 Keywords : aquatic carnivorous plant * competition * population ecology Subject RIV: EF - Botanics Impact factor: 2.933, year: 2015

  11. Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia

    Masi, E.; Ciszak, M.; Colzi, I.; Adamec, Lubomír; Mancuso, S.

    2016-01-01

    Roč. 6, e24989 (2016), s. 1-11 ISSN 2045-2322 Institutional support: RVO:67985939 Keywords : electrophysiology * multielectrode array * aquatic carnivorous plants Subject RIV: ED - Physiology Impact factor: 4.259, year: 2016

  12. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores

    Cozzi, Gabriele; Broekhuis, Femke; McNutt, John W; Turnbull, Lindsay A; Macdonald, David W; Schmid, Bernhard

    2012-01-01

    Africa is home to the last intact guild of large carnivores and thus provides the only opportunity to investigate mechanisms of coexistence among large predator species. Strong asymmetric dominance hierarchies typically characterize guilds of large carnivores; but despite this asymmetry, subdominant species may persist alongside their stronger counterparts through temporal partitioning of habitat and resources. In the African guild, the subdominant African wild dogs and cheetahs are rou...

  13. Contrasting effects of sampling scale on insect herbivores distribution in response to canopy structure

    Frederico S. Neves

    2013-03-01

    Full Text Available Species diversity of insect herbivores associated to canopy may vary local and geographically responding to distinct factors at different spatial scales. The aim of this study was to investigate how forest canopy structure affects insect herbivore species richness and abundance depending on feeding guilds´ specificities. We tested the hypothesis that habitat structure affects insect herbivore species richness and abundance differently to sap-sucking and chewing herbivore guilds. Two spatial scales were evaluated: inside tree crowns (fine spatial scale and canopy regions (coarse spatial scale. In three sampling sites we measured 120 tree crowns, grouped in five points with four contiguous tree crowns. Insects were sampled by beating method from each crown and data were summed up for analyzing each canopy region. In crowns (fine spatial scale we measured habitat structure: trunk circumference, tree height, canopy depth, number of ramifications and maximum ramification level. In each point, defined as a canopy region (coarse spatial scale, we measured habitat structure using a vertical cylindrical transect: tree species richness, leaf area, sum of strata heights and maximum canopy height. A principal component analysis based on the measured variables for each spatial scale was run to estimate habitat structure parameters. To test the effects of habitat structure upon herbivores, different general linear models were adjusted using the first two principal components as explanatory variables. Sap-sucking insect species richness and all herbivore abundances increased with size of crown at fine spatial scale. On the other hand, chewer species richness and abundance increased with resource quantity at coarse scale. Feeding specialization, resources availability, and agility are discussed as ecological causes of the found pattern.La diversidad de especies de insectos herbívoros asociados con el dosel puede variar geográficamente y responder a distintos

  14. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  15. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  16. Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds

    Dolgushina, Tatiana; Wesley, Gina

    2018-01-01

    This study investigates whether terrestrial mammalian carnivore guilds of ancient South America, which developed in relative isolation, were similar to those of other continents. We do so through analyses of clade diversification, ecomorphology and guild structure in the Sparassodonta, metatherians that were the predominant mammalian carnivores of pre-Pleistocene South America. Body mass and 16 characters of the dentition are used to quantify morphological diversity (disparity) in sparassodonts and to compare them to extant marsupial and placental carnivores and extinct North American carnivoramorphans. We also compare trophic diversity of the Early Miocene terrestrial carnivore guild of Santa Cruz, Argentina to that of 14 modern and fossil guilds from other continents. We find that sparassodonts had comparatively low ecomorphological disparity throughout their history and that South American carnivore palaeoguilds, as represented by that of Santa Cruz, Argentina, were unlike modern or fossil carnivore guilds of other continents in their lack of mesocarnivores and hypocarnivores. Our results add to a growing body of evidence highlighting non-analogue aspects of extinct South American mammals and illustrate the dramatic effects that historical contingency can have on the evolution of mammalian palaeocommunities. PMID:29298933

  17. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals.

    Tran, Lucy A P

    2016-04-01

    Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.

  18. Feed based on vegetable materials changes the muscle proteome of the carnivore rainbow trout

    Jessen, Flemming; Wulff, Tune; Bach Mikkelsen, J.

    2011-01-01

    Feed production for aquaculture of carnivore fish species relies heavily on protein and lipid from the limited resources of wild fish and other sea living organisms. Thus the development of alternative feeds replacing fish meal and oil with components of vegetable origin is important for a sustai......Feed production for aquaculture of carnivore fish species relies heavily on protein and lipid from the limited resources of wild fish and other sea living organisms. Thus the development of alternative feeds replacing fish meal and oil with components of vegetable origin is important...... trout fed two different diets identical in protein and oil content, but with diet C based on fish meal and oil and diet V based on rapeseed oil and vegetable proteins. In addition to the proteomic investigation the textural properties of the fish were analysed by sensory profiling. Protein expression...

  19. Application of radiotracers in an exotic field of botany. How to feed carnivorous plants

    Steinhauser, G.; Musilek, A.; Sterba, J.H.; Bichler, M.; Adlassnig, W.; Peroutka, M.; Lichtscheidl, I.K.

    2007-01-01

    In this paper, methods for the application of radiotracers in the Cobra Lily (Darlingtonia californica), a carnivorous pitcher plant, are described. The uptake of radiotracers such as 42 K and 54 Mn into the pitcher trap in aqueous solution could be proven, whereas uptake of 59 Fe ions could not be observed. No-carrier-added 54 Mn was taken up by the plants, regardless of extremely low concentrations. In contrast to earlier experiments using 14 C and 15 N-based tracers, the methodology presented allows quick, simple and reliable quantification of the nutrient uptake. The results of our experiments lead to a deeper biological understanding concerning the trace element household of this carnivorous plant and the absorption of micro- and macronutrients from trapped prey. (author)

  20. Phytochemical studies and biological activity of carnivorous plants from the Mediterranean region

    Grevenstuk, Tomás

    2010-01-01

    Tese de doutoramento, Ciências Biotecnológicas (Biotecnologia Vegetal), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010 In this thesis several studies were conducted with four carnivorous plant species which occur on Portuguese territory: Pinguicula lusitanica, Pinguicula vulgaris, Drosera intermedia and Drosera rotundifolia. Most habitats of these plants are threatened and natural populations are scarce, therefore micropropagation protocols were developed to ...

  1. Conflict Misleads Large Carnivore Management and Conservation: Brown Bears and Wolves in Spain.

    Fernández-Gil, Alberto; Naves, Javier; Ordiz, Andrés; Quevedo, Mario; Revilla, Eloy; Delibes, Miguel

    2016-01-01

    Large carnivores inhabiting human-dominated landscapes often interact with people and their properties, leading to conflict scenarios that can mislead carnivore management and, ultimately, jeopardize conservation. In northwest Spain, brown bears Ursus arctos are strictly protected, whereas sympatric wolves Canis lupus are subject to lethal control. We explored ecological, economic and societal components of conflict scenarios involving large carnivores and damages to human properties. We analyzed the relation between complaints of depredations by bears and wolves on beehives and livestock, respectively, and bear and wolf abundance, livestock heads, number of culled wolves, amount of paid compensations, and media coverage. We also evaluated the efficiency of wolf culling to reduce depredations on livestock. Bear damages to beehives correlated positively to the number of female bears with cubs of the year. Complaints of wolf predation on livestock were unrelated to livestock numbers; instead, they correlated positively to the number of wild ungulates harvested during the previous season, the number of wolf packs, and to wolves culled during the previous season. Compensations for wolf complaints were fivefold higher than for bears, but media coverage of wolf damages was thirtyfold higher. Media coverage of wolf damages was unrelated to the actual costs of wolf damages, but the amount of news correlated positively to wolf culling. However, wolf culling was followed by an increase in compensated damages. Our results show that culling of the wolf population failed in its goal of reducing damages, and suggest that management decisions are at least partly mediated by press coverage. We suggest that our results provide insight to similar scenarios, where several species of large carnivores share the landscape with humans, and management may be reactive to perceived conflicts.

  2. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation

    Jobson, Richard W.; Nielsen, Rasmus; Laakkonen, Liisa; Wikström, Mårten; Albert, Victor A.

    2004-01-01

    Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap ...

  3. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes

    Pavlovič, Andrej

    2012-01-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the ...

  4. Species identification refined by molecular scatology in a community of sympatric carnivores in Xinjiang, China

    LAGUARDIA, Alice; WANG, Jun; SHI, Fang-Lei; SHI, Kun; RIORDAN, Philip

    2015-01-01

    Many ecological studies and conservation management plans employ noninvasive scat sampling based on the assumption that species’ scats can be correctly identified in the field. However, in habitats with sympatric similarly sized carnivores, misidentification of scats is frequent and can lead to bias in research results. To address the scat identification dilemma, molecular scatology techniques have been developed to extract DNA from the donor cells present on the outer lining of the scat samp...

  5. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs.

    López-Giráldez, Francesc; Andrés, Olga; Domingo-Roura, Xavier; Bosch, Montserrat

    2006-10-23

    The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the interspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes.Finally, due to their higher complexity and lower potential informative content of microsatellites associated with tRNALys-derived SINEs, we recommend avoiding

  6. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs

    Bosch Montserrat

    2006-10-01

    Full Text Available Abstract Background The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. Results We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the insterspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Conclusion Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes. Finally, due to their higher complexity and lower potential informative content of microsatellites

  7. Triggering a false alarm: Wounding mimics prey capture in the carnivorous venus flytrap (dionaea muscipula)

    Pavlovič, A.; Jakšová, Jana; Novák, Ondřej

    2017-01-01

    Roč. 216, č. 3 (2017), s. 927-938 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Action potential * Carnivorous plant * Defence * Digestive enzyme * Electrical signal * Jasmonic acid (JA) * Systemic response * Venus flytrap Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 7.330, year: 2016

  8. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores.

