WorldWideScience

Sample records for herbaceous ecosystem measurements

  1. Impacts of Extreme Events on Phenology: Drought-Induced Changes in Productivity of Mixed Woody-Herbaceous Ecosystems

    Science.gov (United States)

    Rich, P. M.; Breshears, D. D.; White, A. B.

    2006-12-01

    Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "greenup" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody- herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional scale piñon pine mortality following an extended drought and the subsequent herbaceous greenup following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.

  2. Ecosystem-atmosphere exchange of CO2 in a temperate herbaceous peatland in the Sanjiang Plain of northeast China

    Science.gov (United States)

    Zhu, Xiaoyan; Song, Changchun; Swarzenski, Christopher M.; Guo, Yuedong; Zhang, Xinhow; Wang, Jiaoyue

    2015-01-01

    Northern peatlands contain a considerable share of the terrestrial carbon pool, which will be affected by future climatic variability. Using the static chamber technique, we investigated ecosystem respiration and soil respiration over two growing seasons (2012 and 2013) in a Carex lasiocarpa-dominated peatland in the Sanjiang Plain in China. We synchronously monitored the environmental factors controlling CO2 fluxes. Ecosystem respiration during these two growing seasons ranged from 33.3 to 506.7 mg CO2–C m−2 h−1. Through step-wise regression, variations in soil temperature at 10 cm depth alone explained 73.7% of the observed variance in log10(ER). The mean Q10 values ranged from 2.1 to 2.9 depending on the choice of depth where soil temperature was measured. The Q10 value at the 10 cm depth (2.9) appears to be a good representation for herbaceous peatland in the Sanjiang Plain when applying field-estimation based Q10values to current terrestrial ecosystem models due to the most optimized regression coefficient (63.2%). Soil respiration amounted to 57% of ecosystem respiration and played a major role in peatland carbon balance in our study. Emphasis on ecosystem respiration from temperate peatlands in the Sanjiang Plain will improve our basic understanding of carbon exchange between peatland ecosystem and the atmosphere.

  3. Recreational transformation of the herbaceous layer in an urban forest ecosystem of Central Podolia

    Directory of Open Access Journals (Sweden)

    O. I. Blinkova

    2017-05-01

    Full Text Available This article examines the impact of recreational activities on herbaceous cover of forests on the example of an urban environment in Central Podolia. The features of changes in environmental conditions of ecotypes of an urban forest have been shown through the systematic, biomorphological and ecomorphic structure of the herbaceous cover, the ratio of ecological groups, changes in type of ecological strategy of species, assessment of ecological fractions valences, and phytodiversity. We found 78 species of vascular plants. The most diverse families are Asteraceae, Poaceae and Lamiaceae. The biomorphological range of phytodiversity of the intensive recreational zone is characterized by a high proportion of adventive and ruderal species, dominance of vegetative mobile species, forming of monodominant groups and disturbed distribution of all spectrum types for coenotic morphs. Perennial hemicryptophytes dominate in the spectrum of life forms. The share of therophytes increased along the gradient of recreational transformation. Unrosellate herbal plants dominate in the structure of aboveground shoots and leaf placement, plants that don’t have special modifications dominate in the structures of underground shoots. Helophytes dominated in the analysis of heliomorphic plants. Mesophytes dominated almost everywhere. The share of hydrocontrastophobes increased with a gradual removal from places of recreation. Changes in acidomorphic and nitromorphic structures of plants were not found. Types of transitional groups of ecological strategies, including CR-, CS-, and CRS-strategies prevailed. The share of patiens diminished. Exsplerents from all types of primary ecological strategies dominated. Analysis of ecological valence fractions showed that species of hemi-euryvalent and euryvalent fractions dominate among hydromorphs, hemi-euryvalent species dominate among ecogroups of scale variability humidification of soil, hemystenovalences species dominate among

  4. Measuring Entrepreneurial Ecosystems

    OpenAIRE

    Stam, F.C.

    2017-01-01

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial ecosystem elements and use these to compose an entrepreneurial ecosystem index. Next, we measure the output of entrepreneurial ecosystems with different indicators of high-growth firms. We use the 12 provi...

  5. Measuring Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial

  6. Do agrometeorological data improve optical satellite-based estimations of the herbaceous yield in Sahelian semi-arid ecosystems?

    DEFF Research Database (Denmark)

    Diouf, Abdoul Aziz; Hiernaux, Pierre; Brandt, Martin Stefan

    2016-01-01

    evapotranspiration satellite gridded data to estimate the annual herbaceous yield in the semi-arid areas of Senegal. It showed that a machine-learning model combining FAPAR seasonal metrics with various agrometeorological data provided better estimations of the in situ annual herbaceous yield (R2 = 0.69; RMSE = 483...... kg·DM/ha) than models based exclusively on FAPAR metrics (R2 = 0.63; RMSE = 550 kg·DM/ha) or agrometeorological variables (R2 = 0.55; RMSE = 585 kg·DM/ha). All the models provided reasonable outputs and showed a decrease in the mean annual yield with increasing latitude, together with an increase...

  7. Stability measures in arid ecosystems

    Science.gov (United States)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  8. Effects of the arrangement works in the middle Prut meadow upon hydric metabolism in some herbaceous species at natural forest ecosystems

    Directory of Open Access Journals (Sweden)

    ACATRINEI Ligia

    2006-09-01

    Full Text Available The purpose of present paper is to evidence the major changes in hydric metabolism of some herbaceous species after arrangements works (dessecation, embankment which were made in eighties years. It were analysed the dry matter and water content; chlorophyll and carotenoid content from leaves of dominant species. Also, it has been effect a comparison of the values of the physiological

  9. Functional role of the herbaceous layer in eastern deciduous forest

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton; Brian D. Kloeppel

    2014-01-01

    The importance of the herbaceous layer in regulating ecosystem processes in deciduous forests is generally unknown. We use a manipulative study in a rich, mesophytic cove forest in the southern Appalachians to test the following hypotheses: (i) the herbaceous functional group (HFG) in mesophytic coves accelerates carbon and nutrient cycling, (ii) high litter quality...

  10. Facilitative and Inhibitory Effect of Litter on Seedling Emergence and Early Growth of Six Herbaceous Species in an Early Successional Old Field Ecosystem

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2014-01-01

    Full Text Available In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m−2, litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.

  11. Facilitative and inhibitory effect of litter on seedling emergence and early growth of six herbaceous species in an early successional old field ecosystem.

    Science.gov (United States)

    Li, Qiang; Yu, Pujia; Chen, Xiaoying; Li, Guangdi; Zhou, Daowei; Zheng, Wei

    2014-01-01

    In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m(-2), litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.

  12. Assessing tolerance of longleaf pine understory herbaceous plants to herbicide applications in a container nursery

    Science.gov (United States)

    D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant

    2015-01-01

    Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...

  13. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  14. Quality Measures for Digital Business Ecosystems Formation

    Science.gov (United States)

    Raza, Muhammad; Hussain, Farookh Khadeer; Chang, Elizabeth

    To execute a complex business task, business entities may need to collaborate with each other as individually they may not have the capability or willingness to perform the task on its own. Such collaboration can be seen implemented in digital business ecosystems in the form of simple coalitions using multi-agent systems or by employing Electronic Institutions. A major challenge is choosing optimal partners who will deliver the agreed commitments, and act in the coalition’s interest. Business entities are scaled according to their quality level. Determining the quality of previously unknown business entities and predicting the quality of such an entity in a dynamic environment are crucial issues in Business Ecosystems. A comprehensive quality management system grounded in the concepts of Trust and Reputation can help address these issues.

  15. Network Skewness Measures Resilience in Lake Ecosystems

    Science.gov (United States)

    Langdon, P. G.; Wang, R.; Dearing, J.; Zhang, E.; Doncaster, P.; Yang, X.; Yang, H.; Dong, X.; Hu, Z.; Xu, M.; Yanjie, Z.; Shen, J.

    2017-12-01

    Changes in ecosystem resilience defy straightforward quantification from biodiversity metrics, which ignore influences of community structure. Naturally self-organized network structures show positive skewness in the distribution of node connections. Here we test for skewness reduction in lake diatom communities facing anthropogenic stressors, across a network of 273 lakes in China containing 452 diatom species. Species connections show positively skewed distributions in little-impacted lakes, switching to negative skewness in lakes associated with human settlement, surrounding land-use change, and higher phosphorus concentration. Dated sediment cores reveal a down-shifting of network skewness as human impacts intensify, and reversal with recovery from disturbance. The appearance and degree of negative skew presents a new diagnostic for quantifying system resilience and impacts from exogenous forcing on ecosystem communities.

  16. Response of herbaceous plant community diversity and composition to overstorey harvest within riparian management zones in Northern Hardwoods

    Science.gov (United States)

    Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn

    2013-01-01

    Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...

  17. Improving Our Ability to Assess Land Management and Disturbance by Linking Traditional Ecosystem Measurements with UAV Spectral Analysis

    Science.gov (United States)

    Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.; Minor, R. L.; Raub, H.; Jimenez, J. R.; Wolsiffer, S. K.; Escobedo, E. B.; Smith, J.

    2017-12-01

    Drylands are dynamic landscapes of mixed plant functional types that vary in their response to abiotic and biotic drivers of change. Within these regions, woody plant-herbaceous relationships have generally been viewed as negative: woody plants within these ecosystems have been shown to negatively impact herbaceous growth by taking advantage of both deeper stored water and intercepting near surface moisture after precipitation events. There has been a long-invested effort to eliminate woody plants in many areas of the world, and analyzing and assessing land management decisions has historically required high monetary and time inputs. Unfortunately, both management practices and disturbances from fire can leave a very heterogeneous landscape, making assessment of their impacts difficult to assess. This study has attempted to address the effectiveness of two commonly used treatments within woody plant invaded areas, fire and herbicide application, by linking plant physiological measurements with the emerging technology of unmanned aerial vehicle (UAV) spectral analysis. Taking advantage of a USDA-ARS sponsored herbicide treatment in 2016 and the accidental Sawmill Fire of 2017, both within the Santa Rita Experimental Range (SRER) of Southern Arizona, USA, we linked spectral data collected via UAV with ground-based photosynthetic measurements. Given the high repeatability, and both spatial and spectral resolution of low-flying UAV measurements, we found that there are a variety of spectral indices that can be derived and accurately linked with traditional ecological measurements. Results and techniques from this study can be immediately applied to land management plans as well as be improved for other ecological parameters, such as those obtained from long-term study sites containing eddy covariance towers.

  18. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    J. Firn; J.L. Moore; A.S. MacDougall; E.T. Borer; E.W. Seabloom; J. HilleRisLambers; S. Harpole; E.E. Cleland; C.S. Brown; J.M.H. Knops; S.M. Prober; D.A. Pyke; K.A. Farrell; J.D. Bakker; L.R. O’Halloran; P.B. Adler; S.L. Collins; C.M. D’Antonio; M.J. Crawley; E.M. Wolkovich; K.J. La Pierre; B.A. Melbourne; Y. Hautier; J.W. Morgan; A.D.B. Leakey; A.D. Kay; R.L. McCulley; K.F. Davies; C.J. Stevens; C.J. Chu

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at...

  19. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production

    DEFF Research Database (Denmark)

    Triolo, Jin Mi; Pedersen, Lene; Qu, Haiyan

    2012-01-01

    The suitability of municipal plant waste for anaerobic digestion was examined using 57 different herbaceous and non-herbaceous samples. Biochemical methane potential (BMP) and anaerobic biodegradability were related to the degree of lignification and crystallinity of cellulose. The BMP of herbace...

  20. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  1. Measuring and Modeling the U.S. Regulatory Ecosystem

    Science.gov (United States)

    Bommarito, Michael J., II; Katz, Daniel Martin

    2017-09-01

    Over the last 23 years, the U.S. Securities and Exchange Commission has required over 34,000 companies to file over 165,000 annual reports. These reports, the so-called "Form 10-Ks," contain a characterization of a company's financial performance and its risks, including the regulatory environment in which a company operates. In this paper, we analyze over 4.5 million references to U.S. Federal Acts and Agencies contained within these reports to measure the regulatory ecosystem, in which companies are organisms inhabiting a regulatory environment. While individuals across the political, economic, and academic world frequently refer to trends in this regulatory ecosystem, far less attention has been paid to supporting such claims with large-scale, longitudinal data. In this paper, in addition to positing a model of regulatory ecosystems, we document an increase in the regulatory energy per filing, i.e., a warming "temperature." We also find that the diversity of the regulatory ecosystem has been increasing over the past two decades. These findings support the claim that regulatory activity and complexity are increasing, and this framework contributes an important step towards improving academic and policy discussions around legal complexity and regulation.

  2. Contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy throughout the seasons under different nutrient availability

    Science.gov (United States)

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Moreno, G.; Carrara, A.; Kolle, O.; Reichstein, M.

    2017-12-01

    In semi-arid savanna type ecosystems, the carbon and water cycle are closely related to each other. Water availability is the main driver for the development and phenology of the vegetation, especially for annual plants. Depending on tree density, nutrient availability and species the contribution of the tree- and the herbaceous layer to ecosystem fluxes can vary substantially. We present data from an ecosystem scale nutrient manipulation experiment within a Mediterranean savanna type ecosystem which is used for cattle. The footprint areas of two out of three ecosystem eddy co-variance (EC) towers were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT) while the third one served as the control tower (CT). At each ecosystem EC-tower an additional herbaceous layer tower was installed that only sampled fluxes from the herbaceous layer. Under certain assumptions flux differences between the ecosystem EC and the herbaceous layer EC systems can be considered as the contribution of the trees to the ecosystem fluxes. Based on phenology of the herbaceous layer estimated through green-chromatic-coordinates from digital imagery the year was separated into spring, senescence, regreening, and winter. The focus of the analysis is (i) the evaluation of the method and how it works throughout the different seasons and (ii) the quantification of the contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy under different environmental conditions and nutrient stoichiometry. The contribution of the trees to total ecosystem fluxes is variable in time. Especially, during the beginning of the senescence period high evapotranspiration rates and largest carbon uptake are measured while the contribution to sensible heat fluxes is largest during the end of the summer. During the regreening and winter the contribution of ET is relatively constant around 0.25 mm d-1. During the peak of the greenness ET and carbon flux of the herbaceous EC tower are

  3. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2010-02-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20 °C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates found in this study of 329 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1

  4. Towards reconstructing herbaceous biome dynamics and associated precipitation in Africa: insights from the classification of grass morphological traits

    Science.gov (United States)

    Pasturel, Marine; Alexandre, Anne; Novello, Alice; Moctar Dieye, Amadou; Wele, Abdoulaye; Paradis, Laure; Hely, Christelle

    2014-05-01

    Inter-tropical herbaceous ecosystems occupy a 1/5th of terrestrial surface, a half of the African continent, and are expected to extend in the next decades. Dynamic of these ecosystems is simulated with poor accuracy by Dynamic Global Vegetation Models (DGVMs). One of the bias results from the fact that the diversity of the grass layer dominating these herbaceous ecosystems is poorly taken into account. Mean annual precipitation and the length of the dry season are the main constrains of the dynamics of these ecosystems. Conversely, changes in vegetation affect the water cycle. Inaccuracy in herbaceous ecosystem simulation thus impacts simulations of the water cycle (including precipitation) and vice versa. In order to increase our knowledge of the relationships between grass morphological traits, taxonomy, biomes and climatic niches in Western and South Africa, a 3-step methodology was followed: i) values of culm height, leaf length and width of dominant grass species from Senegal were gathered from flora and clustered using the Partition Around Medoids (PAM) method; ii) trait group ability to sign climatic domains and biomes was assessed using Kruskal-Wallis tests; iii) genericity and robustness of the trait groups were evaluated through their application to Chadian and South African botanical datasets. Results show that 8 grass trait groups are present either in Senegal, Chad or South Africa. These 8 trait groups are distributed along mean annual precipitation and dry season length gradients. The combination of three of them allow to discriminate mean annual precipitation domains (1000 mm) and herbaceous biomes (steppes, savannas, South African grasslands and Nama-Karoo). With these results in hand, grass Plant Functional Types (PFTs) of the DGMV LPJ-GUESS will be re-parameterized and particular attention will be given to the herbaceous biomass assigned to each grass trait group. Simultaneously, relationships between grass trait groups and phytolith vegetation

  5. Indicators of human health in ecosystems: what do we measure?

    International Nuclear Information System (INIS)

    Cole, D.C.; Eyles, J.; Gibson, B.L.

    1998-01-01

    Increasingly, scientists are being called upon to assist in the development of indicators for monitoring ecosystem health. For human health indicators, they may draw on environmental exposure, human morbidity/mortality or well-being and sustainability approaches. To improve the rigour of indicators, we propose six scientific criteria for indicator selection: (1) data availability, suitability and representativeness (of populations), (2) indicator validity (face, construct, predictive and convergent) and reliability; (3) indicator responsiveness to change; (4) indicator desegregation capability (across personal and community characteristics); (5) indicator comparability (across populations and jurisdictions); and (6) indicator representativeness (across important dimensions of concern). We comment on our current capacity to adhere to such criteria with examples of measures of environmental exposure, human health and sustainability. We recognize the considerable work still required on documenting environment-human health relationships and on monitoring potential indicators in similar ways over time. Yet we argue that such work is essential in order for science to inform policy decisions which affect the health of ecosystems and human health. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. How to misinterpret photosynthesis measurements and develop incorrect ecosystem models

    Science.gov (United States)

    Prentice, Iain Colin

    2017-04-01

    It is becoming widely accepted than current land ecosystem models (dynamic global vegetation models and land-surface models) rest on shaky foundations and are in need of rebuilding, taking advantage of huge data resources that were hardly conceivable when these models were first developed. It has also become almost a truism that next-generation model development should involve observationalists, experimentalists and modellers working more closely together. What is currently lacking, however, is open discussion of specific problems in the structure of current models, and how they might have arisen. Such a discussion is important if the same mistakes are not to be perpetuated in a new generation of models. I will focus on the central processes governing leaf-level gas exchange, which powers the land carbon and water cycles. I will show that a broad area of confusion exists - as much in the empirical ecophysiological literature as in modelling research - concerning the interpretation of gas-exchange measurements and (especially) their scaling up from the narrow temporal and spatial scales of laboratory measurements to the broad-scale research questions linked to global environmental change. In particular, I will provide examples (drawing on a variety of published and unpublished observations) that illustrate the benefits of taking a "plant-centred" view, showing how consideration of optimal acclimation challenges many (often untstated) assumptions about the relationship of plant and ecosystem processes to environmental variation. (1) Photosynthesis is usually measured at light saturation (implying Rubisco limitation), leading to temperature and CO2 responses that are completely different from those of gross primary production (GPP) under field conditions. (2) The actual rate of electron transport under field conditions depends strongly on the intrinsic quantum efficiency, which is temperature-independent (within a broad range) and unrelated to the maximum electron

  7. The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae

    OpenAIRE

    Wei Wang; Li Lin; Xiao-Guo Xiang; Rosa del C. Ortiz; Yang Liu; Kun-Li Xiang; Sheng-Xiang Yu; Yao-Wu Xing; Zhi-Duan Chen

    2016-01-01

    The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We...

  8. Carbon fluxes of surfaces vs. ecosystems. Advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems

    Czech Academy of Sciences Publication Activity Database

    Nagy, Z.; Pintér, K.; Pavelka, Marian; Dařenová, Eva; Balogh, J.

    2011-01-01

    Roč. 8, č. 9 (2011), s. 2523-2534 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * ecosystems * grassland ecoystems * measuring eddy covariance * soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.859, year: 2011

  9. The effect of herbaceous species removal, fire and cheatgrass (Bromus tectorum) on soil water availability in sagebrush steppe

    Science.gov (United States)

    Alison Whittaker; Bruce Roundy; Jeanne Chambers; Susan Meyer; Robert Blank; Stanley Kitchen; John Korfmacher

    2008-01-01

    Over the past several decades, cheatgrass (Bromus tectorum) has been continually expanding in the sagebrush steppe ecosystem. There has been very little research that examines why cheatgrass is able to invade these communities. To determine the effects of herbaceous vegetation removal and fire on available water for cheatgrass invasion, as well as...

  10. Herbaceous plants as filters: Immobilization of particulates along urban street corridors

    International Nuclear Information System (INIS)

    Weber, Frauke; Kowarik, Ingo; Säumel, Ina

    2014-01-01

    Among air pollutants, particulate matter (PM) is considered to be the most serious threat to human health. Plants provide ecosystem services in urban areas, including reducing levels of PM by providing a surface for deposition and immobilization. While previous studies have mostly addressed woody species, we focus on herbaceous roadside vegetation and assess the role of species traits such as leaf surface roughness or hairiness for the immobilization of PM. We found that PM deposition patterns on plant surfaces reflect site-specific traffic densities and that strong differences in particulate deposition are present among species. The amount of immobilized PM differed according to particle type and size and was related to specific plant species traits. Our study suggests that herbaceous vegetation immobilizes a significant amount of the air pollutants relevant to human health and that increasing biodiversity of roadside vegetation supports air filtration and thus healthier conditions along street corridors. -- Highlights: • We assessed PM immobilization by common urban herbaceous roadside species. • PM deposition was related to traffic density and plant species traits. • Amount of PM deposited differed according to particle type and size. • Increasing biodiversity of roadside vegetation supports air filtration. -- Herbaceous urban roadside vegetation immobilizes particulate matter relevant to human health, thus supporting healthier conditions next to busy roads

  11. CO2 flux measurement in four different ecosystems

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Czerný, Radek; Janouš, Dalibor

    2007-01-01

    Roč. 37, č. 2 (2007), s. 141-151 ISSN 1335-2806 R&D Projects: GA ČR GD526/03/H036; GA MŽP SM/640/18/03 Institutional research plan: CEZ:AV0Z60870520 Keywords : eddy covariance * net ecosystem production * forest * grassland * wetland * cropland Subject RIV: GK - Forestry

  12. Multiyear Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015

    Science.gov (United States)

    Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.

    2015-12-01

    Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.

  13. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  14. Evaluating subsoiling and herbaceous weed control on shortleaf pine planted in retired farm land

    Science.gov (United States)

    John D. Kushla

    2010-01-01

    In March 2005, shortleaf pine was planted on retired fields of the Mississippi Agriculture and Forestry Experiment Station in Holly Springs. The objectives were to evaluate subsoiling and herbaceous weed control on first year seedling stocking, survival, and size. First year seedling measurements were made on stocking, survival, and size. Only results for first year...

  15. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  16. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barba, Josep; Cueva, Alejandro; Bahn, Michael; Barron-Gafford, Greg A.; Bond-Lamberty, Benjamin; Hanson, Paul J.; Jaimes, Aline; Kulmala, Liisa; Pumpanen, Jukka; Scott, Russell L.; Wohlfahrt, Georg; Vargas, Rodrigo

    2018-02-01

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground plant respiration. Therefore, Rsoil is a fraction of Reco and by definition has to be smaller than Reco at annual, seasonal and daily scales. However, several studies estimating Reco with the eddy covariance technique and measuring Rsoil within the footprint of the tower have reported higher Rsoil than Reco at different time scales. Here, we compare four different and contrasting ecosystems (from forest to grasslands, and from boreal to semiarid) to study whether, and under what conditions, measurements of Reco are lower than Rsoil. In general, both fluxes showed similar temporal patterns, but Reco was not consistently higher than Rsoil from daily to annual scales across sites. We identified several issues that apply for measuring NEE and measuring/upscaling Rsoil that could result in an underestimation of Reco and/or an overestimation of Rsoil. These issues are discussed based on (a) nighttime measurements of NEE, (b) Rsoil measurements, and (c) the interpretation of the functional relationships of these fluxes with temperature (i.e., Q10). We highlight that there is still a need for better integration of Rsoil with eddy covariance measurements to address challenges related to spatial and temporal variability of Reco and Rsoil.

  17. Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Marina Castro

    2014-12-01

    Full Text Available Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd in NE Portugal.Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N, soil organic carbon (SOC, C/N ratio, available phosphorus (P, and available potassium (K and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.Main results: The results showed a different pattern of soil fertility (N, SOC, P, K in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern. Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions; Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions; and Q. suber were found in intermediate zones.Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

  18. Measurement of changes in marine benthic ecosystem function following physical disturbance by dredging

    OpenAIRE

    Wan Hussin, Wan Mohd Rauhan

    2012-01-01

    Measuring the impact of physical disturbance on macrofaunal communities and sediment composition is important given the increased demand for the exploitation and disturbance of marine ecosystems. The aim of the present investigation was to provide a comprehensive study about the extent to which the disturbance (especially aggregate dredging) may affect benthic ecosystem function. The first part of the thesis concerns a field investigation of the impacts of dredging on the be...

  19. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    Science.gov (United States)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.

  20. Impacts of environmental factors on the climbing behaviors of herbaceous stem-twiners.

    Science.gov (United States)

    Hu, Liang; Chen, Youfang; Liu, Meicun

    2017-11-01

    The curvature of the helical trajectory formed by herbaceous stem-twiners has been hypothesized to be constant on uniformly sized cylindrical supports and remains constant on different supports varying in diameter. However, experimental studies on the constant curvature hypothesis have been very limited. Here, we tested the hypothesis in a series of experiments on five herbaceous stem-twiners ( Ipomoea triloba , Ipomoea nil , Phaseolus vulgaris , Vigna unguiculata, and Mikania micrantha ). We investigated how internode characteristics (curvature [β], diameter [ d ], and length [ L ]) and success rate (SR) of twining shoots would be affected by support thickness ( D ), temperature ( T ), illumination, and support inclination. The results showed that: (1) the SR of tested species decreased, but d increased with increasing support thickness. The β of the twining shoots on erect cylindrical poles was not constant, but it decreased with increasing d or support thickness. (2) The SR of tested species was not obviously reduced under low-temperature conditions, but their β was significantly higher and d significantly lower when temperature was more than 5°C lower. (3) The SR , d, and L of two tested Ipomoea species significantly declined, but β increased under 50% shading stress. (4) The curvatures of upper semicycles of I. triloba shoots on 45° inclined supports were not significantly different from curvatures of those shoots climb on erect supports, whereas the curvatures of lower semicycles were 40%-72% higher than curvatures of upper semicycles. Synthesis : Our study illustrates that stem curvatures of a certain herbaceous stem-twiners are not constant, but rather vary in response to external support, temperature, and illumination conditions. We speculate that herbaceous stem-twiners positively adapt to wide-diameter supports by thickening their stems and by reducing their twining curvatures. This insight helps us better understand climbing processes and

  1. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1995-01-01

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy's Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO 2 emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels

  2. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  3. Biological invasions in forest ecosystems

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  4. On the coupled use of sapflow and eddy covariance measurements: environmental impacts on the evapotranspiration of an heterogeneous - wild olives based - Sardinian ecosystem.

    Science.gov (United States)

    Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram

    2015-04-01

    Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate

  5. Remedial measures against high levels of radioisotopes in aquatic ecosystems

    International Nuclear Information System (INIS)

    Voitsekhovitch, O.; Haakanson, L.

    2000-01-01

    This Annex has been prepared within the framework of the Aquatic Working Group of the co-ordinated Research Programme on Validation of the Environmental Model Predictions (VAMP). The main objectives of this Annex are: (1) To provide an outline of a broad set of remedial measures and strategies tested and suggested for aquatic systems to speed up the recovery after the nuclear accident at Chernobyl in April 1986. This Report covers case studies from rivers and lakes and includes results from field and laboratory experiments, as well as measures directed at reducing radioisotopes in food by different food preparation procedures in the home. (2) To provide results from selected case studies, focusing on general, strategic results rather than site-specific details. (3) To provide conclusions which specifically address practical matters concerning how to select remedial measures in different situations, how to avoid inefficient measures, and to suggest important areas for future research. (4) To provide an analysis of the concept of lake sensitivity using both empirical and modelled data. One and the same fallout may give rise to very different radionuclide concentrations in water and biota depending on the characteristics of the lake and its catchment

  6. Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function

    Science.gov (United States)

    Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.

    2016-12-01

    The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.

  7. Measuring conditions and trends in ecosystem services at multiple scales: the Southern African Millennium Ecosystem Assessment (SAfMA) experience

    OpenAIRE

    van Jaarsveld, A.S; Biggs, R; Scholes, R.J; Bohensky, E; Reyers, B; Lynam, T; Musvoto, C; Fabricius, C

    2005-01-01

    The Southern African Millennium Ecosystem Assessment (SAfMA) evaluated the relationships between ecosystem services and human well-being at multiple scales, ranging from local through to sub-continental. Trends in ecosystem services (fresh water, food, fuel-wood, cultural and biodiversity) over the period 1990-2000 were mixed across scales. Freshwater resources appear strained across the continent with large numbers of people not securing adequate supplies, especially of good quality water. T...

  8. Conundrums in mixed woody-herbaceous plant systems

    CSIR Research Space (South Africa)

    House, JI

    2003-11-01

    Full Text Available -form communities, the novel, complex, nonlinear behaviour of mixed tree-grass systems cannot be accounted for by simply studying or modelling woody and herbaceous components independently. A more robust understanding requires addressing three fundamental conundrums...

  9. An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services.

    Science.gov (United States)

    Verburg, Peter H; Koomen, Eric; Hilferink, Maarten; Pérez-Soba, Marta; Lesschen, Jan Peter

    Measures of climate change adaptation often involve modification of land use and land use planning practices. Such changes in land use affect the provision of various ecosystem goods and services. Therefore, it is likely that adaptation measures may result in synergies and trade-offs between a range of ecosystems goods and services. An integrative land use modelling approach is presented to assess such impacts for the European Union. A reference scenario accounts for current trends in global drivers and includes a number of important policy developments that correspond to on-going changes in European policies. The reference scenario is compared to a policy scenario in which a range of measures is implemented to regulate flood risk and protect soils under conditions of climate change. The impacts of the simulated land use dynamics are assessed for four key indicators of ecosystem service provision: flood risk, carbon sequestration, habitat connectivity and biodiversity. The results indicate a large spatial variation in the consequences of the adaptation measures on the provisioning of ecosystem services. Synergies are frequently observed at the location of the measures itself, whereas trade-offs are found at other locations. Reducing land use intensity in specific parts of the catchment may lead to increased pressure in other regions, resulting in trade-offs. Consequently, when aggregating the results to larger spatial scales the positive and negative impacts may be off-set, indicating the need for detailed spatial assessments. The modelled results indicate that for a careful planning and evaluation of adaptation measures it is needed to consider the trade-offs accounting for the negative effects of a measure at locations distant from the actual measure. Integrated land use modelling can help land use planning in such complex trade-off evaluation by providing evidence on synergies and trade-offs between ecosystem services, different policy fields and societal

  10. The behaviour of radiocaesium in woodland ecosystems. Measurement and modelling

    International Nuclear Information System (INIS)

    Toal, M.

    1999-02-01

    In order to better quantify risk to non-human biota from environmental radioactivity, our understanding of the behaviour of radionuclides in the biosphere needs to be increased. Hence the aims of the present study were threefold: 1) Review Ecological Risk Assessment (ERA) methodologies, 2) Quantify radiocaesium distribution in woodland biota in the vicinity of BNFL Sellafield, 3) Use this information to develop radiocaesium food-chain and dosimetry models for terrestrial invertebrates and small-mammals. A review of ERA literature concluded that of the two main methodologies available (individual receptor and holistic ERA), individual receptor based analysis is the most credible method given in today's level of scientific understanding. lt was also concluded that the use of modelling techniques in ERA will increase in future years. Two study sites were sampled, a Picea sitchensis monoculture (Lady Wood) and a mixed deciduous site (Longrigg Wood). Mean levels of Cs-137 (all activities quoted in Bq/kg dry weight) in soils:leaf litter were 473:408 (Lady Wood) and 142:32 (Longrigg Wood). The activity of understorey vegetation varied with ranges of 17-508 and 4-48 Bq/kg in Lady Wood and Longrigg, respectively. No vegetation species had concentration ratios (CRs) > 1. The greatest range in Cs-137 activity (2-5242 Bq/kg DW, Lady Wood) was found in fungi, with Mycena galariculata and Hypholoma fasciculare attaining the highest biomagnifications (CRs = 2.6, 2.0 respectively). Due to radioanalytical constraints, only 'mixed invertebrate' samples were measured for Longrigg Wood (yearly average = 8.5 Bq/kg). No significant invertebrate body-burden differences were found between taxa or between seasons for each invertebrate group in Lady Wood. Mean yearly Cs-137 body-burdens (Bq/kg DW) were 94 (Diplopoda), 104 (Isopoda), 54 (Chilopoda), 120 (Araneae), 91 (Opilionidae) and 41 (Carabidae). No invertebrates had CRs > 1. Seasonal Cs-137 body-burdens were also measured for the

  11. Measuring, modeling and mapping ecosystem services in the Eastern Arc Mountains of Tanzania

    DEFF Research Database (Denmark)

    Fisher, B.; Turner, R. K.; Burgess, Neil David

    2011-01-01

    sourced data, data-driven models, and socio-economic scenarios coupled with rule-based assumptions. Here we describe the construction of this spatial information and how it can help to shed light on the complex relationships between ecological and social systems. There are obvious difficulties......In light of the significance that ecosystem service research is likely to play in linking conservation activities and human welfare, systematic approaches to measuring, modeling and mapping ecosystem services (and their value to society) are sorely needed. In this paper we outline one such approach...

  12. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  13. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    Science.gov (United States)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  14. Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange

    Science.gov (United States)

    Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.

    2014-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  15. Evaluating natural flood management measures using an ecosystem based adaptation framework: a meta-analysis

    Science.gov (United States)

    Iacob, Oana; Rowan, John; Brown, Iain; Ellis, Chris

    2014-05-01

    Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. As a result flood risk is expected to increase with environmental, social and economic impacts. Traditionally flood risk management has been heavily relying on engineering measures, however with climate change their capacity to provide protection is expected to decrease. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management measures have the potential to provide a greater adaptive capacity to negate the impacts of climate change and provide ancillary benefits. To understand the impacts of different NFM measures on ecosystem services a meta-analysis was undertaken. Twenty five studies from across the world were pulled together to assess their effectiveness on reducing the flood risk but also on other ecosystems services as defined by the UK National Ecosystem Assessment, which distinguishes between provisioning, regulating, cultural and supporting services. Four categories of NFM measures were considered: (i) afforestation measures, (ii) drainage and blocking the drains, (iii) wetland restoration and (iv) combined measures. Woodland expansion measures provide significant benefits for flood protection more pronounced for low magnitude events, but also for other services such as carbon sequestration and water quality. These measures however will come at a cost for livestock and crop provisioning services as a result of land use changes. Drainage operations and blocking the drains have mixed impacts on carbon sequestration and water quality depending on soil type, landscape settings and local characteristics. Wetland and floodplain restoration measures have generally a few disbenefits and provide improvements for regulating and supporting services

  16. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    Directory of Open Access Journals (Sweden)

    Javier Roales

    Full Text Available Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  17. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    Science.gov (United States)

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  18. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    Science.gov (United States)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  19. Measuring conditions and trends in ecosystem services at multiple scales: the Southern African Millennium Ecosystem Assessment (SAfMA) experience.

    Science.gov (United States)

    van Jaarsveld, A S; Biggs, R; Scholes, R J; Bohensky, E; Reyers, B; Lynam, T; Musvoto, C; Fabricius, C

    2005-02-28

    The Southern African Millennium Ecosystem Assessment (SAfMA) evaluated the relationships between ecosystem services and human well-being at multiple scales, ranging from local through to sub-continental. Trends in ecosystem services (fresh water, food, fuel-wood, cultural and biodiversity) over the period 1990-2000 were mixed across scales. Freshwater resources appear strained across the continent with large numbers of people not securing adequate supplies, especially of good quality water. This translates to high infant mortality patterns across the region. In some areas, the use of water resources for irrigated agriculture and urban-industrial expansion is taking place at considerable cost to the quality and quantity of freshwater available to ecosystems and for domestic use. Staple cereal production across the region has increased but was outstripped by population growth while protein malnutrition is on the rise. The much-anticipated wood-fuel crisis on the subcontinent has not materialized but some areas are experiencing shortages while numerous others remain vulnerable. Cultural benefits of biodiversity are considerable, though hard to quantify or track over time. Biodiversity resources remain at reasonable levels, but are declining faster than reflected in species extinction rates and appear highly sensitive to land-use decisions. The SAfMA sub-global assessment provided an opportunity to experiment with innovative ways to assess ecosystem services including the use of supply-demand surfaces, service sources and sink areas, priority areas for service provision, service 'hotspots' and trade-off assessments.

  20. Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique

    International Nuclear Information System (INIS)

    Aurela, M.

    2005-01-01

    The atmospheric CO 2 concentration and the surface air temperatures have increased since the pre-industrial era, and the increase in both is predicted to continue during the 21st century. The feedback mechanisms between the changing climate and the carbon cycle are complex, and more information is needed about carbon exchange in different ecosystems. Northern Finland lies in the transition zone between boreal forest and tundra where the ecosystems are especially sensitive to any changes in the climate. In 1995-2004, micrometeorological eddy covariance measurements were conducted to yield continuous data on the CO 2 exchange between the atmosphere and the biosphere in northern Finland on four different ecosystems: an aapa mire, a mountain birch forest, a Scots pine forest and a Norway spruce forest. A measurement system enabling year-round measurements in the harsh subarctic conditions was developed and shown to be suitable for long-term exchange studies. A comparison of the CO 2 flux components, photosynthesis and respiration, at different ecosystems in the European subarctic and arctic regions showed that the leaf area index (LAI) is the key determinant of the gross photosynthetic rates, explaining greatest part of the variation between these ecosystems. Respiration did not show such a strong correlation with LAI, but in general, high respiration rates were related to high values of LAI. The first continuous round-the-year measurements of net ecosystem CO 2 exchange on a subarctic wetland were conducted at Kaamanen. The winter-time CO 2 efflux (of about 90 g CO 2 m -2 yr -1 ) was shown to constitute an essential part of the annual CO 2 balance (of -79 g CO 2 m -2 yr -1 in 1997-2002). The annual CO 2 balances at all sites in northern Finland were relatively small compared with those in lower latitudes. The interannual variation of the CO 2 balance at Kaamanen was marked (-15 to -195 g CO 2 m -2 yr -1 ) during the years 1997-2002. The most important factor

  1. Anthropometric measurements of adolescents from two Amazonian ecosystems: variations according to seasonality.

    Science.gov (United States)

    Silva, Hilton P; Veiga, Gloria V; Kac, Gilberto; Pereira, Rosangela A

    2010-03-01

    This paper aims to describe the nutritional status of Caboclo adolescents living in two areas of the Amazon Basin. Two cross-sectional studies, the first in the dry and the second in the wet season, were carried out in two Amazonian ecosystems: the forest and black water ecosystem, and the floodplain and white water ecosystem. Measurements of weight, stature, arm circumference and triceps, subscapular and suprailiac skinfolds were performed on 247 adolescents (10-19 years of age). Nutritional status was classified using body mass index according to international criteria and the prevalence of underweight and overweight was estimated. Linear mixed effects models were used with the anthropometric measurements as dependent variables and time interval, place of residence, sex, age and stature variation as independent variables. During the wet season, the prevalence of overweight among girls was higher in the forest (42%) than in the floodplain (9%). Longitudinal linear regression models showed that the arm circumference measurement was influenced both by seasonality and location, revealing that the increment between dry and wet seasons was less pronounced in the floodplain. At the time of the study, overweight already constituted a major public health concern among girls living in the forest area. In order to develop adequate public health policies for this important segment of the Amazon population further studies are necessary to investigate the role of environment and seasonality on the growth and nutritional status of adolescents.

  2. Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements

    Science.gov (United States)

    Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario

    2017-04-01

    Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.

  3. Lake and wetland ecosystem services measuring water storage and local climate regulation

    Science.gov (United States)

    Wong, Christina P.; Jiang, Bo; Bohn, Theodore J.; Lee, Kai N.; Lettenmaier, Dennis P.; Ma, Dongchun; Ouyang, Zhiyun

    2017-04-01

    Developing interdisciplinary methods to measure ecosystem services is a scientific priority, however, progress remains slow in part because we lack ecological production functions (EPFs) to quantitatively link ecohydrological processes to human benefits. In this study, we tested a new approach, combining a process-based model with regression models, to create EPFs to evaluate water storage and local climate regulation from a green infrastructure project on the Yongding River in Beijing, China. Seven artificial lakes and wetlands were established to improve local water storage and human comfort; evapotranspiration (ET) regulates both services. Managers want to minimize the trade-off between water losses and cooling to sustain water supplies while lowering the heat index (HI) to improve human comfort. We selected human benefit indicators using water storage targets and Beijing's HI, and the Variable Infiltration Capacity model to determine the change in ET from the new ecosystems. We created EPFs to quantify the ecosystem services as marginal values [Δfinal ecosystem service/Δecohydrological process]: (1) Δwater loss (lake evaporation/volume)/Δdepth and (2) Δsummer HI/ΔET. We estimate the new ecosystems increased local ET by 0.7 mm/d (20.3 W/m2) on the Yongding River. However, ET rates are causing water storage shortfalls while producing no improvements in human comfort. The shallow lakes/wetlands are vulnerable to drying when inflow rates fluctuate, low depths lead to higher evaporative losses, causing water storage shortfalls with minimal cooling effects. We recommend managers make the lakes deeper to increase water storage, and plant shade trees to improve human comfort in the parks.

  4. On the use of tower-flux measurements to assess the performance of global ecosystem models

    Science.gov (United States)

    El Maayar, M.; Kucharik, C.

    2003-04-01

    Global ecosystem models are important tools for the study of biospheric processes and their responses to environmental changes. Such models typically translate knowledge, gained from local observations, into estimates of regional or even global outcomes of ecosystem processes. A typical test of ecosystem models consists of comparing their output against tower-flux measurements of land surface-atmosphere exchange of heat and mass. To perform such tests, models are typically run using detailed information on soil properties (texture, carbon content,...) and vegetation structure observed at the experimental site (e.g., vegetation height, vegetation phenology, leaf photosynthetic characteristics,...). In global simulations, however, earth's vegetation is typically represented by a limited number of plant functional types (PFT; group of plant species that have similar physiological and ecological characteristics). For each PFT (e.g., temperate broadleaf trees, boreal conifer evergreen trees,...), which can cover a very large area, a set of typical physiological and physical parameters are assigned. Thus, a legitimate question arises: How does the performance of a global ecosystem model run using detailed site-specific parameters compare with the performance of a less detailed global version where generic parameters are attributed to a group of vegetation species forming a PFT? To answer this question, we used a multiyear dataset, measured at two forest sites with contrasting environments, to compare seasonal and interannual variability of surface-atmosphere exchange of water and carbon predicted by the Integrated BIosphere Simulator-Dynamic Global Vegetation Model. Two types of simulations were, thus, performed: a) Detailed runs: observed vegetation characteristics (leaf area index, vegetation height,...) and soil carbon content, in addition to climate and soil type, are specified for model run; and b) Generic runs: when only observed climates and soil types at the

  5. Measuring conditions and trends in ecosystem services at multiple scales: the Southern African millennium ecosystem assessment (SAFMA) experience

    CSIR Research Space (South Africa)

    Van Jaarsveld, AS

    2005-01-01

    Full Text Available to ecosystems and for domestic use. Staple cereal production across the region has increased but was outstripped by population growth while protein malnutrition is on the rise. The much-anticipated wood-fuel crisis on the subcontinent has not materialized...

  6. Ecosystem Phenology from Eddy-covariance Measurements: Spring Photosynthesis in a Cool Temperate Bog

    Science.gov (United States)

    Lafleur, P.; Moore, T. R.; Poon, D.; Seaquist, J.

    2005-12-01

    The onset and increase of spring photosynthetic flux of carbon dioxide is an important attribute of the carbon budget of northern ecosystems and we used eddy-covariance measurements from March to May over 5 years at the Mer Bleue ombrotrophic bog to establish the important controls. The onset of ecosystem photosynthesis (day-of-year from 86 to 101) was associated with the disappearance on the snow cover and there is evidence that photosynthesis can continue after a thin new snowfall. The growth of photosynthesis during the spring period was partially associated with light (daily photosynthetically active radiation) but primarily with temperature, with the strongest correlation being observed with peat temperature at a depth of 5 and 10 cm, except in one year in which there was a long snow cover. The vegetation comprises mosses, which are able to photosynthesize very early, evergreen shrubs, which appear dependent on soil warming, and deciduous shrubs, which leaf-out only in late spring. We observed changes in shrub leaf colour from brown to green and concomitant increases in foliar nitrogen and chlorophyll concentrations during the spring in this "evergreen" system. We analyzed MODIS images for periods of overlap of tower and satellite data and found a generally strong correlation, though the infrequent satellite measurements were unable to pick out the onset and timing of rapid growth of photosynthesis in this ecosystem.

  7. A global database of sap flow measurements (SAPFLUXNET) to link plant and ecosystem physiology

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Flo, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Oren, Ram; Katul, Gabriel; Mahecha, Miguel; Steppe, Kathy; Martínez-Vilalta, Jordi

    2017-04-01

    Regional and global networks of ecosystem CO2 and water flux monitoring have dramatically increased our understanding of ecosystem functioning in the last 20 years. More recently, analyses of ecosystem-level fluxes have successfully incorporated data streams at coarser (remote sensing) and finer (plant traits) organisational scales. However, there are few data sources that capture the diel to seasonal dynamics of whole-plant physiology and that can provide a link between organism- and ecosystem-level function. Sap flow measured in plant stems reveals the temporal patterns in plant water transport, as mediated by stomatal regulation and hydraulic architecture. The widespread use of thermometric methods of sap flow measurement since the 1990s has resulted in numerous data sets for hundreds of species and sites worldwide, but these data have remained fragmentary and generally unavailable for syntheses of regional to global scope. We are compiling the first global database of sub-daily sap flow measurements in individual plants (SAPFLUXNET), aimed at unravelling the environmental and biotic drivers of plant transpiration regulation globally. I will present the SAPFLUXNET data infrastructure and workflow, which is built upon flexible, open-source computing tools within the R environment (dedicated R packages and classes, interactive documents and apps with Rmarkdown and Shiny). Data collection started in mid-2016, we have already incorporated > 50 datasets representing > 40 species and > 350 individual plants, globally distributed, and the number of contributed data sets is increasing rapidly. I will provide a general overview of the distribution of available data sets according to climate, measurement method, species, functional groups and plant size attributes. In parallel to the sap flow data compilation, we have also collated published results from calibrations of sap flow methods, to provide a first quantification on the variability associated with different sap

  8. The impact of grazing on forage quality of the herbaceous ...

    African Journals Online (AJOL)

    Reports on research conducted in the Mamoro cork oak forest of Morocco to describe the impacts of sheep grazing in March, April, May and June of 1987 and 1988 on seasonal changes in forage quality of the herbaceous vegetation. The study showed that trends in herbage quality were related mainly to plant maturity.

  9. PREDICTING FIELD PERFORMANCE OF HERBACEOUS SPECIES FOR PHYTOREMEDIATION OF PERCHLORATE

    Science.gov (United States)

    Results of these short-term experiments coupled with ecological knowledge of the nine herbaceous plant species tested suggest that several species may by successful in on-site remediation of perchlorate. The two wetland species which appear to be most suitable for field experimen...

  10. Predicting the Chemical composition of herbaceous legumes using ...

    African Journals Online (AJOL)

    Predicting the Chemical composition of herbaceous legumes using Near Infrared Reflectance Spectroscopy. J F Mupangwa, N Berardo, N T Ngongoni, J H Topps, H Hamudikuwanda, M Ordoardi. Abstract. (Journal of Applied Science in Southern Africa: 2000 6(2): 107-114). http://dx.doi.org/10.4314/jassa.v6i2.16844.

  11. Research Note Pilot survey to assess sample size for herbaceous ...

    African Journals Online (AJOL)

    A pilot survey to determine sub-sample size (number of point observations per plot) for herbaceous species composition assessments, using a wheel-point apparatus applying the nearest-plant method, was conducted. Three plots differing in species composition on the Zululand coastal plain were selected, and on each plot ...

  12. Functional leaf attributes predict litter decomposition rate in herbaceous plants

    NARCIS (Netherlands)

    Cornelissen, J. H C; Thompson, K.

    1997-01-01

    We tested the hypothesis that functional attributes of living leaves provide a basis for predicting the decomposition rate of leaf litter. The data were obtained from standardized screening tests on 38 British herbaceous species. Graminoid monocots had physically tougher leaves with higher silicon

  13. Herbaceous weed control in loblolly pine plantations using flazasulfuron

    Science.gov (United States)

    Andrew W. Ezell; Jimmie L. Yeiser

    2015-01-01

    A total of 13 treatments were applied at four sites (two in Mississippi and two in Texas) to evaluate the efficacy of flazasulfuron applied alone or in mixtures for providing control of herbaceous weeds. All sites were newly established loblolly pine (Pinus taeda L.) plantations. Plots were evaluated monthly until 180 days after treatment. No phytotoxicity on pine...

  14. Test of two methods for determining herbaceous yield and botanical ...

    African Journals Online (AJOL)

    Above-ground herbaceous yield was estimated using the comparative yield method to win + 10% (p < 0,05) of the harvested mean using 150 harvested and 600 rated quadrats of 50 x 50 cm. The number of quadrats can be substantially reduced by improved observer rating. Using the dry mass rank method and 240 ...

  15. The influence of tree thinning on the establishment of herbaceous ...

    African Journals Online (AJOL)

    The influence of tree thinning on the establishment of herbaceous plants in a semi-arid savanna of southern Africa. GN Smit, FG Rethman. Abstract. The investigation was conducted on an area covered by a dense stand of Colophospermum mopane. Seven plots (65 m × 180 m) were subjected to different intensities of tree ...

  16. Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance.

    Science.gov (United States)

    Chasmer, L; Baker, T; Carey, S K; Straker, J; Strilesky, S; Petrone, R

    2018-06-12

    Time series remote sensing vegetation indices derived from SPOT 5 data are compared with vegetation structure and eddy covariance flux data at 15 dry to wet reclamation and reference sites within the Oil Sands region of Alberta, Canada. This comprehensive analysis examines the linkages between indicators of ecosystem function and change trajectories observed both at the plot level and within pixels. Using SPOT imagery, we find that higher spatial resolution datasets (e.g. 10 m) improves the relationship between vegetation indices and structural measurements compared with interpolated (lower resolution) pixels. The simple ratio (SR) vegetation index performs best when compared with stem density-based indicators (R 2  = 0.65; p  0.02). Fluxes (net ecosystem production (NEP) and gross ecosystem production (GEP)) are most related to NDVI and SAVI when these are interpolated to larger 20 m × 20 m pixels (R 2  = 0.44-0.50; p  3 m 2  m -2 , making this index more appropriate for newly regenerating reclamation areas. For sites with LAI remote sensing in combination with field and eddy covariance data for monitoring and scaling of reclaimed and reference site productivity within and beyond the Oil Sands Region of western Canada. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)

    2013-07-01

    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  18. Net ecosystem carbon dioxide exchange in tropical rainforests - sensitivity to environmental drivers and flux measurement methodology

    Science.gov (United States)

    Fu, Z.; Stoy, P. C.

    2017-12-01

    Tropical rainforests play a central role in the Earth system services of carbon metabolism, climate regulation, biodiversity maintenance, and more. They are under threat by direct anthropogenic effects including deforestation and indirect anthropogenic effects including climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) across multiple time scales in different tropical rainforests has not been undertaken to date. Here, we study NEE and its components, gross primary productivity (GPP) and ecosystem respiration (RE), across thirteen tropical rainforest research sites with 63 total site-years of eddy covariance data. Results reveal that the five ecosystems that have greater carbon uptakes (with the magnitude of GPP greater than 3000 g C m-2 y-1) sequester less carbon - or even lose it - on an annual basis at the ecosystem scale. This counterintuitive result is because high GPP is compensated by similar magnitudes of RE. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GPP and RE and consequently lower NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in tropical rainforests. Vapor pressure deficit (VPD) constrained GPP at all sites, but to differing degrees. Many environmental variables are significantly related to NEE at time scales greater than one year, and NEE at a rainforest in Malaysia is significantly related to soil moisture variability at seasonal time scales. Climate projections from 13 general circulation models (CMIP5) under representative concentration pathway (RCP) 8.5 suggest that many current tropical rainforest sites on the cooler end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, and warmer sites will reach a climate space not currently experienced. Results demonstrate the need to quantify if mature tropical trees acclimate to heat and

  19. Representation of physiological drought at ecosystem level based on model and eddy covariance measurements

    Science.gov (United States)

    Zhang, Y.; Novick, K. A.; Song, C.; Zhang, Q.; Hwang, T.

    2017-12-01

    Drought and heat waves are expected to increase both in frequency and amplitude, exhibiting a major disturbance to global carbon and water cycles under future climate change. However, how these climate anomalies translate into physiological drought, or ecosystem moisture stress are still not clear, especially under the co-limitations from soil moisture supply and atmospheric demand for water. In this study, we characterized the ecosystem-level moisture stress in a deciduous forest in the southeastern United States using the Coupled Carbon and Water (CCW) model and in-situ eddy covariance measurements. Physiologically, vapor pressure deficit (VPD) as an atmospheric water demand indicator largely controls the openness of leaf stomata, and regulates atmospheric carbon and water exchanges during periods of hydrological stress. Here, we tested three forms of VPD-related moisture scalars, i.e. exponent (K2), hyperbola (K3), and logarithm (K4) to quantify the sensitivity of light-use efficiency to VPD along different soil moisture conditions. The sensitivity indicators of K values were calibrated based on the framework of CCW using Monte Carlo simulations on the hourly scale, in which VPD and soil water content (SWC) are largely decoupled and the full carbon and water exchanging information are held. We found that three K values show similar performances in the predictions of ecosystem-level photosynthesis and transpiration after calibration. However, all K values show consistent gradient changes along SWC, indicating that this deciduous forest is less responsive to VPD as soil moisture decreases, a phenomena of isohydricity in which plants tend to close stomata to keep the leaf water potential constant and reduce the risk of hydraulic failure. Our study suggests that accounting for such isohydric information, or spectrum of moisture stress along different soil moisture conditions in models can significantly improve our ability to predict ecosystem responses to future

  20. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    Science.gov (United States)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  1. Mechanisms of herbaceous vegetation restoration successions

    Science.gov (United States)

    Pankratova, Lubov

    2017-04-01

    less suitable for later species. The fourth model of neutrality corresponds to the succession, considered as a population process, with the change of species populations of different life cycles and different ecological-phytocenotic types of strategies. Often this model applies only to the formation of the species composition but quantitative ratios between the species are caused by a weakened manifestation of favored, inhibiting or tolerance effects. All the mechanisms together provide the plant communities development from the beginning stages to the end due to system feedbacks (positive and negative). In the first stages of succession the ecosystem is able to resume quickly, indicating a fairly high resilience, which means the movement to a climax is constantly decreasing. The trend is opposite for self-sustainability or stability. In the early stages of succession, its value is low enough - the systems are very sensitive to external influences, responding to them with increased dynamism. The resident resistance is continuously growing with species increasing. As you get closer to menopause, the ecosystem becomes more sensitive to the effects of some catastrophic environmental factors, which means that with ongoing stable growth the factor of ecosystem rigidity going to a climax apparently even begins to decrease.

  2. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  3. Eddy covariance measurements of greenhouse gases from a restored and rewetted raised bog ecosystem.

    Science.gov (United States)

    Lee, S. C.; Christen, A.; Black, T. A.; Johnson, M. S.; Ketler, R.; Nesic, Z.; Merkens, M.

    2015-12-01

    Wetland ecosystems play a significant role in the global carbon (C) cycle. Wetlands act as a major long-term storage of carbon by sequestrating carbon-dioxide (CO2) from the atmosphere. Meanwhile, they can emit significant amounts of methane (CH4) due to anaerobic microbial decomposition. The Burns Bog Ecological Conservancy Area (BBECA) is recognized as one of Canada's largest undeveloped natural areas retained within an urban area. Historically, it has been substantially reduced in size and degraded by peat mining and agriculture. Since 2005, the bog has been declared a conservancy area, and the restoration efforts in BBECA focus on rewetting the disturbed ecosystems to promote a transition back to a raised bog. A pilot study measured CH4, CO2 and N2O exchanges in 2014 and concluded to monitor CO2, CH4 fluxes continuously. From the perspective of greenhouse gas (GHG) emissions, CO2 sequestered in bog needs to be protected and additional CO2 and CH4 emissions due to land-cover change need to be reduced by wise management. In this study, we measured the growing-season (June-September) fluxes of CO2 and CH4 exchange using eddy covariance (EC). A floating platform with an EC system for both CO2 (closed-path) and CH4 (open-path) began operation in June 2015. During the growing-season, gross ecosystem photosynthesis (GEP) and ecosystem respiration (Re) averaged 5.87 g C m-2 day-1 and 2.02 g C m-2 day-1, respectively. The magnitude of GEP and Re were lower than in previous studies of pristine northern peatlands. The daily average CH4 emission was 0.99 (±1.14) g C m-2 day-1 and it was higher than in most previous studies. We also characterized how environmental factors affected the seasonal dynamics of these exchanges in this disturbed peatland. Our measurements showed that soil temperature and soil water content were major drivers of seasonal changes of GHG fluxes. The daily average GHG warming potential (GWP) of the emissions in the growing seasons (from CO2 and CH4

  4. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  5. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  6. Influences of image resolution on herbaceous root morphological parameters

    Directory of Open Access Journals (Sweden)

    ZHANG Zeyou

    2014-06-01

    Full Text Available Root images of four herbaceous species (including Plantago virginica,Solidago canadensis,Conyza canadensis and Erigeron philadelphicus were obtained by using EPSON V7000 scanner with different resolutions.Root morphological parameters including root length,diameter,volume and area were determined by using a WinRhizo root analyzing software.The results show a distinct influence of image resolution on root morphological parameter.For different herbaceous species,the optimal resolutions of root images,which would produce an acceptable precision with relative short time,vary with different species.For example,a resolution of 200 dpi was recommended for the root images of Plantago virginica and S.Canadensis, while 400 dpi for Conyza canadensis and Erigeron philadelphicus.

  7. Combining multiple ecosystem productivity measurements to constrain carbon uptake estimates in semiarid grasslands and shrublands

    Science.gov (United States)

    Maurer, G. E.; Krofcheck, D. J.; Collins, S. L.; Litvak, M. E.

    2016-12-01

    Recent observational and modeling studies have indicated that semiarid ecosystems are more dynamic contributors to the global carbon budget than once thought. Semiarid carbon fluxes, however, are generally small, with high interannual and spatial variability, which suggests that validating their global significance may depend on examining multiple productivity measures and their associated uncertainties and inconsistencies. We examined ecosystem productivity from eddy covariance (NEE), harvest (NPP), and terrestrial biome models (NEPm) at two very similar grassland sites and one creosote shrubland site in the Sevilleta National Wildlife Refuge of central New Mexico, USA. Our goal was to assess site and methodological correspondence in annual carbon uptake, patterns of interannual variability, and measurement uncertainty. One grassland site was a perennial carbon source losing 30 g C m-2 per year on average, while the other two sites were carbon sources or sinks depending on the year, with average net uptake of 5 and 25 g C m-2 per year at the grassland and shrubland site, respectively. Uncertainty values for cumulative annual NEE overlapped between the three sites in most years. When combined, aboveground and belowground annual NPP measurements were 15% higher than annual NEE values and did not confirm a loss of carbon at any site in any year. Despite differences in mean site carbon balance, year-to-year changes in cumulative annual NEE and NPP were similar at all sites with years 2010 and 2013 being favorable for carbon uptake and 2011 and 2012 being unfavorable at all sites. Modeled NEPm data for a number of nearby grid cells reproduced only a fraction of the observed range in carbon uptake and its interannual variability. These three sites are highly similar in location and climate and multiple carbon flux measurements confirm the high interannual variability in carbon flux. The exact magnitude of these fluxes, however, remains difficult to discern.

  8. Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints

    Science.gov (United States)

    Andrew D. Richardson; Mathew Williams; David Y. Hollinger; David J.P. Moore; D. Bryan Dail; Eric A. Davidson; Neal A. Scott; Robert S. Evans; Holly. Hughes

    2010-01-01

    We conducted an inverse modeling analysis, using a variety of data streams (tower-based eddy covariance measurements of net ecosystem exchange, NEE, of CO2, chamber-based measurements of soil respiration, and ancillary ecological measurements of leaf area index, litterfall, and woody biomass increment) to estimate parameters and initial carbon (C...

  9. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of

  10. Scaling measurements of metabolism in stream ecosystems: challenges and approaches to estimating reaeration

    Science.gov (United States)

    Bowden, W. B.; Parker, S.; Song, C.

    2016-12-01

    Stream ecologists have used various formulations of an oxygen budget approach as a surrogate to measure "whole-stream metabolism" (WSM) of carbon in rivers and streams. Improvements in sensor technologies that provide reliable, high-frequency measurements of dissolved oxygen concentrations in adverse field conditions has made it much easier to acquire the basic data needed to estimate WSM in remote locations over long periods (weeks to months). However, accurate estimates of WSM require reliable measurements or estimates of the reaeration coefficient (k). Small errors in estimates of k can lead to large errors in estimates of gross ecosystem production and ecosystem respiration and so the magnitude of the biological flux of CO2 to or from streams. This is an especially challenging problem in unproductive, oligotrophic streams. Unfortunately, current methods to measure reaeration directly (gas evasion) are expensive, labor-intensive, and time-consuming. As a consequence, there is a substantial mismatch between the time steps at which we can measure reaeration versus most of the other variables required to calculate WSM. As a part of the NSF Arctic Long-Term Ecological Research Project we have refined methods to measure WSM in Arctic streams and found a good relationship between measured k values and those calculated by the Energy Dissipation Model (EDM). Other researchers have also noted that this equation works well for both low- and high-order streams. The EDM is dependent on stream slope (relatively constant) and velocity (which is related to discharge or stage). These variables are easy to measure and can be used to estimate k a high frequency (minutes) over large areas (river networks). As a key part of the NSF MacroSystems Biology SCALER project we calculated WSM for multiple reaches in nested stream networks in six biomes across the United States and Australia. We calculated k by EDM and fitted k via a Bayesian model for WSM. The relationships between

  11. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    Science.gov (United States)

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  12. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  13. Herbaceous Peony (Paeonia lactiflora Pall. as an Alternative Source of Oleanolic and Ursolic Acids

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2011-01-01

    Full Text Available Oleanolic acid (OA and ursolic acid (UA have been proven to possess many biological activities, and much attention is focused on the search for plants which are rich in OA and UA. In this report, the OA and UA accumulation characteristics were investigated in 47 cultivars of Chinese herbaceous peony (Paeonia lactiflora Pall. and were followed in three cultivars over different developmental stages as measured by high performance liquid chromatography (HPLC. OA and UA levels in leaves and stems demonstrated an overall upward trend from May 1 to September 15 except for UA in the leaves of “Hong Feng”. The maximum values of OA and UA in leaves of “Yangfei Chu Yu”, “Fen Zhu Pan” and “Hong Feng” were 852.98, 575.60, 290.48 μg/g FW and 924.94, 827.36, 432.67 μg/g FW, respectively. The maximum values of OA and UA in stems of “Yangfei Chu Yu”, “Fen Zhu Pan” and “Hong Feng” were 359.28, 90.49, 43.90 μg/g FW and 326.86, 82.25, 56.63 μg/g FW, respectively. OA and UA contents in leaves of 47 different herbaceous peony cultivars ranged from 66.73–618.12 and 36.23–665.14 μg/g FW, respectively, with average values of 171.62 and 227.57 μg/g FW, respectively. The results suggested that the aboveground parts of herbaceous peony may be used as an alternative source of OA and UA for medicinal purposes in addition to its ornamental purposes.

  14. Study on agroecology contamination from 125I gas and control measures in a simulated ecosystem

    International Nuclear Information System (INIS)

    Zhao Wenhu; Li Chuanzhao; Xu Shiming; Hou Lanxin; Shang Zhaorong; Li Xia

    1995-09-01

    The study was made in an air-tight space in which a simulated agricultural ecosystem was contaminated from 125 I gas. The contents of the study were summarized as follows: The space and time distribution of 125 I gas, contamination of foliage of the plants, accumulation and transfer of 125 I fallen on the soil and entered into the plants from the roots of crops and vegetables, the time distribution of 125 I in crops in water contaminated from 125 I fallout, distribution, accumulation and transfer of 125 I in chickens and rabbits which inhaled 125 I gas or fed the fodder contaminated from 125 I. The control measures of contamination in agroenvironment from 125 I were discussed. (7 refs., 20 figs., 29 tabs.)

  15. Ecophysiological responses of two herbaceous species to prescribed burning, alone or in combination with overstory thinning.

    Science.gov (United States)

    Huang, Jianjun; Boerner, Ralph E J; Rebbeck, Joanne

    2007-05-01

    The oak-rich deciduous forests of the central Appalachian Mountains of eastern North America have changed significantly since the onset of effective fire suppression early in the 20th century. Those changes have resulted in progressively decreasing light and nutrient supplies to herbaceous perennial understory species. Application of ecological restoration treatments such as reintroduction of frequent dormant-season fire and overstory thinning to pre-suppression density often increase light, soil temperature and moisture, and short-term nutrient availability to pre-suppression levels. To persist in this environment, perennial understory herbs must be able to acclimate phenotypically to the very different resource supply combinations present with and without fire suppression. As part of a larger study of the response of the long-lived herbaceous perennials Desmodium nudiflorum and Panicum boscii to ecosystem restoration treatments in Ohio mixed-oak forests, this study examined the ecophysiological effects of prescribed burning (B) and the combination of burning and thinning (T + B) in mixed-oak forests in southern Ohio. Control (C) plants had significantly lower maximum photosynthetic rate (A(max)) than those in the treated plots. The enhancement of A(max) averaged 26.7% and 52.7% in the B and T + B treatments, respectively. Plants from the T + B plots had higher quantum yield, stomatal conductance, and photosynthetic nutrient use efficiency than B and C plants. B plants had greater intrinsic water use efficiency (WUE) than plants in the C or T + B treatments. Light saturation point (LSP), light compensation point (LCP), and "dark" respiration (DR) did not differ among treatments. Photosynthetic parameters did vary significantly between the species, but no significant treatment × species interactions were detected. Our results support the hypothesis that prescribed burning, especially when combined with overstory thinning, in these perennial herbs can result in

  16. The Exit Gradient As a Measure of Groundwater Dependency of Watershed Ecosystem Services

    Science.gov (United States)

    Faulkner, B. R.; Canfield, T. J.; Justin, G. F.

    2014-12-01

    Flux of groundwater to surface water is often of great interest for the determination of the groundwater dependency of ecosystem services, such as maintenance of wetlands and of baseflow as a contributor to stream channel storage. It is difficult to measure. Most methods are based on coarse mass balance estimates or seepage meters. One drawback of these methods is they are not entirely spatially explicit. The exit gradient is commonly used in engineering studies of hydraulic structures affected by groundwater flow. It can be simply defined in the groundwater modeling context as the ratio of the difference between the computed head and the land surface elevation, for each computational cell, to the thickness of the cell, as it varies in space. When combined with calibrated groundwater flow models, it also has the potential to be useful in watershed scale evaluations of groundwater dependency in a spatially explicit way. We have taken advantage of calibrated models for the Calapooia watershed, Oregon, to map exit gradients for the watershed. Streams in the Calapooia are hydraulically well connected with groundwater. Not surprisingly, we found large variations in exit gradients between wet and dry season model runs, supporting the notion of stream expansion, as observed in the field, which may have a substantial influence on water quality. We have mapped the exit gradients in the wet and dry seasons, and compared them to regions which have been mapped in wetland surveys. Those classified as Palustrine types fell largest in the area of contribution from groundwater. In many cases, substantially high exit gradients, even on average, did not correspond to mapped wetland areas, yet nutrient retention ecosystem services may still be playing a role in these areas. The results also reinforce the notion of the importance of baseflow to maintenance of stream flow, even in the dry summer season in this Temperate/Mediterranean climate. Exit gradient mapping is a simple, yet

  17. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  18. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  19. Herbaceous Angiosperms Are Not More Vulnerable to Drought-Induced Embolism Than Angiosperm Trees.

    Science.gov (United States)

    Lens, Frederic; Picon-Cochard, Catherine; Delmas, Chloé E L; Signarbieux, Constant; Buttler, Alexandre; Cochard, Hervé; Jansen, Steven; Chauvin, Thibaud; Doria, Larissa Chacon; Del Arco, Marcelino; Delzon, Sylvain

    2016-10-01

    The water transport pipeline in herbs is assumed to be more vulnerable to drought than in trees due to the formation of frequent embolisms (gas bubbles), which could be removed by the occurrence of root pressure, especially in grasses. Here, we studied hydraulic failure in herbaceous angiosperms by measuring the pressure inducing 50% loss of hydraulic conductance (P 50 ) in stems of 26 species, mainly European grasses (Poaceae). Our measurements show a large range in P 50 from -0.5 to -7.5 MPa, which overlaps with 94% of the woody angiosperm species in a worldwide, published data set and which strongly correlates with an aridity index. Moreover, the P 50 values obtained were substantially more negative than the midday water potentials for five grass species monitored throughout the entire growing season, suggesting that embolism formation and repair are not routine and mainly occur under water deficits. These results show that both herbs and trees share the ability to withstand very negative water potentials without considerable embolism formation in their xylem conduits during drought stress. In addition, structure-function trade-offs in grass stems reveal that more resistant species are more lignified, which was confirmed for herbaceous and closely related woody species of the daisy group (Asteraceae). Our findings could imply that herbs with more lignified stems will become more abundant in future grasslands under more frequent and severe droughts, potentially resulting in lower forage digestibility. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. An ecosystem approach to evaluate restoration measures in the lignite mining district of Lusatia/Germany

    Science.gov (United States)

    Schaaf, Wolfgang

    2015-04-01

    Lignite mining in Lusatia has a history of over 100 years. Open-cast mining directly affected an area of 1000 km2. Since 20 years we established an ecosystem oriented approach to evaluate the development and site characteristics of post-mining areas mainly restored for agricultural and silvicultural land use. Water and element budgets of afforested sites were studied under different geochemical settings in a chronosequence approach (Schaaf 2001), as well as the effect of soil amendments like sewage sludge or compost in restoration (Schaaf & Hüttl 2006). Since 10 years we also study the development of natural site regeneration in the constructed catchment Chicken Creek at the watershed scale (Schaaf et al. 2011, 2013). One of the striking characteristics of post-mining sites is a very large small-scale soil heterogeneity that has to be taken into account with respect to soil forming processes and element cycling. Results from these studies in combination with smaller-scale process studies enable to evaluate the long-term effect of restoration measures and adapted land use options. In addition, it is crucial to compare these results with data from undisturbed, i.e. non-mined sites. Schaaf, W., 2001: What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering 17, 241-252. Schaaf, W. and Hüttl, R. F., 2006: Direct and indirect effects of soil pollution by lignite mining. Water, Air and Soil Pollution - Focus 6, 253-264. Schaaf, W., Bens, O., Fischer, A., Gerke, H.H., Gerwin, W., Grünewald, U., Holländer, H.M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S. & Hüttl, R.F., 2011: Patterns and processes of initial terrestrial-ecosystem development. Journal of Plant Nutrition and Soil Science, 174, 229-239. Schaaf, W., Elmer, M., Fischer, A., Gerwin, W., Nenov, R., Pretsch, H. and Zaplate, M.K., 2013: Feedbacks between vegetation, surface structures and hydrology

  1. Ecosystem Science: measuring, mapping and predicting the production of nature’s goods and services

    Science.gov (United States)

    Our existence, let alone our well-being, depends on “goods and services” produced by ecosystems (food, purification of water and air, outdoor recreation, etc.). Humans have the power to enhance, protect, or degrade nature’s capacity to provide these ecosystem s...

  2. Connecting Ecosystem Service Production to Users as a Measure of Realized Benefits in Coastal Communities

    Science.gov (United States)

    Ecosystem goods and services are often produced in locations far away from where humans benefit from them. Human beneficiaries also use specific spatial pathways to access the Final Ecosystem Goods and Services (FEGS), the ecological endpoints directly beneficial to human well-b...

  3. Application of remote sensing data for measuring freshwater ecosystems changes below the Zeya dam in the Russian Far East

    Science.gov (United States)

    Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.

    2018-06-01

    The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.

  4. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements

    Science.gov (United States)

    Katata, Genki

    2014-07-01

    Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater (Vd) in model results, wind speed, and plant species structures associated with literature values are gathered for model validation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as 2 orders of magnitude, which are likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review show that Vd values ranged from 2.1 to 8.0 cm s-1 for short vegetation, whereas Vd = 7.7-92 cm s-1 and 0-20 cm s-1 for forests measured by throughfall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model validation are outlined.

  5. Decomposition of aboveground biomass of a herbaceous wetland stand

    OpenAIRE

    KLIMOVIČOVÁ, Lucie

    2010-01-01

    The master?s thesis is part of the project GA ČR č. P504/11/1151- Role of plants in the greenhouse gas budget of a sedge fen. This thesis deals with the decomposition of aboveground vegetation in a herbaceous wetland. The decomposition rate was established on the flooded part of the Wet Meadows near Třeboň. The rate of the decomposition processes was evaluated using the litter-bag method. Mesh bags filled with dry plant matter were located in the vicinity of the automatic meteorological stati...

  6. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to

  7. Spectroscopic measurements of soybeans used to parameterize physiological traits in the AgroIBIS ecosystem model

    Science.gov (United States)

    Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.

    2014-12-01

    Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the Agro

  8. Re-Assessing the Measurement of Fogwater Inputs to a Tropical Ecosystem

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Holwerda, F.; Bruijnzeel, S.; Scatena, F.; Siegwolf, R.

    2002-12-01

    For several years the hydrological importance of the fog- and cloudwater deposition to ecosystems in the tropics has been of great interest. In earlier studies carried out in the humid tropics the amount of deposited cloudwater was estimated by indirect methods based on the physical characteristics of the utilized cloudwater collector. In the temperate climatic zone of central Europe most of the studies dealing with cloudwater focus on the additional chemical input due to cloudwater in relation to the amount of deposited rainwater. During our experiment in the Luquillo mountains of Puerto Rico the different aspects of the chemical and hydrological impacts of cloudwater deposition have been investigated. During 43 days, cloudwater fluxes were measured with an eddy covariance setup consisting of a Solent ultrasonic anemometer and a size-resolving cloud droplet spectrometer. Cloudwater samples were taken with a Caltech-type active strand cloudwater collector. Additionally, measurements of rain, throughfall and stemflow were performed. Samples of fog, rain, throughfall and stemflow were analyzed for inorganic ion and stabile isotope concentrations (δ18O and δ2H). First analysis of the hydrological input show that there exist some significant differences in the deposited amount of cloudwater as measured with our instruments in comparison with previous studies carried out at the same location: Mean liquid water content was 78.6 mg m-3 during situations with a visibility below 1000 m (84% of the entire field campaign). The deposition rate of cloudwater was 0.88 mm d-1. A mismatch was found regarding the water balance. We conclude from this that the rainfall amount and therefore also the chemical input by rain is strongly underestimated due to wind-driven rain, which is not measured by standard rain gauges. Depending on the reference value, we have to conclude that the deposition of cloudwater accounts for 6--11% of wet deposition.

  9. Uncertainty analysis of scintillometers methods in measuring sensible heat fluxes of forest ecosystem

    Science.gov (United States)

    Zheng, N.

    2017-12-01

    degree of uncertainty with quantitative analysis. The study can provide theoretical basis and technical support for accurately measuring sensible heat fluxes of forest ecosystem with scintillometer method, and can also provide work foundation for further study on role of forest ecosystem in energy balance and climate change.

  10. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    Science.gov (United States)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  11. Are soils in urban ecosystems compacted? A citywide analysis.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  12. Examination of the combustion conditions of herbaceous biomass

    Energy Technology Data Exchange (ETDEWEB)

    Szemmelveisz, K.; Szucs, I.; Palotas, A.B.; Winkler, L. [Department of Combustion Technology and Thermal Energy, University of Miskolc (Hungary); Eddings, E.G. [Department of Chemical Engineering, University of Utah, Salt Lake City (United States)

    2009-06-15

    Power generation from biomass is a fairly new area, and boilers that utilize various types of biomass have in many cases experienced serious problems with slagging, fouling and corrosion of boiler tubes. Mineral matter in these fuels can deposit on the heat-exchanger surfaces in the boiler and generate an insulating layer, which will significantly reduce the degree of heat-transfer from flue gas to water and steam. Our investigations were focused on the slag characteristics of different kinds of herbaceous biomass fuels. Since there is usually a reducing atmosphere present in the direct combustion zone of modern low-NO{sub x} firing systems, it is important to study mineral matter transformation of burned fuel residues in a reducing atmosphere. An excellent device for this type of study is the electric-resistance heated Bunte-Baum softening temperature testing instrument, which was used in this work. Ash chemical composition was analyzed via flame atomic absorption spectrometry and the microstructure of ash was determined using a scanning electron microscope. Crystalline compounds of the ashes were identified by using X-ray powder diffraction. This paper provides an overview of results on the combustion and slag characteristics of herbaceous biomass fuels. The results include chemical compositions, morphology and softening properties of these fuels, with special attention to switch grass and sunflower seed shell. (author)

  13. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  14. STUDY REGARDING TO AGGRESSIONS ON THE ECOSYSTEM DANUBE DELTA – BLACK SEA AND PROTECTIVE MEASURES

    Directory of Open Access Journals (Sweden)

    Ion Gr. IONESCU

    2014-06-01

    Full Text Available Danube Delta has suffered damages of habitat and species loss caused by factors, including: construction of dams upstream have degraded obviously flooding regime; creation of agricultural and fishing enclosures which decreased the natural and original surfaces; extending artificial navigation channels that negatively affected the hydrological regime and water quality of lakes; increase of nutrients in the water, industrial pollution and accumulate effluents that led to the reduction of plant and bird species; attempt to exploit quartz sand, very pure and fine, the sea levees, although they were protected as nature reserves because of the specific morphology and sub-Mediterranean vegetation covering them; tourism and illegal fishing; mismanagement of resources of reed and fish. The fact is that there was a slight improvement for the marine ecosystem, reported since the early 90s. At present, the area of the Danube Delta - Black Sea is developing sustainable, in terms of medium and economic perspective. In my study I used comparative methods, investigations, direct observations, measurements, calculations and actual data, obtained from surveys and direct observations, from prestigious, specialized and authorized institutions.

  15. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    Science.gov (United States)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  16. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    Science.gov (United States)

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  17. Measuring environmental change in forest ecosystems by repeated soil sampling: a North American perspective

    Science.gov (United States)

    Lawrence, Gregory B.; Fernandez, Ivan J.; Richter, Daniel D.; Ross, Donald S.; Hazlett, Paul W.; Bailey, Scott W.; Oiumet, Rock; Warby, Richard A.F.; Johnson, Arthur H.; Lin, Henry; Kaste, James M.; Lapenis, Andrew G.; Sullivan, Timothy J.

    2013-01-01

    Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced.

  18. An Improved Estimation of Regional Fractional Woody/Herbaceous Cover Using Combined Satellite Data and High-Quality Training Samples

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-01-01

    Full Text Available Mapping vegetation cover is critical for understanding and monitoring ecosystem functions in semi-arid biomes. As existing estimates tend to underestimate the woody cover in areas with dry deciduous shrubland and woodland, we present an approach to improve the regional estimation of woody and herbaceous fractional cover in the East Asia steppe. This developed approach uses Random Forest models by combining multiple remote sensing data—training samples derived from high-resolution image in a tailored spatial sampling and model inputs composed of specific metrics from MODIS sensor and ancillary variables including topographic, bioclimatic, and land surface information. We emphasize that effective spatial sampling, high-quality classification, and adequate geospatial information are important prerequisites of establishing appropriate model inputs and achieving high-quality training samples. This study suggests that the optimal models improve estimation accuracy (NMSE 0.47 for woody and 0.64 for herbaceous plants and show a consistent agreement with field observations. Compared with existing woody estimate product, the proposed woody cover estimation can delineate regions with subshrubs and shrubs, showing an improved capability of capturing spatialized detail of vegetation signals. This approach can be applicable over sizable semi-arid areas such as temperate steppes, savannas, and prairies.

  19. Continuous In-situ Measurements of Carbonyl Sulfide (OCS) and Carbon Dioxide Isotopes to Constrain Ecosystem Carbon and Water Exchanges

    Science.gov (United States)

    Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.

    2015-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  20. Eleventh-year results of fertilization, herbaceous, and woody plant control in a loblolly pine plantation

    Science.gov (United States)

    James D. Haywood; Allan E. Tiarks

    1990-01-01

    Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control...

  1. Variation in herbaceous vegetation and soil moisture under treated and untreated oneseed juniper trees

    Science.gov (United States)

    Hector Ramirez; Alexander Fernald; Andres Cibils; Michelle Morris; Shad Cox; Michael Rubio

    2008-01-01

    Clearing oneseed juniper (Juniperus monosperma) may make more water available for aquifer recharge or herbaceous vegetation growth, but the effects of tree treatment on soil moisture dynamics are not fully understood. This study investigated juniper treatment effects on understory herbaceous vegetation concurrently with soil moisture dynamics using vegetation sampling...

  2. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes.

    Science.gov (United States)

    Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng

    2018-04-24

    Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae).

    Science.gov (United States)

    Nie, Ze-Long; Funk, Vicki A; Meng, Ying; Deng, Tao; Sun, Hang; Wen, Jun

    2016-03-01

    The global flora is thought to contain a large proportion of herbs, and understanding the general spatiotemporal processes that shaped the global distribution of these communities is one of the most difficult issues in biogeography. We explored patterns of world-wide biogeography in a species-rich herbaceous group, the paper daisy tribe Gnaphalieae (Asteraceae), based on the hitherto largest taxon sampling, a total of 835 terminal accessions representing 80% of the genera, and encompassing the global geographic range of the tribe, with nuclear internal transcribed spacer (ITS) and external transcribed spacer (ETS) sequences. Biogeographic analyses indicate that Gnaphalieae originated in southern Africa during the Oligocene, followed by repeated migrations into the rest of Africa and the Mediterranean region, with subsequent entries into other continents during various periods starting in the Miocene. Expansions in the late Miocene to Pliocene appear to have been the driving force that shaped the global distribution of the tribe as forests were progressively broken up by the mid-continent aridification and savannas and grasslands expanded into the interior of the major continents. This pattern of recent colonizations may explain the world-wide distribution of many other organisms in open ecosystems and it is highlighted here as an emerging pattern in the evolution of the global flora. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae.

    Science.gov (United States)

    Wang, Wei; Lin, Li; Xiang, Xiao-Guo; Ortiz, Rosa Del C; Liu, Yang; Xiang, Kun-Li; Yu, Sheng-Xiang; Xing, Yao-Wu; Chen, Zhi-Duan

    2016-06-02

    The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.

  5. Measuring resilience of coupled human-water systems using ecosystem services compatible indicators

    Science.gov (United States)

    Hannah, D. M.; Mao, F.; Karpouzoglou, T.; Clark, J.; Buytaert, W.