    Williams, Terrie M; Fuiman, Lee A; Davis, Randall W

    2015-10-01

    Foraging by large (>25 kg), mammalian carnivores often entails cryptic tactics to surreptitiously locate and overcome highly mobile prey. Many forms of intermittent locomotion from stroke-and-glide maneuvers by marine mammals to sneak-and-pounce behaviors by terrestrial canids, ursids, and felids are involved. While affording proximity to vigilant prey, these tactics are also associated with unique energetic costs and benefits to the predator. We examined the energetic consequences of intermittent locomotion in mammalian carnivores and assessed the role of these behaviors in overall foraging efficiency. Behaviorally-linked, three-axis accelerometers were calibrated to provide instantaneous locomotor behaviors and associated energetic costs for wild adult Weddell seals (Leptonychotes weddellii) diving beneath the Antarctic ice. The results were compared with previously published values for other marine and terrestrial carnivores. We found that intermittent locomotion in the form of extended glides, burst-and-glide swimming, and rollercoaster maneuvers while hunting silverfish (Pleuragramma antarcticum) resulted in a marked energetic savings for the diving seals relative to continuously stroking. The cost of a foraging dive by the seals decreased by 9.2-59.6%, depending on the proportion of time gliding. These energetic savings translated into exceptionally low transport costs during hunting (COTHUNT) for diving mammals. COTHUNT for Weddell seals was nearly six times lower than predicted for large terrestrial carnivores, and demonstrates the importance of turning off the propulsive machinery to facilitate cost-efficient foraging in highly active, air-breathing marine predators. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Life on wood - the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia

    Ockelmann, Kurt W.; Dinesen, Grete E.

    2011-01-01

    to an ephemeral habitat in the deep sea of both species are described herein. Although larviphagi is known to occur in some filter-feeding bivalves, Idas argenteus is the first mytilid known to be specifically adapted to a carnivorous life. Further, it is argued that the modifications of I. argenteus with regard...... to its shell development, alimentary system, gill anatomy and life habits provide important clues to the evolution of the Bathymodiolinae....

  10. Periodontal disease diagnosis in a group of captive native carnivores at Jaime Duque Zoo

    Viviana Vásquez C.

    2006-06-01

    Full Text Available A diagnose of periodontal diseases was performed in 12 species of carnivores at Jaime Duque Zoo. 23 animals were sampled under different general anesthesia protocols. A protocol of the oral cavity examination was designed and implemented, making emphasis in the periodontal anomalies. 16 of the 23 individuals presented periodontal disease. A microbiological culture was performed from the oral cavity of 9 individuals, this results indicated mostly normal bacterial flora.

  11. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?

    Sirová, D.; Šantrůček, Jiří; Adamec, Lubomír; Bárta, J.; Borovec, Jakub; Pech, J.; Owens, S.M.; Šantrůčková, H.; Schaeufele, R.; Štorchová, Helena; Vrba, Jaroslav

    2014-01-01

    Roč. 114, č. 1 (2014), s. 125-133 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:60077344 ; RVO:67985939 ; RVO:61389030 Keywords : Aldrovanda vesiculosa * aquatic carnivorous plants * Utricularia vulgaris * nitrogen fixation Subject RIV: CE - Biochemistry; EF - Botanics (BU-J); EF - Botanics (UEB-Q) Impact factor: 3.654, year: 2014

  12. The effects of large herbivores on the landscape dynamics of a perennial herb

    Hemrová, Lucie; Červenková, Z.; Münzbergová, Zuzana

    2012-01-01

    Roč. 110, č. 7 (2012), s. 1411-1421 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : herbivores * Scorzonera hispanica * landscape Subject RIV: EF - Botanics Impact factor: 3.449, year: 2012

  13. Forage patch use by grazing herbivores in a South African grazing ecosystem

    Venter, J.A.; Nabe-Nielsen, J.; Prins, H.H.T.; Slotow, R.

    2014-01-01

    Understanding how different herbivores make forage patch use choices explains how they maintain an adequate nutritional status, which is important for effective conservation management of grazing ecosystems. Using telemetry data, we investigated nonruminant zebra (Equus burchelli) and ruminant red

  14. Effects of herbivore exclosures on variation in quality and quantity of ...

    Effects of herbivore exclosures on variation in quality and quantity of plants among ... commercial and game) and among habitat types (open savanna, rocky and pan) in a semiarid savanna in South Africa. ... AJOL African Journals Online.

  15. Seasonal grazing and food preference of herbivores in a Posidonia oceanica meadow

    Andrea Peirano

    2001-12-01

    Full Text Available Seasonal grazing of the fish Sarpa salpa (L., the urchin Paracentrotus lividus Lamarck and the isopods Idotea spp. was compared with the C/N ratio of adult and intermediate leaves and epiphytes of Posidonia oceanica (L. Delile, collected at three different depths. Despite seasonal differences in grazing, herbivores showed preferences throughout the year for adult leaves with more epiphyte and higher N contents. The maximum grazing on adult and intermediate leaves was observed in September and in June for fish and in March for urchins, whereas it was irregular for isopods. Grazing by the three herbivores was not related to their preference for leaves or epiphytes, notwithstanding the seasonal differences in their C and N contents. We concluded that herbivores show no preference for food type throughout the year and that seasonal consumption of P. oceanica is related mainly to herbivore behaviour.

  16. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals.

    O' Donnell, Michelle M; Harris, Hugh M B; Ross, R Paul; O'Toole, Paul W

    2017-10-01

    In this pilot study, we determined the core fecal microbiota composition and overall microbiota diversity of domesticated herbivorous animals of three digestion types: hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 animal species were housed on a single farm in Ireland and all the large herbivores consumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all digestion types comprised 42% of the genera identified. Host phylogeny and, to a lesser extent, digestion type determined the microbiota diversity in these domesticated herbivores. This pilot study forms a platform for future studies into the microbiota of nonbovine and nonequine domesticated herbivorous animals. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...

  18. Histomorphology and proteolytic activity in the gastric apparatus of frugivorous, carnivorous and omnivorous species of birds.

    Jain, D K

    1976-01-01

    The histomorphology of the gastric apparatus, the pepsin level and the optimum pH for pepsin were investigated in Psittacula krameri (frugivore), Lanius schach (carnivore) and Acridotheres tristis (omnivore) species of birds. The proventricular glands were found to be made up of oxynticopeptic cells. The lobules of the oxynticopeptic cells are polyhedral; they are the largest in P. krameri, and the smallest in A. tristis. However, their greater number in A. tristis enables a higher secretion of hydrochloric acid and pepsin. The villi are more developed in A. tristis than in L. schach and P. krameri. The gizzard is larger in A. tristis than in P. krameri and A. tritis than in the carnivore L. schach. Koilin lining is beset with horny cones, which were well developed in A. tristis, moderately developed in P. krameri and absent in L. schach. The pepsin activity is higher in the proventriculus of the carnivorous L. schach and the omnivorous A. tristis than in the frugivorous P. krameri. Slight pepsin activity was also observed in gizzard tissue extracts in all the three species. The optimum pH for pepsin was found to be 1.5 for P. krameri and 1.8 for both L. schach and A. tristis.

  19. Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals.

    Panciroli, Elsa; Janis, Christine; Stockdale, Maximilian; Martín-Serra, Alberto

    2017-10-01

    Locomotor mode is an important component of an animal's ecology, relating to both habitat and substrate choice (e.g., arboreal versus terrestrial) and in the case of carnivores, to mode of predation (e.g., ambush versus pursuit). Here, we examine how the morphology of the calcaneum, the 'heel bone' in the tarsus, correlates with locomotion in extant carnivores. Other studies have confirmed the correlation of calcaneal morphology with locomotion behaviour and habitat. The robust nature of the calcaneum means that it is frequently preserved in the fossil record. Here, we employ linear measurements and 2D-geometric morphometrics on a sample of calcanea from eighty-seven extant carnivorans and demonstrate a signal of correlation between calcaneal morphology and locomotor mode that overrides phylogeny. We used this correlation to determine the locomotor mode, and hence aspects of the palaeobiology of, 47 extinct carnivorous mammal taxa, including both Carnivora and Creodonta. We found ursids (bears), clustered together, separate from the other carnivorans. Our results support greater locomotor diversity for nimravids (the extinct 'false sabertooths', usually considered to be more arboreal), than previously expected. However, there are limitations to interpretation of extinct taxa because their robust morphology is not fully captured in the range of modern carnivoran morphology. © 2017 Wiley Periodicals, Inc.