    2017-12-01

    To explore the dynamics of socio-hydrological systems under change, the concepts of resilience and ecosystem services serve as useful tools. In this context, resilience refers to the capacity of a socio-hydrological system to retain its structural and functional state despite perturbations, while ecosystem services offer a good proxy of the state that reflects human-water intersections. Efforts are needed to maintain and improve socio-hydrological resilience for future contingencies to secure hydrological ecosystem services supply. This requires holistic indicators of resilience for coupled human-water systems that are essential for quantitative assessment, change tracking, inter-case comparison, as well as resilience management. However, such indicators are still lacking. Our research aims to propose widely applicable resilience indicators that are suitable for the coupled human-water context, and compatible with ecosystem services. The existing resilience indicators for both eco-hydrological and socio-economic sectors are scrutinised, screened and analysed to build these new indicators. Using the proposed indicators, we compare the resilience and its temporal change among a set of example regions, and discusses the linkages between socio-hydrological resilience and hydrological ecosystem services with empirical cases.

  6. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    Science.gov (United States)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport

  7. Ecosystem scale VOC exchange measurements at Bosco Fontana (IT) and Hyytiälä (FI)

    Science.gov (United States)

    Schallhart, S.; Rantala, P.; Taipale, R.; Nemitz, E.; Tillmann, R.; Mentel, T. F.; Ruuskanen, T.; Rinne, J.

    2013-12-01

    monoterpenes storages, which are emitted at high temperatures. The results of both forests are consistent with the cuvette measurements of Ghirardo et al. (2010). This research received funding from the EC Seventh Framework Programme (Collaborative project "ECLAIRE" grant no. 282910) and by the Academy of Finland Center of Excellence program (project number 141135). References.: Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler, J-P. and Rinne, J. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant, Cell & Environment,33,5,781-792,2010. Taipale, R., Kajos, M.K., Patokoski, J., Rantala, P., Ruuskanen, T.M. and Rinne, J. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences, 8, 8, 2247-2255, 2011.

  8. Measuring and Mapping the Topography of the Florida Everglades for Ecosystem Restoration

    Science.gov (United States)

    Desmond, Gregory B.

    2003-01-01

    One of the major issues facing ecosystem restoration and management of the Greater Everglades is the availability and distribution of clean, fresh water. The South Florida ecosystem encompasses an area of approximately 28,000 square kilometers and supports a human population that exceeds 5 million and is continuing to grow. The natural systems of the Kissimmee-Okeechobee-Everglades watershed compete for water resources primarily with the region's human population and urbanization, and with the agricultural and tourism industries. Surface water flow modeling and ecological modeling studies are important means of providing scientific information needed for ecosystem restoration planning and modeling. Hydrologic and ecological models provide much-needed predictive capabilities for evaluating management options for parks, refuges, and land acquisition and for understanding the impacts of land management practices in surrounding areas. These models require various input data, including elevation data that very accurately define the topography of the Florida Everglades.

  9. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  10. Rural herbaceous plant diversity under different land uses in North Zhejiang Province%浙北地区不同土地利用下乡村草本层植物多样性研究

    Institute of Scientific and Technical Information of China (English)

    吴灏; 张建锋; 陈光才; 汪庆兵; 王丽; 张颖

    2016-01-01

    该文以浙江省安吉县两个典型乡村—繅舍村和赋石村为例,选取公园、农耕区、河道、人工林地四种不同土地利用类型,用Shannon-Wiener指数、Simpson指数、Sorensen指数为标识多样性的指标,分析不同生境下草本植物多样性差异。结果表明:乡村生境中共记录物种162种,分属47科123属,其中禾本科与菊科物种数占总数的31.48%;农耕区生境的Shannon-Wiener指数、Simpson指数最高,分别为2.76和0.91,农耕区与河道的Sorensen指数最高为0.57。从农耕区、河道、公园到林地生境,草本物种多样性整体呈减小趋势。另外,发现人工绿化措施会导致草本物种减少,如从种植水稻单一作物到复合作物,草本层植物随之改变。单一稻田与复合种植区比较,草本植物主要的科属组成无明显变化,莎草科、菊科、禾本科植物仍占主体;但草本植物群落主要物种组成发生变化,稻田转变成农耕区后,牛筋草、黑麦草,碎米荠、小飞蓬、喜旱莲子草成为草本层群落主要构成植物,水竹叶覆盖度减少,小飞蓬和喜旱莲子草的覆盖度增加。此外,还发现4种生境中共有喜旱莲子草、加拿大一枝黄花、土荆芥三种入侵物种,但未能对本土物种构成显著影响。这表明不同土地利用方式会严重影响草本群落物种组成及物种多样性;土地利用方式的变化,会引起草本植物主要群落构成发生改变;土地利用类型的多样化有利于本土草本物种多样性生存。该研究结果有助于为城镇化进程中保护乡村植物多样性、加速推进美丽中国建设提供技术支撑。%Local plants were important for ecosystem diversity, of which herbaceous plants took a great account. In the article Fushi Village and Saoshe Village in Zhejiang Province were taken as test plots, where land use systems were di-vided into four artificial habits such as artificial forest, gardens, rivers

  11. Measuring conflicts in the management of anthropized ecosystems: Evidence from a choice experiment in a human-created Mediterranean wetland.

    Science.gov (United States)

    Perni, Ángel; Martínez-Paz, José Miguel

    2017-12-01

    Economic valuation of ecosystem services provides valuable information for the management of anthropized environments, where individual preferences can be heterogeneous and even opposed. Here, we discuss how these ecosystem services were approached in the literature and we address the main issues in relation to their economic valuation. We consider that avoiding misspecifications in economic valuation surveys requires considering the linkages between anthropized ecosystems and human intervention. To illustrate, we analyse the case study of a human-created Mediterranean wetland (El Hondo, SE Spain) using a Choice Experiment. Our findings suggest that management strategies in El Hondo should be oriented to improve the water ecological status, to enhance biodiversity and to develop ecotourism, whereas hunting should be strictly limited and controlled. Our measures of conflict (trade-off between ecosystem services and willingness to pay values) can help to find the optimal allocation of public and private goods and services and for the implementation of compensation schemes in the area. According to public preferences, a conservationist management strategy would generate 331,100 €/year in terms of environmental benefits, whereas a tourism-based management strategy would benefit society with 805,200 €/year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  13. Measuring effectiveness, efficiency and equity in an experimental Payments for Ecosystem Services trial.

    Science.gov (United States)

    Martin, Adrian; Gross-Camp, Nicole; Kebede, Bereket; McGuire, Shawn

    2014-09-01

    There is currently a considerable effort to evaluate the performance of Payments for Ecosystem Services as an environmental management tool. The research presented here contributes to this work by using an experimental design to evaluate Payments for Ecosystem Services as a tool for supporting biodiversity conservation in the context of an African protected area. The trial employed a 'before and after' and 'with and without' design. We present the results of social and ecological surveys to investigate the impacts of the trial in terms of its effectiveness, efficiency and equity. We find the scheme to be effective at bringing about additional conservation outcomes. However, we also found that increased monitoring is similarly effective in the short term, at lower cost. The major difference - and arguably the significant contribution of the Payments for Ecosystem Services - was that it changed the motives for protecting the park and improved local perceptions both of the park and its authority. We discuss the implications of these results for conservation efficiency, arguing that efficiency should not be defined in terms of short-term cost-effectiveness, but also in terms of the sustainability of behavioral motives in the long term. This insight helps us to resolve the apparent trade-off between goals of equity and efficiency in Payments for Ecosystem Services.

  14. Facilitation by a Spiny Shrub on a Rhizomatous Clonal Herbaceous in Thicketization-Grassland in Northern China: Increased Soil Resources or Shelter from Herbivores

    Directory of Open Access Journals (Sweden)

    Saixiyala

    2017-05-01

    Full Text Available The formation of fertility islands by shrubs increases soil resources heterogeneity in thicketization-grasslands. Clonal plants, especially rhizomatous or stoloniferous clonal plants, can form large clonal networks and use heterogeneously distributed resources effectively. In addition, shrubs, especially spiny shrubs, may also provide herbaceous plants with protection from herbivores, acting as ‘shelters’. The interaction between pre-dominated clonal herbaceous plants and encroaching shrubs remains unclear in thicketization-grassland under grazing pressure. We hypothesized that clonal herbaceous plants can be facilitated by encroached shrubs as a ‘shelter from herbivores’ and/or as an ‘increased soil resources’ under grazing pressure. To test this hypothesis, a total of 60 quadrats were chosen in a thicket-grassland in northern China that was previously dominated by Leymus chinensis and was encroached upon by the spiny leguminous plant Caragana intermedia. The soil and plant traits beneath and outside the shrub canopies were sampled, investigated and contrasted with an enclosure. The soil organic matter, soil total nitrogen and soil water content were significantly higher in the soil beneath the shrub canopies than in the soil outside the canopies. L. chinensis beneath the shrub canopies had significantly higher plant height, single shoot biomass, leaf length and width than outside the shrub canopies. There were no significantly differences between plant growth in enclosure and outside the shrub canopies. These results suggested that under grazing pressure in a grassland undergoing thicketization, the growth of the rhizomatous clonal herbaceous plant L. chinensis was facilitated by the spiny shrub C. intermedia as a ‘shelter from herbivores’ more than through ‘increased soil resources’. We propose that future studies should focus on the community- and ecosystem-level impacts of plant clonality.

  15. Ecosystem-based management and the wealth of ecosystems

    OpenAIRE

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    Ecosystems store vast quantities of wealth, but difficulties measuring wealth held in ecosystems prevent its inclusion in accounting systems. Ecosystem-based management endeavors to manage ecosystems holistically. However, ecosystem-based management lacks headline indicators to evaluate performance. We unify the inclusive wealth and ecosystem-based management paradigms, allowing apples-to-apples comparisons between the wealth of the ecosystem and other forms of wealth, while providing a headl...

  16. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    Science.gov (United States)

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  17. Measurement-based upscaling of pan Arctic net ecosystem exchange: the PANEEx project

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Kusbach, Antonin; Lund, Magnus

    2015-01-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental...... change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12...... Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency...

  18. Net ecosystem productivity of temperate and boreal forests after clearcutting a Fluxnet-Canada measurement and modelling synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Grant, R. F. (Dept. of Renewable Resources, Univ. of Alberta, Edmonton, (Canada)), e-mail: robert.grant@ales.ualberta.ca; Barr, A. G. (Climate Research Branch, Meteorological Service of Canada, Saskatoon (Canada)); Black, T. A. (Faculty of Land and Food Systems, Univ. of British Columbia, Vancouver BC, (Canada)); Margolis, H. A. (Faculte de Foresterie et de Geomatique, Pavillon Abitibi-Price, Universite Laval, Quebec (Canada)); McCaughey, J. H. (Dept. of Geography, Queen' s Univ., Kingston (Canada)); Trofymow, J. A. (Canadian Forest Service, Pacific Forestry Centre, Victoria (Canada))

    2010-11-15

    Clearcutting strongly affects subsequent forest net ecosystem productivity (NEP). Hypotheses for ecological controls on NEP in the ecosystem model ecosys were tested with CO{sub 2} fluxes measured by eddy covariance (EC) in three post clearcut conifer chronosequences in different ecological zones across Canada. In the model, microbial colonization of postharvest fine and woody debris drove heterotrophic respiration (Rh), and hence decomposition, microbial growth, N mineralization and asymbiotic N{sub 2} fixation. These processes controlled root N uptake, and thereby CO{sub 2} fixation in regrowing vegetation. Interactions among soil and plant processes allowed the model to simulate hourly CO{sub 2} fluxes and annual NEP within the uncertainty of EC measurements from 2003 to 2007 over forest stands from 1 to 80 yr of age in all three chronosequences without site- or species-specific parameterization. The model was then used to study the impacts of increasing harvest removals on subsequent C stocks at one of the chronosequence sites. Model results indicated that increasing harvest removals would hasten recovery of NEP during the first 30 yr after clearcutting, but would reduce ecosystem C stocks by about 15% of the increased removals at the end of an 80-yr harvest cycle

  19. Measurement of Farmland Ecosystem Services Evaluation in Beidaihe District, Hebei Province, China

    Directory of Open Access Journals (Sweden)

    LIU Xiao-dan

    2017-06-01

    Full Text Available Farmland ecosystem is an important part of supporting and maintaining earth's life systems. It has the direct function value of providing agricultural product as well as the indirect function values of adjustment, support and culture. Chose the Beidaihe district in Hebei Province as the study region, the eco-system service functions were evaluated by ecological economics approach. The results showed that the indirect value was 1.09 times of the value direct in 2014. The farmland ecosystem not only had direct production function, but also had important ecological supporting functions. In the process of agricultural structure adjustment, the indirect functions should be given enough attention. The sort of values were production function > tourism function > carbon sequestration and oxygen release function > dispose of waste function > water conservation function > social security function > soil protection value > straw returning to field function > clean air function. In the process of accelerating the construction of modern agricultural park, vigorously developing ecological leisure agriculture, pushing forward the comprehensive utilization of crop straw, and actively developing ecological cycle of agriculture, the Beidaihe district should rationally adjust the use of farmland and focus on improving the values of indirect services to optimize service values. The study can be used as decision basis and scientific support for effective protection and sustainable utilization of farmland resources.

  20. Nematode Community Composition under Various Irrigation Schemes in a Citrus Soil Ecosystem.

    Science.gov (United States)

    Porazinska, D L; McSorley, R; Duncan, L W; Graham, J H; Wheaton, T A; Parsons, L R

    1998-06-01

    Interest in the sustainability of farming practices has increased in response to environmental problems associated with conventional agricultural management often adopted for the production of herbaceous crops, ornamentals, and fruit crops. Availability of measures of the status of the soil ecosystem is of immediate importance, particularly for environmental assessment and monitoring programs. This study investigated the effects of various irrigation regimes (an example of an agricultural management practice) on the structure of the nematode fauna in a citrus orchard in the sandy ridge area of Central Florida. Ecological measures such as community structure indices, diversity indices, and maturity indices were assessed and related to irrigation intensity. Maturity index was an effective measure in distinguishing differences between irrigation regimes, whereas other indices of community structure were not. Of various nematode genera and trophic groups, only omnivores and the omnivore genera. Aporcelaimellus and Eudorylaimus responded to irrigation treatments.

  1. Assessing ecosystem response to multiple disturbances and climate change in South Africa using ground- and satellite-based measurements and model

    Science.gov (United States)

    Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.

    2015-12-01

    Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.

  2. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  3. Towards Integrating Soil Quality Monitoring Targets as Measures of Soil Natural Capital Stocks with the Provision of Ecosystem Services

    Science.gov (United States)

    Taylor, M. D.; Mackay, A. D.; Dominati, E.; Hill, R. B.

    2012-04-01

    This paper presents the process used to review soil quality monitoring in New Zealand to better align indicators and indicator target ranges with critical values of change in soil function. Since its inception in New Zealand 15 year ago, soil quality monitoring has become an important state of the environment reporting tool for Regional Councils. This tool assists councils to track the condition of soils resources, assess the impact of different land management practices, and provide timely warning of emerging issues to allow early intervention and avoid irreversible loss of natural capital stocks. Critical to the effectiveness of soil quality monitoring is setting relevant, validated thresholds or target ranges. Provisional Target Ranges were set in 2003 using expert knowledge available and data on production responses. Little information was available at that time for setting targets for soil natural capital stocks other than those for food production. The intention was to revise these provisional ranges as further information became available and extend target ranges to cover the regulating and cultural services provided by soils. A recently developed ecosystems service framework was used to explore the feasibility of linking soil natural capital stocks measured by the current suite of soil quality indicators to the provision of ecosystem services by soils. Importantly the new approach builds on and utilises the time series data sets collected by current suite of soil quality indicators, adding value to the current effort, and has the potential to set targets ranges based on the economic and environmental outcomes required for a given farm, catchment or region. It is now timely to develop a further group of environmental indicators for measuring specific soil issues. As with the soil quality indicators, these environmental indicators would be aligned with the provision of ecosystem services. The toolbox envisaged is a set of indicators for specific soil issues

  4. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  5. Tolerance of herbaceous summer legumes of temporary waterlogging

    Directory of Open Access Journals (Sweden)

    Elsa M. Ciotti

    2014-09-01

    Full Text Available A greenhouse study to evaluate adaptation of 4 herbaceous summer legumes to temporary waterlogging was conducted.  Species evaluated were Desmanthus virgatus and Aeschynomene americana in their vegetative stage, and Macroptilium lathyroides and M. atropurpureum in both vegetative and reproductive stages.  The experimental design was randomized blocks with 5 replications and treatments were:  T0, control; T1, saturation by capillary movement placing pots in buckets of 5 L with 10 cm of permanent water; and T2, flooding, placing pots in buckets of 10 L and a layer of water 5 cm above the soil.  The duration of the water treatments was 7 days. Waterlogging did not affect shoot or root biomass production nor nodulation in A. americana, whereas D. virgatus had its highest dry matter production in saturated soil (T1.  In M. lathyroides flooding tolerance was more evident in the reproductive than in the vegetative stage, probably due to more production of adventitious roots and formation of aerenchymatic tissue.  Macroptilium atropurpureum showed adaptation to temporary flooding.  Survival and quick recovery of these species would confirm their potential as forages for temporarily waterlogged soils.Keywords: Forage legumes, flooding, Aeschynomene americana, Desmanthus virgatus, Macroptilium lathyroides, Northeast Argentina.DOI: 10.17138/TGFT(2278-286

  6. Herbaceous energy crops: a general survey and a microeconomic analysis

    International Nuclear Information System (INIS)

    Caserta, G.

    1995-01-01

    Liquid fuels (bioethanol and biooil) derived from herbaceous crops are considered beneficial for the environment and human health especially if they are used as fuels for motor vehicles. The choice of the most suited crop to be cultivated for liquid biofuel production depends on many factors; the most important being the economic convenience for farmers to cultivate the new energy crop in place of the traditional ones. In order to analyse the conditions which favour the cultivation and selling of specific energy crops, a simple methodology is proposed, based on the calculation of the ''threshold price'' of the energy crop products. The ''threshold price'' is the minimum price at which the primary products of the energy crop, i.e., roots, tubers, seeds, etc., must be sold in order to obtain a gross margin equal to that usually obtained from the traditional crop which is replaced by the energy crop. As a case-study, this methodology has been applied to twelve Italian provinces where the cultivation of six energy crops, both in productive lands and set-aside lands, is examined. The crops considered are sugar beet, sweet sorghum and topinambour, useful for bioethanol production; and rapeseed, sunflower and soya, which are usually employed for the production of biooil. (Author)

  7. Symbiotic Performance of Herbaceous Legumes in Tropical Cover Cropping Systems

    Directory of Open Access Journals (Sweden)

    Basil Ibewiro

    2001-01-01

    Full Text Available Increasing use of herbaceous legumes such as mucuna (Mucuna pruriens var. utilis [Wright] Bruck and lablab (Lablab purpureus [L.] Sweet in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2. The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM than live mulch (LM systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.

  8. Herbaceous energy crops in humid lower South USA

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M.; Woodard, K.R. [Univ. of Florida, Gainesville, FL (United States)

    1993-12-31

    The humid lower South has the long warm growing season and high rainfall conditions needed for producing high-yielding perennial herbaceous grasses and shrubs. Many potential biomass plants were evaluated during a ten-year period. Perennial tall grasses such as elephantgrass (Pennisetum purpureum), sugarcane and energycane (Saccharum spp.) and the leguminous shrub Leucaena leucocephala were the highest in biomass production. These perennial crops often have top growth killed by winter freezes and regenerate from underground parts. The tall grasses have high yields because of linear crop growth rates of 18 to 27 g m{sup 2} d{sup {minus}1} for long periods (140 to 196 d) each season. Tall grasses must be planted vegetatively, which is more costly than seed propagation, however, once established, they may persist for many seasons. Oven dry biomass yields have varied from 20 to 45 Mg ha{sup {minus}1} yr{sup {minus}1} in colder subtropical to mild temperate locations to over 60 Mg ha{sup {minus}1} yr{sup {minus}1} in the lower portion of the Florida peninsular. Highest biomass yields have been produced when irrigated with sewage effluent or when grown on phosphatic clay and muck soils in south Florida. The energy content of 1 Mg of oven dry tall grass and leucaena is equivalent to that of about 112 and 123 gallons of number 2 diesel fuel, respectively.

  9. Management of Herbaceous Seeps and Wet Savannas for Threatened and Endangered Species

    National Research Council Canada - National Science Library

    Harper, Mary

    1998-01-01

    Wetland communities such as herbaceous seeps and wet savannas occur on military installations throughout the southeastern United States, usually as pockets of wet habitat within a matrix of drier longleaf pine woodlands...

  10. Simkin et al. 2016 PNAS data on herbaceous species richness and associated plot and covariate information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the geographic location (lat/lon) for 15,136 plots, as well as the herbaceous species richness, climate, soil pH, and other variables related...

  11. Herbaceous forage and selection patterns by ungulates across varying herbivore assemblages in a South African savanna

    NARCIS (Netherlands)

    Treydte, A.C.; Baumgartner, S.; Heitkonig, I.M.A.; Grant, C.C.; Getz, W.M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African

  12. Evaluation de la diversité floristique en herbacées dans le Parc ...

    African Journals Online (AJOL)

    1. Phyllanthaceae. Phyllanthus maderaspatensis L. 1. Polygalaceae. Polygala petitiana A. Rich. 1. Portulacaceae. Portulaca quadrifida L. 1. Total. 23. DISCUSSION. Les résultats de cette étude fournissent des informations sur l'état actuel de la végétation herbacée du PNM au Tchad. La végétation herbacée de la zone du.

  13. The cost of silage harvest and transport systems for herbaceous crops

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow, A.; Downing, M. [Oak Ridge National Lab., TN (United States); Butler, J. [Butler (James), Tifton, GA (United States)

    1996-12-31

    Some of the highest yielding herbaceous biomass crops are thick- stemmed species. Their relatively high moisture content necessitates they be handled and stored as silage rather than hay bales or modules. This paper presents estimated costs of harvesting and transporting herbaceous crops as silage. Costs are based on an engineering- economic approach. Equipment costs are estimated by combining per hour costs with the hours required to complete the operation. Harvest includes severing, chopping, and blowing stalks into a wagon or truck.

  14. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal

    Science.gov (United States)

    Delon, C.; Galy-Lacaux, C.; Serça, D.; Loubet, B.; Camara, N.; Gardrat, E.; Saneh, I.; Fensholt, R.; Tagesson, T.; Le Dantec, V.; Sambou, B.; Diop, C.; Mougin, E.

    2017-05-01

    The alternating between dry and wet seasons and the consecutive microbial responses to soil water content in semiarid ecosystems has significant consequences on nitrogen exchanges with the atmosphere. Three field campaigns were carried out in a semi arid sahelian rangeland in Dahra (Ferlo, Senegal), two at the beginning of the wet season in July 2012 and July 2013, and the third one in November 2013 at the end of the wet season. The ammonia emission potentials of the soil ranged from 271 to 6628, indicating the soil capacity to emit NH3. The ammonia compensation point in the soil ranged between 7 and 150 ppb, with soil temperatures between 32 and 37 °C. Ammonia exchange fluctuated between emission and deposition (from -0.1-1.3 ng N.m-2 s-1), depending on meteorology, ambient NH3 concentration (5-11 ppb) and compensation point mixing ratios. N2O fluxes are supposed to be lower than NO fluxes in semi arid ecosystems, but in Dahra N2O fluxes (5.5 ± 1.3 ng N m-2 s-1 in July 2013, and 3.2 ± 1.7 ng N m-2 s-1 in November 2013) were similar to NO fluxes (5.7 ± 3.1 ng N m-2 s-1 in July 2012, 5.1 ± 2.1 ng N m-2 s-1 in July 2013, and 4.0 ± 2.2 ngN m-2 s-1 in November 2013). Possible reasons are the influence of soil moisture below the surface (where N2O is produced) after the beginning of the wet season, the potential aerobic denitrification in microsites, the nitrifier denitrification, and nitrification processes. The presence of litter and standing straw, and their decomposition dominated N compounds emissions in November 2013, whereas emissions in July 2012 and 2013, when the herbaceous strata was sparse, were dominated by microbial processes in the soil. CO2 respiration fluxes were high in the beginning (107 ± 26 mg m-2 h-1 in July 2013) and low in the end of the wet season (32 ± 5 mg m-2 h-1 in November 2013), when autotrophic and heterotrophic activity is reduced due to low soil moisture conditions These results confirm that contrasted ecosystem conditions due

  15. Multi-Polarization ASAR Backscattering from Herbaceous Wetlands in Poyang Lake Region, China

    Directory of Open Access Journals (Sweden)

    Huiyong Sang

    2014-05-01

    Full Text Available Wetlands are one of the most important ecosystems on Earth. There is an urgent need to quantify the biophysical parameters (e.g., plant height, aboveground biomass and map total remaining areas of wetlands in order to evaluate the ecological status of wetlands. In this study, Environmental Satellite/Advanced Synthetic Aperture Radar (ENVISAT/ASAR dual-polarization C-band data acquired in 2005 is tested to investigate radar backscattering mechanisms with the variation of hydrological conditions during the growing cycle of two types of herbaceous wetland species, which colonize lake borders with different elevation in Poyang Lake region, China. Phragmites communis (L. Trin. is semi-aquatic emergent vegetation with vertical stem and blade-like leaves, and the emergent Carex spp. has rhizome and long leaves. In this study, the potential of ASAR data in HH-, HV-, and VV-polarization in mapping different wetland types is examined, by observing their dynamic variations throughout the whole flooding cycle. The sensitivity of ASAR backscattering coefficients to vegetation parameters of plant height, fresh and dry biomass, and vegetation water content is also analyzed for Phragmites communis (L. Trin. and Carex spp. The research for Phragmites communis (L. Trin. shows that HH polarization is more sensitive to plant height and dry biomass than HV polarization. ASAR backscattering coefficients are relatively less sensitive to fresh biomass, especially in HV polarization. However, both are highly dependent on canopy water content. In contrast, the dependence of HH- and HV- backscattering from Carex community on vegetation parameters is poor, and the radar backscattering mechanism is controlled by ground water level.

  16. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments. Phase 3

    Science.gov (United States)

    2015-08-01

    TITLE AND SUBTITLE Measurement and Modeling of Ecosystem Risk and Recovery for In Sit T t t f C t i t d S di t 5a. CONTRACT NUMBER W912HQ-10-C...Choi was supported in part by a Samsung Scholarship. Collaboration with Newcastle University was facilitated by the Leverhulme Trust, grant FOO 125/AA...and nitrogen deposited on porous alumina 4.2 147.6 Weak Preliminary tests to check the recovery of the selected CCMP from sediment was

  17. Community-specific biogeochemical responses to atmospheric nitrogen deposition in subalpine meadow ecosystems of the Cascade Range

    Science.gov (United States)

    Poinsatte, J. P.; Rochefort, R.; Evans, R. D.

    2014-12-01

    Elevated anthropogenic nitrogen (N) emissions result in higher rates of atmospheric N deposition (Ndep) that can saturate sensitive ecosystems. Consequences of increased Ndep include higher emissions of greenhouse gases, eutrophication of watersheds, and deterioration of vegetation communities. Most of the annual N deposition at higher elevations in the Cascades is stored in snowpack until spring snowmelt when it is released as a pulse that can be assimilated by plant and microbial communities, or lost as gaseous emissions or leachate. The relative magnitude of these fluxes is unknown, particularly with accelerated rates of snowpack loss due to climate change. We quantified storage of Ndep in winter snowpack and determined impacts of Ndep on biogeochemical processes in a lush-herbaceous community characterized by Valeriana sitchensis and Lupinus latifolius, a heath-shrub community characterized by Phyllodoce empetriformis and Cassiope mertensiana, and a wet-sedge community dominated by Carex nigricans. These communities were selected to represent early, mid, and late snowmelt vegetation regimes prevalent throughout the Cascades. Ammonium (NH4+) was the dominant form of Ndep in winter snowpack and Ndep rates were higher than anticipated based on nearby National Atmospheric Deposition Program (NADP) measurements. Vegetation N uptake was the dominant N sink in the ecosystem, with the highest growing season uptake occurring in the lush-herbaceous community, while soil N leaching was the dominant N loss, with the lush-herbaceous also having the highest rates. Microbial biomass N fluctuated substantially across the growing season, with high biomass N immediately after snowmelt and again 30 days following snow release. Soil nitrous oxide (N2O) emissions peaked 30 days following snowmelt for all three communities and were greatest in the wet sedge community. These results indicate that subalpine communities have unique responses to Ndep that vary throughout the growing

  18. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements

    DEFF Research Database (Denmark)

    Falge, E.; Tenhunen, J.; Baldocchi, D.

    2002-01-01

    , as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types...... in four classes: (1) boreal and high altitude conifers and grasslands: (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forest,,, Similar results are found for maximum daytime uptake (F-min) and the integral net carbon flux, but temperate......-min are largest for managed grasslands and crops. Largest observed values of F-min varied between -48 and -2 mumol m(-2) s(-1), decreasing in the order C-4-crops > C-3-crops > temperate deciduous forests > temperate conifers > boreal conifers > tundra ecosystems. Due to data restrictions, our analysis centered...

  19. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles.

    Science.gov (United States)

    Speckman, Heather N; Frank, John M; Bradford, John B; Miles, Brianna L; Massman, William J; Parton, William J; Ryan, Michael G

    2015-02-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates. © 2014 John Wiley & Sons Ltd.

  20. Comparing herbaceous plant communities in active and passive riparian restoration.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Understanding the efficacy of passive (reduction or cessation of environmental stress and active (typically involving planting or seeding restoration strategies is important for the design of successful revegetation of degraded riparian habitat, but studies explicitly comparing restoration outcomes are uncommon. We sampled the understory herbaceous plant community of 103 riparian sites varying in age since restoration (0 to 39 years and revegetation technique (active, passive, or none to compare the utility of different approaches on restoration success across sites. We found that landform type, percent shade, and summer flow helped explain differences in the understory functional community across all sites. In passively restored sites, grass and forb cover and richness were inversely related to site age, but in actively restored sites forb cover and richness were inversely related to site age. Native cover and richness were lower with passive restoration compared to active restoration. Invasive species cover and richness were not significantly different across sites. Although some of our results suggest that active restoration would best enhance native species in degraded riparian areas, this work also highlights some of the context-dependency that has been found to mediate restoration outcomes. For example, since the effects of passive restoration can be quite rapid, this approach might be more useful than active restoration in situations where rapid dominance of pioneer species is required to arrest major soil loss through erosion. As a result, we caution against labeling one restoration technique as better than another. Managers should identify ideal restoration outcomes in the context of historic and current site characteristics (as well as a range of acceptable alternative states and choose restoration approaches that best facilitate the achievement of revegetation goals.

  1. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.

    Science.gov (United States)

    Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason

    2017-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor

  2. Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems

    Science.gov (United States)

    Douglas G Fox; J. Christopher Bernabo; Betsy Hood

    1987-01-01

    Guidelines include a large number of specific measures to characterize the existing condition of wilderness resources. Measures involve the atmospheric environment, water chemistry and biology, geology and soils, and flora. Where possible, measures are coordinated with existing long-term monitoring programs. Application of the measures will allow more effective...

  3. Pimp your landscape: a tool for qualitative evaluation of the effects of regional planning measures on ecosystem services.

    Science.gov (United States)

    Fürst, Christine; Volk, Martin; Pietzsch, Katrin; Makeschin, Franz

    2010-12-01

    The article presents the platform "Pimp your landscape" (PYL), which aims firstly at the support of planners by simulating alternative land-use scenarios and by an evaluation of benefits or risks for regionally important ecosystem services. Second, PYL supports an integration of information on environmental and landscape conditions into impact assessment. Third, PYL supports the integration of impacts of planning measures on ecosystem services. PYL is a modified 2-D cellular automaton with GIS features. The cells have the major attribute "land-use type" and can be supplemented with additional information, such as specifics regarding geology, topography and climate. The GIS features support the delineation of non-cellular infrastructural elements, such as roads or water bodies. An evaluation matrix represents the core element of the system. In this matrix, values in a relative scale from 0 (lowest value) to 100 (highest value) are assigned to the land-use types and infrastructural elements depending on their effect on ecosystem services. The option to configure rules for describing the impact of environmental attributes and proximity effects on cell values and land-use transition probabilities is of particular importance. User interface and usage of the platform are demonstrated by an application case. Constraints and limits of the recent version are discussed, including the need to consider in the evaluation, landscape-structure aspects such as patch size, fragmentation and spatial connectivity. Regarding the further development, it is planned to include the impact of land management practices to support climate change adaptation and mitigation strategies in regional planning.

  4. Herbaceous vegetation restoration potential and soil physical condition in a mountain grazing land of Eastern Tigray, Ethiopia

    Directory of Open Access Journals (Sweden)

    Gebrewahd Amha Abesha

    2014-06-01

    Full Text Available An existence of information in the form database and full knowledge of grazing land vegetation resources and trend over time is essential for management decisions. This study was conducted in Kiltew -Awelaelo, eastern Tigray, Ethiopia. The study aimed to investigate species composition and diversity of the herbaceous vegetation, and examine the physical soil condition of the grazing lands. A total of 45 quadrats measuring 20m×20m (400m2 were laid out in 15 sample sites from three corresponding land use types (i.e. ten year enclosure, five year enclosure and open grazing land. From each land use type five sites having three quadrats were investigated. Each quadrat was laid out at an interval of 400m in five parallel transects each 200m apart from other. To collect data of herbaceous and soil five randomly located 1m2 area each, was selected and marked, within each 400m2 sample quadrat of sample sites located along the main transect. There was significant (PBracharia sp., Bromus pectinatus, Chloris gayana, Cenchurs cilarias, chloris radiata, Cynodon dactylon, Dactyloctenium aegyptium, Digitaria Velutina, Eragrostis teniufolia, Lintonia nutans, Setaria pumila, Seteria verticillate, and Tragus racemosus all occurred frequently forming the major constituents of the sites. Therefore, regeneration from area enclosure can be on advocated practice for grazing lands rehabilitation.

  5. Size-based hydroacoustic measures of within-season fish abundance in a boreal freshwater ecosystem.

    Directory of Open Access Journals (Sweden)

    Riley A Pollom

    Full Text Available Eleven sequential size-based hydroacoustic surveys conducted with a 200 kHz split-beam transducer during the summers of 2011 and 2012 were used to quantify seasonal declines in fish abundance in a boreal reservoir in Manitoba, Canada. Fish densities were sufficiently low to enable single target resolution and tracking. Target strengths converted to log2-based size-classes indicated that smaller fish were consistently more abundant than larger fish by a factor of approximately 3 for each halving of length. For all size classes, in both years, abundance (natural log declined linearly over the summer at rates that varied from -0.067 x day(-1 for the smallest fish to -0.016 x day(-1 for the largest (R2 = 0.24-0.97. Inter-annual comparisons of size-based abundance suggested that for larger fish (>16 cm, mean winter decline rates were an order of magnitude lower (-0.001 x day(-1 and overall survival higher (71% than in the main summer fishing season (mean loss rate -0.038 x day(-1; survival 33%. We conclude that size-based acoustic survey methods have the potential to assess within-season fish abundance dynamics, and may prove useful in long-term monitoring of productivity and hence management of boreal aquatic ecosystems.

  6. Size-based hydroacoustic measures of within-season fish abundance in a boreal freshwater ecosystem.

    Science.gov (United States)

    Pollom, Riley A; Rose, George A

    2015-01-01

    Eleven sequential size-based hydroacoustic surveys conducted with a 200 kHz split-beam transducer during the summers of 2011 and 2012 were used to quantify seasonal declines in fish abundance in a boreal reservoir in Manitoba, Canada. Fish densities were sufficiently low to enable single target resolution and tracking. Target strengths converted to log2-based size-classes indicated that smaller fish were consistently more abundant than larger fish by a factor of approximately 3 for each halving of length. For all size classes, in both years, abundance (natural log) declined linearly over the summer at rates that varied from -0.067 x day(-1) for the smallest fish to -0.016 x day(-1) for the largest (R2 = 0.24-0.97). Inter-annual comparisons of size-based abundance suggested that for larger fish (>16 cm), mean winter decline rates were an order of magnitude lower (-0.001 x day(-1)) and overall survival higher (71%) than in the main summer fishing season (mean loss rate -0.038 x day(-1); survival 33%). We conclude that size-based acoustic survey methods have the potential to assess within-season fish abundance dynamics, and may prove useful in long-term monitoring of productivity and hence management of boreal aquatic ecosystems.

  7. The Niger Delta wetlands: Threats to ecosystem services, their importance to dependent communities and possible management measures

    OpenAIRE

    Adekola, O.; Mitchell, G.

    2011-01-01

    The Niger Delta wetlands are changing rapidly, raising concern for the wetlands' health and for communities relying upon its ecosystem services. Knowledge on ecosystem service provision is important for effective ecosystem and livelihoods management, but is currently lacking for the Niger Delta. We synthesised literature and used the ‘Drivers–pressure–state–impact–response’ (DPSIR) framework to structure information on changes in the wetlands' ecosystem services and implications for dependent...

  8. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique

    Science.gov (United States)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper

    2016-04-01

    Soil-atmosphere exchange of greenhouse gases (GHGs) is commonly measured with closed static chambers (Pihlatie et al., 2013) with off-site gas chromatographic (GC) analysis for CH4 and N2O. Static chambers are widely used to observe in detail the effect of experimental manipulations, like climate change experiments, on GHG exchange (e.g. Carter et al., 2012). However, the low sensitivity of GC systems necessitates long measurement times and manual sampling, which increases the disturbance of the exchange of GHGs and leads to potential underestimation of fluxes (Christiansen et al., 2011; Creelman et al., 2013). The recent emergence of field proof infrared lasers using cavity ring-down spectroscopy (CRDS) have increased frequency and precision of concentration measurements and enabled better estimates of GHG fluxes (Christiansen et al., 2015) due to shorter chamber enclosure times. This minimizes the negative impact of the chamber enclosure on the soil-atmosphere gas exchange rate. Secondly, an integral aspect of understanding GHG exchange in terrestrial ecosystem is to achieve high temporal coverage. This is needed to capture the often dynamic behavior where fluxes can change rapidly over the course of days or even a few hours in response to e.g. rain events. Consequently, low temporal coverage in measurements of GHG exchange have in many past investigations led to highly uncertain annual budgets which severely limits our understanding of the ecosystem processes interacting with the climate system through GHG exchange. Real-time field measurements at high temporal resolution are needed to obtain a much more detailed understanding of the processes governing ecosystem CH4 exchange as well as for better predicting the effects of climate and environmental changes. We combined a state-of-the-art field applicable CH4 sensor (Los Gatos UGGA) with a newly developed ecosystem-level automatic chamber controlled by a LI-COR 8100/8150 system. The chamber is capable of

  9. Effects of restoration measures on plant communities of wet heathland ecosystems

    NARCIS (Netherlands)

    Jansen, AJM; Fresco, LFM; Grootjans, AP; Jalink, Mark H.; Rapson, G.

    2004-01-01

    Question: Which are the success and failure of restoration measures, particularly sod-cutting and hydrological measures, in small wetlands on mineral soils in The Netherlands. Location: Twente. in the eastern part of The Netherlands. Methods: Success or failure of restoration measures has been

  10. Effects of restoration measures on plant communities of wet heathland ecosystems

    NARCIS (Netherlands)

    Jansen, AJM; Fresco, LFM; Grootjans, AP; Jalink, Mark H.; Rapson, G.

    Question: Which are the success and failure of restoration measures, particularly sod-cutting and hydrological measures, in small wetlands on mineral soils in The Netherlands. Location: Twente. in the eastern part of The Netherlands. Methods: Success or failure of restoration measures has been

  11. Effects of restoration measures on plant communities of wet heathland ecosystems

    NARCIS (Netherlands)

    Jansen, A.J.M.; Fresco, L.F.M.; Grootjans, A.P.; Jalink, M.H.

    2004-01-01

    Question: Which are the success and failure of restoration measures, particularly sod-cutting and hydrological measures, in small wetlands on mineral soils in The Netherlands. Location: Twente, in the eastern part of The Netherlands. Methods: Success or failure of restoration measures has been

  12. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    Science.gov (United States)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen

  13. Lessons from simultaneous measurements of soil respiration and net ecosystem exchange of CO2 in temperate forests

    Science.gov (United States)

    Renchon, A.; Pendall, E.

    2017-12-01

    Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These

  14. Effects of radiation, litterfall and throughfall on herbaceous biomass production in oak woodlands of Southern Portugal

    International Nuclear Information System (INIS)

    Nunes, J.; Sa, C.; Madeira, M.; Gazarini, L.

    2002-01-01

    Micro climatic characteristics (soil moisture, and air and soil temperature) were monitored both under and outside the influence of Quercus rotundifolia canopy. The influence of tree cover on biomass production of herbaceous vegetation was studied through the simulation of the physical and chemical effects associated to the tree canopy (radiation, litterfall, throughfall). Treatments were: control (T), radiation shortage (RR), application of leaf litter (F), application of leaflitter and radiation shortage (FRR) , application of throughfall (N) and application of throughfall and radiation shortage (NRR). Most of the times, and especially in winter, soil temperature was higher in areas not influenced by the canopies than in those under their influence. Soil moisture tended to decrease faster in the areas outside the canopy influence. Mean annual biomass production of the herbaceous vegetation was 159.5, 145.8, 132.2, 126.66, 134.9 and 173.1 g m2, respectively, in treatments C, RR, F, FRR, N and NRR. The N, P, K, Mg, Mn and Ca concentrations in the herbaceous biomass were generally higher in the shaded treatments. When the amount of nutrients accumulated in the herbaceous vegetation biomass was expressed on an area basis, the highest values were observed for treatment with throughfall application and radiation shortage. Besides the possible effects of the micro climatic characteristics, differences with respect to herbaceous vegetation production may be explained by the presence of litterfall, as well as by the nutrients present in the throughfall solution [pt

  15. Diagnosis of vegetation recovery within herbaceous sub-systems in the West African Sahel Region

    Science.gov (United States)

    Anchang, J.; Hanan, N. P.; Prihodko, L.; Sathyachandran, S. K.; Ji, W.; Ross, C. W.