  20. The carnivore remains from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain).

    García, N; Arsuaga, J L; Torres, T

    1997-01-01

    Remains of carnivores from the Sima de los Huesos site representing at least 158 adult individuals of a primitive (i.e., not very speleoid) form of Ursus deningeri Von Reichenau 1906, have been recovered through the 1995 field season. These new finds extend our knowledge of this group in the Sierra de Atapuerca Middle Pleistocene. Material previously classified as Cuoninae indet, is now assigned to Canis lupus and a third metatarsal assigned in 1987 to Panthera of gombaszoegensis, is in our opinion only attributable to Panthera sp. The family Mustelidae is added to the faunal list and includes Martes sp. and a smaller species. The presence of Panthera leo cf. fossilis, Lynx pardina spelaea and Felis silvestris, is confirmed. The presence of a not very speloid Ursus deningeri, together with the rest of the carnivore assemblage, points to a not very late Middle Pleistocene age, i.e., oxygen isotope stage 7 or older. Relative frequencies of skeletal elements for the bear and fox samples are without major biases. The age structure of the bear sample, based on dental wear stages, does not follow the typical hibernation mortality profile and resembles a catastrophic profile. The site was not a natal or refuge den. The hypothesis that the site was a natural trap is the most plausible. If the Sima de los Huesos functioned as a natural trap (without an egress out), the human accumulation cannot be attributed to carnivore: activities and must be explained differently.

  1. Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant.

    Bertol, Nils; Paniw, Maria; Ojeda, Fernando

    2015-05-01

    Carnivorous plants have unusually modified leaves to trap insects as an adaptation to low-nutrient environments. Disparate mechanisms have been suggested as luring traits to attract prey insects into their deadly leaves, ranging from very elaborate to none at all. Drosophyllum lusitanicum is a rare carnivorous plant with a common flypaper-trap mechanism. Here we tested whether Drosophyllum plants lure prey insects into their leaves or they act just as passive traps. We compared prey capture between live, potted plants and Drosophyllum-shaped artificial mimics coated with odorless glue. Since this species is insect-pollinated, we also explored the possible existence of a pollinator-prey conflict by quantifying the similarity between the pollination and prey guilds in a natural population. All experiments were done in southern Spain. The sticky leaves of Drosophyllum captured significantly more prey than mimics, particularly small dipterans. Prey attraction, likely exerted by scent or visual cues, seems to be unrelated to pollinator attraction by flowers, as inferred from the low similarity between pollinator and prey insect faunas found in this species. Our results illustrate the effectiveness of this carnivorous species at attracting insects to their flypaper-trap leaves. © 2015 Botanical Society of America, Inc.

  2. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Th?o; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root ...

  3. Intra- and interspecific differences in diet quality and composition in a large herbivore community.

    Claire Redjadj

    Full Text Available Species diversity in large herbivore communities is often explained by niche segregation allowed by differences in body mass and digestive morphophysiological features. Based on large number of gut samples in fall and winter, we analysed the temporal dynamics of diet composition, quality and interspecific overlap of 4 coexisting mountain herbivores. We tested whether the relative consumption of grass and browse differed among species of different rumen types (moose-type and intermediate-type, whether diet was of lower quality for the largest species, whether we could identify plant species which determined diet quality, and whether these plants, which could be "key-food-resources" were similar for all herbivores. Our analyses revealed that (1 body mass and rumen types were overall poor predictors of diet composition and quality, although the roe deer, a species with a moose-type rumen was confirmed as an "obligatory non grazer", while red deer, the largest species, had the most lignified diet; (2 diet overlap among herbivores was well predicted by rumen type (high among species of intermediate types only, when measured over broad plant groups, (3 the relationship between diet composition and quality differed among herbivore species, and the actual plant species used during winter which determined the diet quality, was herbivore species-specific. Even if diets overlapped to a great extent, the species-specific relationships between diet composition and quality suggest that herbivores may select different plant species within similar plant group types, or different plant parts and that this, along with other behavioural mechanisms of ecological niche segregation, may contribute to the coexistence of large herbivores of relatively similar body mass, as observed in mountain ecosystems.

  4. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    eLife digest Many different animals feed on plants, including almost half of all known insect species. Some herbivores?like caterpillars for example?feed by chewing. Others, such as aphids and planthoppers, use syringe-like mouthparts to pierce plants and then feed on the fluids within. To minimize the damage caused by these herbivores, plants activate specific defenses upon attack, including proteins that can inhibit the insect's digestive enzymes. The inhibitors are effective against chewin...

  5. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affe...

  6. Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (Zostera marina) mesograzer community.

    Amundrud, Sarah L; Srivastava, Diane S; O'Connor, Mary I

    2015-07-01

    Herbivore communities can be sensitive to changes in predator pressure (top-down effects) and resource availability (bottom-up effects) in a wide range of systems. However, it remains unclear whether such top-down and bottom-up effects reflect direct impacts of predators and/or resources on herbivores, or are indirect, reflecting altered interactions among herbivore species. We quantified direct and indirect effects of bottom-up and top-down processes on an eelgrass (Zostera marina) herbivore assemblage. In a field experiment, we factorially manipulated water column nutrients (with Osmocote(™) slow-release fertilizer) and predation pressure (with predator exclusion cages) and measured the effects on herbivore abundance, richness and beta diversity. We examined likely mechanisms of community responses by statistically exploring the response of individual herbivore species to trophic manipulations. Predators increased herbivore richness and total abundance, in both cases through indirect shifts in community composition. Increases in richness occurred through predator suppression of common gammarid amphipod species (Monocorophium acherusicum and Photis brevipes), permitting the inclusion of rarer gammarid species (Aoroides columbiae and Pontogeneia rostrata). Increased total herbivore abundance reflected increased abundance of a caprellid amphipod species (Caprella sp.), concurrent with declines in the abundance of other common species. Furthermore, predators decreased beta diversity by decreasing variability in Caprella sp. abundance among habitat patches. Osmocote(™) fertilization increased nutrient concentrations locally, but nutrients dissipated to background levels within 3 m of the fertilizer. Nutrient addition weakly affected the herbivore assemblage, not affecting richness and increasing total abundance by increasing one herbivore species (Caprella sp.). Nutrient addition did not affect beta diversity. We demonstrated that assemblage-level effects of

  7. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  8. Description of the East Brazil Large Marine Ecosystem using a trophic model

    Kátia M.F. Freire

    2008-09-01

    Full Text Available The objective of this study was to describe the marine ecosystem off northeastern Brazil. A trophic model was constructed for the 1970s using Ecopath with Ecosim. The impact of most of the forty-one functional groups was modest, probably due to the highly reticulated diet matrix. However, seagrass and macroalgae exerted a strong positive impact on manatee and herbivorous reef fishes, respectively. A high negative impact of omnivorous reef fishes on spiny lobsters and of sharks on swordfish was observed. Spiny lobsters and swordfish had the largest biomass changes for the simulation period (1978-2000; tunas, other large pelagics and sharks showed intermediate rates of biomass decline; and a slight increase in biomass was observed for toothed cetaceans, large carnivorous reef fishes, and dolphinfish. Recycling was an important feature of this ecosystem with low phytoplankton-originated primary production. The mean transfer efficiency between trophic levels was 11.4%. The gross efficiency of the fisheries was very low (0.00002, probably due to the low exploitation rate of most of the resources in the 1970s. Basic local information was missing for many groups. When information gaps are filled, this model may serve more credibly for the exploration of fishing policies for this area within an ecosystem approach.

  9. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens.

    Wininger, Kerry; Rank, Nathan

    2017-11-01

    Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research. © 2017 New York Academy of Sciences.

  10. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    Adam Suchley

    2016-05-01

    Full Text Available Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.

  11. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae).

    Moreira, Xoaquín; Nell, Colleen S; Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-09-06

    It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Induced and constitutive responses of digestive enzymes to plant toxins in an herbivorous mammal.

    Kohl, Kevin D; Dearing, M Denise

    2011-12-15

    Many plants produce plant secondary compounds (PSCs) that bind and inhibit the digestive enzymes of herbivores, thus limiting digestibility for the herbivore. Herbivorous insects employ several physiological responses to overcome the anti-nutritive effects of PSCs. However, studies in vertebrates have not shown such responses, perhaps stemming from the fact that previously studied vertebrates were not herbivorous. The responses of the digestive system to dietary PSCs in populations of Bryant's woodrat (Neotoma bryanti) that vary in their ecological and evolutionary experience with the PSCs in creosote bush (Larrea tridentata) were compared. Individuals from naïve and experienced populations were fed diets with and without added creosote resin. Animals fed diets with creosote resin had higher activities of pancreatic amylase, as well as luminal amylase and chymotrypsin, regardless of prior experience with creosote. The experienced population showed constitutively higher activities of intestinal maltase and sucrase. Additionally, the naïve population produced an aminopeptidase-N enzyme that was less inhibited by creosote resin when feeding on the creosote resin diet, whereas the experienced population constitutively expressed this form of aminopeptidase-N. Thus, the digestive system of an herbivorous vertebrate responds significantly to dietary PSCs, which may be important for allowing herbivorous vertebrates to feed on PSC-rich diets.

  13. Trypanosoma cruzi infection in neotropical wild carnivores (Mammalia: Carnivora: at the top of the T. cruzi transmission chain.

    Fabiana Lopes Rocha

    Full Text Available Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus harbored TcI and the coatis (Nasua nasua harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis' isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores' literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that

  14. The silent mass extinction of insect herbivores in biodiversity hotspots.

    Fonseca, Carlos Roberto

    2009-12-01

    Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species-host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant-feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971-1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3-10.6 monophages per plant species. I calculated that 213,830-547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.

  15. Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant

    Nicolas Bensoussan

    2016-07-01

    Full Text Available The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae, is one of the most polyphagous herbivores feeding on cell contents of over 1,100 plant species including more than 150 crops. It is being established as a model for chelicerate herbivores with tools that enable tracking of reciprocal responses in plant-spider mite interactions. However, despite their important pest status and a growing understanding of the molecular basis of interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Here, utilizing histology and microscopy methods, we uncovered several key features of T. urticae feeding. By following the stylet path within the plant tissue, we determined that the stylet penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, without damaging the epidermal cellular layer. Our recordings of mite feeding established that duration of the feeding event ranges from several minutes to more than half an hour, during which time mites consume a single mesophyll cell in a pattern that is common to both bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, a common symptom of mite herbivory, do not form as an immediate consequence of mite feeding. Our results establish a cellular context for the plant-spider mite interaction that will support our understanding of the molecular mechanisms and cell signaling associated with spider mite feeding.