    2017-12-01

    The West African Sahel (WAS) region is an extensive water limited environment that features a delicate balance of herbaceous and woody vegetation sub systems. These play an important role in the cycling of carbon while also supporting the dominant agro-pastoral human activities in the region. Quantifying the temporal trends in vegetation with regard to these two systems is therefore very important in assessing resource sustainability and food security. In water limited areas, rainfall is a primary driver of vegetation productivity and past watershed scale studies in the WAS region have shown that increase in the slope of the productivity-to-rainfall relationship is indicative of increasing cover and density of herbaceous plants. Given the importance of grazing resources to the region, we perform a wall-to-wall pixel based analysis of changing short-term vegetation sensitivity to changing annual rainfall (hereafter referred to as dS) to examine temporal trends in herbaceous vegetation health. Results indicate that 43% of the Sahelian region has experienced changes (P Western and Central Mali and South Western Niger. Positive dS is indicative of herbaceous vegetation recovery, in response to changing management and rainfall conditions that promote long-term herbaceous community recovery following degradation during the 1970-1980s droughts.

  16. Traits and climate are associated with first flowering day in herbaceous species along elevational gradients.

    Science.gov (United States)

    Bucher, Solveig Franziska; König, Patrizia; Menzel, Annette; Migliavacca, Mirco; Ewald, Jörg; Römermann, Christine

    2018-01-01

    Phenological responses to changing temperatures are known as "fingerprints of climate change," yet these reactions are highly species specific. To assess whether different plant characteristics are related to these species-specific responses in flowering phenology, we observed the first flowering day (FFD) of ten herbaceous species along two elevational gradients, representing temperature gradients. On the same populations, we measured traits being associated with (1) plant performance (specific leaf area), (2) leaf biochemistry (leaf C, N, P, K, and Mg content), and (3) water-use efficiency (stomatal pore area index and stable carbon isotopes concentration). We found that as elevation increased, FFD was delayed for all species with a highly species-specific rate. Populations at higher elevations needed less temperature accumulation to start flowering than populations of the same species at lower elevations. Surprisingly, traits explained a higher proportion of variance in the phenological data than elevation. Earlier flowering was associated with higher water-use efficiency, higher leaf C, and lower leaf P content. In addition to that, the intensity of shifts in FFD was related to leaf N and K. These results propose that traits have a high potential in explaining phenological variations, which even surpassed the effect of temperature changes in our study. Therefore, they have a high potential to be included in future analyses studying the effects of climate change and will help to improve predictions of vegetation changes.

  17. Remote Sensing-based estimates of herbaceous aboveground biomass on the Mongolian Plateau

    Science.gov (United States)

    John, R.; Chen, J.; Kim, Y.; Ouyang, Z.; Park, H.; Shao, C.

    2015-12-01

    Grasslands comprise most of the land area on the Mongolian Plateau, which includes Mongolia (MG), and the province of Inner Mongolia (IM). Substantial land cover/use change in the recent past, driven by a combination of post-liberalization, socio-economic changes as well as extreme climatic events has resulted in degradation of grasslands in structure and function, for e.g., their carbon sequestration ability. Hence there is a need for precise estimation of above-ground biomass (AGB). In this study, we collected surface reflectance spectra from field radiometry and quadrats and line transects, which include percentage of ground cover, vegetation height, above ground biomass, and species richness, during the growing season, between the periods, 2006-2011 in IM and 2011-2015 in MG. The field sampling was stratified by the dominant vegetation types on the plateau, including the meadow steppe, typical steppe, and the desert steppe. These sampling data were used as training and validation data for developing and testing predictive models for total herbaceous vegetation, and AGB, using Landsat and MODIS-surface reflectance bands and derived vegetation indices optimized for low cover conditions. Our results show that the independent ground sampling data were significantly correlated with remotely sensed estimates. In addition to providing measures of carbon sequestration to the community, these predictive models offer decision makers and rangeland managers the ability to accurately monitor grassland dynamics, control livestock stocking rates in these remote and extensive grasslands.

  18. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics

    International Nuclear Information System (INIS)

    Honour, Sarah L.; Bell, J. Nigel B.; Ashenden, Trevor W.; Cape, J. Neil; Power, Sally A.

    2009-01-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO x ) representative of urban conditions, in solardome chambers. Annual mean NO x concentrations ranged from 77 nl l -l to 98 nl l -1 , with NO:NO 2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation. - Fumigation experiments demonstrate adverse effects of exhaust emissions on urban vegetation

  19. Influence of microhabitats on the performance of herbaceous species in areas of mature and secondary forest in the semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    Juliana Ramos de Andrade

    2015-06-01

    Full Text Available The conditions for plant establishment in mature forest are different from those found in disturbed areas. In dry environments, the herbaceous cover is the most important in the recolonization of deforested areas. It can, therefore, act as an ideal biological group for assessing how changes in habitat heterogeneity affect the resilience of dry forests. The aim of this research was to evaluate whether natural regeneration of the herbaceous stratum differed between areas of mature and secondary forest of Caatinga and to describe this process. The study took place in the Brazilian semiarid region during the rainy season 2011 (January to August, where fifty 1m² plots were set up, 25 allocated to the microhabitat established as “between canopies” and 25 to the microhabitat “under the canopy”. The herbaceous species selected for the study were Delilia biflora (Asteraceae, Gomphrena vaga (Amaranthaceae and Pseudabutilon spicatum (Malvaceae, abundant species occurring in both areas. All individuals from the selected populations were counted, marked with sequential numbers, and the height of the stem was measured. Differences between areas, and in size and survival between microhabitats, were found only for the first two species. Fruit production was higher in the mature forest for the three species. The study concluded that: 1. The effect of the microhabitats “between canopies” and “under the canopy” in mature and secondary forest areas depends on the species considered; 2. Populations sensitive to light intensity differ in number of individuals, height and fruit production; and 3. The resilience of anthropogenic areas in semiarid environments can be characterized by the presence of spatial heterogeneity with regard to the emergence and survival of herbaceous seedlings, suggesting that the regeneration of disturbed areas may occur in patches. Rev. Biol. Trop. 63 (2: 357-368. Epub 2015 June 01.

  20. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  1. Monetary accounting of ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Edens, Bram; Schröter, Matthias; Hein, Lars

    2015-01-01

    Ecosystem accounting aims to provide a better understanding of ecosystem contributions to the economy in a spatially explicit way. Ecosystem accounting monitors ecosystem services and measures their monetary value using exchange values consistent with the System of National Accounts (SNA). We

  2. Measuring environmental change in forest ecosystems by repeated soil sampling: A North American perspective

    Science.gov (United States)

    Gregory B. Lawrence; Ivan J. Fernandez; Daniel D. Richter; Donald S. Ross; Paul W. Hazlett; Scott W. Bailey; Rock Ouimet; Richard A. F. Warby; Arthur H. Johnson; Henry Lin; James M. Kaste; Andrew G. Lapenis; Timothy J. Sullivan

    2013-01-01

    Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest...

  3. Effect of ecosystem type and fire on chemistry of WEOM as measured by LDI-TOF-MS and NMR.

    Science.gov (United States)

    Crecelius, Anna C; Vitz, Jürgen; Näthe, Kerstin; Meyer, Stefanie; Michalzik, Beate; Schubert, Ulrich S

    2017-01-01

    Soil organic matter (SOM) and its water-soluble components play an important role in terrestrial carbon cycling and associated ecosystem functions. Chemically, they are complex mixtures of organic compounds derived from decomposing plant material, microbial residues, as well as root exudates, and soil biota. To test the effect of the ecosystem type (forest and grassland) and fires events on the chemistry of dissolved organic matter (DOM), we applied a combination of laser-desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) and 2D ( 1 H and 13 C) nuclear magnetic resonance (NMR) spectroscopy to water-extractable organic matter (WEOM) from a range of top soil samples. The aim was to assess the suitability of LDI-TOF-MS for the rapid characterization of WEOM. Therefore, we evaluated the effects of sample (pH and dilution) conditions and use of positive or negative reflector mode to identify the conditions under which LDI-TOF-MS best distinguished between WEOM from different sources. Thirty-six samples were measured with both analytical techniques and their chemical patterns were statistically evaluated to distinguish firstly the effect of the type of ecosystem (forest versus grassland) on WEOM characteristics, and secondly the impact of fire on the chemical composition of WEOM. The nonmetric multidimensional scaling (NMDS) analysis of the most suitable experimental LDI-TOF-MS conditions showed a clear separation between the type of vegetation and fire-induced changes, mostly reflecting the presence of poly(ethylene glycol) in grassland soils. Discrimination among WEOM from different vegetation types was preserved in the fire treated samples. The calculation of the relative abundance of certain functional structures in the WEOM samples revealed a common composition of forest and grassland WEOM, with polysaccharides and proteins making up to 60%. The compositional impact of forest fire on WEOM was more pronounced compared to the one of grassland, leading

  4. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  5. Using ground- and satellite-based measurements and models to quantify response to multiple disturbances and climate change in South African semi-arid ecosystems

    Science.gov (United States)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner

    2016-04-01

    Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.

  6. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    Science.gov (United States)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Maize is the most important C4 crop worldwide. It is also the second most important crop worldwide (C3 and C4 mixed), and is a dominant crop in some world regions. Therefore, it can potentially influence local climate and air quality through its exchanges of gases with the atmosphere. Among others, biogenic volatile organic compounds (BVOC) are known to influence the atmospheric composition and thereby modify greenhouse gases lifetime and pollutant formation in the atmosphere. However, so far, only two studies have dealt with BVOC exchanges from maize. Moreover, these studies were conducted on a limited range of meteorological and phenological conditions, so that the knowledge of BVOC exchanges by this crop remains poor. Here, we present the first BVOC measurement campaign performed at ecosystem-scale on a maize field during a whole growing season. It was carried out in the Lonzée Terrestrial Observatory (LTO), an ICOS site. BVOC fluxes were measured by the disjunct by mass-scanning eddy covariance technique with a proton transfer reaction mass spectrometer for BVOC mixing ratios measurements. Outstanding results are (i) BVOC exchanges from soil were as important as BVOC exchanges from maize itself; (ii) BVOC exchanges observed on our site were much lower than exchanges observed by other maize studies, even under normalized temperature and light conditions, (iii) they were also lower than those observed on other crops grown in Europe. Lastly (iv), BVOC exchanges observed on our site under standard environmental conditions, i.e., standard emission factors SEF, were much lower than those currently considered by BVOC exchange up-scaling models. From those observations, we deduced that (i) soil BVOC exchanges should be better understood and should be incorporated in terrestrial BVOC exchanges models, and that (ii) SEF for the C4 crop plant functional type cannot be evaluated at global scale but should be determined for each important agronomic and pedo-climatic region

  7. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    Science.gov (United States)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-02-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.

  8. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    Science.gov (United States)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-01-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha−1 yr−1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and −1.30 tC ha−1 yr−1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha−1 yr−1 in the dry season and a considerable carbon sink of 1.14 tC ha−1 yr−1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes. PMID:28145459

  9. A conceptual framework for an ecosystem services-based assessment of the so-called "emergency stabilization" measures following wildfire

    Science.gov (United States)

    Valente, Sandra; Prats, Sergio; Ribeiro, Cristina; Verheijen, Frank; Fleskens, Luuk; Keizer, Jacob

    2015-04-01

    Wildfires have become a major environmental concern in many Southern European countries over the past few decades. This includes Portugal, where, on average, some 100 000 ha of rural lands are affected by wildfire every year. While policies, laws, plans and public expenditure in Portugal continue to be largely directed towards fire combat and, arguably, to a lesser extent fire prevention, there has only recently been increasing attention for post-fire land management. For example following frequent and several large wildfires during the summer of 2010, so-called emergency stabilization measures were implemented in 16 different burnt areas in northern and central Portugal, using funds of the EU Rural Development Plan in Portugal (PRODER). The measures that were implemented included mulching (i.e. application of a protective layer of organic material), seeding and the construction of log barriers. However, the effectiveness of the implemented measures has not been monitored or otherwise assessed in a systematic manner. In fact, until very recently none of the post-fire emergency stabilization measures contemplated under PRODER seem to have been studied in an exhaustive manner in Portugal, whether under laboratory or field conditions. Prats et al. (2012, 2013, 2014) tested two of these measures by field trials, i.e. hydro-mulching and forest residue mulching. The authors found both measures to be highly effective in terms of reducing overland flow and especially erosion. It remains a challenge, however, to assess the effectiveness of these and other measures in a broader context, not only beyond overland flow and sediment losses but also beyond the spatio-temporal scale that are typical for such field trials (plots and the first two years after fire). This challenge will be addressed in the Portuguese case study of the RECARE project. Nonetheless, the present study wants to be a first attempt at an ecosystem services-based assessment of mulching as a post

  10. Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures.

    Science.gov (United States)

    Gurusubramanian, G; Rahman, A; Sarmah, M; Ray, Somnath; Bora, S

    2008-11-01

    Tea is a perennial plantation crop grown under monoculture providing favorable conditions for a variety of pests. The concept of pest control has undergone a considerable change over the past few decades. In recent years there has been a greater dependence on the use of pesticides (7.35-16.75 kgha(-1)) with little importance laid on other safe control methods for the management of tea pests. Due to this practice, the tea pests showed a higher tolerance/ resistance status due to formation of greater amount of esterases, glutathione S-transferase and acetylcholinesterase. Thus, over reliance on pesticides end up with pesticide residue in made tea (DDT - 10.4-47.1%; endosulfan - 41.1-98.0%; dicofol- 0.0-82.4%; ethion - 0.0-36.2%; cypermethrin - 6.0- 45.1%). The growing concern about the pesticide residue in made tea, its toxicity hazards to consumers, the spiraling cost of pesticides and their application have necessitated a suitable planning which will ensure a safe, economic as well as effective pest management in tea. At present it is a global concern to minimize chemical residue in tea and European union and German law imposed stringent measures for the application of chemicals in tea and fixed MRL values at market at global level, central insecticide board and prevention of food adulteration regulation committee have reviewed the MRL position for tea and has recommended 10 insecticides, 5 acaricides, 9 herbicides and 5 fungicides for use in tea and issued the tea distribution and export control order 2005 which will help the country to limit the presence of undesirable substances in tea. This review attempts to provide the readers with a comprehensive account of pesticide use in North East in tea, surveillance report of the European community regarding the residue level in Assam and Darjeeling tea, recent amendments by international and national regulatory bodies, revised MRL values of pesticides in tea, an update about the current strategies for the management

  11. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  12. DIATOMS AS INDICATORS OF ISOLATED HERBACEOUS WETLAND CONDITION IN FLORIDA, USA

    Science.gov (United States)

    Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical-chemical parameters, were sampled from 70 small (~1 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to: 1) compare assemblage str...

  13. Herbaceous vegetation in thinned and defoliated forest stands in north central West Virginia

    Science.gov (United States)

    S. L. C. Fosbroke; D. Feicht; R. M. Muzika

    1995-01-01

    Herbaceous vegetation was inventoried in 1992 and 1993 in eight Appalachian mixed hardwood stands ( 50% basal area/acre in oak species) in north central West Virginia. Vegetation was sampled on 20 6-foot radius plots per stand twice each growing season (once during late spring to sample spring ephemeral...

  14. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests.

    Science.gov (United States)

    Veresoglou, Stavros D; Wulf, Monika; Rillig, Matthias C

    2017-02-01

    In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser-Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.

  15. Vegetation responses to sagebrush-reduction treatments measured by satellites

    Science.gov (United States)

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  16. Eleventh-year response of loblolly pine and competing vegetation to woody and herbaceous plant control on a Georgia flatwoods site

    Science.gov (United States)

    Bruce R. Zutter; James H. Miller

    1998-01-01

    Through 11 growing seasons, growth of loblolly pine (Pinus taeda L.) increased after control of herbaceous, woody, or both herbaceous and woody vegetation (total control) for the first 3 years after planting on a bedded site in the Georgia coastal flatwoods. Gains in stand volume index from controlling either herbaceous or woody vegetation alone were approximately two-...

  17. Herbaceous land plants as a renewable energy source for Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, A.G.

    1980-01-01

    Herbaceous tropical plants are a renewable energy source of major importance to many tropical nations. They convert the radiant energy of sunlight to chemical energy, which is stored in plant tissues (cellulose, hemicellulose, lignin) and fermentable solids (sugars, starches). Because all tropical plants do this - even those commonly regarded as weeds - they constitute an inexpensive, renewable, and domestic alternative to foreign fossil energy. The vast majority of herbaceous tropical plants have never been cultivated for food, fiber, or energy. A major screening program would be needed to identify superior species and the most effective roles they can play in a domestic energy industry. Other herbaceous plants, such as sugarcane and tropical forage grasses, have been cultivated for centuries as agricultural commodities. As energy crops, important revisions in management will be needed to maximize their energy yield. Two broad groups of herbaceous plants are seen to have an immediate potential for reducing Puerto Rico's reliance on imported fossil fuels: the tropical grasses (of which sugarcane is the dominant member) and the tropical legumes. Managed for its maximum growth potential, sugarcane is an excellent source of boiler fuel, fermentation substrates, cellulosic feedstocks, and the sweetener sucrose. Other tropical grasses store relatively little extractable sugar while equaling or moderately surpassing sugarcane in yield of cellulosic dry matter. The latter might soon become an economical source of fermentation substrates. Certain legume species are also very effective producers of biomass. Herbaceous tropical legumes are perceived as a potential source of biological nitrogen for energy crops unable to utilize nitrogen from the atmosphere.

  18. Herbaceous land plants as a renewable energy source for Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, A G

    1980-01-01

    Herbaceous tropical plants are a renewable energy source of major importance to many tropical nations. They convert the radiant energy of sunlight to chemical energy, which is stored in plant tissues (cellulose, hemicellulose, lignin) and fermentable solids (sugars, starches). Because all tropical plants do this - even those commonly regarded as weeds - they constitute an inexpensive, renewable, and domestic alternative to foreign fossil energy. The vast majority of herbaceous tropical plants have never been cultivated for food, fiber, or energy. A major screening program would be needed to identify superior species and the most effective roles they can play in a domestic energy industry. Other herbaceous plants, such as sugarcane and tropical forage grasses, have been cultivated for centuries as agricultural commodities. As energy crops, important revisions in management will be needed to maximize their energy yield. Two broad groups of herbaceous plants are seen to have an immediate potential for reducing Puerto Rico's reliance on imported fossil fuels: the tropical grasses (of which sugarcane is the dominant member) and the tropical legumes. Managed for its maximum growth potential, sugarcane is an excellent source of boiler fuel, fermentation substrates, cellulosic feedstocks, and the sweetener sucrose. Other tropical grasses store relatively little extractable sugar while equaling or moderately surpassing sugarcane in yield of cellulosic dry matter. The latter might soon become an economical source of fermentation substrates. Certain legume species are also very effective producers of biomass. Herbaceous tropical legumes are perceived as a potential source of biological nitrogen for energy crops unable to utilize nitrogen from the atmosphere.

  19. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Directory of Open Access Journals (Sweden)

    Deo D Shirima

    Full Text Available We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI and above ground herbaceous biomass (AGBH along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m, stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps, soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand

  20. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Science.gov (United States)

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental

  1. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  2. Ecosystem Jenga!

    Science.gov (United States)

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  3. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  4. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    Science.gov (United States)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  5. Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, C.J.; Velo, E.; Puigjaner, L. [Department of Chemical Engineering, ETSEIB, Universitat Politecnica de Catalunya, Avinguda Diagonal 647, G2, E-08028 Barcelona (Spain); Meszaros, E.; Jakab, E. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, Budapest 1525 (Hungary)

    2007-10-15

    The devolatilization behaviour of pine and beech wood from carpentry residuals and an herbaceous product from an energy plantation (artichoke thistle) was investigated by thermogravimetry/mass spectrometry (TG/MS). The effect of three pre-treatments, hot-water washing, ethanol extraction and their combination, was also studied. Principal component analysis (PCA) was employed to help in the evaluation of the large data set of results. The characteristics of the thermal decomposition of the herbaceous crop are considerably different from that of the woody biomass samples. The evolution profiles of some characteristic pyrolysis products revealed that the thermal behaviour of wood and thistle is still considerably different after the elimination of some of the inorganic ions and extractive compounds, although the macromolecular components of the samples decompose at similar temperatures. With the help of the PCA calculations, the effect of the different pre-treatments on the production of the main pyrolysis products was evidenced. (author)

  6. Feeding habits of Carabidae (Coleoptera associated with herbaceous plants and the phenology of coloured cotton

    Directory of Open Access Journals (Sweden)

    Danilo Henrique da Matta

    2017-04-01

    Full Text Available The carabids (Coleoptera: Carabidae are recognized as polyphagous predators and important natural enemies of insect pests. However, little is known about the feeding habits of these beetles. In this work, we determine the types of food content in the digestive tracts of nine species of Carabidae associated with herbaceous plants and different growth stages of coloured cotton. The food contents were evaluated for beetles associated with the coloured cotton cv. BRS verde, Gossypium hirsutum L. latifolium Hutch., adjacent to weed plants and the flowering herbaceous plants (FHPs Lobularia maritima (L., Tagetes erecta L., and Fagopyrum esculentum Moench. The digestive tract analysis indicated various types of diets and related arthropods for Abaris basistriata, Galerita brasiliensis, Scarites sp., Selenophorus alternans, Selenophorus discopunctatus and Tetracha brasiliensis. The carabids were considered to be polyphagous predators, feeding on different types of prey.

  7. Evaluation quantitative et qualitative de la strate herbacée du ...

    African Journals Online (AJOL)

    Cette étude s'insère dans le cadre de la compréhension de l'apport de la strate herbacée dans une formation de Quercus rotundifolia L. utilisée par un cheptel dont l'importance socio-économique pour la population est vitale. Le défrichement, moyen pratique d'accroître la production fourragère en milieu forestier, est ...

  8. 127 Evaluation quantitative et qualitative de la strate herbacée du ...

    African Journals Online (AJOL)

    utilsateur

    Résumé. Cette étude s'insère dans le cadre de la compréhension de l'apport de la strate herbacée dans une formation de Quercus rotundifolia L. utilisée par un cheptel dont l'importance socio-économique pour la population est vitale. Le défrichement, moyen pratique d'accroître la production fourragère en milieu forestier ...

  9. Use of Plant Growth Regulators to Improve Branching of Herbaceous Perennial Liners

    OpenAIRE

    Grossman, Mara Celeste

    2012-01-01

    The objective of this study is to evaluate the efficacy of PGRs to improve branching during production of herbaceous perennial liners and finished plants. The effects of benzyladenine (BA) on the branching and root and shoot growth of Agastache Clayt. Ex Gronov. 'Purple Hazeâ , Gaura lindheimeri Engelm. & A. Gray 'Siskiyou Pink', Lavandula à intermedia Emeric ex Loisel. 'Provence', Leucanthemum à superbum (Bergmans ex J.W. Ingram) Bergmans ex Kent. 'Snowcap', and Salvia à sylv...

  10. Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace

    International Nuclear Information System (INIS)

    Karimullina, Elina; Antonova, Elena; Pozolotina, Vera

    2013-01-01

    The East-Ural Radioactive Trace (EURT) is a result of the Mayak Production Association accident that occurred in 1957 in Russia. Radiological assessment improves the interpretation of biological effects of exposure to ionizing radiation. Therefore a modeling approach was used to estimate dose rates on Leonurus quinquelobatus, Silene latifolia, Stellaria graminea and Bromus inermis. Soil-to-organism transfer parameter values are delivered from empirical data of 90 Sr and 137 Cs soil and vegetative plant mass activity concentrations. External and internal whole-body dose rates were calculated using deterministic (The ERICA Tool-Tier 2 and R and D 128/SP1a) and probabilistic (The ERICA Tool-Tier 3) methods. The total dose rate for herbs was under 100 μGy h −1 at the most polluted site. The total absorbed dose rates increased 43–110 times (Tier 3) for different herbaceous plant species along the pollution gradient. Based on these data, it can be concluded that herbaceous plant populations currently exist under low-level chronic exposure at the EURT area. -- Highlights: • A modeling approach (The ERICA Tool-Tier 2, Tier 3 and R and D 128/SP1a) was used to estimate dose rates for herbs growing in the wild at the East-Ural Radioactive Trace. • The highest levels of anthropogenic radiation exposure were determined for herbs at Impact EURT sites. • Total absorbed dose rates increased 43–110 times (Tier 3) for different herbaceous plant species along the pollution gradient. • Total dose rate per plant organism for herbs is under 100 μGy h −1 at the most polluted site. Currently herbaceous plant populations exist under low-level chronic exposure at the EURT area

  11. DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas. Potential use for genotoxicant biomonitoring of fresh water ecosystems.

    Science.gov (United States)

    Le Goff, J; Gallois, J; Pelhuet, L; Devier, M H; Budzinski, H; Pottier, D; André, V; Cachot, J

    2006-08-12

    The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V., Randerath, K., 1986. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabelling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543-1551]. Specimens collected in the upper part of the Seine estuary were shown to accumulate higher levels of PAH (up to 1.6 microg g(-1) dry weight) in comparison to individuals from the reference site (0.053 microg g(-1) dry weight). The former exhibited elevated levels of DNA adducts (up to 4.0/10(8) nucleotides) and higher diversity of individual adducts with five distinct spots being specifically detected in individuals originating from the Seine estuary. Zebra mussels exposed for 5 days to 0.01% (v/v) of organic extract of sediment from the Seine estuary were shown to accumulate high amounts of PAH (up to 138 microg g(-1) dry weight) but exhibited relatively low levels of DNA adducts. Exposure to benzo[a]pyrene led to a dose-dependent accumulation of B[a]P (up to 7063 microg g(-1) dry weight) and a clear induction of DNA adduct formation in the digestive gland of mussels (up to 1.13/10(8) nucleotides). Comparisons with other bivalves exposed to the same model PAH, revealed similar levels of adducts and comparable adduct profiles with a main adduct spot and a second faint one. This study clearly demonstrated that zebra mussels are able to biotransform B[a]P and probably other PAH into reactive metabolites with DNA-binding activity. This work also demonstrated the applicability of the nuclease P1 enhanced 32P-postlabelling method for bulky adduct detection in the digestive gland of zebra mussels. DNA adduct measurement in zebra mussels could be a suitable

  12. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    Science.gov (United States)

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  13. Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species.

    Energy Technology Data Exchange (ETDEWEB)

    T.B. Harrington; C.M. Dagley; M.B. Edwards.

    2003-10-01

    Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition and needlefall from overstory pines on understory plant performance. Three 13- to 15-yr-old plantations near Aiken, SC, were thinned to 0, 25, 50, or 100% of nonthinned basal area (19.5 m2 ha-1). Combinations of trenching (to eliminate root competition) and needlefall were applied to areas within each plot, and containerized seedlings of 14 perennial herbaceous species and longleaf pine were planted within each. Overstory crown closure ranged from 0 to 81%, and soil water and available nitrogen varied consistently with pine stocking, trenching, or their combination. Cover of planted species decreased an average of 16.5 and 14.1% as a result of above- and below-ground competition, respectively. Depending on species, needlefall effects were positive, negative, or negligible. Results indicate that understory restoration will be most successful when herbaceous species are established within canopy openings (0.1-0.2 ha) managed to minimize negative effects from above- and belowground competition and needlefall.

  14. Estimation of daytime net ecosystem CO2 exchange over balsam fir forests in eastern Canada : combining averaged tower-based flux measurements with remotely sensed MODIS data

    International Nuclear Information System (INIS)

    Hassan, Q.K.; Bourque, C.P.A.; Meng, F-R.

    2006-01-01

    Considerable attention has been placed on the unprecedented increases in atmospheric carbon dioxide (CO 2 ) emissions and associated changes in global climate change. This article developed a practical approach for estimating daytime net CO 2 fluxes generated over balsam fir dominated forest ecosystems in the Atlantic Maritime ecozone of eastern Canada. The study objectives were to characterize the light use efficiency and ecosystem respiration for young to intermediate-aged balsam fir forest ecosystems in New Brunswick; relate tower-based measurements of daytime net ecosystem exchange (NEE) to absorbed photosynthetically active radiation (APAR); use a digital elevation model of the province to enhance spatial calculations of daily photosynthetically active radiation and APAR under cloud-free conditions; and generate a spatial calculation of daytime NEE for a balsam fir dominated region in northwestern New Brunswick. The article identified the study area and presented the data requirements and methodology. It was shown that the seasonally averaged daytime NEE and APAR values are strongly correlated. 36 refs., 2 tabs., 10 figs

  15. Seedling Composition and Facilitative Effects of the Herbaceous Layer in a Monsoon-Affected Forest in Nanjenshan, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-11-01

    Full Text Available Tree seedlings play an important role in forest regeneration. To understand the factors that control seedling establishment, we (1 compared the composition patterns of tree seedlings and their corresponding overstories, (2 examined the relationships between seedling composition and environmental factors and (3 evaluated the interaction (competition or facilitation between seedlings and herbaceous layer in a wind-stressed forest in Nanjenshan, southern Taiwan. In the study plot, seedling abundance of canopy, subcanopy and shrub species (with true leaves and < 1 cm diameter at breast height and coverage of herbaceous species (including herbaceous species, climbers and tree ferns ≤ ca. 1 m in height were investigated on three transects with a total of 180 contiguous 5 × 5 m quadrats. Clustering classification and ordination methods were used to reveal the tree seedling composition patterns and the relationships between seedling composition and environmental factors. Correlation coefficients were computed between herbaceous coverage and seedling abundance among herb-seedling species pairs and between tall (≥ 1 m high/short (< 0.5 m high herbs and seedlings pairs to test the herb-seedling interaction. The spatial distribution of tree seedlings presented a perfect match to the overstory vegetation pattern. There was a strong relationship among seedling composition, herbaceous composition and topographic features, especially exposure to monsoon winds. Because of the absence of strong correlations between herbaceous structure/species and seedling abundances, the strong linkage in spatial patterns between seedling and herbaceous compositions suggests that certain plant species in the study plot have similar responses to the monsoon exposure. Our results also indicated that seedlings < 1 cm in diameter were strongly influenced by wind stress, similar to the response of the overstory composition, and that the facilitative/competitive effects of the

  16. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    OpenAIRE

    David Helman; Itamar M. Lensky; Naama Tessler; Yagil Osem

    2015-01-01

    We present an efficient method for monitoring woody (i.e., evergreen) and herbaceous (i.e., ephemeral) vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI) time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI ...

  17. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    Science.gov (United States)

    Chunwei Liu; Ge Sun; Steve McNulty; Asko Noormets; Yuan Fang

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has...

  18. The Development and Validation of an Alternative Assessment to Measure Changes in Understanding of the Longleaf Pine Ecosystem

    Science.gov (United States)

    Dentzau, Michael W.; Martínez, Alejandro José Gallard

    2016-01-01

    A drawing assessment to gauge changes in fourth grade students' understanding of the essential components of the longleaf pine ecosystem was developed to support an out-of-school environmental education program. Pre- and post-attendance drawings were scored with a rubric that was determined to have content validity and reliability among users. In…

  19. Dynamics of ecosystem services provided by subtropical forests in Southeast China during succession as measured by donor and receiver value

    Science.gov (United States)

    The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...

  20. Prediction of harmful water quality parameters combining weather, air quality and ecosystem models with in situ measurement

    Science.gov (United States)

    The ability to predict water quality in lakes is important since lakes are sources of water for agriculture, drinking, and recreational uses. Lakes are also home to a dynamic ecosystem of lacustrine wetlands and deep waters. They are sensitive to pH changes and are dependent on d...

  1. Above‐ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy‐covariance sites

    DEFF Research Database (Denmark)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario

    2014-01-01

    Attempts to combine biometric and eddy‐covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. We assessed above‐ground biomass changes at five long‐term EC forest stations based on tree‐ring width...... and wood density measurements, together with multiple allometric models. Measurements were validated with site‐specific biomass estimates and compared with the sum of monthly CO2 fluxes between 1997 and 2009. Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible...

  2. Ecosystem process interactions between central Chilean habitats

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2015-01-01

    Full Text Available Understanding ecosystem processes is vital for developing dynamic adaptive management of human-dominated landscapes. We focus on conservation and management of the central Chilean silvopastoral savanna habitat called “espinal”, which often occurs near matorral, a shrub habitat. Although matorral, espinal and native sclerophyllous forest are linked successionally, they are not jointly managed and conserved. Management goals in “espinal” include increasing woody cover, particularly of the dominant tree Acacia caven, improving herbaceous forage quality, and increasing soil fertility. We asked whether adjacent matorral areas contribute to espinal ecosystem processes related to the three main espinal management goals. We examined input and outcome ecosystem processes related to these goals in matorral and espinal with and without shrub understory. We found that matorral had the largest sets of inputs to ecosystem processes, and espinal with shrub understory had the largest sets of outcomes. Moreover, we found that these outcomes were broadly in the directions preferred by management goals. This supports our prediction that matorral acts as an ecosystem process bank for espinal. We recommend that management plans for landscape resilience consider espinal and matorral as a single landscape cover class that should be maintained as a dynamic mosaic. Joint management of espinal and matorral could create new management and policy opportunities.

  3. Progress and challenges in the development of ecosystem accounting as a tool to analyse ecosystem capital

    NARCIS (Netherlands)

    Hein, Lars; Obst, Carl; Edens, Bram; Remme, R.P.

    2015-01-01

    Ecosystem accounting has been developed as a systematic approach to incorporate measures of ecosystem services and ecosystem assets into an accounting structure. Ecosystem accounting involves spatially explicit modelling of ecosystem services and assets, in both physical and monetary terms. A

  4. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    Science.gov (United States)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  5. Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.; Spigel, Ben

    2016-01-01

    This paper reviews and discusses the emergent entrepreneurial ecosystem approach. Entrepreneurial ecosystems are defined as a set of interdependent actors and factors coordinated in such a way that they enable productive entrepreneurship within a particular territory. The purpose of this paper is to

  6. Groundwater uptake by forest and herbaceous vegetation in the context of salt accumulation in the Hungarian Great Plain

    Science.gov (United States)

    Gribovszki, Zoltán; Kalicz, Péter; Balog, Kitti; Szabó, András; Fodor, Nándor; Tóth, Tibor

    2013-04-01

    In Hungarian Great Plain forested areas has significantly increased during the last century. Hydrological effects of trees differ from that of crops or grasses in that, due to their deep roots, they extract water from much deeper soil layers. It has been demonstrated that forest cover causes water table depression and subsurface salt accumulation above shallow saline water table in areas with a negative water balance. The above mentioned situation caused by the afforestation in the Hungarian Great Plain is examined in the frame of a systematic study, which analyzed all affecting factors, like climatic water balance, water table depth and salinity, three species, subsoil layering and stand age. At the regional scale altogether 108 forested and neighbouring non forested plots are sampled. At the stand scale 18 representative forested and accompanying non forested plots (from the 108) are monitored intensively. In this paper dataset of two neighbouring plots (common oak forest and herbaceous vegetation) was compared (as first results of this complex investigation). On the basis of the analysis it could be summarized that under forest the water table was lower, and the amplitude of diel fluctuation of water table was significantly larger as under the herbaceous vegetation. Both results demonstrate greater groundwater use of forest vegetation. Groundwater uptake of the forest (which was calculated by diel based method) was almost same as potential reference evapotranspiration (calculated by Penman-Monteith equation with locally measured meteorological dataset) along the very dry summer of 2012. Larger amount of forest groundwater use is not parallel with salt uptake, therefore salt accumulates in soil and also in groundwater as can be measured of the representative monitoring sites as well. In the long run this process can result in the decline of biological production or even the dry out of some part of the forest. Greater groundwater uptake and salt accumulation

  7. Measuring Value in the Commons-Based Ecosystem: Bridging the Gap Between the Commons and the Market

    OpenAIRE

    De Filippi , Primavera; Hassan , Samer

    2014-01-01

    International audience; Commons-based peer-production (CBPP) constitutes today an important driver for innovation and cultural development, both online and offline. This led to the establishment of an alternative, Commons-based ecosystem, based on peer-production and collaboration of peers contributing to a common good. Yet, to the extent that this operates outside of the market economy, we cannot rely on traditional market mechanisms (such as pricing) to estimate the value of CBPP. We presen...

  8. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes: evaluation of different approaches to deduce total ecosystem respiration from Eddy covariance measurements

    Science.gov (United States)

    Jérôme, Elisabeth; Aubinet, Marc; Heinesch, Bernard

    2010-05-01

    The general aim of this research is to analyze inter annual variability of carbon dioxide (CO2) fluxes exchanged by a mixed forest located at the Vielsalm experimental site in Belgium. At this site, CO2 flux measurements started in 1996 and are still going on. Thirteen complete years of measurements are thus available. Net Ecosystem Exchange (NEE) inter annual variability may be driven by gross primary productivity (GPP) or Total Ecosystem Respiration (TER), which should thus be both quantified. Using flux partitioning methods, TER is deduced from NEE measurements. GPP is then obtained by subtracting TER from NEE. Initially, a robust estimation of TER is required. This work seeks to compare two independent approaches to assess TER in order to quantify the implications on inter-annual variability. The comparison was performed on twelve complete years. TER estimates can be deduced by extrapolating to the whole day NEE measurements taken during selected night or day periods. In both case, the extrapolation is performed by using a respiration response to temperature. The first approach, referred as the night-time approach, consisted in calculating TER using a temperature response function derived from night-time data sets (Reichstein et al., 2005). The second approach, referred as the daytime approach, consisted in assessing TER from the intercept of the NEE/Photosynthetically Photon Flux Density (PPFD) response (Wohlfahrt et al., 2005). For each approach, different modalities were compared: the use of long term (annual) or short term (15 days) data sets for the night-time approach and the use of different types of regression for the daytime approach. In addition, the impact of the temperature choice was studied for each of the approaches. For the night-time approach, main results showed that air temperature sensitivity of ecosystem respiration derived from annual data did not reflect the short-term air temperature sensitivity. Vielsalm is a summer active ecosystem

  9. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  10. Environmental impacts on the evapotranspiration of an water limited and heterogeneous Mediterranean ecosystem.

    Science.gov (United States)

    Montaldo, N.; Curreli, M.; Corona, R.; Oren, R.

    2015-12-01

    Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.

  11. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  12. Urban ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Duvigneaud, P

    1974-01-01

    The author considers the town as an ecosystem. He examines its various subdivisions (climate, soil, structure, human and non-human communities, etc.) for which he chooses examples with particular reference to the city of Brussels.

  13. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling

    Directory of Open Access Journals (Sweden)

    S. Sabate

    2009-08-01

    Full Text Available Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE", and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+", was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

  14. Impact of herbaceous vegetation on the enzymatic activity of coal mining wastes

    Energy Technology Data Exchange (ETDEWEB)

    Osmanczyk, D

    1980-01-01

    Differences in the enzymatic activity of reclaimed and crude dump wastes after coal mining were investigated. Due to the increased activity of six investigated enzymes (dehydrogenase, catalase, saccharase, BETA-glucosidase, urease and asparaginase), a favourable impact of herbaceous vegetation on the biological activation of the breeding-ground was noticed. Particularly in the case of sacharase and BETA-glucosidase, an increase of the enzymatic activity at a rate of several times or even more than ten times speaks not only for an adequate increase of the metabolic rate of carbohydrates but also for specific properties of the habitat which favours an adsorption of these enzymes. (6 refs.) (In Polish)

  15. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Science.gov (United States)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Reclamation to native forest ecosystems in the oil sands region

    International Nuclear Information System (INIS)

    Tuttle, S.

    1996-01-01

    Suncor's reclamation goal is to achieve maintenance-free, self-sustaining ecosystems with capability equivalent to their pre-disturbed condition. Ecosystem re-establishment includes the following steps: (1) soil reconstruction, (2) revegetation, and (3) growth of primary vegetation communities. To assess the sustainability of re-established ecosystems, vegetation and soil characteristics are monitored each year. This method of reclamation and tree planting results in a diverse herbaceous cover developing within a year of soil amendment application, providing erosion protection along with a source of cover and food for wildlife. Results to date have proven to be very positive, since reconstructed soils have been shown to be equivalent to or better than original soils. Also, reclamation sites are developing into sustainable ecological units comparable to nearby natural forest areas

  17. Water level effect on herbaceous plant assemblages at an artificial reservoir-Lago Azul State Park, Southern Brazil

    Directory of Open Access Journals (Sweden)

    D. C. Souza

    Full Text Available This study presents the effect of water level variation on the assemblages of herbaceous species in Mourão I Reservoir, Lago Azul State Park, Southern Brazil. The structure and distribution of populations was examined in February (dry period and April (rainy period, 2011, in two transects. These transects started at the forest edge towards the center of the lake. The end of the transect coincided with the end of the plants within the lake. On every two meters along of the transects we sampled a wooden square of 0.25 m2 for species biomass analysis.The macrophyte stand was composed entirely of emergent species. Considering the periods, most species were less frequent in the rainy period (April, but Ipomea ramosissima (Poir. Choisy, Commelina nudiflora L., Eleocharis acuntagula (Roxb. Schult. and Verbena litorales (Kunth. had their frequency increased during this period, probably due to their resistance. The influence of flood as measured by the NMDS point out that both before and after the flood, there are plots with distinct compositions and biomass. The water level variation affects the dynamics of plant composition and structure in marginal areas of the Reservoir.