  16. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities.

    Kant, M R; Jonckheere, W; Knegt, B; Lemos, F; Liu, J; Schimmel, B C J; Villarroel, C A; Ataide, L M S; Dermauw, W; Glas, J J; Egas, M; Janssen, A; Van Leeuwen, T; Schuurink, R C; Sabelis, M W; Alba, J M

    2015-06-01

    Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to

  17. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C. J.; Villarroel, C. A.; Ataide, L. M. S.; Dermauw, W.; Glas, J. J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R. C.; Sabelis, M. W.; Alba, J. M.

    2015-01-01

    Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can

  18. Herbivore grazing?or trampling? Trampling effects by a large ungulate in cold high?latitude ecosystems

    Heggenes, Jan; Odland, Arvid; Chevalier, Tomas; Ahlberg, J?rgen; Berg, Amanda; Larsson, H?kan; Bjerketvedt, Dag K.

    2017-01-01

    Mammalian herbivores have important top-down effects on ecological processes and landscapes by generating vegetation changes through grazing and trampling. For free-ranging herbivores on large landscapes, trampling is an important ecological factor. However, whereas grazing is widely studied, low-intensity trampling is rarely studied and quantified. The cold-adapted northern tundra reindeer (Rangifer tarandus) is a wide-ranging keystone herbivore in large open alpine and Arctic ecosystems. Re...

  19. Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?

    Scott Bennett

    2017-09-01

    Full Text Available Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE. Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.

  20. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field.

    Ahern, Jeffrey R; Whitney, Kenneth D

    2014-03-01

    Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant-herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing

  1. Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-01-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  2. Direct evidence of megamammal-carnivore interaction decoded from bone marks in historical fossil collections from the Pampean region

    Karina Vanesa Chichkoyan

    2017-05-01

    Full Text Available Pleistocene South American megafauna has traditionally attracted the interest of scientists and the popular media alike. However, ecological interactions between the species that inhabited these ecosystems, such as predator-prey relationships or interspecific competition, are poorly known. To this regard, carnivore marks imprinted on the fossil bones of megamammal remains are very useful for deciphering biological activity and, hence, potential interspecific relationships among taxa. In this article, we study historical fossil collections housed in different European and Argentinean museums that were excavated during the 19th and early 20th centuries in the Pampean region, Argentina, in order to detect carnivore marks on bones of megamammals and provide crucial information on the ecological relationships between South American taxa during the Pleistocene. Our results indicate that the long bones of megafauna from the Pampean region (e.g., the Mylodontidae and Toxodontidae families exhibit carnivore marks. Furthermore, long bones of medium-sized species and indeterminate bones also present punctures, pits, scores and fractures. Members of the large-carnivore guild, such as ursids, canids and even felids, are recognised as the main agents that inflicted the marks. We hypothesize that the analysed carnivore marks represent the last stages of megaherbivore carcass exploitation, suggesting full consumption of these animals by the same or multiple taxa in a hunting and/or scavenging scenario. Moreover, our observations provide novel insights that help further our understanding of the palaeoecological relationships of these unique communities of megamammals.

  3. Prevalence and diversity of Babesia, Hepatozoon, Ehrlichia, and Bartonella in wild and domestic carnivores from Zambia, Africa.

    Williams, Brianna M; Berentsen, Are; Shock, Barbara C; Teixiera, Maria; Dunbar, Michael R; Becker, Matthew S; Yabsley, Michael J

    2014-03-01

    A molecular survey was conducted for several hemoparasites of domestic dogs and three species of wild carnivores from two sites in Zambia. Three Babesia spp. were detected including Babesia felis and Babesia leo in lions (Panthera leo) and a Babesia sp. (similar to Babesia lengau) in spotted hyenas (Crocuta crocuta) and a single lion. All wild dogs (Lycaon pictus) and domestic dogs were negative for Babesia. High prevalences for Hepatozoon were noted in all three wild carnivores (38-61%) and in domestic dogs (13%). Significantly higher prevalences were noted in hyenas and wild dogs compared with domestic dogs and lions. All carnivores were PCR negative for Ehrlichia canis, Ehrlichia ewingii, and Bartonella spp. Overall, high prevalences and diversity of Babesia and Hepatozoon were noted in wild carnivores from Zambia. This study is the first molecular characterization of Babesia from any hyena species and is the first report of a Babesia sp. closely related to B. lengau, a parasite previously only reported from cheetahs (Acinonyx jubatus), in lions and hyenas. Although usually benign in wild carnivores, these hemoparasites can be pathogenic under certain circumstances. Importantly, data on vectors for these parasites are lacking, so studies are needed to identify vectors as well as determine transmission routes, infection dynamics, and host specificity of these hemoparasites in wildlife in Africa and also the risk of transmission between domestic animals and wildlife.

  4. Predation-related odours reduce oviposition in a herbivorous mite.

    Choh, Yasuyuki; Uefune, Masayoshi; Takabayashi, Junji

    2010-01-01

    When adult females of the herbivorous mite, Tetranychus urticae, were exposed to the predatory mite, Phytoseiulus persimilis, they laid fewer eggs than females that had not been exposed to P. persimilis when transferred onto a new leaf patch. However, when T. urticae females were exposed to either products of P. persimilis or artificially damaged conspecific eggs on a leaf patch, the number of T. urticae eggs on a new leaf patch did not differ significantly from the control. The reduced oviposition was neither due to the feeding activity on the leaf patch with P. persimilis nor to that on the new leaf patch. There was also no significant difference between the number of T. urticae eggs produced on a new leaf patch following exposure to the odours of a neighbouring leaf patch where there had previously been either P. persimilis or T. urticae adults. However, female T. urticae that had been exposed to odours from neighbouring leaf patches on which both T. urticae and P. persimilis had been placed produced significantly fewer eggs on a new leaf patch than those that had not been exposed to such odours. Neither odours from neighbouring intact leaf patches on which T. urticae eggs were preyed on by P. persimilis, nor odours from a neighbouring Parafilm patch on which T. urticae was preyed on by P. persimilis affected the oviposition of T. urticae. These data suggest that the presence of T. urticae, P. persimilis and a leaf patch are needed for the emission of odours to reduce oviposition in T. urticae.

  5. Strategies to mitigate nitrous oxide emissions from herbivore production systems.

    Schils, R L M; Eriksen, J; Ledgard, S F; Vellinga, Th V; Kuikman, P J; Luo, J; Petersen, S O; Velthof, G L

    2013-03-01

    Herbivores are a significant source of nitrous oxide (N(2)O) emissions. They account for a large share of manure-related N(2)O emissions, as well as soil-related N(2)O emissions through the use of grazing land, and land for feed and forage production. It is widely acknowledged that mitigation measures are necessary to avoid an increase in N(2)O emissions while meeting the growing global food demand. The production and emissions of N(2)O are closely linked to the efficiency of nitrogen (N) transfer between the major components of a livestock system, that is, animal, manure, soil and crop. Therefore, mitigation options in this paper have been structured along these N pathways. Mitigation technologies involving diet-based intervention include lowering the CP content or increasing the condensed tannin content of the diet. Animal-related mitigation options also include breeding for improved N conversion and high animal productivity. The main soil-based mitigation measures include efficient use of fertilizer and manure, including the use of nitrification inhibitors. In pasture-based systems with animal housing facilities, reducing grazing time is an effective option to reduce N(2)O losses. Crop-based options comprise breeding efforts for increased N-use efficiency and the use of pastures with N(2)-fixing clover. It is important to recognize that all N(2)O mitigation options affect the N and carbon cycles of livestock systems. Therefore, care should be taken that reductions in N(2)O emissions are not offset by unwanted increases in ammonia, methane or carbon dioxide emissions. Despite the abundant availability of mitigation options, implementation in practice is still lagging. Actual implementation will only follow after increased awareness among farmers and greenhouse gases targeted policies. So far, reductions in N(2)O emissions that have been achieved are mostly a positive side effect of other N-targeted policies.

  6. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.).

    Jopcik, Martin; Moravcikova, Jana; Matusikova, Ildiko; Bauer, Miroslav; Rajninec, Miroslav; Libantova, Jana

    2017-02-01

    Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.

  7. Implications of Harvest on the Boundaries of Protected Areas for Large Carnivore Viewing Opportunities.

    Bridget L Borg

    Full Text Available The desire to see free ranging large carnivores in their natural habitat is a driver of tourism in protected areas around the globe. However, large carnivores are wide-ranging and subject to human-caused mortality outside protected area boundaries. The impact of harvest (trapping or hunting on wildlife viewing opportunities has been the subject of intense debate and speculation, but quantitative analyses have been lacking. We examined the effect of legal harvest of wolves (Canis lupus along the boundaries of two North American National Parks, Denali (DNPP and Yellowstone (YNP, on wolf viewing opportunities within the parks during peak tourist season. We used data on wolf sightings, pack sizes, den site locations, and harvest adjacent to DNPP from 1997-2013 and YNP from 2008-2013 to evaluate the relationship between harvest and wolf viewing opportunities. Although sightings were largely driven by wolf population size and proximity of den sites to roads, sightings in both parks were significantly reduced by harvest. Sightings in YNP increased by 45% following years with no harvest of a wolf from a pack, and sightings in DNPP were more than twice as likely during a period with a harvest buffer zone than in years without the buffer. These findings show that harvest of wolves adjacent to protected areas can reduce sightings within those areas despite minimal impacts on the size of protected wolf populations. Consumptive use of carnivores adjacent to protected areas may therefore reduce their potential for non-consumptive use, and these tradeoffs should be considered when developing regional wildlife management policies.