  18. CONSUMPTION OF TREE SPECIES AND SHRUBS FOR FRUITS AND HERBACEOUS GOATS TRASHUMANCE GRAZING IN MIXTECA OAXAQUEÑA, MEXICO

    Directory of Open Access Journals (Sweden)

    F.J. Franco-Guerra

    2014-08-01

    Full Text Available The purpose of this study is to determine the weight of the bite in dry matter (DM most favorite tree and shrub species, the fruits (pods and the herbaceous stratum as a component of the diet of goats under conditions of herding transhumance in the Mixteca Baja region and the coast of Oaxaca in order to establish the capacity of ingestion. Six animals of different age and sex of a herd consisting of 963 goats were chosen randomly. The method of direct observation of grazing was used in a whole day, once established preferences, simulated manually bite and to establish the group of values from each sample was measured, and weight. The ANOVA and Bartlett's Kolmogorov-Smirnov tests were. The means comparison test was used to determine the weight of the bite in dry matter of the various species, (HSD Tukey (α, 0.05. Found a large variation prehensile act in the breadth and depth of the bite given to each depending on the type, shape and foliar surface woody species found that they graze on three anatomically different parts: on stem, in the area of the petiole and at the level of the central or main nerve of the leaf.

  19. Plant-cover influence on the spatial distribution of radiocaesium deposits in forest ecosystems

    International Nuclear Information System (INIS)

    Guillitte, Olivier; Andolina, Jean; Koziol, Michel; Debauche, Antoine

    1990-01-01

    Since the Chernobyl nuclear accident, a major campaign of radioactive deposit measurements has been carried out on forest soils in Belgium and the Grand Duchy of Luxemburg. Three types of forest ecosystems have systematically been taken into account in each region: coniferous forests (mainly spruce stands), deciduous forests (mainly beech stands) and in clearings. Sampling and field measurements have been carried out in different places with regard to the plant cover: near the trunks, under the foliage, in a small gap, on soil with or without herbaceous or moss stratum. The samples have been collected and measured according to the different recognizable soil layers in order to evaluate the vertical deposit distribution. From overall measurements, one may observe a high spatial soil deposit variation which is mainly explained by the nature, structure and age of the forest stands and by the thickness and the nature of holorganic horizons. A particular interest of this study is the identification of the influence of stem flow and impluvium on forest-cover gaps and edges. (author)

  20. Strategic ecosystems of Colombia

    International Nuclear Information System (INIS)

    Marquez Calle German

    2002-01-01

    The author relates the ecosystems in Colombia, he makes a relationship between ecosystems and population, utility of the ecosystems, transformation of the ecosystems and poverty and he shows a methodology of identification of strategic ecosystems

  1. Ecosystem-based management and the wealth of ecosystems

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio’s performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth. PMID:28588145

  2. Ecosystem-based management and the wealth of ecosystems.

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K; Fenichel, Eli P

    2017-06-20

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio's performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth.

  3. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants.

    Science.gov (United States)

    Chaplygin, Victor; Minkina, Tatiana; Mandzhieva, Saglara; Burachevskaya, Marina; Sushkova, Svetlana; Poluektov, Evgeniy; Antonenko, Elena; Kumacheva, Valentina

    2018-02-07

    The effect of technogenic emissions on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into plants from the Poaceae and Asteraceae families has been studied. Soil and plant contamination by anthropogenic emissions from industrial enterprises leads the decreasing of crop quality; therefore, the monitoring investigation of plants and soils acquires special importance. The herbaceous plants may be used as bioindicators for main environmental changes. It was found that the high level of anthropogenic load related to atmospheric emissions from the power plant favors the heavy metal (HM) accumulation in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni was revealed in plants growing near the power plant. Heavy metals arrive to plants from the soil in the form of mobile compounds. Plant family is one of the main factors affecting the HM distribution in the above- and underground parts of plants. Plants from the Poaceae family accumulate less chemical elements in their aboveground parts than the Asteraceae plants. Ambrosia artemisiifolia and Artemisia austriaca are HM accumulators. For assessing the stability of plants under contamination with HMs, metal accumulation by plants from soil (the bioconcentration factor) and metal phytoavailability from plants above- and underground parts (the acropetal coefficient) were calculated. According to the bioconcentration factor and translocation factor values, Poaceae species are most resistant to technogenic contamination with HMs. The translocation factor highest values were found for Tanacetum vulgare; the lowest bioconcentration factor values were typical for Poa pratensis.

  4. EASTERN DODDER (CUSCUTA MONOGYNA VAHL.) SEED GERMINATION AFFECTED BY SOME HERBACEOUS DISTILLATES.

    Science.gov (United States)

    Movassaghi, M; Hassannejad, S

    2015-01-01

    Eastern dodder (Cuscuta monogyna Vahl.) is one of the noxious parasitic weeds that infected many ornamental trees in green spaces and gardens. Our purpose is to find natural inhibitors for prevention of its seed germination. In order to reach this aim, laboratory studies were conducted by using of herbaceous distillates of Dracocephalum moldavica, Nasturtium officinalis, Malva neglecta, Mentha piperita, Mentha pulegium, Rosa damascene, Ziziphora tenuior, and Urtica dioica on seed germination of C. monogyna. Z. tenuior distillate stimulated C. monogyna seed germination, whereas others reduced this parasitic weed's seed germination. D. moldavica caused maximum inhibition on weed seed germination. Seedling growth of C. monogyna was more affected than its seed germination. All of these herbaceous distillates reduced C. monogyna seedling length so that the latter decreased from 28.2 mm in distilled water to 4.5, 3.97, 3.85, 3.67, 3.1, 2.87, 2.57, 1.9, and 1.17 in M. pulegium, M. piperita, F. officinalis, Z. tenuior, N. officinalis, M. neglecta, R. damascene, U. dioica and D. moldavica, respectively. By using these medicinal plants distillates instead of herbicides, the parasitic weed seedling length and host plant infection will reduce.

  5. A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.H.

    1999-11-24

    To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO{sub 2} levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO{sub 2}-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center's (CDIAC's) NDP-072, which provides similar information for woody vegetation. This numeric data package contains a 30-field data set of CO{sub 2}-exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO{sub 2}-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS{reg_sign} and Fortran codes to read the ASCII data file). The data files and this documentation are available without charge on a variety of media and via the Internet from CDIAC.

  6. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  7. Defining Ecosystem Assets for Natural Capital Accounting.

    Science.gov (United States)

    Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems' capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.

  8. The nutritional quality of herbaceous legumes on goats: Intake, digestibility and nitrogen balances

    Directory of Open Access Journals (Sweden)

    Simon P Ginting

    2005-12-01

    Full Text Available The availability of forages is a critical factor that determine the sustainability of the animal-plantation production system. In this typical production system, cover crops could be an important sources of forages to support the animal production. The study is aimed to evaluate the nutritional quality (chemical compositions, intake, digestibility and N balances of herbaceous legumes namely Arachis pintoi and Arachis glabrata having potential for used as alternative cover crops in plantation. Centerocema pubescens, a conventional cover crops used in plantation, was used as control. Twenty-one mature male goats (16-18 kg were used in this experiment. The animals were put in individual metabolism cages, divided into three groups (7 animal per group based on the body weight, and were randomly allocated into one of the three forages. The experiment was run in a Completely Randomized Design. The animals were allocated to an adaptation period for 14 days, followed by intake measurement for 5 days and fecal and urine collection for the next 7 days. During the fecal and urine collection forages were offered at 90% of the maximum intake. Chemical analyses showed that the DM and OM contents were relatively equal among the forages, but the crude protein content of C. pubescens (23.56% are relatively higher than those of A. pintoi (16.94% or of A. glabrata (15.19% The fiber (NDF content was also relatively higher in C. pubescens (59.37% than in A. pintoi (16.94% or A. glabrata (41.50%. The forage intake was highest (P0.05 between goats fed A. pintoi (466 g/d or A. glabrata (453 g/d. A similar trend was seen when intake was expressed as % BW (3.80, 3.50 and 3.40, respectively or as g/kg BW0.75 (42.4, 39.5 and 38.4, respectively. The digestion coeficient of DM (81.3% or OM (83.5% were highest (P0.05 between A. glabrata (71.9 and 73.2%, respectively and C. pubescens (73.7 and 74.2%, respectively. The trends were the same with the digestion coeficient of ADF

  9. Differentiations with regard to space and time of the herbaceous layer of pine and oak forests in Berlin (West) suffering from acidified soil. Raeumliche und zeitliche Differenzierungen der Krautschicht bodensaurer Kiefern-Traubeneichenwaelder in Berlin (West)

    Energy Technology Data Exchange (ETDEWEB)

    Seidling, W.

    1990-01-01

    Within the framework of the multidisciplinary research project 'Forest ecosystems near agglomerations' carried out at the Technical University of Berlin, modifications of the herbaceous layer were investigated with regard to different spaces and times. Available results on factors of light, water, and nutrients, and regarding biotic, climatic, and logging-dependent disturbances of investigated stands were complemented by phytosociological, stand-sociological, population-biological and light-climatic investigations in experimental sites covering 400 m{sup 2} each. Here the direct relationship between relative light consumption and the closedness of the herbaceous layer could be confirmed. Cluster analyses of floristic similarity showed good agreement with floral-statistics and ecological parameters and correlations to the growth of trees and to the pH value of the upper soil. The expected zoning of vegetation near the stems of trees was confirmed. The stability of populations in relation to time seems to be a function of weather-dependent variations of nitrogen mineralization rates. The repetition of vegetation surveys from the fifties shows a stronger growth of more shadow-tolerant vegetation because of a now denser tree canopy and shrubbery. (JH).

  10. Designer ecosystems

    NARCIS (Netherlands)

    Awasthi, Ashutosh; Singh, Kripal; O'Grady, Audrey; Courtney, Ronan; Kalra, Alok; Singh, Rana Pratap; Cerda Bolinches, Artemio; Steinberger, Yosef; Patra, D.D.

    2016-01-01

    Increase in human population is accelerating the rate of land use change, biodiversity loss and habitat degradation, triggering a serious threat to life supporting ecosystem services. Existing strategies for biological conservation remain insufficient to achieve a sustainable human-nature

  11. Assessing Ecosystem Drought Response in CLM 4.5 Using Site-Level Flux and Carbon-Isotope Measurements: Results From a Pacific Northwest Coniferous Forest

    Science.gov (United States)

    Duarte, H.; Raczka, B. M.; Koven, C. D.; Ricciuto, D. M.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    The frequency, extent, and severity of droughts are expected to increase in the western United States as climate changes occur. The combination of warmer temperature, larger vapor pressure deficit, reduced snowfall and snow pack, earlier snow melt, and extended growing seasons is expected to lead to an intensification of summer droughts, with a direct impact on ecosystem productivity and therefore on the carbon budget of the region. In this scenario, an accurate representation of ecosystem drought response in land models becomes fundamental, but the task is challenging, especially in regards to stomatal response to drought. In this study we used the most recent release of the Community Land Model (CLM 4.5), which now includes photosynthetic carbon isotope discrimination and revised photosynthesis and hydrology schemes, among an extensive list of updates. We evaluated the model's performance at a coniferous forest site in the Pacific northwest (Wind River AmeriFlux Site), characterized by a climate that has a strong winter precipitation component followed by a summer drought. We ran the model in offline mode (i.e., decoupled from an atmospheric model), forced by observed meteorological data, and used site observations (e.g., surface fluxes, biomass values, and carbon isotope data) to assess the model. Previous field observations indicated a significant negative correlation between soil water content and the carbon isotope ratio of ecosystem respiration (δ13CR), suggesting that δ13CR was closely related to the photosynthetic discrimination against 13CO2 as controlled by stomatal conductance. We used these observations and latent-heat flux measurements to assess the modeled stomatal conductance values and their responses to extended summer drought. We first present the model results, followed by a discussion of potential CLM model improvements in stomatal conductance responses and in the representation of soil water stress (parameter βt) that would more precisely

  12. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  13. Defining Ecosystem Assets for Natural Capital Accounting

    Science.gov (United States)

    Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks. PMID:27828969

  14. Defining ecosystem assets for natural capital accounting

    Science.gov (United States)

    Hein, Lars; Bagstad, Kenneth J.; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.

  15. Herbaceous Plants for Climate Adaptation and Intensely Developed Urban Sites In Northern Europe: A Case Study From the Eastern Romanian Steppe

    Directory of Open Access Journals (Sweden)

    Sjöman Henrik

    2015-03-01

    Full Text Available In the increasingly compact city, services currently provided for in parks will in future be compressed into smaller green unit-structures, often associated with paved surfaces. Left-over spaces in urban environments, such as traffic roundabouts and strips along paths, roads and other corridors, will be important in the future city in order to deliver different eco-system services, especially stormwater management. It is therefore essential to start now to develop the knowledge and experience needed to create sustainable plantings for these sites. This paper presents the findings of a field survey in eastern Romania that sought to identify potential species for urban paved plantings in the Scandinavian region (northern Europe. The research approach is rooted in the hypothesis that studies of natural vegetation systems and habitats where plants are exposed to environmental conditions similar to those in inner-city environments can: 1 identify new or non-traditional species and genotypes adapted to urban environments; and 2 supply information and knowledge about their use potential concerning growth, flowering, life form, etc. In total, 117 different herbaceous species, all of which experience water stress regimes comparable to those in urban paved sites in Scandinavia. The initial information obtained from this field survey present a base of knowledge of which species that have a future potential for use in urban environment, which is of great importance in the following work within this project instead of testing species randomly without this knowledge of the species tolerance and performance in similar habitats.

  16. Inter-annual Variability of Evapotranspiration in a Semi-arid Oak-savanna Ecosystem: Measured and Modeled Buffering to Precipitation Changes

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Baldocchi, D. D.

    2010-12-01

    Precipitation (P) is the primary control on vegetation dynamics and productivity, implying that climate induced disturbances in frequency and timing of P are intimately coupled with fluxes of carbon, water and energy. Future climate change is expected to increase extreme rainfall events as well as droughts, suggesting linked vegetation changes to an unknown extent. Semi-arid climates experience large inter-annual variability (IAV) in P, creating natural conditions adequate to study how year-to-year changes in P affect atmosphere-biosphere fluxes. We used a 10-year flux database collected at a semi-arid savanna site in order to: (1) define IAV in P by means of frequency and timing; (2) investigate how changes in P affect the ecohydrology of the forest and its partitioning into the main vapor fluxes, and (3) evaluate model capability to predict IAV of carbon and water fluxes above and below the canopy. This is based on the perception that the capability of process-oriented models to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site was a low density and low LAI (0.8) semi-arid (P=523±180 mm yr-1) savanna site, combined of oaks and grass, and located at Tonzi ranch, California. Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Measured fluxes were compared to modeled based on two bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Our results show that IAV in P was large, and standard deviation (STD) was 38% of the average. Accordingly, the wet soil period (measured volumetric water content > 8%) varied between 156 days in dry years to 301 days in wet years. IAV of the vapor fluxes were lower than that of P (STD was 17% for the trees and 23% for the floor components), suggesting on ecosystem buffering to changes in P. The timing of grass green up

  17. Taxonomic revision and distribution of herbaceous Paramollugo (Molluginaceae in the Eastern Hemisphere

    Directory of Open Access Journals (Sweden)

    Alexander P. Sukhorukov

    2016-10-01

    Full Text Available The genus Paramollugo with the type species Paramollugo nudicaulis (≡Mollugo nudicaulis has recently been described after molecular investigations. Here we report two new endemic Malagasy species: Paramollugo simulans and P. elliotii, and transfer a forgotten New Caledonian endemic Mollugo digyna to Paramollugo (P. digyna. Consequently, the number of Paramollugo species in the Eastern Hemisphere is increased from three to six. Almost all genus representatives (except P. nudicaulis, which has a wide distribution in Southern Asia, Arabia and tropical Africa are endemic to Madagascar, Somalia, or New Caledonia. Since the type of seed coat ornamentation is crucial for species delimitation, a diagnostic key with new taxonomically significant carpological characters and other new traits is provided for all the herbaceous Paramollugo. The distribution patterns of P. nudicaulis s.str., P. simulans and P. elliotii are presented.

  18. Evaluation of the Relative Merits of Herbaceous and Woody Crops for Use in Tunable Thermochemical Processing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon-Hyun [Ceres, Inc., Thousand Oaks, CA (United States); Martinalbo, Ilya [Choren USA, LLC, Houston, TX (United States)

    2011-12-01

    This report summarizes the work and findings of the grant work conducted from January 2009 until September 2011 under the collaboration between Ceres, Inc. and Choren USA, LLC. This DOE-funded project involves a head-to-head comparison of two types of dedicated energy crops in the context of a commercial gasification conversion process. The main goal of the project was to gain a better understanding of the differences in feedstock composition between herbaceous and woody species, and how these differences may impact a commercial gasification process. In this work, switchgrass was employed as a model herbaceous energy crop, and willow as a model short-rotation woody crop. Both crops are species native to the U.S. with significant potential to contribute to U.S. goals for renewable liquid fuel production, as outlined in the DOE Billion Ton Update (http://www1.eere.energy.gov/biomass/billion_ton_update.html, 2011). In some areas of the U.S., switching between woody and herbaceous feedstocks or blending of the two may be necessary to keep a large-scale gasifier operating near capacity year round. Based on laboratory tests and process simulations it has been successfully shown that suitable high yielding switchgrass and willow varieties exist that meet the feedstock specifications for large scale entrained flow biomass gasification. This data provides the foundation for better understanding how to use both materials in thermochemical processes. It has been shown that both switchgrass and willow varieties have comparable ranges of higher heating value, BTU content and indistinguishable hydrogen/carbon ratios. Benefits of switchgrass, and other herbaceous feedstocks, include its low moisture content, which reduce energy inputs and costs for drying feedstock. Compared to the typical feedstock currently being used in the Carbo-V® process, switchgrass has a higher ash content, combined with a lower ash melting temperature. Whether or not this may cause inefficiencies in the

  19. Evaluation of nodulation and nitrogen fixing potentials of some herbaceous legumes in inland valley soil

    International Nuclear Information System (INIS)

    Bayorbor, T. B.; Addai, I. K.; Lawson, I. Y. D.; Dogbe, W.; Djagbletey, D.

    2006-01-01

    A screening experiment was conducted to evaluate the nodulation, nitrogen fixation and biomass production of eleven herbaceous legumes in three soil series mainly used for rice production in the Guinea savannah agro-ecological zone of Ghana. This study was carried out with a view to fully exploiting the potential of N-fixating legumes as a supplement to inorganic N-fertilizers in rice-based cropping systems. The treatment combinations were laid out in a factorial experiment in randomized complete block design (RCBD) with three replications. Plant samples were harvested at flowering for nodule count, biomass production and N-fixation. The study revealed that the mucuna and crotalaria species were the best nitrogen fixers and biomass producers. For increased yields of rice in the study area, these legumes require more intensive field study for their integration into the rice-based cropping systems. (au)

  20. Effects of Dichrostachys cinerea (l. Wight & Arn (Fabaceae on herbaceous species in a semi-arid rangeland in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Clarice Mudzengi

    2014-08-01

    Full Text Available Anthropogenic alteration of an environment and other disturbance regimes may enable the expansion of some native species into new geographical areas, a phenomenon observed with Dichrostachys cinerea. Five D. cinerea invaded sites, each approximately one hectare in size were assessed for the effects of D. cinerea on native herbaceous species diversity, richness, basal cover, litter cover, top hamper and plant vigour. The same attributes were studied in five uninvaded sites adjacent to, and equal in size to each invaded site. Forty herbaceous species were identified in the area. There were significant differences (P < 0.05 noted in species richness, basal cover, litter cover, top hamper, plant vigour, and species diversities between invaded and uninvaded sites, with uninvaded sites recording higher values than invaded sites. Altitude, erosion and the edaphic variables pH, N, P and K, which were included as explanatory variables, also differed significantly (P<0.05 between invaded and uninvaded sites. Of the 30 D. cinerea invaded plots established for herbaceous species assessments, 26 were positively correlated with altitude, erosion, pH, P, N and K. It is imperative to find ways of managing D. cinerea in order to reduce its adverse effects on herbaceous species.

  1. Cutting and resprouting of Detarium microcarpum and herbaceous forage availability in a semiarid environment in Burkina Faso

    NARCIS (Netherlands)

    Rietkerk, M.G.; Blijdorp, R.R.S.; Slingerland, M.

    1998-01-01

    The tree-shrub savanna ‘Forêt Classée de Nazinon’ (Burkina Faso) is submitted to a management of grazing and rotational cutting of Detarium microcarpum. This species resprouts after cutting. In order to investigate whether this silvopastoral land use system is sustainable, aboveground herbaceous

  2. Response of loblolly pine to complete woody and herbaceous control: projected yields and economic outcomes - the COMProject

    Science.gov (United States)

    James H. Miller; R.L. Busby; B.R. Zutter; S.M. Zedaker; M.B. Edwards; R.A. Newbold

    1995-01-01

    Abstract.Age-8 and -9 data from the 13 study plantations of the Competition Omission Monitoring Project (COMP) were used to project yields and derive economic outcomes for loblolly pine (Pinus taeda L.). COMP treatments were chop-burn, complete woody plant control, complete herbaceous plant control for 4 years, and complete woody...

  3. Effets du pâturage sur la biomasse herbacée et sur des paramètres ...

    African Journals Online (AJOL)

    Results indicate that grazing decreases significantly herbaceous aboveground biomass (but not root biomass). However, grazing does not impact soil chemical and biological parameters, except for soil basal respiration that increases significantly in grazing situation. Thus, after 18 months of exclosure, we detect very little ...

  4. Adapting to change in banana-based farming systems of northwest Tanzania: the potential role of herbaceous legumes

    NARCIS (Netherlands)

    Baijukya, F.P.

    2004-01-01

    Keywords: Land use changes; Herbaceous legumes; Adoptability; N 2 -fixation; Residual effect; Legume management; Exploration of options, Nutrient depleted soils.The banana-based farming system in

  5. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    Directory of Open Access Journals (Sweden)

    David Helman

    2015-09-01

    Full Text Available We present an efficient method for monitoring woody (i.e., evergreen and herbaceous (i.e., ephemeral vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS. The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the dry season was attributed to the woody vegetation (NDVIW. A constant NDVI value was assumed for soil background during this period. In the wet season, changes in NDVI were attributed to the development of ephemeral herbaceous vegetation in the forest floor and its maximum value to the peak green cover (NDVIH. NDVIW and NDVIH agreed well with field estimates of leaf area index and fraction of vegetation cover in two differently structured Mediterranean forests. To further assess the method’s assumptions, understory NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous vegetation covers were assessed for those forests. Applicability for pre- and post-fire monitoring is presented as a potential use of this method for forest management in Mediterranean-climate regions.

  6. Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes.

    Science.gov (United States)

    Hernández, Anabel González; de Moura, Ginaini Doin; Binati, Renato Leal; Nascimento, Francisco Xavier Inês; Londoño, Diana Morales; Mamede, Ana Carolina Peixoto; da Silva, Emanuela Pille; de Armas, Rafael Dutra; Giachini, Admir José; Rossi, Márcio José; Soares, Cláudio Roberto Fonsêca Sousa

    2017-09-01

    Coal open pit mining in the South of Santa Catarina state (Brazil) was inappropriately developed, affecting approximately 6.700 ha. Re-vegetation is an alternative for the recovery of these areas. Furthermore, the use of herbaceous legumes inoculated with nitrogen fixing bacteria is motivated due to the difficulty implementing a vegetation cover in these areas, mainly due to low nutrient availability. Therefore, the aim of this work was to evaluate, among 16 autochthonous rhizobia isolated from the coal mining areas, those with the greatest potential to increase growth of the herbaceous legumes Vicia sativa and Calopogonium mucunoides. Tests were conducted in greenhouse containing 17 inoculation treatments (16 autochthonous rhizobia + Brazilian recommended strain for each plant species), plus two treatments without inoculation (with and without mineral nitrogen). After 60 days, nodulation, growth, N uptake, and symbiotic efficiency were evaluated. Isolates characterization was assessed by the production of indole acetic acid, ACC deaminase, siderophores, and inorganic phosphate solubilization. The classification of the isolates was performed by 16 S rDNA gene sequencing. Only isolates UFSC-M4 and UFSC-M8 were able to nodulate C. mucunoides. Among rhizobia capable of nodulating V. sativa, only UFSC-M8 was considered efficient. It was found the presence of more than one growth-promoting attributes in the same organism, and isolate UFSC-M8 presented all of them. Isolates were classified as belonging to Rhizobium, Burkholderia and Curtobacterium. The results suggest the inoculation of Vicia sativa with strain UFSC-M8, classified as Rhizobium sp., as a promising alternative for the revegetation of coal mining degraded areas.

  7. Spatial partitioning of water use by herbaceous and woody lifeforms in semiarid woodlands

    International Nuclear Information System (INIS)

    Breshears, D.D.

    1993-01-01

    Ecological studies of soil moisture, plant water uptake, and community composition in semiarid regions have focused on differences with depth in the soil profile, yet there are many reasons to expect that moisture also varies with the presence or absence of woody vegetation. Plant and soil moisture relationships for three dominant species in a semiarid woodland, Bouteloua gracilis, Juniperus monosperma, and Pinus edulis, were studied for 1.5 years. Soil moisture varied by type of plant cover as well as by depth. Plant water potential and conductance differed among species and was related to spatial variability in soil moisture. Water potential for blue grama was most correlated with soil moisture in the 0-15 cm layer of intercanopies; juniper water potential was highly correlated with soil moisture in the 0-15 cm layer beneath tree canopies of either species, and pinyon water potential was only weakly correlated with soil moisture in the 15-30 cm depth interval beneath pinyons. Pinyons had consistently greater maximum conductance rates than junipers, even though pinyon conductance was more sensitive to reductions in soil moisture. The results from this study indicate that horizontal differences in the soil moisture profile associated with type of plant cover may be as important as differences in depth for predicting plant-water relationships. A simple model was hypothesized for predicting community composition of three lifeforms: Herbaceous plants, shallow-rooted woody plants, and deeper-rooted woody plants. Distributions of roots of each lifeform and plant-available water were defined with respect to four soil compartments that distinguish upper vs. lower and canopy vs. intercanopy soil regions. The model predicts that multiple combinations of herbaceous and woody biomass can exist at a site and was qualitatively consistent with field data from a climatic gradient

  8. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    Directory of Open Access Journals (Sweden)

    Qingping Geng

    2012-04-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.

  9. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: Combining equilibrium passive sampling of sediment and water with total concentration measurements of biota

    DEFF Research Database (Denmark)

    Mäenpää, Kimmo; Leppänen, Matti T.; Figueiredo, Kaisa

    2015-01-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations...... of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota....... The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities...

  10. Multivariate Spatio-Temporal Clustering: A Framework for Integrating Disparate Data to Understand Network Representativeness and Scaling Up Sparse Ecosystem Measurements

    Science.gov (United States)

    Hoffman, F. M.; Kumar, J.; Maddalena, D. M.; Langford, Z.; Hargrove, W. W.

    2014-12-01

    Disparate in situ and remote sensing time series data are being collected to understand the structure and function of ecosystems and how they may be affected by climate change. However, resource and logistical constraints limit the frequency and extent of observations, particularly in the harsh environments of the arctic and the tropics, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent variability at desired scales. These regions host large areas of potentially vulnerable ecosystems that are poorly represented in Earth system models (ESMs), motivating two new field campaigns, called Next Generation Ecosystem Experiments (NGEE) for the Arctic and Tropics, funded by the U.S. Department of Energy. Multivariate Spatio-Temporal Clustering (MSTC) provides a quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks. We applied MSTC to down-scaled general circulation model results and data for the State of Alaska at a 4 km2 resolution to define maps of ecoregions for the present (2000-2009) and future (2090-2099), showing how combinations of 37 bioclimatic characteristics are distributed and how they may shift in the future. Optimal representative sampling locations were identified on present and future ecoregion maps, and representativeness maps for candidate sampling locations were produced. We also applied MSTC to remotely sensed LiDAR measurements and multi-spectral imagery from the WorldView-2 satellite at a resolution of about 5 m2 within the Barrow Environmental Observatory (BEO) in Alaska. At this resolution, polygonal ground features—such as centers, edges, rims, and troughs—can be distinguished. Using these remote sensing data, we up-scaled vegetation distribution data collected on these polygonal ground features to a large area of the BEO to provide distributions of plant functional types that can

  11. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    Science.gov (United States)

    Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. © 2015 SETAC.

  12. Reclaiming native forest ecosystems in the oilsands region

    International Nuclear Information System (INIS)

    Tuttle, S.

    1997-01-01

    Suncor Energy's land reclamation objectives were reviewed. The general objective is to construct waste dumps and tailings impoundment structures in such a way that they can be transformed into stable landforms with maintenance-free, self-sustaining ecosystems that have at least the same capability to support life as they had during their pre-disturbed condition. In the case of Suncor's current and proposed oilsands mining, this means returning the land to upland forest for the most part. Some of the reclaimed land will become wetlands with some open water areas. Current reclamation and tree planting methods result in a diverse herbaceous cover developing within a year of soil amendment application. These vegetative communities are capable of providing erosion protection, as well as serving as a source of food and cover for wildlife, and generally meeting the reclamation goal of maintenance-free, self-sustaining ecosystems

  13. Environmental fate and distribution of technetium-99 in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Tucker, C.S.; Walton, B.T.

    1986-01-01

    The uptake of 99 Tc by trees intercepting contaminated groundwater from a radioactive waste storage site was measured to identify the major 99 Tc pools within the woodland ecosystem and to assess the relative mobility of 99 Tc in the existing element cycle. The highest average 99 Tc concentrations in vegetation were found in herbaceous plants. Tree wood was the major above-ground pool for 99 Tc because of the high concentrations in wood as well as the large amount of wood relative to other biomass at the site. Technetium was not easily leached from the trees by rainfall and was not readily extractable from forest floor leaf litter by water. The relative importance of return pathways for 99 Tc to the forest floor was leaf fall > stemflow > throughfall, indicating that 99 Tc was conserved by the trees. Snails and millipedes from the leaf litter layer concentrated technetium 20- and 16-fold, respectively, above levels found in the soil. Pertechnetate was rendered less bioavailable after ingestion by a leaf litter macroinvertebrate (Porcellio sp.) common to the study site. (author)

  14. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

    Science.gov (United States)

    Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.

    2013-12-01

    We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.

  15. Defining ecosystem assets for natural capital accounting

    NARCIS (Netherlands)

    Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; Jong, de Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present

  16. Transfer of 137Cs in two farm ecosystems. Calculated effects of counter-measures following a postulated fallout land contamination

    International Nuclear Information System (INIS)

    Andersson, I.; Loensjoe, H.

    1988-01-01

    Studies were performed on two farms, B and R, in southern Sweden to calculate the consequences after a postulated nuclear reactor accident involving contamination of land by 137Cs (1 MBq per m2). The activity transfer to crops and animal products during the sixth year after the fallout was calculated for situations without and with counter-measures taken. The effects of counter-measures, fertilizing with potassium, deep-ploughing and also modified crop and animal production, were supposed to have reached all parts of the agricultural systems. Steady state conditions were assumed to be prevailing in both situations. Calculations based on the present (in 1985) production on the farms and compiled for the situation without any counter-measures taken, indicate the root uptake of 137Cs in the crops during the year to be 53 MBq (B) and 280 MBq (R) corresponding to 1.0 and 1.6 MBq per hectare, respectively. Through the crops 46 MBq (B) and 187 MBq (R) are ingested by the animals. On the basis of the mean daily activity intake per animal, a total of about 5 MBq on each farm is calculated to be transferred to the animal products (milk and meat). Related to the land area this corresponds to 0.09 and 0.03 MBq per hectare on B and R respectively. The mean internal radiation dose during the year per person on the farms through home-produced food is calculated to be 0.1 mSv (B) and 0.2 mSv (R), and the mean external radiation dose to people working on the farms to be the same as that from the natural background. Calculations for the year in the situation with counter-measures taken indicate that the transferred activity of 137Cs to the crops per hectare is reduced by factors of 10 (B) and 3 (R). The corresponding transfer to animal products is by factors of 23 or 45 (B) and 3 (R), although in the latter case the size of animal production is considerably increased. The external and possibly also the internal radiation doses to people on both farms will be reduced

  17. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  18. Linking ecosystem characteristics to final ecosystem services for public policy

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  19. Linking ecosystem characteristics to final ecosystem services for public policy.

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  20. Susceptibility of peach GF 305 seedlings and selected herbaceous plants to plum pox virus isolates from western Slovakia.

    Science.gov (United States)

    Glasa, M; Matisová, J; Hricovský, I; Kúdela, O

    1997-12-01

    The susceptibility of peach GF 305 seedlings and herbaceous plants to five plum pox virus (PPV) isolates from orchards of western Slovakia was investigated. PPV was isolated from diseased plum, apricot and peach trees, and transmitted by chip-budding to peach GF 305. The herbaceous plants were infected by mechanical inoculation. The transmission was analysed by symptomatology and double sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Infected peaches developed leaf distortion, tissue clearing along the veins and small chlorotic spots (isolate BOR-3). With exception of BOR-3, the PPV isolates transmitted from peach caused local chlorotic spots on Chenopodium foetidum. The character of symptoms changed when a sap from PPV-infected Nicotiana benthamiana was used as virus inoculum. From N. benthamiana, the PPV isolates could be transmitted to Pisum sativum, cv. Colmo (light green mosaic), N. clevelandii and N. clevelandii x N. glutinosa hybrid (latent infection or chlorotic spots).

  1. Floristic survey of herbaceous and subshrubby aquatic and palustrine angiosperms of Viruá National Park, Roraima, Brazil.

    Science.gov (United States)

    Costa, Suzana Maria; Barbosa, Tiago Domingos Mouzinho; Bittrich, Volker; do Amaral, Maria do Carmo Estanislau

    2016-01-01

    We provide and discuss a floristic survey of herbaceous and subshrubby aquatic and palustrine angiosperms of Viruá National Park (VNP). The VNP is located in the northern Amazon basin and displays phytophysiognomies distributed in a mosaic where these plants occur, as flooded forests, hydromorphic white-sand savannas, "buritizais" and waterbodies. After expeditions between February/2010 and January/2015 and the analysis of specimens from regional herbaria, we list 207 species of herbaceous and subshrubby aquatic and palustrine angiosperms for the VNP, distributed in 85 genera in 37 families. We recorded six new occurrences for Brazil, two for the northern Brazilian region and 21 for Roraima state. These new occurrences, added to the other species listed here, highlight the floristic similarity between the study site and the Guiana Shield, an adjacent phytogeographical unit and geologically related to the origin of white-sand savannas.

  2. Effect of Calcium Sprays on Mechanical Strength and Cell Wall Fractions of Herbaceous Peony (Paeonia Lactiflora Pall. Inflorescence Stems

    Directory of Open Access Journals (Sweden)

    Jintao Ge

    2012-04-01

    Full Text Available Calcium is an essential element and imparts significant structural rigidity to the plant cell walls, which provide the main mechanical support to the entire plant. In order to increase the mechanical strength of the inflorescence stems of herbaceous peony, the stems are treated with calcium chloride. The results shows that preharvest sprays with 4% (w/v calcium chloride three times after bud emergence are the best at strengthening “Da Fugui” peonies’ stems. Calcium sprays increased the concentrations of endogenous calcium, total pectin content as well as cell wall fractions in herbaceous peonies stems, and significantly increased the contents of them in the top segment. Correlation analysis showed that the breaking force of the top segment of peonies’ stems was positively correlated with the ratio of water insoluble pectin to water soluble pectin (R = 0.673 as well as lignin contents (R = 0.926 after calcium applications.

  3. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass.

    Science.gov (United States)

    Kim, Sun Min; Dien, Bruce S; Singh, Vijay

    2016-01-01

    Production of advanced biofuels from woody and herbaceous feedstocks is moving into commercialization. Biomass needs to be pretreated to overcome the physicochemical properties of biomass that hinder enzyme accessibility, impeding the conversion of the plant cell walls to fermentable sugars. Pretreatment also remains one of the most costly unit operations in the process and among the most critical because it is the source of chemicals that inhibit enzymes and microorganisms and largely determines enzyme loading and sugar yields. Pretreatments are categorized into hydrothermal (aqueous)/chemical, physical, and biological pretreatments, and the mechanistic details of which are briefly outlined in this review. To leverage the synergistic effects of different pretreatment methods, conducting two or more pretreatments consecutively has gained attention. Especially, combining hydrothermal/chemical pretreatment and mechanical refining, a type of physical pretreatment, has the potential to be applied to an industrial plant. Here, the effects of the combined pretreatment (combined hydrothermal/chemical pretreatment and mechanical refining) on energy consumption, physical structure, sugar yields, and enzyme dosage are summarized.

  4. Effects of gamma radiation on vegetative and reproductive phenology of herbaceous species of northern deciduous forests

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Vegetative and reproductive phenology of 38 herbaceous species of northern deciduous forests and forest roads were observed for 5 years, before (1970 and 1971), during (1972), and after (1973 and 1974) gamma irradiation. During the preirradiation years the occurrence of key vegetative and reproductive phenophases was very uniform throughout the area. This uniformity was upset by irradiation. In 1972 signs of senescence appeared earlier in most plants of the high-radiation zone (greater than or equal to 300 r/day) than in those outside that zone. In 1973 initiation of growth and completion of leaf growth of most plants was delayed by several weeks in the high-radiation zone. In both years the length of growing season was significantly shortened; this was also reflected in reduced biomass production. Vegetative development of surviving plants normalized in 1974. In 1972 flowering of forest herbs (which as a group flower early in the spring) was not affected by radiation, but that of summer-flowering logging-road herbs was delayed because the critical radiation doses were reached at that time. In 1973 all five flowering phenophases of the logging-road herbs were delayed about 3 weeks in the high-radiation zone. Normalization of reproductive phenophases became evident in 1974

  5. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads.

    Science.gov (United States)

    Mikołajczak, Patrycja; Borowiak, Klaudia; Niedzielski, Przemysław

    2017-06-01

    The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale AND Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.

  6. Effects of peroxyacetyl nitrate (PAN) on vegetation. I. Herbaceous plants PAN injury symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I.; Iijima, T.; Oodaira, T.

    1975-01-01

    A series of exposure experiments were conducted in a controlled-atmosphere exposure chamber equipped with artificial light apparatus, using PAN synthesized from ultraviolet irradiation of ethyl nitrite vapor in oxygen. Exposures of 6 approx. 16 hours and 10 pphm PAN caused serious damage like caving with glazing or bronzing in caved lesions to the lower surface of younger leaves. Leaves of white-flowered petunia were found to be most sensitive to PAN and were damaged even by a 3 pphm exposure. Microscopic examinations showed that the PAN characteristically caused injuries of spongy cells and that these cells collapsed and turned brown. Leaf injury symptoms on herbaceous plants caused by synthesized PAN in the exposure experiments were found to be quite similar to those seen in the field under high oxidant emergence. Therefore, it seems that the said type of injuries to leaf beet, kidney bean, and head lettuce observed in the field were caused by PAN. 21 references. 4 figures, 3 tables.

  7. Phenology of selected herbaceous species of northern Wisconsin deciduous forests and forest roads

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Vegetative and reproductive phenophases were observed from 1970 to 1974 on 30 native and 8 introduced herbaceous species growing under deciduous forests and on an abandoned logging road in the Enterprise Radiation Forest in northern Wisconsin. Forest herbs started growing in the same order each year, but logging-road herbs varied. Growth initiation was more variable in the early-starting than in the late-starting species. In most years logging-road herbs started growth a few days earlier than forest herbs. Initiation of flowering of the 38 species was bimodal, culminating around mid-May for forest species and around mid-July for logging-road species. In general, the annual start of flowering varied less than the start of vegetative growth. Duration of flowering of most species was variable, however. Seed ripening times varied strikingly among species, ranging from 11 days for Taraxacum officinale to 101 days for Iris versicolor. Seeds of forest herbs took longer to ripen than those of logging-road species. On the basis of growth initiation of the 6 earliest species, spring arrival in 1970 to 1974 differed by 26 days and appeared to be related to snow disappearance. The growing season of most species paralleled cumulative current-year (May--July) and last-year (August--September) precipitation. Multiple regression analyses between precipitation and average length of growing season explained 87 percent of the total variation for forest herbs and 69 percent of that for logging-road herbs

  8. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, M.-A., E-mail: marc-andre.gonze@irsn.fr; Sy, M.M.

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. - Highlights: • Literature data on the interception of atmospheric pollutants by herbs were reviewed • Predictive models were developed and evaluated in the Bayesian modelling framework • Sensitivity of interception to environmental conditions was satisfactorily explained • 81% of the observations were satisfactorily predicted by a semi-mechanistic model • This model challenges empirical relationships currently used in risk assessment tools.

  9. Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters

    Science.gov (United States)

    2009-12-01

    ER D C TR -0 9- 10 Strategic Environmental Research and Development Program Phytoremediation of Composition-B Derived TNT and RDX in...Program ERDC TR-09-10 December 2009 Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters Elly P. H...for U.S. Army Corps of Engineers Washington, DC 20314-1000 ERDC TR-09-10 ii Abstract: This report describes a study in which phytoremediation of

  10. Floristic survey of herbaceous and subshrubby aquatic and palustrine angiosperms of Viruá National Park, Roraima, Brazil

    OpenAIRE

    Costa, Suzana Maria; Barbosa, Tiago Domingos Mouzinho; Bittrich, Volker; do Amaral, Maria do Carmo Estanislau

    2016-01-01

    Abstract We provide and discuss a floristic survey of herbaceous and subshrubby aquatic and palustrine angiosperms of Viru? National Park (VNP). The VNP is located in the northern Amazon basin and displays phytophysiognomies distributed in a mosaic where these plants occur, as flooded forests, hydromorphic white-sand savannas, ?buritizais? and waterbodies. After expeditions between February/2010 and January/2015 and the analysis of specimens from regional herbaria, we list 207 species of herb...