  8. Implications of Harvest on the Boundaries of Protected Areas for Large Carnivore Viewing Opportunities.

    Borg, Bridget L; Arthur, Stephen M; Bromen, Nicholas A; Cassidy, Kira A; McIntyre, Rick; Smith, Douglas W; Prugh, Laura R

    2016-01-01

    The desire to see free ranging large carnivores in their natural habitat is a driver of tourism in protected areas around the globe. However, large carnivores are wide-ranging and subject to human-caused mortality outside protected area boundaries. The impact of harvest (trapping or hunting) on wildlife viewing opportunities has been the subject of intense debate and speculation, but quantitative analyses have been lacking. We examined the effect of legal harvest of wolves (Canis lupus) along the boundaries of two North American National Parks, Denali (DNPP) and Yellowstone (YNP), on wolf viewing opportunities within the parks during peak tourist season. We used data on wolf sightings, pack sizes, den site locations, and harvest adjacent to DNPP from 1997-2013 and YNP from 2008-2013 to evaluate the relationship between harvest and wolf viewing opportunities. Although sightings were largely driven by wolf population size and proximity of den sites to roads, sightings in both parks were significantly reduced by harvest. Sightings in YNP increased by 45% following years with no harvest of a wolf from a pack, and sightings in DNPP were more than twice as likely during a period with a harvest buffer zone than in years without the buffer. These findings show that harvest of wolves adjacent to protected areas can reduce sightings within those areas despite minimal impacts on the size of protected wolf populations. Consumptive use of carnivores adjacent to protected areas may therefore reduce their potential for non-consumptive use, and these tradeoffs should be considered when developing regional wildlife management policies.

  9. Detection of Echinococcus multilocularis in carnivores in Razavi Khorasan province, Iran using mitochondrial DNA.

    Molouk Beiromvand

    2011-11-01

    Full Text Available BACKGROUND: Echinococcus multilocularis is the source of alveolar echinococcosis, a potentially fatal zoonotic disease. This investigation assessed the presence of E. multilocularis infection in definitive hosts in the Chenaran region of Razavi Khorasan Province, northeastern Iran. METHODOLOGY/PRINCIPAL FINDINGS: Fecal samples from 77 domestic and stray dogs and 14 wild carnivores were examined using the flotation/sieving method followed by multiplex PCR of mitochondrial genes. The intestinal scraping technique (IST and the sedimentation and counting technique (SCT revealed adult Echinococcus in the intestines of five of 10 jackals and of the single wolf examined. Three jackals were infected only with E. multilocularis but two, and the wolf, were infected with both E. multilocularis and E. granulosus. Multiplex PCR revealed E. multilocularis, E. granulosus, and Taenia spp. in 19, 24, and 28 fecal samples, respectively. Echinococcus multilocularis infection was detected in the feces of all wild carnivores sampled including nine jackals, three foxes, one wolf, one hyena, and five dogs (6.5%. Echinococcus granulosus was found in the fecal samples of 16.9% of dogs, 66.7% of jackals, and all of the foxes, the wolf, and the hyena. The feces of 16 (21.8% dogs, 7 of 9 (77.8% jackals, and all three foxes, one wolf and one hyena were infected with Taenia spp. CONCLUSIONS/SIGNIFICANCE: The prevalence of E. multilocularis in wild carnivores of rural areas of the Chenaran region is high, indicating that the life cycle is being maintained in northeastern Iran with the red fox, jackal, wolf, hyena, and dog as definitive hosts.

  10. Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil.

    Silva, Rodrigo Otávio Silveira; D'Elia, Mirella Lauria; Tostes Teixeira, Erika Procópio; Pereira, Pedro Lúcio Lithg; de Magalhães Soares, Danielle Ferreira; Cavalcanti, Álvaro Roberto; Kocuvan, Aleksander; Rupnik, Maja; Santos, André Luiz Quagliatto; Junior, Carlos Augusto Oliveira; Lobato, Francisco Carlos Faria

    2014-08-01

    Despite some case reports, the importance of Clostridium perfringens and Clostridium difficile for wild carnivores remains unclear. Thus, the objective of this study was to identify C. perfringens and C. difficile strains in stool samples from wild carnivore species in Brazil. A total of 34 stool samples were collected and subjected to C. perfringens and C. difficile isolation. Suggestive colonies of C. perfringens were then analyzed for genes encoding the major C. perfringens toxins (alpha, beta, epsilon and iota) and the beta-2 toxin (cpb2), enterotoxin (cpe) and NetB (netb) genes. C. difficile strains were analyzed by multiplex-PCR for toxins A (tcdA) and B (tcdB) and a binary toxin gene (cdtB) and also submitted to a PCR ribotyping. Unthawed aliquots of samples positive for C. difficile isolation were subjected to the detection of A/B toxins by a cytotoxicity assay (CTA). C. perfringens was isolated from 26 samples (76.5%), all of which were genotyped as type A. The netb gene was not detected, whereas the cpb2 and cpe genes were found in nine and three C. perfringens strains, respectively. C. difficile was isolated from two (5.9%) samples. A non-toxigenic strain was recovered from a non-diarrheic maned wolf (Chrysocyon brachyurus). Conversely, a toxigenic strain was found in the sample of a diarrheic ocelot (Leopardus pardallis); an unthawed stool sample was also positive for A/B toxins by CTA, indicating a diagnosis of C. difficile-associated diarrhea in this animal. The present work suggests that wild carnivore species could carry C. difficile strains and that they could be susceptible to C. difficile infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Carnivore distributions across chaparral habitats exposed to wildfire and rural housing in southern California

    Schuette, P.A.; Diffendorfer, J.E.; Deutschman, D.H.; Tremor, S.; Spencer, W.

    2014-01-01

    Chaparral and coastal sage scrub habitats in southern California support biologically diverse plant and animal communities. However, native plant and animal species within these shrubland systems are increasingly exposed to human-caused wildfires and an expansion of the human–wildland interface. Few data exist to evaluate the effects of fire and anthropogenic pressures on plant and animal communities found in these environments. This is particularly true for carnivore communities. To address this knowledge gap, we collected detection–non-detection data with motion-sensor cameras and track plots to measure carnivore occupancy patterns following a large, human-caused wildfire (1134 km2) in eastern San Diego County, California, USA, in 2003. Our focal species set included coyote (Canis latrans), gray fox (Urocyon cinereoargenteus), bobcat (Lynx rufus) and striped skunk (Mephitis mephitis). We evaluated the influence on species occupancies of the burned environment (burn edge, burn interior and unburned areas), proximity of rural homes, distance to riparian area and elevation. Gray fox occupancies were the highest overall, followed by striped skunk, coyote and bobcat. The three species considered as habitat and foraging generalists (gray fox, coyote, striped skunk) were common in all conditions. Occupancy patterns were consistent through time for all species except coyote, whose occupancies increased through time. In addition, environmental and anthropogenic variables had weak effects on all four species, and these responses were species-specific. Our results helped to describe a carnivore community exposed to frequent fire and rural human residences, and provide baseline data to inform fire management policy and wildlife management strategies in similar fire-prone ecosystems.

  12. Does size matter? An investigation of habitat use across a carnivore assemblage in the Serengeti, Tanzania.

    Durant, Sarah M; Craft, Meggan E; Foley, Charles; Hampson, Katie; Lobora, Alex L; Msuha, Maurus; Eblate, Ernest; Bukombe, John; McHetto, John; Pettorelli, Nathalie

    2010-09-01

    1. This study utilizes a unique data set covering over 19 000 georeferenced records of species presence collected between 1993 and 2008, to explore the distribution and habitat selectivity of an assemblage of 26 carnivore species in the Serengeti-Ngorongoro landscape in northern Tanzania. 2. Two species, the large-spotted genet and the bushy-tailed mongoose, were documented for the first time within this landscape. Ecological Niche Factor Analysis (ENFA) was used to examine habitat selectivity for 18 of the 26 carnivore species for which there is sufficient data. Eleven ecogeographical variables (EGVs), such as altitude and habitat type, were used for these analyses. 3. The ENFA demonstrated that species differed in their habitat selectivity, and supported the limited ecological information already available for these species, such as the golden jackals' preference for grassland and the leopards' preference for river valleys. 4. Two aggregate scores, marginality and tolerance, are generated by the ENFA, and describe each species' habitat selectivity in relation to the suite of EGVs. These scores were used to test the hypothesis that smaller species are expected to be more selective than larger species [Science, 1989, 243, 1145]. Two predictions were tested: Marginality should decrease with body mass; and tolerance should increase with body mass. Our study provided no evidence for either prediction. 5. Our results not only support previous analyses of carnivore diet breadth, but also represent a novel approach to the investigation of habitat selection across species assemblages. Our method provides a powerful tool to explore similar questions in other systems and for other taxa.

  13. GENETIC CHARACTERIZATION OF CANINE PARVOVIRUS IN SYMPATRIC FREE-RANGING WILD CARNIVORES IN PORTUGAL.

    Miranda, Carla; Santos, Nuno; Parrish, Colin; Thompson, Gertrude

    2017-10-01

    Since its emergence in the 1970s, canine parvovirus (CPV) has been reported in domestic and nondomestic carnivores worldwide with severe implications on their health and survival. Here, we aim to better understand CPV circulation in multihost-pathogens systems by characterizing CPV DNA or viruses in 227 free-ranging wild carnivores of 12 species from Portugal. Collected samples during 1995-2011 were analyzed by PCR and sequence analysis. The canine parvovirus DNA was detected in 4 (2%) animals of two species, namely in wolves (Canis lupus; 3/63, 5%, 95% confidence interval=1.6-3.15) and in a stone marten (Martes foina; 1/36, 3%, 95% confidence interval=0.5-14.2). Viruses in two wolves had VP2 residue 426 as aspartic acid (so-called CPV-2b) and the third had VP2 residue 426 as asparagine (CPV-2a), while the virus in the stone marten uniquely had VP2 residue 426 as glutamic acid (CPV-2c). The comparative analysis of the full-length VP2 gene of our isolates showed other nonsynonymous mutations. The phylogenetic analysis demonstrated that the sequences from wolves clustered together, showing a close relationship with European domestic dogs (Canis lupus familiaris) and wolf strains while the viral sequence from the stone marten grouped with other viruses contained the glutamic acid VP2 426 along with raccoon (Procyon lotor), bobcat (Lynx rufus), and domestic dog strains. This study confirmed that wild carnivores in Portugal are infected by CPV variants, strongly suggesting viral transmission between the wild and domestic populations and suggesting a need for a better understanding of the epidemiology of the disease and its management in wild populations.

  14. The Lion King and the Hyaena Queen: large carnivore interactions and coexistence.

    Périquet, Stéphanie; Fritz, Hervé; Revilla, Eloy

    2015-11-01

    Interactions among species, which range from competition to facilitation, have profound effects on ecosystem functioning. Large carnivores are of particular importance in shaping community structure since they are at the top of the food chain, and many efforts are made to conserve such keystone species. Despite this, the mechanisms of carnivore interactions are far from understood, yet they are key to enabling or hindering their coexistence and hence are highly relevant for their conservation. The goal of this review is thus to provide detailed information on the extents of competition and facilitation between large carnivores and their impact in shaping their life histories. Here, we use the example of spotted hyaenas (Crocuta crocuta) and lions (Panthera leo) and provide a comprehensive knowledge of their interactions based on meta-analyses from available literature (148 publications). Despite their strong potential for both exploitation and interference competition (range and diet overlap, intraguild predation and kleptoparasitism), we underline some mechanisms facilitating their coexistence (different prey-age selection and scavenging opportunities). We stress the fact that prey abundance is key to their coexistence and that hyaenas forming very large groups in rich ecosystems could have a negative impact on lions. We show that the coexistence of spotted hyaenas and lions is a complex balance between competition and facilitation, and that prey availability within the ecosystem determines which predator is dominant. However, there are still many gaps in our knowledge such as the spatio-temporal dynamics of their interactions. As both species' survival becomes increasingly dependent on protected areas, where their densities can be high, it is critical to understand their interactions to inform both reintroduction programs and protected area management. © 2014 Cambridge Philosophical Society.

  15. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Jürgen Krücken

    Full Text Available Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1 and specifically Toxoplasma gondii (repetitive element in brain and ascarids (ITS-2 in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8, Toxocara cati (4 and Parascaris sp. (1 were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to

  16. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg

    2017-01-01

    Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health

  17. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa's large carnivores.

    Cozzi, Gabriele; Broekhuis, Femke; McNutt, John W; Turnbull, Lindsay A; Macdonald, David W; Schmid, Bernhard

    2012-12-01

    Africa is home to the last intact guild of large carnivores and thus provides the only opportunity to investigate mechanisms of coexistence among large predator species. Strong asymmetric dominance hierarchies typically characterize guilds of large carnivores; but despite this asymmetry, subdominant species may persist alongside their stronger counterparts through temporal partitioning of habitat and resources. In the African guild, the subdominant African wild dogs and cheetahs are routinely described as diurnal and crepuscular. These activity patterns have been interpreted to result from the need to avoid encounters with the stronger, nocturnal spotted hyenas and lions. However, the idea that diel activity patterns of carnivore species are strongly shaped by competition and predation has recently been challenged by new observations. In a three-year study in the Okavango Delta, we investigated daily activity patterns and temporal partitioning for wild dogs, cheetahs, spotted hyenas and lions by fitting radio collars that continuously recorded activity bursts, to a total of 25 individuals. Analysis of activity patterns throughout the 24-h cycle revealed an unexpectedly high degree of temporal overlap among the four species. This was mainly due to the extensive and previously undescribed nocturnal activity of wild dogs and cheetahs. Their nocturnal activity fluctuated with the lunar cycle, represented up to 40% of the diel activity budget and was primarily constrained by moonlight availability. In contrast, the nocturnal activity patterns of lions and hyenas were unaffected by moonlight and remained constant over the lunar cycle. Our results suggest that other ecological factors such as optimal hunting conditions have shaped the diel activity patterns of subdominant, large predators. We suggest that they are "starvation driven" and must exploit every opportunity to obtain a meal. The benefits of activity on moonlit nights therefore offset the risks of encountering

  18. Do cities simulate climate change? A comparison of herbivore response to urban and global warming

    Youngsteadt, Elsa; Dale, Adam G.; Terando, Adam; Dunn, Robert R.; Frank, Steven D.

    2014-01-01

    Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  19. Role of sensorial perceptions in feed selection and intake by domestic herbivores

    Giovanni Molle

    2010-01-01

    Full Text Available Sensorial perceptions play an important role in feed selection and intake by herbivores. Much research has been carried out to study the sensorial perceptions evoked by forages and their effects on intake and feed selection. Certain specific compounds are clearly able to evoke positive or negative sensorial perceptions when forages are eaten. This might lead to the development of plant extracts and aromas that might be used to improve the intake of unpalatable feeds. In the case of concentrates, the little research available seems to support an important role of the interaction between sensorial perceptions and post-ingestive effects when simple unmixed concentrates are supplied. It is not clear to what extent these effects are important when compound concentrates are offered. Despite these advances, it appears that most of the research carried out so far has been exploratory and observational. More research is needed to better understand the mechanisms underlying feed palatability before it can be included in intake prediction models.

  20. Efficacy of /sup 22/Na turnover in ecophysiological studies of carnivores

    Wilkinson, I S; Skinner, J D

    1988-01-01

    /sup 22/Na turnover rates gave overestimates of mean /sup 23/Na intake in both brown hyaenas (449,9%, range 54,7-991,2) and aardwolf (336,0%, range 118,4-776,0). There was also no significant relationship between /sup 22/Na turned over and /sup 23/Na ingested in either species. It would therefore be impossible to utilize this technique to determine food intake in these species. Further uncertainties pertaining to the dietary content of the predator and the distribution of body sodium in the prey, cast doubts on the applicability of the technique for use in carnivore studies

  1. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.; Holmes, Edward C.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species.

  2. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  3. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Julia Kästner

    Full Text Available Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA, salicylic acid (SA and abscisic acid (ABA. We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1 was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  4. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  5. Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs.

    Rizzari, Justin R; Bergseth, Brock J; Frisch, Ashley J

    2015-04-01

    Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. © 2014 Society for Conservation Biology.

  6. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  7. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy.

    Weis, Jerome J

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in 'bottom-up' environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in 'top-down' factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected.

  8. Large herbivores that strive mightily but eat and drink as friends.

    de Boer, W F; Prins, H H T

    1990-02-01

    Grazing in patches of Cynodon dactylon and of Sporobolus spicatus by four large herbivores, and the interaction between these sedentary herbivores was studied in Lake Manyara National Park, northern Tanzania. The herbivores were the African buffalo, Syncerus caffer; the African elephan, Loxodonta africana; the Burchell's zebra, Equus burchelli; and the wildebeest, Connochaetus taurinus. Four different hypotheses of the interactions between the herbivores were tested, viz., increased predator detection/protection through association of species, facilitation of the food intake through the influence of other species, use by other species of the food manipulation strategy of buffalo, and interspecific competition for food. On the level of a single day, zebra and wildebeest were symbiotic, which could have been caused by an increased chance of predator detection. A similar association between buffalo and wildebeest or zebra was also detected on C. dactylon grasslands. There was no indication of facilitation between any of the herbivores. Buffalo had a despotic relationship with elephant, that is the elephant's consumption was lowered when buffalo had visited a patch prior to their arrival. When elephant and buffalo arrived at the same time there appeared to be scramble competition between them.Habitat overlap was calculated for four pairs of species. In conjunction with the analyses of the patch visits, it was concluded that a small overlap was associated with interspecific competition and a large habitat overlap was associated with symbiosis.

  9. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  10. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  11. From cheetahs to chimpanzees: a comparative review of the drivers of human-carnivore conflict and human-primate conflict.

    Dickman, Amy J

    2012-01-01

    Human-wildlife conflict is a growing conservation threat, and is increasingly of importance to primate conservationists. Despite this, relatively little work has been done to date on the drivers of human-primate conflict, especially compared to other conflict-causing taxa such as large carnivores. However, the drivers of conflict are often very similar across species, so conflict researchers can learn important lessons from work conducted on other taxa. This paper discusses 8 key factors which are likely to affect how hostile people are towards wildlife and any damage they cause--6 of these are common to both carnivores and primates, while one is much more applicable to carnivores and the other is specific to primates. These conflict drivers involve numerous social and cultural factors, and highlight the importance of truly understanding the local drivers of conflict in order to develop effective mitigation strategies. Copyright © 2013 S. Karger AG, Basel.