  11. Analyzing, Modelling, and Designing Software Ecosystems

    DEFF Research Database (Denmark)

    Manikas, Konstantinos

    as the software development and distribution by a set of actors dependent on each other and the ecosystem. We commence on the hypothesis that the establishment of a software ecosystem on the telemedicine services of Denmark would address these issues and investigate how a software ecosystem can foster...... the development, implementation, and use of telemedicine services. We initially expand the theory of software ecosystems by contributing to the definition and understanding of software ecosystems, providing means of analyzing existing and designing new ecosystems, and defining and measuring the qualities...... of software ecosystems. We use these contributions to design a software ecosystem in the telemedicine services of Denmark with (i) a common platform that supports and promotes development from different actors, (ii) high software interaction, (iii) strong social network of actors, (iv) robust business...

  12. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  13. Effect of Single Selection Method on Woody and Herbaceous Plant Biodiversity in Khalil-Mahale Forest, Behshahr

    Directory of Open Access Journals (Sweden)

    Sh. Kazemi

    2015-06-01

    Full Text Available This study was undertaken to investigate the role of forest management in tree diversity, regeneration and vegetation in control and managed parcels of series No. 1 of forestry plan in Khalil-Mahale, Behshahr. Thirty samples with an area of 1000 m2 were systematically and randomly taken with a 100 × 75 m grid in both parcels. In each plot, tree number and species type were recorded. In order to study the vegetation, five micro-plots (1 m2, one in the center and four others in four main directions (half radius from the center of the plot were taken in each plot. The type and percentage of herbaceous species were recorded in each microplot. To count the regeneration in the center of the main plot, circular sample plots with an area of 100 m2 were used. To study and compare the biodiversity in the two plots and to calculate the richness and evenness, the Simpson and Shannon-Wiener diversity indices, Margalef and Menhinic indices and the Pilo index were used, respectively, using PAST software. The results showed that the number of plant species was more in managed plots. The biodiversity of woody and herbaceous plants richness indices and regeneration of tree species were higher in managed plots. In fact, the results showed that forest management using single selection method had different effects on woody species regeneration and diversity of herbaceous and tree species.

  14. THE CANOPY EFFECTS OF Prosopis juliflora (DC. AND Acacia tortilis (HAYNE TREES ON HERBACEOUS PLANTS SPECIES AND SOIL PHYSICO-CHEMICAL PROPERTIES IN NJEMPS FLATS, KENYA

    Directory of Open Access Journals (Sweden)

    Henry C. Kahi

    2009-03-01

    Full Text Available The canopy effects of an exotic and indigenous tree species on soil properties and understorey herbaceous plant species were investigated on the Njemps Flats, Baringo district, Kenya. Samples of soil and herbaceous plant species were obtained within the canopies of systematically selected P. juliflora (exotic and A. tortilis (indigenous trees, and from adjacent open areas. Standing biomass, frequency and cover of understorey plant species were significantly (P

  15. The Oncor Geodatabase for the Columbia Estuary Ecosystem Restoration Program: Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates

    Energy Technology Data Exchange (ETDEWEB)

    Sather, Nichole K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diefenderfer, Heida L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serkowski, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Andre M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    This Handbook of Data Reduction Procedures, Workbooks, and Exchange Templates is designed to support the Oncor geodatabase for the Columbia Estuary Ecosystem Restoration Program (CEERP). The following data categories are covered: water-surface elevation and temperature, sediment accretion rate, photo points, herbaceous wetland vegetation cover, tree plots and site summaries, fish catch and density, fish size, fish diet, fish prey, and Chinook salmon genetic stock identification. The handbook is intended for use by scientists collecting monitoring and research data for the CEERP. The ultimate goal of Oncor is to provide quality, easily accessible, geospatial data for synthesis and evaluation of the collective performance of CEERP ecosystem restoration actions at a program scale.

  16. A novel membrane inlet mass spectrometer method to measure ¹⁵NH4₄⁺ for isotope-enrichment experiments in aquatic ecosystems.

    Science.gov (United States)

    Yin, Guoyu; Hou, Lijun; Liu, Min; Liu, Zhanfei; Gardner, Wayne S

    2014-08-19

    Nitrogen (N) pollution in aquatic ecosystems has attracted much attention over the past decades, but the dynamics of this bioreactive element are difficult to measure in aquatic oxygen-transition environments. Nitrogen-transformation experiments often require measurement of (15)N-ammonium ((15)NH4(+)) ratios in small-volume (15)N-enriched samples. Published methods to determine N isotope ratios of dissolved ammonium require large samples and/or costly equipment and effort. We present a novel ("OX/MIMS") method to determine N isotope ratios for (15)NH4(+) in experimental waters previously enriched with (15)N compounds. Dissolved reduced (15)N (dominated by (15)NH4(+)) is oxidized with hypobromite iodine to nitrogen gas ((29)N2 and/or (30)N2) and analyzed by membrane inlet mass spectrometry (MIMS) to quantify (15)NH4(+) concentrations. The N isotope ratios, obtained by comparing the (15)NH4(+) to total ammonium (via autoanalyzer) concentrations, are compared to the ratios of prepared standards. The OX/MIMS method requires only small sample volumes of water (ca. 12 mL) or sediment slurries and is rapid, convenient, accurate, and precise (R(2) = 0.9994, p < 0.0001) over a range of salinities and (15)N/(14)N ratios. It can provide data needed to quantify rates of ammonium regeneration, potential ammonium uptake, and dissimilatory nitrate reduction to ammonium (DNRA). Isotope ratio results agreed closely (R = 0.998, P = 0.001) with those determined independently by isotope ratio mass spectrometry for DNRA measurements or by ammonium isotope retention time shift liquid chromatography for water-column N-cycling experiments. Application of OX/MIMS should simplify experimental approaches and improve understanding of N-cycling rates and fate in a variety of freshwater and marine environments.

  17. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  18. Assessment of restoration measures efficiency for soil contamination in Mediterranean Ecosystem. The case study of Guadiamar Green Corridor in the context of RECARE project

    Science.gov (United States)

    Anaya-Romero, Maria; José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara

    2017-04-01

    Restoration of soil ecosystems contaminated by heavy metals requires their characterization and the assessment of measures for risk reduction. Particular soil traits and history define different levels of resilience, so soil contamination assessment needs to take into account a site-by-site approach, which considers both the particular environmental characteristics of soils and the human activities. Nevertheless, current approaches for soil contamination assessment developed as academy and market solutions continue to be rather qualitative, and they do not allow as far the selection of efficient remediation measures to solve soil contamination at the long-term and extensively over larger áreas. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) which automatically assess soil contamination values by heavy metals in the topsoil and evaluate the efficiency of soil remediation measures under scenarios of climate and land-use change. The DSS works by simulating the spatio-temporal efficiency of three widely applied remediation measures (compost, sugar beet lime and iron-rich clayey materials). Input variables are divided into: (I) climate variables (mainly precipitation and temperature), (II) site variables (elevation, slope and erodibility), (III) soil (heavy metal content, pH, sand/clay content, soil organic carbon and bulk density), (IV) land use and (V) remediation measures. The predictor variables are related to soil functions expressed by % of change of heavy metal content (Currently the DSS consider cadmium dynamics due to the worldwide distribution in agricultural system and toxicity impact on health and plants), soil carbon and erosion dynamics. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. Since that time, a huge soil databse of

  19. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  20. Horticultural markets promote alien species invasions: an Estonian case study of herbaceous perennials

    Directory of Open Access Journals (Sweden)

    Merle Ööpik

    2013-06-01

    Full Text Available Gardening is a popular pastime, but commercial horticulture is responsible for the introduction of alien species and contributes to invasions in a variety of ways. Although an extensive international literature is available on plant invasions, it is still important at the national level to examine the influence of local factors. Accordingly, 17 nurseries in Estonia that cultivated and sold perennial alien species were selected, and a list of species and prices was compiled. The relationships between species status, and factors such as their abundance in the wild were examined statistically. A qualitative list of the nationally problematic species among herbaceous perennials was also completed. A total of 880 taxa were recorded, of which 10.3% were native and 89.7% alien. In all, 87.3% of the alien species were still confined to cultivated areas. The ecological and socio-economic characteristics of the taxa were described, and lists of the families of casual, naturalised and invasive aliens were provided. Both native and increasing wild alien species have a very similar profile on the market. Alien species that are less expensive, widely available and have more cultivars per species on the market are also more likely to escape. The invasive status and abundance of escaped aliens in an area increases with residence time. In general, socio-economic factors create new and reflect previous propagule pressures from commercial horticulture, which continuously increase the likelihood of alien species surviving and invading new areas. Our findings suggest that these national socio-economic market-related factors explain much of the invasiveness of various perennial ornamental species, and therefore regional and national authorities urgently need to regulate and control the ornamental plant trade to diminish the risk of new invasions.

  1. Ecosystem services provided by bats.

    Science.gov (United States)

    Kunz, Thomas H; Braun de Torrez, Elizabeth; Bauer, Dana; Lobova, Tatyana; Fleming, Theodore H

    2011-03-01

    Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats. © 2011 New York Academy of Sciences.

  2. Reduced herbivory during simulated ENSO rainy events increases native herbaceous plants in semiarid Chile

    NARCIS (Netherlands)

    Manrique, R.; Gutierrez, J.R.; Holmgren, M.; Squeo, F.A.

    2007-01-01

    El Niño Southern Oscillation (ENSO) events have profound consequences for the dynamics of terrestrial ecosystems. Since increased climate variability is expected to favour the invasive success of exotic species, we conducted a field experiment to study the effects that simulated rainy ENSO events in

  3. Spatial and temporal variation in invertebrate consumer diets in forested and herbaceous wetlands

    Science.gov (United States)

    Alani N. Taylor; Darold P. Batzer

    2010-01-01

    Macroinvertebrates have important functional roles in wetland ecosystems, but these roles are not always well understood. This study assessed which foods invertebrate consumers assimilate within a set of wetland habitats. During 2006 and 2007, non-Tanypodinae chironomid larvae and select crustaceans (Crangonyx amphipods, Caecidotea isopods, Simocephalus cladocerans)...

  4. Growth and nutrient content of herbaceous seedlings associated with biological soil crusts

    Science.gov (United States)

    R. L. Pendleton; B. K. Pendleton; G. L. Howard; S. D. Warren

    2003-01-01

    Biological soil crusts of arid and semiarid lands contribute significantly to ecosystem stability by means of soil stabilization, nitrogen fixation, and improved growth and establishment of vascular plant species. In this study, we examined growth and nutrient content of Bromus tectorum, Elymus elymoides, Gaillardia pulchella, and Sphaeralcea munroana grown in soil...

  5. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    Science.gov (United States)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  6. Mapping Ecosystem Services

    OpenAIRE

    Georgiev,Teodor; Burkhard,Benjamin; Maes,Joachim

    2017-01-01

    Ecosystem services are the contributions of ecosystem structure and function (in combination with other inputs) to human well-being. That means, humankind is strongly dependent on well-functioning ecosystems and natural capital that are the base for a constant flow of ecosystem services from nature to society. Therefore ecosystem services have the potential to become a major tool for policy and decision making on global, national, regional and local scales. Possible applications are manifold:...

  7. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    Science.gov (United States)

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote

  8. Factors contributing to the recalcitrance of herbaceous dicotyledons (forbs) to enzymatic deconstruction.

    Science.gov (United States)

    Jabbour, Dina; Angelos, Evan R; Mukhopadhyay, Achira; Womboldt, Alec; Borrusch, Melissa S; Walton, Jonathan D

    2014-04-05

    Many different feedstocks are under consideration for the practical production of biofuels from lignocellulosic materials. The best choice under any particular combination of economic, agronomic, and environmental conditions depends on multiple factors. The use of old fields, restored prairie, or marginal lands to grow biofuel feedstocks offers several potential benefits including minimal agronomic inputs, reduced competition with food production, and high biodiversity. However, a major component of such landscapes is often herbaceous dicotyledonous plants, also known as forbs. The potential and obstacles of using forbs as biofuel feedstocks compared to the more frequently considered grasses and woody plants are poorly understood. The factors that contribute to the yield of fermentable sugars from four representative forbs were studied in comparison with corn stover. The forbs chosen for the study were lamb's quarters (Chenopodium album), goldenrod (Solidago canadensis), milkweed (Asclepias syriaca), and Queen Anne's lace (Daucus carota). These plants are taxonomically diverse, widely distributed in northern temperate regions including the continental United States, and are weedy but not invasive. All of the forbs had lower total glucose (Glc) content from all sources (cell walls, sucrose, starch, glucosides, and free Glc) compared to corn stover (range 16.2 to 23.0% on a dry weight basis compared to 39.2% for corn stover). When digested with commercial enzyme mixtures after alkaline pretreatment, yields of Glc as a percentage of total Glc were lower for the forbs compared to corn stover. Enzyme inhibition by water-extractable compounds was not a significant contributor to the lower yields. Based on experiments with optimized cocktails of pure glycosyl hydrolases, enzyme imbalance probably accounted for much of the lower yields. Addition of xyloglucanase and α-xylosidase, two enzymes targeting Glc-containing polysaccharides that are more abundant in dicotyledonous

  9. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  10. Couverts herbacés pérennes et enjeux environnementaux (en particulier eutrophisation) : atouts et limites

    OpenAIRE

    Vertes, Francoise; Benoit, Marc; Dorioz, Jean Marcel

    2010-01-01

    Outre des fonctions de production, les prairies assurent diverses fonctions environnementales dont la protection de la qualité des eaux et des sols. Dans quelle mesure et à quelles conditions ces fonctions non productives sont elles assurées par les couverts herbacés pérennes ? Après la présentation des principaux processus impliqués dans les cycles de l'azote et du phosphore, les moyens de limiter les pertes en N et P sont rappelés, à l'échelle de la parcelle, de l'exploitation et du bassin ...

  11. Reviewing the health of software ecosystems – a conceptual framework proposal

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Hansen, Klaus Marius

    2013-01-01

    The health of a software ecosystem is an indication of how well the ecosystem is functioning. The measurement of health can point to issues that need to be addressed in the ecosystem and areas for the ecosystem to improve. However, the software ecosystem field lacks an applicable way to measure a...... influenced by theories from natural ecosystems and open source, (ii) identify two areas where software ecosystems differ from business and natural ecosystems, and (iii) propose a conceptual framework for defining and measuring the health of software ecosystems....

  12. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Directory of Open Access Journals (Sweden)

    Yann Salmon

    Full Text Available Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence. Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  13. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Science.gov (United States)

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  14. Transformation of Digital Ecosystems

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hedman, Jonas

    2014-01-01

    the Digital Ecosystem Technology Transformation (DETT) framework for explaining technology-based transformation of digital ecosystems by integrating theories of business and technology ecosystems. The framework depicts ecosystem transformation as distributed and emergent from micro-, meso-, and macro- level......In digital ecosystems, the fusion relation between business and technology means that the decision of technical compatibility of the offering is also the decision of how to position the firm relative to the coopetive relations that characterize business ecosystems. In this article we develop...... coopetition. The DETT framework consists an alternative to the existing explanations of digital ecosystem transformation as the rational management of one central actor balancing ecosystem tensions. We illustrate the use of the framework by a case study of transformation in the digital payment ecosystem...

  15. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  16. The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions

    Science.gov (United States)

    Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.

    2014-12-01

    Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.

  17. Effects of grazing and fire on herbaceous species in the Bolivian Altiplano

    OpenAIRE

    Aguilar, Lita Beatriz Patty

    2012-01-01

    High mountain rangelands had been under human land use for millennia in most parts of the world. Traditional land care systems led to highly diverse and stable ecosystems. As these traditions fade and population pressure rises, these grassland systems become overgrazed, lose carrying capacity and biodiversity and become eroded. Semi-arid high elevation pastures in tropical and subtropical regions are particularly endangered. This PhD project aimed at assessing the plant invento...

  18. Assessing the net effect of long-term drainage on a permafrost ecosystem through year-round eddy-covariance flux measurements

    Science.gov (United States)

    Kittler, F.; Heimann, M.; Goeckede, M.; Zimov, S. A.; Zimov, N.

    2014-12-01

    Permafrost regions in the Northern high latitudes play a key role in the carbon budget of the earth system because of their massive carbon reservoir and the uncertain feedback processes with future climate change. For an improved understanding of mechanisms and drivers dominating permafrost carbon cycling, more observations in high-latitude regions are needed. Particularly the contribution of wintertime fluxes to the annual carbon budget and the impact of disturbances on biogeochemical and biogeophysical ecosystem properties, and the resulting modification of the carbon cycle, have rarely been studied to date. In summer of 2013, we established a new eddy-covariance station for continuous, year-round monitoring of carbon fluxes and their environmental drivers near Cherskii in Northeast Siberia (68.75°N, 161.33°E). Parts of the observation area have been disturbed by drainage since 2004, altering the soil water conditions in a way that is expected for degrading ice-rich permafrost under a warming climate. With two eddy-covariance towers running in parallel over the disturbed (drained) area and a reference area nearby, respectively, we can directly infer the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. This study presents findings based on 16 months of continuous eddy-covariance CO2 flux measurements (July 2013 - October 2014) for both observation areas. At both towers, we observed systematic, non-zero flux contributions outside the growing seasons that significantly altered annual CO2 budgets. A direct comparison of fluxes between the two disturbance regimes indicates a net reduction of the sink strength for CO2 in the disturbed area during the growing season, mostly caused by reduced CO2 uptake with low water levels in late summer. Moreover, shifts in soil temperatures and snow cover caused by reduced soil water levels result in lower net CO2 emissions during the winter at the drained area, which is partly

  19. Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Viktor Brygadyrenko

    2015-02-01

    Full Text Available We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrum sabulosum (Linnaeus, 1761 – a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosa ucrainca (5.21 mg/specimen/24 hours, Euphorbia virgata (3.45, Solanum nigrum (3.32, Centauria scabiosa (2.47, Lamium album (2.41, Aristolochia clematitis (1.76, Chenopodium album (1.73, Arctium lappa (1.51, Asperula odorata (1.20. A high rate of leaf consumption is also characteristic for cultivated species, for example, Perilla nankinensis (5.05 mg/specimen/24 hours, Lycopersicon esculentum (3.75, Tropaeolum majus (3.29, Nicotiana tabacum (2.66, Rumex acetosa (1.96, Beta vulgaris (1.27. O. sabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched.

  20. Analysis of herbaceous vegetation diversity in a reservoir in the Brazilian semiarid region (Açude Itans – RN

    Directory of Open Access Journals (Sweden)

    Diógenes Félix da Silva Costa

    2016-02-01

    Full Text Available Herbaceous plants represent a significant portion of the biodiversity in the Caatinga and are also found around artificial reservoirs in different habitats. This work studied the diversity and the spatial distribution of herbaceous vegetation in the flood zone of Açude Itans, a reservoir located in Caicó (which has a semiarid climate in the state of Rio Grande do Norte. Using the spatial analysis results, the statistical data were stored and analyzed in a geographic information system (GIS and a series of thematic maps of the study area were generated. Nine points were sampled in the water/soil ecotone of the reservoir and 142 specimens were collected. Forty-four species were identified and there was a strong presence of weeds and/or ruderal species. The most significant family was Poaceae, with 37 individuals and seven species, followed by Fabaceae, with 31 individuals and ten species. Cucurbitaceae, Plantaginaceae and Portulacaceae were the least representative families. The least diverse sampling site was the transition zone upstream of the reservoir, while the area near the dam was the most diverse.

  1. Spatial variation in the structure and composition of the herbaceous community in a semiarid region of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    KA. Silva

    Full Text Available In the arid and semiarid environments of the world, microhabitats serve as models for the structure of vegetation communities. The goal of this study was to identify differences in the structures of the herbaceous communities growing on a crystalline substrate and those growing on a sedimentary substrate in a semiarid region of northeastern Brazil. One hundred 1 × 1 m plots were established in each area for quantitative sampling, with 69 species recorded in the crystalline area and 76 in the sedimentary area. The average plant density was higher in the sedimentary area, and average diameters and heights were greater in the crystalline area. The families and species with a high Importance Value Index (IVI and a high Mixed Ecological Value Index (MEVI differed between the areas. Of the species with high densities, only four were found in both areas. Shannon-Weiner diversity index values in the crystalline (2.96 nats/ind.-1 and sedimentary (2.89 nats/ind.-1 areas were similar. Evenness values on both substrates were also similar (0.72 and 0.71 in the crystalline and sedimentary areas, respectively. This study shows that variations in plant establishment conditions between crystalline and sedimentary areas in a semiarid region of northeastern Brazil should be considered as structure-modeling factors for the herbaceous community.

  2. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  3. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  4. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water cycle. Oxygen isotope signatures (δ18O) have been used to partition ecosystem evapotranspiration (ET ) because of the distinct isotopic compositions of water transpired by leaves relative to soil evaporated vapor. Recent developments in laser spectroscopy enable measurements of δ18O in the vapor phase with high temporal resolution in the field and bear a novel opportunity to trace water movement within the ecosystem. In the present study, the effects of distinct vegetation layers (i.e. trees and herbaceous vegetation) on soil water infiltration and redistribution as well as ecosystem water fluxes in a Mediterranean cork-oak woodland are disentangled. An irrigation experiment was carried out using δ18O labeled water to quantify the distinct effects of trees and herbaceous vegetation on 1) infiltration and redistribution of water in the soil profile and 2) to disentangle the effects of tree cover on the contribution of unproductive soil evaporation and understory transpiration to total ET . First results proof that stable δ18O isotopes measured onsite with laser spectroscopy is a valuable tool to trace water movement in the soil showing a much higher sensitivity than common TDR

  5. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    Science.gov (United States)

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  6. Ecosystem classification, Chapter 2

    Science.gov (United States)

    M.J. Robin-Abbott; L.H. Pardo

    2011-01-01

    The ecosystem classification in this report is based on the ecoregions developed through the Commission for Environmental Cooperation (CEC) for North America (CEC 1997). Only ecosystems that occur in the United States are included. CEC ecoregions are described, with slight modifications, below (CEC 1997) and shown in Figures 2.1 and 2.2. We chose this ecosystem...

  7. On Man and Ecosystems.

    Science.gov (United States)

    Brookfield, Harold

    1982-01-01

    Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)

  8. Global Ecosystem Restoration Index

    DEFF Research Database (Denmark)

    Fernandez, Miguel; Garcia, Monica; Fernandez, Nestor

    2015-01-01

    The Global ecosystem restoration index (GERI) is a composite index that integrates structural and functional aspects of the ecosystem restoration process. These elements are evaluated through a window that looks into a baseline for degraded ecosystems with the objective to assess restoration...

  9. Towards ecosystem accounting

    NARCIS (Netherlands)

    Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L.

    2015-01-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support

  10. Rights to ecosystem services

    NARCIS (Netherlands)

    Davidson, M.

    2014-01-01

    Ecosystem services are the benefits people obtain from ecosystems. Many of these services are provided outside the borders of the land where they are produced; this article investigates who is entitled to these non-excludable ecosystem services from two libertarian perspectives. Taking a

  11. Nonstructural carbon dynamics are best predicted by the combination of photosynthesis and plant hydraulics during both bark beetle induced mortality and herbaceous plant response to drought

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Guadagno, C.; Peckham, S. D.; Pendall, E.; Borkhuu, B.; Aston, T.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Yarkhunova, Y.; Weinig, C.

    2012-12-01

    Recent work has shown that nonstructural carbon (NSC) provides both a signal and consequence of water stress in plants. The dynamics of NSC are likely not solely a result of the balance of photosynthesis and respiration (carbon starvation hypothesis) but also the availability of NSC for plant functions due to hydraulic condition. Further, plant hydraulics regulates photosynthesis both directly through stomatal conductance and indirectly through leaf water status control over leaf biochemistry. To test these hypotheses concerning NSC in response to a wide variety of plant perturbations, we used a model that combines leaf biochemical controls over photosynthesis (Farquhar model) with dynamic plant hydraulic conductance (Sperry model). This model (Terrestrial Regional Ecosystem Exchange Simulator; TREES) simulates the dynamics of NSC through a carbon budget approach that responds to plant hydraulic status. We tested TREES on two dramatically different datasets. The first dataset is from lodgepole pine and Engelmann spruce trees dying from bark beetles that carry blue-stain fungi which block xylem and cause hydraulic failure. The second data set is from Brassica rapa, a small herbaceous plant whose accessions are used in a variety of crops. The Brassica rapa plants include two parents whose circadian clock periods are different; NSC is known to provide inputs to the circadian clock likely modified by drought. Thus, drought may interact with clock control to constrain how NSC changes over the day. The Brassica rapa plants were grown in growth chamber conditions where drought was precisely controlled. The connection between these datasets is that both provide rigorous tests of our understanding of plant NSC dynamics and use similar leaf and whole plant gas exchange and NSC laboratory methods. Our results show that NSC decline (water stress. The model is able to capture this relatively small decline in NSC by limiting NSC utilization through loss of plant hydraulic

  12. Ecosystem services classification: A systems ecology perspective of the cascade framework

    CSIR Research Space (South Africa)

    La Notte, A

    2017-03-01

    Full Text Available and the environment. We present a refreshed conceptualization of ecosystem services which can support ecosystem service assessment techniques and measurement. We combine the notions of biomass, information and interaction from system ecology, with the ecosystem...

  13. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots.

    Science.gov (United States)

    Belluau, Michaël; Shipley, Bill

    2018-01-01

    Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.

  14. An appraisal of ecological distribution of herbaceous flora at changa manga park lahore, pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Erum, S.; Khan, S.M.

    2014-01-01

    The forest ground flora plays a vital role in cycling of nutrients, habitat preservation and rejuvenation of shrubs. The vegetation consociated with the forest plays a vital role in the protection, function of the forest ecosystem. Effective management of forest vegetation serves the forest ecosystem in assaying the balance of harmful effects of vying vegetation. Relationship of ecology between environment and vegetation and their ordination techniques and classification methods has become vital means in the research field vegetation ecology. Classification depends on the abundances of ground vegetation species. Multivariate technique is an important technique in ecology and biology for the group prediction. Classification of different plant communities had been accomplished by carrying out TWINSPAN analysis using PC-ORD. The results were shown in a two-way cluster dendrogram. A dendrogram is a hierarchical representation of species in graphical form. The encompassing survey has been conducted in the Changa Manga Forest (CMF) which resulted in the identification of the 45 species belonging to 24 families from all over the forest area. The TWINSPAN results of CMF ascertained the following dominant species in all of the four zones, Cynadon dactylon, Malvestrum cormendalianum, Oxalis corniculata, Parthenium hysterophorus, Desmostachya bipinnata. (author)

  15. Characterization of shrubland ecosystem components as continuous fields in the northwest United States

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Rigge, Matthew B.; Shi, Hua; Meyer, Debbie

    2015-01-01

    Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystem conditions in arid and semiarid lands. An innovative approach was developed by integrating multiple sources of information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of several procedures including field sample collections, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, medium resolution estimates of shrubland components following different climate zones using Landsat 8 phenological mosaics and regression tree models, and product validation. Fractional covers of nine shrubland components were estimated: annual herbaceous, bare ground, big sagebrush, herbaceous, litter, sagebrush, shrub, sagebrush height, and shrub height. Our study area included the footprint of six Landsat 8 scenes in the northwestern United States. Results show that most components have relatively significant correlations with validation data, have small normalized root mean square errors, and correspond well with expected ecological gradients. While some uncertainties remain with height estimates, the model formulated in this study provides a cross-validated, unbiased, and cost effective approach to quantify shrubland components at a regional scale and advances knowledge of horizontal and vertical variability of these components.

  16. Ecosystem services in ECOCLIM

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Boegh, Eva; Bendtsen, J

    that actions initiated to reduce anthropogenic GHG emissions are sustainable and not destructive to existing ecosystem services. Therefore it is important to address i.e. land use change in relation to the regulating services of the ecosystems, such as carbon sequestration and climate regulation. At present...... a thorough understanding of the ecosystem processes controlling the uptake or emissions of GHG is fundamental. Here we present ECOCLIM in the context of ecosystem services and the experimental studies within ECOCLIM which will lead to an enhanced understanding of Danish ecosystems....

  17. On the estimate of the transpiration in Mediterranean heterogeneous ecosystems with the coupled use of eddy covariance and sap flow techniques.

    Science.gov (United States)

    Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram

    2013-04-01

    Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water

  18. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  19. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E

    2013-01-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  20. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon FluxMeasurements ofMontanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander; Malenovský, Z.; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, M.; Vráblová, M.; Olejníčková, Julie; Špunda, V.; Marek, Michal V.

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 1-13 ISSN 1537-744X R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŽP(CZ) SP/2D1/93/07; GA MŠk(CZ) LM2010007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Chlorophyll fluorescence * carbon flux * forest ecosystems * Norway Spruce * temperate zone Subject RIV: EH - Ecology, Behaviour Impact factor: 1.730, year: 2012

  1. Stormwater management and ecosystem services: a review

    Science.gov (United States)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.

  2. Efficiency of fisheries is increasing at the ecosystem level

    DEFF Research Database (Denmark)

    Jacobsen, Nis Sand; Burgess, Matthew G; Andersen, Ken Haste

    2017-01-01

    examine the efficiency of North Sea and Baltic Sea fisheries with respect to economic rent and ecosystem impact, finding both to be inefficient but steadily improving. Our results suggest the following: (i) a broad and encouraging trend towards ecosystem-level efficiency of fisheries; (ii) that ecosystem......Managing fisheries presents trade-offs between objectives, for example yields, profits, minimizing ecosystem impact, that have to be weighed against one another. These trade-offs are compounded by interacting species and fisheries at the ecosystem level. Weighing objectives becomes increasingly...... regressing at least one other. We investigate the ecosystem-level efficiency of fisheries in five large marine ecosystems (LMEs) with respect to yield and an aggregate measure of ecosystem impact using a novel calibration of size-based ecosystem models. We estimate that fishing patterns in three LMEs (North...

  3. Seed morphology, germination phenology, and capacity to form a seed bank in six herbaceous layer apiaceae species of the eastern deciduous forest

    Science.gov (United States)

    Tracy S. Hawkins; Jerry M. Baskin; Carol C. Baskin

    2007-01-01

    We compared seed mass, seed morphology, and long-term germination phenology of three monocarpic (MI and three polycarpic (P) Apiaceae species of the herbaceous layer of the Eastern Deciduous Forest. Seeds (mericarps) of the six species differed considerably in mass, shape, and ornamentation. Mean seed masses were ranked Cryptotaenia canadensis (M)...

  4. A Regional Study of Loblolly Pine (Pinus taeda) Plantation Development During the First 15 Years After Early Complete Woody and/or Herbaceous Plant Control

    Science.gov (United States)

    James H. Miller; Bruce R. Zutter; Shepard M. Zedaker; M. Boyd Edwards; Ray A. Newbold

    2002-01-01

    Conifer plantations in North America and elsewhere in the world are increasingly cultured using early control of herbaceous and woody plants. Development of sustainable cultural practices are hindered by the absence of long-term data on productivity gains relative to competition levels, crop- competition dynamics, and ecological changes. There are lmany reports of...

  5. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of the L-reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1982-10-01

    This report summarizes the findings of slightly more than one year's study of the Steel Creek ecosystem. Generally, the findings have allowed us to refine our understanding of the structural and functional organization of the Steel Creek ecosystem which is an essential prerequisite for predicting the impacts associated with L-reactor restart. Reanalysis of the Steel Creek plant community relationships using 1981 aerial photography revealed that this component of the delta ecosystem continues to change as a result of natural successional processes. The major detectable changes have occurred on the more elevated portions of Steel Creek delta where coverage by woody species (especially willow) is continuing to increase. This successional woody community is invading areas previously dominated by persistent herbaceous species such as cut grass. Eleven vegetation associations were identified in the Steel Creek delta area, including two associations that were not apparently affected by the earlier reactor operations

  6. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  7. Quantifying the web browser ecosystem.

    Science.gov (United States)

    Ferdman, Sela; Minkov, Einat; Bekkerman, Ron; Gefen, David

    2017-01-01

    Contrary to the assumption that web browsers are designed to support the user, an examination of a 900,000 distinct PCs shows that web browsers comprise a complex ecosystem with millions of addons collaborating and competing with each other. It is possible for addons to "sneak in" through third party installations or to get "kicked out" by their competitors without user involvement. This study examines that ecosystem quantitatively by constructing a large-scale graph with nodes corresponding to users, addons, and words (terms) that describe addon functionality. Analyzing addon interactions at user level using the Personalized PageRank (PPR) random walk measure shows that the graph demonstrates ecological resilience. Adapting the PPR model to analyzing the browser ecosystem at the level of addon manufacturer, the study shows that some addon companies are in symbiosis and others clash with each other as shown by analyzing the behavior of 18 prominent addon manufacturers. Results may herald insight on how other evolving internet ecosystems may behave, and suggest a methodology for measuring this behavior. Specifically, applying such a methodology could transform the addon market.

  8. Quantifying the web browser ecosystem

    Science.gov (United States)

    Ferdman, Sela; Minkov, Einat; Gefen, David

    2017-01-01

    Contrary to the assumption that web browsers are designed to support the user, an examination of a 900,000 distinct PCs shows that web browsers comprise a complex ecosystem with millions of addons collaborating and competing with each other. It is possible for addons to “sneak in” through third party installations or to get “kicked out” by their competitors without user involvement. This study examines that ecosystem quantitatively by constructing a large-scale graph with nodes corresponding to users, addons, and words (terms) that describe addon functionality. Analyzing addon interactions at user level using the Personalized PageRank (PPR) random walk measure shows that the graph demonstrates ecological resilience. Adapting the PPR model to analyzing the browser ecosystem at the level of addon manufacturer, the study shows that some addon companies are in symbiosis and others clash with each other as shown by analyzing the behavior of 18 prominent addon manufacturers. Results may herald insight on how other evolving internet ecosystems may behave, and suggest a methodology for measuring this behavior. Specifically, applying such a methodology could transform the addon market. PMID:28644833

  9. INTERACTIONS BETWEEN THE HERBACEOUS AND SHRUBBY-ARBOREAL COMPONENTS IN A SEMIARID REGION IN THE NORTHEAST OF BRAZIL: COMPETITION OR FACILITATION?

    Directory of Open Access Journals (Sweden)

    KLEBER ANDRADE DA SILVA

    2015-01-01

    Full Text Available Under conditions of high stress, interactions between species can be positive. Islands of perennial vegetation can improve the conditions of the understory and facilitate the establishment of herbaceous plants. The hypothesis of this study is that islands of perennial vegetation in an area of caatinga harbor, a greater richness, diversity and density of herbaceous plants, and that individuals reach a greater height and diameter than in open spaces. The study was conducted in Petrolândia, Pernambuco, Brazil. Twenty-seven plots were installed in the center of the islands, 38 at the edge of the islands (in a total of 38 islands and 35 in the open spaces. A total of 51 species were recorded in the center and 55 on the edge of the islands and 48 in the open spaces. The mean richness of the open spaces was lower than on the islands. The diversity was greater in the center of the island and became less on the edge of the island and in the open spaces. The mean density was lower in the open spaces than on the islands. The mean density at the edge of the islands was greater than in the center of the islands. There was no difference in mean diameter of herbaceous plants. The mean height of the individuals was higher in the center of the islands. The herbaceous community growing on the islands exhibited higher richness, diversity, density and height than in open spaces. Thus, islands of perennial vegetation facilitate the establishment of herbaceous species.

  10. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.

    1985-06-01

    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  11. The Multifaceted Aspects of Ecosystem Integrity

    Directory of Open Access Journals (Sweden)

    Giulio A. De Leo

    1997-06-01

    Full Text Available The need to reduce human impacts on ecosystems creates pressure for adequate response, but the rush to solutions fosters the oversimplification of such notions as sustainable development and ecosystem health. Hence, it favors the tendency to ignore the complexity of natural systems. In this paper, after a brief analysis of the use and abuse of the notion of ecosystem health, we address the problem of a sound definition of ecosystem integrity, critically review the different methodological and conceptual approaches to the management of natural resources, and sketch the practical implications stemming from their implementation. We show thatthere are merits and limitations in different definitions of ecosystem integrity, for each acknowledges different aspects of ecosystem structure and functioning and reflects the subjective perspectives of humans on the value, importance, and role of biological diversity. This evaluation is based on a brief sketch of the links among biodiversity, ecosystem functioning and resilience, and a description of the problems that arise in distinguishing between natural and anthropogenic disturbance. We also emphasize the difficulty of assessing the economic value of species and habitats and the need to use adaptive management policies to deal with uncertainty and ecosystem complexity. In conclusion, while acknowledging that environmental legislation requires objective statements on ecosystem status and trends, we stress that the notion of ecological integrity is so complex that its measure cannot be expressed through a single indicator, but rather requires a set of indicators at different spatial, temporal, and hierarchical levels of ecosystem organization. Ecosystem integrity is not an absolute, monolithic concept. The existence of different sets of values regarding biological diversity and environmental risks must be explicitly accounted for and incorporated in the decision process, rather than ignored or averaged out.

  12. Double-Crested Cormorant ( Phalacrocorax auritus) Nesting Effects on Understory Composition and Diversity on Island Ecosystems in Lake Erie

    Science.gov (United States)

    McGrath, Darby M.; Murphy, Stephen D.

    2012-08-01

    The context for this study is the management concerns over the severity and extent of the impact of cormorants on island flora in the recent past on Lake Erie islands. Accordingly, this study sought to quantify the nesting colonies' influence on coarse woody litter and how nest densities and litter depth may influence the herbaceous layer, the seed bank composition and viability across the extent of three Lake Erie islands. The data for this study were collected from 2004 to 2008 on East Sister Island and Middle Island using two main strategies. First, herbaceous layer surveys, cormorant nest counts, soil seed bank cores, and litter depth measurements were executed using a plotless-point quarter method to test island-wide impacts from nesting activities (data were also collected on a third island, West Sister Island as a reference for the other two islands). Secondly, a sub-sample of the entire plot set was examined in particularly high nesting density areas for two islands (Middle Island and East Sister Island). Kruskal-Wallis tests indicated that there are subtle changes in the herbaceous diversity (total, native and exotic) and seed bank composition across the islands. The sub sample set of the plots demonstrated that Phalacrocorax auritus nest density does influence litter depth, herbaceous species abundance and diversity. Cormorant nesting pressures are restricted to areas of high nesting pressures and competition. However, there remains a risk to the interior herbaceous layer of the island if the effects of nesting pressures at the edges advance inward from this perimeter.

  13. BUSINESS ECOSYSTEMS VS BUSINESS DIGITAL ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Marinela Lazarica

    2006-05-01

    Full Text Available E-business is often described as the small organisations’ gateway to global business and markets. The adoption of Internet-based technologies for e-business is a continuous process, with sequential steps of evolution. The latter step in the adoption of Internet-based technologies for business, where the business services and the software components are supported by a pervasive software environment, which shows an evolutionary and self-organising behaviour are named digital business ecosystems. The digital business ecosystems are characterized by intelligent software components and services, knowledge transfer, interactive training frameworks and integration of business processes and e-government models.

  14. Restoring a disappearing ecosystem: the Longleaf Pine Savanna.

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Timothy B. [USFS; Miller, Karl V. [University of Georgia; Park, Noreen

    2013-05-01

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, tree thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.

  15. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  16. Belowground ecosystems [chapter 9

    Science.gov (United States)

    Carole Coe Klopatek

    1995-01-01

    The USDA Forest Service defined ecosystem management as "an ecological approach to achieve multiple-use management of national forests and grasslands by blending the needs of people and environmental values in such a way that national forests and grasslands represent diverse, healthy, productive, and sustainable ecosystems" (June 4, 1992, letter from Chief FS...

  17. Payments for Ecosystem Services

    DEFF Research Database (Denmark)

    Chan, Kai M.A; Anderson, Emily K.; Chapman, Mollie

    2017-01-01

    Payments for ecosystem services (PES) programs are one prominent strategy to address economic externalities of resource extraction and commodity production, improving both social and ecological outcomes. But do PES and related incentive programs achieve that lofty goal? Along with considerable en...... sustainable relationships with nature, conserving and restoring ecosystems and their benefits for people now and in the future....

  18. Ecosystem Management and Sustainability

    Science.gov (United States)

    J.D. Peine; B.L. Jacobs; K.E. Franzreb; M.R. Stevens

    2011-01-01

    Ecosystem management (EM) promotes an integrated approach to environmental issues; its central goal is the protection of entire ecosystems. By focusing on an interdisciplinary solution to environmental challenges, EM can help to synthesize societal, economic scientific, and governmental goals. Furthermore, as EM becomes part of the foundation of environmental...

  19. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  20. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  1. Mapping cultural ecosystem services:

    DEFF Research Database (Denmark)

    Paracchini, Maria Luisa; Zulian, Grazia; Kopperoinen, Leena

    2014-01-01

    Research on ecosystem services mapping and valuing has increased significantly in recent years. However, compared to provisioning and regulating services, cultural ecosystem services have not yet been fully integrated into operational frameworks. One reason for this is that transdisciplinarity...... surveys are a main source of information. Among cultural ecosystem services, assessment of outdoor recreation can be based on a large pool of literature developed mostly in social and medical science, and landscape and ecology studies. This paper presents a methodology to include recreation...... in the conceptual framework for EU wide ecosystem assessments (Maes et al., 2013), which couples existing approaches for recreation management at country level with behavioural data derived from surveys, and population distribution data. The proposed framework is based on three components: the ecosystem function...