  12. Capturing Insects and Student Interest: First Graders Learn about Unusual Plants in Their Area in This Multimodal Investigation of Carnivorous Plants

    Bradbury, Leslie; Wilson, Rachel; Pepper, Nancy; Ledford, Mitzi

    2016-01-01

    Most plants are able to obtain all of the nutrients that they need from air, water, and soil; however, this is not true of carnivorous plants. Because they tend to live in boggy soils where there are small amounts of nitrogen, carnivorous plants have developed specialized structures that enable them to lure and capture insects and sometimes other…

  13. Large carnivores response to recreational big game hunting along the Yellowstone National Park and Absaroka-Beartooth Wilderness boundary

    Ruth, T.E.; Smith, D.W.; Haroldson, M.A.; Buotte, P.C.; Schwartz, C.C.; Quigley, H.B.; Cherry, S.; Tyres, D.; Frey, K.

    2003-01-01

    The Greater Yellowstone Ecosystem contains the rare combination of an intact guild of native large carnivores, their prey, and differing land management policies (National Park versus National Forest; no hunting versus hunting). Concurrent field studies on large carnivores allowed us to investigate activities of humans and carnivores on Yellowstone National Park's (YNP) northern boundary. Prior to and during the backcountry big-game hunting season, we monitored movements of grizzly bears (Ursus arctos), wolves (Canis lupus), and cougars (Puma concolor) on the northern boundary of YNP. Daily aerial telemetry locations (September 1999), augmented with weekly telemetry locations (August and October 1999), were obtained for 3 grizzly bears, 7 wolves in 2 groups of 1 pack, and 3 cougars in 1 family group. Grizzly bears were more likely located inside the YNP boundary during the pre-hunt period and north of the boundary once hunting began. The cougar family tended to be found outside YNP during the pre-hunt period and moved inside YNP when hunting began. Wolves did not significantly change their movement patterns during the pre-hunt and hunting periods. Qualitative information on elk (Cervus elaphus) indicated they moved into YNP once hunting started, suggesting that cougars followed living prey or responded to hunting activity, grizzly bears focused on dead prey (e.g., gut piles, crippled elk), and wolves may have taken advantage of both. Measures of association (Jacob's Index) were positive within carnivore species but inconclusive among species. Further collaborative research and the use of new technologies such as Global Positioning System (GPS) telemetry collars will advance our ability to understand these species, the carnivore community and its interactions, and human influences on carnivores.

  14. Sabretoothed carnivores and the killing of large prey.

    Ki Andersson

    Full Text Available Sabre-like canines clearly have the potential to inflict grievous wounds leading to massive blood loss and rapid death. Hypotheses concerning sabretooth killing modes include attack to soft parts such as the belly or throat, where biting deep is essential to generate strikes reaching major blood vessels. Sabretoothed carnivorans are widely interpreted as hunters of larger and more powerful prey than that of their present-day nonsabretoothed relatives. However, the precise functional advantage of the sabretooth bite, particularly in relation to prey size, is unknown. Here, we present a new point-to-point bite model and show that, for sabretooths, depth of the killing bite decreases dramatically with increasing prey size. The extended gape of sabretooths only results in considerable increase in bite depth when biting into prey with a radius of less than ∼10 cm. For sabretooths, this size-reversed functional advantage suggests predation on species within a similar size range to those attacked by present-day carnivorans, rather than "megaherbivores" as previously believed. The development of the sabretooth condition appears to represent a shift in function and killing behaviour, rather than one in predator-prey relations. Furthermore, our results demonstrate how sabretoothed carnivorans are likely to have evolved along a functionally continuous trajectory: beginning as an extension of a jaw-powered killing bite, as adopted by present-day pantherine cats, followed by neck-powered biting and thereafter shifting to neck-powered shear-biting. We anticipate this new insight to be a starting point for detailed study of the evolution of pathways that encompass extreme specialisation, for example, understanding how neck-powered biting shifts into shear-biting and its significance for predator-prey interactions. We also expect that our model for point-to-point biting and bite depth estimations will yield new insights into the behaviours of a broad range of

  15. Ultra structure differentiation of the anterior pituitary cells of the adult female non pregnant carnivore Vulpes zerda

    Selim, Atteyat; El Nahass, Eman

    2016-01-01

    The pituitary gland of carnivore mammals in the world was described, but that of those in Egypt may be low, so the present study is carried out on some carnivore mammals such as Vulpes zerda, to elucidate the similarities and the differences of the pituitary cells between the mammals in the world and those in Egypt. The results indicate that, the gland is pyramidal in shape. The acidophilic cells and the basophilic cells are distributed heterogeneously in the body of the gland. The STH cells ...

  16. Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

    Brodie, Jedediah; Johnson, Heather; Mitchell, Michael; Zager, Peter; Proffitt, Kelly; Hebblewhite, Mark; Kauffman, Matthew; Johnson, Bruce; Bissonette, John; Bishop, Chad; Gude, Justin; Herbert, Jeff; Hersey, Kent R.; Hurley, Mark; Lukacs, Paul M.; McCorquodale, Scott; McIntire, Eliot; Nowak, Josh; Sawyer, Hall; Smith, Douglas; White, P.J.

    2013-01-01

    Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. Proportional hazard analysis revealed that 'baseline' (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by <2%. When human factors were included, ‘total’ adult mortality was solely related to harvest; the influence of native carnivores was compensatory. Annual total mortality rates were lowest in populations sympatric with both pumas and wolves because managers reduced female harvest in areas with abundant or diverse carnivores. Mortality from native carnivores peaked in late winter and early spring, while harvest-induced mortality peaked in autumn. The strong peak in harvest-induced mortality during the autumn hunting season decreased as the number of native carnivore species increased. Synthesis and applications. Elevated baseline adult female elk mortality from wolves in years with high winter precipitation could affect elk abundance as

  17. Impact of Quaternary climatic changes and interspecific competition on the demographic history of a highly mobile generalist carnivore, the coyote.

    Koblmüller, Stephan; Wayne, Robert K; Leonard, Jennifer A

    2012-08-23

    Recurrent cycles of climatic change during the Quaternary period have dramatically affected the population genetic structure of many species. We reconstruct the recent demographic history of the coyote (Canis latrans) through the use of Bayesian techniques to examine the effects of Late Quaternary climatic perturbations on the genetic structure of a highly mobile generalist species. Our analysis reveals a lack of phylogeographic structure throughout the range but past population size changes correlated with climatic changes. We conclude that even generalist carnivorous species are very susceptible to environmental changes associated with climatic perturbations. This effect may be enhanced in coyotes by interspecific competition with larger carnivores.

  18. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  19. Effect of Nitrogen Fertilizer on Herbivores and Its Stimulation to Major Insect Pests in Rice

    Zhong-xian LU

    2007-03-01

    Full Text Available Nitrogen is one of the most important factors in development of herbivore populations. The application of nitrogen fertilizer in plants can normally increase herbivore feeding preference, food consumption, survival, growth, reproduction, and population density, except few examples that nitrogen fertilizer reduces the herbivore performances. In most of the rice growing areas in Asia, the great increases in populations of major insect pests of rice, including planthoppers (Nilaparvata lugens and Sogatella furcifera, leaffolder (Cnaphalocrocis medinalis, and stem borers (Scirpophaga incertulas, Chilo suppressalis, S. innotata, C. polychrysus and Sesamia inferens were closely related to the long-term excessive application of nitrogen fertilizers. The optimal regime of nitrogen fertilizer in irrigated paddy fields is proposed to improve the fertilizer-nitrogen use efficiency and reduce the environmental pollution.

  20. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  1. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.

    Turlings, Ted C J; Erb, Matthias

    2018-01-07

    Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.

  2. Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences.

    Erb, Matthias; Robert, Christelle Am

    2016-04-01

    Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  4. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  5. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    María José Campos-Navarrete

    Full Text Available Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD and genotypic diversity (GD on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.

  6. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest

  7. Interactive effects of fire and large herbivores on web-building spiders.

    Foster, C N; Barton, P S; Wood, J T; Lindenmayer, D B

    2015-09-01

    Altered disturbance regimes are a major driver of biodiversity loss worldwide. Maintaining or re-creating natural disturbance regimes is therefore the focus of many conservation programmes. A key challenge, however, is to understand how co-occurring disturbances interact to affect biodiversity. We experimentally tested for the interactive effects of prescribed fire and large macropod herbivores on the web-building spider assemblage of a eucalypt forest understorey and investigated the role of vegetation in mediating these effects using path analysis. Fire had strong negative effects on the density of web-building spiders, which were partly mediated by effects on vegetation structure, while negative effects of large herbivores on web density were not related to changes in vegetation. Fire amplified the effects of large herbivores on spiders, both via vegetation-mediated pathways and by increasing herbivore activity. The importance of vegetation-mediated pathways and fire-herbivore interactions differed for web density and richness and also differed between web types. Our results demonstrate that for some groups of web-building spiders, the effects of co-occurring disturbance drivers may be mostly additive, whereas for other groups, interactions between drivers can amplify disturbance effects. In our study system, the use of prescribed fire in the presence of high densities of herbivores could lead to reduced densities and altered composition of web-building spiders, with potential cascading effects through the arthropod food web. Our study highlights the importance of considering both the independent and interactive effects of disturbances, as well as the mechanisms driving their effects, in the management of disturbance regimes.

  8. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef.

    Deron E Burkepile

    2010-01-01

    Full Text Available Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances.In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m(2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum and the ocean surgeonfish (Acanthurus bahianus; in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus. On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae.This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species

  9. Fermentation of animal components in strict carnivores: a comparative study with cheetah fecal inoculum.

    Depauw, S; Bosch, G; Hesta, M; Whitehouse-Tedd, K; Hendriks, W H; Kaandorp, J; Janssens, G P J

    2012-08-01

    The natural diet of felids contains highly digestible animal tissues but also fractions resistant to small intestinal digestion, which enter the large intestine where they may be fermented by the resident microbial population. Little information exists on the microbial degradability of animal tissues in the large intestine of felids consuming a natural diet. This study aimed to rank animal substrates in their microbial degradability by means of an in vitro study using captive cheetahs fed a strict carnivorous diet as fecal donors. Fresh cheetah fecal samples were collected, pooled, and incubated with various raw animal substrates (chicken cartilage, collagen, glucosamine-chondroitin, glucosamine, rabbit bone, rabbit hair, and rabbit skin; 4 replicates per substrate) for cumulative gas production measurement in a batch culture technique. Negative (cellulose) and positive (casein and fructo-oligosaccharides; FOS) controls were incorporated in the study. Additionally, after 72 h of incubation, short-chain fatty acids (SCFA), including branched-chain fatty acids (BCFA), and ammonia concentrations were determined for each substrate. Glucosamine and glucosamine-chondroitin yielded the greatest organic matter cumulative gas volume (OMCV) among animal substrates (P carnivore, and indicates that animal tissues have potentially similar functions as soluble or insoluble plant fibers in vitro. Further research is warranted to assess the impact of fermentation of each type of animal tissue on gastro-intestinal function and health in the cheetah and other felid species.

  10. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea.

    Dupont, Samuel; Carre-Mlouka, Alyssa; Domart-Coulon, Isabelle; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2014-04-01

    Combining culture-dependent and independent approaches, we investigated for the first time the cultivable fraction of the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. The heterotrophic prokaryotes isolated from this tiny sponge were compared between specimens freshly collected from cave and maintained in aquarium. Overall, 67 isolates obtained in pure culture were phylogenetically affiliated to the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. This cultivable diversity was lower than the prokaryotic diversity obtained by previous pyrosequencing study and comparable to that of another Mediterranean demosponge, the filter-feeding Phorbas tenacior. Furthermore, using fluorescence in situ hybridization, we visualized bacterial and archaeal cells, confirming the presence of both prokaryotes in A. hypogea tissue. Approximately 16% of the bacterial isolates tested positive for chitinolytic activity, suggesting potential microbial involvement in the digestion processes of crustacean prey by this carnivorous sponge. Additionally, 6% and 16% of bacterial isolates revealed antimicrobial and antioxidant activities, respectively. One Streptomyces sp. S1CA strain was identified as a promising candidate for the production of antimicrobial and antioxidant secondary metabolites as well as chitinolytic enzymes. Implications in the context of the sponge biology and prey-feeding strategy are discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Comparative pathogenesis of rabies in bats and carnivores, and implications for spillover to humans.

    Begeman, Lineke; GeurtsvanKessel, Corine; Finke, Stefan; Freuling, Conrad M; Koopmans, Marion; Müller, Thomas; Ruigrok, Tom J H; Kuiken, Thijs

    2018-04-01

    Bat-acquired rabies is becoming increasingly common, and its diagnosis could be missed partly because its clinical presentation differs from that of dog-acquired rabies. We reviewed the scientific literature to compare the pathogenesis of rabies in bats and carnivores-including dogs-and related this pathogenesis to differences in the clinical presentation of bat-acquired and dog-acquired rabies in human beings. For bat-acquired rabies, we found that the histological site of exposure is usually limited to the skin, the anatomical site of exposure is more commonly the face, and the virus might be more adapted for entry via the skin than for dog-acquired rabies. These factors could help to explain several differences in clinical presentation between individuals with bat-acquired and those with dog-acquired rabies. A better understanding of these differences should improve the recording of a patient's history, enable drawing up of a more sophisticated list of clinical characteristics, and therefore obtain an earlier diagnosis of rabies after contact with a bat or carnivore that has rabies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Dietary differentiation and the evolution of population genetic structure in a highly mobile carnivore.

    Małgorzata Pilot

    Full Text Available Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ(13C and δ(15N values for Eastern European wolves (Canis lupus as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure, to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores.

  13. Assessing the potential threat landscape of a proposed reintroduction site for carnivores.

    Samantha K Page

    Full Text Available This study provides a framework to assess the feasibility of reintroducing carnivores into an area, using African wild dogs (Lycaon pictus as an example. The Great Fish River Nature Reserve in the Eastern Cape Province, South Africa, has been identified as a potential reserve to reintroduce wild dogs, and we applied this framework to provide a threat assessment of the surrounding area to determine potential levels of human-wildlife conflict. Although 56% of neighbouring landowners and local communities were positive about a wild dog reintroduction, data collected from questionnaire surveys revealed that human-wild dog conflict is a potential threat to wild dog survival in the area. Additional potential threats include diseases, snaring, poaching and hunting wild dogs for the use of traditional medicine. A threat index was developed to establish which properties harboured the greatest threats to wild dogs. This index was significantly influenced by the respondent's first language (isiXhosa had more positive indices, education level (poorer education was synonymous with more positive threat indices, land use (wildlife ranching being the most negative and land tenure (community respondents had more positive indices than private landowners. Although threats are present, they can be effectively mitigated through strategies such as carnivore education programs, vaccination campaigns and anti-snare patrols to promote a successful reintroduction of this endangered canid.

  14. Assessing the potential threat landscape of a proposed reintroduction site for carnivores.

    Page, Samantha K; Parker, Daniel M; Peinke, Dean M; Davies-Mostert, Harriet T

    2015-01-01

    This study provides a framework to assess the feasibility of reintroducing carnivores into an area, using African wild dogs (Lycaon pictus) as an example. The Great Fish River Nature Reserve in the Eastern Cape Province, South Africa, has been identified as a potential reserve to reintroduce wild dogs, and we applied this framework to provide a threat assessment of the surrounding area to determine potential levels of human-wildlife conflict. Although 56% of neighbouring landowners and local communities were positive about a wild dog reintroduction, data collected from questionnaire surveys revealed that human-wild dog conflict is a potential threat to wild dog survival in the area. Additional potential threats include diseases, snaring, poaching and hunting wild dogs for the use of traditional medicine. A threat index was developed to establish which properties harboured the greatest threats to wild dogs. This index was significantly influenced by the respondent's first language (isiXhosa had more positive indices), education level (poorer education was synonymous with more positive threat indices), land use (wildlife ranching being the most negative) and land tenure (community respondents had more positive indices than private landowners). Although threats are present, they can be effectively mitigated through strategies such as carnivore education programs, vaccination campaigns and anti-snare patrols to promote a successful reintroduction of this endangered canid.

  15. Mapping trends of large and medium size carnivores of conservation interest in Romania

    Constantin Cazacu

    2014-07-01

    Full Text Available We analysed yearly estimates of population size data during 2001-2012 for five carnivores species of conservation interest (Ursus arctos, Canis lupus, Lynx lynx, Felis silvestris and Canis aureus. Population size estimations were done by the game management authorities and integrated by the competent authorities on the Ministry of Environment and Climate Change. Trends in data were detected using non-parametric Mann-Kendall test. This test was chosen considering the short length of data series and its usefulness for non-normal distributed data. The trend was tested at three spatial scales: game management units (n=1565, biogeographical region (n=5 and national. Trends depicted for each game management unit were plotted using ArcGIS, resulting species trend distribution maps. For the studied period increasing population trends were observed for Ursus arctos, Canis lupus, Canis aureus and Lynx lynx, while for Felis silvestris there was no trend recorded. Such an analysis in especially useful for conservation proposes, game management and reporting obligations under article 17 of the EC Habitat Directive, using population trend as a proxy for population dynamics. We conclude that the status of the five carnivore species is favourable during the study period.

  16. The effect of nitrogen additions on bracken fern and its insect herbivores at sites with high and low atmospheric pollution

    M.E. Jones; M.E. Fenn; T.D. Paine

    2011-01-01

    The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles,...

  17. Satellite- versus temperature-derived green wave indices for predicting the timing of spring migration of avian herbivores

    Shariati Najafabadi, M.; Najafabadi, M.S.; Darvishzadeh, R.; Skidmore, A.K.; Kölzsch, Andrea; Vrieling, A.; Nolet, Bart A.; Exo, Klaus-Michael; Meratnia, Nirvana; Havinga, Paul J.M.; Stahl, Julia; Toxopeus, A.G.

    2015-01-01

    According to the green wave hypothesis, herbivores follow the flush of spring growth of forage plants during their spring migration to northern breeding grounds. In this study we compared two green wave indices for predicting the timing of the spring migration of avian herbivores: the

  18. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness

    Pashalidou, F.G.; Frago, E.; Griese, E.; Poelman, E.H.; Loon, van J.J.A.; Dicke, M.; Fatouros, N.E.

    2015-01-01

    Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This

  19. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    Bakker, Elisabeth S.; Pagès, Jordi F.; Arthur, Rohan; Alcoverro, Teresa

    2016-01-01

    While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2)

  20. Diversity and impact of herbivorous insects on Brazilian peppertree in Florida prior to release of exotic biological control agents

    The impact of insect herbivores on the performance of Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), was evaluated at two locations in Florida using an insecticide exclusion method. Although several species of insect herbivores were collected on the invasive tree, there was no...