  2. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    Science.gov (United States)

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  3. In situ measurement of some gamma-emitting radionuclides in plant communities of the South Carolina coastal plain

    International Nuclear Information System (INIS)

    Ragsdale, H.L.; Tanner, B.K.; Coleman, R.N.; Palms, J.M.; Wood, R.E.

    1978-01-01

    In situ and laboratory gamma-ray spectroscopy measurements were taken in nine scrub oak forests and nine old fields to determine the applicability of in situ analysis in the coastal plain. Data collected at each of the 18 sites included a 2-hr count, soil density and moisture estimates, and vegetation measurements. Samples returned to the laboratory for radiometric analysis included litter and herbaceous vegetation and soil cores. Analysis of the gamma-emitter detection frequencies, concentrations, and burdens showed good to excellent agreement between laboratory and in situ methods. Generally, forests were determined to be superior in situ sampling systems. Laboratory analysis of collected samples may be a superior technique for gamma emitters with low energies, low concentrations, or nonuniform distributions in the soil. Three potential uses of in situ Ge(Li) spectrometers were identified and discussed in terms of their limits and of the replicate ecosystems appropriate for in situ analyses. Although the variety and the biogeochemical cycling regimes of southeastern coastal plain ecosystems complicate in situ analyses, it was concluded that comparable and probably accurate results can be achieved using in situ technology

  4. Ecosystem approach in education

    Science.gov (United States)

    Nabiullin, Iskander

    2017-04-01

    Environmental education is a base for sustainable development. Therefore, in our school we pay great attention to environmental education. Environmental education in our school is based on ecosystem approach. What is an ecosystem approach? Ecosystem is a fundamental concept of ecology. Living organisms and their non-living environments interact with each other as a system, and the biosphere planet functions as a global ecosystem. Therefore, it is necessary for children to understand relationships in ecosystems, and we have to develop systems thinking in our students. Ecosystem approach and systems thinking should help us to solve global environmental problems. How do we implement the ecosystem approach? Students must understand that our biosphere functions as a single ecosystem and even small changes can lead to environmental disasters. Even the disappearance of one plant or animal species can lead to irreversible consequences. So in the classroom we learn the importance of each living organism for the nature. We pay special attention to endangered species, which are listed in the Red Data List. Kids are doing projects about these organisms, make videos, print brochures and newspapers. Fieldwork also plays an important role for ecosystem approach. Every summer, we go out for expeditions to study species of plants and animals listed in the Red Data List of Tatarstan. In class, students often write essays on behalf of any endangered species of plants or animals, this also helps them to understand the importance of each living organism in nature. Each spring we organise a festival of environmental projects among students. Groups of 4-5 students work on a solution of environmental problems, such as water, air or soil pollution, waste recycling, the loss of biodiversity, etc. Participants shoot a clip about their project, print brochures. Furthermore, some of the students participate in national and international scientific Olympiads with their projects. In addition to

  5. Current ecosystem processes in steppe near Lake Baikal

    Science.gov (United States)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  6. Exposure of northern leopard frogs in the Green Bay ecosystem to polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans is measured by direct chemistry but not hepatic ethoxyresorufin-O-deethylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.W.; Karasov, W.H.; Patnode, K.A.; Jefcoate, C.R.

    1999-10-01

    The authors measured concentrations of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) in northern leopard frogs collected from the Green Bay ecosystem and explored the catalytic activity of hepatic cytochrome P450-associated monooxygenase (P450 enzyme) as a biomarker for exposure to aryl hydrocarbon receptor (AhR) agonists. The two hypotheses tested were PCH concentrations in northern leopard frogs would be positively correlated with sediment polychlorinated hydrocarbon (PCH) levels in wetland habitats along a contamination gradient and hepatic ethoxyresorufin-O-deethylase (EROD) activity of northern leopard frogs, which is presumably mediated by aryl hydrocarbon receptor (AhR), would be positively correlated with PCH concentrations in frog carcasses from different collection sites. In 1994 and 1995, frogs from seven sites along the lower Fox River and Green Bay, USA, were assayed for hepatic EROD activities and whole carcass concentrations of PCBs, PCDDs, and PCDFs. Tissue total PCB concentrations ranging from 3 to 154 ng/g were significantly correlated with sediment PCB levels. Only one PCDD and two PCDFs at concentrations of 6 to 8 pg/g were found in the frogs collected with frog body weight and was similar among sites except for Peter's Marsh. No significant correlation was found between EROD activity and carcass PCB concentration. This result was consistent with the fact that the frogs collected from the Green Bay ecosystem had relatively low PCB concentrations compared with what was required for induction in the laboratory.

  7. Spatial and Temporal Variability of Ground and Satellite Column Measurements of NO2 and O3 over the Atlantic Ocean During the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment

    Science.gov (United States)

    Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.

    2016-01-01

    In situ measurements of O3 and nitrogen oxides (NO + NO2=NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July August 2014,100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements(r 0.96), but satellite measurements were 3 systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.

  8. Hydrothermal Carbonization of Municipal Woody and Herbaceous Prunings: Hydrochar Valorisation as Soil Amendment and Growth Medium for Horticulture

    Directory of Open Access Journals (Sweden)

    Monica Puccini

    2018-03-01

    Full Text Available In this study, we investigate the suitability of hydrochar, produced at industrial scale by hydrothermal carbonization of municipal woody and herbaceous prunings, to be used as soil amendment and peat substitute in organic growth medium for horticulture. Fresh hydrochar and the products of two different hydrochar post-treatments (i.e., washing and aging were compared in terms of potential phytotoxicity throughout physicochemical characterization and germination tests, performed with a sensitive species (Lactuca sativa. The results showed that the fresh hydrochar obtained from municipal green wastes complies with the Italian regulated parameters for the use as soil amendment. Moreover, hydrochar exhibits biological activity and a high content in organic C, Ca, and other micronutrients (Mg, Zn, Cu, Na, Cl. On the other hand, post-treatments are needed before application of hydrochar as peat substitute in potting mix, since appreciable phytotoxic effects on lettuce seed germination and radicle length of plantlets were observed (e.g., germination percentage of 56% and 54%, with 5 and 10 wt % of hydrochar in the blend, respectively. The inhibition of germination could be mainly attributed to the presence of polyphenols (tannins and volatile fatty acids, which were most effectively removed through the aging post-treatment.

  9. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches.

    Science.gov (United States)

    Zhao, Daqiu; Xia, Xing; Wei, Mengran; Sun, Jing; Meng, Jiasong; Tao, Jun

    2017-12-01

    microRNAs (miRNAs) play critical regulatory roles in plant growth and development. In the present study, the function of herbaceous peony ( Paeonia lactiflora Pall.) miR156e-3p in the regulation of color formation has been investigated. Firstly, P. lactiflora miR156e-3p precursor sequence (pre-miR156e-3p) was isolated. Subsequently, the overexpression vector of pre-miR156e-3p was constructed and transformed into Arabidopsis thaliana . Moreover, the medium screening, GUS staining, polymerase chain reaction (PCR) of the GUS region and real-time quantitative PCR (qRT-PCR) of miR156e-3p all confirmed that the purpose gene had been successfully transferred into Arabidopsis plants and expressed, which resulted in apparent purple lateral branches. And this change in color was caused by the improved anthocyanin accumulation. In addition, expression analysis had shown that the level of miR156e-3p transcript was increased, while transcription level of target gene squamosa promoter binding protein-like gene ( SPL1 ), encoding SPL transcription factor that negatively regulated anthocyanin accumulation, was repressed in miR156e-3p-overexpressing transgenic plants, and its downstream gene dihydroflavonol 4-reductase gene ( DFR ) that was directly involved in anthocyanin biosynthesis was strongly expressed, which resulted in anthocyanin accumulation of Arabidopsis lateral branches. These findings would improve the understanding of miRNAs regulation of color formation in P. lactiflora .

  10. Diversity and distribution patterns of root-associated fungi on herbaceous plants in alpine meadows of southwestern China.

    Science.gov (United States)

    Gao, Qian; Yang, Zhu L

    2016-01-01

    The diversity of root-associated fungi associated with four ectomycorrhizal herbaceous species, Kobresia capillifolia, Carex parva, Polygonum macrophyllum and Potentilla fallens, collected in three sites of alpine meadows in southwestern China, was estimated based on internal transcribed spacer (ITS) rDNA sequence analysis of root tips. Three hundred seventy-seven fungal sequences sorted to 154 operational taxonomical units (sequence similarity of ≥ 97% across the ITS) were obtained from the four plant species across all three sites. Similar taxa (in GenBank with ≥ 97% similarity) were not found in GenBank and/or UNITE for most of the OTUs. Ectomycorrhiz a made up 64% of the fungi operational taxonomic units (OTUs), endophytes constituted 4% and the other 33% were unidentified root-associated fungi. Fungal OTUs were represented by 57% basidiomycetes and 43% ascomycetes. Inocybe, Tomentella/Thelophora, Sebacina, Hebeloma, Pezizomycotina, Cenococcum geophilum complex, Cortinarius, Lactarius and Helotiales were OTU-rich fungal lineages. Across the sites and host species the root-associated fungal communities generally exhibited low host and site specificity but high host and sampling site preference. Collectively our study revealed noteworthy diversity and endemism of root-associated fungi of alpine plants in this global biodiversity hotspot. © 2016 by The Mycological Society of America.

  11. Conversion of Levulinic Acid from Various Herbaceous Biomass Species Using Hydrochloric Acid and Effects of Particle Size and Delignification

    Directory of Open Access Journals (Sweden)

    Indra Neel Pulidindi

    2018-03-01

    Full Text Available Acid catalyzed hydrothermal conversion of levulinic acid (LA from various herbaceous materials including rice straw (RS, corn stover (CS, sweet sorghum bagasse (SSB, and Miscanthus (MS was evaluated. With 1 M HCl, 150 °C, 5 h, 20 g/L solid loading, the yields of LA from untreated RS, CS, SSB and MS based on the glucan content were 60.2, 75.1, 78.5 and 61.7 wt %, respectively. It was also found that the particle size had no significant effect on LA conversion yield with >3 h reaction time. With delignification using simulated green liquor (Na2CO3-Na2S, 20 wt % total titratable alkali (TTA, 40 wt % sulfidity at 200 °C for 15 min, lignin removal was in the range of 64.8–91.2 wt %. Removal of both lignin and xylan during delignification increased the glucan contents from 33.0–44.3 of untreated biomass to 61.7–68.4 wt % of treated biomass. Delignified biomass resulted in much lower conversion yield (50.4–56.0 wt % compared to 60.2–78.5 wt % of untreated biomass. Nonetheless, the concentration of LA in the product was enhanced by a factor of ~1.5 with delignification.

  12. Species richness, alpha and beta diversity of trees, shrubs and herbaceous plants in the woodlands of swat, pakistan

    International Nuclear Information System (INIS)

    Akhtar, N.; Bergmeier, E.

    2015-01-01

    The variation in species richness and diversity of trees, shrubs and herbs in the mountains of Miandam, Swat, North Pakistan, along an elevation gradient between 1600 m and 3400 m was explored. Field data were collected in 18 altitudinal intervals of 100 m each. Polynomial regression was used to find relations of the different growth forms with elevation. The Shannon index was used for calculating α-diversity and the Simpson index for β-diversity. Species richness and α-diversity of herbs were unrelated to elevation. Herbaceous species turnover was high, ranging between 0.46 and 0.89, with its maximum between 2700 and 3000 m. Hump-shaped relationship was observed for shrubs with maximum richness between 2000 and 2200 m; and α-diversity decreased monotonically. Turnover of shrub species was highest between 2000 and 2500 m. Tree species richness was highest at low elevations, and α-diversity was relatively low along the entire gradient. Tree species turnover was also high in the lower zone and again at 2600-2800 m. Species richness of all vascular plants was highest at 2200-2500 m, and α-diversity was highest in the lower part of the gradient. Beta diversity of all growth forms was quite high ranging between 0.53 and 0.87 along the entire gradient reflecting high species and structural turnover. (author)

  13. Role of the Qinghai-Tibetan Plateau uplift in the Northern Hemisphere disjunction: evidence from two herbaceous genera of Rubiaceae.

    Science.gov (United States)

    Deng, Tao; Zhang, Jian-Wen; Meng, Ying; Volis, Sergei; Sun, Hang; Nie, Ze-Long

    2017-10-17

    To assess the role of the Qinghai-Tibetan Plateau uplift in shaping the intercontinental disjunction in Northern Hemisphere, we analyzed the origin and diversification within a geological timeframe for two relict herbaceous genera, Theligonum and Kelloggia (Rubiaceae). Phylogenetic relationships within and between Theligonum and Kelloggia as well as their relatives were inferred using five chloroplast markers with parsimony, Bayesian and maximum-likelihood approaches. Migration routes and evolution of these taxa were reconstructed using Bayesian relaxed molecular clock and ancestral area reconstruction. Our results suggest the monophyly of each Theligonum and Kelloggia. Eastern Asian and North American species of Kelloggia diverged at ca.18.52 Mya and the Mediterranean species of Theligonum diverged from eastern Asian taxa at ca.13.73 Mya. Both Kelloggia and Theligonum are Tethyan flora relicts, and their ancestors might have been occurred in warm tropical to subtropical environments along the Tethys coast. The Qinghai-Tibetan Plateau separated the eastern and western Tethyan area may contribute significantly to the disjunct distributions of Theligonum, and the North Atlantic migration appears to be the most likely pathway of expansion of Kelloggia to North America. Our results highlight the importance role of the QTP uplift together with corresponding geological and climatic events in shaping biodiversity and biogeographic distribution in the Northern Hemisphere.

  14. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall. Infected by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Saijie Gong

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE. Thousands of differentially expressed genes (DEGs were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO and Kyoto encyclopedia of genes and genomes (KEGG database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.

  15. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons.

    Science.gov (United States)

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-06-01

    Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method

  16. Ecosystem quality in LCIA

    DEFF Research Database (Denmark)

    Woods, John S.; Damiani, Mattia; Fantke, Peter

    2017-01-01

    Purpose: Life cycle impact assessment (LCIA) results are used to assess potential environmental impacts of different products and services. As part of the UNEP-SETAC life cycle initiative flagship project that aims to harmonize indicators of potential environmental impacts, we provide a consensus...... viewpoint and recommendations for future developments in LCIA related to the ecosystem quality area of protection (AoP). Through our recommendations, we aim to encourage LCIA developments that improve the usefulness and global acceptability of LCIA results. Methods: We analyze current ecosystem quality...... metrics and provide recommendations to the LCIA research community for achieving further developments towards comparable and more ecologically relevant metrics addressing ecosystem quality. Results and discussion: We recommend that LCIA development for ecosystem quality should tend towards species...

  17. List identifies threatened ecosystems

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  18. Formation of Service Ecosystems

    DEFF Research Database (Denmark)

    Jonas, Julia M.; Sörhammar, David; Satzger, Gerhard

    – i.e. the “birth phase” (Moore, 2009) of a service ecosystem. This paper, therefore, aims to explore how the somewhat “magic” processes of service ecosystem formation that are being taken for granted actually occur. Methodology/Approach: Building on a review of core elements in the definitions...... for Harvard students) or value proposition (share messages, photos, videos, etc. with friends). Processes of configuring actors, resources, and value propositions are influenced by the structural embeddedness of the service ecosystem (e.g., regional infrastructure, existing networks of actors, or resource...... availability) as well as guided by the actors’ own and shared institutions (e.g., rules, norms,and beliefs).We contextualize each starting point with illustrative cases and analyze the service ecosystem configuration process: “Axoon/Trumpf” (initiated by resources), “JOSEPHS – the service manufactory...

  19. Revisiting software ecosystems research

    DEFF Research Database (Denmark)

    Manikas, Konstantinos

    2016-01-01

    ‘Software ecosystems’ is argued to first appear as a concept more than 10 years ago and software ecosystem research started to take off in 2010. We conduct a systematic literature study, based on the most extensive literature review in the field up to date, with two primarily aims: (a) to provide...... an updated overview of the field and (b) to document evolution in the field. In total, we analyze 231 papers from 2007 until 2014 and provide an overview of the research in software ecosystems. Our analysis reveals a field that is rapidly growing both in volume and empirical focus while becoming more mature...... from evolving. We propose means for future research and the community to address them. Finally, our analysis shapes the view of the field having evolved outside the existing definitions of software ecosystems and thus propose the update of the definition of software ecosystems....

  20. Ecosystem Analysis Program

    International Nuclear Information System (INIS)

    Burgess, R.L.

    1978-01-01

    Progress is reported on the following research programs: analysis and modeling of ecosystems; EDFB/IBP data center; biome analysis studies; land/water interaction studies; and computer programs for development of models

  1. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G; Geissbuehler, P; Siegwolf, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  2. Stakeholder Values and Ecosystems

    OpenAIRE

    Sveinsdottir, Thordis; Wessels, Bridgette; Smallwood, Rod; Linde, Peter; Kalla, Vasso; Tsoukala, Victoria; Sondervan, Jeroen

    2013-01-01

    This report is the deliverable for Work Package 1 (WP1), Stakeholder Values and Ecosystems, of the EU FP7 funded project RECODE (Grant Agreement No: 321463), which focuses on developing Policy Recommendations for Open Access to Research Data in Europe. WP1 focuses on understanding stakeholder values and ecosystems in Open Access, dissemination and preservation in the area of scientific and scholarly data (thus not government data). The objectives of this WP are as follows: • Identify and map ...

  3. Terrestrial ecosystems and biodiversity

    CSIR Research Space (South Africa)

    Davis-Reddy, Claire

    2017-10-01

    Full Text Available Ecoregions Terrestrial Biomes Protected Areas Climate Risk and Vulnerability: A Handbook for Southern Africa | 75 7.2. Non-climatic drivers of ecosystem change 7.2.1. Land-use change, habitat loss and fragmentation Land-use change and landscape... concentrations of endemic plant and animal species, but these mainly occur in areas that are most threatened by human activity. Diverse terrestrial ecosystems in the region include tropical and sub-tropical forests, deserts, savannas, grasslands, mangroves...

  4. Privacy driven internet ecosystem

    OpenAIRE

    Trinh, Tuan Anh; Gyarmati, Laszlo

    2012-01-01

    The dominant business model of today's Internet is built upon advertisements; users can access Internet services while the providers show ads to them. Although significant efforts have been made to model and analyze the economic aspects of this ecosystem, the heart of the current status quo, namely privacy, has not received the attention of the research community yet. Accordingly, we propose an economic model of the privacy driven Internet ecosystem where privacy is handled as an asset that c...

  5. Efficiency of natural self-purification of ecosystems vs. countermeasures applied at the East-Ural Radioactive Trace (EURT)

    Science.gov (United States)

    Molchanova, I.; Pozolotina, V.; Mikhailovskaya, L.; Antonova, E.

    2012-04-01

    accumulation of the radionuclides within bank area of the lakes. Analysis of the radionuclides depth distribution in the soil profiles across the watershed area showed about 80-87% of Sr-90 and Cs-137 in account to their total contents are retained in the upper humus layer (0-30 cm). The radionuclides are distributed more or less evenly in the soils of accumulative plots of landscape. Some countermeasures were taken around the EURT's territory in order to create relatively safe conditions for human habitation, to reduce the background radiation and intake of the radionuclides in the herbaceous plants. One of them is undercutting contaminated layer for a depth of the soil profile. The success of this measure was provided by heavy-loam of the soil texture. Last research of these plots has shown the maximum contamination is still shifted out of the root layer. As a result the first link of the food chain presented by herbaceous vegetation showed significantly lower level of the radionuclides accumulation in comparison to the non reclaimed areas. Another countermeasure connected with removal and disposal of the soil surface layer was used in the resettled villages. In this case, the stock of radionuclides in the soil was shown to be twice lower comparing to the contiguous non reclaimed areas. This fact particularly indicates positive changes occurred in ecosystems around the resettled villages. Thus, the countermeasures developed around the EURT should be considered as successful and effective for achievement of the main task focused on complex improvement of the radiation conditions across the EURT. These countermeasures will be effective in other contaminated areas having the similar characteristics of the soils, landscapes and climate.

  6. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales

    Science.gov (United States)

    Feld, C.K.; Da Silva, P.M.; Sousa, J.P.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; Partel, M.; Rombke, J.; Sandin, Leonard; Jones, K. Bruce; Harrison, P.

    2009-01-01

    According to the Millennium Ecosystem Assessment, common indicators are needed to monitor the loss of biodiversity and the implications for the sustainable provision of ecosystem services. However, a variety of indicators are already being used resulting in many, mostly incompatible, monitoring systems. In order to synthesise the different indicator approaches and to detect gaps in the development of common indicator systems, we examined 531 indicators that have been reported in 617 peer-reviewed journal articles between 1997 and 2007. Special emphasis was placed on comparing indicators of biodiversity and ecosystem services across ecosystems (forests, grass- and shrublands, wetlands, rivers, lakes, soils and agro-ecosystems) and spatial scales (from patch to global scale). The application of biological indicators was found most often focused on regional and finer spatial scales with few indicators applied across ecosystem types. Abiotic indicators, such as physico-chemical parameters and measures of area and fragmentation, are most frequently used at broader (regional to continental) scales. Despite its multiple dimensions, biodiversity is usually equated with species richness only. The functional, structural and genetic components of biodiversity are poorly addressed despite their potential value across habitats and scales. Ecosystem service indicators are mostly used to estimate regulating and supporting services but generally differ between ecosystem types as they reflect ecosystem-specific services. Despite great effort to develop indicator systems over the past decade, there is still a considerable gap in the widespread use of indicators for many of the multiple components of biodiversity and ecosystem services, and a need to develop common monitoring schemes within and across habitats. Filling these gaps is a prerequisite for linking biodiversity dynamics with ecosystem service delivery and to achieving the goals of global and sub-global initiatives to halt

  7. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    Science.gov (United States)

    Luvall, Jeffrey C.; Rickman, Doug.; Fraser, Roydon F.

    2013-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his coworkers have documented ecosystem energy budgets, including tropical forests, midlatitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  8. Influence of tree species on the herbaceous understory and soil chemical characteristics in a silvopastoral system in semi-arid northeastern Brazil

    Directory of Open Access Journals (Sweden)

    R. S. C. Menezes

    1999-12-01

    Full Text Available Studies from some semi-arid regions of the world have shown the beneficial effect of trees in silvopastoral systems, by promoting the formation of resource islands and increasing the sustainability of the system. No data are available in this respect for tree species of common occurrence in semi-arid Northeastern Brazil. In the present study, conducted in the summer of 1996, three tree species (Zyziphus joazeiro, Spondias tuberosa and Prosopis juliflora: found within Cenchrus ciliaris pastures were selected to evaluate differences on herbaceous understory and soil chemical characteristics between samples taken under the tree canopy and in open grass areas. Transects extending from the tree trunk to open grass areas were established, and soil (0-15 cm and herbaceous understory (standing live biomass in 1 m² plots samples were taken at 0, 25, 50, 100, 150 and 200% of the average canopy radius (average radius was 6.6 ± 0.5, 4.5 ± 0.5, and 5.3 ± 0.8 m for Z. joazeiro, P. juliflora, and S. tuberosa , respectively. Higher levels of soil C, N, P, Ca, Mg, K, and Na were found under the canopies of Z. joazeiro and P. juliflora: trees, as compared to open grass areas. Only soil Mg organic P were higher under the canopies of S. tuberosa trees, as compared to open grass areas. Herbaceous understory biomass was significantly lower under the canopy of S. tuberosa and P. juliflora trees (107 and 96 g m-2, respectively relatively to open grass areas (145 and 194 g m-2. No herbaceous biomass differences were found between Z. joazeiro canopies and open grass areas (107 and 87 g m-2, respectively. Among the three tree species studied, Z. joazeiro was the one that presented the greatest potential for use in a silvopastoral system at the study site, since it had a larger nutrient stock in the soil without negatively affecting herbaceous understory biomass, relatively to open grass areas.

  9. The Dynamics of Growing Herbaceous Plants in the Soil Contaminated with Sodium Formiate

    Directory of Open Access Journals (Sweden)

    Agnė Kazlauskienė

    2011-02-01

    Full Text Available Salts are most frequently used for road maintenance in cold seasons in Lithuania. In case the use of salts is mandatory, the proposal is to apply as small amounts as possible following the norms of use. Using alternative de-icing salts and agents, such as formiates is recommended. Formiates can be applied with the aim to reduce road sliperness and as a preventive measure of de-icing road paving. These substances are efficient, environment-friendly and have no corrosive effect. The article presents physicochemical and toxicological characteristics of the above introduced materials.Article in Lithuanian

  10. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem

    Science.gov (United States)

    Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.

    2017-01-01

    Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.

  11. Trophodynamic indicators for an ecosystem approach to fisheries

    DEFF Research Database (Denmark)

    Cury, P. M.; Shannon, L. J.; Roux, J. P.

    2005-01-01

    Acknowledging ecological interactions, such as predation, is key to an ecosystem approach to fisheries. Trophodynamic indicators are needed to measure the strength of the interactions between the different living components, and of structural ecosystem changes resulting from exploitation. We review...... appear to be conservative, because they respond slowly to large structural changes in an ecosystem. Application of the selected indicators to other marine ecosystems is encouraged so as to evaluate fully their usefulness to an ecosystem approach to fisheries, and to establish international comparability......, trophic level of the catch, fishing-in-balance, and mixed trophic impact) were selected because of their ability to reveal ecosystem-level patterns, and because they match published criteria. This suite of indicators is applied to the northern and southern Benguela ecosystems, and their performance...

  12. Response diversity determines the resilience of ecosystems to environmental change.

    Science.gov (United States)

    Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro

    2013-05-01

    A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from

  13. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem

    Science.gov (United States)

    Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin

    2018-03-01

    Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.

  14. On Variability in Satellite Terrestrial Chlorophyll Fluorescence Measurements: Relationships with Phenology and Ecosystem-Atmosphere Carbon Exchange, Vegetation Structure, Clouds, and Sun-Satellite Geometry

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Zhang, Y.; Vasilkov, A. P.; Schaefer, K. M.; Huemmrich, K. F.; Middleton, E.; Koehler, P.; Jung, M.; Tucker, C. J.; Lyapustin, A.; Wang, Y.; Frankenberg, C.; Berry, J. A.; Koster, R. D.; Reichle, R. H.; Lee, J. E.; Kawa, S. R.; Collatz, G. J.; Walker, G. K.; Van der Tol, C.

    2014-12-01

    Over the past several years, there have been several breakthroughs in our ability to detect the very small fluorescence emitted by chlorophyll in vegetation globally from space. There are now multiple instruments in space capable of measuring this signal at varying temporal and spatial resolutions. We will review the state-of-the-art with respect to these relatively new satellite measurements and ongoing studies that examine the relationships with photosynthesis. Now that we have a data record spanning more than seven years, we can examine variations due to seasonal carbon uptake, interannual variability, land-use changes, and water and temperature stress. In addition, we examine how clouds and satellite viewing geometry impact the signal. We compare and contrast these variations with those from popular vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), related to the potential photosynthesis as well as with measurements from flux tower gas exchange measurements and other model-based estimates of Global Primary Productivity (GPP). Vegetation fluorescence can be simulated in global vegetation models as well as with 1D canopy radiative transport models. We will describe how the satellite fluorescence data are being used to evaluate and potentially improve these models.

  15. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air

    NARCIS (Netherlands)

    Schüßler, Wolfram; Neubert, Rolf; Levin, Ingeborg; Fischer, Natalie; Sonntag, Christian

    2000-01-01

    The amounts of microbial and root-respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also

  16. Rooting of herbaceous minicuttings of passion fruit/ Enraizamento de miniestacas herbáceas de maracujazeiro amarelo

    Directory of Open Access Journals (Sweden)

    Rudival Faquim

    2007-08-01

    Full Text Available The objective of this work was to evaluate the effect of the basal cut, leaf presence and the treament with a root suspension in the rooting of herbaceous minicuttings of yellow passion fruit. The experiment was realized in a greenhouse using minicuttings with 8 cm of lenght and two nodes, collected from yellow passion fruit seedlings. The longitudinal basal cut in the minicuttings was done until the basal node. The leaves were removed or a half of a single leaf was maintained in the apical node. The minicuttings were treated with a root suspension in water in three concentrations (0, 100 e 200 g L-1. After 58 days, the rooting percentage, the number of roots and the root dry matter produced per minicutting were determined. The entirely randomized experimental design was used in a factorial esqueme (2 x 2 x 3 with three replications. The propagation of the yellow passion fruit by herbaceous minicuttings was viable and the presence of the half of a single leaf in the apical node give a higher production of number and dry matter of roots. The basal cut was only a little favourable to the production of roots and the treatment with a root suspension did not present a benefit to the plant propagation.Este trabalho objetivou avaliar a influência do corte basal, da presença da folha e do tratamento com suspensão de raízes no enraizamento de miniestacas herbáceas de maracujazeiro amarelo. O experimento foi conduzido em casa de vegetação com miniestacas de 8 cm de comprimento e dois nós, obtidas de mudas de maracujazeiro. O corte longitudinal na base das estacas foi feito até o nó basal. Foram retiradas as folhas ou mantida a metade da folha do nó apical. As miniestacas foram tratadas com suspensão de raízes mais água nas concentrações de 0, 100 e 200 g L-1. Após 58 dias, determinou-se a porcentagem de estacas enraizadas, o número de raízes emitidas e a massa seca de raízes por estaca. O delineamento experimental utilizado foi o

  17. Designing a systematic landscape monitoring approach for quantifying ecosystem services

    Science.gov (United States)

    A key problem encountered early on by governments striving to incorporate the ecosystem services concept into decision making is quantifying ecosystem services across large landscapes. Basically, they are faced with determining what to measure, how to measure it and how to aggre...

  18. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    Science.gov (United States)

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  19. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall. by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Daqiu Zhao

    2015-09-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall., one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui” with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora.

  20. Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant Orthilia secunda.

    Science.gov (United States)

    Beatty, Gemma E; Provan, Jim

    2010-11-01

    Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596 bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O. secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia. © 2010 Blackwell Publishing Ltd.

  1. Occurrence of different phytoplasma infections in wild herbaceous dicots growing in vineyards affected by bois noir in Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Guido MARCHI

    2015-12-01

    Full Text Available Wild herbaceous dicotyledonous plants (dicots showing symptoms ascribable to phytoplasma disorders were found to be widely distributed in organic vineyards in central Tuscany (Italy affected by bois noir, a grapevine yellows disease caused by “Candidatus Phytoplasma solani”. In 2010 symptomatic dicots were tentatively identified to species level and the incidence of symptoms estimated in two selected vineyards in the province of Florence. Incidence ranged from 2 to 77%, and was not related to the relative abundance of hosts since very common species as well as relatively rare ones were consistently found to be symptomatic. PCR indexing and 16S rRNA sequence analyses indicated that two phytoplasmas co-existed in the vineyards: “Ca. P. solani”, infecting the root systems of 17 taxa, and a phytoplasma closely related to “Ca. P. phoenicium”, infecting 11 taxa, and occasionally co-infecting the same plant. Regardless of the high frequency of both pathogens in the vineyards, only “Ca. P. solani” could be detected in the grapevines. Population screening by means of tuf sequence analyses revealed the presence of only the tuf-b “Ca. P. solani” type both in dicot hosts and grapevine. This supports current notions of bois noir epidemiology, indicating that some infected dicots act as sources of “Ca. P. solani” inoculum whereas others are dead-end hosts. When the same specimens were screened by sequence analysis of the vmp1 gene, evidence was found that different phytoplasma genotypes may be predominant in grapevines and dicots.

  2. How to construct the statistic network? An association network of herbaceous

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-06-01

    Full Text Available In present study I defined a new type of network, the statistic network. The statistic network is a weighted and non-deterministic network. In the statistic network, a connection value, i.e., connection weight, represents connection strength and connection likelihood between two nodes and its absolute value falls in the interval (0,1]. The connection value is expressed as a statistical measure such as correlation coefficient, association coefficient, or Jaccard coefficient, etc. In addition, all connections of the statistic network can be statistically tested for their validity. A connection is true if the connection value is statistically significant. If all connection values of a node are not statistically significant, it is an isolated node. An isolated node has not any connection to other nodes in the statistic network. Positive and negative connection values denote distinct connectiontypes (positive or negative association or interaction. In the statistic network, two nodes with the greater connection value will show more similar trend in the change of their states. At any time we can obtain a sample network of the statistic network. A sample network is a non-weighted and deterministic network. Thestatistic network, in particular the plant association network that constructed from field sampling, is mostly an information network. Most of the interspecific relationships in plant community are competition and cooperation. Therefore in comparison to animal networks, the methodology of statistic network is moresuitable to construct plant association networks. Some conclusions were drawn from this study: (1 in the plant association network, most connections are weak and positive interactions. The association network constructed from Spearman rank correlation has most connections and isolated taxa are fewer. From net linear correlation,linear correlation, to Spearman rank correlation, the practical number of connections and connectance in the

  3. Meteorological factors and pollen season dynamics of selected herbaceous plants in Szczecin, 2004-2008

    Directory of Open Access Journals (Sweden)

    Małgorzata Puc

    2012-12-01

    Full Text Available The pollen of mugwort, plantain, sorrel, nettle and pigweed is an important airborne allergen source worldwide. The occurrence of pollen grains in the air is a seasonal phenomenon and estimation of seasonal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. The aim of the study was to analyse the dynamics of Artemisia, Plantago, Rumex, Urticaceae and Chenopodiaceae pollen season in Szczecin (western Poland in 2004-2008 and to establish a relationship between the meteorological parameters versus the pollen count of the taxa studied. Measurements were performed by the Hirst volumetric trap (model Lanzoni VPPS 2000. Consecutive phases during the pollen season were defined for each taxon (1, 5, 25, 50, 75, 95, 99% of annual total and duration of the season was determined using the 98% method. On the basis of this analysis, temporary differences in the dynamics of the seasons were most evident for Artemisia. Correlation analysis with weather parameters demonstrated that the maximum wind speed, mean and maximum air temperature, relative humidity and dew point are the main factors influencing the average daily pollen concentrations in the atmosphere.

  4. Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign

    Science.gov (United States)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Morris, Eleanor; Evans, Mat J.; Lohou, Fabienne; Derrien, Solène; Donnou, Venance H. E.; Houeto, Arnaud V.; Reinares Martinez, Irene; Brilouet, Pierre-Etienne

    2018-03-01

    It is important to correctly simulate biogenic fluxes from soil in atmospheric chemistry models at a local and regional scale to study air pollution and climate in an area of the world, West Africa, that has been subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. Anthropogenic pollutants are transported inland and northward from the mega cities located on the coast, where the reaction with biogenic emissions may lead to enhanced ozone production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in June and July 2016. We observe NO fluxes up to 48.05 ngN m-2 s-1. NO fluxes averaged over all land cover types are 4.79 ± 5.59 ngN m-2 s-1, maximum soil emissions of NO are recorded over bare soil. NH3 is dominated by deposition for all land cover types. NH3 fluxes range between -6.59 and 4.96 ngN m-2 s-1. NH3 fluxes averaged over all land cover types are -0.91 ± 1.27 ngN m-2 s-1 and maximum NH3 deposition is measured over bare soil. The observations show high spatial variability even for the same soil type, same day and same meteorological conditions. We compare point daily average measurements of NO emissions recorded during the field campaign with those simulated by GEOS-Chem (Goddard Earth Observing System Chemistry Model) for the same site and find good agreement. In an attempt to quantify NO emissions at the regional and national scale, we also provide a tentative estimate of total NO emissions for the entire country of Benin for the month of July using two distinct methods: upscaling point measurements and using the

  5. Evaluation of HOx sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO and monoterpene (MT dominated ecosystem

    Directory of Open Access Journals (Sweden)

    S. B. Henry

    2013-02-01

    Full Text Available We present a detailed analysis of OH observations from the BEACHON (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-ROCS (Rocky Mountain Organic Carbon Study 2010 field campaign at the Manitou Forest Observatory (MFO, which is a 2-methyl-3-butene-2-ol (MBO and monoterpene (MT dominated forest environment. A comprehensive suite of measurements was used to constrain primary production of OH via ozone photolysis, OH recycling from HO2, and OH chemical loss rates, in order to estimate the steady-state concentration of OH. In addition, the University of Washington Chemical Model (UWCM was used to evaluate the performance of a near-explicit chemical mechanism. The diurnal cycle in OH from the steady-state calculations is in good agreement with measurement. A comparison between the photolytic production rates and the recycling rates from the HO2 + NO reaction shows that recycling rates are ~20 times faster than the photolytic OH production rates from ozone. Thus, we find that direct measurement of the recycling rates and the OH loss rates can provide accurate predictions of OH concentrations. More importantly, we also conclude that a conventional OH recycling pathway (HO2 + NO can explain the observed OH levels in this non-isoprene environment. This is in contrast to observations in isoprene-dominated regions, where investigators have observed significant underestimation of OH and have speculated that unknown sources of OH are responsible. The highly-constrained UWCM calculation under-predicts observed HO2 by as much as a factor of 8. As HO2 maintains oxidation capacity by recycling to OH, UWCM underestimates observed OH by as much as a factor of 4. When the UWCM calculation is constrained by measured HO2, model calculated OH is in better agreement with the observed OH levels. Conversely, constraining the model to observed OH only slightly reduces the model-measurement HO2 discrepancy, implying unknown HO2

  6. Dimensions of ecosystem theory

    International Nuclear Information System (INIS)

    O'Neill, R.V.; Reichle, D.E.

    1979-01-01

    Various dimensions of ecosystem structure and behavior that seem to develop from the ubiquitous phenomena of system growth and persistence were studied. While growth and persistence attributes of ecosystems may appear to be simplistic phenomena upon which to base a comprehensive ecosystem theory, these same attributes have been fundamental to the theoretical development of other biological disciplines. These attributes were explored at a hierarchical level in a self-organizing system, and adaptive system strategies that result were analyzed. Previously developed causative relations (Reichle et al., 1975c) were examined, their theoretical implications expounded upon, and the assumptions tested with data from a variety of forest types. The conclusions are not a theory in themselves, but a state of organization of concepts contributing towards a unifying theory, along the lines promulgated by Bray (1958). The inferences drawn rely heavily upon data from forested ecosystems of the world, and have yet to be validated against data from a much more diverse range of ecosystem types. Not all of the interpretations are logically tight - there is room for other explanations, which it is hoped will provide fruitful grounds for further speculation

  7. Relative Sensitivity of Photosynthesis and Respiration to Freeze-Thaw Stress in Herbaceous Species 1

    Science.gov (United States)

    Steffen, Kenneth L.; Arora, Rajeev; Palta, Jiwan P.

    1989-01-01

    The relative effect of a freeze-thaw cycle on photosynthesis, respiration, and ion leakage of potato leaf tissue was examined in two potato species, Solanum acaule Bitt. and Solanum commersonii Dun. Photosynthesis was found to be much more sensitive to freezing stress than was respiration, and demonstrated more than a 60% inhibition before any impairment of respiratory function was observed. Photosynthesis showed a slight to moderate inhibition when only 5 to 10% of the total electrolytes had leaked from the tissue (reversible injury). This was in contrast to respiration which showed no impairment until temperatures at which about 50% ion leakage (irreversible injury) had occurred. The influence of freeze-thaw protocol was further examined in S. acaule and S. commersonii, in order to explore discrepancies in the literature as to the relative sensitivities of photosynthesis and respiration. As bath cooling rates increased from 1°C/hour to about 3 or 6°C/hour, there was a dramatic increase in the level of damage to all measured cellular functions. The initiation of ice formation in deeply supercooled tissue caused even greater damage. As the cooling rates used in stress treatments increased, the differential sensitivity between photosynthesis and respiration nearly disappeared. Examination of agriculturally relevant, climatological data from an 11 year period confirmed that air cooling rates in the freezing range do not exceed 2°C/hour. It was demonstrated, in the studies presented here, that simply increasing the actual cooling rate from 1.0 to 2.9°C/hour, in frozen tissue from paired leaflet halves, meant the difference between cell survival and cell death. Images Figure 4 Figure 5 PMID:16666712

  8. The herbaceous landlord: integrating the effects of symbiont consortia within a single host

    Directory of Open Access Journals (Sweden)

    Roo Vandegrift

    2015-11-01

    Full Text Available Plants are typically infected by a consortium of internal fungal associates, including endophytes in their leaves, as well as arbuscular mycorrhizal fungi (AMF and dark septate endophytes (DSE in their roots. It is logical that these organisms will interact with each other and the abiotic environment in addition to their host, but there has been little work to date examining the interactions of multiple symbionts within single plant hosts, or how the relationships among symbionts and their host change across environmental conditions. We examined the grass Agrostis capillaris in the context of a climate manipulation experiment in prairies in the Pacific Northwest, USA. Each plant was tested for presence of foliar endophytes in the genus Epichloë, and we measured percent root length colonized (PRLC by AMF and DSE. We hypothesized that the symbionts in our system would be in competition for host resources, that the outcome of that competition could be driven by the benefit to the host, and that the host plants would be able to allocate carbon to the symbionts in such a way as to maximize fitness benefit within a particular environmental context. We found a correlation between DSE and AMF PRLC across climatic conditions; we also found a fitness cost to increasing DSE colonization, which was negated by presence of Epichloë endophytes. These results suggest that selective pressure on the host is likely to favor host/symbiont relationships that structure the community of symbionts in the most beneficial way possible for the host, not necessarily favoring the individual symbiont that is most beneficial to the host in isolation. These results highlight the need for a more integrative, systems approach to the study of host/symbiont consortia.

  9. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach

    Science.gov (United States)

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  10. Working group 7: Ecosystems

    International Nuclear Information System (INIS)

    Verheyen, R.

    1976-01-01

    The purpose of this article is to evaluate the environmental impact of nuclear power plants. The effects of ionizing radiations, of the thermal and chemical pollution on aquatic ecosystems as well as on terrestrial ecosystems have been estimated. After a general survey of such effects and their interaction, practical conclusions in regard to determined areas such as Meuse-Escaut marine and the coast have been drawn. The contamination effects of food chains have been evaluted under deliberately pessimistic conditions with regard to the choice of the radionuclide as well as of concentration factors. Following the biodegradation conditions of the surface waters, criteria for the quality of the aquatic ecosystems have been established. Finally, attention has been paid on certain factors affecting the site selection especially within the frame of the nature conservation. The effects of cooling towers have been also considered. (G.C.)

  11. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  12. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    Science.gov (United States)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  13. Integrating est.of ecosystem respiration from eddy covariance towers with automated measures of soil respiration: Exam. the dvlpt. and influence of hysteresis in soil respiratory fluxes along a woody plant gradient 2026

    Science.gov (United States)

    The physiognomic shift in ecosystem structure from a grassland to a woodland may alter the sensitivity of CO2 exchange to variations in growing-season temperatures and precipitation inputs. One large component of ecosystem flux is the efflux of CO2 from the soil (soil respiration, Rsoil), which is ...

  14. Upscaling key ecosystem functions across the conterminous United States by a water‐centric ecosystem model

    Science.gov (United States)

    Ge Sun; Peter Caldwell; Asko Noormets; Steven G. McNulty; Erika Cohen; al. et.

    2011-01-01

    We developed a water‐centric monthly scale simulation model (WaSSI‐C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI‐C model was evaluated with basin‐scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE)...

  15. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Science.gov (United States)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; hide

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  16. Soil compaction related to grazing and its effects on herbaceous roots frequency and soil organic matter content in rangelands of SW Spain

    Science.gov (United States)

    Pulido, Manuel; Schnabel, Susanne; Francisco Lavado Contador, Joaquín; Miralles Mellado, Isabel

    2016-04-01

    Rangelands in SW Spain occupy a total surface area of approximately 6 million ha and constitute the most representative extensive ranching system of the Iberian Peninsula gathering more than 13 million livestock heads. They are characterised by an herbaceous layer, mostly composed of therophytic species, with a disperse tree cover, mainly holm oak and cork oak (Quercus ilex rotundifolia and Q. suber), interspersed with shrubs in many places. This type of land system is of ancient origin and experienced frequent changes in land use in the past, since agricultural, livestock and forestry activities have coexisted within the same farms. In recent decades, livestock farming has become dominant due, in part, to the subsidies of the Common Agriculture Policy. Since Spain joined the European Union in 1986 until the year 2000, the number of domestic animals doubled, particularly cattle, and consequently animal stocking rates have increased on average from 0.40 AU ha-1 up to 0.70 AU ha-1. This increase in animal stocking rates, along with a progressive substitution of cattle instead of sheep in many farms, has led to the occurrence of land degradation processes such as the reduction of grass cover or soil compaction in heavily grazed areas. Previous research has evidenced higher values of soil bulk density and resistance to penetration as well as larger bare surface areas in spring in fenced areas with animal stocking rates above 1 AU ha-1. However, a better understanding of how increasing bulk density or resistance to penetration influence the frequency of herbaceous roots and how a reduction in the frequency of roots affects soil organic matter content in rangelands is still unknown. Therefore, the main goal of this study was to determine possible relationships between the frequencies of herbaceous roots and soil organic matter content in order to understand the effect of excessive animal numbers on the depletion of soil fertility by reducing progressively the quantity of

  17. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  18. Governance of Ecosystem Services

    NARCIS (Netherlands)

    Primmer, Eeva; Jokinen, Pekka; Blicharska, Malgorzata; Barton, David N.; Bugter, Rob; Potschin, Marion

    2015-01-01

    Biodiversity conservation policies justified with science and intrinsic value arguments have produced disappointing outcomes, and the need for conservation is now being additionally justified with the concept of ecosystem services. However, little, if any empirical attention is paid to ways in

  19. Shelf-sea ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  20. Partitioning ecosystems for sustainability.

    Science.gov (United States)

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  1. Payment for ecosystem services

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Oddershede, Jakob Stoktoft; Pedersen, Anders Branth

    Research question: Northern Europe experiences an increasingly wet climate, leading to more frequent and severe fluvial flood events. Ecosystem-based Adaptation (EbA) is becoming recognised as a valuable yet under-utilised means to alleviating negative effects of a changing climate. This however,...

  2. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  3. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment.

    Science.gov (United States)

    Barima, Yao Sadaiou Sabas; Angaman, Djédoux Maxime; N'gouran, Kobenan Pierre; Koffi, N'guessan Achille; Kardel, Fatemeh; De Cannière, Charles; Samson, Roeland

    2014-02-01

    Particulate matter (PM) emissions, and the associated human health risks, are likely to continue increasing in urban environments of developing countries like Abidjan (Ivory Cost). This study evaluated the potential of leaves of several herbaceous and tree species as bioindicators of urban particulate matter pollution, and its variation over different land use classes, in a tropical area. Four species well distributed (presence frequencies >90%) over all land use classes, easy to harvest and whose leaves are wide enough to be easily scanned were selected, i.e.: Amaranthus spinosus (Amaranthaceae), Eleusine indica (Poaceae), Panicum maximum (Poaceae) and Ficus benjamina (Moraceae). Leaf sampling of these species was carried out at 3 distances from the road and at 3 height levels. Traffic density was also noted and finally biomagnetic parameters of these leaves were determined. Results showed that Saturation Isothermal Remanent Magnetization (SIRM) of leaves was at least 4 times higher (27.5×10(-6)A) in the vicinity of main roads and industrial areas than in parks and residential areas. The main potential sources of PM pollution were motor vehicles and industries. The slightly hairy leaves of the herbaceous plant A. spinosus and the waxy leaves of the tree F. benjamina showed the highest SIRM (25×10(-6)A). Leaf SIRM increased with distance to road (R(2)>0.40) and declined with sampling height (R(2)=0.17). The distance between 0 and 5m from the road seemed to be the most vulnerable in terms of PM pollution. This study has showed that leaf SIRM of herbaceous and tree species can be used to assess PM exposure in tropical urban environments. © 2013.

  4. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  5. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  6. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    Science.gov (United States)

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  7. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance

    Directory of Open Access Journals (Sweden)

    Thijs Leendert Pons

    2014-02-01

    Full Text Available Plant photosynthesis scales positively with growth irradiance. The carbon balance, defined here as the daily whole-plant gross CO2 assimilation (A partitioned in C available for growth and C required for respiration (R, is thus irradiance dependent. Here we ask if R as a fraction of A is also irradiance dependent, whether there are systematic differences in C-balance between shade-tolerant and shade-intolerant species, and what the causes could be. Growth, gas exchange, chemical composition and leaf structure were analyzed for two shade-tolerant and three shade-intolerant herbaceous species that were hydroponically grown in a growth room at five irradiances from 20 µmol m-2 s-1 (1.2 mol m-2 day-1 to 500 µmol m-2 s-1 (30 mol m-2 day-1. Growth analysis showed little difference between species in unit leaf rate (dry mass increase per unit leaf area at low irradiance, but lower rates for the shade-tolerant species at high irradiance, mainly as a result of their lower light saturated rate of photosynthesis. This resulted in lower relative growth rates in these conditions. Daily whole-plant R scaled with A in a very tight manner, giving a remarkably constant R/A ratio of around 0.3 for all but the lowest irradiance. Although some shade-intolerant species showed tendencies towards a higher R/A and inefficiencies in terms of carbon and nitrogen investment in their leaves, no conclusive evidence was found for systematic differences in C-balance between the shade-tolerant and intolerant species at the lowest irradiance. Leaf tissue of the shade-tolerant species was characterized by high dry matter percentages, C-concentration and construction costs, which could be associated with a better defense in shade environments where leaf longevity matters. We conclude that shade-intolerant species have a competitive advantage at high irradiance due to superior potential growth rates, but that shade-tolerance is not necessarily associated with a superior C

  8. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance.

    Science.gov (United States)

    Pons, Thijs L; Poorter, Hendrik

    2014-01-01

    The carbon balance is defined here as the partitioning of daily whole-plant gross CO2 assimilation (A) in C available for growth and C required for respiration (R). A scales positively with growth irradiance and there is evidence for an irradiance dependence of R as well. Here we ask if R as a fraction of A is also irradiance dependent, whether there are systematic differences in C-balance between shade-tolerant and shade-intolerant species, and what the causes could be. Growth, gas exchange, chemical composition and leaf structure were analyzed for two shade-tolerant and three shade-intolerant herbaceous species that were hydroponically grown in a growth room at five irradiances from 20 μmol m(-2) s(-1) (1.2 mol m(-2) day(-1)) to 500 μmol m(-2) s(-1) (30 mol m(-2) day(-1)). Growth analysis showed little difference between species in unit leaf rate (dry mass increase per unit leaf area) at low irradiance, but lower rates for the shade-tolerant species at high irradiance, mainly as a result of their lower light-saturated rate of photosynthesis. This resulted in lower relative growth rates in these conditions. Daily whole-plant R scaled with A in a very tight manner, giving a remarkably constant R/A ratio of around 0.3 for all but the lowest irradiance. Although some shade-intolerant species showed tendencies toward a higher R/A and inefficiencies in terms of carbon and nitrogen investment in their leaves, no conclusive evidence was found for systematic differences in C-balance between the shade-tolerant and intolerant species at the lowest irradiance. Leaf tissue of the shade-tolerant species was characterized by high dry matter percentages, C-concentration and construction costs, which could be associated with a better defense in shade environments where leaf longevity matters. We conclude that shade-intolerant species have a competitive advantage at high irradiance due to superior potential growth rates, but that shade-tolerance is not necessarily associated

  9. [Urban ecosystem services: A review].

    Science.gov (United States)

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services.

  10. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    Science.gov (United States)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  11. Millennium Ecosystem Assessment: MA Population

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Population data sets provide baseline population information as one of the drivers of ecosystem change. The data helped in...

  12. Economic viewpoints on ecosystem services

    NARCIS (Netherlands)

    Silvis, H.J.; Heide, van der C.M.

    2013-01-01

    to help determine the different values of ecosystems. Ecosystem services are usually divided into four categories: provisioning services, regulating services, cultural services and habitat services (previously denoted as supporting services). This overview highlights economic theories about

  13. Interregional flows of ecosystem services

    NARCIS (Netherlands)

    Schröter, Matthias; Koellner, Thomas; Alkemade, Rob; Arnhold, Sebastian; Bagstad, Kenneth J.; Erb, Karl Heinz; Frank, Karin; Kastner, Thomas; Kissinger, Meidad; Liu, Jianguo; López-Hoffman, Laura; Maes, Joachim; Marques, Alexandra; Martín-López, Berta; Meyer, Carsten; Schulp, Catharina J.E.; Thober, Jule; Wolff, Sarah; Bonn, Aletta

    2018-01-01

    Conserving and managing global natural capital requires an understanding of the complexity of flows of ecosystem services across geographic boundaries. Failing to understand and to incorporate these flows into national and international ecosystem assessments leads to incomplete and potentially

  14. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  15. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  16. A general predictive model for estimating monthly ecosystem evapotranspiration

    Science.gov (United States)

    Ge Sun; Karrin Alstad; Jiquan Chen; Shiping Chen; Chelcy R. Ford; al. et.

    2011-01-01

    Accurately quantifying evapotranspiration (ET) is essential for modelling regional-scale ecosystem water balances. This study assembled an ET data set estimated from eddy flux and sapflow measurements for 13 ecosystems across a large climatic and management gradient from the United States, China, and Australia. Our objectives were to determine the relationships among...

  17. Perspectives on using prescribed fire to achieve desired ecosystem conditions

    Science.gov (United States)

    James M. Vose

    2000-01-01

    Fire is a potentially powerful tool for achieving desired conditions of forest ecosystems. From an ecological perspective, the use of fire requires affirmative answers to either of the following questions: (1) does it increase ecosystem health and sustainability? and (2) does it preserve or restore unique species or habitats? Health and sustainability can be measured...

  18. Precipitation as driver of carbon fluxes in 11 African ecosystems

    NARCIS (Netherlands)

    Merbold, L.; Ardo, J.; Arneth, A.; Scholes, R.J.; Nouvellon, Y.; Grandcourt, de A.; Archibald, S.; Bonnefonds, J.M.; Boulain, N.; Bruemmer, C.; Brueggemann, N.; Cappelaere, B.; Ceschia, E.; El-Khidir, H.A.M.; El-Tahir, B.A.; Falk, U.; Lloyd, J.; Kergoat, L.; Dantec, Le V.; Mougin, E.; Muchinda, M.; Mukelabai, M.M.; Ramier, D.; Roupsard, O.; Timouk, F.; Veenendaal, E.M.; Kutsch, W.L.

    2009-01-01

    This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available

  19. The role of biodiversity in the provision of ecosystem services.

    NARCIS (Netherlands)

    Vermaat, J.E.; Ellers, J.; Helmus, M.R.; Bouma, J.A.; van Beukering, P.J.H.

    2015-01-01

    Ecosystem services have become a popular concept for policymakers and practioners to explain the societal value of ecosystems and biodiversity to the general public. However, in translating the concept into practice, policymakers are struggling as the measurement, valuation and governance of

  20. Preface: Ecosystem services, ecosystem health and human communities

    Science.gov (United States)

    Plag, Hans-Peter

    2018-04-01

    This special issue contains a collection of manuscripts that were originally intended to be included in the special issue on "Physics and Economics of Ecosystem Services Flows" (Volume 101, guest editors H. Su, J. Dong and S. Nagarajan) and "Biogeochemical Processes in the Changing Wetland Environment" (Volume 103, guest editors J. Bai, L. Huang and H. Gao). All of them are addressing issues related to ecosystem services in different settings. Ecosystem services are of high value for both the ecosystems and human communities, and understanding the impacts of environmental processes and human activities on ecosystems is of fundamental importance for the preservation of these services.

  1. Benefits of investing in ecosystem restoration

    NARCIS (Netherlands)

    Groot, de R.S.; Blignaut, J.; Ploeg, van der S.; Aronson, J.; Elmqvist, T.; Farley, J.

    2013-01-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies)

  2. Benefits of investing in ecosystem restoration.

    Science.gov (United States)

    DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua

    2013-12-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas. © 2013 Society for Conservation Biology.

  3. An ecosystem carbon database for Canadian forests

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, C.H.; Bhatti, J.S.; Sabourin, K.J.

    2005-07-01

    The forest ecosystem carbon database (FECD) is a compilation of data from more than 700 plots from different forest ecosystems in Canada. It includes more than 60 variables for site, stand and soil characteristics. It is intended for large-scale modelers and analysts working with the carbon budget and dynamics of forest ecosystems, particularly those interested in the response of forest carbon stocks and fluxes to changes in climate and site characteristics. The database includes totals for organic and mineral soil horizons for each plot along with total soil carbon content, tree biomass carbon content by component and total ecosystem carbon content. It is complete for site description information, soil chemistry, stand-level estimates of live tree biomass and carbon components and their totals. Soil carbon content by horizon was also included. The compilation targeted data collected at single points in space, where above ground and below ground carbon levels were measured simultaneously. It was noted that one of the important information gaps lies in the fact that no data was available for the natural disturbance or management histories of the stands where the plots were located. Estimates did not include detrital carbon or root biomass, which can influence the estimates for total ecosystem carbon in some forest types. The preliminary analysis reveals that ecozones can be grouped according to low and high average total biomass carbon content. The groups correlate to ecozones with low and high average total ecosystem carbon. Mineral soil carbon within each group contributes the highest proportion of carbon to the average total ecosystem carbon. It is correlated with a gradient in ecozone climate from cold and dry to warm and wet. 42 refs., 13 tabs., 16 figs.

  4. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  5. Promoting Transfer of Ecosystems Concepts

    Science.gov (United States)

    Yu, Yawen; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Eberbach, Catherine; Sinha, Suparna

    2016-01-01

    This study examines to what extent students transferred their knowledge from a familiar aquatic ecosystem to an unfamiliar rainforest ecosystem after participating in a technology-rich inquiry curriculum. We coded students' drawings for components of important ecosystems concepts at pre- and posttest. Our analysis examined the extent to which each…

  6. The Coevolution of Digital Ecosystems

    Science.gov (United States)

    SungYong, Um

    2016-01-01

    Digital ecosystems are one of the most important strategic issues in the current digital economy. Digital ecosystems are dynamic and generative. They evolve as new firms join and as heterogeneous systems are integrated into other systems. These features digital ecosystems determine economic and technological success in the competition among…

  7. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal

    DEFF Research Database (Denmark)

    Delon, C.; Galy-Lacaux, C.; Serça, D.

    2017-01-01

    compounds emissions in November 2013, whereas emissions in July 2012 and 2013, when the herbaceous strata was sparse, were dominated by microbial processes in the soil. CO2 respiration fluxes were high in the beginning (107 ± 26 mg m−2 h−1 in July 2013) and low in the end of the wet season (32 ± 5 mg m−2 h......), two at the beginning of the wet season in July 2012 and July 2013, and the third one in November 2013 at the end of the wet season. The ammonia emission potentials of the soil ranged from 271 to 6628, indicating the soil capacity to emit NH3. The ammonia compensation point in the soil ranged between 7...... and 150 ppb, with soil temperatures between 32 and 37 °C. Ammonia exchange fluctuated between emission and deposition (from −0.1–1.3 ng N.m−2 s−1), depending on meteorology, ambient NH3 concentration (5–11 ppb) and compensation point mixing ratios. N2O fluxes are supposed to be lower than NO fluxes...

  8. Impact of Point and Non-point Source Pollution on Coral Reef Ecosystems In Mamala Bay, Oahu, Hawaii based on Water Quality Measurements and Benthic Surveys in 1993-1994 (NODC Accession 0001172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of both point and non-point sources of pollution on coral reef ecosystems in Mamala Bay were studied at three levels of biological organization; the...

  9. Marine Ecosystem Services

    DEFF Research Database (Denmark)

    Hasler, Berit; Ahtiainen, Heini; Hasselström, Linus

    MARECOS (Marine Ecosystem Services) er et tværfagligt studie, der har haft til formål at tilvejebringe information vedrørende kortlægning og værdisætning af økosystemtjenester, som kan anvendes i forbindelse med udformning af regulering på det marine område såvel nationalt, som regionalt og inter...

  10. Comparison of radiocesium concentration changes in leguminous and non-leguminous herbaceous plants observed after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Uchida, Shigeo; Tagami, Keiko

    2018-06-01

    Transfer of radiocesium from soil to crops is an important pathway for human intake. In the period from one to two years after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, food monitoring results showed that radiocesium concentrations in soybean (a legume) were higher than those in other annual agricultural crops; in these crops, root uptake is the major pathway of radiocesium from soil to plant. However, it was not clear whether or not leguminous and non-leguminous herbaceous plants have different Cs uptake abilities from the same soil because crop sample collection fields were different. In this study, therefore, we compared the concentrations of 137 Cs in seven herbaceous plant species including two leguminous plants (Trifolium pratense L. and Vicia sativa L.) collected in 2012-2016 from the same sampling field in Chiba, Japan that had been affected by the FDNPP accident fallout. Among these species, Petasites japonicus (Siebold & Zucc.) Maxim. showed the highest 137 Cs concentration in 2012-2016. The correlation factor between all concentration data for 137 Cs and those for 40 K in these seven plants was R = 0.54 (p plants did not differ significantly, but 137 Cs data in the Poaceae family plants were significantly lower than those in T. pratense (p plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    Directory of Open Access Journals (Sweden)

    Raphiou Maliki

    2016-01-01

    Full Text Available Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM production (tubers, shoots, nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation. The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA using the general linear model (GLM procedure was applied to the dry matter (DM production (tubers, shoots, nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  12. Floristic survey of the herbaceous-shrub layer of a gallery forest in Alto Paraíso de Goiás - GO, Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo Chaves

    2012-10-01

    Full Text Available Flowering species of the herbaceous and shrubby layer were sampled in a gallery forest at Portal da Chapada, Alto Paraíso de Goiás-GO in the Chapada dos Veadeiros during 12 months growing within 4.5 meters on either side of a raised pathway 2.4 Km long. The collections were included to University of Brasilia Herbarium (UB. A total of 138 species (103 genera and 40 families were recorded; the most species-rich families were Asteraceae (22, Poaceae (14, Rubiaceae (12, Fabaceae (11 and Melastomataceae (7. The richest family in number of genera was Asteraceae (19, followed by Poaceae (8, Fabaceae (8 and Rubiaceae (7. The results showed a meaningful increase in the Chapada dos Veadeiros flora, especially considering the herbaceous-shrubby layer of the gallery forests (223.6%. Despite the richness of the flora, the number of endemics species in the Goiás State was only 1.5%.

  13. Poverty, development, and Himalayan ecosystems.

    Science.gov (United States)

    Sandhu, Harpinder; Sandhu, Sukhbir

    2015-05-01

    The Himalayas are rich in biodiversity but vulnerable to anthropogenic pressures. They are also host to growing number of rural poor who are dependent on forest and ecosystem services for their livelihood. Local and global efforts to integrate poverty alleviation and biodiversity conservation in the Himalayas remain elusive so far. In this work, we highlight two key impediments in achieving sustainable development in the Himalayas. On the positive side, we also highlight the work of Ashoka Trust for Research in Ecology and the Environment (ATREE), a research organization based in India that seeks to integrate biodiversity concerns with livelihood security. For impediments, we draw on two examples from the Darjeeling district, India, in Eastern Himalayan region to illustrate how development organizations are failing to simultaneously address poverty and environmental issues. Based on the success of ATREE, we then propose a conceptual framework to integrate livelihood generating activities with sustainable and equitable development agenda. We recommend developing a Hindu-Kush Himalayan Ecosystem Services Network in the region to formulate a strategy for further action. We conclude by offering measures to address the challenge of integrating livelihood and environment issues through this network.

  14. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  15. Long-term ecosystem nitrogen storage and soil nitrogen availability in post-fire lodgepole pine ecosystems

    Science.gov (United States)

    Erica A. H. Smithwick; Daniel M. Kashian; Michael G. Ryan; Monica G.  Turner

    2009-01-01

    Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N...

  16. The river ecosystem

    International Nuclear Information System (INIS)

    Descy, J.P.; Lambinon, J.

    1984-01-01

    From the standpoint of the ecologist, a river is an ecosystem characterized by its biocoenosis, in dynamic equilibrium with the abiotic environment. This ecosystem can be envisaged at the structural level by examining its physical, chemical and biological properties, together with the relationships existing between these compartments. The biocoenotic structure of a river is relatively complex: it manifests, among other specific features, the presence of plankton communities which show marked space-time variations. The function of the river ecosystem can be approximated by a study of the relationships between the biotic and abiotic components: primary production, secondary production, recycling of organic matter, etc. Lotic environments are subject to frequent disturbance from various forms of man-made pollution: organic pollution, eutrophization, thermal pollution, mineral pollution, contamination by organic and mineral micropollutants, as well as by radionuclides, mechanical pollution and physical degradation. The biocoenotic effects of these forms of pollution may be evaluated, in particular, using biological indicators (bioindicators): these are either able to show the overall impact of the pollution on the biocoenosis or else they permit the detection and evaluation of certain pollutant forms. (author)

  17. ECOLOGICAL FACTORS ASSOCIATED WITH THE ESTABLISHMENT OF RUSTIC SPECIES IN DISTURBED ECOSYSTEMS IN THE ATLANTIC FOREST, PIRAÍ, RIO DE JANEIRO STATE – BRAZIL

    Directory of Open Access Journals (Sweden)

    Hiram Feijó Baylão Junior

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810542 Disturbed ecosystems do not present original floristic composition. Their soils are depleted, shallow, stony, with low infiltration and present erosion with different levels of Geodynamics. The region has areas of pasture with sparse herbaceous vegetation which is weakened in every rain and fire, covering less ground. The individuals that colonized and settled in these environments were considered rustic species. This study raised and identified by census, the rustic species and their structure in the most degraded part (lower third of the watershed of Cacaria’s river at the base of the Serra do Mar, Piraí, Rio de Janeiro state, and evaluated the influence of ecological exposure, slope, elevation, topography and rock outcrops in the establishment and growth of these species. For the vegetation survey it was conducted census in an area of 22 hectares, where it was measured, geo-referenced and identified all spontaneous tree species that were isolated in a pasture area. Ecological factors exposure, elevation and slope were determined with a compass, altimeter and clinometer, respectively. We identified 131 individuals, representing 14 species, grouped into nine families. Tabernaemontana laeta Mart., Sparattosperma leucanthum (Vell. Schum., Machaerium hirtum (Vell. Stellfeld, Tabebuia chrysotricha (Mart. ex DC. Stan., Cecropia pachystachya Trec., Peltophorum dubium (Spreng. Taub., Guarea guidonia (L. Sleumer, Acacia polyphylla DC. and Psidium guajava L.were present in portions of the slope with exposure to the north, with altitudes from 60m to 80m and with slope strongly corrugated (20-45%, indicating a preference of these species for microhabitats with those characteristics. 

  18. Characterizing the Danish telemedicine ecosystem

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Hansen, Klaus Marius

    2013-01-01

    and interoperability issues, silo solutions, and lack of guidelines and standards. In this paper, we characterise the ecosystem evolved around the telemedicine services in Denmark and study the actors involved in this ecosystem. We establish a method for this study, where we define two actor roles and ways...... of characterizing actor contributions, and apply the method to the largest healthcare region of Denmark. Our findings reveal an ecosystem that is relatively closed to new actors, where the actors tend to be related to single telemedicine applications, the applications have low connectivity, and the most influential...... actors of the ecosystem can be characterised as both being beneficial and inhibitory to the ecosystem prosperity....

  19. Ecosystem Management. A Management View

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars

    The need for management of the marine ecosystem using a broad perspective has been recommended under a variety of names. This paper uses the term Ecosystem Management, which is seen as a convergence between the ecological idea of an organisational hierarchy and the idea of strategic planning...... with a planning hierarchy---with the ecosystem being the strategic planning level. Management planning requires, in order to establish a quantifiable means and ends chain, that the goals at the ecosystem level can be linked to operational levels; ecosystem properties must therefore be reducible to lower...... organisational levels. Emergence caused by constraints at both the component and system levels gives rise to phenomena that can create links between the ecosystem and operational levels. To create these links, the ecosystem's functional elements must be grouped according to their functionality, ignoring any...

  20. Desempenho de bananeiras consorciadas com leguminosas herbáceas perenes Banana plant performance intercropping with perennial herbaceous legumes

    Directory of Open Access Journals (Sweden)

    Adriano Perin

    2009-12-01

    Full Text Available O emprego de plantas de cobertura em consórcio com bananeiras pode ser uma estratégia de manejo, possibilitando aumentos de produtividade associados à otimização de processos biológicos e maior estabilidade do sistema produtivo. Neste trabalho, objetivo-se avaliar o efeito da cobertura viva, formada por leguminosas herbáceas perenes sobre a produção de bananeira cultivar Nanicão. Os tratamentos foram: amendoim forrageiro (Arachis pintoi Krap. & Greg, cudzu tropical (Pueraria phaseoloides Benth., siratro (Macroptilium atropurpureum Urb., vegetação espontânea (dominada por Panicum maximum Jacq. e vegetação espontânea + N-fertilizante. Foi avaliado o desenvolvimento vegetativo das bananeiras entre abril/1999 e julho/2000 e os atributos de produtividade. O peso do cacho e da penca foram positivamente influenciados pelo siratro e cudzu tropical empregados como coberturas vivas, quando comparados aos demais tratamentos. Todas as leguminosas proporcionaram maior crescimento das bananeiras (notadamente a partir do 6º mês, maior número de folhas emitidas e maior proporção de cachos colhidos, em relação aos tratamentos com vegetação espontânea (com e sem N-fertilizante. As leguminosas siratro e cudzu tropical promoveram condições adequadas ao desenvolvimento das bananeiras, acarretando ganhos de produtividade e eliminação da adubação nitrogenada no bananal. O potencial benéfico das leguminosas cudzu tropical e siratro como coberturas vivas capazes de proporcionar aumentos na produtividade de banana, qualifica essas espécies como alternativa promissora para a fertilidade do solo e nutrição das bananeiras.The use of coverage plants in cover cropping with bananas can be a management strategy, increasing in productivity associated with the optimization of biological processes and greater stability of production system. The objective of this work was to evaluate the effect of live coverage by herbaceous perennial legume on

  1. Ecosystem Model Skill Assessment. Yes We Can!

    Science.gov (United States)

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S

    2016-01-01

    Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable

  2. An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Meyer, Debbie; Granneman, Brian J.

    2013-01-01

    Characterizing and quantifying distributions of shrubland ecosystem components is one of the major challenges for monitoring shrubland vegetation cover change across the United States. A new approach has been developed to quantify shrubland components as fractional products within National Land Cover Database (NLCD). This approach uses remote sensing data and regression tree models to estimate the fractional cover of shrubland ecosystem components. The approach consists of three major steps: field data collection, high resolution estimates of shrubland ecosystem components using WorldView-2 imagery, and coarse resolution estimates of these components across larger areas using Landsat imagery. This research seeks to explore this method to quantify shrubland ecosystem components as continuous fields in regions that contain wide-ranging shrubland ecosystems. Fractional cover of four shrubland ecosystem components, including bare ground, herbaceous, litter, and shrub, as well as shrub heights, were delineated in three ecological regions in Arizona, Florida, and Texas. Results show that estimates for most components have relatively small normalized root mean square errors and significant correlations with validation data in both Arizona and Texas. The distribution patterns of shrub height also show relatively high accuracies in these two areas. The fractional cover estimates of shrubland components, except for litter, are not well represented in the Florida site. The research results suggest that this method provides good potential to effectively characterize shrubland ecosystem conditions over perennial shrubland although it is less effective in transitional shrubland. The fractional cover of shrub components as continuous elements could offer valuable information to quantify biomass and help improve thematic land cover classification in arid and semiarid areas.

  3. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  4. Practical Strategies for Integrating Final Ecosystem Goods and ...

    Science.gov (United States)

    The concept of Final Ecosystem Goods and Services (FEGS) explicitly connects ecosystem services to the people that benefit from them. This report presents a number of practical strategies for incorporating FEGS, and more broadly ecosystem services, into the decision-making process. Whether a decision process is in early or late stages, or whether a process includes informal or formal decision analysis, there are multiple points where ecosystem services concepts can be integrated. This report uses Structured Decision Making (SDM) as an organizing framework to illustrate the role ecosystem services can play in a values-focused decision-process, including: • Clarifying the decision context: Ecosystem services can help clarify the potential impacts of an issue on natural resources together with their spatial and temporal extent based on supply and delivery of those services, and help identify beneficiaries for inclusion as stakeholders in the deliberative process. • Defining objectives and performance measures: Ecosystem services may directly represent stakeholder objectives, or may be means toward achieving other objectives. • Creating alternatives: Ecosystem services can bring to light creative alternatives for achieving other social, economic, health, or general well-being objectives. • Estimating consequences: Ecosystem services assessments can implement ecological production functions (EPFs) and ecological benefits functions (EBFs) to link decision alt

  5. Biological indication in aquatic ecosystems. Biological indication in limnic and coastal ecosystems - fundamentals, techniques, methodology

    International Nuclear Information System (INIS)

    Gunkel, G.

    1994-01-01

    Biological methods of water quality evaluation today form an integral part of environmental monitoring and permit to continuously monitor the condition of aquatic ecosystems. They indicate both improvements in water quality following redevelopment measures, and the sometimes insidious deterioration of water quality. This book on biological indication in aquatic ecosystems is a compendium of measurement and evaluation techniques for limnic systems by means of biological parameters. At present, however, an intense discussion of biological evaluation techniques is going on, for one thing as a consequence of the German reunification and the need to unify evaluation techniques, and for another because of harmonizations within the European Community. (orig./EF) [de

  6. Temporal changes in potential regulating ecosystem services driven by urbanization

    Science.gov (United States)

    Ferreira, Carla; Amorim, Inês; Pires, Evanilton; Kalantari, Zahra; Walsh, Rory; Ferreira, António

    2017-04-01

    resolution involved the use of CORINE land cover data and aerial photographs, available for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012. The resulting land-use maps include 11 land cover classes: equipment and infrastructure, discontinuous urban fabric, continuous urban fabric, natural areas with shrubs and herbaceous plants, softwoods, hardwoods, mixed forest, permanent crops, arable land, bare soil and water bodies. Quantitative assessment of regulating services of these land-use classes was achieved based on interviews with 31 experts. Each expert prepared a matrix using a scale from "0" to "5", where "0" refers to the land cover as having no capacity to provide regulating services, while 5 indicates that the land cover provides a wide range of ecosystem services. A final matrix was prepared based on mean values of all the experts. This matrix was then integrated with the land-use maps of different years to generate a spatially explicit potential ecosystem service supply model. The results showed decreasing ecosystem regulation services over time, mainly due to increasing urban area but also changes on forest types. The methodology used can be easily applied to test distinct urbanization scenarios, thus, providing a valuable support for urban planning.

  7. Sustainable web ecosystem design

    CERN Document Server

    O'Toole, Greg

    2013-01-01

    This book is about the process of creating web-based systems (i.e., websites, content, etc.) that consider each of the parts, the modules, the organisms - binary or otherwise - that make up a balanced, sustainable web ecosystem. In the current media-rich environment, a website is more than a collection of relative html documents of text and images on a static desktop computer monitor. There is now an unlimited combination of screens, devices, platforms, browsers, locations, versions, users, and exabytes of data with which to interact. Written in a highly approachable, practical style, this boo

  8. Exchange of soil moisture between patches of wild-olive and pasture sustains evapotranspiration of a Mediterranean ecosystem in both wet and dry seasons

    Science.gov (United States)

    Curreli, M.; Montaldo, N.; Oren, R.

    2017-12-01

    Partitioning evapotranspiration in water-limited environments, such as Mediterranean ecosystems, could give information on vegetation and hydraulic dynamics. Indeed, in such ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots and shallower lateral roots, extending beyond the crown into inter-trees grassy areas. The water exchange between under canopy areas and treeless patches plays a crucial role on sustaining tree and grass physiological performance during droughts. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps and herbaceous species, drying to bare soil in summer. The climate is characterized by long droughts from May to October and rain events concentrated in the autumn and winter, whit a mean yearly rain of about 700 mm. A 10 m micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. temperature, radiations, humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in the pasture). To estimate plant water use in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed 40 cm aboveground, in representative trees over the eddy covariance footprint. Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. This reveled hydraulic redistribution system through the plant and the soil, and allows to quantify the reliance of the system on horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the shallow water content. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow

  9. Contribution of phytoplankton photosynthesis to a mangrove ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Pant, A.; Dhargalkar, V.K.; Bhosle, N.B.; Untawale, A.G.

    Primary production in a fringing mangrove ecosystem was measured using two techniques. The first estimated gross oxygen production and community metabolism based on the diel difference in dissolved oxygen concentrations. The second estimated carbon...

  10. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Construction of the impact intensity model of climatic changes on grassland ecosystem ... the temperature and rainfall (Sun and Mu, 2011). Thus, the study ... of the equation, the study transformed the measurement unit Mu of.

  11. Contrasting effects of invasive insects and fire on ecosystem water use efficiency

    Science.gov (United States)

    K.L. Clark; N.S. Skowronski; M.R. Gallagher; H. Renninger; K.V.R. Schäfer

    2014-01-01

    We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy...

  12. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  13. The Use of Thermal Remote Sensing to Study Thermodynamics of Ecosystem Development

    Science.gov (United States)

    Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. These data were used to develop measures of ecosystem development and integrity based on surface temperature.

  14. Spatial modelling and ecosystem accounting for land use planning: addressing deforestation and oil palm expansion in Central Kalimantan, Indonesia

    OpenAIRE

    Sumarga, E.

    2015-01-01

    Ecosystem accounting is a new area of environmental economic accounting that aims to measure ecosystem services in a way that is in line with national accounts. The key characteristics of ecosystem accounting include the extension of the valuation boundary of the System of National Accounts, allowing the inclusion of a broader set of ecosystem services types such regulating services and cultural services. Consistent with the principles of national account, ecosystem accounting focuses on asse...

  15. Ecosystem services for energy security

    Energy Technology Data Exchange (ETDEWEB)

    Athanas, Andrea; McCormick, Nadine

    2010-09-15

    The world is at an energy crossroads. The changes underway will have implications for ecosystems and livelihoods. Energy security is the reliable supply of affordable energy, of which there are two dimensions; reliability and resilience. Changes in ecosystem services linked to degradation and climate change have the potential to impact both on the reliabiity of energy systems and on their resiliance. Investing in ecosystems can help safeguard energy systems, and mitigate unforeseen risks to energy security. The energy and conservation community should come together to build reliable and resilliant energy systems in ways which recognise and value supporting ecosystems.

  16. Millennium Ecosystem Assessment: MA Biodiversity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Biodiversity provides data and information on amphibians, disease agents (extent and distribution of infectious and parasitic...

  17. Functional traits in agriculture: agrobiodiversity and ecosystem services.

    Science.gov (United States)

    Wood, Stephen A; Karp, Daniel S; DeClerck, Fabrice; Kremen, Claire; Naeem, Shahid; Palm, Cheryl A

    2015-09-01

    Functional trait research has led to greater understanding of the impacts of biodiversity in ecosystems. Yet, functional trait approaches have not been widely applied to agroecosystems and understanding of the importance of agrobiodiversity remains limited to a few ecosystem processes and services. To improve this understanding, we argue here for a functional trait approach to agroecology that adopts recent advances in trait research for multitrophic and spatially heterogeneous ecosystems. We suggest that trait values should be measured across environmental conditions and agricultural management regimes to predict how ecosystem services vary with farm practices and environment. This knowledge should be used to develop management strategies that can be easily implemented by farmers to manage agriculture to provide multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Study of Wetland Ecosystem Vegetation Using Satellite Data

    Science.gov (United States)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  19. A model ecosystem experiment and its computational simulation studies

    International Nuclear Information System (INIS)

    Doi, M.

    2002-01-01

    Simplified microbial model ecosystem and its computer simulation model are introduced as eco-toxicity test for the assessment of environmental responses from the effects of environmental impacts. To take the effects on the interactions between species and environment into account, one option is to select the keystone species on the basis of ecological knowledge, and to put it in the single-species toxicity test. Another option proposed is to put the eco-toxicity tests as experimental micro ecosystem study and a theoretical model ecosystem analysis. With these tests, the stressors which are more harmful to the ecosystems should be replace with less harmful ones on the basis of unified measures. Management of radioactive materials, chemicals, hyper-eutrophic, and other artificial disturbances of ecosystem should be discussed consistently from the unified view point of environmental protection. (N.C.)

  20. Valuing ecosystem services. A shadow price for net primary production

    International Nuclear Information System (INIS)

    Richmond, Amy; Kaufmann, Robert K.; Myneni, Ranga B.

    2007-01-01

    We analyze the contribution of ecosystem services to GDP and use this contribution to calculate an empirical price for ecosystem services. Net primary production is used as a proxy for ecosystem services and, along with capital and labor, is used to estimate a Cobb Douglas production function from an international panel. A positive output elasticity for net primary production probably measures both marketed and nonmarketed contributions of ecosystems services. The production function is used to calculate the marginal product of net primary production, which is the shadow price for ecosystem services. The shadow price generally is greatest for developed nations, which have larger technical scalars and use less net primary production per unit output. The rate of technical substitution indicates that the quantity of capital needed to replace a unit of net primary production tends to increase with economic development, and this rate of replacement may ultimately constrain economic growth. (author)

  1. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.

    Science.gov (United States)

    Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph

    2017-06-01

    Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Global patterns of phytoplankton dynamics in coastal ecosystems

    Science.gov (United States)

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  3. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decrease of emissions in Europe (Waengberg et al., 2007). For mercury in air (TGM), the geographical pattern is less pronounced indicating the influence of mercury emissions and distribution over a larger geographical area (i.e. hemispherical transport). Comparison of recent (surficial) and historical lake sediments show significantly elevated concentrations of mercury most likely caused by anthropogenic atmospheric deposition over the past century. The highest pollution impact was observed in the coastal areas of southern Norway, in south western Finland and in Sweden from the coastal areas in the southwest across the central parts to the north-east. The general increase in recent versus old sediments was 2-5 fold. Data on mercury in Nordic freshwater fish was assembled and evaluated with respect to geographical variations. The fish data were further compared with temporal and spatial trends in mercury deposition and mercury contamination of lake sediments in order to investigate the coupling between atmospheric transport and deposition of mercury and local mercury

  4. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    Science.gov (United States)

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future

  5. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality

    Science.gov (United States)

    E.L. Aronson; S.G. McNulty

    2009-01-01

    The temperature of the Earth is rising, and is highly likely to continue to do so for the foreseeable future. The study of the effects of sustained heating on the ecosystems of the world is necessary so that wemight predict and respond to coming changes on both large and small spatial scales. To this end, ecosystem warming studies have...

  6. Effects of red-backed salamanders on ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Daniel J Hocking

    Full Text Available Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp. likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2 plots and small-scale enclosures (2 m(2 where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2. In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders. Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  7. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    Science.gov (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  8. Effects of red-backed salamanders on ecosystem functions.

    Science.gov (United States)

    Hocking, Daniel J; Babbitt, Kimberly J

    2014-01-01

    Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp.) likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus) on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2) plots) and small-scale enclosures (2 m(2)) where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2)). In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders). Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  9. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li

    2014-11-01

    Full Text Available Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1 scale issue; (2 transportability issue; (3 data availability; and (4 uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  10. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  11. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Science.gov (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scie